xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp (revision ee0fe82ee2892f5ece189db0eab38913aaab5f0f)
1 //===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implement an interface to specify and query how an illegal operation on a
10 // given type should be expanded.
11 //
12 // Issues to be resolved:
13 //   + Make it fast.
14 //   + Support weird types like i3, <7 x i3>, ...
15 //   + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/TargetOpcodes.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/LowLevelTypeImpl.h"
31 #include "llvm/Support/MathExtras.h"
32 #include <algorithm>
33 #include <map>
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 
38 #define DEBUG_TYPE "legalizer-info"
39 
40 cl::opt<bool> llvm::DisableGISelLegalityCheck(
41     "disable-gisel-legality-check",
42     cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"),
43     cl::Hidden);
44 
45 raw_ostream &llvm::operator<<(raw_ostream &OS, LegalizeAction Action) {
46   switch (Action) {
47   case Legal:
48     OS << "Legal";
49     break;
50   case NarrowScalar:
51     OS << "NarrowScalar";
52     break;
53   case WidenScalar:
54     OS << "WidenScalar";
55     break;
56   case FewerElements:
57     OS << "FewerElements";
58     break;
59   case MoreElements:
60     OS << "MoreElements";
61     break;
62   case Lower:
63     OS << "Lower";
64     break;
65   case Libcall:
66     OS << "Libcall";
67     break;
68   case Custom:
69     OS << "Custom";
70     break;
71   case Unsupported:
72     OS << "Unsupported";
73     break;
74   case NotFound:
75     OS << "NotFound";
76     break;
77   case UseLegacyRules:
78     OS << "UseLegacyRules";
79     break;
80   }
81   return OS;
82 }
83 
84 raw_ostream &LegalityQuery::print(raw_ostream &OS) const {
85   OS << Opcode << ", Tys={";
86   for (const auto &Type : Types) {
87     OS << Type << ", ";
88   }
89   OS << "}, Opcode=";
90 
91   OS << Opcode << ", MMOs={";
92   for (const auto &MMODescr : MMODescrs) {
93     OS << MMODescr.SizeInBits << ", ";
94   }
95   OS << "}";
96 
97   return OS;
98 }
99 
100 #ifndef NDEBUG
101 // Make sure the rule won't (trivially) loop forever.
102 static bool hasNoSimpleLoops(const LegalizeRule &Rule, const LegalityQuery &Q,
103                              const std::pair<unsigned, LLT> &Mutation) {
104   switch (Rule.getAction()) {
105   case Custom:
106   case Lower:
107   case MoreElements:
108   case FewerElements:
109     break;
110   default:
111     return Q.Types[Mutation.first] != Mutation.second;
112   }
113   return true;
114 }
115 
116 // Make sure the returned mutation makes sense for the match type.
117 static bool mutationIsSane(const LegalizeRule &Rule,
118                            const LegalityQuery &Q,
119                            std::pair<unsigned, LLT> Mutation) {
120   // If the user wants a custom mutation, then we can't really say much about
121   // it. Return true, and trust that they're doing the right thing.
122   if (Rule.getAction() == Custom)
123     return true;
124 
125   const unsigned TypeIdx = Mutation.first;
126   const LLT OldTy = Q.Types[TypeIdx];
127   const LLT NewTy = Mutation.second;
128 
129   switch (Rule.getAction()) {
130   case FewerElements:
131   case MoreElements: {
132     if (!OldTy.isVector())
133       return false;
134 
135     if (NewTy.isVector()) {
136       if (Rule.getAction() == FewerElements) {
137         // Make sure the element count really decreased.
138         if (NewTy.getNumElements() >= OldTy.getNumElements())
139           return false;
140       } else {
141         // Make sure the element count really increased.
142         if (NewTy.getNumElements() <= OldTy.getNumElements())
143           return false;
144       }
145     }
146 
147     // Make sure the element type didn't change.
148     return NewTy.getScalarType() == OldTy.getElementType();
149   }
150   case NarrowScalar:
151   case WidenScalar: {
152     if (OldTy.isVector()) {
153       // Number of elements should not change.
154       if (!NewTy.isVector() || OldTy.getNumElements() != NewTy.getNumElements())
155         return false;
156     } else {
157       // Both types must be vectors
158       if (NewTy.isVector())
159         return false;
160     }
161 
162     if (Rule.getAction() == NarrowScalar)  {
163       // Make sure the size really decreased.
