1 //===- LoadStoreOpt.cpp ----------- Generic memory optimizations -*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the LoadStoreOpt optimization pass. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/MemoryLocation.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 20 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 22 #include "llvm/CodeGen/GlobalISel/Utils.h" 23 #include "llvm/CodeGen/LowLevelTypeUtils.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/Register.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetOpcodes.h" 33 #include "llvm/IR/DebugInfoMetadata.h" 34 #include "llvm/InitializePasses.h" 35 #include "llvm/Support/AtomicOrdering.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include <algorithm> 41 42 #define DEBUG_TYPE "loadstore-opt" 43 44 using namespace llvm; 45 using namespace ore; 46 using namespace MIPatternMatch; 47 48 STATISTIC(NumStoresMerged, "Number of stores merged"); 49 50 const unsigned MaxStoreSizeToForm = 128; 51 52 char LoadStoreOpt::ID = 0; 53 INITIALIZE_PASS_BEGIN(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations", 54 false, false) 55 INITIALIZE_PASS_END(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations", 56 false, false) 57 58 LoadStoreOpt::LoadStoreOpt(std::function<bool(const MachineFunction &)> F) 59 : MachineFunctionPass(ID), DoNotRunPass(F) {} 60 61 LoadStoreOpt::LoadStoreOpt() 62 : LoadStoreOpt([](const MachineFunction &) { return false; }) {} 63 64 void LoadStoreOpt::init(MachineFunction &MF) { 65 this->MF = &MF; 66 MRI = &MF.getRegInfo(); 67 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 68 TLI = MF.getSubtarget().getTargetLowering(); 69 LI = MF.getSubtarget().getLegalizerInfo(); 70 Builder.setMF(MF); 71 IsPreLegalizer = !MF.getProperties().hasProperty( 72 MachineFunctionProperties::Property::Legalized); 73 InstsToErase.clear(); 74 } 75 76 void LoadStoreOpt::getAnalysisUsage(AnalysisUsage &AU) const { 77 AU.addRequired<AAResultsWrapperPass>(); 78 AU.setPreservesAll(); 79 getSelectionDAGFallbackAnalysisUsage(AU); 80 MachineFunctionPass::getAnalysisUsage(AU); 81 } 82 83 BaseIndexOffset GISelAddressing::getPointerInfo(Register Ptr, 84 MachineRegisterInfo &MRI) { 85 BaseIndexOffset Info; 86 Register PtrAddRHS; 87 Register BaseReg; 88 if (!mi_match(Ptr, MRI, m_GPtrAdd(m_Reg(BaseReg), m_Reg(PtrAddRHS)))) { 89 Info.setBase(Ptr); 90 Info.setOffset(0); 91 return Info; 92 } 93 Info.setBase(BaseReg); 94 auto RHSCst = getIConstantVRegValWithLookThrough(PtrAddRHS, MRI); 95 if (RHSCst) 96 Info.setOffset(RHSCst->Value.getSExtValue()); 97 98 // Just recognize a simple case for now. In future we'll need to match 99 // indexing patterns for base + index + constant. 100 Info.setIndex(PtrAddRHS); 101 return Info; 102 } 103 104 bool GISelAddressing::aliasIsKnownForLoadStore(const MachineInstr &MI1, 105 const MachineInstr &MI2, 106 bool &IsAlias, 107 MachineRegisterInfo &MRI) { 108 auto *LdSt1 = dyn_cast<GLoadStore>(&MI1); 109 auto *LdSt2 = dyn_cast<GLoadStore>(&MI2); 110 if (!LdSt1 || !LdSt2) 111 return false; 112 113 BaseIndexOffset BasePtr0 = getPointerInfo(LdSt1->getPointerReg(), MRI); 114 BaseIndexOffset BasePtr1 = getPointerInfo(LdSt2->getPointerReg(), MRI); 115 116 if (!BasePtr0.getBase().isValid() || !BasePtr1.getBase().isValid()) 117 return false; 118 119 LocationSize Size1 = LdSt1->getMemSize(); 120 LocationSize Size2 = LdSt2->getMemSize(); 121 122 int64_t PtrDiff; 123 if (BasePtr0.getBase() == BasePtr1.getBase() && BasePtr0.hasValidOffset() && 124 BasePtr1.hasValidOffset()) { 125 PtrDiff = BasePtr1.getOffset() - BasePtr0.getOffset(); 126 // If the size of memory access is unknown, do not use it to do analysis. 127 // One example of unknown size memory access is to load/store scalable 128 // vector objects on the stack. 129 // BasePtr1 is PtrDiff away from BasePtr0. They alias if none of the 130 // following situations arise: 131 if (PtrDiff >= 0 && Size1.hasValue() && !Size1.isScalable()) { 132 // [----BasePtr0----] 133 // [---BasePtr1--] 134 // ========PtrDiff========> 135 IsAlias = !((int64_t)Size1.getValue() <= PtrDiff); 136 return true; 137 } 138 if (PtrDiff < 0 && Size2.hasValue() && !Size2.isScalable()) { 139 // [----BasePtr0----] 140 // [---BasePtr1--] 141 // =====(-PtrDiff)====> 142 IsAlias = !