1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 21 #include "llvm/CodeGen/GlobalISel/Utils.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetFrameLowering.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetMachine.h" 33 34 #define DEBUG_TYPE "legalizer" 35 36 using namespace llvm; 37 using namespace LegalizeActions; 38 using namespace MIPatternMatch; 39 40 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 41 /// 42 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 43 /// with any leftover piece as type \p LeftoverTy 44 /// 45 /// Returns -1 in the first element of the pair if the breakdown is not 46 /// satisfiable. 47 static std::pair<int, int> 48 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 49 assert(!LeftoverTy.isValid() && "this is an out argument"); 50 51 unsigned Size = OrigTy.getSizeInBits(); 52 unsigned NarrowSize = NarrowTy.getSizeInBits(); 53 unsigned NumParts = Size / NarrowSize; 54 unsigned LeftoverSize = Size - NumParts * NarrowSize; 55 assert(Size > NarrowSize); 56 57 if (LeftoverSize == 0) 58 return {NumParts, 0}; 59 60 if (NarrowTy.isVector()) { 61 unsigned EltSize = OrigTy.getScalarSizeInBits(); 62 if (LeftoverSize % EltSize != 0) 63 return {-1, -1}; 64 LeftoverTy = LLT::scalarOrVector( 65 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 66 } else { 67 LeftoverTy = LLT::scalar(LeftoverSize); 68 } 69 70 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 71 return std::make_pair(NumParts, NumLeftover); 72 } 73 74 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 75 76 if (!Ty.isScalar()) 77 return nullptr; 78 79 switch (Ty.getSizeInBits()) { 80 case 16: 81 return Type::getHalfTy(Ctx); 82 case 32: 83 return Type::getFloatTy(Ctx); 84 case 64: 85 return Type::getDoubleTy(Ctx); 86 case 80: 87 return Type::getX86_FP80Ty(Ctx); 88 case 128: 89 return Type::getFP128Ty(Ctx); 90 default: 91 return nullptr; 92 } 93 } 94 95 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 96 GISelChangeObserver &Observer, 97 MachineIRBuilder &Builder) 98 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 99 LI(*MF.getSubtarget().getLegalizerInfo()), 100 TLI(*MF.getSubtarget().getTargetLowering()) { } 101 102 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 103 GISelChangeObserver &Observer, 104 MachineIRBuilder &B) 105 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 106 TLI(*MF.getSubtarget().getTargetLowering()) { } 107 108 LegalizerHelper::LegalizeResult 109 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 110 LostDebugLocObserver &LocObserver) { 111 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 112 113 MIRBuilder.setInstrAndDebugLoc(MI); 114 115 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 116 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 117 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 118 auto Step = LI.getAction(MI, MRI); 119 switch (Step.Action) { 120 case Legal: 121 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 122 return AlreadyLegal; 123 case Libcall: 124 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 125 return libcall(MI, LocObserver); 126 case NarrowScalar: 127 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 128 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 129 case WidenScalar: 130 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 131 return widenScalar(MI, Step.TypeIdx, Step.NewType); 132 case Bitcast: 133 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 134 return bitcast(MI, Step.TypeIdx, Step.NewType); 135 case Lower: 136 LLVM_DEBUG(dbgs() << ".. Lower\n"); 137 return lower(MI, Step.TypeIdx, Step.NewType); 138 case FewerElements: 139 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 140 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 141 case MoreElements: 142 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 143 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 144 case Custom: 145 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 146 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 147 default: 148 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 149 return UnableToLegalize; 150 } 151 } 152 153 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 154 SmallVectorImpl<Register> &VRegs) { 155 for (int i = 0; i < NumParts; ++i) 156 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 157 MIRBuilder.buildUnmerge(VRegs, Reg); 158 } 159 160 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 161 LLT MainTy, LLT &LeftoverTy, 162 SmallVectorImpl<Register> &VRegs, 163 SmallVectorImpl<Register> &LeftoverRegs) { 164 assert(!LeftoverTy.isValid() && "this is an out argument"); 165 166 unsigned RegSize = RegTy.getSizeInBits(); 167 unsigned MainSize = MainTy.getSizeInBits(); 168 unsigned NumParts = RegSize / MainSize; 169 unsigned LeftoverSize = RegSize - NumParts * MainSize; 170 171 // Use an unmerge when possible. 172 if (LeftoverSize == 0) { 173 for (unsigned I = 0; I < NumParts; ++I) 174 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 175 MIRBuilder.buildUnmerge(VRegs, Reg); 176 return true; 177 } 178 179 // Perform irregular split. Leftover is last element of RegPieces. 180 if (MainTy.isVector()) { 181 SmallVector<Register, 8> RegPieces; 182 extractVectorParts(Reg, MainTy.getNumElements(), RegPieces); 183 for (unsigned i = 0; i < RegPieces.size() - 1; ++i) 184 VRegs.push_back(RegPieces[i]); 185 LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]); 186 LeftoverTy = MRI.getType(LeftoverRegs[0]); 187 return true; 188 } 189 190 LeftoverTy = LLT::scalar(LeftoverSize); 191 // For irregular sizes, extract the individual parts. 192 for (unsigned I = 0; I != NumParts; ++I) { 193 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 194 VRegs.push_back(NewReg); 195 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 196 } 197 198 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 199 Offset += LeftoverSize) { 200 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 201 LeftoverRegs.push_back(NewReg); 202 MIRBuilder.buildExtract(NewReg, Reg, Offset); 203 } 204 205 return true; 206 } 207 208 void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts, 209 SmallVectorImpl<Register> &VRegs) { 210 LLT RegTy = MRI.getType(Reg); 211 assert(RegTy.isVector() && "Expected a vector type"); 212 213 LLT EltTy = RegTy.getElementType(); 214 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 215 unsigned RegNumElts = RegTy.getNumElements(); 216 unsigned LeftoverNumElts = RegNumElts % NumElts; 217 unsigned NumNarrowTyPieces = RegNumElts / NumElts; 218 219 // Perfect split without leftover 220 if (LeftoverNumElts == 0) 221 return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs); 222 223 // Irregular split. Provide direct access to all elements for artifact 224 // combiner using unmerge to elements. Then build vectors with NumElts 225 // elements. Remaining element(s) will be (used to build vector) Leftover. 226 SmallVector<Register, 8> Elts; 227 extractParts(Reg, EltTy, RegNumElts, Elts); 228 229 unsigned Offset = 0; 230 // Requested sub-vectors of NarrowTy. 231 for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) { 232 ArrayRef<Register> Pieces(&Elts[Offset], NumElts); 233 VRegs.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0)); 234 } 235 236 // Leftover element(s). 237 if (LeftoverNumElts == 1) { 238 VRegs.push_back(Elts[Offset]); 239 } else { 240 LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy); 241 ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts); 242 VRegs.push_back(MIRBuilder.buildMerge(LeftoverTy, Pieces).getReg(0)); 243 } 244 } 245 246 void LegalizerHelper::insertParts(Register DstReg, 247 LLT ResultTy, LLT PartTy, 248 ArrayRef<Register> PartRegs, 249 LLT LeftoverTy, 250 ArrayRef<Register> LeftoverRegs) { 251 if (!LeftoverTy.isValid()) { 252 assert(LeftoverRegs.empty()); 253 254 if (!ResultTy.isVector()) { 255 MIRBuilder.buildMerge(DstReg, PartRegs); 256 return; 257 } 258 259 if (PartTy.isVector()) 260 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 261 else 262 MIRBuilder.buildBuildVector(DstReg, PartRegs); 263 return; 264 } 265 266 // Merge sub-vectors with different number of elements and insert into DstReg. 