xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp (revision 0b37c1590418417c894529d371800dfac71ef887)
1 //===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implement an interface to specify and query how an illegal operation on a
10 // given type should be expanded.
11 //
12 // Issues to be resolved:
13 //   + Make it fast.
14 //   + Support weird types like i3, <7 x i3>, ...
15 //   + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/TargetOpcodes.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/LowLevelTypeImpl.h"
31 #include "llvm/Support/MathExtras.h"
32 #include <algorithm>
33 #include <map>
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 
38 #define DEBUG_TYPE "legalizer-info"
39 
40 cl::opt<bool> llvm::DisableGISelLegalityCheck(
41     "disable-gisel-legality-check",
42     cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"),
43     cl::Hidden);
44 
45 raw_ostream &llvm::operator<<(raw_ostream &OS, LegalizeAction Action) {
46   switch (Action) {
47   case Legal:
48     OS << "Legal";
49     break;
50   case NarrowScalar:
51     OS << "NarrowScalar";
52     break;
53   case WidenScalar:
54     OS << "WidenScalar";
55     break;
56   case FewerElements:
57     OS << "FewerElements";
58     break;
59   case MoreElements:
60     OS << "MoreElements";
61     break;
62   case Lower:
63     OS << "Lower";
64     break;
65   case Libcall:
66     OS << "Libcall";
67     break;
68   case Custom:
69     OS << "Custom";
70     break;
71   case Unsupported:
72     OS << "Unsupported";
73     break;
74   case NotFound:
75     OS << "NotFound";
76     break;
77   case UseLegacyRules:
78     OS << "UseLegacyRules";
79     break;
80   }
81   return OS;
82 }
83 
84 raw_ostream &LegalityQuery::print(raw_ostream &OS) const {
85   OS << Opcode << ", Tys={";
86   for (const auto &Type : Types) {
87     OS << Type << ", ";
88   }
89   OS << "}, Opcode=";
90 
91   OS << Opcode << ", MMOs={";
92   for (const auto &MMODescr : MMODescrs) {
93     OS << MMODescr.SizeInBits << ", ";
94   }
95   OS << "}";
96 
97   return OS;
98 }
99 
100 #ifndef NDEBUG
101 // Make sure the rule won't (trivially) loop forever.
102 static bool hasNoSimpleLoops(const LegalizeRule &Rule, const LegalityQuery &Q,
103                              const std::pair<unsigned, LLT> &Mutation) {
104   switch (Rule.getAction()) {
105   case Custom:
106   case Lower:
107   case MoreElements:
108   case FewerElements:
109     break;
110   default:
111     return Q.Types[Mutation.first] != Mutation.second;
112   }
113   return true;
114 }
115 
116 // Make sure the returned mutation makes sense for the match type.
117 static bool mutationIsSane(const LegalizeRule &Rule,
118                            const LegalityQuery &Q,
119                            std::pair<unsigned, LLT> Mutation) {
120   // If the user wants a custom mutation, then we can't really say much about
121   // it. Return true, and trust that they're doing the right thing.
122   if (Rule.getAction() == Custom)
123     return true;
124 
125   const unsigned TypeIdx = Mutation.first;
126   const LLT OldTy = Q.Types[TypeIdx];
127   const LLT NewTy = Mutation.second;
128 
129   switch (Rule.getAction()) {
130   case FewerElements:
131     if (!OldTy.isVector())
132       return false;
133     LLVM_FALLTHROUGH;
134   case MoreElements: {
135     // MoreElements can go from scalar to vector.
136     const unsigned OldElts = OldTy.isVector() ? OldTy.getNumElements() : 1;
137     if (NewTy.isVector()) {
138       if (Rule.getAction() == FewerElements) {
139         // Make sure the element count really decreased.
140         if (NewTy.getNumElements() >= OldElts)
141           return false;
142       } else {
143         // Make sure the element count really increased.