((PtrDiff + (int64_t)Size2.getValue()) <= 0); 143 return true; 144 } 145 return false; 146 } 147 148 // If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be 149 // able to calculate their relative offset if at least one arises 150 // from an alloca. However, these allocas cannot overlap and we 151 // can infer there is no alias. 152 auto *Base0Def = getDefIgnoringCopies(BasePtr0.getBase(), MRI); 153 auto *Base1Def = getDefIgnoringCopies(BasePtr1.getBase(), MRI); 154 if (!Base0Def || !Base1Def) 155 return false; // Couldn't tell anything. 156 157 158 if (Base0Def->getOpcode() != Base1Def->getOpcode()) 159 return false; 160 161 if (Base0Def->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 162 MachineFrameInfo &MFI = Base0Def->getMF()->getFrameInfo(); 163 // If the bases have the same frame index but we couldn't find a 164 // constant offset, (indices are different) be conservative. 165 if (Base0Def != Base1Def && 166 (!MFI.isFixedObjectIndex(Base0Def->getOperand(1).getIndex()) || 167 !MFI.isFixedObjectIndex(Base1Def->getOperand(1).getIndex()))) { 168 IsAlias = false; 169 return true; 170 } 171 } 172 173 // This implementation is a lot more primitive than the SDAG one for now. 174 // FIXME: what about constant pools? 175 if (Base0Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) { 176 auto GV0 = Base0Def->getOperand(1).getGlobal(); 177 auto GV1 = Base1Def->getOperand(1).getGlobal(); 178 if (GV0 != GV1) { 179 IsAlias = false; 180 return true; 181 } 182 } 183 184 // Can't tell anything about aliasing. 185 return false; 186 } 187 188 bool GISelAddressing::instMayAlias(const MachineInstr &MI, 189 const MachineInstr &Other, 190 MachineRegisterInfo &MRI, 191 AliasAnalysis *AA) { 192 struct MemUseCharacteristics { 193 bool IsVolatile; 194 bool IsAtomic; 195 Register BasePtr; 196 int64_t Offset; 197 LocationSize NumBytes; 198 MachineMemOperand *MMO; 199 }; 200 201 auto getCharacteristics = 202 [&](const MachineInstr *MI) -> MemUseCharacteristics { 203 if (const auto *LS = dyn_cast<GLoadStore>(MI)) { 204 Register BaseReg; 205 int64_t Offset = 0; 206 // No pre/post-inc addressing modes are considered here, unlike in SDAG. 207 if (!mi_match(LS->getPointerReg(), MRI, 208 m_GPtrAdd(m_Reg(BaseReg), m_ICst(Offset)))) { 209 BaseReg = LS->getPointerReg(); 210 Offset = 0; 211 } 212 213 LocationSize Size = LS->getMMO().getSize(); 214 return {LS->isVolatile(), LS->isAtomic(), BaseReg, 215 Offset /*base offset*/, Size, &LS->getMMO()}; 216 } 217 // FIXME: support recognizing lifetime instructions. 218 // Default. 219 return {false /*isvolatile*/, 220 /*isAtomic*/ false, 221 Register(), 222 (int64_t)0 /*offset*/, 223 LocationSize::beforeOrAfterPointer() /*size*/, 224 (MachineMemOperand *)nullptr}; 225 }; 226 MemUseCharacteristics MUC0 = getCharacteristics(&MI), 227 MUC1 = getCharacteristics(&Other); 228 229 // If they are to the same address, then they must be aliases. 230 if (MUC0.BasePtr.isValid() && MUC0.BasePtr == MUC1.BasePtr && 231 MUC0.Offset == MUC1.Offset) 232 return true; 233 234 // If they are both volatile then they cannot be reordered. 235 if (MUC0.IsVolatile && MUC1.IsVolatile) 236 return true; 237 238 // Be conservative about atomics for the moment 239 // TODO: This is way overconservative for unordered atomics (see D66309) 240 if (MUC0.IsAtomic && MUC1.IsAtomic) 241 return true; 242 243 // If one operation reads from invariant memory, and the other may store, they 244 // cannot alias. 245 if (MUC0.MMO && MUC1.MMO) { 246 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 247 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 248 return false; 249 } 250 251 // If NumBytes is scalable and offset is not 0, conservatively return may 252 // alias 253 if ((MUC0.NumBytes.isScalable() && MUC0.Offset != 0) || 254 (MUC1.NumBytes.isScalable() && MUC1.Offset != 0)) 255 return true; 256 257 const bool BothNotScalable = 258 !MUC0.NumBytes.isScalable() && !MUC1.NumBytes.isScalable(); 259 260 // Try to prove that there is aliasing, or that there is no aliasing. Either 261 // way, we can return now. If nothing can be proved, proceed with more tests. 262 bool IsAlias; 263 if (BothNotScalable && 264 GISelAddressing::aliasIsKnownForLoadStore(MI, Other, IsAlias, MRI)) 265 return IsAlias; 266 267 // The following all rely on MMO0 and MMO1 being valid. 268 if (!MUC0.MMO || !MUC1.MMO) 269 return true; 270 271 // FIXME: port the alignment based alias analysis from SDAG's isAlias(). 