1 //===- LoadStoreOpt.cpp ----------- Generic memory optimizations -*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the LoadStoreOpt optimization pass. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" 13 #include "llvm/ADT/Statistic.h" 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/MemoryLocation.h" 16 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 17 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/GlobalISel/Utils.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Register.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetOpcodes.h" 31 #include "llvm/IR/DebugInfoMetadata.h" 32 #include "llvm/InitializePasses.h" 33 #include "llvm/Support/AtomicOrdering.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include <algorithm> 39 40 #define DEBUG_TYPE "loadstore-opt" 41 42 using namespace llvm; 43 using namespace ore; 44 using namespace MIPatternMatch; 45 46 STATISTIC(NumStoresMerged, "Number of stores merged"); 47 48 const unsigned MaxStoreSizeToForm = 128; 49 50 char LoadStoreOpt::ID = 0; 51 INITIALIZE_PASS_BEGIN(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations", 52 false, false) 53 INITIALIZE_PASS_END(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations", 54 false, false) 55 56 LoadStoreOpt::LoadStoreOpt(std::function<bool(const MachineFunction &)> F) 57 : MachineFunctionPass(ID), DoNotRunPass(F) {} 58 59 LoadStoreOpt::LoadStoreOpt() 60 : LoadStoreOpt([](const MachineFunction &) { return false; }) {} 61 62 void LoadStoreOpt::init(MachineFunction &MF) { 63 this->MF = &MF; 64 MRI = &MF.getRegInfo(); 65 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 66 TLI = MF.getSubtarget().getTargetLowering(); 67 LI = MF.getSubtarget().getLegalizerInfo(); 68 Builder.setMF(MF); 69 IsPreLegalizer = !MF.getProperties().hasProperty( 70 MachineFunctionProperties::Property::Legalized); 71 InstsToErase.clear(); 72 } 73 74 void LoadStoreOpt::getAnalysisUsage(AnalysisUsage &AU) const { 75 AU.addRequired<AAResultsWrapperPass>(); 76 getSelectionDAGFallbackAnalysisUsage(AU); 77 MachineFunctionPass::getAnalysisUsage(AU); 78 } 79 80 BaseIndexOffset GISelAddressing::getPointerInfo(Register Ptr, 81 MachineRegisterInfo &MRI) { 82 BaseIndexOffset Info; 83 Register PtrAddRHS; 84 if (!mi_match(Ptr, MRI, m_GPtrAdd(m_Reg(Info.BaseReg), m_Reg(PtrAddRHS)))) { 85 Info.BaseReg = Ptr; 86 Info.IndexReg = Register(); 87 Info.IsIndexSignExt = false; 88 return Info; 89 } 90 91 auto RHSCst = getIConstantVRegValWithLookThrough(PtrAddRHS, MRI); 92 if (RHSCst) 93 Info.Offset = RHSCst->Value.getSExtValue(); 94 95 // Just recognize a simple case for now. In future we'll need to match 96 // indexing patterns for base + index + constant. 97 Info.IndexReg = PtrAddRHS; 98 Info.IsIndexSignExt = false; 99 return Info; 100 } 101 102 bool GISelAddressing::aliasIsKnownForLoadStore(const MachineInstr &MI1, 103 const MachineInstr &MI2, 104 bool &IsAlias, 105 MachineRegisterInfo &MRI) { 106 auto *LdSt1 = dyn_cast<GLoadStore>(&MI1); 107 auto *LdSt2 = dyn_cast<GLoadStore>(&MI2); 108 if (!LdSt1 || !LdSt2) 109 return false; 110 111 BaseIndexOffset BasePtr0 = getPointerInfo(LdSt1->getPointerReg(), MRI); 112 BaseIndexOffset BasePtr1 = getPointerInfo(LdSt2->getPointerReg(), MRI); 113 114 if (!BasePtr0.BaseReg.isValid() || !BasePtr1.BaseReg.isValid()) 115 return false; 116 117 int64_t Size1 = LdSt1->getMemSize(); 118 int64_t Size2 = LdSt2->getMemSize(); 119 120 int64_t PtrDiff; 121 if (BasePtr0.BaseReg == BasePtr1.BaseReg) { 122 PtrDiff = BasePtr1.Offset - BasePtr0.Offset; 123 // If the size of memory access is unknown, do not use it to do analysis. 