267 if (ResultTy.isVector()) { 268 assert(LeftoverRegs.size() == 1 && "Expected one leftover register"); 269 SmallVector<Register, 8> AllRegs; 270 for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs)) 271 AllRegs.push_back(Reg); 272 return mergeMixedSubvectors(DstReg, AllRegs); 273 } 274 275 SmallVector<Register> GCDRegs; 276 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy); 277 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs)) 278 extractGCDType(GCDRegs, GCDTy, PartReg); 279 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); 280 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); 281 } 282 283 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts, 284 Register Reg) { 285 LLT Ty = MRI.getType(Reg); 286 SmallVector<Register, 8> RegElts; 287 extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts); 288 Elts.append(RegElts); 289 } 290 291 /// Merge \p PartRegs with different types into \p DstReg. 292 void LegalizerHelper::mergeMixedSubvectors(Register DstReg, 293 ArrayRef<Register> PartRegs) { 294 SmallVector<Register, 8> AllElts; 295 for (unsigned i = 0; i < PartRegs.size() - 1; ++i) 296 appendVectorElts(AllElts, PartRegs[i]); 297 298 Register Leftover = PartRegs[PartRegs.size() - 1]; 299 if (MRI.getType(Leftover).isScalar()) 300 AllElts.push_back(Leftover); 301 else 302 appendVectorElts(AllElts, Leftover); 303 304 MIRBuilder.buildMerge(DstReg, AllElts); 305 } 306 307 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 308 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 309 const MachineInstr &MI) { 310 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 311 312 const int StartIdx = Regs.size(); 313 const int NumResults = MI.getNumOperands() - 1; 314 Regs.resize(Regs.size() + NumResults); 315 for (int I = 0; I != NumResults; ++I) 316 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 317 } 318 319 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 320 LLT GCDTy, Register SrcReg) { 321 LLT SrcTy = MRI.getType(SrcReg); 322 if (SrcTy == GCDTy) { 323 // If the source already evenly divides the result type, we don't need to do 324 // anything. 325 Parts.push_back(SrcReg); 326 } else { 327 // Need to split into common type sized pieces. 328 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 329 getUnmergeResults(Parts, *Unmerge); 330 } 331 } 332 333 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 334 LLT NarrowTy, Register SrcReg) { 335 LLT SrcTy = MRI.getType(SrcReg); 336 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 337 extractGCDType(Parts, GCDTy, SrcReg); 338 return GCDTy; 339 } 340 341 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 342 SmallVectorImpl<Register> &VRegs, 343 unsigned PadStrategy) { 344 LLT LCMTy = getLCMType(DstTy, NarrowTy); 345 346 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 347 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 348 int NumOrigSrc = VRegs.size(); 349 350 Register PadReg; 351 352 // Get a value we can use to pad the source value if the sources won't evenly 353 // cover the result type. 354 if (NumOrigSrc < NumParts * NumSubParts) { 355 if (PadStrategy == TargetOpcode::G_ZEXT) 356 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 357 else if (PadStrategy == TargetOpcode::G_ANYEXT) 358 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 359 else { 360 assert(PadStrategy == TargetOpcode::G_SEXT); 361 362 // Shift the sign bit of the low register through the high register. 363 auto ShiftAmt = 364 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 365 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 366 } 367 } 368 369 // Registers for the final merge to be produced. 370 SmallVector<Register, 4> Remerge(NumParts); 371 372 // Registers needed for intermediate merges, which will be merged into a 373 // source for Remerge. 374 SmallVector<Register, 4> SubMerge(NumSubParts); 375 376 // Once we've fully read off the end of the original source bits, we can reuse 377 // the same high bits for remaining padding elements. 378 Register AllPadReg; 379 380 // Build merges to the LCM type to cover the original result type. 381 for (int I = 0; I != NumParts; ++I) { 382 bool AllMergePartsArePadding = true; 383 384 // Build the requested merges to the requested type. 385 for (int J = 0; J != NumSubParts; ++J) { 386 int Idx = I * NumSubParts + J; 387 if (Idx >= NumOrigSrc) { 388 SubMerge[J] = PadReg; 389 continue; 390 } 391 392 SubMerge[J] = VRegs[Idx]; 393 394 // There are meaningful bits here we can't reuse later. 395 AllMergePartsArePadding = false; 396 } 397 398 // If we've filled up a complete piece with padding bits, we can directly 399 // emit the natural sized constant if applicable, rather than a merge of 400 // smaller constants. 401 if (AllMergePartsArePadding && !AllPadReg) { 402 if (PadStrategy == TargetOpcode::G_ANYEXT) 403 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 404 else if (PadStrategy == TargetOpcode::G_ZEXT) 405 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 406 407 // If this is a sign extension, we can't materialize a trivial constant 408 // with the right type and have to produce a merge. 409 } 410 411 if (AllPadReg) { 412 // Avoid creating additional instructions if we're just adding additional 413 // copies of padding bits. 414 Remerge[I] = AllPadReg; 415 continue; 416 } 417 418 if (NumSubParts == 1) 419 Remerge[I] = SubMerge[0]; 420 else 421 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 422 423 // In the sign extend padding case, re-use the first all-signbit merge. 424 if (AllMergePartsArePadding && !AllPadReg) 425 AllPadReg = Remerge[I]; 426 } 427 428 VRegs = std::move(Remerge); 429 return LCMTy; 430 } 431 432 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 433 ArrayRef<Register> RemergeRegs) { 434 LLT DstTy = MRI.getType(DstReg); 435 436 // Create the merge to the widened source, and extract the relevant bits into 437 // the result. 438 439 if (DstTy == LCMTy) { 440 MIRBuilder.buildMerge(DstReg, RemergeRegs); 441 return; 442 } 443 444 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 445 if (DstTy.isScalar() && LCMTy.isScalar()) { 446 MIRBuilder.buildTrunc(DstReg, Remerge); 447 return; 448 } 449 450 if (LCMTy.isVector()) { 451 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 452 SmallVector<Register, 8> UnmergeDefs(NumDefs); 453 UnmergeDefs[0] = DstReg; 454 for (unsigned I = 1; I != NumDefs; ++I) 455 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 456 457 MIRBuilder.buildUnmerge(UnmergeDefs, 458 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 459 return; 460 } 461 462 llvm_unreachable("unhandled case"); 463 } 464 465 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 466 #define RTLIBCASE_INT(LibcallPrefix) \ 467 do { \ 468 switch (Size) { \ 469 case 32: \ 470 return RTLIB::LibcallPrefix##32; \ 471 case 64: \ 472 return RTLIB::LibcallPrefix##64; \ 473 case 128: \ 474 return RTLIB::LibcallPrefix##128; \ 475 default: \ 476 llvm_unreachable("unexpected size"); \ 477 } \ 478 } while (0) 479 480 #define RTLIBCASE(LibcallPrefix) \ 481 do { \ 482 switch (Size) { \ 483 case 32: \ 484 return RTLIB::LibcallPrefix##32; \ 485 case 64: \ 486 return RTLIB::LibcallPrefix##64; \ 487 case 80: \ 488 return RTLIB::LibcallPrefix##80; \ 489 case 128: \ 490 return RTLIB::LibcallPrefix##128; \ 491 default: \ 492 llvm_unreachable("unexpected size"); \ 493 } \ 494 } while (0) 495 496 switch (Opcode) { 497 case TargetOpcode::G_SDIV: 498 RTLIBCASE_INT(SDIV_I); 499 case TargetOpcode::G_UDIV: 500 RTLIBCASE_INT(UDIV_I); 501 case TargetOpcode::G_SREM: 502 RTLIBCASE_INT(SREM_I); 503 case TargetOpcode::G_UREM: 504 RTLIBCASE_INT(UREM_I); 505 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 506 RTLIBCASE_INT(CTLZ_I); 507 case TargetOpcode::G_FADD: 508 RTLIBCASE(ADD_F); 509 case TargetOpcode::G_FSUB: 510 RTLIBCASE(SUB_F); 511 case TargetOpcode::G_FMUL: 512 RTLIBCASE(MUL_F); 513 case TargetOpcode::G_FDIV: 514 RTLIBCASE(DIV_F); 515 case