1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 21 #include "llvm/CodeGen/GlobalISel/Utils.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetFrameLowering.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 #define DEBUG_TYPE "legalizer" 34 35 using namespace llvm; 36 using namespace LegalizeActions; 37 using namespace MIPatternMatch; 38 39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 40 /// 41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 42 /// with any leftover piece as type \p LeftoverTy 43 /// 44 /// Returns -1 in the first element of the pair if the breakdown is not 45 /// satisfiable. 46 static std::pair<int, int> 47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 48 assert(!LeftoverTy.isValid() && "this is an out argument"); 49 50 unsigned Size = OrigTy.getSizeInBits(); 51 unsigned NarrowSize = NarrowTy.getSizeInBits(); 52 unsigned NumParts = Size / NarrowSize; 53 unsigned LeftoverSize = Size - NumParts * NarrowSize; 54 assert(Size > NarrowSize); 55 56 if (LeftoverSize == 0) 57 return {NumParts, 0}; 58 59 if (NarrowTy.isVector()) { 60 unsigned EltSize = OrigTy.getScalarSizeInBits(); 61 if (LeftoverSize % EltSize != 0) 62 return {-1, -1}; 63 LeftoverTy = LLT::scalarOrVector( 64 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 65 } else { 66 LeftoverTy = LLT::scalar(LeftoverSize); 67 } 68 69 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 70 return std::make_pair(NumParts, NumLeftover); 71 } 72 73 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 74 75 if (!Ty.isScalar()) 76 return nullptr; 77 78 switch (Ty.getSizeInBits()) { 79 case 16: 80 return Type::getHalfTy(Ctx); 81 case 32: 82 return Type::getFloatTy(Ctx); 83 case 64: 84 return Type::getDoubleTy(Ctx); 85 case 80: 86 return Type::getX86_FP80Ty(Ctx); 87 case 128: 88 return Type::getFP128Ty(Ctx); 89 default: 90 return nullptr; 91 } 92 } 93 94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 95 GISelChangeObserver &Observer, 96 MachineIRBuilder &Builder) 97 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 98 LI(*MF.getSubtarget().getLegalizerInfo()), 99 TLI(*MF.getSubtarget().getTargetLowering()) { } 100 101 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 102 GISelChangeObserver &Observer, 103 MachineIRBuilder &B) 104 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 105 TLI(*MF.getSubtarget().getTargetLowering()) { } 106 107 LegalizerHelper::LegalizeResult 108 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 109 LostDebugLocObserver &LocObserver) { 110 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 111 112 MIRBuilder.setInstrAndDebugLoc(MI); 113 114 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 115 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 116 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 117 auto Step = LI.getAction(MI, MRI); 118 switch (Step.Action) { 119 case Legal: 120 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 121 return AlreadyLegal; 122 case Libcall: 123 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 124 return libcall(MI, LocObserver); 125 case NarrowScalar: 126 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 127 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 128 case WidenScalar: 129 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 130 return widenScalar(MI, Step.TypeIdx, Step.NewType); 131 case Bitcast: 132 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 133 return bitcast(MI, Step.TypeIdx, Step.NewType); 134 case Lower: 135 LLVM_DEBUG(dbgs() << ".. Lower\n"); 136 return lower(MI, Step.TypeIdx, Step.NewType); 137 case FewerElements: 138 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 139 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 140 case MoreElements: 141 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 142 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 143 case Custom: 144 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 145 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 146 default: 147 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 148 return UnableToLegalize; 149 } 150 } 151 152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 153 SmallVectorImpl<Register> &VRegs) { 154 for (int i = 0; i < NumParts; ++i) 155 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 156 MIRBuilder.buildUnmerge(VRegs, Reg); 157 } 158 159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 160 LLT MainTy, LLT &LeftoverTy, 161 SmallVectorImpl<Register> &VRegs, 162 SmallVectorImpl<Register> &LeftoverRegs) { 163 assert(!LeftoverTy.isValid() && "this is an out argument"); 164 165 unsigned RegSize = RegTy.getSizeInBits(); 166 unsigned MainSize = MainTy.getSizeInBits(); 167 unsigned NumParts = RegSize / MainSize; 168 unsigned LeftoverSize = RegSize - NumParts * MainSize; 169 170 // Use an unmerge when possible. 171 if (LeftoverSize == 0) { 172 for (unsigned I = 0; I < NumParts; ++I) 173 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 174 MIRBuilder.buildUnmerge(VRegs, Reg); 175 return true; 176 } 177 178 if (MainTy.isVector()) { 179 unsigned EltSize = MainTy.getScalarSizeInBits(); 180 if (LeftoverSize % EltSize != 0) 181 return false; 182 LeftoverTy = LLT::scalarOrVector( 183 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 184 } else { 185 LeftoverTy = LLT::scalar(LeftoverSize); 186 } 187 188 // For irregular sizes, extract the individual parts. 189 for (unsigned I = 0; I != NumParts; ++I) { 190 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 191 VRegs.push_back(NewReg); 192 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 193 } 194 195 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 196 Offset += LeftoverSize) { 197 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 198 LeftoverRegs.push_back(NewReg); 199 MIRBuilder.buildExtract(NewReg, Reg, Offset); 200 } 201 202 return true; 203 } 204 205 void LegalizerHelper::insertParts(Register DstReg, 206 LLT ResultTy, LLT PartTy, 207 ArrayRef<Register> PartRegs, 208 LLT LeftoverTy, 209 ArrayRef<Register> LeftoverRegs) { 210 if (!LeftoverTy.isValid()) { 211 assert(LeftoverRegs.empty()); 212 213 if (!ResultTy.isVector()) { 214 MIRBuilder.buildMerge(DstReg, PartRegs); 215 return; 216 } 217 218 if (PartTy.isVector()) 219 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 220 else 221 MIRBuilder.buildBuildVector(DstReg, PartRegs); 222 return; 223 } 224 225 SmallVector<Register> GCDRegs; 226 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy); 227 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs)) 228 extractGCDType(GCDRegs, GCDTy, PartReg); 229 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); 230 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); 231 } 232 233 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 234 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 235 const MachineInstr &MI) { 236 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 237 238 const int StartIdx = Regs.size(); 239 const int NumResults = MI.getNumOperands() - 1; 240 Regs.resize(Regs.size() + NumResults); 241 for (int I = 0; I != NumResults; ++I) 242 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 243 } 244 245 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 246 LLT GCDTy, Register SrcReg) { 247 LLT SrcTy = MRI.getType(SrcReg); 248 if (SrcTy == GCDTy) { 249 // If the source already evenly divides the result type, we don't need to do 250 // anything. 251 Parts.push_back(SrcReg); 252 } else { 253 // Need to split into common type sized pieces. 254 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 255 getUnmergeResults(Parts, *Unmerge); 256 } 257 } 258 259 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 260 LLT NarrowTy, Register SrcReg) { 261 LLT SrcTy = MRI.getType(SrcReg); 262 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 263 extractGCDType(Parts, GCDTy, SrcReg); 264 return GCDTy; 265 } 266 267 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 268 SmallVectorImpl<Register> &VRegs, 269 unsigned PadStrategy) { 270 LLT LCMTy = getLCMType(DstTy, NarrowTy); 271 272 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 273 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 274 int NumOrigSrc = VRegs.size(); 275 276 Register PadReg; 277 278 // Get a value we can use to pad the source value if the sources won't evenly 279 // cover the result type. 280 if (NumOrigSrc < NumParts * NumSubParts) { 281 if (PadStrategy == TargetOpcode::G_ZEXT) 282 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 283 else if (PadStrategy == TargetOpcode::G_ANYEXT) 284 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 285 else { 286 assert(PadStrategy == TargetOpcode::G_SEXT); 287 288 // Shift the sign bit of the low register through the high register. 289 auto ShiftAmt = 290 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 291 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 292 } 293 } 294 295 // Registers for the final merge to be produced. 296 SmallVector<Register, 4> Remerge(NumParts); 297 298 // Registers needed for intermediate merges, which will be merged into a 299 // source for Remerge. 300 SmallVector<Register, 4> SubMerge(NumSubParts); 301 302 // Once we've fully read off the end of the original source bits, we can reuse 303 // the same high bits for remaining padding elements. 304 Register AllPadReg; 305 306 // Build merges to the LCM type to cover the original result type. 307 for (int I = 0; I != NumParts; ++I) { 308 bool AllMergePartsArePadding = true; 309 310 // Build the requested merges to the requested type. 311 for (int J = 0; J != NumSubParts; ++J) { 312 int Idx = I * NumSubParts + J; 313 if (Idx >= NumOrigSrc) { 314 SubMerge[J] = PadReg; 315 continue; 316 } 317 318 SubMerge[J] = VRegs[Idx]; 319 320 // There are meaningful bits here we can't reuse later. 321 AllMergePartsArePadding = false; 322 } 323 324 // If we've filled up a complete piece with padding bits, we can directly 325 // emit the natural sized constant if applicable, rather than a merge of 326 // smaller constants. 327 if (AllMergePartsArePadding && !AllPadReg) { 328 if (PadStrategy == TargetOpcode::G_ANYEXT) 329 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 330 else if (PadStrategy == TargetOpcode::G_ZEXT) 331 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 332 333 // If this is a sign extension, we can't materialize a trivial constant 334 // with the right type and have to produce a merge. 335 } 336 337 if (AllPadReg) { 338 // Avoid creating additional instructions if we're just adding additional 339 // copies of padding bits. 340 Remerge[I] = AllPadReg; 341 continue; 342 } 343 344 if (NumSubParts == 1) 345 Remerge[I] = SubMerge[0]; 346 else 347 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 348 349 // In the sign extend padding case, re-use the first all-signbit merge. 350 if (AllMergePartsArePadding && !AllPadReg) 351 AllPadReg = Remerge[I]; 352 } 353 354 VRegs = std::move(Remerge); 355 return LCMTy; 356 } 357 358 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 359 ArrayRef<Register> RemergeRegs) { 360 LLT DstTy = MRI.getType(DstReg); 361 362 // Create the merge to the widened source, and extract the relevant bits into 363 // the result. 364 365 if (DstTy == LCMTy) { 366 MIRBuilder.buildMerge(DstReg, RemergeRegs); 367 return; 368 } 369 370 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 371 if (DstTy.isScalar() && LCMTy.isScalar()) { 372 MIRBuilder.buildTrunc(DstReg, Remerge); 373 return; 374 } 375 376 if (LCMTy.isVector()) { 377 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 378 SmallVector<Register, 8> UnmergeDefs(NumDefs); 379 UnmergeDefs[0] = DstReg; 380 for (unsigned I = 1; I != NumDefs; ++I) 381 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 382 383 MIRBuilder.buildUnmerge(UnmergeDefs, 384 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 385 return; 386 } 387 388 llvm_unreachable("unhandled case"); 389 } 390 391 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 392 #define RTLIBCASE_INT(LibcallPrefix) \ 393 do { \ 394 switch (Size) { \ 395 case 32: \ 396 return RTLIB::LibcallPrefix##32; \ 397 case 64: \ 398 return RTLIB::LibcallPrefix##64; \ 399 case 128: \ 400 return RTLIB::LibcallPrefix##128; \ 401 default: \ 402 llvm_unreachable("unexpected size"); \ 403 } \ 404 } while (0) 405 406 #define RTLIBCASE(LibcallPrefix) \ 407 do { \ 408 switch (Size) { \ 409 case 32: \ 410 return RTLIB::LibcallPrefix##32; \ 411 case 64: \ 412 return RTLIB::LibcallPrefix##64; \ 413 case 80: \ 414 return RTLIB::LibcallPrefix##80; \ 415 case 128: \ 416 return RTLIB::LibcallPrefix##128; \ 417 default: \ 418 llvm_unreachable("unexpected size"); \ 419 } \ 420 } while (0) 421 422 switch (Opcode) { 423 case TargetOpcode::G_SDIV: 424 RTLIBCASE_INT(SDIV_I); 425 case TargetOpcode::G_UDIV: 426 RTLIBCASE_INT(UDIV_I); 427 case TargetOpcode::G_SREM: 428 RTLIBCASE_INT(SREM_I); 429 case TargetOpcode::G_UREM: 430 RTLIBCASE_INT(UREM_I); 431 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 432 RTLIBCASE_INT(CTLZ_I); 433 case TargetOpcode::G_FADD: 434 RTLIBCASE(ADD_F); 435 case TargetOpcode::G_FSUB: 436 RTLIBCASE(SUB_F); 437 case TargetOpcode::G_FMUL: 438 RTLIBCASE(MUL_F); 439 case TargetOpcode::G_FDIV: 440 RTLIBCASE(DIV_F); 441 case TargetOpcode::G_FEXP: 442 RTLIBCASE(EXP_F); 443 case TargetOpcode::G_FEXP2: 444 RTLIBCASE(EXP2_F); 445 case TargetOpcode::G_FREM: 446 RTLIBCASE(REM_F); 447 case TargetOpcode::G_FPOW: 448 RTLIBCASE(POW_F); 449 case TargetOpcode::G_FMA: 450 RTLIBCASE(FMA_F); 451 case TargetOpcode::G_FSIN: 452 RTLIBCASE(SIN_F); 453 case TargetOpcode::G_FCOS: 454 RTLIBCASE(COS_F); 455 case TargetOpcode::G_FLOG10: 456 RTLIBCASE(LOG10_F); 457 case TargetOpcode::G_FLOG: 458 RTLIBCASE(LOG_F); 459 case TargetOpcode::G_FLOG2: 460 RTLIBCASE(LOG2_F); 461 case TargetOpcode::G_FCEIL: 462 RTLIBCASE(CEIL_F); 463 case TargetOpcode::G_FFLOOR: 464 RTLIBCASE(FLOOR_F); 465 case TargetOpcode::G_FMINNUM: 466 RTLIBCASE(FMIN_F); 467 case TargetOpcode::G_FMAXNUM: 468 RTLIBCASE(FMAX_F); 469 case TargetOpcode::G_FSQRT: 470 RTLIBCASE(SQRT_F); 471 case TargetOpcode::G_FRINT: 472 RTLIBCASE(RINT_F); 473 case TargetOpcode::G_FNEARBYINT: 474 RTLIBCASE(NEARBYINT_F); 475 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 476 RTLIBCASE(ROUNDEVEN_F); 477 } 478 llvm_unreachable("Unknown libcall function"); 479 } 480 481 /// True if an instruction is in tail position in its caller. Intended for 482 /// legalizing libcalls as tail calls when possible. 483 static bool isLibCallInTailPosition(MachineInstr &MI, 484 const TargetInstrInfo &TII, 485 MachineRegisterInfo &MRI) { 486 MachineBasicBlock &MBB = *MI.getParent(); 487 const Function &F = MBB.getParent()->getFunction(); 488 489 // Conservatively require the attributes of the call to match those of 490 // the return. Ignore NoAlias and NonNull because they don't affect the 491 // call sequence. 492 AttributeList CallerAttrs = F.getAttributes(); 493 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 494 .removeAttribute(Attribute::NoAlias) 495 .removeAttribute(Attribute::NonNull) 496 .hasAttributes()) 497 return false; 498 499 // It's not safe to eliminate the sign / zero extension of the return value. 500 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 501 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 502 return false; 503 504 // Only tail call if the following instruction is a standard return or if we 505 // have a `thisreturn` callee, and a sequence like: 506 // 507 // G_MEMCPY %0, %1, %2 508 // $x0 = COPY %0 509 // RET_ReallyLR implicit $x0 510 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 511 if (Next != MBB.instr_end() && Next->isCopy()) { 512 switch (MI.getOpcode()) { 513 default: 514 llvm_unreachable("unsupported opcode"); 515 case TargetOpcode::G_BZERO: 516 return false; 517 case TargetOpcode::G_MEMCPY: 518 case TargetOpcode::G_MEMMOVE: 519 case TargetOpcode::G_MEMSET: 520 break; 521 } 522 523 Register VReg = MI.getOperand(0).getReg(); 524 if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg()) 525 return false; 526 527 Register PReg = Next->getOperand(0).getReg(); 528 if (!PReg.isPhysical()) 529 return false; 530 531 auto Ret = next_nodbg(Next, MBB.instr_end()); 532 if (Ret == MBB.instr_end() || !Ret->isReturn()) 533 return false; 534 535 if (Ret->getNumImplicitOperands() != 1) 536 return false; 537 538 if (PReg != Ret->getOperand(0).getReg()) 539 return false; 540 541 // Skip over the COPY that we just validated. 542 Next = Ret; 543 } 544 545 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 546 return false; 547 548 return true; 549 } 550 551 LegalizerHelper::LegalizeResult 552 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 553 const CallLowering::ArgInfo &Result, 554 ArrayRef<CallLowering::ArgInfo> Args, 555 const CallingConv::ID CC) { 556 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 557 558 CallLowering::CallLoweringInfo Info; 559 Info.CallConv = CC; 560 Info.Callee = MachineOperand::CreateES(Name); 561 Info.OrigRet = Result; 562 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 563 if (!CLI.lowerCall(MIRBuilder, Info)) 564 return LegalizerHelper::UnableToLegalize; 565 566 return LegalizerHelper::Legalized; 567 } 568 569 LegalizerHelper::LegalizeResult 570 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 571 const CallLowering::ArgInfo &Result, 572 ArrayRef<CallLowering::ArgInfo> Args) { 573 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 574 const char *Name = TLI.getLibcallName(Libcall); 575 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 576 return createLibcall(MIRBuilder, Name, Result, Args, CC); 577 } 578 579 // Useful for libcalls where all operands have the same type. 580 static LegalizerHelper::LegalizeResult 581 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 582 Type *OpType) { 583 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 584 585 // FIXME: What does the original arg index mean here? 586 SmallVector<CallLowering::ArgInfo, 3> Args; 587 for (unsigned i = 1; i < MI.getNumOperands(); i++) 588 Args.push_back({MI.getOperand(i).getReg(), OpType, 0}); 589 return createLibcall(MIRBuilder, Libcall, 590 {MI.getOperand(0).getReg(), OpType, 0}, Args); 591 } 592 593 LegalizerHelper::LegalizeResult 594 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 595 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 596 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 597 598 SmallVector<CallLowering::ArgInfo, 3> Args; 599 // Add all the args, except for the last which is an imm denoting 'tail'. 600 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 601 Register Reg = MI.getOperand(i).getReg(); 602 603 // Need derive an IR type for call lowering. 604 LLT OpLLT = MRI.getType(Reg); 605 Type *OpTy = nullptr; 606 if (OpLLT.isPointer()) 607 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 608 else 609 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 610 Args.push_back({Reg, OpTy, 0}); 611 } 612 613 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 614 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 615 RTLIB::Libcall RTLibcall; 616 unsigned Opc = MI.getOpcode(); 617 switch (Opc) { 618 case TargetOpcode::G_BZERO: 619 RTLibcall = RTLIB::BZERO; 620 break; 621 case TargetOpcode::G_MEMCPY: 622 RTLibcall = RTLIB::MEMCPY; 623 Args[0].Flags[0].setReturned(); 624 break; 625 case TargetOpcode::G_MEMMOVE: 626 RTLibcall = RTLIB::MEMMOVE; 627 Args[0].Flags[0].setReturned(); 628 break; 629 case TargetOpcode::G_MEMSET: 630 RTLibcall = RTLIB::MEMSET; 631 Args[0].Flags[0].setReturned(); 632 break; 633 default: 634 llvm_unreachable("unsupported opcode"); 635 } 636 const char *Name = TLI.getLibcallName(RTLibcall); 637 638 // Unsupported libcall on the target. 639 if (!Name) { 640 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 641 << MIRBuilder.getTII().getName(Opc) << "\n"); 642 return LegalizerHelper::UnableToLegalize; 643 } 644 645 CallLowering::CallLoweringInfo Info; 646 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 647 Info.Callee = MachineOperand::CreateES(Name); 648 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0); 649 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 650 isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI); 651 652 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 653 if (!CLI.lowerCall(MIRBuilder, Info)) 654 return LegalizerHelper::UnableToLegalize; 655 656 if (Info.LoweredTailCall) { 657 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 658 659 // Check debug locations before removing the return. 660 LocObserver.checkpoint(true); 661 662 // We must have a return following the call (or debug insts) to get past 663 // isLibCallInTailPosition. 664 do { 665 MachineInstr *Next = MI.getNextNode(); 666 assert(Next && 667 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && 668 "Expected instr following MI to be return or debug inst?"); 669 // We lowered a tail call, so the call is now the return from the block. 670 // Delete the old return. 671 Next->eraseFromParent(); 672 } while (MI.getNextNode()); 673 674 // We expect to lose the debug location from the return. 675 LocObserver.checkpoint(false); 676 } 677 678 return LegalizerHelper::Legalized; 679 } 680 681 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 682 Type *FromType) { 683 auto ToMVT = MVT::getVT(ToType); 684 auto FromMVT = MVT::getVT(FromType); 685 686 switch (Opcode) { 687 case TargetOpcode::G_FPEXT: 688 return RTLIB::getFPEXT(FromMVT, ToMVT); 689 case TargetOpcode::G_FPTRUNC: 690 return RTLIB::getFPROUND(FromMVT, ToMVT); 691 case TargetOpcode::G_FPTOSI: 692 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 693 case TargetOpcode::G_FPTOUI: 694 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 695 case TargetOpcode::G_SITOFP: 696 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 697 case TargetOpcode::G_UITOFP: 698 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 699 } 700 llvm_unreachable("Unsupported libcall function"); 701 } 702 703 static LegalizerHelper::LegalizeResult 704 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 705 Type *FromType) { 706 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 707 return createLibcall(MIRBuilder, Libcall, 708 {MI.getOperand(0).getReg(), ToType, 0}, 709 {{MI.getOperand(1).getReg(), FromType, 0}}); 710 } 711 712 LegalizerHelper::LegalizeResult 713 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 714 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 715 unsigned Size = LLTy.getSizeInBits(); 716 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 717 718 switch (MI.getOpcode()) { 719 default: 720 return UnableToLegalize; 721 case TargetOpcode::G_SDIV: 722 case TargetOpcode::G_UDIV: 723 case TargetOpcode::G_SREM: 724 case TargetOpcode::G_UREM: 725 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 726 Type *HLTy = IntegerType::get(Ctx, Size); 727 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 728 if (Status != Legalized) 729 return Status; 730 break; 731 } 732 case TargetOpcode::G_FADD: 733 case TargetOpcode::G_FSUB: 734 case TargetOpcode::G_FMUL: 735 case TargetOpcode::G_FDIV: 736 case TargetOpcode::G_FMA: 737 case TargetOpcode::G_FPOW: 738 case TargetOpcode::G_FREM: 739 case TargetOpcode::G_FCOS: 740 case TargetOpcode::G_FSIN: 741 case TargetOpcode::G_FLOG10: 742 case TargetOpcode::G_FLOG: 743 case TargetOpcode::G_FLOG2: 744 case TargetOpcode::G_FEXP: 745 case TargetOpcode::G_FEXP2: 746 case TargetOpcode::G_FCEIL: 747 case TargetOpcode::G_FFLOOR: 748 case TargetOpcode::G_FMINNUM: 749 case TargetOpcode::G_FMAXNUM: 750 case TargetOpcode::G_FSQRT: 751 case TargetOpcode::G_FRINT: 752 case TargetOpcode::G_FNEARBYINT: 753 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 754 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 755 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 756 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 757 return UnableToLegalize; 758 } 759 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 760 if (Status != Legalized) 761 return Status; 762 break; 763 } 764 case TargetOpcode::G_FPEXT: 765 case TargetOpcode::G_FPTRUNC: { 766 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 767 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 768 if (!FromTy || !ToTy) 769 return UnableToLegalize; 770 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 771 if (Status != Legalized) 772 return Status; 773 break; 774 } 775 case TargetOpcode::G_FPTOSI: 776 case TargetOpcode::G_FPTOUI: { 777 // FIXME: Support other types 778 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 779 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 780 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 781 return UnableToLegalize; 782 LegalizeResult Status = conversionLibcall( 783 MI, MIRBuilder, 784 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 785 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 786 if (Status != Legalized) 787 return Status; 788 break; 789 } 790 case TargetOpcode::G_SITOFP: 791 case TargetOpcode::G_UITOFP: { 792 // FIXME: Support other types 793 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 794 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 795 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 796 return UnableToLegalize; 797 LegalizeResult Status = conversionLibcall( 798 MI, MIRBuilder, 799 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 800 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 801 if (Status != Legalized) 802 return Status; 803 break; 804 } 805 case TargetOpcode::G_BZERO: 806 case TargetOpcode::G_MEMCPY: 807 case TargetOpcode::G_MEMMOVE: 808 case TargetOpcode::G_MEMSET: { 809 LegalizeResult Result = 810 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 811 if (Result != Legalized) 812 return Result; 813 MI.eraseFromParent(); 814 return Result; 815 } 816 } 817 818 MI.eraseFromParent(); 819 return Legalized; 820 } 821 822 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 823 unsigned TypeIdx, 824 LLT NarrowTy) { 825 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 826 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 827 828 switch (MI.getOpcode()) { 829 default: 830 return UnableToLegalize; 831 case TargetOpcode::G_IMPLICIT_DEF: { 832 Register DstReg = MI.getOperand(0).getReg(); 833 LLT DstTy = MRI.getType(DstReg); 834 835 // If SizeOp0 is not an exact multiple of NarrowSize, emit 836 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 837 // FIXME: Although this would also be legal for the general case, it causes 838 // a lot of regressions in the emitted code (superfluous COPYs, artifact 839 // combines not being hit). This seems to be a problem related to the 840 // artifact combiner. 841 if (SizeOp0 % NarrowSize != 0) { 842 LLT ImplicitTy = NarrowTy; 843 if (DstTy.isVector()) 844 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); 845 846 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 847 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 848 849 MI.eraseFromParent(); 850 return Legalized; 851 } 852 853 int NumParts = SizeOp0 / NarrowSize; 854 855 SmallVector<Register, 2> DstRegs; 856 for (int i = 0; i < NumParts; ++i) 857 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 858 859 if (DstTy.isVector()) 860 MIRBuilder.buildBuildVector(DstReg, DstRegs); 861 else 862 MIRBuilder.buildMerge(DstReg, DstRegs); 863 MI.eraseFromParent(); 864 return Legalized; 865 } 866 case TargetOpcode::G_CONSTANT: { 867 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 868 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 869 unsigned TotalSize = Ty.getSizeInBits(); 870 unsigned NarrowSize = NarrowTy.getSizeInBits(); 871 int NumParts = TotalSize / NarrowSize; 872 873 SmallVector<Register, 4> PartRegs; 874 for (int I = 0; I != NumParts; ++I) { 875 unsigned Offset = I * NarrowSize; 876 auto K = MIRBuilder.buildConstant(NarrowTy, 877 Val.lshr(Offset).trunc(NarrowSize)); 878 PartRegs.push_back(K.getReg(0)); 879 } 880 881 LLT LeftoverTy; 882 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 883 SmallVector<Register, 1> LeftoverRegs; 884 if (LeftoverBits != 0) { 885 LeftoverTy = LLT::scalar(LeftoverBits); 886 auto K = MIRBuilder.buildConstant( 887 LeftoverTy, 888 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 889 LeftoverRegs.push_back(K.getReg(0)); 890 } 891 892 insertParts(MI.getOperand(0).getReg(), 893 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 894 895 MI.eraseFromParent(); 896 return Legalized; 897 } 898 case TargetOpcode::G_SEXT: 899 case TargetOpcode::G_ZEXT: 900 case TargetOpcode::G_ANYEXT: 901 return narrowScalarExt(MI, TypeIdx, NarrowTy); 902 case TargetOpcode::G_TRUNC: { 903 if (TypeIdx != 1) 904 return UnableToLegalize; 905 906 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 907 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 908 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 909 return UnableToLegalize; 910 } 911 912 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 913 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 914 MI.eraseFromParent(); 915 return Legalized; 916 } 917 918 case TargetOpcode::G_FREEZE: 919 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 920 case TargetOpcode::G_ADD: 921 case TargetOpcode::G_SUB: 922 case TargetOpcode::G_SADDO: 923 case TargetOpcode::G_SSUBO: 924 case TargetOpcode::G_SADDE: 925 case TargetOpcode::G_SSUBE: 926 case TargetOpcode::G_UADDO: 927 case TargetOpcode::G_USUBO: 928 case TargetOpcode::G_UADDE: 929 case TargetOpcode::G_USUBE: 930 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 931 case TargetOpcode::G_MUL: 932 case TargetOpcode::G_UMULH: 933 return narrowScalarMul(MI, NarrowTy); 934 case TargetOpcode::G_EXTRACT: 935 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 936 case TargetOpcode::G_INSERT: 937 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 938 case TargetOpcode::G_LOAD: { 939 auto &LoadMI = cast<GLoad>(MI); 940 Register DstReg = LoadMI.getDstReg(); 941 LLT DstTy = MRI.getType(DstReg); 942 if (DstTy.isVector()) 943 return UnableToLegalize; 944 945 if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) { 946 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 947 MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO()); 948 MIRBuilder.buildAnyExt(DstReg, TmpReg); 949 LoadMI.eraseFromParent(); 950 return Legalized; 951 } 952 953 return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy); 954 } 955 case TargetOpcode::G_ZEXTLOAD: 956 case TargetOpcode::G_SEXTLOAD: { 957 auto &LoadMI = cast<GExtLoad>(MI); 958 Register DstReg = LoadMI.getDstReg(); 959 Register PtrReg = LoadMI.getPointerReg(); 960 961 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 962 auto &MMO = LoadMI.getMMO(); 963 unsigned MemSize = MMO.getSizeInBits(); 964 965 if (MemSize == NarrowSize) { 966 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 967 } else if (MemSize < NarrowSize) { 968 MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO); 969 } else if (MemSize > NarrowSize) { 970 // FIXME: Need to split the load. 971 return UnableToLegalize; 972 } 973 974 if (isa<GZExtLoad>(LoadMI)) 975 MIRBuilder.buildZExt(DstReg, TmpReg); 976 else 977 MIRBuilder.buildSExt(DstReg, TmpReg); 978 979 LoadMI.eraseFromParent(); 980 return Legalized; 981 } 982 case TargetOpcode::G_STORE: { 983 auto &StoreMI = cast<GStore>(MI); 984 985 Register SrcReg = StoreMI.getValueReg(); 986 LLT SrcTy = MRI.getType(SrcReg); 987 if (SrcTy.isVector()) 988 return UnableToLegalize; 989 990 int NumParts = SizeOp0 / NarrowSize; 991 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 992 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 993 if (SrcTy.isVector() && LeftoverBits != 0) 994 return UnableToLegalize; 995 996 if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) { 997 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 998 MIRBuilder.buildTrunc(TmpReg, SrcReg); 999 MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO()); 1000 StoreMI.eraseFromParent(); 1001 return Legalized; 1002 } 1003 1004 return reduceLoadStoreWidth(StoreMI, 0, NarrowTy); 1005 } 1006 case TargetOpcode::G_SELECT: 1007 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1008 case TargetOpcode::G_AND: 1009 case TargetOpcode::G_OR: 1010 case TargetOpcode::G_XOR: { 1011 // Legalize bitwise operation: 1012 // A = BinOp<Ty> B, C 1013 // into: 1014 // B1, ..., BN = G_UNMERGE_VALUES B 1015 // C1, ..., CN = G_UNMERGE_VALUES C 1016 // A1 = BinOp<Ty/N> B1, C2 1017 // ... 