164       if (NewTy.getScalarSizeInBits() >= OldTy.getScalarSizeInBits())
165         return false;
166     } else {
167       // Make sure the size really increased.
168       if (NewTy.getScalarSizeInBits() <= OldTy.getScalarSizeInBits())
169         return false;
170     }
171 
172     return true;
173   }
174   default:
175     return true;
176   }
177 }
178 #endif
179 
180 LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const {
181   LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs());
182              dbgs() << "\n");
183   if (Rules.empty()) {
184     LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n");
185     return {LegalizeAction::UseLegacyRules, 0, LLT{}};
186   }
187   for (const LegalizeRule &Rule : Rules) {
188     if (Rule.match(Query)) {
189       LLVM_DEBUG(dbgs() << ".. match\n");
190       std::pair<unsigned, LLT> Mutation = Rule.determineMutation(Query);
191       LLVM_DEBUG(dbgs() << ".. .. " << Rule.getAction() << ", "
192                         << Mutation.first << ", " << Mutation.second << "\n");
193       assert(mutationIsSane(Rule, Query, Mutation) &&
194              "legality mutation invalid for match");
195       assert(hasNoSimpleLoops(Rule, Query, Mutation) && "Simple loop detected");
196       return {Rule.getAction(), Mutation.first, Mutation.second};
197     } else
198       LLVM_DEBUG(dbgs() << ".. no match\n");
199   }
200   LLVM_DEBUG(dbgs() << ".. unsupported\n");
201   return {LegalizeAction::Unsupported, 0, LLT{}};
202 }
203 
204 bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const {
205 #ifndef NDEBUG
206   if (Rules.empty()) {
207     LLVM_DEBUG(
208         dbgs() << ".. type index coverage check SKIPPED: no rules defined\n");
209     return true;
210   }
211   const int64_t FirstUncovered = TypeIdxsCovered.find_first_unset();
212   if (FirstUncovered < 0) {
213     LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:"
214                          " user-defined predicate detected\n");
215     return true;
216   }
217   const bool AllCovered = (FirstUncovered >= NumTypeIdxs);
218   LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered
219                     << ", " << (AllCovered ? "OK" : "FAIL") << "\n");
220   return AllCovered;
221 #else
222   return true;
223 #endif
224 }
225 
226 LegalizerInfo::LegalizerInfo() : TablesInitialized(false) {
227   // Set defaults.
228   // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
229   // fundamental load/store Jakob proposed. Once loads & stores are supported.
230   setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}});
231   setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}});
232   setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}});
233   setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}});
234   setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}});
235 
236   setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}});
237   setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}});
238 
239   setLegalizeScalarToDifferentSizeStrategy(
240       TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall);
241   setLegalizeScalarToDifferentSizeStrategy(
242       TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
243   setLegalizeScalarToDifferentSizeStrategy(
244       TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest);
245   setLegalizeScalarToDifferentSizeStrategy(
246       TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall);
247   setLegalizeScalarToDifferentSizeStrategy(
248       TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall);
249 
250   setLegalizeScalarToDifferentSizeStrategy(
251       TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise);
252   setLegalizeScalarToDifferentSizeStrategy(
253       TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
254   setLegalizeScalarToDifferentSizeStrategy(
255       TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
256   setLegalizeScalarToDifferentSizeStrategy(
257       TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall);
258   setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}});
259 }
260 
261 void LegalizerInfo::computeTables() {
262   assert(TablesInitialized == false);
263 
264   for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) {
265     const unsigned Opcode = FirstOp + OpcodeIdx;
266     for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size();
267          ++TypeIdx) {
268       // 0. Collect information specified through the setAction API, i.e.
269       // for specific bit sizes.
270       // For scalar types:
271       SizeAndActionsVec ScalarSpecifiedActions;
272       // For pointer types:
273       std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions;
274       // For vector types:
275       std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions;
276       for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) {
277         const LLT Type = LLT2Action.first;
278         const LegalizeAction Action = LLT2Action.second;
279 
280         auto SizeAction = std::make_pair(Type.getSizeInBits(), Action);
281         if (Type.isPointer())
282           AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back(
283               SizeAction);
284         else if (Type.isVector())
285           ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()]
286               .push_back(SizeAction);
287         else
288           ScalarSpecifiedActions.push_back(SizeAction);
289       }
290 
291       // 1. Handle scalar types
292       {
293         // Decide how to handle bit sizes for which no explicit specification
294         // was given.