124 // One example of unknown size memory access is to load/store scalable 125 // vector objects on the stack. 126 // BasePtr1 is PtrDiff away from BasePtr0. They alias if none of the 127 // following situations arise: 128 if (PtrDiff >= 0 && 129 Size1 != static_cast<int64_t>(MemoryLocation::UnknownSize)) { 130 // [----BasePtr0----] 131 // [---BasePtr1--] 132 // ========PtrDiff========> 133 IsAlias = !(Size1 <= PtrDiff); 134 return true; 135 } 136 if (PtrDiff < 0 && 137 Size2 != static_cast<int64_t>(MemoryLocation::UnknownSize)) { 138 // [----BasePtr0----] 139 // [---BasePtr1--] 140 // =====(-PtrDiff)====> 141 IsAlias = !((PtrDiff + Size2) <= 0); 142 return true; 143 } 144 return false; 145 } 146 147 // If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be 148 // able to calculate their relative offset if at least one arises 149 // from an alloca. However, these allocas cannot overlap and we 150 // can infer there is no alias. 151 auto *Base0Def = getDefIgnoringCopies(BasePtr0.BaseReg, MRI); 152 auto *Base1Def = getDefIgnoringCopies(BasePtr1.BaseReg, MRI); 153 if (!Base0Def || !Base1Def) 154 return false; // Couldn't tell anything. 155 156 157 if (Base0Def->getOpcode() != Base1Def->getOpcode()) 158 return false; 159 160 if (Base0Def->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 161 MachineFrameInfo &MFI = Base0Def->getMF()->getFrameInfo(); 162 // If the bases have the same frame index but we couldn't find a 163 // constant offset, (indices are different) be conservative. 164 if (Base0Def != Base1Def && 165 (!MFI.isFixedObjectIndex(Base0Def->getOperand(1).getIndex()) || 166 !MFI.isFixedObjectIndex(Base1Def->getOperand(1).getIndex()))) { 167 IsAlias = false; 168 return true; 169 } 170 } 171 172 // This implementation is a lot more primitive than the SDAG one for now. 173 // FIXME: what about constant pools? 174 if (Base0Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) { 175 auto GV0 = Base0Def->getOperand(1).getGlobal(); 176 auto GV1 = Base1Def->getOperand(1).getGlobal(); 177 if (GV0 != GV1) { 178 IsAlias = false; 179 return true; 180 } 181 } 182 183 // Can't tell anything about aliasing. 184 return false; 185 } 186 187 bool GISelAddressing::instMayAlias(const MachineInstr &MI, 188 const MachineInstr &Other, 189 MachineRegisterInfo &MRI, 190 AliasAnalysis *AA) { 191 struct MemUseCharacteristics { 192 bool IsVolatile; 193 bool IsAtomic; 194 Register BasePtr; 195 int64_t Offset; 196 uint64_t NumBytes; 197 MachineMemOperand *MMO; 198 }; 199 200 auto getCharacteristics = 201 [&](const MachineInstr *MI) -> MemUseCharacteristics { 202 if (const auto *LS = dyn_cast<GLoadStore>(MI)) { 203 Register BaseReg; 204 int64_t Offset = 0; 205 // No pre/post-inc addressing modes are considered here, unlike in SDAG. 206 if (!mi_match(LS->getPointerReg(), MRI, 207 m_GPtrAdd(m_Reg(BaseReg), m_ICst(Offset)))) { 208 BaseReg = LS->getPointerReg(); 209 Offset = 0; 210 } 211 212 uint64_t Size = MemoryLocation::getSizeOrUnknown( 213 LS->getMMO().getMemoryType().getSizeInBytes()); 214 return {LS->isVolatile(), LS->isAtomic(), BaseReg, 215 Offset /*base offset*/, Size, &LS->getMMO()}; 216 } 217 // FIXME: support recognizing lifetime instructions. 218 // Default. 