1018 // AN = BinOp<Ty/N> BN, CN 1019 // A = G_MERGE_VALUES A1, ..., AN 1020 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1021 } 1022 case TargetOpcode::G_SHL: 1023 case TargetOpcode::G_LSHR: 1024 case TargetOpcode::G_ASHR: 1025 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1026 case TargetOpcode::G_CTLZ: 1027 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1028 case TargetOpcode::G_CTTZ: 1029 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1030 case TargetOpcode::G_CTPOP: 1031 if (TypeIdx == 1) 1032 switch (MI.getOpcode()) { 1033 case TargetOpcode::G_CTLZ: 1034 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1035 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1036 case TargetOpcode::G_CTTZ: 1037 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1038 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1039 case TargetOpcode::G_CTPOP: 1040 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1041 default: 1042 return UnableToLegalize; 1043 } 1044 1045 Observer.changingInstr(MI); 1046 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1047 Observer.changedInstr(MI); 1048 return Legalized; 1049 case TargetOpcode::G_INTTOPTR: 1050 if (TypeIdx != 1) 1051 return UnableToLegalize; 1052 1053 Observer.changingInstr(MI); 1054 narrowScalarSrc(MI, NarrowTy, 1); 1055 Observer.changedInstr(MI); 1056 return Legalized; 1057 case TargetOpcode::G_PTRTOINT: 1058 if (TypeIdx != 0) 1059 return UnableToLegalize; 1060 1061 Observer.changingInstr(MI); 1062 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1063 Observer.changedInstr(MI); 1064 return Legalized; 1065 case TargetOpcode::G_PHI: { 1066 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1067 // NarrowSize. 1068 if (SizeOp0 % NarrowSize != 0) 1069 return UnableToLegalize; 1070 1071 unsigned NumParts = SizeOp0 / NarrowSize; 1072 SmallVector<Register, 2> DstRegs(NumParts); 1073 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1074 Observer.changingInstr(MI); 1075 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1076 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1077 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1078 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1079 SrcRegs[i / 2]); 1080 } 1081 MachineBasicBlock &MBB = *MI.getParent(); 1082 MIRBuilder.setInsertPt(MBB, MI); 1083 for (unsigned i = 0; i < NumParts; ++i) { 1084 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1085 MachineInstrBuilder MIB = 1086 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1087 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1088 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1089 } 1090 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1091 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1092 Observer.changedInstr(MI); 1093 MI.eraseFromParent(); 1094 return Legalized; 1095 } 1096 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1097 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1098 if (TypeIdx != 2) 1099 return UnableToLegalize; 1100 1101 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1102 Observer.changingInstr(MI); 1103 narrowScalarSrc(MI, NarrowTy, OpIdx); 1104 Observer.changedInstr(MI); 1105 return Legalized; 1106 } 1107 case TargetOpcode::G_ICMP: { 1108 Register LHS = MI.getOperand(2).getReg(); 1109 LLT SrcTy = MRI.getType(LHS); 1110 uint64_t SrcSize = SrcTy.getSizeInBits(); 1111 CmpInst::Predicate Pred = 1112 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1113 1114 // TODO: Handle the non-equality case for weird sizes. 1115 if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred)) 1116 return UnableToLegalize; 1117 1118 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover) 1119 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs; 1120 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs, 1121 LHSLeftoverRegs)) 1122 return UnableToLegalize; 1123 1124 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type. 1125 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs; 1126 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused, 1127 RHSPartRegs, RHSLeftoverRegs)) 1128 return UnableToLegalize; 1129 1130 // We now have the LHS and RHS of the compare split into narrow-type 1131 // registers, plus potentially some leftover type. 1132 Register Dst = MI.getOperand(0).getReg(); 1133 LLT ResTy = MRI.getType(Dst); 1134 if (ICmpInst::isEquality(Pred)) { 1135 // For each part on the LHS and RHS, keep track of the result of XOR-ing 1136 // them together. For each equal part, the result should be all 0s. For 1137 // each non-equal part, we'll get at least one 1. 1138 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1139 SmallVector<Register, 4> Xors; 1140 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) { 1141 auto LHS = std::get<0>(LHSAndRHS); 1142 auto RHS = std::get<1>(LHSAndRHS); 1143 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0); 1144 Xors.push_back(Xor); 1145 } 1146 1147 // Build a G_XOR for each leftover register. Each G_XOR must be widened 1148 // to the desired narrow type so that we can OR them together later. 1149 SmallVector<Register, 4> WidenedXors; 1150 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) { 1151 auto LHS = std::get<0>(LHSAndRHS); 1152 auto RHS = std::get<1>(LHSAndRHS); 1153 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0); 1154 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor); 1155 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors, 1156 /* PadStrategy = */ TargetOpcode::G_ZEXT); 1157 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end()); 1158 } 1159 1160 // Now, for each part we broke up, we know if they are equal/not equal 1161 // based off the G_XOR. We can OR these all together and compare against 1162 // 0 to get the result. 1163 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?"); 1164 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]); 1165 for (unsigned I = 2, E = Xors.size(); I < E; ++I) 1166 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]); 1167 MIRBuilder.buildICmp(Pred, Dst, Or, Zero); 1168 } else { 1169 // TODO: Handle non-power-of-two types. 1170 assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?"); 1171 assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?"); 1172 Register LHSL = LHSPartRegs[0]; 1173 Register LHSH = LHSPartRegs[1]; 1174 Register RHSL = RHSPartRegs[0]; 1175 Register RHSH = RHSPartRegs[1]; 1176 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1177 MachineInstrBuilder CmpHEQ = 1178 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1179 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1180 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1181 MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH); 1182 } 1183 MI.eraseFromParent(); 1184 return Legalized; 1185 } 1186 case TargetOpcode::G_SEXT_INREG: { 1187 if (TypeIdx != 0) 1188 return UnableToLegalize; 1189 1190 int64_t SizeInBits = MI.getOperand(2).getImm(); 1191 1192 // So long as the new type has more bits than the bits we're extending we 1193 // don't need to break it apart. 1194 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1195 Observer.changingInstr(MI); 1196 // We don't lose any non-extension bits by truncating the src and 1197 // sign-extending the dst. 1198 MachineOperand &MO1 = MI.getOperand(1); 1199 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1200 MO1.setReg(TruncMIB.getReg(0)); 1201 1202 MachineOperand &MO2 = MI.getOperand(0); 1203 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1204 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1205 MIRBuilder.buildSExt(MO2, DstExt); 1206 MO2.setReg(DstExt); 1207 Observer.changedInstr(MI); 1208 return Legalized; 1209 } 1210 1211 // Break it apart. Components below the extension point are unmodified. The 1212 // component containing the extension point becomes a narrower SEXT_INREG. 1213 // Components above it are ashr'd from the component containing the 1214 // extension point. 1215 if (SizeOp0 % NarrowSize != 0) 1216 return UnableToLegalize; 1217 int NumParts = SizeOp0 / NarrowSize; 1218 1219 // List the registers where the destination will be scattered. 1220 SmallVector<Register, 2> DstRegs; 1221 // List the registers where the source will be split. 1222 SmallVector<Register, 2> SrcRegs; 1223 1224 // Create all the temporary registers. 1225 for (int i = 0; i < NumParts; ++i) { 1226 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1227 1228 SrcRegs.push_back(SrcReg); 1229 } 1230 1231 // Explode the big arguments into smaller chunks. 1232 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1233 1234 Register AshrCstReg = 1235 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1236 .getReg(0); 1237 Register FullExtensionReg = 0; 1238 Register PartialExtensionReg = 0; 1239 1240 // Do the operation on each small part. 1241 for (int i = 0; i < NumParts; ++i) { 1242 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1243 DstRegs.push_back(SrcRegs[i]); 1244 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1245 assert(PartialExtensionReg && 1246 "Expected to visit partial extension before full"); 1247 if (FullExtensionReg) { 1248 DstRegs.push_back(FullExtensionReg); 1249 continue; 1250 } 1251 DstRegs.push_back( 1252 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1253 .getReg(0)); 1254 FullExtensionReg = DstRegs.back(); 1255 } else { 1256 DstRegs.push_back( 1257 MIRBuilder 1258 .buildInstr( 1259 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1260 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1261 .getReg(0)); 1262 PartialExtensionReg = DstRegs.back(); 1263 } 1264 } 1265 1266 // Gather the destination registers into the final destination. 1267 Register DstReg = MI.getOperand(0).getReg(); 1268 MIRBuilder.buildMerge(DstReg, DstRegs); 1269 MI.eraseFromParent(); 1270 return Legalized; 1271 } 1272 case TargetOpcode::G_BSWAP: 1273 case TargetOpcode::G_BITREVERSE: { 1274 if (SizeOp0 % NarrowSize != 0) 1275 return UnableToLegalize; 1276 1277 Observer.changingInstr(MI); 1278 SmallVector<Register, 2> SrcRegs, DstRegs; 1279 unsigned NumParts = SizeOp0 / NarrowSize; 1280 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1281 1282 for (unsigned i = 0; i < NumParts; ++i) { 1283 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1284 {SrcRegs[NumParts - 1 - i]}); 1285 DstRegs.push_back(DstPart.getReg(0)); 1286 } 1287 1288 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1289 1290 Observer.changedInstr(MI); 1291 MI.eraseFromParent(); 1292 return Legalized; 1293 } 1294 case TargetOpcode::G_PTR_ADD: 1295 case TargetOpcode::G_PTRMASK: { 1296 if (TypeIdx != 1) 1297 return UnableToLegalize; 1298 Observer.changingInstr(MI); 1299 narrowScalarSrc(MI, NarrowTy, 2); 1300 Observer.changedInstr(MI); 1301 return Legalized; 1302 } 1303 case TargetOpcode::G_FPTOUI: 1304 case TargetOpcode::G_FPTOSI: 1305 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1306 case TargetOpcode::G_FPEXT: 1307 if (TypeIdx != 0) 1308 return UnableToLegalize; 1309 Observer.changingInstr(MI); 1310 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1311 Observer.changedInstr(MI); 1312 return Legalized; 1313 } 1314 } 1315 1316 Register LegalizerHelper::coerceToScalar(Register Val) { 1317 LLT Ty = MRI.getType(Val); 1318 if (Ty.isScalar()) 1319 return Val; 1320 1321 const DataLayout &DL = MIRBuilder.getDataLayout(); 1322 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1323 if (Ty.isPointer()) { 1324 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1325 return Register(); 1326 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1327 } 1328 1329 Register NewVal = Val; 1330 1331 assert(Ty.isVector()); 1332 LLT EltTy = Ty.getElementType(); 1333 if (EltTy.isPointer()) 1334 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1335 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1336 } 1337 1338 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1339 unsigned OpIdx, unsigned ExtOpcode) { 1340 MachineOperand &MO = MI.getOperand(OpIdx); 1341 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1342 MO.setReg(ExtB.getReg(0)); 1343 } 1344 1345 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1346 unsigned OpIdx) { 1347 MachineOperand &MO = MI.getOperand(OpIdx); 1348 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1349 MO.setReg(ExtB.getReg(0)); 1350 } 1351 1352 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1353 unsigned OpIdx, unsigned TruncOpcode) { 1354 MachineOperand &MO = MI.getOperand(OpIdx); 1355 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1356 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1357 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1358 MO.setReg(DstExt); 1359 } 1360 1361 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1362 unsigned OpIdx, unsigned ExtOpcode) { 1363 MachineOperand &MO = MI.getOperand(OpIdx); 1364 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1365 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1366 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1367 MO.setReg(DstTrunc); 1368 } 1369 1370 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1371 unsigned OpIdx) { 1372 MachineOperand &MO = MI.getOperand(OpIdx); 1373 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1374 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1375 } 1376 1377 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1378 unsigned OpIdx) { 1379 MachineOperand &MO = MI.getOperand(OpIdx); 1380 1381 LLT OldTy = MRI.getType(MO.getReg()); 1382 unsigned OldElts = OldTy.getNumElements(); 1383 unsigned NewElts = MoreTy.getNumElements(); 1384 1385 unsigned NumParts = NewElts / OldElts; 1386 1387 // Use concat_vectors if the result is a multiple of the number of elements. 1388 if (NumParts * OldElts == NewElts) { 1389 SmallVector<Register, 8> Parts; 1390 Parts.push_back(MO.getReg()); 1391 1392 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1393 for (unsigned I = 1; I != NumParts; ++I) 1394 Parts.push_back(ImpDef); 1395 1396 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1397 MO.setReg(Concat.getReg(0)); 1398 return; 1399 } 1400 1401 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1402 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1403 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1404 MO.setReg(MoreReg); 1405 } 1406 1407 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1408 MachineOperand &Op = MI.getOperand(OpIdx); 1409 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1410 } 1411 1412 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1413 MachineOperand &MO = MI.getOperand(OpIdx); 1414 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1415 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1416 MIRBuilder.buildBitcast(MO, CastDst); 1417 MO.setReg(CastDst); 1418 } 1419 1420 LegalizerHelper::LegalizeResult 1421 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1422 LLT WideTy) { 1423 if (TypeIdx != 1) 1424 return UnableToLegalize; 1425 1426 Register DstReg = MI.getOperand(0).getReg(); 1427 LLT DstTy = MRI.getType(DstReg); 1428 if (DstTy.isVector()) 1429 return UnableToLegalize; 1430 1431 Register Src1 = MI.getOperand(1).getReg(); 1432 LLT SrcTy = MRI.getType(Src1); 1433 const int DstSize = DstTy.getSizeInBits(); 1434 const int SrcSize = SrcTy.getSizeInBits(); 1435 const int WideSize = WideTy.getSizeInBits(); 1436 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1437 1438 unsigned NumOps = MI.getNumOperands(); 1439 unsigned NumSrc = MI.getNumOperands() - 1; 1440 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1441 1442 if (WideSize >= DstSize) { 1443 // Directly pack the bits in the target type. 1444 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1445 1446 for (unsigned I = 2; I != NumOps; ++I) { 1447 const unsigned Offset = (I - 1) * PartSize; 1448 1449 Register SrcReg = MI.getOperand(I).getReg(); 1450 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1451 1452 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1453 1454 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1455 MRI.createGenericVirtualRegister(WideTy); 1456 1457 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1458 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1459 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1460 ResultReg = NextResult; 1461 } 1462 1463 if (WideSize > DstSize) 1464 MIRBuilder.buildTrunc(DstReg, ResultReg); 1465 else if (DstTy.isPointer()) 1466 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1467 1468 MI.eraseFromParent(); 1469 return Legalized; 1470 } 1471 1472 // Unmerge the original values to the GCD type, and recombine to the next 1473 // multiple greater than the original type. 1474 // 1475 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1476 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1477 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1478 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1479 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1480 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1481 // %12:_(s12) = G_MERGE_VALUES %10, %11 1482 // 1483 // Padding with undef if necessary: 1484 // 1485 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1486 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1487 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1488 // %7:_(s2) = G_IMPLICIT_DEF 1489 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1490 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1491 // %10:_(s12) = G_MERGE_VALUES %8, %9 1492 1493 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1494 LLT GCDTy = LLT::scalar(GCD); 1495 1496 SmallVector<Register, 8> Parts; 1497 SmallVector<Register, 8> NewMergeRegs; 1498 SmallVector<Register, 8> Unmerges; 1499 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1500 1501 // Decompose the original operands if they don't evenly divide. 1502 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1503 Register SrcReg = MI.getOperand(I).getReg(); 1504 if (GCD == SrcSize) { 1505 Unmerges.push_back(SrcReg); 1506 } else { 1507 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1508 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1509 Unmerges.push_back(Unmerge.getReg(J)); 1510 } 1511 } 1512 1513 // Pad with undef to the next size that is a multiple of the requested size. 1514 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1515 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1516 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1517 Unmerges.push_back(UndefReg); 1518 } 1519 1520 const int PartsPerGCD = WideSize / GCD; 1521 1522 // Build merges of each piece. 1523 ArrayRef<Register> Slicer(Unmerges); 1524 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1525 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1526 NewMergeRegs.push_back(Merge.getReg(0)); 1527 } 1528 1529 // A truncate may be necessary if the requested type doesn't evenly divide the 1530 // original result type. 1531 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1532 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1533 } else { 1534 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1535 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1536 } 1537 1538 MI.eraseFromParent(); 1539 return Legalized; 1540 } 1541 1542 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1543 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1544 LLT OrigTy = MRI.getType(OrigReg); 1545 LLT LCMTy = getLCMType(WideTy, OrigTy); 1546 1547 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1548 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1549 1550 Register UnmergeSrc = WideReg; 1551 1552 // Create a merge to the LCM type, padding with undef 1553 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1554 // => 1555 // %1:_(<4 x s32>) = G_FOO 1556 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1557 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1558 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1559 if (NumMergeParts > 1) { 1560 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1561 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1562 MergeParts[0] = WideReg; 1563 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1564 } 1565 1566 // Unmerge to the original register and pad with dead defs. 1567 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1568 UnmergeResults[0] = OrigReg; 1569 for (int I = 1; I != NumUnmergeParts; ++I) 1570 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1571 1572 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1573 return WideReg; 1574 } 1575 1576 LegalizerHelper::LegalizeResult 1577 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1578 LLT WideTy) { 1579 if (TypeIdx != 0) 1580 return UnableToLegalize; 1581 1582 int NumDst = MI.getNumOperands() - 1; 1583 Register SrcReg = MI.getOperand(NumDst).getReg(); 1584 LLT SrcTy = MRI.getType(SrcReg); 1585 if (SrcTy.isVector()) 1586 return UnableToLegalize; 1587 1588 Register Dst0Reg = MI.getOperand(0).getReg(); 1589 LLT DstTy = MRI.getType(Dst0Reg); 1590 if (!DstTy.isScalar()) 1591 return UnableToLegalize; 1592 1593 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1594 if (SrcTy.isPointer()) { 1595 const DataLayout &DL = MIRBuilder.getDataLayout(); 1596 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1597 LLVM_DEBUG( 1598 dbgs() << "Not casting non-integral address space integer\n"); 1599 return UnableToLegalize; 1600 } 1601 1602 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1603 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1604 } 1605 1606 // Widen SrcTy to WideTy. This does not affect the result, but since the 1607 // user requested this size, it is probably better handled than SrcTy and 1608 // should reduce the total number of legalization artifacts 1609 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1610 SrcTy = WideTy; 1611 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1612 } 1613 1614 // Theres no unmerge type to target. Directly extract the bits from the 1615 // source type 1616 unsigned DstSize = DstTy.getSizeInBits(); 1617 1618 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1619 for (int I = 1; I != NumDst; ++I) { 1620 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1621 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1622 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1623 } 1624 1625 MI.eraseFromParent(); 1626 return Legalized; 1627 } 1628 1629 // Extend the source to a wider type. 1630 LLT LCMTy = getLCMType(SrcTy, WideTy); 1631 1632 Register WideSrc = SrcReg; 1633 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1634 // TODO: If this is an integral address space, cast to integer and anyext. 1635 if (SrcTy.isPointer()) { 1636 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1637 return UnableToLegalize; 1638 } 1639 1640 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1641 } 1642 1643 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1644 1645 // Create a sequence of unmerges and merges to the original results. Since we 1646 // may have widened the source, we will need to pad the results with dead defs 1647 // to cover the source register. 1648 // e.g. widen s48 to s64: 1649 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1650 // 1651 // => 1652 // %4:_(s192) = G_ANYEXT %0:_(s96) 1653 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1654 // ; unpack to GCD type, with extra dead defs 1655 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1656 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1657 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1658 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1659 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1660 const LLT GCDTy = getGCDType(WideTy, DstTy); 1661 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1662 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1663 1664 // Directly unmerge to the destination without going through a GCD type 1665 // if possible 1666 if (PartsPerRemerge == 1) { 1667 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1668 1669 for (int I = 0; I != NumUnmerge; ++I) { 1670 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1671 1672 for (int J = 0; J != PartsPerUnmerge; ++J) { 1673 int Idx = I * PartsPerUnmerge + J; 1674 if (Idx < NumDst) 1675 MIB.addDef(MI.getOperand(Idx).getReg()); 1676 else { 1677 // Create dead def for excess components. 1678 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1679 } 1680 } 1681 1682 MIB.addUse(Unmerge.getReg(I)); 1683 } 1684 } else { 1685 SmallVector<Register, 16> Parts; 1686 for (int J = 0; J != NumUnmerge; ++J) 1687 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1688 1689 SmallVector<Register, 8> RemergeParts; 1690 for (int I = 0; I != NumDst; ++I) { 1691 for (int J = 0; J < PartsPerRemerge; ++J) { 1692 const int Idx = I * PartsPerRemerge + J; 1693 RemergeParts.emplace_back(Parts[Idx]); 1694 } 1695 1696 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1697 RemergeParts.clear(); 1698 } 1699 } 1700 1701 MI.eraseFromParent(); 1702 return Legalized; 1703 } 1704 1705 LegalizerHelper::LegalizeResult 1706 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1707 LLT WideTy) { 1708 Register DstReg = MI.getOperand(0).getReg(); 1709 Register SrcReg = MI.getOperand(1).getReg(); 1710 LLT SrcTy = MRI.getType(SrcReg); 1711 1712 LLT DstTy = MRI.getType(DstReg); 1713 unsigned Offset = MI.getOperand(2).getImm(); 1714 1715 if (TypeIdx == 0) { 1716 if (SrcTy.isVector() || DstTy.isVector()) 1717 return UnableToLegalize; 1718 1719 SrcOp Src(SrcReg); 1720 if (SrcTy.isPointer()) { 1721 // Extracts from pointers can be handled only if they are really just 1722 // simple integers. 1723 const DataLayout &DL = MIRBuilder.getDataLayout(); 1724 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1725 return UnableToLegalize; 1726 1727 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1728 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1729 SrcTy = SrcAsIntTy; 1730 } 1731 1732 if (DstTy.isPointer()) 1733 return UnableToLegalize; 1734 1735 if (Offset == 0) { 1736 // Avoid a shift in the degenerate case. 1737 MIRBuilder.buildTrunc(DstReg, 1738 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1739 MI.eraseFromParent(); 1740 return Legalized; 1741 } 1742 1743 // Do a shift in the source type. 1744 LLT ShiftTy = SrcTy; 1745 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1746 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1747 ShiftTy = WideTy; 1748 } 1749 1750 auto LShr = MIRBuilder.buildLShr( 1751 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1752 MIRBuilder.buildTrunc(DstReg, LShr); 1753 MI.eraseFromParent(); 1754 return Legalized; 1755 } 1756 1757 if (SrcTy.isScalar()) { 1758 Observer.changingInstr(MI); 1759 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1760 Observer.changedInstr(MI); 1761 return Legalized; 1762 } 1763 1764 if (!SrcTy.isVector()) 1765 return UnableToLegalize; 1766 1767 if (DstTy != SrcTy.getElementType()) 1768 return UnableToLegalize; 1769 1770 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1771 return UnableToLegalize; 1772 1773 Observer.changingInstr(MI); 1774 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1775 1776 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1777 Offset); 1778 widenScalarDst(MI, WideTy.getScalarType(), 0); 1779 Observer.changedInstr(MI); 1780 return Legalized; 1781 } 1782 1783 LegalizerHelper::LegalizeResult 1784 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1785 LLT WideTy) { 1786 if (TypeIdx != 0 || WideTy.isVector()) 1787 return UnableToLegalize; 1788 Observer.changingInstr(MI); 1789 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1790 widenScalarDst(MI, WideTy); 1791 Observer.changedInstr(MI); 1792 return Legalized; 1793 } 1794 1795 LegalizerHelper::LegalizeResult 1796 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1797 LLT WideTy) { 1798 if (TypeIdx == 1) 1799 return UnableToLegalize; // TODO 1800 1801 unsigned Opcode; 1802 unsigned ExtOpcode; 1803 Optional<Register> CarryIn = None; 1804 switch (MI.getOpcode()) { 1805 default: 1806 llvm_unreachable("Unexpected opcode!"); 1807 case TargetOpcode::G_SADDO: 1808 Opcode = TargetOpcode::G_ADD; 1809 ExtOpcode = TargetOpcode::G_SEXT; 1810 break; 1811 case TargetOpcode::G_SSUBO: 1812 Opcode = TargetOpcode::G_SUB; 1813 ExtOpcode = TargetOpcode::G_SEXT; 1814 break; 1815 case TargetOpcode::G_UADDO: 1816 Opcode = TargetOpcode::G_ADD; 1817 ExtOpcode = TargetOpcode::G_ZEXT; 1818 break; 1819 case TargetOpcode::G_USUBO: 1820 Opcode = TargetOpcode::G_SUB; 1821 ExtOpcode = TargetOpcode::G_ZEXT; 1822 break; 1823 case TargetOpcode::G_SADDE: 1824 Opcode = TargetOpcode::G_UADDE; 1825 ExtOpcode = TargetOpcode::G_SEXT; 1826 CarryIn = MI.getOperand(4).getReg(); 1827 break; 1828 case TargetOpcode::G_SSUBE: 1829 Opcode = TargetOpcode::G_USUBE; 1830 ExtOpcode = TargetOpcode::G_SEXT; 1831 CarryIn = MI.getOperand(4).getReg(); 1832 break; 1833 case TargetOpcode::G_UADDE: 1834 Opcode = TargetOpcode::G_UADDE; 1835 ExtOpcode = TargetOpcode::G_ZEXT; 1836 CarryIn = MI.getOperand(4).getReg(); 1837 break; 1838 case TargetOpcode::G_USUBE: 1839 Opcode = TargetOpcode::G_USUBE; 1840 ExtOpcode = TargetOpcode::G_ZEXT; 1841 CarryIn = MI.getOperand(4).getReg(); 1842 break; 1843 } 1844 1845 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1846 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1847 // Do the arithmetic in the larger type. 1848 Register NewOp; 1849 if (CarryIn) { 1850 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1851 NewOp = MIRBuilder 1852 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1853 {LHSExt, RHSExt, *CarryIn}) 1854 .getReg(0); 1855 } else { 1856 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1857 } 1858 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1859 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1860 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1861 // There is no overflow if the ExtOp is the same as NewOp. 1862 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1863 // Now trunc the NewOp to the original result. 1864 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1865 MI.eraseFromParent(); 1866 return Legalized; 1867 } 1868 1869 LegalizerHelper::LegalizeResult 1870 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1871 LLT WideTy) { 1872 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1873 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1874 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1875 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1876 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1877 // We can convert this to: 1878 // 1. Any extend iN to iM 1879 // 2. SHL by M-N 1880 // 3. [US][ADD|SUB|SHL]SAT 1881 // 4. L/ASHR by M-N 1882 // 1883 // It may be more efficient to lower this to a min and a max operation in 1884 // the higher precision arithmetic if the promoted operation isn't legal, 1885 // but this decision is up to the target's lowering request. 1886 Register DstReg = MI.getOperand(0).getReg(); 1887 1888 unsigned NewBits = WideTy.getScalarSizeInBits(); 1889 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1890 1891 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1892 // must not left shift the RHS to preserve the shift amount. 