TargetOpcode::G_FEXP: 516 RTLIBCASE(EXP_F); 517 case TargetOpcode::G_FEXP2: 518 RTLIBCASE(EXP2_F); 519 case TargetOpcode::G_FREM: 520 RTLIBCASE(REM_F); 521 case TargetOpcode::G_FPOW: 522 RTLIBCASE(POW_F); 523 case TargetOpcode::G_FMA: 524 RTLIBCASE(FMA_F); 525 case TargetOpcode::G_FSIN: 526 RTLIBCASE(SIN_F); 527 case TargetOpcode::G_FCOS: 528 RTLIBCASE(COS_F); 529 case TargetOpcode::G_FLOG10: 530 RTLIBCASE(LOG10_F); 531 case TargetOpcode::G_FLOG: 532 RTLIBCASE(LOG_F); 533 case TargetOpcode::G_FLOG2: 534 RTLIBCASE(LOG2_F); 535 case TargetOpcode::G_FCEIL: 536 RTLIBCASE(CEIL_F); 537 case TargetOpcode::G_FFLOOR: 538 RTLIBCASE(FLOOR_F); 539 case TargetOpcode::G_FMINNUM: 540 RTLIBCASE(FMIN_F); 541 case TargetOpcode::G_FMAXNUM: 542 RTLIBCASE(FMAX_F); 543 case TargetOpcode::G_FSQRT: 544 RTLIBCASE(SQRT_F); 545 case TargetOpcode::G_FRINT: 546 RTLIBCASE(RINT_F); 547 case TargetOpcode::G_FNEARBYINT: 548 RTLIBCASE(NEARBYINT_F); 549 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 550 RTLIBCASE(ROUNDEVEN_F); 551 } 552 llvm_unreachable("Unknown libcall function"); 553 } 554 555 /// True if an instruction is in tail position in its caller. Intended for 556 /// legalizing libcalls as tail calls when possible. 557 static bool isLibCallInTailPosition(MachineInstr &MI, 558 const TargetInstrInfo &TII, 559 MachineRegisterInfo &MRI) { 560 MachineBasicBlock &MBB = *MI.getParent(); 561 const Function &F = MBB.getParent()->getFunction(); 562 563 // Conservatively require the attributes of the call to match those of 564 // the return. Ignore NoAlias and NonNull because they don't affect the 565 // call sequence. 566 AttributeList CallerAttrs = F.getAttributes(); 567 if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs()) 568 .removeAttribute(Attribute::NoAlias) 569 .removeAttribute(Attribute::NonNull) 570 .hasAttributes()) 571 return false; 572 573 // It's not safe to eliminate the sign / zero extension of the return value. 574 if (CallerAttrs.hasRetAttr(Attribute::ZExt) || 575 CallerAttrs.hasRetAttr(Attribute::SExt)) 576 return false; 577 578 // Only tail call if the following instruction is a standard return or if we 579 // have a `thisreturn` callee, and a sequence like: 580 // 581 // G_MEMCPY %0, %1, %2 582 // $x0 = COPY %0 583 // RET_ReallyLR implicit $x0 584 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 585 if (Next != MBB.instr_end() && Next->isCopy()) { 586 switch (MI.getOpcode()) { 587 default: 588 llvm_unreachable("unsupported opcode"); 589 case TargetOpcode::G_BZERO: 590 return false; 591 case TargetOpcode::G_MEMCPY: 592 case TargetOpcode::G_MEMMOVE: 593 case TargetOpcode::G_MEMSET: 594 break; 595 } 596 597 Register VReg = MI.getOperand(0).getReg(); 598 if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg()) 599 return false; 600 601 Register PReg = Next->getOperand(0).getReg(); 602 if (!PReg.isPhysical()) 603 return false; 604 605 auto Ret = next_nodbg(Next, MBB.instr_end()); 606 if (Ret == MBB.instr_end() || !Ret->isReturn()) 607 return false; 608 609 if (Ret->getNumImplicitOperands() != 1) 610 return false; 611 612 if (PReg != Ret->getOperand(0).getReg()) 613 return false; 614 615 // Skip over the COPY that we just validated. 616 Next = Ret; 617 } 618 619 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 620 return false; 621 622 return true; 623 } 624 625 LegalizerHelper::LegalizeResult 626 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 627 const CallLowering::ArgInfo &Result, 628 ArrayRef<CallLowering::ArgInfo> Args, 629 const CallingConv::ID CC) { 630 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 631 632 CallLowering::CallLoweringInfo Info; 633 Info.CallConv = CC; 634 Info.Callee = MachineOperand::CreateES(Name); 635 Info.OrigRet = Result; 636 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 637 if (!CLI.lowerCall(MIRBuilder, Info)) 638 return LegalizerHelper::UnableToLegalize; 639 640 return LegalizerHelper::Legalized; 641 } 642 643 LegalizerHelper::LegalizeResult 644 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 645 const CallLowering::ArgInfo &Result, 646 ArrayRef<CallLowering::ArgInfo> Args) { 647 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 648 const char *Name = TLI.getLibcallName(Libcall); 649 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 650 return createLibcall(MIRBuilder, Name, Result, Args, CC); 651 } 652 653 // Useful for libcalls where all operands have the same type. 654 static LegalizerHelper::LegalizeResult 655 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 656 Type *OpType) { 657 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 658 659 // FIXME: What does the original arg index mean here? 660 SmallVector<CallLowering::ArgInfo, 3> Args; 661 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 662 Args.push_back({MO.getReg(), OpType, 0}); 663 return createLibcall(MIRBuilder, Libcall, 664 {MI.getOperand(0).getReg(), OpType, 0}, Args); 665 } 666 667 LegalizerHelper::LegalizeResult 668 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 669 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 670 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 671 672 SmallVector<CallLowering::ArgInfo, 3> Args; 673 // Add all the args, except for the last which is an imm denoting 'tail'. 674 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 675 Register Reg = MI.getOperand(i).getReg(); 676 677 // Need derive an IR type for call lowering. 678 LLT OpLLT = MRI.getType(Reg); 679 Type *OpTy = nullptr; 680 if (OpLLT.isPointer()) 681 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 682 else 683 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 684 Args.push_back({Reg, OpTy, 0}); 685 } 686 687 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 688 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 689 RTLIB::Libcall RTLibcall; 690 unsigned Opc = MI.getOpcode(); 691 switch (Opc) { 692 case TargetOpcode::G_BZERO: 693 RTLibcall = RTLIB::BZERO; 694 break; 695 case TargetOpcode::G_MEMCPY: 696 RTLibcall = RTLIB::MEMCPY; 697 Args[0].Flags[0].setReturned(); 698 break; 699 case TargetOpcode::G_MEMMOVE: 700 RTLibcall = RTLIB::MEMMOVE; 701 Args[0].Flags[0].setReturned(); 702 break; 703 case TargetOpcode::G_MEMSET: 704 RTLibcall = RTLIB::MEMSET; 705 Args[0].Flags[0].setReturned(); 706 break; 707 default: 708 llvm_unreachable("unsupported opcode"); 709 } 710 const char *Name = TLI.getLibcallName(RTLibcall); 711 712 // Unsupported libcall on the target. 713 if (!Name) { 714 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 715 << MIRBuilder.getTII().getName(Opc) << "\n"); 716 return LegalizerHelper::UnableToLegalize; 717 } 718 719 CallLowering::CallLoweringInfo Info; 720 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 721 Info.Callee = MachineOperand::CreateES(Name); 722 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0); 723 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 724 isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI); 725 726 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 727 if (!CLI.lowerCall(MIRBuilder, Info)) 728 return LegalizerHelper::UnableToLegalize; 729 730 if (Info.LoweredTailCall) { 731 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 732 733 // Check debug locations before removing the return. 734 LocObserver.checkpoint(true); 735 736 // We must have a return following the call (or debug insts) to get past 737 // isLibCallInTailPosition. 738 do { 739 MachineInstr *Next = MI.getNextNode(); 740 assert(Next && 741 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && 742 "Expected instr following MI to be return or debug inst?"); 743 // We lowered a tail call, so the call is now the return from the block. 744 // Delete the old return. 745 Next->eraseFromParent(); 746 } while (MI.getNextNode()); 747 748 // We expect to lose the debug location from the return. 