219 return {false /*isvolatile*/, 220 /*isAtomic*/ false, Register(), 221 (int64_t)0 /*offset*/, 0 /*size*/, 222 (MachineMemOperand *)nullptr}; 223 }; 224 MemUseCharacteristics MUC0 = getCharacteristics(&MI), 225 MUC1 = getCharacteristics(&Other); 226 227 // If they are to the same address, then they must be aliases. 228 if (MUC0.BasePtr.isValid() && MUC0.BasePtr == MUC1.BasePtr && 229 MUC0.Offset == MUC1.Offset) 230 return true; 231 232 // If they are both volatile then they cannot be reordered. 233 if (MUC0.IsVolatile && MUC1.IsVolatile) 234 return true; 235 236 // Be conservative about atomics for the moment 237 // TODO: This is way overconservative for unordered atomics (see D66309) 238 if (MUC0.IsAtomic && MUC1.IsAtomic) 239 return true; 240 241 // If one operation reads from invariant memory, and the other may store, they 242 // cannot alias. 243 if (MUC0.MMO && MUC1.MMO) { 244 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 245 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 246 return false; 247 } 248 249 // Try to prove that there is aliasing, or that there is no aliasing. Either 250 // way, we can return now. If nothing can be proved, proceed with more tests. 251 bool IsAlias; 252 if (GISelAddressing::aliasIsKnownForLoadStore(MI, Other, IsAlias, MRI)) 253 return IsAlias; 254 255 // The following all rely on MMO0 and MMO1 being valid. 256 if (!MUC0.MMO || !MUC1.MMO) 257 return true; 258 259 // FIXME: port the alignment based alias analysis from SDAG's isAlias(). 260 int64_t SrcValOffset0 = MUC0.MMO->getOffset(); 261 int64_t SrcValOffset1 = MUC1.MMO->getOffset(); 262 uint64_t Size0 = MUC0.NumBytes; 263 uint64_t Size1 = MUC1.NumBytes; 264 if (AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && 265 Size0 != MemoryLocation::UnknownSize && 266 Size1 != MemoryLocation::UnknownSize) { 267 // Use alias analysis information. 268 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); 269 int64_t Overlap0 = Size0 + SrcValOffset0 - MinOffset; 270 int64_t Overlap1 = Size1 + SrcValOffset1 - MinOffset; 271 if (AA->isNoAlias(MemoryLocation(MUC0.MMO->getValue(), Overlap0, 272 MUC0.MMO->getAAInfo()), 273 MemoryLocation(MUC1.MMO->getValue(), Overlap1, 274 MUC1.MMO->getAAInfo()))) 275 return false; 276 } 277 278 // Otherwise we have to assume they alias. 279 return true; 280 } 281 282 /// Returns true if the instruction creates an unavoidable hazard that 283 /// forces a boundary between store merge candidates. 284 static bool isInstHardMergeHazard(MachineInstr &MI) { 285 return MI.hasUnmodeledSideEffects() || MI.hasOrderedMemoryRef(); 286 } 287 288 bool LoadStoreOpt::mergeStores(SmallVectorImpl<GStore *> &StoresToMerge) { 289 // Try to merge all the stores in the vector, splitting into separate segments 290 // as necessary. 291 assert(StoresToMerge.size() > 1 && "Expected multiple stores to merge"); 292 LLT OrigTy = MRI->getType(StoresToMerge[0]->getValueReg()); 293 LLT PtrTy = MRI->getType(StoresToMerge[0]->getPointerReg()); 294 unsigned AS = PtrTy.getAddressSpace(); 295 // Ensure the legal store info is computed for this address space. 296 initializeStoreMergeTargetInfo(AS); 297 const auto &LegalSizes = LegalStoreSizes[AS]; 298 299 #ifndef NDEBUG 300 for (auto StoreMI : StoresToMerge) 301 assert(MRI->getType(StoreMI->getValueReg()) == OrigTy); 302 #endif 303 304 const auto &DL = MF->getFunction().getParent()->getDataLayout(); 305 bool AnyMerged = false; 306 do { 307 unsigned NumPow2 = PowerOf2Floor(StoresToMerge.size()); 308 unsigned MaxSizeBits = NumPow2 * OrigTy.getSizeInBits().getFixedSize(); 309 // Compute the biggest store we can generate to handle the number of stores. 