1893 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1894 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1895 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1896 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1897 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1898 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1899 1900 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1901 {ShiftL, ShiftR}, MI.getFlags()); 1902 1903 // Use a shift that will preserve the number of sign bits when the trunc is 1904 // folded away. 1905 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1906 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1907 1908 MIRBuilder.buildTrunc(DstReg, Result); 1909 MI.eraseFromParent(); 1910 return Legalized; 1911 } 1912 1913 LegalizerHelper::LegalizeResult 1914 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 1915 LLT WideTy) { 1916 if (TypeIdx == 1) 1917 return UnableToLegalize; 1918 1919 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 1920 Register Result = MI.getOperand(0).getReg(); 1921 Register OriginalOverflow = MI.getOperand(1).getReg(); 1922 Register LHS = MI.getOperand(2).getReg(); 1923 Register RHS = MI.getOperand(3).getReg(); 1924 LLT SrcTy = MRI.getType(LHS); 1925 LLT OverflowTy = MRI.getType(OriginalOverflow); 1926 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 1927 1928 // To determine if the result overflowed in the larger type, we extend the 1929 // input to the larger type, do the multiply (checking if it overflows), 1930 // then also check the high bits of the result to see if overflow happened 1931 // there. 1932 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1933 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 1934 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 1935 1936 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, 1937 {LeftOperand, RightOperand}); 1938 auto Mul = Mulo->getOperand(0); 1939 MIRBuilder.buildTrunc(Result, Mul); 1940 1941 MachineInstrBuilder ExtResult; 1942 // Overflow occurred if it occurred in the larger type, or if the high part 1943 // of the result does not zero/sign-extend the low part. Check this second 1944 // possibility first. 1945 if (IsSigned) { 1946 // For signed, overflow occurred when the high part does not sign-extend 1947 // the low part. 1948 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 1949 } else { 1950 // Unsigned overflow occurred when the high part does not zero-extend the 1951 // low part. 1952 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 1953 } 1954 1955 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 1956 // so we don't need to check the overflow result of larger type Mulo. 1957 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { 1958 auto Overflow = 1959 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 1960 // Finally check if the multiplication in the larger type itself overflowed. 1961 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 1962 } else { 1963 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 1964 } 1965 MI.eraseFromParent(); 1966 return Legalized; 1967 } 1968 1969 LegalizerHelper::LegalizeResult 1970 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1971 switch (MI.getOpcode()) { 1972 default: 1973 return UnableToLegalize; 1974 case TargetOpcode::G_ATOMICRMW_XCHG: 1975 case TargetOpcode::G_ATOMICRMW_ADD: 1976 case TargetOpcode::G_ATOMICRMW_SUB: 1977 case TargetOpcode::G_ATOMICRMW_AND: 1978 case TargetOpcode::G_ATOMICRMW_OR: 1979 case TargetOpcode::G_ATOMICRMW_XOR: 1980 case TargetOpcode::G_ATOMICRMW_MIN: 1981 case TargetOpcode::G_ATOMICRMW_MAX: 1982 case TargetOpcode::G_ATOMICRMW_UMIN: 1983 case TargetOpcode::G_ATOMICRMW_UMAX: 1984 assert(TypeIdx == 0 && "atomicrmw with second scalar type"); 1985 Observer.changingInstr(MI); 1986 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1987 widenScalarDst(MI, WideTy, 0); 1988 Observer.changedInstr(MI); 1989 return Legalized; 1990 case TargetOpcode::G_ATOMIC_CMPXCHG: 1991 assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type"); 1992 Observer.changingInstr(MI); 1993 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1994 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1995 widenScalarDst(MI, WideTy, 0); 1996 Observer.changedInstr(MI); 1997 return Legalized; 1998 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: 1999 if (TypeIdx == 0) { 2000 Observer.changingInstr(MI); 2001 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2002 widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT); 2003 widenScalarDst(MI, WideTy, 0); 2004 Observer.changedInstr(MI); 2005 return Legalized; 2006 } 2007 assert(TypeIdx == 1 && 2008 "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"); 2009 Observer.changingInstr(MI); 2010 widenScalarDst(MI, WideTy, 1); 2011 Observer.changedInstr(MI); 2012 return Legalized; 2013 case TargetOpcode::G_EXTRACT: 2014 return widenScalarExtract(MI, TypeIdx, WideTy); 2015 case TargetOpcode::G_INSERT: 2016 return widenScalarInsert(MI, TypeIdx, WideTy); 2017 case TargetOpcode::G_MERGE_VALUES: 2018 return widenScalarMergeValues(MI, TypeIdx, WideTy); 2019 case TargetOpcode::G_UNMERGE_VALUES: 2020 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 2021 case TargetOpcode::G_SADDO: 2022 case TargetOpcode::G_SSUBO: 2023 case TargetOpcode::G_UADDO: 2024 case TargetOpcode::G_USUBO: 2025 case TargetOpcode::G_SADDE: 2026 case TargetOpcode::G_SSUBE: 2027 case TargetOpcode::G_UADDE: 2028 case TargetOpcode::G_USUBE: 2029 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 2030 case TargetOpcode::G_UMULO: 2031 case TargetOpcode::G_SMULO: 2032 return widenScalarMulo(MI, TypeIdx, WideTy); 2033 case TargetOpcode::G_SADDSAT: 2034 case TargetOpcode::G_SSUBSAT: 2035 case TargetOpcode::G_SSHLSAT: 2036 case TargetOpcode::G_UADDSAT: 2037 case TargetOpcode::G_USUBSAT: 2038 case TargetOpcode::G_USHLSAT: 2039 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 2040 case TargetOpcode::G_CTTZ: 2041 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2042 case TargetOpcode::G_CTLZ: 2043 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2044 case TargetOpcode::G_CTPOP: { 2045 if (TypeIdx == 0) { 2046 Observer.changingInstr(MI); 2047 widenScalarDst(MI, WideTy, 0); 2048 Observer.changedInstr(MI); 2049 return Legalized; 2050 } 2051 2052 Register SrcReg = MI.getOperand(1).getReg(); 2053 2054 // First ZEXT the input. 2055 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 2056 LLT CurTy = MRI.getType(SrcReg); 2057 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 2058 // The count is the same in the larger type except if the original 2059 // value was zero. This can be handled by setting the bit just off 2060 // the top of the original type. 2061 auto TopBit = 2062 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 2063 MIBSrc = MIRBuilder.buildOr( 2064 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 2065 } 2066 2067 // Perform the operation at the larger size. 2068 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 2069 // This is already the correct result for CTPOP and CTTZs 2070 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 2071 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 2072 // The correct result is NewOp - (Difference in widety and current ty). 2073 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 2074 MIBNewOp = MIRBuilder.buildSub( 2075 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 2076 } 2077 2078 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 2079 MI.eraseFromParent(); 2080 return Legalized; 2081 } 2082 case TargetOpcode::G_BSWAP: { 2083 Observer.changingInstr(MI); 2084 Register DstReg = MI.getOperand(0).getReg(); 2085 2086 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 2087 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2088 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 2089 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2090 2091 MI.getOperand(0).setReg(DstExt); 2092 2093 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2094 2095 LLT Ty = MRI.getType(DstReg); 2096 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2097 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 2098 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 2099 2100 MIRBuilder.buildTrunc(DstReg, ShrReg); 2101 Observer.changedInstr(MI); 2102 return Legalized; 2103 } 2104 case TargetOpcode::G_BITREVERSE: { 2105 Observer.changingInstr(MI); 2106 2107 Register DstReg = MI.getOperand(0).getReg(); 2108 LLT Ty = MRI.getType(DstReg); 2109 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2110 2111 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2112 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2113 MI.getOperand(0).setReg(DstExt); 2114 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2115 2116 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 2117 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 2118 MIRBuilder.buildTrunc(DstReg, Shift); 2119 Observer.changedInstr(MI); 2120 return Legalized; 2121 } 2122 case TargetOpcode::G_FREEZE: 2123 Observer.changingInstr(MI); 2124 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2125 widenScalarDst(MI, WideTy); 2126 Observer.changedInstr(MI); 2127 return Legalized; 2128 2129 case TargetOpcode::G_ABS: 2130 Observer.changingInstr(MI); 2131 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2132 widenScalarDst(MI, WideTy); 2133 Observer.changedInstr(MI); 2134 return Legalized; 2135 2136 case TargetOpcode::G_ADD: 2137 case TargetOpcode::G_AND: 2138 case TargetOpcode::G_MUL: 2139 case TargetOpcode::G_OR: 2140 case TargetOpcode::G_XOR: 2141 case TargetOpcode::G_SUB: 2142 // Perform operation at larger width (any extension is fines here, high bits 2143 // don't affect the result) and then truncate the result back to the 2144 // original type. 2145 Observer.changingInstr(MI); 2146 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2147 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2148 widenScalarDst(MI, WideTy); 2149 Observer.changedInstr(MI); 2150 return Legalized; 2151 2152 case TargetOpcode::G_SBFX: 2153 case TargetOpcode::G_UBFX: 2154 Observer.changingInstr(MI); 2155 2156 if (TypeIdx == 0) { 2157 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2158 widenScalarDst(MI, WideTy); 2159 } else { 2160 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2161 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2162 } 2163 2164 Observer.changedInstr(MI); 2165 return Legalized; 2166 2167 case TargetOpcode::G_SHL: 2168 Observer.changingInstr(MI); 2169 2170 if (TypeIdx == 0) { 2171 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2172 widenScalarDst(MI, WideTy); 2173 } else { 2174 assert(TypeIdx == 1); 2175 // The "number of bits to shift" operand must preserve its value as an 2176 // unsigned integer: 2177 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2178 } 2179 2180 Observer.changedInstr(MI); 2181 return Legalized; 2182 2183 case TargetOpcode::G_SDIV: 2184 case TargetOpcode::G_SREM: 2185 case TargetOpcode::G_SMIN: 2186 case TargetOpcode::G_SMAX: 2187 Observer.changingInstr(MI); 2188 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2189 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2190 widenScalarDst(MI, WideTy); 2191 Observer.changedInstr(MI); 2192 return Legalized; 2193 2194 case TargetOpcode::G_SDIVREM: 2195 Observer.changingInstr(MI); 2196 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2197 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2198 widenScalarDst(MI, WideTy); 2199 widenScalarDst(MI, WideTy, 1); 2200 Observer.changedInstr(MI); 2201 return Legalized; 2202 2203 case TargetOpcode::G_ASHR: 2204 case TargetOpcode::G_LSHR: 2205 Observer.changingInstr(MI); 2206 2207 if (TypeIdx == 0) { 2208 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2209 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2210 2211 widenScalarSrc(MI, WideTy, 1, CvtOp); 2212 widenScalarDst(MI, WideTy); 2213 } else { 2214 assert(TypeIdx == 1); 2215 // The "number of bits to shift" operand must preserve its value as an 2216 // unsigned integer: 2217 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2218 } 2219 2220 Observer.changedInstr(MI); 2221 return Legalized; 2222 case TargetOpcode::G_UDIV: 2223 case TargetOpcode::G_UREM: 2224 case TargetOpcode::G_UMIN: 2225 case TargetOpcode::G_UMAX: 2226 Observer.changingInstr(MI); 2227 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2228 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2229 widenScalarDst(MI, WideTy); 2230 Observer.changedInstr(MI); 2231 return Legalized; 2232 2233 case TargetOpcode::G_UDIVREM: 2234 Observer.changingInstr(MI); 2235 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2236 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2237 widenScalarDst(MI, WideTy); 2238 widenScalarDst(MI, WideTy, 1); 2239 Observer.changedInstr(MI); 2240 return Legalized; 2241 2242 case TargetOpcode::G_SELECT: 2243 Observer.changingInstr(MI); 2244 if (TypeIdx == 0) { 2245 // Perform operation at larger width (any extension is fine here, high 2246 // bits don't affect the result) and then truncate the result back to the 2247 // original type. 2248 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2249 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2250 widenScalarDst(MI, WideTy); 2251 } else { 2252 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2253 // Explicit extension is required here since high bits affect the result. 2254 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2255 } 2256 Observer.changedInstr(MI); 2257 return Legalized; 2258 2259 case TargetOpcode::G_FPTOSI: 2260 case TargetOpcode::G_FPTOUI: 2261 Observer.changingInstr(MI); 2262 2263 if (TypeIdx == 0) 2264 widenScalarDst(MI, WideTy); 2265 else 2266 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2267 2268 Observer.changedInstr(MI); 2269 return Legalized; 2270 case TargetOpcode::G_SITOFP: 2271 Observer.changingInstr(MI); 2272 2273 if (TypeIdx == 0) 2274 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2275 else 2276 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2277 2278 Observer.changedInstr(MI); 2279 return Legalized; 2280 case TargetOpcode::G_UITOFP: 2281 Observer.changingInstr(MI); 2282 2283 if (TypeIdx == 0) 2284 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2285 else 2286 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2287 2288 Observer.changedInstr(MI); 2289 return Legalized; 2290 case TargetOpcode::G_LOAD: 2291 case TargetOpcode::G_SEXTLOAD: 2292 case TargetOpcode::G_ZEXTLOAD: 2293 Observer.changingInstr(MI); 2294 widenScalarDst(MI, WideTy); 2295 Observer.changedInstr(MI); 2296 return Legalized; 2297 2298 case TargetOpcode::G_STORE: { 2299 if (TypeIdx != 0) 2300 return UnableToLegalize; 2301 2302 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2303 if (!Ty.isScalar()) 2304 return UnableToLegalize; 2305 2306 Observer.changingInstr(MI); 2307 2308 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2309 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2310 widenScalarSrc(MI, WideTy, 0, ExtType); 2311 2312 Observer.changedInstr(MI); 2313 return Legalized; 2314 } 2315 case TargetOpcode::G_CONSTANT: { 2316 MachineOperand &SrcMO = MI.getOperand(1); 2317 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2318 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2319 MRI.getType(MI.getOperand(0).getReg())); 2320 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2321 ExtOpc == TargetOpcode::G_ANYEXT) && 2322 "Illegal Extend"); 2323 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2324 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2325 ? SrcVal.sext(WideTy.getSizeInBits()) 2326 : SrcVal.zext(WideTy.getSizeInBits()); 2327 Observer.changingInstr(MI); 2328 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2329 2330 widenScalarDst(MI, WideTy); 2331 Observer.changedInstr(MI); 2332 return Legalized; 2333 } 2334 case TargetOpcode::G_FCONSTANT: { 2335 MachineOperand &SrcMO = MI.getOperand(1); 2336 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2337 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2338 bool LosesInfo; 2339 switch (WideTy.getSizeInBits()) { 2340 case 32: 2341 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2342 &LosesInfo); 2343 break; 2344 case 64: 2345 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2346 &LosesInfo); 2347 break; 2348 default: 2349 return UnableToLegalize; 2350 } 2351 2352 assert(!LosesInfo && "extend should always be lossless"); 2353 2354 Observer.changingInstr(MI); 2355 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2356 2357 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2358 Observer.changedInstr(MI); 2359 return Legalized; 2360 } 2361 case TargetOpcode::G_IMPLICIT_DEF: { 2362 Observer.changingInstr(MI); 2363 widenScalarDst(MI, WideTy); 2364 Observer.changedInstr(MI); 2365 return Legalized; 2366 } 2367 case TargetOpcode::G_BRCOND: 2368 Observer.changingInstr(MI); 2369 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2370 Observer.changedInstr(MI); 2371 return Legalized; 2372 2373 case TargetOpcode::G_FCMP: 2374 Observer.changingInstr(MI); 2375 if (TypeIdx == 0) 2376 widenScalarDst(MI, WideTy); 2377 else { 2378 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2379 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2380 } 2381 Observer.changedInstr(MI); 2382 return Legalized; 2383 2384 case TargetOpcode::G_ICMP: 2385 Observer.changingInstr(MI); 2386 if (TypeIdx == 0) 2387 widenScalarDst(MI, WideTy); 2388 else { 2389 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2390 MI.getOperand(1).getPredicate())) 2391 ? TargetOpcode::G_SEXT 2392 : TargetOpcode::G_ZEXT; 2393 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2394 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2395 } 2396 Observer.changedInstr(MI); 2397 return Legalized; 2398 2399 case TargetOpcode::G_PTR_ADD: 2400 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2401 Observer.changingInstr(MI); 2402 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2403 Observer.changedInstr(MI); 2404 return Legalized; 2405 2406 case TargetOpcode::G_PHI: { 2407 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2408 2409 Observer.changingInstr(MI); 2410 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2411 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2412 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2413 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2414 } 2415 2416 MachineBasicBlock &MBB = *MI.getParent(); 2417 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2418 widenScalarDst(MI, WideTy); 2419 Observer.changedInstr(MI); 2420 return Legalized; 2421 } 2422 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2423 if (TypeIdx == 0) { 2424 Register VecReg = MI.getOperand(1).getReg(); 2425 LLT VecTy = MRI.getType(VecReg); 2426 Observer.changingInstr(MI); 2427 2428 widenScalarSrc( 2429 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, 2430 TargetOpcode::G_SEXT); 2431 2432 widenScalarDst(MI, WideTy, 0); 2433 Observer.changedInstr(MI); 2434 return Legalized; 2435 } 2436 2437 if (TypeIdx != 2) 2438 return UnableToLegalize; 2439 Observer.changingInstr(MI); 2440 // TODO: Probably should be zext 2441 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2442 Observer.changedInstr(MI); 2443 return Legalized; 2444 } 2445 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2446 if (TypeIdx == 1) { 2447 Observer.changingInstr(MI); 2448 2449 Register VecReg = MI.getOperand(1).getReg(); 2450 LLT VecTy = MRI.getType(VecReg); 2451 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); 2452 2453 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2454 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2455 widenScalarDst(MI, WideVecTy, 0); 2456 Observer.changedInstr(MI); 2457 return Legalized; 2458 } 2459 2460 if (TypeIdx == 2) { 2461 Observer.changingInstr(MI); 2462 // TODO: Probably should be zext 2463 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2464 Observer.changedInstr(MI); 2465 return Legalized; 2466 } 2467 2468 return UnableToLegalize; 2469 } 2470 case TargetOpcode::G_FADD: 2471 case TargetOpcode::G_FMUL: 2472 case TargetOpcode::G_FSUB: 2473 case TargetOpcode::G_FMA: 2474 case TargetOpcode::G_FMAD: 2475 case TargetOpcode::G_FNEG: 2476 case TargetOpcode::G_FABS: 2477 case TargetOpcode::G_FCANONICALIZE: 2478 case TargetOpcode::G_FMINNUM: 2479 case TargetOpcode::G_FMAXNUM: 2480 case TargetOpcode::G_FMINNUM_IEEE: 2481 case TargetOpcode::G_FMAXNUM_IEEE: 2482 case TargetOpcode::G_FMINIMUM: 2483 case TargetOpcode::G_FMAXIMUM: 2484 case TargetOpcode::G_FDIV: 2485 case TargetOpcode::G_FREM: 2486 case TargetOpcode::G_FCEIL: 2487 case TargetOpcode::G_FFLOOR: 2488 case TargetOpcode::G_FCOS: 2489 case TargetOpcode::G_FSIN: 2490 case TargetOpcode::G_FLOG10: 2491 case TargetOpcode::G_FLOG: 2492 case TargetOpcode::G_FLOG2: 2493 case TargetOpcode::G_FRINT: 2494 case TargetOpcode::G_FNEARBYINT: 2495 case TargetOpcode::G_FSQRT: 2496 case TargetOpcode::G_FEXP: 2497 case TargetOpcode::G_FEXP2: 2498 case TargetOpcode::G_FPOW: 2499 case TargetOpcode::G_INTRINSIC_TRUNC: 2500 case TargetOpcode::G_INTRINSIC_ROUND: 2501 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2502 assert(TypeIdx == 0); 2503 Observer.changingInstr(MI); 2504 2505 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2506 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2507 2508 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2509 Observer.changedInstr(MI); 2510 return Legalized; 2511 case TargetOpcode::G_FPOWI: { 2512 if (TypeIdx != 0) 2513 return UnableToLegalize; 2514 Observer.changingInstr(MI); 2515 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2516 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2517 Observer.changedInstr(MI); 2518 return Legalized; 2519 } 2520 case TargetOpcode::G_INTTOPTR: 2521 if (TypeIdx != 1) 2522 return UnableToLegalize; 2523 2524 Observer.changingInstr(MI); 2525 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2526 Observer.changedInstr(MI); 2527 return Legalized; 2528 case TargetOpcode::G_PTRTOINT: 2529 if (TypeIdx != 0) 2530 return UnableToLegalize; 2531 2532 Observer.changingInstr(MI); 2533 widenScalarDst(MI, WideTy, 0); 2534 Observer.changedInstr(MI); 2535 return Legalized; 2536 case TargetOpcode::G_BUILD_VECTOR: { 2537 Observer.changingInstr(MI); 2538 2539 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2540 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2541 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2542 2543 // Avoid changing the result vector type if the source element type was 2544 // requested. 2545 if (TypeIdx == 1) { 2546 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2547 } else { 2548 widenScalarDst(MI, WideTy, 0); 2549 } 2550 2551 Observer.changedInstr(MI); 2552 return Legalized; 2553 } 2554 case TargetOpcode::G_SEXT_INREG: 2555 if (TypeIdx != 0) 2556 return UnableToLegalize; 2557 2558 Observer.changingInstr(MI); 2559 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2560 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2561 Observer.changedInstr(MI); 2562 return Legalized; 2563 case TargetOpcode::G_PTRMASK: { 2564 if (TypeIdx != 1) 2565 return UnableToLegalize; 2566 Observer.changingInstr(MI); 2567 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2568 Observer.changedInstr(MI); 2569 return Legalized; 2570 } 2571 } 2572 } 2573 2574 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2575 MachineIRBuilder &B, Register Src, LLT Ty) { 2576 auto Unmerge = B.buildUnmerge(Ty, Src); 2577 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2578 Pieces.push_back(Unmerge.getReg(I)); 2579 } 2580 2581 LegalizerHelper::LegalizeResult 2582 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2583 Register Dst = MI.getOperand(0).getReg(); 2584 Register Src = MI.getOperand(1).getReg(); 2585 LLT DstTy = MRI.getType(Dst); 2586 LLT SrcTy = MRI.getType(Src); 2587 2588 if (SrcTy.isVector()) { 2589 LLT SrcEltTy = SrcTy.getElementType(); 2590 SmallVector<Register, 8> SrcRegs; 2591 2592 if (DstTy.isVector()) { 2593 int NumDstElt = DstTy.getNumElements(); 2594 int NumSrcElt = SrcTy.getNumElements(); 2595 2596 LLT DstEltTy = DstTy.getElementType(); 2597 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2598 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2599 2600 // If there's an element size mismatch, insert intermediate casts to match 2601 // the result element type. 2602 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2603 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2604 // 2605 // => 2606 // 2607 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2608 // %3:_(<2 x s8>) = G_BITCAST %2 2609 // %4:_(<2 x s8>) = G_BITCAST %3 2610 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2611 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); 2612 SrcPartTy = SrcEltTy; 2613 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2614 // 2615 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2616 // 2617 // => 2618 // 2619 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2620 // %3:_(s16) = G_BITCAST %2 2621 // %4:_(s16) = G_BITCAST %3 2622 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2623 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); 2624 DstCastTy = DstEltTy; 2625 } 2626 2627 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2628 for (Register &SrcReg : SrcRegs) 2629 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2630 } else 2631 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2632 2633 MIRBuilder.buildMerge(Dst, SrcRegs); 2634 MI.eraseFromParent(); 2635 return Legalized; 2636 } 2637 2638 if (DstTy.isVector()) { 2639 SmallVector<Register, 8> SrcRegs; 2640 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2641 MIRBuilder.buildMerge(Dst, SrcRegs); 2642 MI.eraseFromParent(); 2643 return Legalized; 2644 } 2645 2646 return UnableToLegalize; 2647 } 2648 2649 /// Figure out the bit offset into a register when coercing a vector index for 2650 /// the wide element type. This is only for the case when promoting vector to 2651 /// one with larger elements. 2652 // 2653 /// 2654 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2655 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2656 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2657 Register Idx, 2658 unsigned NewEltSize, 2659 unsigned OldEltSize) { 2660 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2661 LLT IdxTy = B.getMRI()->getType(Idx); 2662 2663 // Now figure out the amount we need to shift to get the target bits. 2664 auto OffsetMask = B.buildConstant( 2665 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2666 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2667 return B.buildShl(IdxTy, OffsetIdx, 2668 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2669 } 2670 2671 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2672 /// is casting to a vector with a smaller element size, perform multiple element 2673 /// extracts and merge the results. If this is coercing to a vector with larger 2674 /// elements, index the bitcasted vector and extract the target element with bit 2675 /// operations. This is intended to force the indexing in the native register 2676 /// size for architectures that can dynamically index the register file. 2677 LegalizerHelper::LegalizeResult 2678 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2679 LLT CastTy) { 2680 if (TypeIdx != 1) 2681 return UnableToLegalize; 2682 2683 Register Dst = MI.getOperand(0).getReg(); 2684 Register SrcVec = MI.getOperand(1).getReg(); 2685 Register Idx = MI.getOperand(2).getReg(); 2686 LLT SrcVecTy = MRI.getType(SrcVec); 2687 LLT IdxTy = MRI.getType(Idx); 2688 2689 LLT SrcEltTy = SrcVecTy.getElementType(); 2690 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2691 unsigned OldNumElts = SrcVecTy.getNumElements(); 2692 2693 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2694 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2695 2696 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2697 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2698 if (NewNumElts > OldNumElts) { 2699 // Decreasing the vector element size 2700 // 2701 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2702 // => 2703 // v4i32:castx = bitcast x:v2i64 2704 // 2705 // i64 = bitcast 2706 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2707 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2708 // 2709 if (NewNumElts % OldNumElts != 0) 2710 return UnableToLegalize; 2711 2712 // Type of the intermediate result vector. 2713 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2714 LLT MidTy = 2715 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); 2716 2717 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2718 2719 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2720 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2721 2722 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2723 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2724 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2725 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2726 NewOps[I] = Elt.getReg(0); 2727 } 2728 2729 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2730 MIRBuilder.buildBitcast(Dst, NewVec); 2731 MI.eraseFromParent(); 2732 return Legalized; 2733 } 2734 2735 if (NewNumElts < OldNumElts) { 2736 if (NewEltSize % OldEltSize != 0) 2737 return UnableToLegalize; 2738 2739 // This only depends on powers of 2 because we use bit tricks to figure out 2740 // the bit offset we need to shift to get the target element. A general 2741 // expansion could emit division/multiply. 2742 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2743 return UnableToLegalize; 2744 2745 // Increasing the vector element size. 2746 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2747 // 2748 // => 2749 // 2750 // %cast = G_BITCAST %vec 2751 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2752 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2753 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2754 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2755 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2756 // %elt = G_TRUNC %elt_bits 2757 2758 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2759 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2760 2761 // Divide to get the index in the wider element type. 2762 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2763 2764 Register WideElt = CastVec; 2765 if (CastTy.isVector()) { 2766 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2767 ScaledIdx).getReg(0); 2768 } 2769 2770 // Compute the bit offset into the register of the target element. 2771 Register OffsetBits = getBitcastWiderVectorElementOffset( 2772 MIRBuilder, Idx, NewEltSize, OldEltSize); 2773 2774 // Shift the wide element to get the target element. 2775 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2776 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2777 MI.eraseFromParent(); 2778 return Legalized; 2779 } 2780 2781 return UnableToLegalize; 2782 } 2783 2784 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2785 /// TargetReg, while preserving other bits in \p TargetReg. 2786 /// 2787 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2788 static Register buildBitFieldInsert(MachineIRBuilder &B, 2789 Register TargetReg, Register InsertReg, 2790 Register OffsetBits) { 2791 LLT TargetTy = B.getMRI()->getType(TargetReg); 2792 LLT InsertTy = B.getMRI()->getType(InsertReg); 2793 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2794 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2795 2796 // Produce a bitmask of the value to insert 2797 auto EltMask = B.buildConstant( 2798 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2799 InsertTy.getSizeInBits())); 2800 // Shift it into position 2801 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2802 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2803 2804 // Clear out the bits in the wide element 2805 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2806 2807 // The value to insert has all zeros already, so stick it into the masked 2808 // wide element. 