144         if (NewTy.getNumElements() <= OldElts)
145           return false;
146       }
147     }
148 
149     // Make sure the element type didn't change.
150     return NewTy.getScalarType() == OldTy.getScalarType();
151   }
152   case NarrowScalar:
153   case WidenScalar: {
154     if (OldTy.isVector()) {
155       // Number of elements should not change.
156       if (!NewTy.isVector() || OldTy.getNumElements() != NewTy.getNumElements())
157         return false;
158     } else {
159       // Both types must be vectors
160       if (NewTy.isVector())
161         return false;
162     }
163 
164     if (Rule.getAction() == NarrowScalar)  {
165       // Make sure the size really decreased.
166       if (NewTy.getScalarSizeInBits() >= OldTy.getScalarSizeInBits())
167         return false;
168     } else {
169       // Make sure the size really increased.
170       if (NewTy.getScalarSizeInBits() <= OldTy.getScalarSizeInBits())
171         return false;
172     }
173 
174     return true;
175   }
176   default:
177     return true;
178   }
179 }
180 #endif
181 
182 LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const {
183   LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs());
184              dbgs() << "\n");
185   if (Rules.empty()) {
186     LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n");
187     return {LegalizeAction::UseLegacyRules, 0, LLT{}};
188   }
189   for (const LegalizeRule &Rule : Rules) {
190     if (Rule.match(Query)) {
191       LLVM_DEBUG(dbgs() << ".. match\n");
192       std::pair<unsigned, LLT> Mutation = Rule.determineMutation(Query);
193       LLVM_DEBUG(dbgs() << ".. .. " << Rule.getAction() << ", "
194                         << Mutation.first << ", " << Mutation.second << "\n");
195       assert(mutationIsSane(Rule, Query, Mutation) &&
196              "legality mutation invalid for match");
197       assert(hasNoSimpleLoops(Rule, Query, Mutation) && "Simple loop detected");
198       return {Rule.getAction(), Mutation.first, Mutation.second};
199     } else
200       LLVM_DEBUG(dbgs() << ".. no match\n");
201   }
202   LLVM_DEBUG(dbgs() << ".. unsupported\n");
203   return {LegalizeAction::Unsupported, 0, LLT{}};
204 }
205 
206 bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const {
207 #ifndef NDEBUG
208   if (Rules.empty()) {
209     LLVM_DEBUG(
210         dbgs() << ".. type index coverage check SKIPPED: no rules defined\n");
211     return true;
212   }
213   const int64_t FirstUncovered = TypeIdxsCovered.find_first_unset();
214   if (FirstUncovered < 0) {
215     LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:"
216                          " user-defined predicate detected\n");
217     return true;
218   }
219   const bool AllCovered = (FirstUncovered >= NumTypeIdxs);
220   if (NumTypeIdxs > 0)
221     LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered
222                       << ", " << (AllCovered ? "OK" : "FAIL") << "\n");
223   return AllCovered;
224 #else
225   return true;
226 #endif
227 }
228 
229 bool LegalizeRuleSet::verifyImmIdxsCoverage(unsigned NumImmIdxs) const {
230 #ifndef NDEBUG
231   if (Rules.empty()) {
232     LLVM_DEBUG(
233         dbgs() << ".. imm index coverage check SKIPPED: no rules defined\n");
234     return true;
235   }
236   const int64_t FirstUncovered = ImmIdxsCovered.find_first_unset();
237   if (FirstUncovered < 0) {
238     LLVM_DEBUG(dbgs() << ".. imm index coverage check SKIPPED:"
239                          " user-defined predicate detected\n");
240     return true;
241   }
242   const bool AllCovered = (FirstUncovered >= NumImmIdxs);
243   LLVM_DEBUG(dbgs() << ".. the first uncovered imm index: " << FirstUncovered
244                     << ", " << (AllCovered ? "OK" : "FAIL") << "\n");
245   return AllCovered;
246 #else
247   return true;
248 #endif
249 }
250 
251 LegalizerInfo::LegalizerInfo() : TablesInitialized(false) {
252   // Set defaults.