749 LocObserver.checkpoint(false); 750 } 751 752 return LegalizerHelper::Legalized; 753 } 754 755 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 756 Type *FromType) { 757 auto ToMVT = MVT::getVT(ToType); 758 auto FromMVT = MVT::getVT(FromType); 759 760 switch (Opcode) { 761 case TargetOpcode::G_FPEXT: 762 return RTLIB::getFPEXT(FromMVT, ToMVT); 763 case TargetOpcode::G_FPTRUNC: 764 return RTLIB::getFPROUND(FromMVT, ToMVT); 765 case TargetOpcode::G_FPTOSI: 766 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 767 case TargetOpcode::G_FPTOUI: 768 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 769 case TargetOpcode::G_SITOFP: 770 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 771 case TargetOpcode::G_UITOFP: 772 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 773 } 774 llvm_unreachable("Unsupported libcall function"); 775 } 776 777 static LegalizerHelper::LegalizeResult 778 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 779 Type *FromType) { 780 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 781 return createLibcall(MIRBuilder, Libcall, 782 {MI.getOperand(0).getReg(), ToType, 0}, 783 {{MI.getOperand(1).getReg(), FromType, 0}}); 784 } 785 786 LegalizerHelper::LegalizeResult 787 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 788 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 789 unsigned Size = LLTy.getSizeInBits(); 790 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 791 792 switch (MI.getOpcode()) { 793 default: 794 return UnableToLegalize; 795 case TargetOpcode::G_SDIV: 796 case TargetOpcode::G_UDIV: 797 case TargetOpcode::G_SREM: 798 case TargetOpcode::G_UREM: 799 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 800 Type *HLTy = IntegerType::get(Ctx, Size); 801 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 802 if (Status != Legalized) 803 return Status; 804 break; 805 } 806 case TargetOpcode::G_FADD: 807 case TargetOpcode::G_FSUB: 808 case TargetOpcode::G_FMUL: 809 case TargetOpcode::G_FDIV: 810 case TargetOpcode::G_FMA: 811 case TargetOpcode::G_FPOW: 812 case TargetOpcode::G_FREM: 813 case TargetOpcode::G_FCOS: 814 case TargetOpcode::G_FSIN: 815 case TargetOpcode::G_FLOG10: 816 case TargetOpcode::G_FLOG: 817 case TargetOpcode::G_FLOG2: 818 case TargetOpcode::G_FEXP: 819 case TargetOpcode::G_FEXP2: 820 case TargetOpcode::G_FCEIL: 821 case TargetOpcode::G_FFLOOR: 822 case TargetOpcode::G_FMINNUM: 823 case TargetOpcode::G_FMAXNUM: 824 case TargetOpcode::G_FSQRT: 825 case TargetOpcode::G_FRINT: 826 case TargetOpcode::G_FNEARBYINT: 827 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 828 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 829 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 830 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 831 return UnableToLegalize; 832 } 833 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 834 if (Status != Legalized) 835 return Status; 836 break; 837 } 838 case TargetOpcode::G_FPEXT: 839 case TargetOpcode::G_FPTRUNC: { 840 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 841 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 842 if (!FromTy || !ToTy) 843 return UnableToLegalize; 844 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 845 if (Status != Legalized) 846 return Status; 847 break; 848 } 849 case TargetOpcode::G_FPTOSI: 850 case TargetOpcode::G_FPTOUI: { 851 // FIXME: Support other types 852 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 853 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 854 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 855 return UnableToLegalize; 856 LegalizeResult Status = conversionLibcall( 857 MI, MIRBuilder, 858 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 859 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 860 if (Status != Legalized) 861 return Status; 862 break; 863 } 864 case TargetOpcode::G_SITOFP: 865 case TargetOpcode::G_UITOFP: { 866 // FIXME: Support other types 867 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 868 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 869 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 870 return UnableToLegalize; 871 LegalizeResult Status = conversionLibcall( 872 MI, MIRBuilder, 873 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 874 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 875 if (Status != Legalized) 876 return Status; 877 break; 878 } 879 case TargetOpcode::G_BZERO: 880 case TargetOpcode::G_MEMCPY: 881 case TargetOpcode::G_MEMMOVE: 882 case TargetOpcode::G_MEMSET: { 883 LegalizeResult Result = 884 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 885 if (Result != Legalized) 886 return Result; 887 MI.eraseFromParent(); 888 return Result; 889 } 890 } 891 892 MI.eraseFromParent(); 893 return Legalized; 894 } 895 896 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 897 unsigned TypeIdx, 898 LLT NarrowTy) { 899 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 900 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 901 902 switch (MI.getOpcode()) { 903 default: 904 return UnableToLegalize; 905 case TargetOpcode::G_IMPLICIT_DEF: { 906 Register DstReg = MI.getOperand(0).getReg(); 907 LLT DstTy = MRI.getType(DstReg); 908 909 // If SizeOp0 is not an exact multiple of NarrowSize, emit 910 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 911 // FIXME: Although this would also be legal for the general case, it causes 912 // a lot of regressions in the emitted code (superfluous COPYs, artifact 913 // combines not being hit). This seems to be a problem related to the 914 // artifact combiner. 915 if (SizeOp0 % NarrowSize != 0) { 916 LLT ImplicitTy = NarrowTy; 917 if (DstTy.isVector()) 918 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); 919 920 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 921 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 922 923 MI.eraseFromParent(); 924 return Legalized; 925 } 926 927 int NumParts = SizeOp0 / NarrowSize; 928 929 SmallVector<Register, 2> DstRegs; 930 for (int i = 0; i < NumParts; ++i) 931 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 932 933 if (DstTy.isVector()) 934 MIRBuilder.buildBuildVector(DstReg, DstRegs); 935 else 936 MIRBuilder.buildMerge(DstReg, DstRegs); 937 MI.eraseFromParent(); 938 return Legalized; 939 } 940 case TargetOpcode::G_CONSTANT: { 941 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 942 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 943 unsigned TotalSize = Ty.getSizeInBits(); 944 unsigned NarrowSize = NarrowTy.getSizeInBits(); 945 int NumParts = TotalSize / NarrowSize; 946 947 SmallVector<Register, 4> PartRegs; 948 for (int I = 0; I != NumParts; ++I) { 949 unsigned Offset = I * NarrowSize; 950 auto K = MIRBuilder.buildConstant(NarrowTy, 951 Val.lshr(Offset).trunc(NarrowSize)); 952 PartRegs.push_back(K.getReg(0)); 953 } 954 955 LLT LeftoverTy; 956 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 957 SmallVector<Register, 1> LeftoverRegs; 958 if (LeftoverBits != 0) { 959 LeftoverTy = LLT::scalar(LeftoverBits); 960 auto K = MIRBuilder.buildConstant( 961 LeftoverTy, 962 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 963 LeftoverRegs.push_back(K.getReg(0)); 964 } 965 966 insertParts(MI.getOperand(0).getReg(), 967 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 968 969 MI.eraseFromParent(); 970 return Legalized; 971 } 972 case TargetOpcode::G_SEXT: 973 case TargetOpcode::G_ZEXT: 974 case TargetOpcode::G_ANYEXT: 975 return narrowScalarExt(MI, TypeIdx, NarrowTy); 976 case TargetOpcode::G_TRUNC: { 977 if (TypeIdx != 1) 978 return UnableToLegalize; 979 980 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 981 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 982 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 983 return UnableToLegalize; 984 } 985 986 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 987 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 988 MI.eraseFromParent(); 989 return Legalized; 990 } 991 992 case TargetOpcode::G_FREEZE: { 993 if (TypeIdx != 0) 994 return UnableToLegalize; 995 996 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 997 // Should widen scalar first 998 if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0) 999 return UnableToLegalize; 1000 1001 