xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp (revision 9dba64be9536c28e4800e06512b7f29b43ade345)
1 //===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implement an interface to specify and query how an illegal operation on a
10 // given type should be expanded.
11 //
12 // Issues to be resolved:
13 //   + Make it fast.
14 //   + Support weird types like i3, <7 x i3>, ...
15 //   + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/TargetOpcodes.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/LowLevelTypeImpl.h"
31 #include "llvm/Support/MathExtras.h"
32 #include <algorithm>
33 #include <map>
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 
38 #define DEBUG_TYPE "legalizer-info"
39 
40 cl::opt<bool> llvm::DisableGISelLegalityCheck(
41     "disable-gisel-legality-check",
42     cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"),
43     cl::Hidden);
44 
45 raw_ostream &llvm::operator<<(raw_ostream &OS, LegalizeAction Action) {
46   switch (Action) {
47   case Legal:
48     OS << "Legal";
49     break;
50   case NarrowScalar:
51     OS << "NarrowScalar";
52     break;
53   case WidenScalar:
54     OS << "WidenScalar";
55     break;
56   case FewerElements:
57     OS << "FewerElements";
58     break;
59   case MoreElements:
60     OS << "MoreElements";
61     break;
62   case Lower:
63     OS << "Lower";
64     break;
65   case Libcall:
66     OS << "Libcall";
67     break;
68   case Custom:
69     OS << "Custom";
70     break;
71   case Unsupported:
72     OS << "Unsupported";
73     break;
74   case NotFound:
75     OS << "NotFound";
76     break;
77   case UseLegacyRules:
78     OS << "UseLegacyRules";
79     break;
80   }
81   return OS;
82 }
83 
84 raw_ostream &LegalityQuery::print(raw_ostream &OS) const {
85   OS << Opcode << ", Tys={";
86   for (const auto &Type : Types) {
87     OS << Type << ", ";
88   }
89   OS << "}, Opcode=";
90 
91   OS << Opcode << ", MMOs={";
92   for (const auto &MMODescr : MMODescrs) {
93     OS << MMODescr.SizeInBits << ", ";
94   }
95   OS << "}";
96 
97   return OS;
98 }
99 
100 #ifndef NDEBUG
101 // Make sure the rule won't (trivially) loop forever.
102 static bool hasNoSimpleLoops(const LegalizeRule &Rule, const LegalityQuery &Q,
103                              const std::pair<unsigned, LLT> &Mutation) {
104   switch (Rule.getAction()) {
105   case Custom:
106   case Lower:
107   case MoreElements:
108   case FewerElements:
109     break;
110   default:
111     return Q.Types[Mutation.first] != Mutation.second;
112   }
113   return true;
114 }
115 
116 // Make sure the returned mutation makes sense for the match type.
117 static bool mutationIsSane(const LegalizeRule &Rule,
118                            const LegalityQuery &Q,
119                            std::pair<unsigned, LLT> Mutation) {
120   // If the user wants a custom mutation, then we can't really say much about
121   // it. Return true, and trust that they're doing the right thing.
122   if (Rule.getAction() == Custom)
123     return true;
124 
125   const unsigned TypeIdx = Mutation.first;
126   const LLT OldTy = Q.Types[TypeIdx];
127   const LLT NewTy = Mutation.second;
128 
129   switch (Rule.getAction()) {
130   case FewerElements:
131   case MoreElements: {
132     if (!OldTy.isVector())
133       return false;
134 
135     if (NewTy.isVector()) {
136       if (Rule.getAction() == FewerElements) {
137         // Make sure the element count really decreased.
138         if (NewTy.getNumElements() >= OldTy.getNumElements())
139           return false;
140       } else {
141         // Make sure the element count really increased.
142         if (NewTy.getNumElements() <= OldTy.getNumElements())
143           return false;
144       }
145     }
146 
147     // Make sure the element type didn't change.