2809 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2810 } 2811 2812 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2813 /// is increasing the element size, perform the indexing in the target element 2814 /// type, and use bit operations to insert at the element position. This is 2815 /// intended for architectures that can dynamically index the register file and 2816 /// want to force indexing in the native register size. 2817 LegalizerHelper::LegalizeResult 2818 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2819 LLT CastTy) { 2820 if (TypeIdx != 0) 2821 return UnableToLegalize; 2822 2823 Register Dst = MI.getOperand(0).getReg(); 2824 Register SrcVec = MI.getOperand(1).getReg(); 2825 Register Val = MI.getOperand(2).getReg(); 2826 Register Idx = MI.getOperand(3).getReg(); 2827 2828 LLT VecTy = MRI.getType(Dst); 2829 LLT IdxTy = MRI.getType(Idx); 2830 2831 LLT VecEltTy = VecTy.getElementType(); 2832 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2833 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2834 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2835 2836 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2837 unsigned OldNumElts = VecTy.getNumElements(); 2838 2839 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2840 if (NewNumElts < OldNumElts) { 2841 if (NewEltSize % OldEltSize != 0) 2842 return UnableToLegalize; 2843 2844 // This only depends on powers of 2 because we use bit tricks to figure out 2845 // the bit offset we need to shift to get the target element. A general 2846 // expansion could emit division/multiply. 2847 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2848 return UnableToLegalize; 2849 2850 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2851 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2852 2853 // Divide to get the index in the wider element type. 2854 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2855 2856 Register ExtractedElt = CastVec; 2857 if (CastTy.isVector()) { 2858 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2859 ScaledIdx).getReg(0); 2860 } 2861 2862 // Compute the bit offset into the register of the target element. 2863 Register OffsetBits = getBitcastWiderVectorElementOffset( 2864 MIRBuilder, Idx, NewEltSize, OldEltSize); 2865 2866 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2867 Val, OffsetBits); 2868 if (CastTy.isVector()) { 2869 InsertedElt = MIRBuilder.buildInsertVectorElement( 2870 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2871 } 2872 2873 MIRBuilder.buildBitcast(Dst, InsertedElt); 2874 MI.eraseFromParent(); 2875 return Legalized; 2876 } 2877 2878 return UnableToLegalize; 2879 } 2880 2881 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) { 2882 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2883 Register DstReg = LoadMI.getDstReg(); 2884 Register PtrReg = LoadMI.getPointerReg(); 2885 LLT DstTy = MRI.getType(DstReg); 2886 MachineMemOperand &MMO = LoadMI.getMMO(); 2887 LLT MemTy = MMO.getMemoryType(); 2888 MachineFunction &MF = MIRBuilder.getMF(); 2889 if (MemTy.isVector()) 2890 return UnableToLegalize; 2891 2892 unsigned MemSizeInBits = MemTy.getSizeInBits(); 2893 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); 2894 2895 if (MemSizeInBits != MemStoreSizeInBits) { 2896 // Promote to a byte-sized load if not loading an integral number of 2897 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 2898 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); 2899 MachineMemOperand *NewMMO = 2900 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); 2901 2902 Register LoadReg = DstReg; 2903 LLT LoadTy = DstTy; 2904 2905 // If this wasn't already an extending load, we need to widen the result 2906 // register to avoid creating a load with a narrower result than the source. 2907 if (MemStoreSizeInBits > DstTy.getSizeInBits()) { 2908 LoadTy = WideMemTy; 2909 LoadReg = MRI.createGenericVirtualRegister(WideMemTy); 2910 } 2911 2912 if (isa<GSExtLoad>(LoadMI)) { 2913 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2914 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); 2915 } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == DstTy) { 2916 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2917 // The extra bits are guaranteed to be zero, since we stored them that 2918 // way. A zext load from Wide thus automatically gives zext from MemVT. 2919 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); 2920 } else { 2921 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); 2922 } 2923 2924 if (DstTy != LoadTy) 2925 MIRBuilder.buildTrunc(DstReg, LoadReg); 2926 2927 LoadMI.eraseFromParent(); 2928 return Legalized; 2929 } 2930 2931 // This load needs splitting into power of 2 sized loads. 2932 if (DstTy.isVector()) 2933 return UnableToLegalize; 2934 if (isPowerOf2_32(MemSizeInBits)) 2935 return UnableToLegalize; // Don't know what we're being asked to do. 2936 2937 // Big endian lowering not implemented. 2938 if (MIRBuilder.getDataLayout().isBigEndian()) 2939 return UnableToLegalize; 2940 2941 // Our strategy here is to generate anyextending loads for the smaller 2942 // types up to next power-2 result type, and then combine the two larger 2943 // result values together, before truncating back down to the non-pow-2 2944 // type. 2945 // E.g. v1 = i24 load => 2946 // v2 = i32 zextload (2 byte) 2947 // v3 = i32 load (1 byte) 2948 // v4 = i32 shl v3, 16 2949 // v5 = i32 or v4, v2 2950 // v1 = i24 trunc v5 2951 // By doing this we generate the correct truncate which should get 2952 // combined away as an artifact with a matching extend. 2953 uint64_t LargeSplitSize = PowerOf2Floor(MemSizeInBits); 2954 uint64_t SmallSplitSize = MemSizeInBits - LargeSplitSize; 2955 2956 MachineMemOperand *LargeMMO = 2957 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2958 MachineMemOperand *SmallMMO = 2959 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2960 2961 LLT PtrTy = MRI.getType(PtrReg); 2962 unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits()); 2963 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2964 auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy, 2965 PtrReg, *LargeMMO); 2966 2967 auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), 2968 LargeSplitSize / 8); 2969 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2970 auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 2971 auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy, 2972 SmallPtr, *SmallMMO); 2973 2974 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2975 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2976 2977 if (AnyExtTy == DstTy) 2978 MIRBuilder.buildOr(DstReg, Shift, LargeLoad); 2979 else { 2980 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2981 MIRBuilder.buildTrunc(DstReg, {Or}); 2982 } 2983 2984 LoadMI.eraseFromParent(); 2985 return Legalized; 2986 } 2987 2988 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) { 2989 // Lower a non-power of 2 store into multiple pow-2 stores. 2990 // E.g. split an i24 store into an i16 store + i8 store. 2991 // We do this by first extending the stored value to the next largest power 2992 // of 2 type, and then using truncating stores to store the components. 2993 // By doing this, likewise with G_LOAD, generate an extend that can be 2994 // artifact-combined away instead of leaving behind extracts. 2995 Register SrcReg = StoreMI.getValueReg(); 2996 Register PtrReg = StoreMI.getPointerReg(); 2997 LLT SrcTy = MRI.getType(SrcReg); 2998 MachineFunction &MF = MIRBuilder.getMF(); 2999 MachineMemOperand &MMO = **StoreMI.memoperands_begin(); 3000 LLT MemTy = MMO.getMemoryType(); 3001 3002 if (SrcTy.isVector()) 3003 return UnableToLegalize; 3004 3005 unsigned StoreWidth = MemTy.getSizeInBits(); 3006 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); 3007 3008 if (StoreWidth != StoreSizeInBits) { 3009 // Promote to a byte-sized store with upper bits zero if not 3010 // storing an integral number of bytes. For example, promote 3011 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 3012 LLT WideTy = LLT::scalar(StoreSizeInBits); 3013 3014 if (StoreSizeInBits > SrcTy.getSizeInBits()) { 3015 // Avoid creating a store with a narrower source than result. 3016 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 3017 SrcTy = WideTy; 3018 } 3019 3020 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); 3021 3022 MachineMemOperand *NewMMO = 3023 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); 3024 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); 3025 StoreMI.eraseFromParent(); 3026 return Legalized; 3027 } 3028 3029 if (isPowerOf2_32(MemTy.getSizeInBits())) 3030 return UnableToLegalize; // Don't know what we're being asked to do. 3031 3032 // Extend to the next pow-2. If this store was itself the result of lowering, 3033 // e.g. an s56 store being broken into s32 + s24, we might have a stored type 3034 // that's wider the stored size. 3035 const LLT NewSrcTy = LLT::scalar(NextPowerOf2(MemTy.getSizeInBits())); 3036 auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg); 3037 3038 // Obtain the smaller value by shifting away the larger value. 3039 uint64_t LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits()); 3040 uint64_t SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize; 3041 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize); 3042 auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt); 3043 3044 // Generate the PtrAdd and truncating stores. 3045 LLT PtrTy = MRI.getType(PtrReg); 3046 auto OffsetCst = MIRBuilder.buildConstant( 3047 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 3048 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 3049 auto SmallPtr = 3050 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 3051 3052 MachineMemOperand *LargeMMO = 3053 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3054 MachineMemOperand *SmallMMO = 3055 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3056 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); 3057 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); 3058 StoreMI.eraseFromParent(); 3059 return Legalized; 3060 } 3061 3062 LegalizerHelper::LegalizeResult 3063 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 3064 switch (MI.getOpcode()) { 3065 case TargetOpcode::G_LOAD: { 3066 if (TypeIdx != 0) 3067 return UnableToLegalize; 3068 MachineMemOperand &MMO = **MI.memoperands_begin(); 3069 3070 // Not sure how to interpret a bitcast of an extending load. 3071 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3072 return UnableToLegalize; 3073 3074 Observer.changingInstr(MI); 3075 bitcastDst(MI, CastTy, 0); 3076 MMO.setType(CastTy); 3077 Observer.changedInstr(MI); 3078 return Legalized; 3079 } 3080 case TargetOpcode::G_STORE: { 3081 if (TypeIdx != 0) 3082 return UnableToLegalize; 3083 3084 MachineMemOperand &MMO = **MI.memoperands_begin(); 3085 3086 // Not sure how to interpret a bitcast of a truncating store. 3087 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3088 return UnableToLegalize; 3089 3090 Observer.changingInstr(MI); 3091 bitcastSrc(MI, CastTy, 0); 3092 MMO.setType(CastTy); 3093 Observer.changedInstr(MI); 3094 return Legalized; 3095 } 3096 case TargetOpcode::G_SELECT: { 3097 if (TypeIdx != 0) 3098 return UnableToLegalize; 3099 3100 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 3101 LLVM_DEBUG( 3102 dbgs() << "bitcast action not implemented for vector select\n"); 3103 return UnableToLegalize; 3104 } 3105 3106 Observer.changingInstr(MI); 3107 bitcastSrc(MI, CastTy, 2); 3108 bitcastSrc(MI, CastTy, 3); 3109 bitcastDst(MI, CastTy, 0); 3110 Observer.changedInstr(MI); 3111 return Legalized; 3112 } 3113 case TargetOpcode::G_AND: 3114 case TargetOpcode::G_OR: 3115 case TargetOpcode::G_XOR: { 3116 Observer.changingInstr(MI); 3117 bitcastSrc(MI, CastTy, 1); 3118 bitcastSrc(MI, CastTy, 2); 3119 bitcastDst(MI, CastTy, 0); 3120 Observer.changedInstr(MI); 3121 return Legalized; 3122 } 3123 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 3124 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 3125 case TargetOpcode::G_INSERT_VECTOR_ELT: 3126 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 3127 default: 3128 return UnableToLegalize; 3129 } 3130 } 3131 3132 // Legalize an instruction by changing the opcode in place. 3133 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 3134 Observer.changingInstr(MI); 3135 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 3136 Observer.changedInstr(MI); 3137 } 3138 3139 LegalizerHelper::LegalizeResult 3140 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 3141 using namespace TargetOpcode; 3142 3143 switch(MI.getOpcode()) { 3144 default: 3145 return UnableToLegalize; 3146 case TargetOpcode::G_BITCAST: 3147 return lowerBitcast(MI); 3148 case TargetOpcode::G_SREM: 3149 case TargetOpcode::G_UREM: { 3150 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3151 auto Quot = 3152 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 3153 {MI.getOperand(1), MI.getOperand(2)}); 3154 3155 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 3156 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 3157 MI.eraseFromParent(); 3158 return Legalized; 3159 } 3160 case TargetOpcode::G_SADDO: 3161 case TargetOpcode::G_SSUBO: 3162 return lowerSADDO_SSUBO(MI); 3163 case TargetOpcode::G_UMULH: 3164 case TargetOpcode::G_SMULH: 3165 return lowerSMULH_UMULH(MI); 3166 case TargetOpcode::G_SMULO: 3167 case TargetOpcode::G_UMULO: { 3168 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 3169 // result. 3170 Register Res = MI.getOperand(0).getReg(); 3171 Register Overflow = MI.getOperand(1).getReg(); 3172 Register LHS = MI.getOperand(2).getReg(); 3173 Register RHS = MI.getOperand(3).getReg(); 3174 LLT Ty = MRI.getType(Res); 3175 3176 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 3177 ? TargetOpcode::G_SMULH 3178 : TargetOpcode::G_UMULH; 3179 3180 Observer.changingInstr(MI); 3181 const auto &TII = MIRBuilder.getTII(); 3182 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 3183 MI.RemoveOperand(1); 3184 Observer.changedInstr(MI); 3185 3186 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 3187 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3188 3189 // Move insert point forward so we can use the Res register if needed. 3190 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 3191 3192 // For *signed* multiply, overflow is detected by checking: 3193 // (hi != (lo >> bitwidth-1)) 3194 if (Opcode == TargetOpcode::G_SMULH) { 3195 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 3196 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 3197 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 3198 } else { 3199 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 3200 } 3201 return Legalized; 3202 } 3203 case TargetOpcode::G_FNEG: { 3204 Register Res = MI.getOperand(0).getReg(); 3205 LLT Ty = MRI.getType(Res); 3206 3207 // TODO: Handle vector types once we are able to 3208 // represent them. 3209 if (Ty.isVector()) 3210 return UnableToLegalize; 3211 auto SignMask = 3212 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3213 Register SubByReg = MI.getOperand(1).getReg(); 3214 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3215 MI.eraseFromParent(); 3216 return Legalized; 3217 } 3218 case TargetOpcode::G_FSUB: { 3219 Register Res = MI.getOperand(0).getReg(); 3220 LLT Ty = MRI.getType(Res); 3221 3222 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3223 // First, check if G_FNEG is marked as Lower. If so, we may 3224 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 3225 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 3226 return UnableToLegalize; 3227 Register LHS = MI.getOperand(1).getReg(); 3228 Register RHS = MI.getOperand(2).getReg(); 3229 Register Neg = MRI.createGenericVirtualRegister(Ty); 3230 MIRBuilder.buildFNeg(Neg, RHS); 3231 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3232 MI.eraseFromParent(); 3233 return Legalized; 3234 } 3235 case TargetOpcode::G_FMAD: 3236 return lowerFMad(MI); 3237 case TargetOpcode::G_FFLOOR: 3238 return lowerFFloor(MI); 3239 case TargetOpcode::G_INTRINSIC_ROUND: 3240 return lowerIntrinsicRound(MI); 3241 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 3242 // Since round even is the assumed rounding mode for unconstrained FP 3243 // operations, rint and roundeven are the same operation. 3244 changeOpcode(MI, TargetOpcode::G_FRINT); 3245 return Legalized; 3246 } 3247 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3248 Register OldValRes = MI.getOperand(0).getReg(); 3249 Register SuccessRes = MI.getOperand(1).getReg(); 3250 Register Addr = MI.getOperand(2).getReg(); 3251 Register CmpVal = MI.getOperand(3).getReg(); 3252 Register NewVal = MI.getOperand(4).getReg(); 3253 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3254 **MI.memoperands_begin()); 3255 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3256 MI.eraseFromParent(); 3257 return Legalized; 3258 } 3259 case TargetOpcode::G_LOAD: 3260 case TargetOpcode::G_SEXTLOAD: 3261 case TargetOpcode::G_ZEXTLOAD: 3262 return lowerLoad(cast<GAnyLoad>(MI)); 3263 case TargetOpcode::G_STORE: 3264 return lowerStore(cast<GStore>(MI)); 3265 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3266 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3267 case TargetOpcode::G_CTLZ: 3268 case TargetOpcode::G_CTTZ: 3269 case TargetOpcode::G_CTPOP: 3270 return lowerBitCount(MI); 3271 case G_UADDO: { 3272 Register Res = MI.getOperand(0).getReg(); 3273 Register CarryOut = MI.getOperand(1).getReg(); 3274 Register LHS = MI.getOperand(2).getReg(); 3275 Register RHS = MI.getOperand(3).getReg(); 3276 3277 MIRBuilder.buildAdd(Res, LHS, RHS); 3278 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3279 3280 MI.eraseFromParent(); 3281 return Legalized; 3282 } 3283 case G_UADDE: { 3284 Register Res = MI.getOperand(0).getReg(); 3285 Register CarryOut = MI.getOperand(1).getReg(); 3286 Register LHS = MI.getOperand(2).getReg(); 3287 Register RHS = MI.getOperand(3).getReg(); 3288 Register CarryIn = MI.getOperand(4).getReg(); 3289 LLT Ty = MRI.getType(Res); 3290 3291 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3292 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3293 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3294 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3295 3296 MI.eraseFromParent(); 3297 return Legalized; 3298 } 3299 case G_USUBO: { 3300 Register Res = MI.getOperand(0).getReg(); 3301 Register BorrowOut = MI.getOperand(1).getReg(); 3302 Register LHS = MI.getOperand(2).getReg(); 3303 Register RHS = MI.getOperand(3).getReg(); 3304 3305 MIRBuilder.buildSub(Res, LHS, RHS); 3306 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3307 3308 MI.eraseFromParent(); 3309 return Legalized; 3310 } 3311 case G_USUBE: { 3312 Register Res = MI.getOperand(0).getReg(); 3313 Register BorrowOut = MI.getOperand(1).getReg(); 3314 Register LHS = MI.getOperand(2).getReg(); 3315 Register RHS = MI.getOperand(3).getReg(); 3316 Register BorrowIn = MI.getOperand(4).getReg(); 3317 const LLT CondTy = MRI.getType(BorrowOut); 3318 const LLT Ty = MRI.getType(Res); 3319 3320 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3321 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3322 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3323 3324 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3325 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3326 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3327 3328 MI.eraseFromParent(); 3329 return Legalized; 3330 } 3331 case G_UITOFP: 3332 return lowerUITOFP(MI); 3333 case G_SITOFP: 3334 return lowerSITOFP(MI); 3335 case G_FPTOUI: 3336 return lowerFPTOUI(MI); 3337 case G_FPTOSI: 3338 return lowerFPTOSI(MI); 3339 case G_FPTRUNC: 3340 return lowerFPTRUNC(MI); 3341 case G_FPOWI: 3342 return lowerFPOWI(MI); 3343 case G_SMIN: 3344 case G_SMAX: 3345 case G_UMIN: 3346 case G_UMAX: 3347 return lowerMinMax(MI); 3348 case G_FCOPYSIGN: 3349 return lowerFCopySign(MI); 3350 case G_FMINNUM: 3351 case G_FMAXNUM: 3352 return lowerFMinNumMaxNum(MI); 3353 case G_MERGE_VALUES: 3354 return lowerMergeValues(MI); 3355 case G_UNMERGE_VALUES: 3356 return lowerUnmergeValues(MI); 3357 case TargetOpcode::G_SEXT_INREG: { 3358 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3359 int64_t SizeInBits = MI.getOperand(2).getImm(); 3360 3361 Register DstReg = MI.getOperand(0).getReg(); 3362 Register SrcReg = MI.getOperand(1).getReg(); 3363 LLT DstTy = MRI.getType(DstReg); 3364 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3365 3366 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3367 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3368 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3369 MI.eraseFromParent(); 3370 return Legalized; 3371 } 3372 case G_EXTRACT_VECTOR_ELT: 3373 case G_INSERT_VECTOR_ELT: 3374 return lowerExtractInsertVectorElt(MI); 3375 case G_SHUFFLE_VECTOR: 3376 return lowerShuffleVector(MI); 3377 case G_DYN_STACKALLOC: 3378 return lowerDynStackAlloc(MI); 3379 case G_EXTRACT: 3380 return lowerExtract(MI); 3381 case G_INSERT: 3382 return lowerInsert(MI); 3383 case G_BSWAP: 3384 return lowerBswap(MI); 3385 case G_BITREVERSE: 3386 return lowerBitreverse(MI); 3387 case G_READ_REGISTER: 3388 case G_WRITE_REGISTER: 3389 return lowerReadWriteRegister(MI); 3390 case G_UADDSAT: 3391 case G_USUBSAT: { 3392 // Try to make a reasonable guess about which lowering strategy to use. The 3393 // target can override this with custom lowering and calling the 3394 // implementation functions. 3395 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3396 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3397 return lowerAddSubSatToMinMax(MI); 3398 return lowerAddSubSatToAddoSubo(MI); 3399 } 3400 case G_SADDSAT: 3401 case G_SSUBSAT: { 3402 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3403 3404 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3405 // since it's a shorter expansion. However, we would need to figure out the 3406 // preferred boolean type for the carry out for the query. 3407 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3408 return lowerAddSubSatToMinMax(MI); 3409 return lowerAddSubSatToAddoSubo(MI); 3410 } 3411 case G_SSHLSAT: 3412 case G_USHLSAT: 3413 return lowerShlSat(MI); 3414 case G_ABS: 3415 return lowerAbsToAddXor(MI); 3416 case G_SELECT: 3417 return lowerSelect(MI); 3418 case G_SDIVREM: 3419 case G_UDIVREM: 3420 return lowerDIVREM(MI); 3421 case G_FSHL: 3422 case G_FSHR: 3423 return lowerFunnelShift(MI); 3424 case G_ROTL: 3425 case G_ROTR: 3426 return lowerRotate(MI); 3427 } 3428 } 3429 3430 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3431 Align MinAlign) const { 3432 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3433 // datalayout for the preferred alignment. Also there should be a target hook 3434 // for this to allow targets to reduce the alignment and ignore the 3435 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3436 // the type. 3437 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3438 } 3439 3440 MachineInstrBuilder 3441 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3442 MachinePointerInfo &PtrInfo) { 3443 MachineFunction &MF = MIRBuilder.getMF(); 3444 const DataLayout &DL = MIRBuilder.getDataLayout(); 3445 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3446 3447 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3448 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3449 3450 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3451 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3452 } 3453 3454 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3455 LLT VecTy) { 3456 int64_t IdxVal; 3457 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3458 return IdxReg; 3459 3460 LLT IdxTy = B.getMRI()->getType(IdxReg); 3461 unsigned NElts = VecTy.getNumElements(); 3462 if (isPowerOf2_32(NElts)) { 3463 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3464 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3465 } 3466 3467 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3468 .getReg(0); 3469 } 3470 3471 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3472 Register Index) { 3473 LLT EltTy = VecTy.getElementType(); 3474 3475 // Calculate the element offset and add it to the pointer. 3476 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3477 assert(EltSize * 8 == EltTy.getSizeInBits() && 3478 "Converting bits to bytes lost precision"); 3479 3480 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3481 3482 LLT IdxTy = MRI.getType(Index); 3483 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3484 MIRBuilder.buildConstant(IdxTy, EltSize)); 3485 3486 LLT PtrTy = MRI.getType(VecPtr); 3487 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3488 } 3489 3490 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3491 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3492 Register DstReg = MI.getOperand(0).getReg(); 3493 LLT DstTy = MRI.getType(DstReg); 3494 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3495 3496 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3497 3498 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3499 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3500 3501 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3502 MI.eraseFromParent(); 3503 return Legalized; 3504 } 3505 3506 // Handle splitting vector operations which need to have the same number of 3507 // elements in each type index, but each type index may have a different element 3508 // type. 3509 // 3510 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3511 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3512 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3513 // 3514 // Also handles some irregular breakdown cases, e.g. 3515 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3516 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3517 // s64 = G_SHL s64, s32 3518 LegalizerHelper::LegalizeResult 3519 LegalizerHelper::fewerElementsVectorMultiEltType( 3520 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3521 if (TypeIdx != 0) 3522 return UnableToLegalize; 3523 3524 const LLT NarrowTy0 = NarrowTyArg; 3525 const Register DstReg = MI.getOperand(0).getReg(); 3526 LLT DstTy = MRI.getType(DstReg); 3527 LLT LeftoverTy0; 3528 3529 // All of the operands need to have the same number of elements, so if we can 3530 // determine a type breakdown for the result type, we can for all of the 3531 // source types. 3532 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3533 if (NumParts < 0) 3534 return UnableToLegalize; 3535 3536 SmallVector<MachineInstrBuilder, 4> NewInsts; 3537 3538 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3539 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3540 3541 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3542 Register SrcReg = MI.getOperand(I).getReg(); 3543 LLT SrcTyI = MRI.getType(SrcReg); 3544 const auto NewEC = NarrowTy0.isVector() ? NarrowTy0.getElementCount() 3545 : ElementCount::getFixed(1); 3546 LLT NarrowTyI = LLT::scalarOrVector(NewEC, SrcTyI.getScalarType()); 3547 LLT LeftoverTyI; 3548 3549 // Split this operand into the requested typed registers, and any leftover 3550 // required to reproduce the original type. 3551 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3552 LeftoverRegs)) 3553 return UnableToLegalize; 3554 3555 if (I == 1) { 3556 // For the first operand, create an instruction for each part and setup 3557 // the result. 3558 for (Register PartReg : PartRegs) { 3559 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3560 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3561 .addDef(PartDstReg) 3562 .addUse(PartReg)); 3563 DstRegs.push_back(PartDstReg); 3564 } 3565 3566 for (Register LeftoverReg : LeftoverRegs) { 3567 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3568 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3569 .addDef(PartDstReg) 3570 .addUse(LeftoverReg)); 3571 LeftoverDstRegs.push_back(PartDstReg); 3572 } 3573 } else { 3574 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3575 3576 // Add the newly created operand splits to the existing instructions. The 3577 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3578 // pieces. 3579 unsigned InstCount = 0; 3580 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3581 NewInsts[InstCount++].addUse(PartRegs[J]); 3582 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3583 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3584 } 3585 3586 PartRegs.clear(); 3587 LeftoverRegs.clear(); 3588 } 3589 3590 // Insert the newly built operations and rebuild the result register. 3591 for (auto &MIB : NewInsts) 3592 MIRBuilder.insertInstr(MIB); 3593 3594 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3595 3596 MI.eraseFromParent(); 3597 return Legalized; 3598 } 3599 3600 LegalizerHelper::LegalizeResult 3601 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3602 LLT NarrowTy) { 3603 if (TypeIdx != 0) 3604 return UnableToLegalize; 3605 3606 Register DstReg = MI.getOperand(0).getReg(); 3607 Register SrcReg = MI.getOperand(1).getReg(); 3608 LLT DstTy = MRI.getType(DstReg); 3609 LLT SrcTy = MRI.getType(SrcReg); 3610 3611 LLT NarrowTy0 = NarrowTy; 3612 LLT NarrowTy1; 3613 unsigned NumParts; 3614 3615 if (NarrowTy.isVector()) { 3616 // Uneven breakdown not handled. 3617 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3618 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3619 return UnableToLegalize; 3620 3621 NarrowTy1 = LLT::vector(NarrowTy.getElementCount(), SrcTy.getElementType()); 3622 } else { 3623 NumParts = DstTy.getNumElements(); 3624 NarrowTy1 = SrcTy.getElementType(); 3625 } 3626 3627 SmallVector<Register, 4> SrcRegs, DstRegs; 3628 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3629 3630 for (unsigned I = 0; I < NumParts; ++I) { 3631 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3632 MachineInstr *NewInst = 3633 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3634 3635 NewInst->setFlags(MI.getFlags()); 3636 DstRegs.push_back(DstReg); 3637 } 3638 3639 if (NarrowTy.isVector()) 3640 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3641 else 3642 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3643 3644 MI.eraseFromParent(); 3645 return Legalized; 3646 } 3647 3648 LegalizerHelper::LegalizeResult 3649 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3650 LLT NarrowTy) { 3651 Register DstReg = MI.getOperand(0).getReg(); 3652 Register Src0Reg = MI.getOperand(2).getReg(); 3653 LLT DstTy = MRI.getType(DstReg); 3654 LLT SrcTy = MRI.getType(Src0Reg); 3655 3656 unsigned NumParts; 3657 LLT NarrowTy0, NarrowTy1; 3658 3659 if (TypeIdx == 0) { 3660 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3661 unsigned OldElts = DstTy.getNumElements(); 3662 3663 NarrowTy0 = NarrowTy; 3664 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3665 NarrowTy1 = NarrowTy.isVector() ? LLT::vector(NarrowTy.getElementCount(), 3666 SrcTy.getScalarSizeInBits()) 3667 : SrcTy.getElementType(); 3668 3669 } else { 3670 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3671 unsigned OldElts = SrcTy.getNumElements(); 3672 3673 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3674 NarrowTy.getNumElements(); 3675 NarrowTy0 = 3676 LLT::vector(NarrowTy.getElementCount(), DstTy.getScalarSizeInBits()); 3677 NarrowTy1 = NarrowTy; 3678 } 3679 3680 // FIXME: Don't know how to handle the situation where the small vectors 3681 // aren't all the same size yet. 3682 if (NarrowTy1.isVector() && 3683 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3684 return UnableToLegalize; 3685 3686 CmpInst::Predicate Pred 3687 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3688 3689 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3690 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3691 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3692 3693 for (unsigned I = 0; I < NumParts; ++I) { 3694 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3695 DstRegs.push_back(DstReg); 3696 3697 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3698 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3699 else { 3700 MachineInstr *NewCmp 3701 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3702 NewCmp->setFlags(MI.getFlags()); 3703 } 3704 } 3705 3706 if (NarrowTy1.isVector()) 3707 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3708 else 3709 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3710 3711 MI.eraseFromParent(); 3712 return Legalized; 3713 } 3714 3715 LegalizerHelper::LegalizeResult 3716 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3717 LLT NarrowTy) { 3718 Register DstReg = MI.getOperand(0).getReg(); 3719 Register CondReg = MI.getOperand(1).getReg(); 3720 3721 unsigned NumParts = 0; 3722 LLT NarrowTy0, NarrowTy1; 3723 3724 LLT DstTy = MRI.getType(DstReg); 3725 LLT CondTy = MRI.getType(CondReg); 3726 unsigned Size = DstTy.getSizeInBits(); 3727 3728 assert(TypeIdx == 0 || CondTy.isVector()); 3729 3730 if (TypeIdx == 0) { 3731 NarrowTy0 = NarrowTy; 3732 NarrowTy1 = CondTy; 3733 3734 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3735 // FIXME: Don't know how to handle the situation where the small vectors 3736 // aren't all the same size yet. 3737 if (Size % NarrowSize != 0) 3738 return UnableToLegalize; 3739 3740 NumParts = Size / NarrowSize; 3741 3742 // Need to break down the condition type 3743 if (CondTy.isVector()) { 3744 if (CondTy.getNumElements() == NumParts) 3745 NarrowTy1 = CondTy.getElementType(); 3746 else 3747 NarrowTy1 = 3748 LLT::vector(CondTy.getElementCount().divideCoefficientBy(NumParts), 3749 CondTy.getScalarSizeInBits()); 3750 } 3751 } else { 3752 NumParts = CondTy.getNumElements(); 3753 if (NarrowTy.isVector()) { 3754 // TODO: Handle uneven breakdown. 