295         SizeChangeStrategy S = &unsupportedForDifferentSizes;
296         if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() &&
297             ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
298           S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx];
299         llvm::sort(ScalarSpecifiedActions);
300         checkPartialSizeAndActionsVector(ScalarSpecifiedActions);
301         setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions));
302       }
303 
304       // 2. Handle pointer types
305       for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) {
306         llvm::sort(PointerSpecifiedActions.second);
307         checkPartialSizeAndActionsVector(PointerSpecifiedActions.second);
308         // For pointer types, we assume that there isn't a meaningfull way
309         // to change the number of bits used in the pointer.
310         setPointerAction(
311             Opcode, TypeIdx, PointerSpecifiedActions.first,
312             unsupportedForDifferentSizes(PointerSpecifiedActions.second));
313       }
314 
315       // 3. Handle vector types
316       SizeAndActionsVec ElementSizesSeen;
317       for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) {
318         llvm::sort(VectorSpecifiedActions.second);
319         const uint16_t ElementSize = VectorSpecifiedActions.first;
320         ElementSizesSeen.push_back({ElementSize, Legal});
321         checkPartialSizeAndActionsVector(VectorSpecifiedActions.second);
322         // For vector types, we assume that the best way to adapt the number
323         // of elements is to the next larger number of elements type for which
324         // the vector type is legal, unless there is no such type. In that case,
325         // legalize towards a vector type with a smaller number of elements.
326         SizeAndActionsVec NumElementsActions;
327         for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) {
328           assert(BitsizeAndAction.first % ElementSize == 0);
329           const uint16_t NumElements = BitsizeAndAction.first / ElementSize;
330           NumElementsActions.push_back({NumElements, BitsizeAndAction.second});
331         }
332         setVectorNumElementAction(
333             Opcode, TypeIdx, ElementSize,
334             moreToWiderTypesAndLessToWidest(NumElementsActions));
335       }
336       llvm::sort(ElementSizesSeen);
337       SizeChangeStrategy VectorElementSizeChangeStrategy =
338           &unsupportedForDifferentSizes;
339       if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() &&
340           VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
341         VectorElementSizeChangeStrategy =
342             VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx];
343       setScalarInVectorAction(
344           Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen));
345     }
346   }
347 
348   TablesInitialized = true;
349 }
350 
351 // FIXME: inefficient implementation for now. Without ComputeValueVTs we're
352 // probably going to need specialized lookup structures for various types before
353 // we have any hope of doing well with something like <13 x i3>. Even the common
354 // cases should do better than what we have now.
355 std::pair<LegalizeAction, LLT>
356 LegalizerInfo::getAspectAction(const InstrAspect &Aspect) const {
357   assert(TablesInitialized && "backend forgot to call computeTables");
358   // These *have* to be implemented for now, they're the fundamental basis of
359   // how everything else is transformed.
360   if (Aspect.Type.isScalar() || Aspect.Type.isPointer())
361     return findScalarLegalAction(Aspect);
362   assert(Aspect.Type.isVector());
363   return findVectorLegalAction(Aspect);
364 }
365 
366 /// Helper function to get LLT for the given type index.
367 static LLT getTypeFromTypeIdx(const MachineInstr &MI,
368                               const MachineRegisterInfo &MRI, unsigned OpIdx,
369                               unsigned TypeIdx) {
370   assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx");
371   // G_UNMERGE_VALUES has variable number of operands, but there is only
372   // one source type and one destination type as all destinations must be the
373   // same type. So, get the last operand if TypeIdx == 1.