148     return NewTy.getScalarType() == OldTy.getElementType();
149   }
150   case NarrowScalar:
151   case WidenScalar: {
152     if (OldTy.isVector()) {
153       // Number of elements should not change.
154       if (!NewTy.isVector() || OldTy.getNumElements() != NewTy.getNumElements())
155         return false;
156     } else {
157       // Both types must be vectors
158       if (NewTy.isVector())
159         return false;
160     }
161 
162     if (Rule.getAction() == NarrowScalar)  {
163       // Make sure the size really decreased.
164       if (NewTy.getScalarSizeInBits() >= OldTy.getScalarSizeInBits())
165         return false;
166     } else {
167       // Make sure the size really increased.
168       if (NewTy.getScalarSizeInBits() <= OldTy.getScalarSizeInBits())
169         return false;
170     }
171 
172     return true;
173   }
174   default:
175     return true;
176   }
177 }
178 #endif
179 
180 LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const {
181   LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs());
182              dbgs() << "\n");
183   if (Rules.empty()) {
184     LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n");
185     return {LegalizeAction::UseLegacyRules, 0, LLT{}};
186   }
187   for (const LegalizeRule &Rule : Rules) {
188     if (Rule.match(Query)) {
189       LLVM_DEBUG(dbgs() << ".. match\n");
190       std::pair<unsigned, LLT> Mutation = Rule.determineMutation(Query);
191       LLVM_DEBUG(dbgs() << ".. .. " << Rule.getAction() << ", "
192                         << Mutation.first << ", " << Mutation.second << "\n");
193       assert(mutationIsSane(Rule, Query, Mutation) &&
194              "legality mutation invalid for match");
195       assert(hasNoSimpleLoops(Rule, Query, Mutation) && "Simple loop detected");
196       return {Rule.getAction(), Mutation.first, Mutation.second};
197     } else
198       LLVM_DEBUG(dbgs() << ".. no match\n");
199   }
200   LLVM_DEBUG(dbgs() << ".. unsupported\n");
201   return {LegalizeAction::Unsupported, 0, LLT{}};
202 }
203 
204 bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const {
205 #ifndef NDEBUG
206   if (Rules.empty()) {
207     LLVM_DEBUG(
208         dbgs() << ".. type index coverage check SKIPPED: no rules defined\n");
209     return true;
210   }
211   const int64_t FirstUncovered = TypeIdxsCovered.find_first_unset();
212   if (FirstUncovered < 0) {
213     LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:"
214                          " user-defined predicate detected\n");
215     return true;
216   }
217   const bool AllCovered = (FirstUncovered >= NumTypeIdxs);
218   if (NumTypeIdxs > 0)
219     LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered
220                       << ", " << (AllCovered ? "OK" : "FAIL") << "\n");
221   return AllCovered;
222 #else
223   return true;
224 #endif
225 }
226 
227 bool LegalizeRuleSet::verifyImmIdxsCoverage(unsigned NumImmIdxs) const {
228 #ifndef NDEBUG
229   if (Rules.empty()) {
230     LLVM_DEBUG(
231         dbgs() << ".. imm index coverage check SKIPPED: no rules defined\n");
232     return true;
233   }
234   const int64_t FirstUncovered = ImmIdxsCovered.find_first_unset();
235   if (FirstUncovered < 0) {
236     LLVM_DEBUG(dbgs() << ".. imm index coverage check SKIPPED:"
237                          " user-defined predicate detected\n");
238     return true;
239   }
240   const bool AllCovered = (FirstUncovered >= NumImmIdxs);
241   LLVM_DEBUG(dbgs() << ".. the first uncovered imm index: " << FirstUncovered
242                     << ", " << (AllCovered ? "OK" : "FAIL") << "\n");
243   return AllCovered;
244 #else
245   return true;
246 #endif
247 }
248 
249 LegalizerInfo::LegalizerInfo() : TablesInitialized(false) {
250   // Set defaults.