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); 1002 SmallVector<Register, 8> Parts; 1003 for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) { 1004 Parts.push_back( 1005 MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0)); 1006 } 1007 1008 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Parts); 1009 MI.eraseFromParent(); 1010 return Legalized; 1011 } 1012 case TargetOpcode::G_ADD: 1013 case TargetOpcode::G_SUB: 1014 case TargetOpcode::G_SADDO: 1015 case TargetOpcode::G_SSUBO: 1016 case TargetOpcode::G_SADDE: 1017 case TargetOpcode::G_SSUBE: 1018 case TargetOpcode::G_UADDO: 1019 case TargetOpcode::G_USUBO: 1020 case TargetOpcode::G_UADDE: 1021 case TargetOpcode::G_USUBE: 1022 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 1023 case TargetOpcode::G_MUL: 1024 case TargetOpcode::G_UMULH: 1025 return narrowScalarMul(MI, NarrowTy); 1026 case TargetOpcode::G_EXTRACT: 1027 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 1028 case TargetOpcode::G_INSERT: 1029 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 1030 case TargetOpcode::G_LOAD: { 1031 auto &LoadMI = cast<GLoad>(MI); 1032 Register DstReg = LoadMI.getDstReg(); 1033 LLT DstTy = MRI.getType(DstReg); 1034 if (DstTy.isVector()) 1035 return UnableToLegalize; 1036 1037 if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) { 1038 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1039 MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO()); 1040 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1041 LoadMI.eraseFromParent(); 1042 return Legalized; 1043 } 1044 1045 return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy); 1046 } 1047 case TargetOpcode::G_ZEXTLOAD: 1048 case TargetOpcode::G_SEXTLOAD: { 1049 auto &LoadMI = cast<GExtLoad>(MI); 1050 Register DstReg = LoadMI.getDstReg(); 1051 Register PtrReg = LoadMI.getPointerReg(); 1052 1053 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1054 auto &MMO = LoadMI.getMMO(); 1055 unsigned MemSize = MMO.getSizeInBits(); 1056 1057 if (MemSize == NarrowSize) { 1058 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1059 } else if (MemSize < NarrowSize) { 1060 MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO); 1061 } else if (MemSize > NarrowSize) { 1062 // FIXME: Need to split the load. 1063 return UnableToLegalize; 1064 } 1065 1066 if (isa<GZExtLoad>(LoadMI)) 1067 MIRBuilder.buildZExt(DstReg, TmpReg); 1068 else 1069 MIRBuilder.buildSExt(DstReg, TmpReg); 1070 1071 LoadMI.eraseFromParent(); 1072 return Legalized; 1073 } 1074 case TargetOpcode::G_STORE: { 1075 auto &StoreMI = cast<GStore>(MI); 1076 1077 Register SrcReg = StoreMI.getValueReg(); 1078 LLT SrcTy = MRI.getType(SrcReg); 1079 if (SrcTy.isVector()) 1080 return UnableToLegalize; 1081 1082 int NumParts = SizeOp0 / NarrowSize; 1083 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 1084 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 1085 if (SrcTy.isVector() && LeftoverBits != 0) 1086 return UnableToLegalize; 1087 1088 if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) { 1089 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1090 MIRBuilder.buildTrunc(TmpReg, SrcReg); 1091 MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO()); 1092 StoreMI.eraseFromParent(); 1093 return Legalized; 1094 } 1095 1096 return reduceLoadStoreWidth(StoreMI, 0, NarrowTy); 1097 } 1098 case TargetOpcode::G_SELECT: 1099 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1100 case TargetOpcode::G_AND: 1101 case TargetOpcode::G_OR: 1102 case TargetOpcode::G_XOR: { 1103 // Legalize bitwise operation: 1104 // A = BinOp<Ty> B, C 1105 // into: 1106 // B1, ..., BN = G_UNMERGE_VALUES B 1107 // C1, ..., CN = G_UNMERGE_VALUES C 1108 // A1 = BinOp<Ty/N> B1, C2 1109 // ... 1110 // AN = BinOp<Ty/N> BN, CN 1111 // A = G_MERGE_VALUES A1, ..., AN 1112 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1113 } 1114 case TargetOpcode::G_SHL: 1115 case TargetOpcode::G_LSHR: 1116 case TargetOpcode::G_ASHR: 1117 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1118 case TargetOpcode::G_CTLZ: 1119 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1120 case TargetOpcode::G_CTTZ: 1121 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1122 case TargetOpcode::G_CTPOP: 1123 if (TypeIdx == 1) 1124 switch (MI.getOpcode()) { 1125 case TargetOpcode::G_CTLZ: 1126 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1127 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1128 case TargetOpcode::G_CTTZ: 1129 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1130 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1131 case TargetOpcode::G_CTPOP: 1132 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1133 default: 1134 return UnableToLegalize; 1135 } 1136 1137 Observer.changingInstr(MI); 1138 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1139 Observer.changedInstr(MI); 1140 return Legalized; 1141 case TargetOpcode::G_INTTOPTR: 1142 if (TypeIdx != 1) 1143 return UnableToLegalize; 1144 1145 Observer.changingInstr(MI); 1146 narrowScalarSrc(MI, NarrowTy, 1); 1147 Observer.changedInstr(MI); 1148 return Legalized; 1149 case TargetOpcode::G_PTRTOINT: 1150 if (TypeIdx != 0) 1151 return UnableToLegalize; 1152 1153 Observer.changingInstr(MI); 1154 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1155 Observer.changedInstr(MI); 1156 return Legalized; 1157 case TargetOpcode::G_PHI: { 1158 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1159 // NarrowSize. 1160 if (SizeOp0 % NarrowSize != 0) 1161 return UnableToLegalize; 1162 1163 unsigned NumParts = SizeOp0 / NarrowSize; 1164 SmallVector<Register, 2> DstRegs(NumParts); 1165 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1166 Observer.changingInstr(MI); 1167 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1168 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1169 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1170 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1171 SrcRegs[i / 2]); 1172 } 1173 MachineBasicBlock &MBB = *MI.getParent(); 1174 MIRBuilder.setInsertPt(MBB, MI); 1175 for (unsigned i = 0; i < NumParts; ++i) { 1176 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1177 MachineInstrBuilder MIB = 1178 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1179 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1180 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1181 } 1182 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1183 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1184 Observer.changedInstr(MI); 1185 MI.eraseFromParent(); 1186 return Legalized; 1187 } 1188 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1189 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1190 if (TypeIdx != 2) 1191 return UnableToLegalize; 1192 1193 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1194 Observer.changingInstr(MI); 1195 narrowScalarSrc(MI, NarrowTy, OpIdx); 1196 Observer.changedInstr(MI); 1197 return Legalized; 1198 } 1199 case TargetOpcode::G_ICMP: { 1200 Register LHS = MI.getOperand(2).getReg(); 1201 LLT SrcTy = MRI.getType(LHS); 1202 uint64_t SrcSize = SrcTy.getSizeInBits(); 1203 CmpInst::Predicate Pred = 1204 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1205 1206 // TODO: Handle the non-equality case for weird sizes. 1207 if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred)) 1208 return UnableToLegalize; 1209 1210 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover) 1211 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs; 1212 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs, 1213 LHSLeftoverRegs)) 1214 return UnableToLegalize; 1215 1216 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type. 1217 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs; 1218 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused, 1219 RHSPartRegs, RHSLeftoverRegs)) 1220 return UnableToLegalize; 1221 1222 // We now have the LHS and RHS of the compare split into narrow-type 1223 // registers, plus potentially some leftover type. 1224 Register Dst = MI.getOperand(0).getReg(); 1225 LLT ResTy = MRI.getType(Dst); 1226 if (ICmpInst::isEquality(Pred)) { 1227 // For each part on the LHS and RHS, keep track of the result of XOR-ing 1228 // them together. For each equal part, the result should be all 0s. For 1229 // each non-equal part, we'll get at least one 1. 