374   if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1)
375     return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg());
376   return MRI.getType(MI.getOperand(OpIdx).getReg());
377 }
378 
379 unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const {
380   assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode");
381   return Opcode - FirstOp;
382 }
383 
384 unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const {
385   unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode);
386   if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) {
387     LLVM_DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias
388                       << "\n");
389     OpcodeIdx = getOpcodeIdxForOpcode(Alias);
390     LLVM_DEBUG(dbgs() << ".. opcode " << Alias << " is aliased to "
391                       << RulesForOpcode[OpcodeIdx].getAlias() << "\n");
392     assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases");
393   }
394 
395   return OpcodeIdx;
396 }
397 
398 const LegalizeRuleSet &
399 LegalizerInfo::getActionDefinitions(unsigned Opcode) const {
400   unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
401   return RulesForOpcode[OpcodeIdx];
402 }
403 
404 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) {
405   unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
406   auto &Result = RulesForOpcode[OpcodeIdx];
407   assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases");
408   return Result;
409 }
410 
411 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(
412     std::initializer_list<unsigned> Opcodes) {
413   unsigned Representative = *Opcodes.begin();
414 
415   assert(!empty(Opcodes) && Opcodes.begin() + 1 != Opcodes.end() &&
416          "Initializer list must have at least two opcodes");
417 
418   for (auto I = Opcodes.begin() + 1, E = Opcodes.end(); I != E; ++I)
419     aliasActionDefinitions(Representative, *I);
420 
421   auto &Return = getActionDefinitionsBuilder(Representative);
422   Return.setIsAliasedByAnother();
423   return Return;
424 }
425 
426 void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo,
427                                            unsigned OpcodeFrom) {
428   assert(OpcodeTo != OpcodeFrom && "Cannot alias to self");
429   assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode");
430   const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom);
431   RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo);
432 }
433 
434 LegalizeActionStep
435 LegalizerInfo::getAction(const LegalityQuery &Query) const {
436   LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query);
437   if (Step.Action != LegalizeAction::UseLegacyRules) {
438     return Step;
439   }
440 
441   for (unsigned i = 0; i < Query.Types.size(); ++i) {
442     auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]});
443     if (Action.first != Legal) {
444       LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Action="
445                         << Action.first << ", " << Action.second << "\n");
446       return {Action.first, i, Action.second};
447     } else
448       LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n");
449   }
450   LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n");
451   return {Legal, 0, LLT{}};
452 }
453 
454 LegalizeActionStep
455 LegalizerInfo::getAction(const MachineInstr &MI,
456                          const MachineRegisterInfo &MRI) const {
457   SmallVector<LLT, 2> Types;
458   SmallBitVector SeenTypes(8);
459   const MCOperandInfo *OpInfo = MI.getDesc().OpInfo;
460   // FIXME: probably we'll need to cache the results here somehow?
461   for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) {
462     if (!OpInfo[i].isGenericType())
463       continue;
464 
465     // We must only record actions once for each TypeIdx; otherwise we'd
466     // try to legalize operands multiple times down the line.
467     unsigned TypeIdx = OpInfo[i].getGenericTypeIndex();
468     if (SeenTypes[TypeIdx])
469       continue;
470 
471     SeenTypes.set(TypeIdx);
472 
473     LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx);
474     Types.push_back(Ty);
475   }
476 
477   SmallVector<LegalityQuery::MemDesc, 2> MemDescrs;
478   for (const auto &MMO : MI.memoperands())
479     MemDescrs.push_back({8 * MMO->getSize() /* in bits */,
480                          8 * MMO->getAlignment(),
481                          MMO->getOrdering()});
482 
483   return getAction({MI.getOpcode(), Types, MemDescrs});
484 }
485 
486 bool LegalizerInfo::isLegal(const MachineInstr &MI,
487                             const MachineRegisterInfo &MRI) const {
488   return getAction(MI, MRI).Action == Legal;
489 }
490 
491 bool LegalizerInfo::isLegalOrCustom(const MachineInstr &MI,
492                                     const MachineRegisterInfo &MRI) const {
493   auto Action = getAction(MI, MRI).Action;
494   // If the action is custom, it may not necessarily modify the instruction,
495   // so we have to assume it's legal.