310 unsigned MergeSizeBits; 311 for (MergeSizeBits = MaxSizeBits; MergeSizeBits > 1; MergeSizeBits /= 2) { 312 LLT StoreTy = LLT::scalar(MergeSizeBits); 313 EVT StoreEVT = 314 getApproximateEVTForLLT(StoreTy, DL, MF->getFunction().getContext()); 315 if (LegalSizes.size() > MergeSizeBits && LegalSizes[MergeSizeBits] && 316 TLI->canMergeStoresTo(AS, StoreEVT, *MF) && 317 (TLI->isTypeLegal(StoreEVT))) 318 break; // We can generate a MergeSize bits store. 319 } 320 if (MergeSizeBits <= OrigTy.getSizeInBits()) 321 return AnyMerged; // No greater merge. 322 323 unsigned NumStoresToMerge = MergeSizeBits / OrigTy.getSizeInBits(); 324 // Perform the actual merging. 325 SmallVector<GStore *, 8> SingleMergeStores( 326 StoresToMerge.begin(), StoresToMerge.begin() + NumStoresToMerge); 327 AnyMerged |= doSingleStoreMerge(SingleMergeStores); 328 StoresToMerge.erase(StoresToMerge.begin(), 329 StoresToMerge.begin() + NumStoresToMerge); 330 } while (StoresToMerge.size() > 1); 331 return AnyMerged; 332 } 333 334 bool LoadStoreOpt::isLegalOrBeforeLegalizer(const LegalityQuery &Query, 335 MachineFunction &MF) const { 336 auto Action = LI->getAction(Query).Action; 337 // If the instruction is unsupported, it can't be legalized at all. 338 if (Action == LegalizeActions::Unsupported) 339 return false; 340 return IsPreLegalizer || Action == LegalizeAction::Legal; 341 } 342 343 bool LoadStoreOpt::doSingleStoreMerge(SmallVectorImpl<GStore *> &Stores) { 344 assert(Stores.size() > 1); 345 // We know that all the stores are consecutive and there are no aliasing 346 // operations in the range. However, the values that are being stored may be 347 // generated anywhere before each store. To ensure we have the values 348 // available, we materialize the wide value and new store at the place of the 349 // final store in the merge sequence. 350 GStore *FirstStore = Stores[0]; 351 const unsigned NumStores = Stores.size(); 352 LLT SmallTy = MRI->getType(FirstStore->getValueReg()); 353 LLT WideValueTy = 354 LLT::scalar(NumStores * SmallTy.getSizeInBits().getFixedSize()); 355 356 // For each store, compute pairwise merged debug locs. 357 DebugLoc MergedLoc; 358 for (unsigned AIdx = 0, BIdx = 1; BIdx < NumStores; ++AIdx, ++BIdx) 359 MergedLoc = DILocation::getMergedLocation(Stores[AIdx]->getDebugLoc(), 360 Stores[BIdx]->getDebugLoc()); 361 Builder.setInstr(*Stores.back()); 362 Builder.setDebugLoc(MergedLoc); 363 364 // If all of the store values are constants, then create a wide constant 365 // directly. Otherwise, we need to generate some instructions to merge the 366 // existing values together into a wider type. 367 SmallVector<APInt, 8> ConstantVals; 368 for (auto Store : Stores) { 369 auto MaybeCst = 370 getIConstantVRegValWithLookThrough(Store->getValueReg(), *MRI); 371 if (!MaybeCst) { 372 ConstantVals.clear(); 373 break; 374 } 375 ConstantVals.emplace_back(MaybeCst->Value); 376 } 377 378 Register WideReg; 379 auto *WideMMO = 380 MF->getMachineMemOperand(&FirstStore->getMMO(), 0, WideValueTy); 381 if (ConstantVals.empty()) { 382 // Mimic the SDAG behaviour here and don't try to do anything for unknown 383 // values. In future, we should also support the cases of loads and 384 // extracted vector elements. 385 return false; 386 } 387 388 assert(ConstantVals.size() == NumStores); 389 // Check if our wide constant is legal. 