272 int64_t SrcValOffset0 = MUC0.MMO->getOffset(); 273 int64_t SrcValOffset1 = MUC1.MMO->getOffset(); 274 LocationSize Size0 = MUC0.NumBytes; 275 LocationSize Size1 = MUC1.NumBytes; 276 if (AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && Size0.hasValue() && 277 Size1.hasValue()) { 278 // Use alias analysis information. 279 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); 280 int64_t Overlap0 = 281 Size0.getValue().getKnownMinValue() + SrcValOffset0 - MinOffset; 282 int64_t Overlap1 = 283 Size1.getValue().getKnownMinValue() + SrcValOffset1 - MinOffset; 284 LocationSize Loc0 = 285 Size0.isScalable() ? Size0 : LocationSize::precise(Overlap0); 286 LocationSize Loc1 = 287 Size1.isScalable() ? Size1 : LocationSize::precise(Overlap1); 288 289 if (AA->isNoAlias( 290 MemoryLocation(MUC0.MMO->getValue(), Loc0, MUC0.MMO->getAAInfo()), 291 MemoryLocation(MUC1.MMO->getValue(), Loc1, MUC1.MMO->getAAInfo()))) 292 return false; 293 } 294 295 // Otherwise we have to assume they alias. 296 return true; 297 } 298 299 /// Returns true if the instruction creates an unavoidable hazard that 300 /// forces a boundary between store merge candidates. 301 static bool isInstHardMergeHazard(MachineInstr &MI) { 302 return MI.hasUnmodeledSideEffects() || MI.hasOrderedMemoryRef(); 303 } 304 305 bool LoadStoreOpt::mergeStores(SmallVectorImpl<GStore *> &StoresToMerge) { 306 // Try to merge all the stores in the vector, splitting into separate segments 307 // as necessary. 308 assert(StoresToMerge.size() > 1 && "Expected multiple stores to merge"); 309 LLT OrigTy = MRI->getType(StoresToMerge[0]->getValueReg()); 310 LLT PtrTy = MRI->getType(StoresToMerge[0]->getPointerReg()); 311 unsigned AS = PtrTy.getAddressSpace(); 312 // Ensure the legal store info is computed for this address space. 313 initializeStoreMergeTargetInfo(AS); 314 const auto &LegalSizes = LegalStoreSizes[AS]; 315 316 #ifndef NDEBUG 317 for (auto *StoreMI : StoresToMerge) 318 assert(MRI->getType(StoreMI->getValueReg()) == OrigTy); 319 #endif 320 321 const auto &DL = MF->getFunction().getDataLayout(); 322 bool AnyMerged = false; 323 do { 324 unsigned NumPow2 = llvm::bit_floor(StoresToMerge.size()); 325 unsigned MaxSizeBits = NumPow2 * OrigTy.getSizeInBits().getFixedValue(); 326 // Compute the biggest store we can generate to handle the number of stores. 327 unsigned MergeSizeBits; 328 for (MergeSizeBits = MaxSizeBits; MergeSizeBits > 1; MergeSizeBits /= 2) { 329 LLT StoreTy = LLT::scalar(MergeSizeBits); 330 EVT StoreEVT = 331 getApproximateEVTForLLT(StoreTy, DL, MF->getFunction().getContext()); 332 if (LegalSizes.size() > MergeSizeBits && LegalSizes[MergeSizeBits] && 333 TLI->canMergeStoresTo(AS, StoreEVT, *MF) && 334 (TLI->isTypeLegal(StoreEVT))) 335 break; // We can generate a MergeSize bits store. 336 } 337 if (MergeSizeBits <= OrigTy.getSizeInBits()) 338 return AnyMerged; // No greater merge. 339 340 unsigned NumStoresToMerge = MergeSizeBits / OrigTy.getSizeInBits(); 341 // Perform the actual merging. 342 SmallVector<GStore *, 8> SingleMergeStores( 343 StoresToMerge.begin(), StoresToMerge.begin() + NumStoresToMerge); 344 AnyMerged |= doSingleStoreMerge(SingleMergeStores); 345 StoresToMerge.erase(StoresToMerge.begin(), 346 StoresToMerge.begin() + NumStoresToMerge); 347 } while (StoresToMerge.size() > 1); 348 return AnyMerged; 349 } 350 351 bool LoadStoreOpt::isLegalOrBeforeLegalizer(const LegalityQuery &Query, 352 MachineFunction &MF) const { 353 auto Action = LI->getAction(Query).Action; 354 // If the instruction is unsupported, it can't be legalized at all. 355 if (Action == LegalizeActions::Unsupported) 356 return false; 357 return IsPreLegalizer || Action == LegalizeAction::Legal; 358 } 359 360 bool LoadStoreOpt::doSingleStoreMerge(SmallVectorImpl<GStore *> &Stores) { 361 assert(Stores.size() > 1); 362 // We know that all the stores are consecutive and there are no aliasing 363 // operations in the range. However, the values that are being stored may be 364 // generated anywhere before each store. To ensure we have the values 365 // available, we materialize the wide value and new store at the place of the 366 // final store in the merge sequence. 