251   // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
252   // fundamental load/store Jakob proposed. Once loads & stores are supported.
253   setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}});
254   setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}});
255   setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}});
256   setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}});
257   setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}});
258 
259   setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}});
260   setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}});
261 
262   setLegalizeScalarToDifferentSizeStrategy(
263       TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall);
264   setLegalizeScalarToDifferentSizeStrategy(
265       TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
266   setLegalizeScalarToDifferentSizeStrategy(
267       TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest);
268   setLegalizeScalarToDifferentSizeStrategy(
269       TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall);
270   setLegalizeScalarToDifferentSizeStrategy(
271       TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall);
272 
273   setLegalizeScalarToDifferentSizeStrategy(
274       TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise);
275   setLegalizeScalarToDifferentSizeStrategy(
276       TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
277   setLegalizeScalarToDifferentSizeStrategy(
278       TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
279   setLegalizeScalarToDifferentSizeStrategy(
280       TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall);
281   setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}});
282 }
283 
284 void LegalizerInfo::computeTables() {
285   assert(TablesInitialized == false);
286 
287   for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) {
288     const unsigned Opcode = FirstOp + OpcodeIdx;
289     for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size();
290          ++TypeIdx) {
291       // 0. Collect information specified through the setAction API, i.e.
292       // for specific bit sizes.
293       // For scalar types:
294       SizeAndActionsVec ScalarSpecifiedActions;
295       // For pointer types:
296       std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions;
297       // For vector types:
298       std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions;
299       for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) {
300         const LLT Type = LLT2Action.first;
301         const LegalizeAction Action = LLT2Action.second;
302 
303         auto SizeAction = std::make_pair(Type.getSizeInBits(), Action);
304         if (Type.isPointer())
305           AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back(
306               SizeAction);
307         else if (Type.isVector())
308           ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()]
309               .push_back(SizeAction);
310         else
311           ScalarSpecifiedActions.push_back(SizeAction);
312       }
313 
314       // 1. Handle scalar types
315       {
316         // Decide how to handle bit sizes for which no explicit specification
317         // was given.
318         SizeChangeStrategy S = &unsupportedForDifferentSizes;
319         if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() &&
320             ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
321           S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx];
322         llvm::sort(ScalarSpecifiedActions);
323         checkPartialSizeAndActionsVector(ScalarSpecifiedActions);
324         setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions));
325       }
326 
327       // 2. Handle pointer types
328       for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) {
329         llvm::sort(PointerSpecifiedActions.second);
330         checkPartialSizeAndActionsVector(PointerSpecifiedActions.second);
331         // For pointer types, we assume that there isn't a meaningfull way
332         // to change the number of bits used in the pointer.
333         setPointerAction(
334             Opcode, TypeIdx, PointerSpecifiedActions.first,
335             unsupportedForDifferentSizes(PointerSpecifiedActions.second));
336       }
337 
338       // 3. Handle vector types
339       SizeAndActionsVec ElementSizesSeen;
340       for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) {
341         llvm::sort(VectorSpecifiedActions.second);
342         const uint16_t ElementSize = VectorSpecifiedActions.first;
343         ElementSizesSeen.push_back({ElementSize, Legal});
344         checkPartialSizeAndActionsVector(VectorSpecifiedActions.second);
345         // For vector types, we assume that the best way to adapt the number
346         // of elements is to the next larger number of elements type for which
347         // the vector type is legal, unless there is no such type. In that case,
348         // legalize towards a vector type with a smaller number of elements.