496   return Action == Legal || Action == Custom;
497 }
498 
499 bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI,
500                                    MachineIRBuilder &MIRBuilder,
501                                    GISelChangeObserver &Observer) const {
502   return false;
503 }
504 
505 LegalizerInfo::SizeAndActionsVec
506 LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
507     const SizeAndActionsVec &v, LegalizeAction IncreaseAction,
508     LegalizeAction DecreaseAction) {
509   SizeAndActionsVec result;
510   unsigned LargestSizeSoFar = 0;
511   if (v.size() >= 1 && v[0].first != 1)
512     result.push_back({1, IncreaseAction});
513   for (size_t i = 0; i < v.size(); ++i) {
514     result.push_back(v[i]);
515     LargestSizeSoFar = v[i].first;
516     if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) {
517       result.push_back({LargestSizeSoFar + 1, IncreaseAction});
518       LargestSizeSoFar = v[i].first + 1;
519     }
520   }
521   result.push_back({LargestSizeSoFar + 1, DecreaseAction});
522   return result;
523 }
524 
525 LegalizerInfo::SizeAndActionsVec
526 LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
527     const SizeAndActionsVec &v, LegalizeAction DecreaseAction,
528     LegalizeAction IncreaseAction) {
529   SizeAndActionsVec result;
530   if (v.size() == 0 || v[0].first != 1)
531     result.push_back({1, IncreaseAction});
532   for (size_t i = 0; i < v.size(); ++i) {
533     result.push_back(v[i]);
534     if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) {
535       result.push_back({v[i].first + 1, DecreaseAction});
536     }
537   }
538   return result;
539 }
540 
541 LegalizerInfo::SizeAndAction
542 LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) {
543   assert(Size >= 1);
544   // Find the last element in Vec that has a bitsize equal to or smaller than
545   // the requested bit size.
546   // That is the element just before the first element that is bigger than Size.
547   auto It = partition_point(
548       Vec, [=](const SizeAndAction &A) { return A.first <= Size; });
549   assert(It != Vec.begin() && "Does Vec not start with size 1?");
550   int VecIdx = It - Vec.begin() - 1;
551 
552   LegalizeAction Action = Vec[VecIdx].second;
553   switch (Action) {
554   case Legal:
555   case Lower:
556   case Libcall:
557   case Custom:
558     return {Size, Action};
559   case FewerElements:
560     // FIXME: is this special case still needed and correct?
561     // Special case for scalarization:
562     if (Vec == SizeAndActionsVec({{1, FewerElements}}))
563       return {1, FewerElements};
564     LLVM_FALLTHROUGH;
565   case NarrowScalar: {
566     // The following needs to be a loop, as for now, we do allow needing to
567     // go over "Unsupported" bit sizes before finding a legalizable bit size.
568     // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
569     // we need to iterate over s9, and then to s32 to return (s32, Legal).
570     // If we want to get rid of the below loop, we should have stronger asserts
571     // when building the SizeAndActionsVecs, probably not allowing
572     // "Unsupported" unless at the ends of the vector.
573     for (int i = VecIdx - 1; i >= 0; --i)
574       if (!needsLegalizingToDifferentSize(Vec[i].second) &&
575           Vec[i].second != Unsupported)
576         return {Vec[i].first, Action};
577     llvm_unreachable("");
578   }
579   case WidenScalar:
580   case MoreElements: {
581     // See above, the following needs to be a loop, at least for now.
582     for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i)
583       if (!needsLegalizingToDifferentSize(Vec[i].second) &&
584           Vec[i].second != Unsupported)
585         return {Vec[i].first, Action};
586     llvm_unreachable("");
587   }
588   case Unsupported:
589     return {Size, Unsupported};
590   case NotFound:
591   case UseLegacyRules:
592     llvm_unreachable("NotFound");
593   }
594   llvm_unreachable("Action has an unknown enum value");
595 }
596 
597 std::pair<LegalizeAction, LLT>
598 LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const {
599   assert(Aspect.Type.isScalar() || Aspect.Type.isPointer());
600   if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
601     return {NotFound, LLT()};
602   const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
603   if (Aspect.Type.isPointer() &&
604       AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) ==
605           AddrSpace2PointerActions[OpcodeIdx].end()) {
606     return {NotFound, LLT()};
607   }
608   const SmallVector<SizeAndActionsVec, 1> &Actions =
609       Aspect.Type.isPointer()
610           ? AddrSpace2PointerActions[OpcodeIdx]
611                 .find(Aspect.Type.getAddressSpace())
612                 ->second
613           : ScalarActions[OpcodeIdx];
614   if (Aspect.Idx >= Actions.size())
615     return {NotFound, LLT()};
616   const SizeAndActionsVec &Vec = Actions[Aspect.Idx];
617   // FIXME: speed up this search, e.g. by using a results cache for repeated
618   // queries?