367 GStore *FirstStore = Stores[0]; 368 const unsigned NumStores = Stores.size(); 369 LLT SmallTy = MRI->getType(FirstStore->getValueReg()); 370 LLT WideValueTy = 371 LLT::scalar(NumStores * SmallTy.getSizeInBits().getFixedValue()); 372 373 // For each store, compute pairwise merged debug locs. 374 DebugLoc MergedLoc = Stores.front()->getDebugLoc(); 375 for (auto *Store : drop_begin(Stores)) 376 MergedLoc = DILocation::getMergedLocation(MergedLoc, Store->getDebugLoc()); 377 378 Builder.setInstr(*Stores.back()); 379 Builder.setDebugLoc(MergedLoc); 380 381 // If all of the store values are constants, then create a wide constant 382 // directly. Otherwise, we need to generate some instructions to merge the 383 // existing values together into a wider type. 384 SmallVector<APInt, 8> ConstantVals; 385 for (auto *Store : Stores) { 386 auto MaybeCst = 387 getIConstantVRegValWithLookThrough(Store->getValueReg(), *MRI); 388 if (!MaybeCst) { 389 ConstantVals.clear(); 390 break; 391 } 392 ConstantVals.emplace_back(MaybeCst->Value); 393 } 394 395 Register WideReg; 396 auto *WideMMO = 397 MF->getMachineMemOperand(&FirstStore->getMMO(), 0, WideValueTy); 398 if (ConstantVals.empty()) { 399 // Mimic the SDAG behaviour here and don't try to do anything for unknown 400 // values. In future, we should also support the cases of loads and 401 // extracted vector elements. 402 return false; 403 } 404 405 assert(ConstantVals.size() == NumStores); 406 // Check if our wide constant is legal. 407 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {WideValueTy}}, *MF)) 408 return false; 409 APInt WideConst(WideValueTy.getSizeInBits(), 0); 410 for (unsigned Idx = 0; Idx < ConstantVals.size(); ++Idx) { 411 // Insert the smaller constant into the corresponding position in the 412 // wider one. 413 WideConst.insertBits(ConstantVals[Idx], Idx * SmallTy.getSizeInBits()); 414 } 415 WideReg = Builder.buildConstant(WideValueTy, WideConst).getReg(0); 416 auto NewStore = 417 Builder.buildStore(WideReg, FirstStore->getPointerReg(), *WideMMO); 418 (void) NewStore; 419 LLVM_DEBUG(dbgs() << "Merged " << Stores.size() 420 << " stores into merged store: " << *NewStore); 421 LLVM_DEBUG(for (auto *MI : Stores) dbgs() << " " << *MI;); 422 NumStoresMerged += Stores.size(); 423 424 MachineOptimizationRemarkEmitter MORE(*MF, nullptr); 425 MORE.emit([&]() { 426 MachineOptimizationRemark R(DEBUG_TYPE, "MergedStore", 427 FirstStore->getDebugLoc(), 428 FirstStore->getParent()); 429 R << "Merged " << NV("NumMerged", Stores.size()) << " stores of " 430 << NV("OrigWidth", SmallTy.getSizeInBytes()) 431 << " bytes into a single store of " 432 << NV("NewWidth", WideValueTy.getSizeInBytes()) << " bytes"; 433 return R; 434 }); 435 436 for (auto *MI : Stores) 437 InstsToErase.insert(MI); 438 return true; 439 } 440 441 bool LoadStoreOpt::processMergeCandidate(StoreMergeCandidate &C) { 442 if (C.Stores.size() < 2) { 443 C.reset(); 444 return false; 445 } 446 447 LLVM_DEBUG(dbgs() << "Checking store merge candidate with " << C.Stores.size() 448 << " stores, starting with " << *C.Stores[0]); 449 // We know that the stores in the candidate are adjacent. 450 // Now we need to check if any potential aliasing instructions recorded 451 // during the search alias with load/stores added to the candidate after. 452 // For example, if we have the candidate: 453 // C.Stores = [ST1, ST2, ST3, ST4] 454 // and after seeing ST2 we saw a load LD1, which did not alias with ST1 or 455 // ST2, then we would have recorded it into the PotentialAliases structure 456 // with the associated index value of "1". Then we see ST3 and ST4 and add 457 // them to the candidate group. We know that LD1 does not alias with ST1 or 458 // ST2, since we already did that check. However we don't yet know if it 459 // may alias ST3 and ST4, so we perform those checks now. 460 SmallVector<GStore *> StoresToMerge; 461 462 auto DoesStoreAliasWithPotential = [&](unsigned Idx, GStore &CheckStore) { 463 for (auto AliasInfo : reverse(C.PotentialAliases)) { 464 MachineInstr *PotentialAliasOp = AliasInfo.first; 465 unsigned PreCheckedIdx = AliasInfo.second; 466 if (static_cast<unsigned>(Idx) < PreCheckedIdx) { 467 // Once our store index is lower than the index associated with the 468 // potential alias, we know that we've already checked for this alias 469 // and all of the earlier potential aliases too. 470 return false; 471 } 472 // Need to check this alias. 