349         SizeAndActionsVec NumElementsActions;
350         for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) {
351           assert(BitsizeAndAction.first % ElementSize == 0);
352           const uint16_t NumElements = BitsizeAndAction.first / ElementSize;
353           NumElementsActions.push_back({NumElements, BitsizeAndAction.second});
354         }
355         setVectorNumElementAction(
356             Opcode, TypeIdx, ElementSize,
357             moreToWiderTypesAndLessToWidest(NumElementsActions));
358       }
359       llvm::sort(ElementSizesSeen);
360       SizeChangeStrategy VectorElementSizeChangeStrategy =
361           &unsupportedForDifferentSizes;
362       if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() &&
363           VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
364         VectorElementSizeChangeStrategy =
365             VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx];
366       setScalarInVectorAction(
367           Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen));
368     }
369   }
370 
371   TablesInitialized = true;
372 }
373 
374 // FIXME: inefficient implementation for now. Without ComputeValueVTs we're
375 // probably going to need specialized lookup structures for various types before
376 // we have any hope of doing well with something like <13 x i3>. Even the common
377 // cases should do better than what we have now.
378 std::pair<LegalizeAction, LLT>
379 LegalizerInfo::getAspectAction(const InstrAspect &Aspect) const {
380   assert(TablesInitialized && "backend forgot to call computeTables");
381   // These *have* to be implemented for now, they're the fundamental basis of
382   // how everything else is transformed.
383   if (Aspect.Type.isScalar() || Aspect.Type.isPointer())
384     return findScalarLegalAction(Aspect);
385   assert(Aspect.Type.isVector());
386   return findVectorLegalAction(Aspect);
387 }
388 
389 /// Helper function to get LLT for the given type index.
390 static LLT getTypeFromTypeIdx(const MachineInstr &MI,
391                               const MachineRegisterInfo &MRI, unsigned OpIdx,
392                               unsigned TypeIdx) {
393   assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx");
394   // G_UNMERGE_VALUES has variable number of operands, but there is only
395   // one source type and one destination type as all destinations must be the
396   // same type. So, get the last operand if TypeIdx == 1.
397   if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1)
398     return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg());
399   return MRI.getType(MI.getOperand(OpIdx).getReg());
400 }
401 
402 unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const {
403   assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode");
404   return Opcode - FirstOp;
405 }
406 
407 unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const {
408   unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode);
409   if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) {
410     LLVM_DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias
411                       << "\n");
412     OpcodeIdx = getOpcodeIdxForOpcode(Alias);
413     assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases");
414   }
415 
416   return OpcodeIdx;
417 }
418 
419 const LegalizeRuleSet &
420 LegalizerInfo::getActionDefinitions(unsigned Opcode) const {
421   unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
422   return RulesForOpcode[OpcodeIdx];
423 }
424 
425 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) {
426   unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
427   auto &Result = RulesForOpcode[OpcodeIdx];
428   assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases");
429   return Result;
430 }
431 
432 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(
433     std::initializer_list<unsigned> Opcodes) {
434   unsigned Representative = *Opcodes.begin();
435 
436   assert(!llvm::empty(Opcodes) && Opcodes.begin() + 1 != Opcodes.end() &&
437          "Initializer list must have at least two opcodes");
438 
439   for (auto I = Opcodes.begin() + 1, E = Opcodes.end(); I != E; ++I)
440     aliasActionDefinitions(Representative, *I);
441 
442   auto &Return = getActionDefinitionsBuilder(Representative);
443   Return.setIsAliasedByAnother();
444   return Return;
445 }
446 
447 void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo,
448                                            unsigned OpcodeFrom) {
449   assert(OpcodeTo != OpcodeFrom && "Cannot alias to self");
450   assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode");
451   const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom);
452   RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo);
453 }
454 
455 LegalizeActionStep
456 LegalizerInfo::getAction(const LegalityQuery &Query) const {
457   LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query);
458   if (Step.Action != LegalizeAction::UseLegacyRules) {
459     return Step;
460   }
461 
462   for (unsigned i = 0; i < Query.Types.size(); ++i) {
463     auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]});
464     if (Action.first != Legal) {
465       LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Action="
466                         << Action.first << ", " << Action.second << "\n");
467       return {Action.first, i, Action.second};
468     } else
469       LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n");
470   }
471   LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n");
472   return {Legal, 0, LLT{}};
473 }
474 
475 LegalizeActionStep
476 LegalizerInfo::getAction(const MachineInstr &MI,
477                          const MachineRegisterInfo &MRI) const {
478   SmallVector<LLT, 2> Types;
479   SmallBitVector SeenTypes(8);
480   const MCOperandInfo *OpInfo = MI.getDesc().OpInfo;
481   // FIXME: probably we'll need to cache the results here somehow?