3755 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3756 return UnableToLegalize; 3757 3758 return UnableToLegalize; 3759 } else { 3760 NarrowTy0 = DstTy.getElementType(); 3761 NarrowTy1 = NarrowTy; 3762 } 3763 } 3764 3765 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3766 if (CondTy.isVector()) 3767 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3768 3769 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3770 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3771 3772 for (unsigned i = 0; i < NumParts; ++i) { 3773 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3774 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3775 Src1Regs[i], Src2Regs[i]); 3776 DstRegs.push_back(DstReg); 3777 } 3778 3779 if (NarrowTy0.isVector()) 3780 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3781 else 3782 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3783 3784 MI.eraseFromParent(); 3785 return Legalized; 3786 } 3787 3788 LegalizerHelper::LegalizeResult 3789 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3790 LLT NarrowTy) { 3791 const Register DstReg = MI.getOperand(0).getReg(); 3792 LLT PhiTy = MRI.getType(DstReg); 3793 LLT LeftoverTy; 3794 3795 // All of the operands need to have the same number of elements, so if we can 3796 // determine a type breakdown for the result type, we can for all of the 3797 // source types. 3798 int NumParts, NumLeftover; 3799 std::tie(NumParts, NumLeftover) 3800 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3801 if (NumParts < 0) 3802 return UnableToLegalize; 3803 3804 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3805 SmallVector<MachineInstrBuilder, 4> NewInsts; 3806 3807 const int TotalNumParts = NumParts + NumLeftover; 3808 3809 // Insert the new phis in the result block first. 3810 for (int I = 0; I != TotalNumParts; ++I) { 3811 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3812 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3813 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3814 .addDef(PartDstReg)); 3815 if (I < NumParts) 3816 DstRegs.push_back(PartDstReg); 3817 else 3818 LeftoverDstRegs.push_back(PartDstReg); 3819 } 3820 3821 MachineBasicBlock *MBB = MI.getParent(); 3822 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3823 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3824 3825 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3826 3827 // Insert code to extract the incoming values in each predecessor block. 3828 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3829 PartRegs.clear(); 3830 LeftoverRegs.clear(); 3831 3832 Register SrcReg = MI.getOperand(I).getReg(); 3833 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3834 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3835 3836 LLT Unused; 3837 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3838 LeftoverRegs)) 3839 return UnableToLegalize; 3840 3841 // Add the newly created operand splits to the existing instructions. The 3842 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3843 // pieces. 3844 for (int J = 0; J != TotalNumParts; ++J) { 3845 MachineInstrBuilder MIB = NewInsts[J]; 3846 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3847 MIB.addMBB(&OpMBB); 3848 } 3849 } 3850 3851 MI.eraseFromParent(); 3852 return Legalized; 3853 } 3854 3855 LegalizerHelper::LegalizeResult 3856 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3857 unsigned TypeIdx, 3858 LLT NarrowTy) { 3859 if (TypeIdx != 1) 3860 return UnableToLegalize; 3861 3862 const int NumDst = MI.getNumOperands() - 1; 3863 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3864 LLT SrcTy = MRI.getType(SrcReg); 3865 3866 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3867 3868 // TODO: Create sequence of extracts. 3869 if (DstTy == NarrowTy) 3870 return UnableToLegalize; 3871 3872 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3873 if (DstTy == GCDTy) { 3874 // This would just be a copy of the same unmerge. 3875 // TODO: Create extracts, pad with undef and create intermediate merges. 3876 return UnableToLegalize; 3877 } 3878 3879 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3880 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3881 const int PartsPerUnmerge = NumDst / NumUnmerge; 3882 3883 for (int I = 0; I != NumUnmerge; ++I) { 3884 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3885 3886 for (int J = 0; J != PartsPerUnmerge; ++J) 3887 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3888 MIB.addUse(Unmerge.getReg(I)); 3889 } 3890 3891 MI.eraseFromParent(); 3892 return Legalized; 3893 } 3894 3895 LegalizerHelper::LegalizeResult 3896 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx, 3897 LLT NarrowTy) { 3898 Register Result = MI.getOperand(0).getReg(); 3899 Register Overflow = MI.getOperand(1).getReg(); 3900 Register LHS = MI.getOperand(2).getReg(); 3901 Register RHS = MI.getOperand(3).getReg(); 3902 3903 LLT SrcTy = MRI.getType(LHS); 3904 if (!SrcTy.isVector()) 3905 return UnableToLegalize; 3906 3907 LLT ElementType = SrcTy.getElementType(); 3908 LLT OverflowElementTy = MRI.getType(Overflow).getElementType(); 3909 const ElementCount NumResult = SrcTy.getElementCount(); 3910 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3911 3912 // Unmerge the operands to smaller parts of GCD type. 3913 auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS); 3914 auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS); 3915 3916 const int NumOps = UnmergeLHS->getNumOperands() - 1; 3917 const ElementCount PartsPerUnmerge = NumResult.divideCoefficientBy(NumOps); 3918 LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy); 3919 LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType); 3920 3921 // Perform the operation over unmerged parts. 3922 SmallVector<Register, 8> ResultParts; 3923 SmallVector<Register, 8> OverflowParts; 3924 for (int I = 0; I != NumOps; ++I) { 3925 Register Operand1 = UnmergeLHS->getOperand(I).getReg(); 3926 Register Operand2 = UnmergeRHS->getOperand(I).getReg(); 3927 auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy}, 3928 {Operand1, Operand2}); 3929 ResultParts.push_back(PartMul->getOperand(0).getReg()); 3930 OverflowParts.push_back(PartMul->getOperand(1).getReg()); 3931 } 3932 3933 LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts); 3934 LLT OverflowLCMTy = 3935 LLT::scalarOrVector(ResultLCMTy.getElementCount(), OverflowElementTy); 3936 3937 // Recombine the pieces to the original result and overflow registers. 3938 buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts); 3939 buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts); 3940 MI.eraseFromParent(); 3941 return Legalized; 3942 } 3943 3944 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3945 // a vector 3946 // 3947 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3948 // undef as necessary. 3949 // 3950 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3951 // -> <2 x s16> 3952 // 3953 // %4:_(s16) = G_IMPLICIT_DEF 3954 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3955 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3956 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3957 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3958 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3959 LegalizerHelper::LegalizeResult 3960 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3961 LLT NarrowTy) { 3962 Register DstReg = MI.getOperand(0).getReg(); 3963 LLT DstTy = MRI.getType(DstReg); 3964 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3965 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3966 3967 // Break into a common type 3968 SmallVector<Register, 16> Parts; 3969 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3970 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3971 3972 // Build the requested new merge, padding with undef. 3973 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3974 TargetOpcode::G_ANYEXT); 3975 3976 // Pack into the original result register. 3977 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3978 3979 MI.eraseFromParent(); 3980 return Legalized; 3981 } 3982 3983 LegalizerHelper::LegalizeResult 3984 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3985 unsigned TypeIdx, 3986 LLT NarrowVecTy) { 3987 Register DstReg = MI.getOperand(0).getReg(); 3988 Register SrcVec = MI.getOperand(1).getReg(); 3989 Register InsertVal; 3990 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3991 3992 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3993 if (IsInsert) 3994 InsertVal = MI.getOperand(2).getReg(); 3995 3996 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3997 3998 // TODO: Handle total scalarization case. 3999 if (!NarrowVecTy.isVector()) 4000 return UnableToLegalize; 4001 4002 LLT VecTy = MRI.getType(SrcVec); 4003 4004 // If the index is a constant, we can really break this down as you would 4005 // expect, and index into the target size pieces. 4006 int64_t IdxVal; 4007 auto MaybeCst = 4008 getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true, 4009 /*HandleFConstants*/ false); 4010 if (MaybeCst) { 4011 IdxVal = MaybeCst->Value.getSExtValue(); 4012 // Avoid out of bounds indexing the pieces. 4013 if (IdxVal >= VecTy.getNumElements()) { 4014 MIRBuilder.buildUndef(DstReg); 4015 MI.eraseFromParent(); 4016 return Legalized; 4017 } 4018 4019 SmallVector<Register, 8> VecParts; 4020 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 4021 4022 // Build a sequence of NarrowTy pieces in VecParts for this operand. 4023 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 4024 TargetOpcode::G_ANYEXT); 4025 4026 unsigned NewNumElts = NarrowVecTy.getNumElements(); 4027 4028 LLT IdxTy = MRI.getType(Idx); 4029 int64_t PartIdx = IdxVal / NewNumElts; 4030 auto NewIdx = 4031 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 4032 4033 if (IsInsert) { 4034 LLT PartTy = MRI.getType(VecParts[PartIdx]); 4035 4036 // Use the adjusted index to insert into one of the subvectors. 4037 auto InsertPart = MIRBuilder.buildInsertVectorElement( 4038 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 4039 VecParts[PartIdx] = InsertPart.getReg(0); 4040 4041 // Recombine the inserted subvector with the others to reform the result 4042 // vector. 4043 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 4044 } else { 4045 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 4046 } 4047 4048 MI.eraseFromParent(); 4049 return Legalized; 4050 } 4051 4052 // With a variable index, we can't perform the operation in a smaller type, so 4053 // we're forced to expand this. 4054 // 4055 // TODO: We could emit a chain of compare/select to figure out which piece to 4056 // index. 4057 return lowerExtractInsertVectorElt(MI); 4058 } 4059 4060 LegalizerHelper::LegalizeResult 4061 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx, 4062 LLT NarrowTy) { 4063 // FIXME: Don't know how to handle secondary types yet. 4064 if (TypeIdx != 0) 4065 return UnableToLegalize; 4066 4067 // This implementation doesn't work for atomics. Give up instead of doing 4068 // something invalid. 4069 if (LdStMI.isAtomic()) 4070 return UnableToLegalize; 4071 4072 bool IsLoad = isa<GLoad>(LdStMI); 4073 Register ValReg = LdStMI.getReg(0); 4074 Register AddrReg = LdStMI.getPointerReg(); 4075 LLT ValTy = MRI.getType(ValReg); 4076 4077 // FIXME: Do we need a distinct NarrowMemory legalize action? 4078 if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) { 4079 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 4080 return UnableToLegalize; 4081 } 4082 4083 int NumParts = -1; 4084 int NumLeftover = -1; 4085 LLT LeftoverTy; 4086 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 4087 if (IsLoad) { 4088 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 4089 } else { 4090 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 4091 NarrowLeftoverRegs)) { 4092 NumParts = NarrowRegs.size(); 4093 NumLeftover = NarrowLeftoverRegs.size(); 4094 } 4095 } 4096 4097 if (NumParts == -1) 4098 return UnableToLegalize; 4099 4100 LLT PtrTy = MRI.getType(AddrReg); 4101 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 4102 4103 unsigned TotalSize = ValTy.getSizeInBits(); 4104 4105 // Split the load/store into PartTy sized pieces starting at Offset. If this 4106 // is a load, return the new registers in ValRegs. For a store, each elements 4107 // of ValRegs should be PartTy. Returns the next offset that needs to be 4108 // handled. 4109 auto MMO = LdStMI.getMMO(); 4110 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 4111 unsigned Offset) -> unsigned { 4112 MachineFunction &MF = MIRBuilder.getMF(); 4113 unsigned PartSize = PartTy.getSizeInBits(); 4114 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 4115 Offset += PartSize, ++Idx) { 4116 unsigned ByteOffset = Offset / 8; 4117 Register NewAddrReg; 4118 4119 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 4120 4121 MachineMemOperand *NewMMO = 4122 MF.getMachineMemOperand(&MMO, ByteOffset, PartTy); 4123 4124 if (IsLoad) { 4125 Register Dst = MRI.createGenericVirtualRegister(PartTy); 4126 ValRegs.push_back(Dst); 4127 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 4128 } else { 4129 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 4130 } 4131 } 4132 4133 return Offset; 4134 }; 4135 4136 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 4137 4138 // Handle the rest of the register if this isn't an even type breakdown. 4139 if (LeftoverTy.isValid()) 4140 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 4141 4142 if (IsLoad) { 4143 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 4144 LeftoverTy, NarrowLeftoverRegs); 4145 } 4146 4147 LdStMI.eraseFromParent(); 4148 return Legalized; 4149 } 4150 4151 LegalizerHelper::LegalizeResult 4152 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 4153 LLT NarrowTy) { 4154 assert(TypeIdx == 0 && "only one type index expected"); 4155 4156 const unsigned Opc = MI.getOpcode(); 4157 const int NumDefOps = MI.getNumExplicitDefs(); 4158 const int NumSrcOps = MI.getNumOperands() - NumDefOps; 4159 const unsigned Flags = MI.getFlags(); 4160 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 4161 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 4162 4163 assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 " 4164 "result and 1-3 sources or 2 results and " 4165 "1-2 sources"); 4166 4167 SmallVector<Register, 2> DstRegs; 4168 for (int I = 0; I < NumDefOps; ++I) 4169 DstRegs.push_back(MI.getOperand(I).getReg()); 4170 4171 // First of all check whether we are narrowing (changing the element type) 4172 // or reducing the vector elements 4173 const LLT DstTy = MRI.getType(DstRegs[0]); 4174 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 4175 4176 SmallVector<Register, 8> ExtractedRegs[3]; 4177 SmallVector<Register, 8> Parts; 4178 4179 // Break down all the sources into NarrowTy pieces we can operate on. This may 4180 // involve creating merges to a wider type, padded with undef. 4181 for (int I = 0; I != NumSrcOps; ++I) { 4182 Register SrcReg = MI.getOperand(I + NumDefOps).getReg(); 4183 LLT SrcTy = MRI.getType(SrcReg); 4184 4185 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 4186 // For fewerElements, this is a smaller vector with the same element type. 4187 LLT OpNarrowTy; 4188 if (IsNarrow) { 4189 OpNarrowTy = NarrowScalarTy; 4190 4191 // In case of narrowing, we need to cast vectors to scalars for this to 4192 // work properly 4193 // FIXME: Can we do without the bitcast here if we're narrowing? 4194 if (SrcTy.isVector()) { 4195 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 4196 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 4197 } 4198 } else { 4199 auto NarrowEC = NarrowTy.isVector() ? NarrowTy.getElementCount() 4200 : ElementCount::getFixed(1); 4201 OpNarrowTy = LLT::scalarOrVector(NarrowEC, SrcTy.getScalarType()); 4202 } 4203 4204 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 4205 4206 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 4207 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 4208 TargetOpcode::G_ANYEXT); 4209 } 4210 4211 SmallVector<Register, 8> ResultRegs[2]; 4212 4213 // Input operands for each sub-instruction. 4214 SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register()); 4215 4216 int NumParts = ExtractedRegs[0].size(); 4217 const unsigned DstSize = DstTy.getSizeInBits(); 4218 const LLT DstScalarTy = LLT::scalar(DstSize); 4219 4220 // Narrowing needs to use scalar types 4221 LLT DstLCMTy, NarrowDstTy; 4222 if (IsNarrow) { 4223 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 4224 NarrowDstTy = NarrowScalarTy; 4225 } else { 4226 DstLCMTy = getLCMType(DstTy, NarrowTy); 4227 NarrowDstTy = NarrowTy; 4228 } 4229 4230 // We widened the source registers to satisfy merge/unmerge size 4231 // constraints. We'll have some extra fully undef parts. 4232 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 4233 4234 for (int I = 0; I != NumRealParts; ++I) { 4235 // Emit this instruction on each of the split pieces. 4236 for (int J = 0; J != NumSrcOps; ++J) 4237 InputRegs[J] = ExtractedRegs[J][I]; 4238 4239 MachineInstrBuilder Inst; 4240 if (NumDefOps == 1) 4241 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 4242 else 4243 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs, 4244 Flags); 4245 4246 for (int J = 0; J != NumDefOps; ++J) 4247 ResultRegs[J].push_back(Inst.getReg(J)); 4248 } 4249 4250 // Fill out the widened result with undef instead of creating instructions 4251 // with undef inputs. 4252 int NumUndefParts = NumParts - NumRealParts; 4253 if (NumUndefParts != 0) { 4254 Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0); 4255 for (int I = 0; I != NumDefOps; ++I) 4256 ResultRegs[I].append(NumUndefParts, Undef); 4257 } 4258 4259 // Extract the possibly padded result. Use a scratch register if we need to do 4260 // a final bitcast, otherwise use the original result register. 4261 Register MergeDstReg; 4262 for (int I = 0; I != NumDefOps; ++I) { 4263 if (IsNarrow && DstTy.isVector()) 4264 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 4265 else 4266 MergeDstReg = DstRegs[I]; 4267 4268 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]); 4269 4270 // Recast to vector if we narrowed a vector 4271 if (IsNarrow && DstTy.isVector()) 4272 MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg); 4273 } 4274 4275 MI.eraseFromParent(); 4276 return Legalized; 4277 } 4278 4279 LegalizerHelper::LegalizeResult 4280 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 4281 LLT NarrowTy) { 4282 Register DstReg = MI.getOperand(0).getReg(); 4283 Register SrcReg = MI.getOperand(1).getReg(); 4284 int64_t Imm = MI.getOperand(2).getImm(); 4285 4286 LLT DstTy = MRI.getType(DstReg); 4287 4288 SmallVector<Register, 8> Parts; 4289 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4290 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 4291 4292 for (Register &R : Parts) 4293 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 4294 4295 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4296 4297 MI.eraseFromParent(); 4298 return Legalized; 4299 } 4300 4301 LegalizerHelper::LegalizeResult 4302 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4303 LLT NarrowTy) { 4304 using namespace TargetOpcode; 4305 4306 switch (MI.getOpcode()) { 4307 case G_IMPLICIT_DEF: 4308 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 4309 case G_TRUNC: 4310 case G_AND: 4311 case G_OR: 4312 case G_XOR: 4313 case G_ADD: 4314 case G_SUB: 4315 case G_MUL: 4316 case G_PTR_ADD: 4317 case G_SMULH: 4318 case G_UMULH: 4319 case G_FADD: 4320 case G_FMUL: 4321 case G_FSUB: 4322 case G_FNEG: 4323 case G_FABS: 4324 case G_FCANONICALIZE: 4325 case G_FDIV: 4326 case G_FREM: 4327 case G_FMA: 4328 case G_FMAD: 4329 case G_FPOW: 4330 case G_FEXP: 4331 case G_FEXP2: 4332 case G_FLOG: 4333 case G_FLOG2: 4334 case G_FLOG10: 4335 case G_FNEARBYINT: 4336 case G_FCEIL: 4337 case G_FFLOOR: 4338 case G_FRINT: 4339 case G_INTRINSIC_ROUND: 4340 case G_INTRINSIC_ROUNDEVEN: 4341 case G_INTRINSIC_TRUNC: 4342 case G_FCOS: 4343 case G_FSIN: 4344 case G_FSQRT: 4345 case G_BSWAP: 4346 case G_BITREVERSE: 4347 case G_SDIV: 4348 case G_UDIV: 4349 case G_SREM: 4350 case G_UREM: 4351 case G_SDIVREM: 4352 case G_UDIVREM: 4353 case G_SMIN: 4354 case G_SMAX: 4355 case G_UMIN: 4356 case G_UMAX: 4357 case G_ABS: 4358 case G_FMINNUM: 4359 case G_FMAXNUM: 4360 case G_FMINNUM_IEEE: 4361 case G_FMAXNUM_IEEE: 4362 case G_FMINIMUM: 4363 case G_FMAXIMUM: 4364 case G_FSHL: 4365 case G_FSHR: 4366 case G_FREEZE: 4367 case G_SADDSAT: 4368 case G_SSUBSAT: 4369 case G_UADDSAT: 4370 case G_USUBSAT: 4371 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4372 case G_UMULO: 4373 case G_SMULO: 4374 return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy); 4375 case G_SHL: 4376 case G_LSHR: 4377 case G_ASHR: 4378 case G_SSHLSAT: 4379 case G_USHLSAT: 4380 case G_CTLZ: 4381 case G_CTLZ_ZERO_UNDEF: 4382 case G_CTTZ: 4383 case G_CTTZ_ZERO_UNDEF: 4384 case G_CTPOP: 4385 case G_FCOPYSIGN: 4386 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4387 case G_ZEXT: 4388 case G_SEXT: 4389 case G_ANYEXT: 4390 case G_FPEXT: 4391 case G_FPTRUNC: 4392 case G_SITOFP: 4393 case G_UITOFP: 4394 case G_FPTOSI: 4395 case G_FPTOUI: 4396 case G_INTTOPTR: 4397 case G_PTRTOINT: 4398 case G_ADDRSPACE_CAST: 4399 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4400 case G_ICMP: 4401 case G_FCMP: 4402 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4403 case G_SELECT: 4404 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4405 case G_PHI: 4406 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4407 case G_UNMERGE_VALUES: 4408 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4409 case G_BUILD_VECTOR: 4410 assert(TypeIdx == 0 && "not a vector type index"); 4411 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4412 case G_CONCAT_VECTORS: 4413 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4414 return UnableToLegalize; 4415 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4416 case G_EXTRACT_VECTOR_ELT: 4417 case G_INSERT_VECTOR_ELT: 4418 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4419 case G_LOAD: 4420 case G_STORE: 4421 return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy); 4422 case G_SEXT_INREG: 4423 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4424 GISEL_VECREDUCE_CASES_NONSEQ 4425 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4426 case G_SHUFFLE_VECTOR: 4427 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 4428 default: 4429 return UnableToLegalize; 4430 } 4431 } 4432 4433 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 4434 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4435 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 4436 if (TypeIdx != 0) 4437 return UnableToLegalize; 4438 4439 Register DstReg = MI.getOperand(0).getReg(); 4440 Register Src1Reg = MI.getOperand(1).getReg(); 4441 Register Src2Reg = MI.getOperand(2).getReg(); 4442 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4443 LLT DstTy = MRI.getType(DstReg); 4444 LLT Src1Ty = MRI.getType(Src1Reg); 4445 LLT Src2Ty = MRI.getType(Src2Reg); 4446 // The shuffle should be canonicalized by now. 4447 if (DstTy != Src1Ty) 4448 return UnableToLegalize; 4449 if (DstTy != Src2Ty) 4450 return UnableToLegalize; 4451 4452 if (!isPowerOf2_32(DstTy.getNumElements())) 4453 return UnableToLegalize; 4454 4455 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 4456 // Further legalization attempts will be needed to do split further. 4457 NarrowTy = 4458 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); 4459 unsigned NewElts = NarrowTy.getNumElements(); 4460 4461 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 4462 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); 4463 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); 4464 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 4465 SplitSrc2Regs[1]}; 4466 4467 Register Hi, Lo; 4468 4469 // If Lo or Hi uses elements from at most two of the four input vectors, then 4470 // express it as a vector shuffle of those two inputs. Otherwise extract the 4471 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 4472 SmallVector<int, 16> Ops; 4473 for (unsigned High = 0; High < 2; ++High) { 4474 Register &Output = High ? Hi : Lo; 4475 4476 // Build a shuffle mask for the output, discovering on the fly which 4477 // input vectors to use as shuffle operands (recorded in InputUsed). 4478 // If building a suitable shuffle vector proves too hard, then bail 4479 // out with useBuildVector set. 4480 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 4481 unsigned FirstMaskIdx = High * NewElts; 4482 bool UseBuildVector = false; 4483 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4484 // The mask element. This indexes into the input. 4485 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4486 4487 // The input vector this mask element indexes into. 4488 unsigned Input = (unsigned)Idx / NewElts; 4489 4490 if (Input >= array_lengthof(Inputs)) { 4491 // The mask element does not index into any input vector. 4492 Ops.push_back(-1); 4493 continue; 4494 } 4495 4496 // Turn the index into an offset from the start of the input vector. 4497 Idx -= Input * NewElts; 4498 4499 // Find or create a shuffle vector operand to hold this input. 4500 unsigned OpNo; 4501 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { 4502 if (InputUsed[OpNo] == Input) { 4503 // This input vector is already an operand. 4504 break; 4505 } else if (InputUsed[OpNo] == -1U) { 4506 // Create a new operand for this input vector. 4507 InputUsed[OpNo] = Input; 4508 break; 4509 } 4510 } 4511 4512 if (OpNo >= array_lengthof(InputUsed)) { 4513 // More than two input vectors used! Give up on trying to create a 4514 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 4515 UseBuildVector = true; 4516 break; 4517 } 4518 4519 // Add the mask index for the new shuffle vector. 4520 Ops.push_back(Idx + OpNo * NewElts); 4521 } 4522 4523 if (UseBuildVector) { 4524 LLT EltTy = NarrowTy.getElementType(); 4525 SmallVector<Register, 16> SVOps; 4526 4527 // Extract the input elements by hand. 4528 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4529 // The mask element. This indexes into the input. 4530 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4531 4532 // The input vector this mask element indexes into. 4533 unsigned Input = (unsigned)Idx / NewElts; 4534 4535 if (Input >= array_lengthof(Inputs)) { 4536 // The mask element is "undef" or indexes off the end of the input. 4537 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 4538 continue; 4539 } 4540 4541 // Turn the index into an offset from the start of the input vector. 4542 Idx -= Input * NewElts; 4543 4544 // Extract the vector element by hand. 4545 SVOps.push_back(MIRBuilder 4546 .buildExtractVectorElement( 4547 EltTy, Inputs[Input], 4548 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 4549 .getReg(0)); 4550 } 4551 4552 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 4553 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 4554 } else if (InputUsed[0] == -1U) { 4555 // No input vectors were used! The result is undefined. 4556 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 4557 } else { 4558 Register Op0 = Inputs[InputUsed[0]]; 4559 // If only one input was used, use an undefined vector for the other. 4560 Register Op1 = InputUsed[1] == -1U 4561 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 4562 : Inputs[InputUsed[1]]; 4563 // At least one input vector was used. Create a new shuffle vector. 4564 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 4565 } 4566 4567 Ops.clear(); 4568 } 4569 4570 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); 4571 MI.eraseFromParent(); 4572 return Legalized; 4573 } 4574 4575 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4576 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4577 unsigned Opc = MI.getOpcode(); 4578 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && 4579 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && 4580 "Sequential reductions not expected"); 4581 4582 if (TypeIdx != 1) 4583 return UnableToLegalize; 4584 4585 // The semantics of the normal non-sequential reductions allow us to freely 4586 // re-associate the operation. 4587 Register SrcReg = MI.getOperand(1).getReg(); 4588 LLT SrcTy = MRI.getType(SrcReg); 4589 Register DstReg = MI.getOperand(0).getReg(); 4590 LLT DstTy = MRI.getType(DstReg); 4591 4592 if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0) 4593 return UnableToLegalize; 4594 4595 SmallVector<Register> SplitSrcs; 4596 const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements(); 4597 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4598 SmallVector<Register> PartialReductions; 4599 for (unsigned Part = 0; Part < NumParts; ++Part) { 4600 PartialReductions.push_back( 4601 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); 4602 } 4603 4604 unsigned ScalarOpc; 4605 switch (Opc) { 4606 case TargetOpcode::G_VECREDUCE_FADD: 4607 ScalarOpc = TargetOpcode::G_FADD; 4608 break; 4609 case TargetOpcode::G_VECREDUCE_FMUL: 4610 ScalarOpc = TargetOpcode::G_FMUL; 4611 break; 4612 case TargetOpcode::G_VECREDUCE_FMAX: 4613 ScalarOpc = TargetOpcode::G_FMAXNUM; 4614 break; 4615 case TargetOpcode::G_VECREDUCE_FMIN: 4616 ScalarOpc = TargetOpcode::G_FMINNUM; 4617 break; 4618 case TargetOpcode::G_VECREDUCE_ADD: 4619 ScalarOpc = TargetOpcode::G_ADD; 4620 break; 4621 case TargetOpcode::G_VECREDUCE_MUL: 4622 ScalarOpc = TargetOpcode::G_MUL; 4623 break; 4624 case TargetOpcode::G_VECREDUCE_AND: 4625 ScalarOpc = TargetOpcode::G_AND; 4626 break; 4627 case TargetOpcode::G_VECREDUCE_OR: 4628 ScalarOpc = TargetOpcode::G_OR; 4629 break; 4630 case TargetOpcode::G_VECREDUCE_XOR: 4631 ScalarOpc = TargetOpcode::G_XOR; 4632 break; 4633 case TargetOpcode::G_VECREDUCE_SMAX: 4634 ScalarOpc = TargetOpcode::G_SMAX; 4635 break; 4636 case TargetOpcode::G_VECREDUCE_SMIN: 4637 ScalarOpc = TargetOpcode::G_SMIN; 4638 break; 4639 case TargetOpcode::G_VECREDUCE_UMAX: 4640 ScalarOpc = TargetOpcode::G_UMAX; 4641 break; 4642 case TargetOpcode::G_VECREDUCE_UMIN: 4643 ScalarOpc = TargetOpcode::G_UMIN; 4644 break; 4645 default: 4646 LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n"); 4647 return UnableToLegalize; 4648 } 4649 4650 // If the types involved are powers of 2, we can generate intermediate vector 4651 // ops, before generating a final reduction operation. 