253   // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
254   // fundamental load/store Jakob proposed. Once loads & stores are supported.
255   setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}});
256   setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}});
257   setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}});
258   setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}});
259   setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}});
260 
261   setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}});
262   setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}});
263 
264   setLegalizeScalarToDifferentSizeStrategy(
265       TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall);
266   setLegalizeScalarToDifferentSizeStrategy(
267       TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
268   setLegalizeScalarToDifferentSizeStrategy(
269       TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest);
270   setLegalizeScalarToDifferentSizeStrategy(
271       TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall);
272   setLegalizeScalarToDifferentSizeStrategy(
273       TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall);
274 
275   setLegalizeScalarToDifferentSizeStrategy(
276       TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise);
277   setLegalizeScalarToDifferentSizeStrategy(
278       TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
279   setLegalizeScalarToDifferentSizeStrategy(
280       TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
281   setLegalizeScalarToDifferentSizeStrategy(
282       TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall);
283   setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}});
284 }
285 
286 void LegalizerInfo::computeTables() {
287   assert(TablesInitialized == false);
288 
289   for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) {
290     const unsigned Opcode = FirstOp + OpcodeIdx;
291     for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size();
292          ++TypeIdx) {
293       // 0. Collect information specified through the setAction API, i.e.
294       // for specific bit sizes.
295       // For scalar types:
296       SizeAndActionsVec ScalarSpecifiedActions;
297       // For pointer types:
298       std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions;
299       // For vector types:
300       std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions;
301       for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) {
302         const LLT Type = LLT2Action.first;
303         const LegalizeAction Action = LLT2Action.second;
304 
305         auto SizeAction = std::make_pair(Type.getSizeInBits(), Action);
306         if (Type.isPointer())
307           AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back(
308               SizeAction);
309         else if (Type.isVector())
310           ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()]
311               .push_back(SizeAction);
312         else
313           ScalarSpecifiedActions.push_back(SizeAction);
314       }
315 
316       // 1. Handle scalar types
317       {
318         // Decide how to handle bit sizes for which no explicit specification
319         // was given.
320         SizeChangeStrategy S = &unsupportedForDifferentSizes;
321         if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() &&
322             ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
323           S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx];
324         llvm::sort(ScalarSpecifiedActions);
325         checkPartialSizeAndActionsVector(ScalarSpecifiedActions);
326         setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions));
327       }
328 
329       // 2. Handle pointer types
330       for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) {
331         llvm::sort(PointerSpecifiedActions.second);
332         checkPartialSizeAndActionsVector(PointerSpecifiedActions.second);
333         // For pointer types, we assume that there isn't a meaningfull way
334         // to change the number of bits used in the pointer.
335         setPointerAction(
336             Opcode, TypeIdx, PointerSpecifiedActions.first,
337             unsupportedForDifferentSizes(PointerSpecifiedActions.second));
338       }
339 
340       // 3. Handle vector types
341       SizeAndActionsVec ElementSizesSeen;
342       for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) {
343         llvm::sort(VectorSpecifiedActions.second);
344         const uint16_t ElementSize = VectorSpecifiedActions.first;
345         ElementSizesSeen.push_back({ElementSize, Legal});
346         checkPartialSizeAndActionsVector(VectorSpecifiedActions.second);
347         // For vector types, we assume that the best way to adapt the number
348         // of elements is to the next larger number of elements type for which
349         // the vector type is legal, unless there is no such type. In that case,
350         // legalize towards a vector type with a smaller number of elements.