482   for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) {
483     if (!OpInfo[i].isGenericType())
484       continue;
485 
486     // We must only record actions once for each TypeIdx; otherwise we'd
487     // try to legalize operands multiple times down the line.
488     unsigned TypeIdx = OpInfo[i].getGenericTypeIndex();
489     if (SeenTypes[TypeIdx])
490       continue;
491 
492     SeenTypes.set(TypeIdx);
493 
494     LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx);
495     Types.push_back(Ty);
496   }
497 
498   SmallVector<LegalityQuery::MemDesc, 2> MemDescrs;
499   for (const auto &MMO : MI.memoperands())
500     MemDescrs.push_back({8 * MMO->getSize() /* in bits */,
501                          8 * MMO->getAlignment(),
502                          MMO->getOrdering()});
503 
504   return getAction({MI.getOpcode(), Types, MemDescrs});
505 }
506 
507 bool LegalizerInfo::isLegal(const MachineInstr &MI,
508                             const MachineRegisterInfo &MRI) const {
509   return getAction(MI, MRI).Action == Legal;
510 }
511 
512 bool LegalizerInfo::isLegalOrCustom(const MachineInstr &MI,
513                                     const MachineRegisterInfo &MRI) const {
514   auto Action = getAction(MI, MRI).Action;
515   // If the action is custom, it may not necessarily modify the instruction,
516   // so we have to assume it's legal.
517   return Action == Legal || Action == Custom;
518 }
519 
520 bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI,
521                                    MachineIRBuilder &MIRBuilder,
522                                    GISelChangeObserver &Observer) const {
523   return false;
524 }
525 
526 LegalizerInfo::SizeAndActionsVec
527 LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
528     const SizeAndActionsVec &v, LegalizeAction IncreaseAction,
529     LegalizeAction DecreaseAction) {
530   SizeAndActionsVec result;
531   unsigned LargestSizeSoFar = 0;
532   if (v.size() >= 1 && v[0].first != 1)
533     result.push_back({1, IncreaseAction});
534   for (size_t i = 0; i < v.size(); ++i) {
535     result.push_back(v[i]);
536     LargestSizeSoFar = v[i].first;
537     if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) {
538       result.push_back({LargestSizeSoFar + 1, IncreaseAction});
539       LargestSizeSoFar = v[i].first + 1;
540     }
541   }
542   result.push_back({LargestSizeSoFar + 1, DecreaseAction});
543   return result;
544 }
545 
546 LegalizerInfo::SizeAndActionsVec
547 LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
548     const SizeAndActionsVec &v, LegalizeAction DecreaseAction,
549     LegalizeAction IncreaseAction) {
550   SizeAndActionsVec result;
551   if (v.size() == 0 || v[0].first != 1)
552     result.push_back({1, IncreaseAction});
553   for (size_t i = 0; i < v.size(); ++i) {
554     result.push_back(v[i]);
555     if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) {
556       result.push_back({v[i].first + 1, DecreaseAction});
557     }
558   }
559   return result;
560 }
561 
562 LegalizerInfo::SizeAndAction
563 LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) {
564   assert(Size >= 1);
565   // Find the last element in Vec that has a bitsize equal to or smaller than
566   // the requested bit size.
567   // That is the element just before the first element that is bigger than Size.