390 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {WideValueTy}}, *MF)) 391 return false; 392 APInt WideConst(WideValueTy.getSizeInBits(), 0); 393 for (unsigned Idx = 0; Idx < ConstantVals.size(); ++Idx) { 394 // Insert the smaller constant into the corresponding position in the 395 // wider one. 396 WideConst.insertBits(ConstantVals[Idx], Idx * SmallTy.getSizeInBits()); 397 } 398 WideReg = Builder.buildConstant(WideValueTy, WideConst).getReg(0); 399 auto NewStore = 400 Builder.buildStore(WideReg, FirstStore->getPointerReg(), *WideMMO); 401 (void) NewStore; 402 LLVM_DEBUG(dbgs() << "Created merged store: " << *NewStore); 403 NumStoresMerged += Stores.size(); 404 405 MachineOptimizationRemarkEmitter MORE(*MF, nullptr); 406 MORE.emit([&]() { 407 MachineOptimizationRemark R(DEBUG_TYPE, "MergedStore", 408 FirstStore->getDebugLoc(), 409 FirstStore->getParent()); 410 R << "Merged " << NV("NumMerged", Stores.size()) << " stores of " 411 << NV("OrigWidth", SmallTy.getSizeInBytes()) 412 << " bytes into a single store of " 413 << NV("NewWidth", WideValueTy.getSizeInBytes()) << " bytes"; 414 return R; 415 }); 416 417 for (auto MI : Stores) 418 InstsToErase.insert(MI); 419 return true; 420 } 421 422 bool LoadStoreOpt::processMergeCandidate(StoreMergeCandidate &C) { 423 if (C.Stores.size() < 2) { 424 C.reset(); 425 return false; 426 } 427 428 LLVM_DEBUG(dbgs() << "Checking store merge candidate with " << C.Stores.size() 429 << " stores, starting with " << *C.Stores[0]); 430 // We know that the stores in the candidate are adjacent. 431 // Now we need to check if any potential aliasing instructions recorded 432 // during the search alias with load/stores added to the candidate after. 433 // For example, if we have the candidate: 434 // C.Stores = [ST1, ST2, ST3, ST4] 435 // and after seeing ST2 we saw a load LD1, which did not alias with ST1 or 436 // ST2, then we would have recorded it into the PotentialAliases structure 437 // with the associated index value of "1". Then we see ST3 and ST4 and add 438 // them to the candidate group. We know that LD1 does not alias with ST1 or 439 // ST2, since we already did that check. However we don't yet know if it 440 // may alias ST3 and ST4, so we perform those checks now. 441 SmallVector<GStore *> StoresToMerge; 442 443 auto DoesStoreAliasWithPotential = [&](unsigned Idx, GStore &CheckStore) { 444 for (auto AliasInfo : reverse(C.PotentialAliases)) { 445 MachineInstr *PotentialAliasOp = AliasInfo.first; 446 unsigned PreCheckedIdx = AliasInfo.second; 447 if (static_cast<unsigned>(Idx) > PreCheckedIdx) { 448 // Need to check this alias. 449 if (GISelAddressing::instMayAlias(CheckStore, *PotentialAliasOp, *MRI, 450 AA)) { 451 LLVM_DEBUG(dbgs() << "Potential alias " << *PotentialAliasOp 452 << " detected\n"); 453 return true; 454 } 455 } else { 456 // Once our store index is lower than the index associated with the 457 // potential alias, we know that we've already checked for this alias 458 // and all of the earlier potential aliases too. 459 return false; 460 } 461 } 462 return false; 463 }; 464 // Start from the last store in the group, and check if it aliases with any 465 // of the potential aliasing operations in the list. 466 for (int StoreIdx = C.Stores.size() - 1; StoreIdx >= 0; --StoreIdx) { 467 auto *CheckStore = C.Stores[StoreIdx]; 468 if (DoesStoreAliasWithPotential(StoreIdx, *CheckStore)) 469 continue; 470 StoresToMerge.emplace_back(CheckStore); 471 } 472 473 LLVM_DEBUG(dbgs() << StoresToMerge.size() 474 << " stores remaining after alias checks. Merging...