351         SizeAndActionsVec NumElementsActions;
352         for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) {
353           assert(BitsizeAndAction.first % ElementSize == 0);
354           const uint16_t NumElements = BitsizeAndAction.first / ElementSize;
355           NumElementsActions.push_back({NumElements, BitsizeAndAction.second});
356         }
357         setVectorNumElementAction(
358             Opcode, TypeIdx, ElementSize,
359             moreToWiderTypesAndLessToWidest(NumElementsActions));
360       }
361       llvm::sort(ElementSizesSeen);
362       SizeChangeStrategy VectorElementSizeChangeStrategy =
363           &unsupportedForDifferentSizes;
364       if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() &&
365           VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
366         VectorElementSizeChangeStrategy =
367             VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx];
368       setScalarInVectorAction(
369           Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen));
370     }
371   }
372 
373   TablesInitialized = true;
374 }
375 
376 // FIXME: inefficient implementation for now. Without ComputeValueVTs we're
377 // probably going to need specialized lookup structures for various types before
378 // we have any hope of doing well with something like <13 x i3>. Even the common
379 // cases should do better than what we have now.
380 std::pair<LegalizeAction, LLT>
381 LegalizerInfo::getAspectAction(const InstrAspect &Aspect) const {
382   assert(TablesInitialized && "backend forgot to call computeTables");
383   // These *have* to be implemented for now, they're the fundamental basis of
384   // how everything else is transformed.
385   if (Aspect.Type.isScalar() || Aspect.Type.isPointer())
386     return findScalarLegalAction(Aspect);
387   assert(Aspect.Type.isVector());
388   return findVectorLegalAction(Aspect);
389 }
390 
391 /// Helper function to get LLT for the given type index.
392 static LLT getTypeFromTypeIdx(const MachineInstr &MI,
393                               const MachineRegisterInfo &MRI, unsigned OpIdx,
394                               unsigned TypeIdx) {
395   assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx");
396   // G_UNMERGE_VALUES has variable number of operands, but there is only
397   // one source type and one destination type as all destinations must be the
398   // same type. So, get the last operand if TypeIdx == 1.
399   if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1)
400     return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg());
401   return MRI.getType(MI.getOperand(OpIdx).getReg());
402 }
403 
404 unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const {
405   assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode");
406   return Opcode - FirstOp;
407 }
408 
409 unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const {
410   unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode);
411   if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) {
412     LLVM_DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias
413                       << "\n");
414     OpcodeIdx = getOpcodeIdxForOpcode(Alias);
415     assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases");
416   }
417 
418   return OpcodeIdx;
419 }
420 
421 const LegalizeRuleSet &
422 LegalizerInfo::getActionDefinitions(unsigned Opcode) const {
423   unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
424   return RulesForOpcode[OpcodeIdx];
425 }
426 
427 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) {
428   unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
429   auto &Result = RulesForOpcode[OpcodeIdx];
430   assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases");
431   return Result;
432 }
433 
434 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(
435     std::initializer_list<unsigned> Opcodes) {
436   unsigned Representative = *Opcodes.begin();
437 
438   assert(!llvm::empty(Opcodes) && Opcodes.begin() + 1 != Opcodes.end() &&
439          "Initializer list must have at least two opcodes");
440 
441   for (auto I = Opcodes.begin() + 1, E = Opcodes.end(); I != E; ++I)
442     aliasActionDefinitions(Representative, *I);
443 
444   auto &Return = getActionDefinitionsBuilder(Representative);
445   Return.setIsAliasedByAnother();
446   return Return;
447 }
448 
449 void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo,
450                                            unsigned OpcodeFrom) {
451   assert(OpcodeTo != OpcodeFrom && "Cannot alias to self");
452   assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode");
453   const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom);
454   RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo);
455 }
456 
457 LegalizeActionStep
458 LegalizerInfo::getAction(const LegalityQuery &Query) const {
459   LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query);
460   if (Step.Action != LegalizeAction::UseLegacyRules) {
461     return Step;
462   }
463 
464   for (unsigned i = 0; i < Query.Types.size(); ++i) {
465     auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]});
466     if (Action.first != Legal) {
467       LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Action="
468                         << Action.first << ", " << Action.second << "\n");
469       return {Action.first, i, Action.second};
470     } else
471       LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n");
472   }
473   LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n");
474   return {Legal, 0, LLT{}};
475 }
476 
477 LegalizeActionStep
478 LegalizerInfo::getAction(const MachineInstr &MI,
479                          const MachineRegisterInfo &MRI) const {
480   SmallVector<LLT, 2> Types;
481   SmallBitVector SeenTypes(8);
482   const MCOperandInfo *OpInfo = MI.getDesc().OpInfo;
483   // FIXME: probably we'll need to cache the results here somehow?