568   auto It = partition_point(
569       Vec, [=](const SizeAndAction &A) { return A.first <= Size; });
570   assert(It != Vec.begin() && "Does Vec not start with size 1?");
571   int VecIdx = It - Vec.begin() - 1;
572 
573   LegalizeAction Action = Vec[VecIdx].second;
574   switch (Action) {
575   case Legal:
576   case Lower:
577   case Libcall:
578   case Custom:
579     return {Size, Action};
580   case FewerElements:
581     // FIXME: is this special case still needed and correct?
582     // Special case for scalarization:
583     if (Vec == SizeAndActionsVec({{1, FewerElements}}))
584       return {1, FewerElements};
585     LLVM_FALLTHROUGH;
586   case NarrowScalar: {
587     // The following needs to be a loop, as for now, we do allow needing to
588     // go over "Unsupported" bit sizes before finding a legalizable bit size.
589     // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
590     // we need to iterate over s9, and then to s32 to return (s32, Legal).
591     // If we want to get rid of the below loop, we should have stronger asserts
592     // when building the SizeAndActionsVecs, probably not allowing
593     // "Unsupported" unless at the ends of the vector.
594     for (int i = VecIdx - 1; i >= 0; --i)
595       if (!needsLegalizingToDifferentSize(Vec[i].second) &&
596           Vec[i].second != Unsupported)
597         return {Vec[i].first, Action};
598     llvm_unreachable("");
599   }
600   case WidenScalar:
601   case MoreElements: {
602     // See above, the following needs to be a loop, at least for now.
603     for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i)
604       if (!needsLegalizingToDifferentSize(Vec[i].second) &&
605           Vec[i].second != Unsupported)
606         return {Vec[i].first, Action};
607     llvm_unreachable("");
608   }
609   case Unsupported:
610     return {Size, Unsupported};
611   case NotFound:
612   case UseLegacyRules:
613     llvm_unreachable("NotFound");
614   }
615   llvm_unreachable("Action has an unknown enum value");
616 }
617 
618 std::pair<LegalizeAction, LLT>
619 LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const {
620   assert(Aspect.Type.isScalar() || Aspect.Type.isPointer());
621   if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
622     return {NotFound, LLT()};
623   const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
624   if (Aspect.Type.isPointer() &&
625       AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) ==
626           AddrSpace2PointerActions[OpcodeIdx].end()) {
627     return {NotFound, LLT()};
628   }
629   const SmallVector<SizeAndActionsVec, 1> &Actions =
630       Aspect.Type.isPointer()
631           ? AddrSpace2PointerActions[OpcodeIdx]
632                 .find(Aspect.Type.getAddressSpace())
633                 ->second
634           : ScalarActions[OpcodeIdx];
635   if (Aspect.Idx >= Actions.size())
636     return {NotFound, LLT()};
637   const SizeAndActionsVec &Vec = Actions[Aspect.Idx];
638   // FIXME: speed up this search, e.g. by using a results cache for repeated
639   // queries?
640   auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits());
641   return {SizeAndAction.second,
642           Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first)
643                                  : LLT::pointer(Aspect.Type.getAddressSpace(),
644                                                 SizeAndAction.first)};
645 }
646 
647 std::pair<LegalizeAction, LLT>
648 LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const {
649   assert(Aspect.Type.isVector());
650   // First legalize the vector element size, then legalize the number of
651   // lanes in the vector.