4652 if (isPowerOf2_32(SrcTy.getNumElements()) && 4653 isPowerOf2_32(NarrowTy.getNumElements())) { 4654 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4655 } 4656 4657 Register Acc = PartialReductions[0]; 4658 for (unsigned Part = 1; Part < NumParts; ++Part) { 4659 if (Part == NumParts - 1) { 4660 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4661 {Acc, PartialReductions[Part]}); 4662 } else { 4663 Acc = MIRBuilder 4664 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4665 .getReg(0); 4666 } 4667 } 4668 MI.eraseFromParent(); 4669 return Legalized; 4670 } 4671 4672 LegalizerHelper::LegalizeResult 4673 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4674 LLT SrcTy, LLT NarrowTy, 4675 unsigned ScalarOpc) { 4676 SmallVector<Register> SplitSrcs; 4677 // Split the sources into NarrowTy size pieces. 4678 extractParts(SrcReg, NarrowTy, 4679 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4680 // We're going to do a tree reduction using vector operations until we have 4681 // one NarrowTy size value left. 4682 while (SplitSrcs.size() > 1) { 4683 SmallVector<Register> PartialRdxs; 4684 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 4685 Register LHS = SplitSrcs[Idx]; 4686 Register RHS = SplitSrcs[Idx + 1]; 4687 // Create the intermediate vector op. 4688 Register Res = 4689 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 4690 PartialRdxs.push_back(Res); 4691 } 4692 SplitSrcs = std::move(PartialRdxs); 4693 } 4694 // Finally generate the requested NarrowTy based reduction. 4695 Observer.changingInstr(MI); 4696 MI.getOperand(1).setReg(SplitSrcs[0]); 4697 Observer.changedInstr(MI); 4698 return Legalized; 4699 } 4700 4701 LegalizerHelper::LegalizeResult 4702 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4703 const LLT HalfTy, const LLT AmtTy) { 4704 4705 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4706 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4707 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4708 4709 if (Amt.isNullValue()) { 4710 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4711 MI.eraseFromParent(); 4712 return Legalized; 4713 } 4714 4715 LLT NVT = HalfTy; 4716 unsigned NVTBits = HalfTy.getSizeInBits(); 4717 unsigned VTBits = 2 * NVTBits; 4718 4719 SrcOp Lo(Register(0)), Hi(Register(0)); 4720 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4721 if (Amt.ugt(VTBits)) { 4722 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4723 } else if (Amt.ugt(NVTBits)) { 4724 Lo = MIRBuilder.buildConstant(NVT, 0); 4725 Hi = MIRBuilder.buildShl(NVT, InL, 4726 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4727 } else if (Amt == NVTBits) { 4728 Lo = MIRBuilder.buildConstant(NVT, 0); 4729 Hi = InL; 4730 } else { 4731 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4732 auto OrLHS = 4733 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4734 auto OrRHS = MIRBuilder.buildLShr( 4735 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4736 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4737 } 4738 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4739 if (Amt.ugt(VTBits)) { 4740 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4741 } else if (Amt.ugt(NVTBits)) { 4742 Lo = MIRBuilder.buildLShr(NVT, InH, 4743 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4744 Hi = MIRBuilder.buildConstant(NVT, 0); 4745 } else if (Amt == NVTBits) { 4746 Lo = InH; 4747 Hi = MIRBuilder.buildConstant(NVT, 0); 4748 } else { 4749 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4750 4751 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4752 auto OrRHS = MIRBuilder.buildShl( 4753 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4754 4755 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4756 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4757 } 4758 } else { 4759 if (Amt.ugt(VTBits)) { 4760 Hi = Lo = MIRBuilder.buildAShr( 4761 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4762 } else if (Amt.ugt(NVTBits)) { 4763 Lo = MIRBuilder.buildAShr(NVT, InH, 4764 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4765 Hi = MIRBuilder.buildAShr(NVT, InH, 4766 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4767 } else if (Amt == NVTBits) { 4768 Lo = InH; 4769 Hi = MIRBuilder.buildAShr(NVT, InH, 4770 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4771 } else { 4772 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4773 4774 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4775 auto OrRHS = MIRBuilder.buildShl( 4776 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4777 4778 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4779 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4780 } 4781 } 4782 4783 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4784 MI.eraseFromParent(); 4785 4786 return Legalized; 4787 } 4788 4789 // TODO: Optimize if constant shift amount. 4790 LegalizerHelper::LegalizeResult 4791 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4792 LLT RequestedTy) { 4793 if (TypeIdx == 1) { 4794 Observer.changingInstr(MI); 4795 narrowScalarSrc(MI, RequestedTy, 2); 4796 Observer.changedInstr(MI); 4797 return Legalized; 4798 } 4799 4800 Register DstReg = MI.getOperand(0).getReg(); 4801 LLT DstTy = MRI.getType(DstReg); 4802 if (DstTy.isVector()) 4803 return UnableToLegalize; 4804 4805 Register Amt = MI.getOperand(2).getReg(); 4806 LLT ShiftAmtTy = MRI.getType(Amt); 4807 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4808 if (DstEltSize % 2 != 0) 4809 return UnableToLegalize; 4810 4811 // Ignore the input type. We can only go to exactly half the size of the 4812 // input. If that isn't small enough, the resulting pieces will be further 4813 // legalized. 4814 const unsigned NewBitSize = DstEltSize / 2; 4815 const LLT HalfTy = LLT::scalar(NewBitSize); 4816 const LLT CondTy = LLT::scalar(1); 4817 4818 if (const MachineInstr *KShiftAmt = 4819 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4820 return narrowScalarShiftByConstant( 4821 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4822 } 4823 4824 // TODO: Expand with known bits. 4825 4826 // Handle the fully general expansion by an unknown amount. 4827 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4828 4829 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4830 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4831 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4832 4833 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4834 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4835 4836 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4837 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4838 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4839 4840 Register ResultRegs[2]; 4841 switch (MI.getOpcode()) { 4842 case TargetOpcode::G_SHL: { 4843 // Short: ShAmt < NewBitSize 4844 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4845 4846 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4847 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4848 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4849 4850 // Long: ShAmt >= NewBitSize 4851 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4852 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4853 4854 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4855 auto Hi = MIRBuilder.buildSelect( 4856 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4857 4858 ResultRegs[0] = Lo.getReg(0); 4859 ResultRegs[1] = Hi.getReg(0); 4860 break; 4861 } 4862 case TargetOpcode::G_LSHR: 4863 case TargetOpcode::G_ASHR: { 4864 // Short: ShAmt < NewBitSize 4865 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4866 4867 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4868 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4869 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4870 4871 // Long: ShAmt >= NewBitSize 4872 MachineInstrBuilder HiL; 4873 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4874 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4875 } else { 4876 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4877 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4878 } 4879 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4880 {InH, AmtExcess}); // Lo from Hi part. 4881 4882 auto Lo = MIRBuilder.buildSelect( 4883 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4884 4885 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4886 4887 ResultRegs[0] = Lo.getReg(0); 4888 ResultRegs[1] = Hi.getReg(0); 4889 break; 4890 } 4891 default: 4892 llvm_unreachable("not a shift"); 4893 } 4894 4895 MIRBuilder.buildMerge(DstReg, ResultRegs); 4896 MI.eraseFromParent(); 4897 return Legalized; 4898 } 4899 4900 LegalizerHelper::LegalizeResult 4901 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4902 LLT MoreTy) { 4903 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4904 4905 Observer.changingInstr(MI); 4906 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4907 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4908 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4909 moreElementsVectorSrc(MI, MoreTy, I); 4910 } 4911 4912 MachineBasicBlock &MBB = *MI.getParent(); 4913 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4914 moreElementsVectorDst(MI, MoreTy, 0); 4915 Observer.changedInstr(MI); 4916 return Legalized; 4917 } 4918 4919 LegalizerHelper::LegalizeResult 4920 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4921 LLT MoreTy) { 4922 unsigned Opc = MI.getOpcode(); 4923 switch (Opc) { 4924 case TargetOpcode::G_IMPLICIT_DEF: 4925 case TargetOpcode::G_LOAD: { 4926 if (TypeIdx != 0) 4927 return UnableToLegalize; 4928 Observer.changingInstr(MI); 4929 moreElementsVectorDst(MI, MoreTy, 0); 4930 Observer.changedInstr(MI); 4931 return Legalized; 4932 } 4933 case TargetOpcode::G_STORE: 4934 if (TypeIdx != 0) 4935 return UnableToLegalize; 4936 Observer.changingInstr(MI); 4937 moreElementsVectorSrc(MI, MoreTy, 0); 4938 Observer.changedInstr(MI); 4939 return Legalized; 4940 case TargetOpcode::G_AND: 4941 case TargetOpcode::G_OR: 4942 case TargetOpcode::G_XOR: 4943 case TargetOpcode::G_SMIN: 4944 case TargetOpcode::G_SMAX: 4945 case TargetOpcode::G_UMIN: 4946 case TargetOpcode::G_UMAX: 4947 case TargetOpcode::G_FMINNUM: 4948 case TargetOpcode::G_FMAXNUM: 4949 case TargetOpcode::G_FMINNUM_IEEE: 4950 case TargetOpcode::G_FMAXNUM_IEEE: 4951 case TargetOpcode::G_FMINIMUM: 4952 case TargetOpcode::G_FMAXIMUM: { 4953 Observer.changingInstr(MI); 4954 moreElementsVectorSrc(MI, MoreTy, 1); 4955 moreElementsVectorSrc(MI, MoreTy, 2); 4956 moreElementsVectorDst(MI, MoreTy, 0); 4957 Observer.changedInstr(MI); 4958 return Legalized; 4959 } 4960 case TargetOpcode::G_EXTRACT: 4961 if (TypeIdx != 1) 4962 return UnableToLegalize; 4963 Observer.changingInstr(MI); 4964 moreElementsVectorSrc(MI, MoreTy, 1); 4965 Observer.changedInstr(MI); 4966 return Legalized; 4967 case TargetOpcode::G_INSERT: 4968 case TargetOpcode::G_FREEZE: 4969 if (TypeIdx != 0) 4970 return UnableToLegalize; 4971 Observer.changingInstr(MI); 4972 moreElementsVectorSrc(MI, MoreTy, 1); 4973 moreElementsVectorDst(MI, MoreTy, 0); 4974 Observer.changedInstr(MI); 4975 return Legalized; 4976 case TargetOpcode::G_SELECT: 4977 if (TypeIdx != 0) 4978 return UnableToLegalize; 4979 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4980 return UnableToLegalize; 4981 4982 Observer.changingInstr(MI); 4983 moreElementsVectorSrc(MI, MoreTy, 2); 4984 moreElementsVectorSrc(MI, MoreTy, 3); 4985 moreElementsVectorDst(MI, MoreTy, 0); 4986 Observer.changedInstr(MI); 4987 return Legalized; 4988 case TargetOpcode::G_UNMERGE_VALUES: { 4989 if (TypeIdx != 1) 4990 return UnableToLegalize; 4991 4992 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4993 int NumDst = MI.getNumOperands() - 1; 4994 moreElementsVectorSrc(MI, MoreTy, NumDst); 4995 4996 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4997 for (int I = 0; I != NumDst; ++I) 4998 MIB.addDef(MI.getOperand(I).getReg()); 4999 5000 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 5001 for (int I = NumDst; I != NewNumDst; ++I) 5002 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 5003 5004 MIB.addUse(MI.getOperand(NumDst).getReg()); 5005 MI.eraseFromParent(); 5006 return Legalized; 5007 } 5008 case TargetOpcode::G_PHI: 5009 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 5010 case TargetOpcode::G_SHUFFLE_VECTOR: 5011 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy); 5012 default: 5013 return UnableToLegalize; 5014 } 5015 } 5016 5017 LegalizerHelper::LegalizeResult 5018 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI, 5019 unsigned int TypeIdx, LLT MoreTy) { 5020 if (TypeIdx != 0) 5021 return UnableToLegalize; 5022 5023 Register DstReg = MI.getOperand(0).getReg(); 5024 Register Src1Reg = MI.getOperand(1).getReg(); 5025 Register Src2Reg = MI.getOperand(2).getReg(); 5026 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5027 LLT DstTy = MRI.getType(DstReg); 5028 LLT Src1Ty = MRI.getType(Src1Reg); 5029 LLT Src2Ty = MRI.getType(Src2Reg); 5030 unsigned NumElts = DstTy.getNumElements(); 5031 unsigned WidenNumElts = MoreTy.getNumElements(); 5032 5033 // Expect a canonicalized shuffle. 5034 if (DstTy != Src1Ty || DstTy != Src2Ty) 5035 return UnableToLegalize; 5036 5037 moreElementsVectorSrc(MI, MoreTy, 1); 5038 moreElementsVectorSrc(MI, MoreTy, 2); 5039 5040 // Adjust mask based on new input vector length. 5041 SmallVector<int, 16> NewMask; 5042 for (unsigned I = 0; I != NumElts; ++I) { 5043 int Idx = Mask[I]; 5044 if (Idx < static_cast<int>(NumElts)) 5045 NewMask.push_back(Idx); 5046 else 5047 NewMask.push_back(Idx - NumElts + WidenNumElts); 5048 } 5049 for (unsigned I = NumElts; I != WidenNumElts; ++I) 5050 NewMask.push_back(-1); 5051 moreElementsVectorDst(MI, MoreTy, 0); 5052 MIRBuilder.setInstrAndDebugLoc(MI); 5053 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), 5054 MI.getOperand(1).getReg(), 5055 MI.getOperand(2).getReg(), NewMask); 5056 MI.eraseFromParent(); 5057 return Legalized; 5058 } 5059 5060 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 5061 ArrayRef<Register> Src1Regs, 5062 ArrayRef<Register> Src2Regs, 5063 LLT NarrowTy) { 5064 MachineIRBuilder &B = MIRBuilder; 5065 unsigned SrcParts = Src1Regs.size(); 5066 unsigned DstParts = DstRegs.size(); 5067 5068 unsigned DstIdx = 0; // Low bits of the result. 5069 Register FactorSum = 5070 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 5071 DstRegs[DstIdx] = FactorSum; 5072 5073 unsigned CarrySumPrevDstIdx; 5074 SmallVector<Register, 4> Factors; 5075 5076 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 5077 // Collect low parts of muls for DstIdx. 5078 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 5079 i <= std::min(DstIdx, SrcParts - 1); ++i) { 5080 MachineInstrBuilder Mul = 5081 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 5082 Factors.push_back(Mul.getReg(0)); 5083 } 5084 // Collect high parts of muls from previous DstIdx. 5085 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 5086 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 5087 MachineInstrBuilder Umulh = 5088 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 5089 Factors.push_back(Umulh.getReg(0)); 5090 } 5091 // Add CarrySum from additions calculated for previous DstIdx. 5092 if (DstIdx != 1) { 5093 Factors.push_back(CarrySumPrevDstIdx); 5094 } 5095 5096 Register CarrySum; 5097 // Add all factors and accumulate all carries into CarrySum. 5098 if (DstIdx != DstParts - 1) { 5099 MachineInstrBuilder Uaddo = 5100 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 5101 FactorSum = Uaddo.getReg(0); 5102 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 5103 for (unsigned i = 2; i < Factors.size(); ++i) { 5104 MachineInstrBuilder Uaddo = 5105 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 5106 FactorSum = Uaddo.getReg(0); 5107 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 5108 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 5109 } 5110 } else { 5111 // Since value for the next index is not calculated, neither is CarrySum. 5112 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 5113 for (unsigned i = 2; i < Factors.size(); ++i) 5114 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 5115 } 5116 5117 CarrySumPrevDstIdx = CarrySum; 5118 DstRegs[DstIdx] = FactorSum; 5119 Factors.clear(); 5120 } 5121 } 5122 5123 LegalizerHelper::LegalizeResult 5124 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 5125 LLT NarrowTy) { 5126 if (TypeIdx != 0) 5127 return UnableToLegalize; 5128 5129 Register DstReg = MI.getOperand(0).getReg(); 5130 LLT DstType = MRI.getType(DstReg); 5131 // FIXME: add support for vector types 5132 if (DstType.isVector()) 5133 return UnableToLegalize; 5134 5135 unsigned Opcode = MI.getOpcode(); 5136 unsigned OpO, OpE, OpF; 5137 switch (Opcode) { 5138 case TargetOpcode::G_SADDO: 5139 case TargetOpcode::G_SADDE: 5140 case TargetOpcode::G_UADDO: 5141 case TargetOpcode::G_UADDE: 5142 case TargetOpcode::G_ADD: 5143 OpO = TargetOpcode::G_UADDO; 5144 OpE = TargetOpcode::G_UADDE; 5145 OpF = TargetOpcode::G_UADDE; 5146 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 5147 OpF = TargetOpcode::G_SADDE; 5148 break; 5149 case TargetOpcode::G_SSUBO: 5150 case TargetOpcode::G_SSUBE: 5151 case TargetOpcode::G_USUBO: 5152 case TargetOpcode::G_USUBE: 5153 case TargetOpcode::G_SUB: 5154 OpO = TargetOpcode::G_USUBO; 5155 OpE = TargetOpcode::G_USUBE; 5156 OpF = TargetOpcode::G_USUBE; 5157 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 5158 OpF = TargetOpcode::G_SSUBE; 5159 break; 5160 default: 5161 llvm_unreachable("Unexpected add/sub opcode!"); 5162 } 5163 5164 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 5165 unsigned NumDefs = MI.getNumExplicitDefs(); 5166 Register Src1 = MI.getOperand(NumDefs).getReg(); 5167 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 5168 Register CarryDst, CarryIn; 5169 if (NumDefs == 2) 5170 CarryDst = MI.getOperand(1).getReg(); 5171 if (MI.getNumOperands() == NumDefs + 3) 5172 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 5173 5174 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5175 LLT LeftoverTy, DummyTy; 5176 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; 5177 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left); 5178 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left); 5179 5180 int NarrowParts = Src1Regs.size(); 5181 for (int I = 0, E = Src1Left.size(); I != E; ++I) { 5182 Src1Regs.push_back(Src1Left[I]); 5183 Src2Regs.push_back(Src2Left[I]); 5184 } 5185 DstRegs.reserve(Src1Regs.size()); 5186 5187 for (int i = 0, e = Src1Regs.size(); i != e; ++i) { 5188 Register DstReg = 5189 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); 5190 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 5191 // Forward the final carry-out to the destination register 5192 if (i == e - 1 && CarryDst) 5193 CarryOut = CarryDst; 5194 5195 if (!CarryIn) { 5196 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 5197 {Src1Regs[i], Src2Regs[i]}); 5198 } else if (i == e - 1) { 5199 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 5200 {Src1Regs[i], Src2Regs[i], CarryIn}); 5201 } else { 5202 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 5203 {Src1Regs[i], Src2Regs[i], CarryIn}); 5204 } 5205 5206 DstRegs.push_back(DstReg); 5207 CarryIn = CarryOut; 5208 } 5209 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, 5210 makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, 5211 makeArrayRef(DstRegs).drop_front(NarrowParts)); 5212 5213 MI.eraseFromParent(); 5214 return Legalized; 5215 } 5216 5217 LegalizerHelper::LegalizeResult 5218 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 5219 Register DstReg = MI.getOperand(0).getReg(); 5220 Register Src1 = MI.getOperand(1).getReg(); 5221 Register Src2 = MI.getOperand(2).getReg(); 5222 5223 LLT Ty = MRI.getType(DstReg); 5224 if (Ty.isVector()) 5225 return UnableToLegalize; 5226 5227 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 5228 unsigned DstSize = Ty.getSizeInBits(); 5229 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5230 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 5231 return UnableToLegalize; 5232 5233 unsigned NumDstParts = DstSize / NarrowSize; 5234 unsigned NumSrcParts = SrcSize / NarrowSize; 5235 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 5236 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 5237 5238 SmallVector<Register, 2> Src1Parts, Src2Parts; 5239 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 5240 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 5241 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 5242 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 5243 5244 // Take only high half of registers if this is high mul. 5245 ArrayRef<Register> DstRegs( 5246 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 5247 MIRBuilder.buildMerge(DstReg, DstRegs); 5248 MI.eraseFromParent(); 5249 return Legalized; 5250 } 5251 5252 LegalizerHelper::LegalizeResult 5253 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 5254 LLT NarrowTy) { 5255 if (TypeIdx != 0) 5256 return UnableToLegalize; 5257 5258 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 5259 5260 Register Src = MI.getOperand(1).getReg(); 5261 LLT SrcTy = MRI.getType(Src); 5262 5263 // If all finite floats fit into the narrowed integer type, we can just swap 5264 // out the result type. This is practically only useful for conversions from 5265 // half to at least 16-bits, so just handle the one case. 5266 if (SrcTy.getScalarType() != LLT::scalar(16) || 5267 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 5268 return UnableToLegalize; 5269 5270 Observer.changingInstr(MI); 5271 narrowScalarDst(MI, NarrowTy, 0, 5272 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 5273 Observer.changedInstr(MI); 5274 return Legalized; 5275 } 5276 5277 LegalizerHelper::LegalizeResult 5278 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 5279 LLT NarrowTy) { 5280 if (TypeIdx != 1) 5281 return UnableToLegalize; 5282 5283 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5284 5285 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 5286 // FIXME: add support for when SizeOp1 isn't an exact multiple of 5287 // NarrowSize. 5288 if (SizeOp1 % NarrowSize != 0) 5289 return UnableToLegalize; 5290 int NumParts = SizeOp1 / NarrowSize; 5291 5292 SmallVector<Register, 2> SrcRegs, DstRegs; 5293 SmallVector<uint64_t, 2> Indexes; 5294 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5295 5296 Register OpReg = MI.getOperand(0).getReg(); 5297 uint64_t OpStart = MI.getOperand(2).getImm(); 5298 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5299 for (int i = 0; i < NumParts; ++i) { 5300 unsigned SrcStart = i * NarrowSize; 5301 5302 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 5303 // No part of the extract uses this subregister, ignore it. 5304 continue; 5305 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5306 // The entire subregister is extracted, forward the value. 5307 DstRegs.push_back(SrcRegs[i]); 5308 continue; 5309 } 5310 5311 // OpSegStart is where this destination segment would start in OpReg if it 5312 // extended infinitely in both directions. 5313 int64_t ExtractOffset; 5314 uint64_t SegSize; 5315 if (OpStart < SrcStart) { 5316 ExtractOffset = 0; 5317 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 5318 } else { 5319 ExtractOffset = OpStart - SrcStart; 5320 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 5321 } 5322 5323 Register SegReg = SrcRegs[i]; 5324 if (ExtractOffset != 0 || SegSize != NarrowSize) { 5325 // A genuine extract is needed. 5326 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5327 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 5328 } 5329 5330 DstRegs.push_back(SegReg); 5331 } 5332 5333 Register DstReg = MI.getOperand(0).getReg(); 5334 if (MRI.getType(DstReg).isVector()) 5335 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5336 else if (DstRegs.size() > 1) 5337 MIRBuilder.buildMerge(DstReg, DstRegs); 5338 else 5339 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 5340 MI.eraseFromParent(); 5341 return Legalized; 5342 } 5343 5344 LegalizerHelper::LegalizeResult 5345 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 5346 LLT NarrowTy) { 5347 // FIXME: Don't know how to handle secondary types yet. 5348 if (TypeIdx != 0) 5349 return UnableToLegalize; 5350 5351 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; 5352 SmallVector<uint64_t, 2> Indexes; 5353 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5354 LLT LeftoverTy; 5355 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, 5356 LeftoverRegs); 5357 5358 for (Register Reg : LeftoverRegs) 5359 SrcRegs.push_back(Reg); 5360 5361 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5362 Register OpReg = MI.getOperand(2).getReg(); 5363 uint64_t OpStart = MI.getOperand(3).getImm(); 5364 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5365 for (int I = 0, E = SrcRegs.size(); I != E; ++I) { 5366 unsigned DstStart = I * NarrowSize; 5367 5368 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5369 // The entire subregister is defined by this insert, forward the new 5370 // value. 5371 DstRegs.push_back(OpReg); 5372 continue; 5373 } 5374 5375 Register SrcReg = SrcRegs[I]; 5376 if (MRI.getType(SrcRegs[I]) == LeftoverTy) { 5377 // The leftover reg is smaller than NarrowTy, so we need to extend it. 5378 SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 5379 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); 5380 } 5381 5382 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 5383 // No part of the insert affects this subregister, forward the original. 5384 DstRegs.push_back(SrcReg); 5385 continue; 5386 } 5387 5388 // OpSegStart is where this destination segment would start in OpReg if it 5389 // extended infinitely in both directions. 5390 int64_t ExtractOffset, InsertOffset; 5391 uint64_t SegSize; 5392 if (OpStart < DstStart) { 5393 InsertOffset = 0; 5394 ExtractOffset = DstStart - OpStart; 5395 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 5396 } else { 5397 InsertOffset = OpStart - DstStart; 5398 ExtractOffset = 0; 5399 SegSize = 5400 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 5401 } 5402 5403 Register SegReg = OpReg; 5404 if (ExtractOffset != 0 || SegSize != OpSize) { 5405 // A genuine extract is needed. 5406 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5407 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5408 } 5409 5410 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5411 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); 5412 DstRegs.push_back(DstReg); 5413 } 5414 5415 uint64_t WideSize = DstRegs.size() * NarrowSize; 5416 Register DstReg = MI.getOperand(0).getReg(); 5417 if (WideSize > RegTy.getSizeInBits()) { 5418 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); 5419 MIRBuilder.buildMerge(MergeReg, DstRegs); 5420 MIRBuilder.buildTrunc(DstReg, MergeReg); 5421 } else 5422 MIRBuilder.buildMerge(DstReg, DstRegs); 5423 5424 MI.eraseFromParent(); 5425 return Legalized; 5426 } 5427 5428 LegalizerHelper::LegalizeResult 5429 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5430 LLT NarrowTy) { 5431 Register DstReg = MI.getOperand(0).getReg(); 5432 LLT DstTy = MRI.getType(DstReg); 5433 5434 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5435 5436 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5437 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5438 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5439 LLT LeftoverTy; 5440 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5441 Src0Regs, Src0LeftoverRegs)) 5442 return UnableToLegalize; 5443 5444 LLT Unused; 5445 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5446 Src1Regs, Src1LeftoverRegs)) 5447 llvm_unreachable("inconsistent extractParts result"); 5448 5449 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5450 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5451 {Src0Regs[I], Src1Regs[I]}); 5452 DstRegs.push_back(Inst.getReg(0)); 5453 } 5454 5455 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5456 auto Inst = MIRBuilder.buildInstr( 5457 MI.getOpcode(), 5458 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5459 DstLeftoverRegs.push_back(Inst.getReg(0)); 5460 } 5461 5462 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5463 LeftoverTy, DstLeftoverRegs); 5464 5465 MI.eraseFromParent(); 5466 return Legalized; 5467 } 5468 5469 LegalizerHelper::LegalizeResult 5470 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5471 LLT NarrowTy) { 5472 if (TypeIdx != 0) 5473 return UnableToLegalize; 5474 5475 Register DstReg = MI.getOperand(0).getReg(); 5476 Register SrcReg = MI.getOperand(1).getReg(); 5477 5478 LLT DstTy = MRI.getType(DstReg); 5479 if (DstTy.isVector()) 5480 return UnableToLegalize; 5481 5482 SmallVector<Register, 8> Parts; 5483 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5484 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5485 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5486 5487 MI.eraseFromParent(); 5488 return Legalized; 5489 } 5490 5491 LegalizerHelper::LegalizeResult 5492 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5493 LLT NarrowTy) { 5494 if (TypeIdx != 0) 5495 return UnableToLegalize; 5496 5497 Register CondReg = MI.getOperand(1).getReg(); 5498 LLT CondTy = MRI.getType(CondReg); 5499 if (CondTy.isVector()) // TODO: Handle vselect 5500 return UnableToLegalize; 5501 5502 Register DstReg = MI.getOperand(0).getReg(); 5503 LLT DstTy = MRI.getType(DstReg); 5504 5505 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5506 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5507 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5508 LLT LeftoverTy; 5509 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5510 Src1Regs, Src1LeftoverRegs)) 5511 return UnableToLegalize; 5512 5513 LLT Unused; 5514 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5515 Src2Regs, Src2LeftoverRegs)) 5516 llvm_unreachable("inconsistent extractParts result"); 5517 5518 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5519 auto Select = MIRBuilder.buildSelect(NarrowTy, 5520 CondReg, Src1Regs[I], Src2Regs[I]); 5521 DstRegs.push_back(Select.getReg(0)); 5522 } 5523 5524 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5525 auto Select = MIRBuilder.buildSelect( 5526 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5527 DstLeftoverRegs.push_back(Select.getReg(0)); 5528 } 5529 5530 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5531 LeftoverTy, DstLeftoverRegs); 5532 5533 MI.eraseFromParent(); 5534 return Legalized; 5535 } 5536 5537 LegalizerHelper::LegalizeResult 5538 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5539 LLT NarrowTy) { 5540 if (TypeIdx != 1) 5541 return UnableToLegalize; 5542 5543 Register DstReg = MI.getOperand(0).getReg(); 5544 Register SrcReg = MI.getOperand(1).getReg(); 5545 LLT DstTy = MRI.getType(DstReg); 5546 LLT SrcTy = MRI.getType(SrcReg); 5547 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5548 5549 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5550 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5551 5552 MachineIRBuilder &B = MIRBuilder; 5553 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5554 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 5555 auto C_0 = B.buildConstant(NarrowTy, 0); 5556 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5557 UnmergeSrc.getReg(1), C_0); 5558 auto LoCTLZ = IsUndef ? 