473 if (GISelAddressing::instMayAlias(CheckStore, *PotentialAliasOp, *MRI, 474 AA)) { 475 LLVM_DEBUG(dbgs() << "Potential alias " << *PotentialAliasOp 476 << " detected\n"); 477 return true; 478 } 479 } 480 return false; 481 }; 482 // Start from the last store in the group, and check if it aliases with any 483 // of the potential aliasing operations in the list. 484 for (int StoreIdx = C.Stores.size() - 1; StoreIdx >= 0; --StoreIdx) { 485 auto *CheckStore = C.Stores[StoreIdx]; 486 if (DoesStoreAliasWithPotential(StoreIdx, *CheckStore)) 487 continue; 488 StoresToMerge.emplace_back(CheckStore); 489 } 490 491 LLVM_DEBUG(dbgs() << StoresToMerge.size() 492 << " stores remaining after alias checks. Merging...\n"); 493 494 // Now we've checked for aliasing hazards, merge any stores left. 495 C.reset(); 496 if (StoresToMerge.size() < 2) 497 return false; 498 return mergeStores(StoresToMerge); 499 } 500 501 bool LoadStoreOpt::operationAliasesWithCandidate(MachineInstr &MI, 502 StoreMergeCandidate &C) { 503 if (C.Stores.empty()) 504 return false; 505 return llvm::any_of(C.Stores, [&](MachineInstr *OtherMI) { 506 return instMayAlias(MI, *OtherMI, *MRI, AA); 507 }); 508 } 509 510 void LoadStoreOpt::StoreMergeCandidate::addPotentialAlias(MachineInstr &MI) { 511 PotentialAliases.emplace_back(std::make_pair(&MI, Stores.size() - 1)); 512 } 513 514 bool LoadStoreOpt::addStoreToCandidate(GStore &StoreMI, 515 StoreMergeCandidate &C) { 516 // Check if the given store writes to an adjacent address, and other 517 // requirements. 518 LLT ValueTy = MRI->getType(StoreMI.getValueReg()); 519 LLT PtrTy = MRI->getType(StoreMI.getPointerReg()); 520 521 // Only handle scalars. 522 if (!ValueTy.isScalar()) 523 return false; 524 525 // Don't allow truncating stores for now. 526 if (StoreMI.getMemSizeInBits() != ValueTy.getSizeInBits()) 527 return false; 528 529 // Avoid adding volatile or ordered stores to the candidate. We already have a 530 // check for this in instMayAlias() but that only get's called later between 531 // potential aliasing hazards. 532 if (!StoreMI.isSimple()) 533 return false; 534 535 Register StoreAddr = StoreMI.getPointerReg(); 536 auto BIO = getPointerInfo(StoreAddr, *MRI); 537 Register StoreBase = BIO.getBase(); 538 if (C.Stores.empty()) { 539 C.BasePtr = StoreBase; 540 if (!BIO.hasValidOffset()) { 541 C.CurrentLowestOffset = 0; 542 } else { 543 C.CurrentLowestOffset = BIO.getOffset(); 544 } 545 // This is the first store of the candidate. 546 // If the offset can't possibly allow for a lower addressed store with the 547 // same base, don't bother adding it. 548 if (BIO.hasValidOffset() && 549 BIO.getOffset() < static_cast<int64_t>(ValueTy.getSizeInBytes())) 550 return false; 551 C.Stores.emplace_back(&StoreMI); 552 LLVM_DEBUG(dbgs() << "Starting a new merge candidate group with: " 553 << StoreMI); 554 return true; 555 } 556 557 // Check the store is the same size as the existing ones in the candidate. 558 if (MRI->getType(C.Stores[0]->getValueReg()).getSizeInBits() != 559 ValueTy.getSizeInBits()) 560 return false; 561 562 if (MRI->getType(C.Stores[0]->getPointerReg()).getAddressSpace() != 563 PtrTy.getAddressSpace()) 564 return false; 565 566 // There are other stores in the candidate. Check that the store address 567 // writes to the next lowest adjacent address. 568 if (C.BasePtr != StoreBase) 569 return false; 570 // If we don't have a valid offset, we can't guarantee to be an adjacent 571 // offset. 572 if (!BIO.hasValidOffset()) 573 return false; 574 if ((C.CurrentLowestOffset - 575 static_cast<int64_t>(ValueTy.getSizeInBytes())) != BIO.getOffset()) 576 return false; 577 578 // This writes to an adjacent address. Allow it. 579 C.Stores.emplace_back(&StoreMI); 580 C.CurrentLowestOffset = C.CurrentLowestOffset - ValueTy.getSizeInBytes(); 581 LLVM_DEBUG(dbgs() << "Candidate added store: " << StoreMI); 582 return true; 583 } 584 585 bool LoadStoreOpt::mergeBlockStores(MachineBasicBlock &MBB) { 586 bool Changed = false; 587 // Walk through the block bottom-up, looking for merging candidates. 588 StoreMergeCandidate Candidate; 589 for (MachineInstr &MI : llvm::reverse(MBB)) { 590 if (InstsToErase.contains(&MI)) 591 continue; 592 593 if (auto *StoreMI = dyn_cast<GStore>(&MI)) { 594 // We have a G_STORE. Add it to the candidate if it writes to an adjacent 595 // address. 596 if (!addStoreToCandidate(*StoreMI, Candidate)) { 597 // Store wasn't eligible to be added. May need to record it as a 598 // potential alias. 