652   if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
653     return {NotFound, Aspect.Type};
654   const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
655   const unsigned TypeIdx = Aspect.Idx;
656   if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size())
657     return {NotFound, Aspect.Type};
658   const SizeAndActionsVec &ElemSizeVec =
659       ScalarInVectorActions[OpcodeIdx][TypeIdx];
660 
661   LLT IntermediateType;
662   auto ElementSizeAndAction =
663       findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits());
664   IntermediateType =
665       LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first);
666   if (ElementSizeAndAction.second != Legal)
667     return {ElementSizeAndAction.second, IntermediateType};
668 
669   auto i = NumElements2Actions[OpcodeIdx].find(
670       IntermediateType.getScalarSizeInBits());
671   if (i == NumElements2Actions[OpcodeIdx].end()) {
672     return {NotFound, IntermediateType};
673   }
674   const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx];
675   auto NumElementsAndAction =
676       findAction(NumElementsVec, IntermediateType.getNumElements());
677   return {NumElementsAndAction.second,
678           LLT::vector(NumElementsAndAction.first,
679                       IntermediateType.getScalarSizeInBits())};
680 }
681 
682 bool LegalizerInfo::legalizeIntrinsic(MachineInstr &MI,
683                                       MachineRegisterInfo &MRI,
684                                       MachineIRBuilder &MIRBuilder) const {
685   return true;
686 }
687 
688 /// \pre Type indices of every opcode form a dense set starting from 0.
689 void LegalizerInfo::verify(const MCInstrInfo &MII) const {
690 #ifndef NDEBUG
691   std::vector<unsigned> FailedOpcodes;
692   for (unsigned Opcode = FirstOp; Opcode <= LastOp; ++Opcode) {
693     const MCInstrDesc &MCID = MII.get(Opcode);
694     const unsigned NumTypeIdxs = std::accumulate(
695         MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
696         [](unsigned Acc, const MCOperandInfo &OpInfo) {
697           return OpInfo.isGenericType()
698                      ? std::max(OpInfo.getGenericTypeIndex() + 1U, Acc)
699                      : Acc;
700         });
701     const unsigned NumImmIdxs = std::accumulate(
702         MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
703         [](unsigned Acc, const MCOperandInfo &OpInfo) {
704           return OpInfo.isGenericImm()
705                      ? std::max(OpInfo.getGenericImmIndex() + 1U, Acc)
706                      : Acc;
707         });
708     LLVM_DEBUG(dbgs() << MII.getName(Opcode) << " (opcode " << Opcode
709                       << "): " << NumTypeIdxs << " type ind"
710                       << (NumTypeIdxs == 1 ? "ex" : "ices") << ", "
711                       << NumImmIdxs << " imm ind"
712                       << (NumImmIdxs == 1 ? "ex" : "ices") << "\n");
713     const LegalizeRuleSet &RuleSet = getActionDefinitions(Opcode);
714     if (!RuleSet.verifyTypeIdxsCoverage(NumTypeIdxs))
715       FailedOpcodes.push_back(Opcode);
716     else if (!RuleSet.verifyImmIdxsCoverage(NumImmIdxs))
717       FailedOpcodes.push_back(Opcode);
718   }
719   if (!FailedOpcodes.empty()) {
720     errs() << "The following opcodes have ill-defined legalization rules:";
721     for (unsigned Opcode : FailedOpcodes)
722       errs() << " " << MII.getName(Opcode);
723     errs() << "\n";
724 
725     report_fatal_error("ill-defined LegalizerInfo"
726                        ", try -debug-only=legalizer-info for details");
727   }
728 #endif
729 }
730 
731 #ifndef NDEBUG
732 // FIXME: This should be in the MachineVerifier, but it can't use the
733 // LegalizerInfo as it's currently in the separate GlobalISel library.
734 // Note that RegBankSelected property already checked in the verifier
735 // has the same layering problem, but we only use inline methods so
736 // end up not needing to link against the GlobalISel library.
737 const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) {
738   if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) {
739     const MachineRegisterInfo &MRI = MF.getRegInfo();
740     for (const MachineBasicBlock &MBB : MF)
741       for (const MachineInstr &MI : MBB)
742         if (isPreISelGenericOpcode(MI.getOpcode()) &&
743             !MLI->isLegalOrCustom(MI, MRI))
744           return &MI;
745   }
746   return nullptr;
747 }
748 #endif
749