5559 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 5560 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 5561 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5562 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 5563 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 5564 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 5565 5566 MI.eraseFromParent(); 5567 return Legalized; 5568 } 5569 5570 return UnableToLegalize; 5571 } 5572 5573 LegalizerHelper::LegalizeResult 5574 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 5575 LLT NarrowTy) { 5576 if (TypeIdx != 1) 5577 return UnableToLegalize; 5578 5579 Register DstReg = MI.getOperand(0).getReg(); 5580 Register SrcReg = MI.getOperand(1).getReg(); 5581 LLT DstTy = MRI.getType(DstReg); 5582 LLT SrcTy = MRI.getType(SrcReg); 5583 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5584 5585 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5586 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 5587 5588 MachineIRBuilder &B = MIRBuilder; 5589 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5590 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 5591 auto C_0 = B.buildConstant(NarrowTy, 0); 5592 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5593 UnmergeSrc.getReg(0), C_0); 5594 auto HiCTTZ = IsUndef ? 5595 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 5596 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 5597 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5598 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 5599 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 5600 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 5601 5602 MI.eraseFromParent(); 5603 return Legalized; 5604 } 5605 5606 return UnableToLegalize; 5607 } 5608 5609 LegalizerHelper::LegalizeResult 5610 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 5611 LLT NarrowTy) { 5612 if (TypeIdx != 1) 5613 return UnableToLegalize; 5614 5615 Register DstReg = MI.getOperand(0).getReg(); 5616 LLT DstTy = MRI.getType(DstReg); 5617 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5618 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5619 5620 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5621 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 5622 5623 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 5624 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 5625 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 5626 5627 MI.eraseFromParent(); 5628 return Legalized; 5629 } 5630 5631 return UnableToLegalize; 5632 } 5633 5634 LegalizerHelper::LegalizeResult 5635 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 5636 unsigned Opc = MI.getOpcode(); 5637 const auto &TII = MIRBuilder.getTII(); 5638 auto isSupported = [this](const LegalityQuery &Q) { 5639 auto QAction = LI.getAction(Q).Action; 5640 return QAction == Legal || QAction == Libcall || QAction == Custom; 5641 }; 5642 switch (Opc) { 5643 default: 5644 return UnableToLegalize; 5645 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 5646 // This trivially expands to CTLZ. 5647 Observer.changingInstr(MI); 5648 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 5649 Observer.changedInstr(MI); 5650 return Legalized; 5651 } 5652 case TargetOpcode::G_CTLZ: { 5653 Register DstReg = MI.getOperand(0).getReg(); 5654 Register SrcReg = MI.getOperand(1).getReg(); 5655 LLT DstTy = MRI.getType(DstReg); 5656 LLT SrcTy = MRI.getType(SrcReg); 5657 unsigned Len = SrcTy.getSizeInBits(); 5658 5659 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5660 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 5661 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 5662 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 5663 auto ICmp = MIRBuilder.buildICmp( 5664 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 5665 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5666 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 5667 MI.eraseFromParent(); 5668 return Legalized; 5669 } 5670 // for now, we do this: 5671 // NewLen = NextPowerOf2(Len); 5672 // x = x | (x >> 1); 5673 // x = x | (x >> 2); 5674 // ... 5675 // x = x | (x >>16); 5676 // x = x | (x >>32); // for 64-bit input 5677 // Upto NewLen/2 5678 // return Len - popcount(x); 5679 // 5680 // Ref: "Hacker's Delight" by Henry Warren 5681 Register Op = SrcReg; 5682 unsigned NewLen = PowerOf2Ceil(Len); 5683 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 5684 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 5685 auto MIBOp = MIRBuilder.buildOr( 5686 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 5687 Op = MIBOp.getReg(0); 5688 } 5689 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 5690 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 5691 MIBPop); 5692 MI.eraseFromParent(); 5693 return Legalized; 5694 } 5695 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 5696 // This trivially expands to CTTZ. 5697 Observer.changingInstr(MI); 5698 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5699 Observer.changedInstr(MI); 5700 return Legalized; 5701 } 5702 case TargetOpcode::G_CTTZ: { 5703 Register DstReg = MI.getOperand(0).getReg(); 5704 Register SrcReg = MI.getOperand(1).getReg(); 5705 LLT DstTy = MRI.getType(DstReg); 5706 LLT SrcTy = MRI.getType(SrcReg); 5707 5708 unsigned Len = SrcTy.getSizeInBits(); 5709 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5710 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5711 // zero. 5712 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5713 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5714 auto ICmp = MIRBuilder.buildICmp( 5715 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5716 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5717 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5718 MI.eraseFromParent(); 5719 return Legalized; 5720 } 5721 // for now, we use: { return popcount(~x & (x - 1)); } 5722 // unless the target has ctlz but not ctpop, in which case we use: 5723 // { return 32 - nlz(~x & (x-1)); } 5724 // Ref: "Hacker's Delight" by Henry Warren 5725 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5726 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5727 auto MIBTmp = MIRBuilder.buildAnd( 5728 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5729 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5730 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5731 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5732 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5733 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5734 MI.eraseFromParent(); 5735 return Legalized; 5736 } 5737 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5738 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5739 return Legalized; 5740 } 5741 case TargetOpcode::G_CTPOP: { 5742 Register SrcReg = MI.getOperand(1).getReg(); 5743 LLT Ty = MRI.getType(SrcReg); 5744 unsigned Size = Ty.getSizeInBits(); 5745 MachineIRBuilder &B = MIRBuilder; 5746 5747 // Count set bits in blocks of 2 bits. Default approach would be 5748 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5749 // We use following formula instead: 5750 // B2Count = val - { (val >> 1) & 0x55555555 } 5751 // since it gives same result in blocks of 2 with one instruction less. 5752 auto C_1 = B.buildConstant(Ty, 1); 5753 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5754 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5755 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5756 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5757 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5758 5759 // In order to get count in blocks of 4 add values from adjacent block of 2. 5760 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5761 auto C_2 = B.buildConstant(Ty, 2); 5762 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5763 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5764 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5765 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5766 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5767 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5768 5769 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5770 // addition since count value sits in range {0,...,8} and 4 bits are enough 5771 // to hold such binary values. After addition high 4 bits still hold count 5772 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5773 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5774 auto C_4 = B.buildConstant(Ty, 4); 5775 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5776 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5777 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5778 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5779 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5780 5781 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5782 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5783 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5784 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5785 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5786 5787 // Shift count result from 8 high bits to low bits. 5788 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5789 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5790 5791 MI.eraseFromParent(); 5792 return Legalized; 5793 } 5794 } 5795 } 5796 5797 // Check that (every element of) Reg is undef or not an exact multiple of BW. 5798 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 5799 Register Reg, unsigned BW) { 5800 return matchUnaryPredicate( 5801 MRI, Reg, 5802 [=](const Constant *C) { 5803 // Null constant here means an undef. 5804 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 5805 return !CI || CI->getValue().urem(BW) != 0; 5806 }, 5807 /*AllowUndefs*/ true); 5808 } 5809 5810 LegalizerHelper::LegalizeResult 5811 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 5812 Register Dst = MI.getOperand(0).getReg(); 5813 Register X = MI.getOperand(1).getReg(); 5814 Register Y = MI.getOperand(2).getReg(); 5815 Register Z = MI.getOperand(3).getReg(); 5816 LLT Ty = MRI.getType(Dst); 5817 LLT ShTy = MRI.getType(Z); 5818 5819 unsigned BW = Ty.getScalarSizeInBits(); 5820 5821 if (!isPowerOf2_32(BW)) 5822 return UnableToLegalize; 5823 5824 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5825 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5826 5827 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5828 // fshl X, Y, Z -> fshr X, Y, -Z 5829 // fshr X, Y, Z -> fshl X, Y, -Z 5830 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 5831 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 5832 } else { 5833 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 5834 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 5835 auto One = MIRBuilder.buildConstant(ShTy, 1); 5836 if (IsFSHL) { 5837 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5838 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 5839 } else { 5840 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5841 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 5842 } 5843 5844 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 5845 } 5846 5847 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 5848 MI.eraseFromParent(); 5849 return Legalized; 5850 } 5851 5852 LegalizerHelper::LegalizeResult 5853 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 5854 Register Dst = MI.getOperand(0).getReg(); 5855 Register X = MI.getOperand(1).getReg(); 5856 Register Y = MI.getOperand(2).getReg(); 5857 Register Z = MI.getOperand(3).getReg(); 5858 LLT Ty = MRI.getType(Dst); 5859 LLT ShTy = MRI.getType(Z); 5860 5861 const unsigned BW = Ty.getScalarSizeInBits(); 5862 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5863 5864 Register ShX, ShY; 5865 Register ShAmt, InvShAmt; 5866 5867 // FIXME: Emit optimized urem by constant instead of letting it expand later. 5868 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5869 // fshl: X << C | Y >> (BW - C) 5870 // fshr: X << (BW - C) | Y >> C 5871 // where C = Z % BW is not zero 5872 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5873 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5874 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 5875 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 5876 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 5877 } else { 5878 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 5879 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 5880 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 5881 if (isPowerOf2_32(BW)) { 5882 // Z % BW -> Z & (BW - 1) 5883 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 5884 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 5885 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 5886 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 5887 } else { 5888 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5889 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5890 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 5891 } 5892 5893 auto One = MIRBuilder.buildConstant(ShTy, 1); 5894 if (IsFSHL) { 5895 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 5896 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 5897 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 5898 } else { 5899 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 5900 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 5901 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 5902 } 5903 } 5904 5905 MIRBuilder.buildOr(Dst, ShX, ShY); 5906 MI.eraseFromParent(); 5907 return Legalized; 5908 } 5909 5910 LegalizerHelper::LegalizeResult 5911 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 5912 // These operations approximately do the following (while avoiding undefined 5913 // shifts by BW): 5914 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5915 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5916 Register Dst = MI.getOperand(0).getReg(); 5917 LLT Ty = MRI.getType(Dst); 5918 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 5919 5920 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5921 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5922 5923 // TODO: Use smarter heuristic that accounts for vector legalization. 5924 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 5925 return lowerFunnelShiftAsShifts(MI); 5926 5927 // This only works for powers of 2, fallback to shifts if it fails. 5928 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 5929 if (Result == UnableToLegalize) 5930 return lowerFunnelShiftAsShifts(MI); 5931 return Result; 5932 } 5933 5934 LegalizerHelper::LegalizeResult 5935 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 5936 Register Dst = MI.getOperand(0).getReg(); 5937 Register Src = MI.getOperand(1).getReg(); 5938 Register Amt = MI.getOperand(2).getReg(); 5939 LLT AmtTy = MRI.getType(Amt); 5940 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5941 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5942 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5943 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5944 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 5945 MI.eraseFromParent(); 5946 return Legalized; 5947 } 5948 5949 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 5950 Register Dst = MI.getOperand(0).getReg(); 5951 Register Src = MI.getOperand(1).getReg(); 5952 Register Amt = MI.getOperand(2).getReg(); 5953 LLT DstTy = MRI.getType(Dst); 5954 LLT SrcTy = MRI.getType(Dst); 5955 LLT AmtTy = MRI.getType(Amt); 5956 5957 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 5958 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5959 5960 MIRBuilder.setInstrAndDebugLoc(MI); 5961 5962 // If a rotate in the other direction is supported, use it. 5963 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5964 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 5965 isPowerOf2_32(EltSizeInBits)) 5966 return lowerRotateWithReverseRotate(MI); 5967 5968 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5969 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 5970 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 5971 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 5972 Register ShVal; 5973 Register RevShiftVal; 5974 if (isPowerOf2_32(EltSizeInBits)) { 5975 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 5976 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 5977 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5978 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 5979 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5980 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 5981 RevShiftVal = 5982 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 5983 } else { 5984 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 5985 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 5986 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 5987 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 5988 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5989 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 5990 auto One = MIRBuilder.buildConstant(AmtTy, 1); 5991 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 5992 RevShiftVal = 5993 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 5994 } 5995 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 5996 MI.eraseFromParent(); 5997 return Legalized; 5998 } 5999 6000 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 6001 // representation. 6002 LegalizerHelper::LegalizeResult 6003 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 6004 Register Dst = MI.getOperand(0).getReg(); 6005 Register Src = MI.getOperand(1).getReg(); 6006 const LLT S64 = LLT::scalar(64); 6007 const LLT S32 = LLT::scalar(32); 6008 const LLT S1 = LLT::scalar(1); 6009 6010 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 6011 6012 // unsigned cul2f(ulong u) { 6013 // uint lz = clz(u); 6014 // uint e = (u != 0) ? 127U + 63U - lz : 0; 6015 // u = (u << lz) & 0x7fffffffffffffffUL; 6016 // ulong t = u & 0xffffffffffUL; 6017 // uint v = (e << 23) | (uint)(u >> 40); 6018 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 6019 // return as_float(v + r); 6020 // } 6021 6022 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 6023 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 6024 6025 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 6026 6027 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 6028 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 6029 6030 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 6031 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 6032 6033 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 6034 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 6035 6036 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 6037 6038 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 6039 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 6040 6041 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 6042 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 6043 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 6044 6045 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 6046 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 6047 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 6048 auto One = MIRBuilder.buildConstant(S32, 1); 6049 6050 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 6051 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 6052 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 6053 MIRBuilder.buildAdd(Dst, V, R); 6054 6055 MI.eraseFromParent(); 6056 return Legalized; 6057 } 6058 6059 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 6060 Register Dst = MI.getOperand(0).getReg(); 6061 Register Src = MI.getOperand(1).getReg(); 6062 LLT DstTy = MRI.getType(Dst); 6063 LLT SrcTy = MRI.getType(Src); 6064 6065 if (SrcTy == LLT::scalar(1)) { 6066 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 6067 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6068 MIRBuilder.buildSelect(Dst, Src, True, False); 6069 MI.eraseFromParent(); 6070 return Legalized; 6071 } 6072 6073 if (SrcTy != LLT::scalar(64)) 6074 return UnableToLegalize; 6075 6076 if (DstTy == LLT::scalar(32)) { 6077 // TODO: SelectionDAG has several alternative expansions to port which may 6078 // be more reasonble depending on the available instructions. If a target 6079 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 6080 // intermediate type, this is probably worse. 6081 return lowerU64ToF32BitOps(MI); 6082 } 6083 6084 return UnableToLegalize; 6085 } 6086 6087 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 6088 Register Dst = MI.getOperand(0).getReg(); 6089 Register Src = MI.getOperand(1).getReg(); 6090 LLT DstTy = MRI.getType(Dst); 6091 LLT SrcTy = MRI.getType(Src); 6092 6093 const LLT S64 = LLT::scalar(64); 6094 const LLT S32 = LLT::scalar(32); 6095 const LLT S1 = LLT::scalar(1); 6096 6097 if (SrcTy == S1) { 6098 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 6099 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6100 MIRBuilder.buildSelect(Dst, Src, True, False); 6101 MI.eraseFromParent(); 6102 return Legalized; 6103 } 6104 6105 if (SrcTy != S64) 6106 return UnableToLegalize; 6107 6108 if (DstTy == S32) { 6109 // signed cl2f(long l) { 6110 // long s = l >> 63; 6111 // float r = cul2f((l + s) ^ s); 6112 // return s ? -r : r; 6113 // } 6114 Register L = Src; 6115 auto SignBit = MIRBuilder.buildConstant(S64, 63); 6116 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 6117 6118 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 6119 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 6120 auto R = MIRBuilder.buildUITOFP(S32, Xor); 6121 6122 auto RNeg = MIRBuilder.buildFNeg(S32, R); 6123 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 6124 MIRBuilder.buildConstant(S64, 0)); 6125 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 6126 MI.eraseFromParent(); 6127 return Legalized; 6128 } 6129 6130 return UnableToLegalize; 6131 } 6132 6133 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 6134 Register Dst = MI.getOperand(0).getReg(); 6135 Register Src = MI.getOperand(1).getReg(); 6136 LLT DstTy = MRI.getType(Dst); 6137 LLT SrcTy = MRI.getType(Src); 6138 const LLT S64 = LLT::scalar(64); 6139 const LLT S32 = LLT::scalar(32); 6140 6141 if (SrcTy != S64 && SrcTy != S32) 6142 return UnableToLegalize; 6143 if (DstTy != S32 && DstTy != S64) 6144 return UnableToLegalize; 6145 6146 // FPTOSI gives same result as FPTOUI for positive signed integers. 6147 // FPTOUI needs to deal with fp values that convert to unsigned integers 6148 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 6149 6150 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 6151 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 6152 : APFloat::IEEEdouble(), 6153 APInt::getNullValue(SrcTy.getSizeInBits())); 6154 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 6155 6156 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 6157 6158 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 6159 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 6160 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 6161 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 6162 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 6163 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 6164 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 6165 6166 const LLT S1 = LLT::scalar(1); 6167 6168 MachineInstrBuilder FCMP = 6169 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 6170 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 6171 6172 MI.eraseFromParent(); 6173 return Legalized; 6174 } 6175 6176 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 6177 Register Dst = MI.getOperand(0).getReg(); 6178 Register Src = MI.getOperand(1).getReg(); 6179 LLT DstTy = MRI.getType(Dst); 6180 LLT SrcTy = MRI.getType(Src); 6181 const LLT S64 = LLT::scalar(64); 6182 const LLT S32 = LLT::scalar(32); 6183 6184 // FIXME: Only f32 to i64 conversions are supported. 6185 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 6186 return UnableToLegalize; 6187 6188 // Expand f32 -> i64 conversion 6189 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6190 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6191 6192 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 6193 6194 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 6195 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 6196 6197 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 6198 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 6199 6200 auto SignMask = MIRBuilder.buildConstant(SrcTy, 6201 APInt::getSignMask(SrcEltBits)); 6202 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 6203 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 6204 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 6205 Sign = MIRBuilder.buildSExt(DstTy, Sign); 6206 6207 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 6208 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 6209 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 6210 6211 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 6212 R = MIRBuilder.buildZExt(DstTy, R); 6213 6214 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 6215 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 6216 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 6217 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 6218 6219 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 6220 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 6221 6222 const LLT S1 = LLT::scalar(1); 6223 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 6224 S1, Exponent, ExponentLoBit); 6225 6226 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 6227 6228 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 6229 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 6230 6231 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 6232 6233 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 6234 S1, Exponent, ZeroSrcTy); 6235 6236 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 6237 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 6238 6239 MI.eraseFromParent(); 6240 return Legalized; 6241 } 6242 6243 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 6244 LegalizerHelper::LegalizeResult 6245 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 6246 Register Dst = MI.getOperand(0).getReg(); 6247 Register Src = MI.getOperand(1).getReg(); 6248 6249 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 6250 return UnableToLegalize; 6251 6252 const unsigned ExpMask = 0x7ff; 6253 const unsigned ExpBiasf64 = 1023; 6254 const unsigned ExpBiasf16 = 15; 6255 const LLT S32 = LLT::scalar(32); 6256 const LLT S1 = LLT::scalar(1); 6257 6258 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 6259 Register U = Unmerge.getReg(0); 6260 Register UH = Unmerge.getReg(1); 6261 6262 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 6263 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 6264 6265 // Subtract the fp64 exponent bias (1023) to get the real exponent and 6266 // add the f16 bias (15) to get the biased exponent for the f16 format. 6267 E = MIRBuilder.buildAdd( 6268 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 6269 6270 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 6271 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 6272 6273 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 6274 MIRBuilder.buildConstant(S32, 0x1ff)); 6275 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 6276 6277 auto Zero = MIRBuilder.buildConstant(S32, 0); 6278 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 6279 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 6280 M = MIRBuilder.buildOr(S32, M, Lo40Set); 6281 6282 // (M != 0 ? 0x0200 : 0) | 0x7c00; 6283 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 6284 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 6285 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 6286 6287 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 6288 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 6289 6290 // N = M | (E << 12); 6291 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 6292 auto N = MIRBuilder.buildOr(S32, M, EShl12); 6293 6294 // B = clamp(1-E, 0, 13); 6295 auto One = MIRBuilder.buildConstant(S32, 1); 6296 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 6297 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 6298 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 6299 6300 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 6301 MIRBuilder.buildConstant(S32, 0x1000)); 6302 6303 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 6304 auto D0 = MIRBuilder.buildShl(S32, D, B); 6305 6306 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 6307 D0, SigSetHigh); 6308 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 6309 D = MIRBuilder.buildOr(S32, D, D1); 6310 6311 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 6312 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 6313 6314 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 6315 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 6316 6317 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 6318 MIRBuilder.buildConstant(S32, 3)); 6319 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 6320 6321 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 6322 MIRBuilder.buildConstant(S32, 5)); 6323 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 6324 6325 V1 = MIRBuilder.buildOr(S32, V0, V1); 6326 V = MIRBuilder.buildAdd(S32, V, V1); 6327 6328 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 6329 E, MIRBuilder.buildConstant(S32, 30)); 6330 V = MIRBuilder.buildSelect(S32, CmpEGt30, 6331 MIRBuilder.buildConstant(S32, 0x7c00), V); 6332 6333 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 6334 E, MIRBuilder.buildConstant(S32, 1039)); 6335 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 6336 6337 // Extract the sign bit. 6338 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 6339 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 6340 6341 // Insert the sign bit 6342 V = MIRBuilder.buildOr(S32, Sign, V); 6343 6344 MIRBuilder.buildTrunc(Dst, V); 6345 MI.eraseFromParent(); 6346 return Legalized; 6347 } 6348 6349 LegalizerHelper::LegalizeResult 6350 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 6351 Register Dst = MI.getOperand(0).getReg(); 6352 Register Src = MI.getOperand(1).getReg(); 6353 6354 LLT DstTy = MRI.getType(Dst); 6355 LLT SrcTy = MRI.getType(Src); 6356 const LLT S64 = LLT::scalar(64); 6357 const LLT S16 = LLT::scalar(16); 6358 6359 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 6360 return lowerFPTRUNC_F64_TO_F16(MI); 6361 6362 return UnableToLegalize; 6363 } 6364 6365 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 6366 // multiplication tree. 6367 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 6368 Register Dst = MI.getOperand(0).getReg(); 6369 Register Src0 = MI.getOperand(1).getReg(); 6370 Register Src1 = MI.getOperand(2).getReg(); 6371 LLT Ty = MRI.getType(Dst); 6372 6373 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 6374 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 6375 MI.eraseFromParent(); 6376 return Legalized; 6377 } 6378 6379 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 6380 switch (Opc) { 6381 case TargetOpcode::G_SMIN: 6382 return CmpInst::ICMP_SLT; 6383 case TargetOpcode::G_SMAX: 6384 return CmpInst::ICMP_SGT; 6385 case TargetOpcode::G_UMIN: 6386 return CmpInst::ICMP_ULT; 6387 case TargetOpcode::G_UMAX: 6388 return CmpInst::ICMP_UGT; 6389 default: 6390 llvm_unreachable("not in integer min/max"); 6391 } 6392 } 6393 6394 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 6395 Register Dst = MI.getOperand(0).getReg(); 6396 Register Src0 = MI.getOperand(1).getReg(); 6397 Register Src1 = MI.getOperand(2).getReg(); 6398 6399 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 6400 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 6401 6402 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 6403 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 6404 6405 MI.eraseFromParent(); 6406 return Legalized; 6407 } 6408 6409 LegalizerHelper::LegalizeResult 6410 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6411 Register Dst = MI.getOperand(0).getReg(); 6412 Register Src0 = MI.getOperand(1).getReg(); 6413 Register Src1 = MI.getOperand(2).getReg(); 6414 6415 const LLT Src0Ty = MRI.getType(Src0); 6416 const LLT Src1Ty = MRI.getType(Src1); 6417 6418 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6419 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6420 6421 auto SignBitMask = MIRBuilder.buildConstant( 6422 Src0Ty, APInt::getSignMask(Src0Size)); 6423 6424 auto NotSignBitMask = MIRBuilder.buildConstant( 6425 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6426 6427 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6428 Register And1; 6429 if (Src0Ty == Src1Ty) { 6430 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6431 } else if (Src0Size > Src1Size) { 6432 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6433 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6434 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6435 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6436 } else { 6437 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6438 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6439 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6440 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6441 } 6442 6443 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6444 // constants are a nan and -0.0, but the final result should preserve 6445 // everything. 