1230 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1231 SmallVector<Register, 4> Xors; 1232 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) { 1233 auto LHS = std::get<0>(LHSAndRHS); 1234 auto RHS = std::get<1>(LHSAndRHS); 1235 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0); 1236 Xors.push_back(Xor); 1237 } 1238 1239 // Build a G_XOR for each leftover register. Each G_XOR must be widened 1240 // to the desired narrow type so that we can OR them together later. 1241 SmallVector<Register, 4> WidenedXors; 1242 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) { 1243 auto LHS = std::get<0>(LHSAndRHS); 1244 auto RHS = std::get<1>(LHSAndRHS); 1245 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0); 1246 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor); 1247 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors, 1248 /* PadStrategy = */ TargetOpcode::G_ZEXT); 1249 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end()); 1250 } 1251 1252 // Now, for each part we broke up, we know if they are equal/not equal 1253 // based off the G_XOR. We can OR these all together and compare against 1254 // 0 to get the result. 1255 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?"); 1256 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]); 1257 for (unsigned I = 2, E = Xors.size(); I < E; ++I) 1258 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]); 1259 MIRBuilder.buildICmp(Pred, Dst, Or, Zero); 1260 } else { 1261 // TODO: Handle non-power-of-two types. 1262 assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?"); 1263 assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?"); 1264 Register LHSL = LHSPartRegs[0]; 1265 Register LHSH = LHSPartRegs[1]; 1266 Register RHSL = RHSPartRegs[0]; 1267 Register RHSH = RHSPartRegs[1]; 1268 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1269 MachineInstrBuilder CmpHEQ = 1270 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1271 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1272 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1273 MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH); 1274 } 1275 MI.eraseFromParent(); 1276 return Legalized; 1277 } 1278 case TargetOpcode::G_SEXT_INREG: { 1279 if (TypeIdx != 0) 1280 return UnableToLegalize; 1281 1282 int64_t SizeInBits = MI.getOperand(2).getImm(); 1283 1284 // So long as the new type has more bits than the bits we're extending we 1285 // don't need to break it apart. 1286 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1287 Observer.changingInstr(MI); 1288 // We don't lose any non-extension bits by truncating the src and 1289 // sign-extending the dst. 1290 MachineOperand &MO1 = MI.getOperand(1); 1291 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1292 MO1.setReg(TruncMIB.getReg(0)); 1293 1294 MachineOperand &MO2 = MI.getOperand(0); 1295 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1296 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1297 MIRBuilder.buildSExt(MO2, DstExt); 1298 MO2.setReg(DstExt); 1299 Observer.changedInstr(MI); 1300 return Legalized; 1301 } 1302 1303 // Break it apart. Components below the extension point are unmodified. The 1304 // component containing the extension point becomes a narrower SEXT_INREG. 1305 // Components above it are ashr'd from the component containing the 1306 // extension point. 1307 if (SizeOp0 % NarrowSize != 0) 1308 return UnableToLegalize; 1309 int NumParts = SizeOp0 / NarrowSize; 1310 1311 // List the registers where the destination will be scattered. 1312 SmallVector<Register, 2> DstRegs; 1313 // List the registers where the source will be split. 1314 SmallVector<Register, 2> SrcRegs; 1315 1316 // Create all the temporary registers. 1317 for (int i = 0; i < NumParts; ++i) { 1318 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1319 1320 SrcRegs.push_back(SrcReg); 1321 } 1322 1323 // Explode the big arguments into smaller chunks. 1324 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1325 1326 Register AshrCstReg = 1327 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1328 .getReg(0); 1329 Register FullExtensionReg = 0; 1330 Register PartialExtensionReg = 0; 1331 1332 // Do the operation on each small part. 1333 for (int i = 0; i < NumParts; ++i) { 1334 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1335 DstRegs.push_back(SrcRegs[i]); 1336 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1337 assert(PartialExtensionReg && 1338 "Expected to visit partial extension before full"); 1339 if (FullExtensionReg) { 1340 DstRegs.push_back(FullExtensionReg); 1341 continue; 1342 } 1343 DstRegs.push_back( 1344 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1345 .getReg(0)); 1346 FullExtensionReg = DstRegs.back(); 1347 } else { 1348 DstRegs.push_back( 1349 MIRBuilder 1350 .buildInstr( 1351 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1352 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1353 .getReg(0)); 1354 PartialExtensionReg = DstRegs.back(); 1355 } 1356 } 1357 1358 // Gather the destination registers into the final destination. 1359 Register DstReg = MI.getOperand(0).getReg(); 1360 MIRBuilder.buildMerge(DstReg, DstRegs); 1361 MI.eraseFromParent(); 1362 return Legalized; 1363 } 1364 case TargetOpcode::G_BSWAP: 1365 case TargetOpcode::G_BITREVERSE: { 1366 if (SizeOp0 % NarrowSize != 0) 1367 return UnableToLegalize; 1368 1369 Observer.changingInstr(MI); 1370 SmallVector<Register, 2> SrcRegs, DstRegs; 1371 unsigned NumParts = SizeOp0 / NarrowSize; 1372 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1373 1374 for (unsigned i = 0; i < NumParts; ++i) { 1375 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1376 {SrcRegs[NumParts - 1 - i]}); 1377 DstRegs.push_back(DstPart.getReg(0)); 1378 } 1379 1380 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1381 1382 Observer.changedInstr(MI); 1383 MI.eraseFromParent(); 1384 return Legalized; 1385 } 1386 case TargetOpcode::G_PTR_ADD: 1387 case TargetOpcode::G_PTRMASK: { 1388 if (TypeIdx != 1) 1389 return UnableToLegalize; 1390 Observer.changingInstr(MI); 1391 narrowScalarSrc(MI, NarrowTy, 2); 1392 Observer.changedInstr(MI); 1393 return Legalized; 1394 } 1395 case TargetOpcode::G_FPTOUI: 1396 case TargetOpcode::G_FPTOSI: 1397 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1398 case TargetOpcode::G_FPEXT: 1399 if (TypeIdx != 0) 1400 return UnableToLegalize; 1401 Observer.changingInstr(MI); 1402 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1403 Observer.changedInstr(MI); 1404 return Legalized; 1405 } 1406 } 1407 1408 Register LegalizerHelper::coerceToScalar(Register Val) { 1409 LLT Ty = MRI.getType(Val); 1410 if (Ty.isScalar()) 1411 return Val; 1412 1413 const DataLayout &DL = MIRBuilder.getDataLayout(); 1414 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1415 if (Ty.isPointer()) { 1416 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1417 return Register(); 1418 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1419 } 1420 1421 Register NewVal = Val; 1422 1423 assert(Ty.isVector()); 1424 LLT EltTy = Ty.getElementType(); 1425 if (EltTy.isPointer()) 1426 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1427 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1428 } 1429 1430 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1431 unsigned OpIdx, unsigned ExtOpcode) { 1432 MachineOperand &MO = MI.getOperand(OpIdx); 1433 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1434 MO.setReg(ExtB.getReg(0)); 1435 } 1436 1437 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1438 unsigned OpIdx) { 1439 MachineOperand &MO = MI.getOperand(OpIdx); 1440 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1441 MO.setReg(ExtB.getReg(0)); 1442 } 1443 1444 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1445 unsigned OpIdx, unsigned TruncOpcode) { 