484   for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) {
485     if (!OpInfo[i].isGenericType())
486       continue;
487 
488     // We must only record actions once for each TypeIdx; otherwise we'd
489     // try to legalize operands multiple times down the line.
490     unsigned TypeIdx = OpInfo[i].getGenericTypeIndex();
491     if (SeenTypes[TypeIdx])
492       continue;
493 
494     SeenTypes.set(TypeIdx);
495 
496     LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx);
497     Types.push_back(Ty);
498   }
499 
500   SmallVector<LegalityQuery::MemDesc, 2> MemDescrs;
501   for (const auto &MMO : MI.memoperands())
502     MemDescrs.push_back({8 * MMO->getSize() /* in bits */,
503                          8 * MMO->getAlignment(),
504                          MMO->getOrdering()});
505 
506   return getAction({MI.getOpcode(), Types, MemDescrs});
507 }
508 
509 bool LegalizerInfo::isLegal(const MachineInstr &MI,
510                             const MachineRegisterInfo &MRI) const {
511   return getAction(MI, MRI).Action == Legal;
512 }
513 
514 bool LegalizerInfo::isLegalOrCustom(const MachineInstr &MI,
515                                     const MachineRegisterInfo &MRI) const {
516   auto Action = getAction(MI, MRI).Action;
517   // If the action is custom, it may not necessarily modify the instruction,
518   // so we have to assume it's legal.
519   return Action == Legal || Action == Custom;
520 }
521 
522 bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI,
523                                    MachineIRBuilder &MIRBuilder,
524                                    GISelChangeObserver &Observer) const {
525   return false;
526 }
527 
528 LegalizerInfo::SizeAndActionsVec
529 LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
530     const SizeAndActionsVec &v, LegalizeAction IncreaseAction,
531     LegalizeAction DecreaseAction) {
532   SizeAndActionsVec result;
533   unsigned LargestSizeSoFar = 0;
534   if (v.size() >= 1 && v[0].first != 1)
535     result.push_back({1, IncreaseAction});
536   for (size_t i = 0; i < v.size(); ++i) {
537     result.push_back(v[i]);
538     LargestSizeSoFar = v[i].first;
539     if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) {
540       result.push_back({LargestSizeSoFar + 1, IncreaseAction});
541       LargestSizeSoFar = v[i].first + 1;
542     }
543   }
544   result.push_back({LargestSizeSoFar + 1, DecreaseAction});
545   return result;
546 }
547 
548 LegalizerInfo::SizeAndActionsVec
549 LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
550     const SizeAndActionsVec &v, LegalizeAction DecreaseAction,
551     LegalizeAction IncreaseAction) {
552   SizeAndActionsVec result;
553   if (v.size() == 0 || v[0].first != 1)
554     result.push_back({1, IncreaseAction});
555   for (size_t i = 0; i < v.size(); ++i) {
556     result.push_back(v[i]);
557     if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) {
558       result.push_back({v[i].first + 1, DecreaseAction});
559     }
560   }
561   return result;
562 }
563 
564 LegalizerInfo::SizeAndAction
565 LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) {
566   assert(Size >= 1);
567   // Find the last element in Vec that has a bitsize equal to or smaller than
568   // the requested bit size.
569   // That is the element just before the first element that is bigger than Size.