\n"); 475 476 // Now we've checked for aliasing hazards, merge any stores left. 477 C.reset(); 478 if (StoresToMerge.size() < 2) 479 return false; 480 return mergeStores(StoresToMerge); 481 } 482 483 bool LoadStoreOpt::operationAliasesWithCandidate(MachineInstr &MI, 484 StoreMergeCandidate &C) { 485 if (C.Stores.empty()) 486 return false; 487 return llvm::any_of(C.Stores, [&](MachineInstr *OtherMI) { 488 return instMayAlias(MI, *OtherMI, *MRI, AA); 489 }); 490 } 491 492 void LoadStoreOpt::StoreMergeCandidate::addPotentialAlias(MachineInstr &MI) { 493 PotentialAliases.emplace_back(std::make_pair(&MI, Stores.size() - 1)); 494 } 495 496 bool LoadStoreOpt::addStoreToCandidate(GStore &StoreMI, 497 StoreMergeCandidate &C) { 498 // Check if the given store writes to an adjacent address, and other 499 // requirements. 500 LLT ValueTy = MRI->getType(StoreMI.getValueReg()); 501 LLT PtrTy = MRI->getType(StoreMI.getPointerReg()); 502 503 // Only handle scalars. 504 if (!ValueTy.isScalar()) 505 return false; 506 507 // Don't allow truncating stores for now. 508 if (StoreMI.getMemSizeInBits() != ValueTy.getSizeInBits()) 509 return false; 510 511 Register StoreAddr = StoreMI.getPointerReg(); 512 auto BIO = getPointerInfo(StoreAddr, *MRI); 513 Register StoreBase = BIO.BaseReg; 514 uint64_t StoreOffCst = BIO.Offset; 515 if (C.Stores.empty()) { 516 // This is the first store of the candidate. 517 // If the offset can't possibly allow for a lower addressed store with the 518 // same base, don't bother adding it. 519 if (StoreOffCst < ValueTy.getSizeInBytes()) 520 return false; 521 C.BasePtr = StoreBase; 522 C.CurrentLowestOffset = StoreOffCst; 523 C.Stores.emplace_back(&StoreMI); 524 LLVM_DEBUG(dbgs() << "Starting a new merge candidate group with: " 525 << StoreMI); 526 return true; 527 } 528 529 // Check the store is the same size as the existing ones in the candidate. 530 if (MRI->getType(C.Stores[0]->getValueReg()).getSizeInBits() != 531 ValueTy.getSizeInBits()) 532 return false; 533 534 if (MRI->getType(C.Stores[0]->getPointerReg()).getAddressSpace() != 535 PtrTy.getAddressSpace()) 536 return false; 537 538 // There are other stores in the candidate. Check that the store address 539 // writes to the next lowest adjacent address. 540 if (C.BasePtr != StoreBase) 541 return false; 542 if ((C.CurrentLowestOffset - ValueTy.getSizeInBytes()) != 543 static_cast<uint64_t>(StoreOffCst)) 544 return false; 545 546 // This writes to an adjacent address. Allow it. 547 C.Stores.emplace_back(&StoreMI); 548 C.CurrentLowestOffset = C.CurrentLowestOffset - ValueTy.getSizeInBytes(); 549 LLVM_DEBUG(dbgs() << "Candidate added store: " << StoreMI); 550 return true; 551 } 552 553 bool LoadStoreOpt::mergeBlockStores(MachineBasicBlock &MBB) { 554 bool Changed = false; 555 // Walk through the block bottom-up, looking for merging candidates. 556 StoreMergeCandidate Candidate; 557 for (MachineInstr &MI : llvm::reverse(MBB)) { 558 if (InstsToErase.contains(&MI)) 559 continue; 560 561 if (auto *StoreMI = dyn_cast<GStore>(&MI)) { 562 // We have a G_STORE. Add it to the candidate if it writes to an adjacent 563 // address. 564 if (!addStoreToCandidate(*StoreMI, Candidate)) { 565 // Store wasn't eligible to be added. May need to record it as a 566 // potential alias. 