1446 MachineOperand &MO = MI.getOperand(OpIdx); 1447 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1448 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1449 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1450 MO.setReg(DstExt); 1451 } 1452 1453 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1454 unsigned OpIdx, unsigned ExtOpcode) { 1455 MachineOperand &MO = MI.getOperand(OpIdx); 1456 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1457 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1458 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1459 MO.setReg(DstTrunc); 1460 } 1461 1462 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1463 unsigned OpIdx) { 1464 MachineOperand &MO = MI.getOperand(OpIdx); 1465 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1466 Register Dst = MO.getReg(); 1467 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1468 MO.setReg(DstExt); 1469 MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt); 1470 } 1471 1472 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1473 unsigned OpIdx) { 1474 MachineOperand &MO = MI.getOperand(OpIdx); 1475 SmallVector<Register, 8> Regs; 1476 MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0)); 1477 } 1478 1479 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1480 MachineOperand &Op = MI.getOperand(OpIdx); 1481 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1482 } 1483 1484 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1485 MachineOperand &MO = MI.getOperand(OpIdx); 1486 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1487 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1488 MIRBuilder.buildBitcast(MO, CastDst); 1489 MO.setReg(CastDst); 1490 } 1491 1492 LegalizerHelper::LegalizeResult 1493 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1494 LLT WideTy) { 1495 if (TypeIdx != 1) 1496 return UnableToLegalize; 1497 1498 Register DstReg = MI.getOperand(0).getReg(); 1499 LLT DstTy = MRI.getType(DstReg); 1500 if (DstTy.isVector()) 1501 return UnableToLegalize; 1502 1503 Register Src1 = MI.getOperand(1).getReg(); 1504 LLT SrcTy = MRI.getType(Src1); 1505 const int DstSize = DstTy.getSizeInBits(); 1506 const int SrcSize = SrcTy.getSizeInBits(); 1507 const int WideSize = WideTy.getSizeInBits(); 1508 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1509 1510 unsigned NumOps = MI.getNumOperands(); 1511 unsigned NumSrc = MI.getNumOperands() - 1; 1512 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1513 1514 if (WideSize >= DstSize) { 1515 // Directly pack the bits in the target type. 1516 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1517 1518 for (unsigned I = 2; I != NumOps; ++I) { 1519 const unsigned Offset = (I - 1) * PartSize; 1520 1521 Register SrcReg = MI.getOperand(I).getReg(); 1522 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1523 1524 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1525 1526 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1527 MRI.createGenericVirtualRegister(WideTy); 1528 1529 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1530 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1531 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1532 ResultReg = NextResult; 1533 } 1534 1535 if (WideSize > DstSize) 1536 MIRBuilder.buildTrunc(DstReg, ResultReg); 1537 else if (DstTy.isPointer()) 1538 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1539 1540 MI.eraseFromParent(); 1541 return Legalized; 1542 } 1543 1544 // Unmerge the original values to the GCD type, and recombine to the next 1545 // multiple greater than the original type. 1546 // 1547 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1548 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1549 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1550 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1551 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1552 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1553 // %12:_(s12) = G_MERGE_VALUES %10, %11 1554 // 1555 // Padding with undef if necessary: 1556 // 1557 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1558 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1559 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1560 // %7:_(s2) = G_IMPLICIT_DEF 1561 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1562 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1563 // %10:_(s12) = G_MERGE_VALUES %8, %9 1564 1565 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1566 LLT GCDTy = LLT::scalar(GCD); 1567 1568 SmallVector<Register, 8> Parts; 1569 SmallVector<Register, 8> NewMergeRegs; 1570 SmallVector<Register, 8> Unmerges; 1571 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1572 1573 // Decompose the original operands if they don't evenly divide. 1574 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 1575 Register SrcReg = MO.getReg(); 1576 if (GCD == SrcSize) { 1577 Unmerges.push_back(SrcReg); 1578 } else { 1579 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1580 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1581 Unmerges.push_back(Unmerge.getReg(J)); 1582 } 1583 } 1584 1585 // Pad with undef to the next size that is a multiple of the requested size. 1586 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1587 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1588 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1589 Unmerges.push_back(UndefReg); 1590 } 1591 1592 const int PartsPerGCD = WideSize / GCD; 1593 1594 // Build merges of each piece. 1595 ArrayRef<Register> Slicer(Unmerges); 1596 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1597 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1598 NewMergeRegs.push_back(Merge.getReg(0)); 1599 } 1600 1601 // A truncate may be necessary if the requested type doesn't evenly divide the 1602 // original result type. 1603 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1604 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1605 } else { 1606 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1607 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1608 } 1609 1610 MI.eraseFromParent(); 1611 return Legalized; 1612 } 1613 1614 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1615 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1616 LLT OrigTy = MRI.getType(OrigReg); 1617 LLT LCMTy = getLCMType(WideTy, OrigTy); 1618 1619 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1620 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1621 1622 Register UnmergeSrc = WideReg; 1623 1624 // Create a merge to the LCM type, padding with undef 1625 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1626 // => 1627 // %1:_(<4 x s32>) = G_FOO 1628 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1629 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1630 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1631 if (NumMergeParts > 1) { 1632 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1633 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1634 MergeParts[0] = WideReg; 1635 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1636 } 1637 1638 // Unmerge to the original register and pad with dead defs. 1639 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1640 UnmergeResults[0] = OrigReg; 1641 for (int I = 1; I != NumUnmergeParts; ++I) 1642 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1643 1644 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1645 return WideReg; 1646 } 1647 1648 LegalizerHelper::LegalizeResult 1649 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1650 LLT WideTy) { 1651 if (TypeIdx != 0) 1652 return UnableToLegalize; 1653 1654 int NumDst = MI.getNumOperands() - 1; 1655 Register SrcReg = MI.getOperand(NumDst).getReg(); 1656 LLT SrcTy = MRI.getType(SrcReg); 1657 if (SrcTy.isVector()) 1658 return UnableToLegalize; 1659 1660 Register Dst0Reg = MI.getOperand(0).getReg(); 1661 LLT DstTy = MRI.getType(Dst0Reg); 1662 if (!DstTy.isScalar()) 1663 return UnableToLegalize; 1664 1665 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1666 if (SrcTy.isPointer()) { 1667 const DataLayout &DL = MIRBuilder.getDataLayout(); 1668 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1669 LLVM_DEBUG( 1670 dbgs() << "Not casting non-integral address space integer\n"); 1671 return UnableToLegalize; 1672 } 1673 1674 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1675 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1676 } 1677 1678 // Widen SrcTy to WideTy. This does not affect the result, but since the 1679 // user requested this size, it is probably better handled than SrcTy and 1680 // should reduce the total number of legalization artifacts. 