570   auto It = partition_point(
571       Vec, [=](const SizeAndAction &A) { return A.first <= Size; });
572   assert(It != Vec.begin() && "Does Vec not start with size 1?");
573   int VecIdx = It - Vec.begin() - 1;
574 
575   LegalizeAction Action = Vec[VecIdx].second;
576   switch (Action) {
577   case Legal:
578   case Lower:
579   case Libcall:
580   case Custom:
581     return {Size, Action};
582   case FewerElements:
583     // FIXME: is this special case still needed and correct?
584     // Special case for scalarization:
585     if (Vec == SizeAndActionsVec({{1, FewerElements}}))
586       return {1, FewerElements};
587     LLVM_FALLTHROUGH;
588   case NarrowScalar: {
589     // The following needs to be a loop, as for now, we do allow needing to
590     // go over "Unsupported" bit sizes before finding a legalizable bit size.
591     // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
592     // we need to iterate over s9, and then to s32 to return (s32, Legal).
593     // If we want to get rid of the below loop, we should have stronger asserts
594     // when building the SizeAndActionsVecs, probably not allowing
595     // "Unsupported" unless at the ends of the vector.
596     for (int i = VecIdx - 1; i >= 0; --i)
597       if (!needsLegalizingToDifferentSize(Vec[i].second) &&
598           Vec[i].second != Unsupported)
599         return {Vec[i].first, Action};
600     llvm_unreachable("");
601   }
602   case WidenScalar:
603   case MoreElements: {
604     // See above, the following needs to be a loop, at least for now.
605     for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i)
606       if (!needsLegalizingToDifferentSize(Vec[i].second) &&
607           Vec[i].second != Unsupported)
608         return {Vec[i].first, Action};
609     llvm_unreachable("");
610   }
611   case Unsupported:
612     return {Size, Unsupported};
613   case NotFound:
614   case UseLegacyRules:
615     llvm_unreachable("NotFound");
616   }
617   llvm_unreachable("Action has an unknown enum value");
618 }
619 
620 std::pair<LegalizeAction, LLT>
621 LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const {
622   assert(Aspect.Type.isScalar() || Aspect.Type.isPointer());
623   if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
624     return {NotFound, LLT()};
625   const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
626   if (Aspect.Type.isPointer() &&
627       AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) ==
628           AddrSpace2PointerActions[OpcodeIdx].end()) {
629     return {NotFound, LLT()};
630   }
631   const SmallVector<SizeAndActionsVec, 1> &Actions =
632       Aspect.Type.isPointer()
633           ? AddrSpace2PointerActions[OpcodeIdx]
634                 .find(Aspect.Type.getAddressSpace())
635                 ->second
636           : ScalarActions[OpcodeIdx];
637   if (Aspect.Idx >= Actions.size())
638     return {NotFound, LLT()};
639   const SizeAndActionsVec &Vec = Actions[Aspect.Idx];
640   // FIXME: speed up this search, e.g. by using a results cache for repeated
641   // queries?
642   auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits());
643   return {SizeAndAction.second,
644           Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first)
645                                  : LLT::pointer(Aspect.Type.getAddressSpace(),
646                                                 SizeAndAction.first)};
647 }
648 
649 std::pair<LegalizeAction, LLT>
650 LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const {
651   assert(Aspect.Type.isVector());
652   // First legalize the vector element size, then legalize the number of
653   // lanes in the vector.