567 if (operationAliasesWithCandidate(*StoreMI, Candidate)) { 568 Changed |= processMergeCandidate(Candidate); 569 continue; 570 } 571 Candidate.addPotentialAlias(*StoreMI); 572 } 573 continue; 574 } 575 576 // If we don't have any stores yet, this instruction can't pose a problem. 577 if (Candidate.Stores.empty()) 578 continue; 579 580 // We're dealing with some other kind of instruction. 581 if (isInstHardMergeHazard(MI)) { 582 Changed |= processMergeCandidate(Candidate); 583 Candidate.Stores.clear(); 584 continue; 585 } 586 587 if (!MI.mayLoadOrStore()) 588 continue; 589 590 if (operationAliasesWithCandidate(MI, Candidate)) { 591 // We have a potential alias, so process the current candidate if we can 592 // and then continue looking for a new candidate. 593 Changed |= processMergeCandidate(Candidate); 594 continue; 595 } 596 597 // Record this instruction as a potential alias for future stores that are 598 // added to the candidate. 599 Candidate.addPotentialAlias(MI); 600 } 601 602 // Process any candidate left after finishing searching the entire block. 603 Changed |= processMergeCandidate(Candidate); 604 605 // Erase instructions now that we're no longer iterating over the block. 606 for (auto *MI : InstsToErase) 607 MI->eraseFromParent(); 608 InstsToErase.clear(); 609 return Changed; 610 } 611 612 bool LoadStoreOpt::mergeFunctionStores(MachineFunction &MF) { 613 bool Changed = false; 614 for (auto &BB : MF) { 615 Changed |= mergeBlockStores(BB); 616 } 617 return Changed; 618 } 619 620 void LoadStoreOpt::initializeStoreMergeTargetInfo(unsigned AddrSpace) { 621 // Query the legalizer info to record what store types are legal. 622 // We record this because we don't want to bother trying to merge stores into 623 // illegal ones, which would just result in being split again. 624 625 if (LegalStoreSizes.count(AddrSpace)) { 626 assert(LegalStoreSizes[AddrSpace].any()); 627 return; // Already cached sizes for this address space. 628 } 629 630 // Need to reserve at least MaxStoreSizeToForm + 1 bits. 631 BitVector LegalSizes(MaxStoreSizeToForm * 2); 632 const auto &LI = *MF->getSubtarget().getLegalizerInfo(); 633 const auto &DL = MF->getFunction().getParent()->getDataLayout(); 634 Type *IntPtrIRTy = 635 DL.getIntPtrType(MF->getFunction().getContext(), AddrSpace); 636 LLT PtrTy = getLLTForType(*IntPtrIRTy->getPointerTo(AddrSpace), DL); 637 // We assume that we're not going to be generating any stores wider than 638 // MaxStoreSizeToForm bits for now. 639 for (unsigned Size = 2; Size <= MaxStoreSizeToForm; Size *= 2) { 640 LLT Ty = LLT::scalar(Size); 641 SmallVector<LegalityQuery::MemDesc, 2> MemDescrs( 642 {{Ty, Ty.getSizeInBits(), AtomicOrdering::NotAtomic}}); 643 SmallVector<LLT> StoreTys({Ty, PtrTy}); 644 LegalityQuery Q(TargetOpcode::G_STORE, StoreTys, MemDescrs); 645 LegalizeActionStep ActionStep = LI.getAction(Q); 646 if (ActionStep.Action == LegalizeActions::Legal) 647 LegalSizes.set(Size); 648 } 649 assert(LegalSizes.any() && "Expected some store sizes to be legal!"); 650 LegalStoreSizes[AddrSpace] = LegalSizes; 651 } 652 653 bool LoadStoreOpt::runOnMachineFunction(MachineFunction &MF) { 654 // If the ISel pipeline failed, do not bother running that pass. 655 if (MF.getProperties().hasProperty( 656 MachineFunctionProperties::Property::FailedISel)) 657 return false; 658 659 LLVM_DEBUG(dbgs() << "Begin memory optimizations for: " << MF.getName() 660 << '\n'); 661 662 init(MF); 663 bool Changed = false; 664 Changed |= mergeFunctionStores(MF); 665 666 LegalStoreSizes.clear(); 667 return Changed; 668 } 669