6446 unsigned Flags = MI.getFlags(); 6447 MIRBuilder.buildOr(Dst, And0, And1, Flags); 6448 6449 MI.eraseFromParent(); 6450 return Legalized; 6451 } 6452 6453 LegalizerHelper::LegalizeResult 6454 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 6455 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 6456 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 6457 6458 Register Dst = MI.getOperand(0).getReg(); 6459 Register Src0 = MI.getOperand(1).getReg(); 6460 Register Src1 = MI.getOperand(2).getReg(); 6461 LLT Ty = MRI.getType(Dst); 6462 6463 if (!MI.getFlag(MachineInstr::FmNoNans)) { 6464 // Insert canonicalizes if it's possible we need to quiet to get correct 6465 // sNaN behavior. 6466 6467 // Note this must be done here, and not as an optimization combine in the 6468 // absence of a dedicate quiet-snan instruction as we're using an 6469 // omni-purpose G_FCANONICALIZE. 6470 if (!isKnownNeverSNaN(Src0, MRI)) 6471 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 6472 6473 if (!isKnownNeverSNaN(Src1, MRI)) 6474 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 6475 } 6476 6477 // If there are no nans, it's safe to simply replace this with the non-IEEE 6478 // version. 6479 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 6480 MI.eraseFromParent(); 6481 return Legalized; 6482 } 6483 6484 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 6485 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 6486 Register DstReg = MI.getOperand(0).getReg(); 6487 LLT Ty = MRI.getType(DstReg); 6488 unsigned Flags = MI.getFlags(); 6489 6490 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 6491 Flags); 6492 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 6493 MI.eraseFromParent(); 6494 return Legalized; 6495 } 6496 6497 LegalizerHelper::LegalizeResult 6498 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 6499 Register DstReg = MI.getOperand(0).getReg(); 6500 Register X = MI.getOperand(1).getReg(); 6501 const unsigned Flags = MI.getFlags(); 6502 const LLT Ty = MRI.getType(DstReg); 6503 const LLT CondTy = Ty.changeElementSize(1); 6504 6505 // round(x) => 6506 // t = trunc(x); 6507 // d = fabs(x - t); 6508 // o = copysign(1.0f, x); 6509 // return t + (d >= 0.5 ? o : 0.0); 6510 6511 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 6512 6513 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 6514 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 6515 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6516 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 6517 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 6518 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 6519 6520 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 6521 Flags); 6522 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 6523 6524 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 6525 6526 MI.eraseFromParent(); 6527 return Legalized; 6528 } 6529 6530 LegalizerHelper::LegalizeResult 6531 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 6532 Register DstReg = MI.getOperand(0).getReg(); 6533 Register SrcReg = MI.getOperand(1).getReg(); 6534 unsigned Flags = MI.getFlags(); 6535 LLT Ty = MRI.getType(DstReg); 6536 const LLT CondTy = Ty.changeElementSize(1); 6537 6538 // result = trunc(src); 6539 // if (src < 0.0 && src != result) 6540 // result += -1.0. 6541 6542 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 6543 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6544 6545 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 6546 SrcReg, Zero, Flags); 6547 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 6548 SrcReg, Trunc, Flags); 6549 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 6550 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 6551 6552 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 6553 MI.eraseFromParent(); 6554 return Legalized; 6555 } 6556 6557 LegalizerHelper::LegalizeResult 6558 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 6559 const unsigned NumOps = MI.getNumOperands(); 6560 Register DstReg = MI.getOperand(0).getReg(); 6561 Register Src0Reg = MI.getOperand(1).getReg(); 6562 LLT DstTy = MRI.getType(DstReg); 6563 LLT SrcTy = MRI.getType(Src0Reg); 6564 unsigned PartSize = SrcTy.getSizeInBits(); 6565 6566 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 6567 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 6568 6569 for (unsigned I = 2; I != NumOps; ++I) { 6570 const unsigned Offset = (I - 1) * PartSize; 6571 6572 Register SrcReg = MI.getOperand(I).getReg(); 6573 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 6574 6575 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 6576 MRI.createGenericVirtualRegister(WideTy); 6577 6578 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 6579 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 6580 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 6581 ResultReg = NextResult; 6582 } 6583 6584 if (DstTy.isPointer()) { 6585 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 6586 DstTy.getAddressSpace())) { 6587 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 6588 return UnableToLegalize; 6589 } 6590 6591 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 6592 } 6593 6594 MI.eraseFromParent(); 6595 return Legalized; 6596 } 6597 6598 LegalizerHelper::LegalizeResult 6599 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 6600 const unsigned NumDst = MI.getNumOperands() - 1; 6601 Register SrcReg = MI.getOperand(NumDst).getReg(); 6602 Register Dst0Reg = MI.getOperand(0).getReg(); 6603 LLT DstTy = MRI.getType(Dst0Reg); 6604 if (DstTy.isPointer()) 6605 return UnableToLegalize; // TODO 6606 6607 SrcReg = coerceToScalar(SrcReg); 6608 if (!SrcReg) 6609 return UnableToLegalize; 6610 6611 // Expand scalarizing unmerge as bitcast to integer and shift. 6612 LLT IntTy = MRI.getType(SrcReg); 6613 6614 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 6615 6616 const unsigned DstSize = DstTy.getSizeInBits(); 6617 unsigned Offset = DstSize; 6618 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 6619 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 6620 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 6621 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 6622 } 6623 6624 MI.eraseFromParent(); 6625 return Legalized; 6626 } 6627 6628 /// Lower a vector extract or insert by writing the vector to a stack temporary 6629 /// and reloading the element or vector. 6630 /// 6631 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 6632 /// => 6633 /// %stack_temp = G_FRAME_INDEX 6634 /// G_STORE %vec, %stack_temp 6635 /// %idx = clamp(%idx, %vec.getNumElements()) 6636 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 6637 /// %dst = G_LOAD %element_ptr 6638 LegalizerHelper::LegalizeResult 6639 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 6640 Register DstReg = MI.getOperand(0).getReg(); 6641 Register SrcVec = MI.getOperand(1).getReg(); 6642 Register InsertVal; 6643 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 6644 InsertVal = MI.getOperand(2).getReg(); 6645 6646 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 6647 6648 LLT VecTy = MRI.getType(SrcVec); 6649 LLT EltTy = VecTy.getElementType(); 6650 if (!EltTy.isByteSized()) { // Not implemented. 6651 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 6652 return UnableToLegalize; 6653 } 6654 6655 unsigned EltBytes = EltTy.getSizeInBytes(); 6656 Align VecAlign = getStackTemporaryAlignment(VecTy); 6657 Align EltAlign; 6658 6659 MachinePointerInfo PtrInfo; 6660 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 6661 VecAlign, PtrInfo); 6662 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 6663 6664 // Get the pointer to the element, and be sure not to hit undefined behavior 6665 // if the index is out of bounds. 6666 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 6667 6668 int64_t IdxVal; 6669 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 6670 int64_t Offset = IdxVal * EltBytes; 6671 PtrInfo = PtrInfo.getWithOffset(Offset); 6672 EltAlign = commonAlignment(VecAlign, Offset); 6673 } else { 6674 // We lose information with a variable offset. 6675 EltAlign = getStackTemporaryAlignment(EltTy); 6676 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 6677 } 6678 6679 if (InsertVal) { 6680 // Write the inserted element 6681 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 6682 6683 // Reload the whole vector. 6684 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 6685 } else { 6686 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 6687 } 6688 6689 MI.eraseFromParent(); 6690 return Legalized; 6691 } 6692 6693 LegalizerHelper::LegalizeResult 6694 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 6695 Register DstReg = MI.getOperand(0).getReg(); 6696 Register Src0Reg = MI.getOperand(1).getReg(); 6697 Register Src1Reg = MI.getOperand(2).getReg(); 6698 LLT Src0Ty = MRI.getType(Src0Reg); 6699 LLT DstTy = MRI.getType(DstReg); 6700 LLT IdxTy = LLT::scalar(32); 6701 6702 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6703 6704 if (DstTy.isScalar()) { 6705 if (Src0Ty.isVector()) 6706 return UnableToLegalize; 6707 6708 // This is just a SELECT. 6709 assert(Mask.size() == 1 && "Expected a single mask element"); 6710 Register Val; 6711 if (Mask[0] < 0 || Mask[0] > 1) 6712 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 6713 else 6714 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 6715 MIRBuilder.buildCopy(DstReg, Val); 6716 MI.eraseFromParent(); 6717 return Legalized; 6718 } 6719 6720 Register Undef; 6721 SmallVector<Register, 32> BuildVec; 6722 LLT EltTy = DstTy.getElementType(); 6723 6724 for (int Idx : Mask) { 6725 if (Idx < 0) { 6726 if (!Undef.isValid()) 6727 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 6728 BuildVec.push_back(Undef); 6729 continue; 6730 } 6731 6732 if (Src0Ty.isScalar()) { 6733 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 6734 } else { 6735 int NumElts = Src0Ty.getNumElements(); 6736 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 6737 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 6738 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 6739 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 6740 BuildVec.push_back(Extract.getReg(0)); 6741 } 6742 } 6743 6744 MIRBuilder.buildBuildVector(DstReg, BuildVec); 6745 MI.eraseFromParent(); 6746 return Legalized; 6747 } 6748 6749 LegalizerHelper::LegalizeResult 6750 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 6751 const auto &MF = *MI.getMF(); 6752 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 6753 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 6754 return UnableToLegalize; 6755 6756 Register Dst = MI.getOperand(0).getReg(); 6757 Register AllocSize = MI.getOperand(1).getReg(); 6758 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 6759 6760 LLT PtrTy = MRI.getType(Dst); 6761 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 6762 6763 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 6764 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 6765 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 6766 6767 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 6768 // have to generate an extra instruction to negate the alloc and then use 6769 // G_PTR_ADD to add the negative offset. 6770 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 6771 if (Alignment > Align(1)) { 6772 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 6773 AlignMask.negate(); 6774 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 6775 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 6776 } 6777 6778 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 6779 MIRBuilder.buildCopy(SPReg, SPTmp); 6780 MIRBuilder.buildCopy(Dst, SPTmp); 6781 6782 MI.eraseFromParent(); 6783 return Legalized; 6784 } 6785 6786 LegalizerHelper::LegalizeResult 6787 LegalizerHelper::lowerExtract(MachineInstr &MI) { 6788 Register Dst = MI.getOperand(0).getReg(); 6789 Register Src = MI.getOperand(1).getReg(); 6790 unsigned Offset = MI.getOperand(2).getImm(); 6791 6792 LLT DstTy = MRI.getType(Dst); 6793 LLT SrcTy = MRI.getType(Src); 6794 6795 if (DstTy.isScalar() && 6796 (SrcTy.isScalar() || 6797 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 6798 LLT SrcIntTy = SrcTy; 6799 if (!SrcTy.isScalar()) { 6800 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 6801 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 6802 } 6803 6804 if (Offset == 0) 6805 MIRBuilder.buildTrunc(Dst, Src); 6806 else { 6807 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 6808 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 6809 MIRBuilder.buildTrunc(Dst, Shr); 6810 } 6811 6812 MI.eraseFromParent(); 6813 return Legalized; 6814 } 6815 6816 return UnableToLegalize; 6817 } 6818 6819 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 6820 Register Dst = MI.getOperand(0).getReg(); 6821 Register Src = MI.getOperand(1).getReg(); 6822 Register InsertSrc = MI.getOperand(2).getReg(); 6823 uint64_t Offset = MI.getOperand(3).getImm(); 6824 6825 LLT DstTy = MRI.getType(Src); 6826 LLT InsertTy = MRI.getType(InsertSrc); 6827 6828 if (InsertTy.isVector() || 6829 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 6830 return UnableToLegalize; 6831 6832 const DataLayout &DL = MIRBuilder.getDataLayout(); 6833 if ((DstTy.isPointer() && 6834 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 6835 (InsertTy.isPointer() && 6836 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 6837 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 6838 return UnableToLegalize; 6839 } 6840 6841 LLT IntDstTy = DstTy; 6842 6843 if (!DstTy.isScalar()) { 6844 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 6845 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 6846 } 6847 6848 if (!InsertTy.isScalar()) { 6849 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 6850 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 6851 } 6852 6853 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 6854 if (Offset != 0) { 6855 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 6856 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 6857 } 6858 6859 APInt MaskVal = APInt::getBitsSetWithWrap( 6860 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 6861 6862 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 6863 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 6864 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 6865 6866 MIRBuilder.buildCast(Dst, Or); 6867 MI.eraseFromParent(); 6868 return Legalized; 6869 } 6870 6871 LegalizerHelper::LegalizeResult 6872 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 6873 Register Dst0 = MI.getOperand(0).getReg(); 6874 Register Dst1 = MI.getOperand(1).getReg(); 6875 Register LHS = MI.getOperand(2).getReg(); 6876 Register RHS = MI.getOperand(3).getReg(); 6877 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 6878 6879 LLT Ty = MRI.getType(Dst0); 6880 LLT BoolTy = MRI.getType(Dst1); 6881 6882 if (IsAdd) 6883 MIRBuilder.buildAdd(Dst0, LHS, RHS); 6884 else 6885 MIRBuilder.buildSub(Dst0, LHS, RHS); 6886 6887 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6888 6889 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6890 6891 // For an addition, the result should be less than one of the operands (LHS) 6892 // if and only if the other operand (RHS) is negative, otherwise there will 6893 // be overflow. 6894 // For a subtraction, the result should be less than one of the operands 6895 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 6896 // otherwise there will be overflow. 6897 auto ResultLowerThanLHS = 6898 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 6899 auto ConditionRHS = MIRBuilder.buildICmp( 6900 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 6901 6902 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 6903 MI.eraseFromParent(); 6904 return Legalized; 6905 } 6906 6907 LegalizerHelper::LegalizeResult 6908 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6909 Register Res = MI.getOperand(0).getReg(); 6910 Register LHS = MI.getOperand(1).getReg(); 6911 Register RHS = MI.getOperand(2).getReg(); 6912 LLT Ty = MRI.getType(Res); 6913 bool IsSigned; 6914 bool IsAdd; 6915 unsigned BaseOp; 6916 switch (MI.getOpcode()) { 6917 default: 6918 llvm_unreachable("unexpected addsat/subsat opcode"); 6919 case TargetOpcode::G_UADDSAT: 6920 IsSigned = false; 6921 IsAdd = true; 6922 BaseOp = TargetOpcode::G_ADD; 6923 break; 6924 case TargetOpcode::G_SADDSAT: 6925 IsSigned = true; 6926 IsAdd = true; 6927 BaseOp = TargetOpcode::G_ADD; 6928 break; 6929 case TargetOpcode::G_USUBSAT: 6930 IsSigned = false; 6931 IsAdd = false; 6932 BaseOp = TargetOpcode::G_SUB; 6933 break; 6934 case TargetOpcode::G_SSUBSAT: 6935 IsSigned = true; 6936 IsAdd = false; 6937 BaseOp = TargetOpcode::G_SUB; 6938 break; 6939 } 6940 6941 if (IsSigned) { 6942 // sadd.sat(a, b) -> 6943 // hi = 0x7fffffff - smax(a, 0) 6944 // lo = 0x80000000 - smin(a, 0) 6945 // a + smin(smax(lo, b), hi) 6946 // ssub.sat(a, b) -> 6947 // lo = smax(a, -1) - 0x7fffffff 6948 // hi = smin(a, -1) - 0x80000000 6949 // a - smin(smax(lo, b), hi) 6950 // TODO: AMDGPU can use a "median of 3" instruction here: 6951 // a +/- med3(lo, b, hi) 6952 uint64_t NumBits = Ty.getScalarSizeInBits(); 6953 auto MaxVal = 6954 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 6955 auto MinVal = 6956 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6957 MachineInstrBuilder Hi, Lo; 6958 if (IsAdd) { 6959 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6960 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 6961 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 6962 } else { 6963 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 6964 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 6965 MaxVal); 6966 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 6967 MinVal); 6968 } 6969 auto RHSClamped = 6970 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 6971 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 6972 } else { 6973 // uadd.sat(a, b) -> a + umin(~a, b) 6974 // usub.sat(a, b) -> a - umin(a, b) 6975 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 6976 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 6977 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 6978 } 6979 6980 MI.eraseFromParent(); 6981 return Legalized; 6982 } 6983 6984 LegalizerHelper::LegalizeResult 6985 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 6986 Register Res = MI.getOperand(0).getReg(); 6987 Register LHS = MI.getOperand(1).getReg(); 6988 Register RHS = MI.getOperand(2).getReg(); 6989 LLT Ty = MRI.getType(Res); 6990 LLT BoolTy = Ty.changeElementSize(1); 6991 bool IsSigned; 6992 bool IsAdd; 6993 unsigned OverflowOp; 6994 switch (MI.getOpcode()) { 6995 default: 6996 llvm_unreachable("unexpected addsat/subsat opcode"); 6997 case TargetOpcode::G_UADDSAT: 6998 IsSigned = false; 6999 IsAdd = true; 7000 OverflowOp = TargetOpcode::G_UADDO; 7001 break; 7002 case TargetOpcode::G_SADDSAT: 7003 IsSigned = true; 7004 IsAdd = true; 7005 OverflowOp = TargetOpcode::G_SADDO; 7006 break; 7007 case TargetOpcode::G_USUBSAT: 7008 IsSigned = false; 7009 IsAdd = false; 7010 OverflowOp = TargetOpcode::G_USUBO; 7011 break; 7012 case TargetOpcode::G_SSUBSAT: 7013 IsSigned = true; 7014 IsAdd = false; 7015 OverflowOp = TargetOpcode::G_SSUBO; 7016 break; 7017 } 7018 7019 auto OverflowRes = 7020 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 7021 Register Tmp = OverflowRes.getReg(0); 7022 Register Ov = OverflowRes.getReg(1); 7023 MachineInstrBuilder Clamp; 7024 if (IsSigned) { 7025 // sadd.sat(a, b) -> 7026 // {tmp, ov} = saddo(a, b) 7027 // ov ? (tmp >>s 31) + 0x80000000 : r 7028 // ssub.sat(a, b) -> 7029 // {tmp, ov} = ssubo(a, b) 7030 // ov ? (tmp >>s 31) + 0x80000000 : r 7031 uint64_t NumBits = Ty.getScalarSizeInBits(); 7032 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 7033 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 7034 auto MinVal = 7035 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 7036 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 7037 } else { 7038 // uadd.sat(a, b) -> 7039 // {tmp, ov} = uaddo(a, b) 7040 // ov ? 0xffffffff : tmp 7041 // usub.sat(a, b) -> 7042 // {tmp, ov} = usubo(a, b) 7043 // ov ? 0 : tmp 7044 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 7045 } 7046 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 7047 7048 MI.eraseFromParent(); 7049 return Legalized; 7050 } 7051 7052 LegalizerHelper::LegalizeResult 7053 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 7054 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 7055 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 7056 "Expected shlsat opcode!"); 7057 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 7058 Register Res = MI.getOperand(0).getReg(); 7059 Register LHS = MI.getOperand(1).getReg(); 7060 Register RHS = MI.getOperand(2).getReg(); 7061 LLT Ty = MRI.getType(Res); 7062 LLT BoolTy = Ty.changeElementSize(1); 7063 7064 unsigned BW = Ty.getScalarSizeInBits(); 7065 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 7066 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 7067 : MIRBuilder.buildLShr(Ty, Result, RHS); 7068 7069 MachineInstrBuilder SatVal; 7070 if (IsSigned) { 7071 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 7072 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 7073 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 7074 MIRBuilder.buildConstant(Ty, 0)); 7075 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 7076 } else { 7077 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 7078 } 7079 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 7080 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 7081 7082 MI.eraseFromParent(); 7083 return Legalized; 7084 } 7085 7086 LegalizerHelper::LegalizeResult 7087 LegalizerHelper::lowerBswap(MachineInstr &MI) { 7088 Register Dst = MI.getOperand(0).getReg(); 7089 Register Src = MI.getOperand(1).getReg(); 7090 const LLT Ty = MRI.getType(Src); 7091 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 7092 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 7093 7094 // Swap most and least significant byte, set remaining bytes in Res to zero. 7095 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 7096 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 7097 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7098 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 7099 7100 // Set i-th high/low byte in Res to i-th low/high byte from Src. 7101 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 7102 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 7103 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 7104 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 7105 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 7106 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 7107 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 7108 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 7109 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 7110 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 7111 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7112 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 7113 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 7114 } 7115 Res.getInstr()->getOperand(0).setReg(Dst); 7116 7117 MI.eraseFromParent(); 7118 return Legalized; 7119 } 7120 7121 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 7122 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 7123 MachineInstrBuilder Src, APInt Mask) { 7124 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 7125 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 7126 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 7127 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 7128 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 7129 return B.buildOr(Dst, LHS, RHS); 7130 } 7131 7132 LegalizerHelper::LegalizeResult 7133 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 7134 Register Dst = MI.getOperand(0).getReg(); 7135 Register Src = MI.getOperand(1).getReg(); 7136 const LLT Ty = MRI.getType(Src); 7137 unsigned Size = Ty.getSizeInBits(); 7138 7139 MachineInstrBuilder BSWAP = 7140 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 7141 7142 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 7143 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 7144 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 7145 MachineInstrBuilder Swap4 = 7146 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 7147 7148 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 7149 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 7150 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 7151 MachineInstrBuilder Swap2 = 7152 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 7153 7154 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 7155 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 7156 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 7157 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 7158 7159 MI.eraseFromParent(); 7160 return Legalized; 7161 } 7162 7163 LegalizerHelper::LegalizeResult 7164 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 7165 MachineFunction &MF = MIRBuilder.getMF(); 7166 7167 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 7168 int NameOpIdx = IsRead ? 1 : 0; 7169 int ValRegIndex = IsRead ? 0 : 1; 7170 7171 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 7172 const LLT Ty = MRI.getType(ValReg); 7173 const MDString *RegStr = cast<MDString>( 7174 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 7175 7176 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 7177 if (!PhysReg.isValid()) 7178 return UnableToLegalize; 7179 7180 if (IsRead) 7181 MIRBuilder.buildCopy(ValReg, PhysReg); 7182 else 7183 MIRBuilder.buildCopy(PhysReg, ValReg); 7184 7185 MI.eraseFromParent(); 7186 return Legalized; 7187 } 7188 7189 LegalizerHelper::LegalizeResult 7190 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 7191 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 7192 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 7193 Register Result = MI.getOperand(0).getReg(); 7194 LLT OrigTy = MRI.getType(Result); 7195 auto SizeInBits = OrigTy.getScalarSizeInBits(); 7196 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 7197 7198 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 7199 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 7200 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 7201 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 7202 7203 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 7204 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 7205 MIRBuilder.buildTrunc(Result, Shifted); 7206 7207 MI.eraseFromParent(); 7208 return Legalized; 7209 } 7210 7211 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 7212 // Implement vector G_SELECT in terms of XOR, AND, OR. 7213 Register DstReg = MI.getOperand(0).getReg(); 7214 Register MaskReg = MI.getOperand(1).getReg(); 7215 Register Op1Reg = MI.getOperand(2).getReg(); 7216 Register Op2Reg = MI.getOperand(3).getReg(); 7217 LLT DstTy = MRI.getType(DstReg); 7218 LLT MaskTy = MRI.getType(MaskReg); 7219 LLT Op1Ty = MRI.getType(Op1Reg); 7220 if (!DstTy.isVector()) 7221 return UnableToLegalize; 7222 7223 // Vector selects can have a scalar predicate. If so, splat into a vector and 7224 // finish for later legalization attempts to try again. 7225 if (MaskTy.isScalar()) { 7226 Register MaskElt = MaskReg; 7227 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 7228 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 7229 // Generate a vector splat idiom to be pattern matched later. 7230 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 7231 Observer.changingInstr(MI); 7232 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 7233 Observer.changedInstr(MI); 7234 return Legalized; 7235 } 7236 7237 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 7238 return UnableToLegalize; 7239 } 7240 7241 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 7242 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 7243 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 7244 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 7245 MI.eraseFromParent(); 7246 return Legalized; 7247 } 7248 7249 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 7250 // Split DIVREM into individual instructions. 7251 unsigned Opcode = MI.getOpcode(); 7252 7253 MIRBuilder.buildInstr( 7254 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 7255 : TargetOpcode::G_UDIV, 7256 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7257 MIRBuilder.buildInstr( 7258 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 7259 : TargetOpcode::G_UREM, 7260 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7261 MI.eraseFromParent(); 7262 return Legalized; 7263 } 7264 7265 LegalizerHelper::LegalizeResult 7266 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { 7267 // Expand %res = G_ABS %a into: 7268 // %v1 = G_ASHR %a, scalar_size-1 7269 // %v2 = G_ADD %a, %v1 7270 // %res = G_XOR %v2, %v1 7271 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 7272 Register OpReg = MI.getOperand(1).getReg(); 7273 auto ShiftAmt = 7274 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 7275 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 7276 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 7277 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 7278 MI.eraseFromParent(); 7279 return Legalized; 7280 } 7281 7282 LegalizerHelper::LegalizeResult 7283 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { 7284 // Expand %res = G_ABS %a into: 7285 // %v1 = G_CONSTANT 0 7286 // %v2 = G_SUB %v1, %a 7287 // %res = G_SMAX %a, %v2 7288 Register SrcReg = MI.getOperand(1).getReg(); 7289 LLT Ty = MRI.getType(SrcReg); 7290 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); 7291 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); 7292 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); 7293 MI.eraseFromParent(); 7294 return Legalized; 7295 } 7296