599 if (operationAliasesWithCandidate(*StoreMI, Candidate)) { 600 Changed |= processMergeCandidate(Candidate); 601 continue; 602 } 603 Candidate.addPotentialAlias(*StoreMI); 604 } 605 continue; 606 } 607 608 // If we don't have any stores yet, this instruction can't pose a problem. 609 if (Candidate.Stores.empty()) 610 continue; 611 612 // We're dealing with some other kind of instruction. 613 if (isInstHardMergeHazard(MI)) { 614 Changed |= processMergeCandidate(Candidate); 615 Candidate.Stores.clear(); 616 continue; 617 } 618 619 if (!MI.mayLoadOrStore()) 620 continue; 621 622 if (operationAliasesWithCandidate(MI, Candidate)) { 623 // We have a potential alias, so process the current candidate if we can 624 // and then continue looking for a new candidate. 625 Changed |= processMergeCandidate(Candidate); 626 continue; 627 } 628 629 // Record this instruction as a potential alias for future stores that are 630 // added to the candidate. 631 Candidate.addPotentialAlias(MI); 632 } 633 634 // Process any candidate left after finishing searching the entire block. 635 Changed |= processMergeCandidate(Candidate); 636 637 // Erase instructions now that we're no longer iterating over the block. 638 for (auto *MI : InstsToErase) 639 MI->eraseFromParent(); 640 InstsToErase.clear(); 641 return Changed; 642 } 643 644 /// Check if the store \p Store is a truncstore that can be merged. That is, 645 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty 646 /// Register then it does not need to match and SrcVal is set to the source 647 /// value found. 648 /// On match, returns the start byte offset of the \p SrcVal that is being 649 /// stored. 650 static std::optional<int64_t> 651 getTruncStoreByteOffset(GStore &Store, Register &SrcVal, 652 MachineRegisterInfo &MRI) { 653 Register TruncVal; 654 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) 655 return std::nullopt; 656 657 // The shift amount must be a constant multiple of the narrow type. 658 // It is translated to the offset address in the wide source value "y". 659 // 660 // x = G_LSHR y, ShiftAmtC 661 // s8 z = G_TRUNC x 662 // store z, ... 663 Register FoundSrcVal; 664 int64_t ShiftAmt; 665 if (!mi_match(TruncVal, MRI, 666 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), 667 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { 668 if (!SrcVal.isValid() || TruncVal == SrcVal) { 669 if (!SrcVal.isValid()) 670 SrcVal = TruncVal; 671 return 0; // If it's the lowest index store. 672 } 673 return std::nullopt; 674 } 675 676 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); 677 if (ShiftAmt % NarrowBits != 0) 678 return std::nullopt; 679 const unsigned Offset = ShiftAmt / NarrowBits; 680 681 if (SrcVal.isValid() && FoundSrcVal != SrcVal) 682 return std::nullopt; 683 684 if (!SrcVal.isValid()) 685 SrcVal = FoundSrcVal; 686 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) 687 return std::nullopt; 688 return Offset; 689 } 690 691 /// Match a pattern where a wide type scalar value is stored by several narrow 692 /// stores. Fold it into a single store or a BSWAP and a store if the targets 693 /// supports it. 694 /// 695 /// Assuming little endian target: 696 /// i8 *p = ... 697 /// i32 val = ... 698 /// p[0] = (val >> 0) & 0xFF; 699 /// p[1] = (val >> 8) & 0xFF; 700 /// p[2] = (val >> 16) & 0xFF; 701 /// p[3] = (val >> 24) & 0xFF; 702 /// => 703 /// *((i32)p) = val; 704 /// 705 /// i8 *p = ... 706 /// i32 val = ... 707 /// p[0] = (val >> 24) & 0xFF; 708 /// p[1] = (val >> 16) & 0xFF; 709 /// p[2] = (val >> 8) & 0xFF; 710 /// p[3] = (val >> 0) & 0xFF; 711 /// => 712 /// *((i32)p) = BSWAP(val); 713 bool LoadStoreOpt::mergeTruncStore(GStore &StoreMI, 714 SmallPtrSetImpl<GStore *> &DeletedStores) { 715 LLT MemTy = StoreMI.getMMO().getMemoryType(); 716 717 // We only handle merging simple stores of 1-4 bytes. 718 if (!MemTy.isScalar()) 719 return false; 720 switch (MemTy.getSizeInBits()) { 721 case 8: 722 case 16: 723 case 32: 724 break; 725 default: 726 return false; 727 } 728 if (!StoreMI.isSimple()) 729 return false; 730 731 // We do a simple search for mergeable stores prior to this one. 732 // Any potential alias hazard along the way terminates the search. 733 SmallVector<GStore *> FoundStores; 734 735 // We're looking for: 736 // 1) a (store(trunc(...))) 737 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get 738 // the partial value stored. 