654   if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
655     return {NotFound, Aspect.Type};
656   const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
657   const unsigned TypeIdx = Aspect.Idx;
658   if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size())
659     return {NotFound, Aspect.Type};
660   const SizeAndActionsVec &ElemSizeVec =
661       ScalarInVectorActions[OpcodeIdx][TypeIdx];
662 
663   LLT IntermediateType;
664   auto ElementSizeAndAction =
665       findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits());
666   IntermediateType =
667       LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first);
668   if (ElementSizeAndAction.second != Legal)
669     return {ElementSizeAndAction.second, IntermediateType};
670 
671   auto i = NumElements2Actions[OpcodeIdx].find(
672       IntermediateType.getScalarSizeInBits());
673   if (i == NumElements2Actions[OpcodeIdx].end()) {
674     return {NotFound, IntermediateType};
675   }
676   const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx];
677   auto NumElementsAndAction =
678       findAction(NumElementsVec, IntermediateType.getNumElements());
679   return {NumElementsAndAction.second,
680           LLT::vector(NumElementsAndAction.first,
681                       IntermediateType.getScalarSizeInBits())};
682 }
683 
684 bool LegalizerInfo::legalizeIntrinsic(MachineInstr &MI,
685                                       MachineRegisterInfo &MRI,
686                                       MachineIRBuilder &MIRBuilder) const {
687   return true;
688 }
689 
690 unsigned LegalizerInfo::getExtOpcodeForWideningConstant(LLT SmallTy) const {
691   return SmallTy.isByteSized() ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
692 }
693 
694 /// \pre Type indices of every opcode form a dense set starting from 0.
695 void LegalizerInfo::verify(const MCInstrInfo &MII) const {
696 #ifndef NDEBUG
697   std::vector<unsigned> FailedOpcodes;
698   for (unsigned Opcode = FirstOp; Opcode <= LastOp; ++Opcode) {
699     const MCInstrDesc &MCID = MII.get(Opcode);
700     const unsigned NumTypeIdxs = std::accumulate(
701         MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
702         [](unsigned Acc, const MCOperandInfo &OpInfo) {
703           return OpInfo.isGenericType()
704                      ? std::max(OpInfo.getGenericTypeIndex() + 1U, Acc)
705                      : Acc;
706         });
707     const unsigned NumImmIdxs = std::accumulate(
708         MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
709         [](unsigned Acc, const MCOperandInfo &OpInfo) {
710           return OpInfo.isGenericImm()
711                      ? std::max(OpInfo.getGenericImmIndex() + 1U, Acc)
712                      : Acc;
713         });
714     LLVM_DEBUG(dbgs() << MII.getName(Opcode) << " (opcode " << Opcode
715                       << "): " << NumTypeIdxs << " type ind"
716                       << (NumTypeIdxs == 1 ? "ex" : "ices") << ", "
717                       << NumImmIdxs << " imm ind"
718                       << (NumImmIdxs == 1 ? "ex" : "ices") << "\n");
719     const LegalizeRuleSet &RuleSet = getActionDefinitions(Opcode);
720     if (!RuleSet.verifyTypeIdxsCoverage(NumTypeIdxs))
721       FailedOpcodes.push_back(Opcode);
722     else if (!RuleSet.verifyImmIdxsCoverage(NumImmIdxs))
723       FailedOpcodes.push_back(Opcode);
724   }
725   if (!FailedOpcodes.empty()) {
726     errs() << "The following opcodes have ill-defined legalization rules:";
727     for (unsigned Opcode : FailedOpcodes)
728       errs() << " " << MII.getName(Opcode);
729     errs() << "\n";
730 
731     report_fatal_error("ill-defined LegalizerInfo"
732                        ", try -debug-only=legalizer-info for details");
733   }
734 #endif
735 }
736 
737 #ifndef NDEBUG
738 // FIXME: This should be in the MachineVerifier, but it can't use the
739 // LegalizerInfo as it's currently in the separate GlobalISel library.
740 // Note that RegBankSelected property already checked in the verifier
741 // has the same layering problem, but we only use inline methods so
742 // end up not needing to link against the GlobalISel library.
743 const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) {
744   if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) {
745     const MachineRegisterInfo &MRI = MF.getRegInfo();
746     for (const MachineBasicBlock &MBB : MF)
747       for (const MachineInstr &MI : MBB)
748         if (isPreISelGenericOpcode(MI.getOpcode()) &&
749             !MLI->isLegalOrCustom(MI, MRI))
750           return &MI;
751   }
752   return nullptr;
753 }
754 #endif
755