619   auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits());
620   return {SizeAndAction.second,
621           Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first)
622                                  : LLT::pointer(Aspect.Type.getAddressSpace(),
623                                                 SizeAndAction.first)};
624 }
625 
626 std::pair<LegalizeAction, LLT>
627 LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const {
628   assert(Aspect.Type.isVector());
629   // First legalize the vector element size, then legalize the number of
630   // lanes in the vector.
631   if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
632     return {NotFound, Aspect.Type};
633   const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
634   const unsigned TypeIdx = Aspect.Idx;
635   if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size())
636     return {NotFound, Aspect.Type};
637   const SizeAndActionsVec &ElemSizeVec =
638       ScalarInVectorActions[OpcodeIdx][TypeIdx];
639 
640   LLT IntermediateType;
641   auto ElementSizeAndAction =
642       findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits());
643   IntermediateType =
644       LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first);
645   if (ElementSizeAndAction.second != Legal)
646     return {ElementSizeAndAction.second, IntermediateType};
647 
648   auto i = NumElements2Actions[OpcodeIdx].find(
649       IntermediateType.getScalarSizeInBits());
650   if (i == NumElements2Actions[OpcodeIdx].end()) {
651     return {NotFound, IntermediateType};
652   }
653   const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx];
654   auto NumElementsAndAction =
655       findAction(NumElementsVec, IntermediateType.getNumElements());
656   return {NumElementsAndAction.second,
657           LLT::vector(NumElementsAndAction.first,
658                       IntermediateType.getScalarSizeInBits())};
659 }
660 
661 bool LegalizerInfo::legalizeIntrinsic(MachineInstr &MI,
662                                       MachineRegisterInfo &MRI,
663                                       MachineIRBuilder &MIRBuilder) const {
664   return true;
665 }
666 
667 /// \pre Type indices of every opcode form a dense set starting from 0.
668 void LegalizerInfo::verify(const MCInstrInfo &MII) const {
669 #ifndef NDEBUG
670   std::vector<unsigned> FailedOpcodes;
671   for (unsigned Opcode = FirstOp; Opcode <= LastOp; ++Opcode) {
672     const MCInstrDesc &MCID = MII.get(Opcode);
673     const unsigned NumTypeIdxs = std::accumulate(
674         MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
675         [](unsigned Acc, const MCOperandInfo &OpInfo) {
676           return OpInfo.isGenericType()
677                      ? std::max(OpInfo.getGenericTypeIndex() + 1U, Acc)
678                      : Acc;
679         });
680     LLVM_DEBUG(dbgs() << MII.getName(Opcode) << " (opcode " << Opcode
681                       << "): " << NumTypeIdxs << " type ind"
682                       << (NumTypeIdxs == 1 ? "ex" : "ices") << "\n");
683     const LegalizeRuleSet &RuleSet = getActionDefinitions(Opcode);
684     if (!RuleSet.verifyTypeIdxsCoverage(NumTypeIdxs))
685       FailedOpcodes.push_back(Opcode);
686   }
687   if (!FailedOpcodes.empty()) {
688     errs() << "The following opcodes have ill-defined legalization rules:";
689     for (unsigned Opcode : FailedOpcodes)
690       errs() << " " << MII.getName(Opcode);
691     errs() << "\n";
692 
693     report_fatal_error("ill-defined LegalizerInfo"
694                        ", try -debug-only=legalizer-info for details");
695   }
696 #endif
697 }
698 
699 #ifndef NDEBUG
700 // FIXME: This should be in the MachineVerifier, but it can't use the
701 // LegalizerInfo as it's currently in the separate GlobalISel library.
702 // Note that RegBankSelected property already checked in the verifier
703 // has the same layering problem, but we only use inline methods so
704 // end up not needing to link against the GlobalISel library.
705 const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) {
706   if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) {
707     const MachineRegisterInfo &MRI = MF.getRegInfo();
708     for (const MachineBasicBlock &MBB : MF)
709       for (const MachineInstr &MI : MBB)
710         if (isPreISelGenericOpcode(MI.getOpcode()) &&
711             !MLI->isLegalOrCustom(MI, MRI))
712           return &MI;
713   }
714   return nullptr;
715 }
716 #endif
717