739 // 3) where the offsets form either a little or big-endian sequence. 740 741 auto &LastStore = StoreMI; 742 743 // The single base pointer that all stores must use. 744 Register BaseReg; 745 int64_t LastOffset; 746 if (!mi_match(LastStore.getPointerReg(), *MRI, 747 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { 748 BaseReg = LastStore.getPointerReg(); 749 LastOffset = 0; 750 } 751 752 GStore *LowestIdxStore = &LastStore; 753 int64_t LowestIdxOffset = LastOffset; 754 755 Register WideSrcVal; 756 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, *MRI); 757 if (!LowestShiftAmt) 758 return false; // Didn't match a trunc. 759 assert(WideSrcVal.isValid()); 760 761 LLT WideStoreTy = MRI->getType(WideSrcVal); 762 // The wide type might not be a multiple of the memory type, e.g. s48 and s32. 763 if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0) 764 return false; 765 const unsigned NumStoresRequired = 766 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); 767 768 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); 769 OffsetMap[*LowestShiftAmt] = LastOffset; 770 FoundStores.emplace_back(&LastStore); 771 772 const int MaxInstsToCheck = 10; 773 int NumInstsChecked = 0; 774 for (auto II = ++LastStore.getReverseIterator(); 775 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; 776 ++II) { 777 NumInstsChecked++; 778 GStore *NewStore; 779 if ((NewStore = dyn_cast<GStore>(&*II))) { 780 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) 781 break; 782 } else if (II->isLoadFoldBarrier() || II->mayLoad()) { 783 break; 784 } else { 785 continue; // This is a safe instruction we can look past. 786 } 787 788 Register NewBaseReg; 789 int64_t MemOffset; 790 // Check we're storing to the same base + some offset. 791 if (!mi_match(NewStore->getPointerReg(), *MRI, 792 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { 793 NewBaseReg = NewStore->getPointerReg(); 794 MemOffset = 0; 795 } 796 if (BaseReg != NewBaseReg) 797 break; 798 799 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, *MRI); 800 if (!ShiftByteOffset) 801 break; 802 if (MemOffset < LowestIdxOffset) { 803 LowestIdxOffset = MemOffset; 804 LowestIdxStore = NewStore; 805 } 806 807 // Map the offset in the store and the offset in the combined value, and 808 // early return if it has been set before. 809 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || 810 OffsetMap[*ShiftByteOffset] != INT64_MAX) 811 break; 812 OffsetMap[*ShiftByteOffset] = MemOffset; 813 814 FoundStores.emplace_back(NewStore); 815 // Reset counter since we've found a matching inst. 816 NumInstsChecked = 0; 817 if (FoundStores.size() == NumStoresRequired) 818 break; 819 } 820 821 if (FoundStores.size() != NumStoresRequired) { 822 if (FoundStores.size() == 1) 823 return false; 824 // We didn't find enough stores to merge into the size of the original 825 // source value, but we may be able to generate a smaller store if we 826 // truncate the source value. 827 WideStoreTy = LLT::scalar(FoundStores.size() * MemTy.getScalarSizeInBits()); 828 } 829 830 unsigned NumStoresFound = FoundStores.size(); 831 832 const auto &DL = LastStore.getMF()->getDataLayout(); 833 auto &C = LastStore.getMF()->getFunction().getContext(); 834 // Check that a store of the wide type is both allowed and fast on the target 835 unsigned Fast = 0; 836 bool Allowed = TLI->allowsMemoryAccess( 837 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); 838 if (!Allowed || !Fast) 839 return false; 840 841 // Check if the pieces of the value are going to the expected places in memory 842 // to merge the stores. 843 unsigned NarrowBits = MemTy.getScalarSizeInBits(); 844 auto checkOffsets = [&](bool MatchLittleEndian) { 845 if (MatchLittleEndian) { 846 for (unsigned i = 0; i != NumStoresFound; ++i) 847 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) 848 return false; 849 } else { // MatchBigEndian by reversing loop counter. 850 for (unsigned i = 0, j = NumStoresFound - 1; i != NumStoresFound; 851 ++i, --j) 852 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) 853 return false; 854 } 855 return true; 856 }; 857 858 // Check if the offsets line up for the native data layout of this target. 859 bool NeedBswap = false; 860 bool NeedRotate = false; 861 if (!checkOffsets(DL.isLittleEndian())) { 862 // Special-case: check if byte offsets line up for the opposite endian. 863 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) 864 NeedBswap = true; 865 else if (NumStoresFound == 2 && checkOffsets(DL.isBigEndian())) 866 NeedRotate = true; 867 else 868 return false; 869 } 870 871 if (NeedBswap && 872 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}}, *MF)) 873 return false; 874 if (NeedRotate && 875 !isLegalOrBeforeLegalizer( 876 {TargetOpcode::G_ROTR, {WideStoreTy, WideStoreTy}}, *MF)) 877 return false; 878 879 Builder.setInstrAndDebugLoc(StoreMI); 880 881 if (WideStoreTy != MRI->getType(WideSrcVal)) 882 WideSrcVal = Builder.buildTrunc(WideStoreTy, WideSrcVal).getReg(0); 883 884 if (NeedBswap) { 885 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); 886 } else if (NeedRotate) { 887 assert(WideStoreTy.getSizeInBits() % 2 == 0 && 888 "Unexpected type for rotate"); 889 auto RotAmt = 890 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); 891 WideSrcVal = 892 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); 893 } 894 895 Builder.buildStore(WideSrcVal, LowestIdxStore->getPointerReg(), 896 LowestIdxStore->getMMO().getPointerInfo(), 897 LowestIdxStore->getMMO().getAlign()); 898 899 // Erase the old stores. 900 for (auto *ST : FoundStores) { 901 ST->eraseFromParent(); 902 DeletedStores.insert(ST); 903 } 904 return true; 905 } 906 907 bool LoadStoreOpt::mergeTruncStoresBlock(MachineBasicBlock &BB) { 908 bool Changed = false; 909 SmallVector<GStore *, 16> Stores; 910 SmallPtrSet<GStore *, 8> DeletedStores; 911 // Walk up the block so we can see the most eligible stores. 912 for (MachineInstr &MI : llvm::reverse(BB)) 913 if (auto *StoreMI = dyn_cast<GStore>(&MI)) 914 Stores.emplace_back(StoreMI); 915 916 for (auto *StoreMI : Stores) { 917 if (DeletedStores.count(StoreMI)) 918 continue; 919 if (mergeTruncStore(*StoreMI, DeletedStores)) 920 Changed = true; 921 } 922 return Changed; 923 } 924 925 bool LoadStoreOpt::mergeFunctionStores(MachineFunction &MF) { 926 bool Changed = false; 927 for (auto &BB : MF){ 928 Changed |= mergeBlockStores(BB); 929 Changed |= mergeTruncStoresBlock(BB); 930 } 931 932 // Erase all dead instructions left over by the merging. 933 if (Changed) { 934 for (auto &BB : MF) { 935 for (auto &I : make_early_inc_range(make_range(BB.rbegin(), BB.rend()))) { 936 if (isTriviallyDead(I, *MRI)) 937 I.eraseFromParent(); 938 } 939 } 940 } 941 942 return Changed; 943 } 944 945 void LoadStoreOpt::initializeStoreMergeTargetInfo(unsigned AddrSpace) { 946 // Query the legalizer info to record what store types are legal. 947 // We record this because we don't want to bother trying to merge stores into 948 // illegal ones, which would just result in being split again. 949 950 if (LegalStoreSizes.count(AddrSpace)) { 951 assert(LegalStoreSizes[AddrSpace].any()); 952 return; // Already cached sizes for this address space. 953 } 954 955 // Need to reserve at least MaxStoreSizeToForm + 1 bits. 956 BitVector LegalSizes(MaxStoreSizeToForm * 2); 957 const auto &LI = *MF->getSubtarget().getLegalizerInfo(); 958 const auto &DL = MF->getFunction().getDataLayout(); 959 Type *IRPtrTy = PointerType::get(MF->getFunction().getContext(), AddrSpace); 960 LLT PtrTy = getLLTForType(*IRPtrTy, DL); 961 // We assume that we're not going to be generating any stores wider than 962 // MaxStoreSizeToForm bits for now. 963 for (unsigned Size = 2; Size <= MaxStoreSizeToForm; Size *= 2) { 964 LLT Ty = LLT::scalar(Size); 965 SmallVector<LegalityQuery::MemDesc, 2> MemDescrs( 966 {{Ty, Ty.getSizeInBits(), AtomicOrdering::NotAtomic}}); 967 SmallVector<LLT> StoreTys({Ty, PtrTy}); 968 LegalityQuery Q(TargetOpcode::G_STORE, StoreTys, MemDescrs); 969 LegalizeActionStep ActionStep = LI.getAction(Q); 970 if (ActionStep.Action == LegalizeActions::Legal) 971 LegalSizes.set(Size); 972 } 973 assert(LegalSizes.any() && "Expected some store sizes to be legal!"); 974 LegalStoreSizes[AddrSpace] = LegalSizes; 975 } 976 977 bool LoadStoreOpt::runOnMachineFunction(MachineFunction &MF) { 978 // If the ISel pipeline failed, do not bother running that pass. 979 if (MF.getProperties().hasProperty( 980 MachineFunctionProperties::Property::FailedISel)) 981 return false; 982 983 LLVM_DEBUG(dbgs() << "Begin memory optimizations for: " << MF.getName() 984 << '\n'); 985 986 init(MF); 987 bool Changed = false; 988 Changed |= mergeFunctionStores(MF); 989 990 LegalStoreSizes.clear(); 991 return Changed; 992 } 993