1681 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1682 SrcTy = WideTy; 1683 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1684 } 1685 1686 // Theres no unmerge type to target. Directly extract the bits from the 1687 // source type 1688 unsigned DstSize = DstTy.getSizeInBits(); 1689 1690 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1691 for (int I = 1; I != NumDst; ++I) { 1692 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1693 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1694 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1695 } 1696 1697 MI.eraseFromParent(); 1698 return Legalized; 1699 } 1700 1701 // Extend the source to a wider type. 1702 LLT LCMTy = getLCMType(SrcTy, WideTy); 1703 1704 Register WideSrc = SrcReg; 1705 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1706 // TODO: If this is an integral address space, cast to integer and anyext. 1707 if (SrcTy.isPointer()) { 1708 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1709 return UnableToLegalize; 1710 } 1711 1712 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1713 } 1714 1715 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1716 1717 // Create a sequence of unmerges and merges to the original results. Since we 1718 // may have widened the source, we will need to pad the results with dead defs 1719 // to cover the source register. 1720 // e.g. widen s48 to s64: 1721 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1722 // 1723 // => 1724 // %4:_(s192) = G_ANYEXT %0:_(s96) 1725 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1726 // ; unpack to GCD type, with extra dead defs 1727 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1728 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1729 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1730 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1731 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1732 const LLT GCDTy = getGCDType(WideTy, DstTy); 1733 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1734 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1735 1736 // Directly unmerge to the destination without going through a GCD type 1737 // if possible 1738 if (PartsPerRemerge == 1) { 1739 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1740 1741 for (int I = 0; I != NumUnmerge; ++I) { 1742 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1743 1744 for (int J = 0; J != PartsPerUnmerge; ++J) { 1745 int Idx = I * PartsPerUnmerge + J; 1746 if (Idx < NumDst) 1747 MIB.addDef(MI.getOperand(Idx).getReg()); 1748 else { 1749 // Create dead def for excess components. 1750 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1751 } 1752 } 1753 1754 MIB.addUse(Unmerge.getReg(I)); 1755 } 1756 } else { 1757 SmallVector<Register, 16> Parts; 1758 for (int J = 0; J != NumUnmerge; ++J) 1759 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1760 1761 SmallVector<Register, 8> RemergeParts; 1762 for (int I = 0; I != NumDst; ++I) { 1763 for (int J = 0; J < PartsPerRemerge; ++J) { 1764 const int Idx = I * PartsPerRemerge + J; 1765 RemergeParts.emplace_back(Parts[Idx]); 1766 } 1767 1768 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1769 RemergeParts.clear(); 1770 } 1771 } 1772 1773 MI.eraseFromParent(); 1774 return Legalized; 1775 } 1776 1777 LegalizerHelper::LegalizeResult 1778 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1779 LLT WideTy) { 1780 Register DstReg = MI.getOperand(0).getReg(); 1781 Register SrcReg = MI.getOperand(1).getReg(); 1782 LLT SrcTy = MRI.getType(SrcReg); 1783 1784 LLT DstTy = MRI.getType(DstReg); 1785 unsigned Offset = MI.getOperand(2).getImm(); 1786 1787 if (TypeIdx == 0) { 1788 if (SrcTy.isVector() || DstTy.isVector()) 1789 return UnableToLegalize; 1790 1791 SrcOp Src(SrcReg); 1792 if (SrcTy.isPointer()) { 1793 // Extracts from pointers can be handled only if they are really just 1794 // simple integers. 1795 const DataLayout &DL = MIRBuilder.getDataLayout(); 1796 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1797 return UnableToLegalize; 1798 1799 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1800 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1801 SrcTy = SrcAsIntTy; 1802 } 1803 1804 if (DstTy.isPointer()) 1805 return UnableToLegalize; 1806 1807 if (Offset == 0) { 1808 // Avoid a shift in the degenerate case. 1809 MIRBuilder.buildTrunc(DstReg, 1810 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1811 MI.eraseFromParent(); 1812 return Legalized; 1813 } 1814 1815 // Do a shift in the source type. 1816 LLT ShiftTy = SrcTy; 1817 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1818 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1819 ShiftTy = WideTy; 1820 } 1821 1822 auto LShr = MIRBuilder.buildLShr( 1823 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1824 MIRBuilder.buildTrunc(DstReg, LShr); 1825 MI.eraseFromParent(); 1826 return Legalized; 1827 } 1828 1829 if (SrcTy.isScalar()) { 1830 Observer.changingInstr(MI); 1831 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1832 Observer.changedInstr(MI); 1833 return Legalized; 1834 } 1835 1836 if (!SrcTy.isVector()) 1837 return UnableToLegalize; 1838 1839 if (DstTy != SrcTy.getElementType()) 1840 return UnableToLegalize; 1841 1842 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1843 return UnableToLegalize; 1844 1845 Observer.changingInstr(MI); 1846 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1847 1848 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1849 Offset); 1850 widenScalarDst(MI, WideTy.getScalarType(), 0); 1851 Observer.changedInstr(MI); 1852 return Legalized; 1853 } 1854 1855 LegalizerHelper::LegalizeResult 1856 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1857 LLT WideTy) { 1858 if (TypeIdx != 0 || WideTy.isVector()) 1859 return UnableToLegalize; 1860 Observer.changingInstr(MI); 1861 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1862 widenScalarDst(MI, WideTy); 1863 Observer.changedInstr(MI); 1864 return Legalized; 1865 } 1866 1867 LegalizerHelper::LegalizeResult 1868 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1869 LLT WideTy) { 1870 if (TypeIdx == 1) 1871 return UnableToLegalize; // TODO 1872 1873 unsigned Opcode; 1874 unsigned ExtOpcode; 1875 Optional<Register> CarryIn = None; 1876 switch (MI.getOpcode()) { 1877 default: 1878 llvm_unreachable("Unexpected opcode!"); 1879 case TargetOpcode::G_SADDO: 1880 Opcode = TargetOpcode::G_ADD; 1881 ExtOpcode = TargetOpcode::G_SEXT; 1882 break; 1883 case TargetOpcode::G_SSUBO: 1884 Opcode = TargetOpcode::G_SUB; 1885 ExtOpcode = TargetOpcode::G_SEXT; 1886 break; 1887 case TargetOpcode::G_UADDO: 1888 Opcode = TargetOpcode::G_ADD; 1889 ExtOpcode = TargetOpcode::G_ZEXT; 1890 break; 1891 case TargetOpcode::G_USUBO: 1892 Opcode = TargetOpcode::G_SUB; 1893 ExtOpcode = TargetOpcode::G_ZEXT; 1894 break; 1895 case TargetOpcode::G_SADDE: 1896 Opcode = TargetOpcode::G_UADDE; 1897 ExtOpcode = TargetOpcode::G_SEXT; 1898 CarryIn = MI.getOperand(4).getReg(); 1899 break; 1900 case TargetOpcode::G_SSUBE: 1901 Opcode = TargetOpcode::G_USUBE; 1902 ExtOpcode = TargetOpcode::G_SEXT; 1903 CarryIn = MI.getOperand(4).getReg(); 1904 break; 1905 case TargetOpcode::G_UADDE: 1906 Opcode = TargetOpcode::G_UADDE; 1907 ExtOpcode = TargetOpcode::G_ZEXT; 1908 CarryIn = MI.getOperand(4).getReg(); 1909 break; 1910 case TargetOpcode::G_USUBE: 1911 Opcode = TargetOpcode::G_USUBE; 1912 ExtOpcode = TargetOpcode::G_ZEXT; 1913 CarryIn = MI.getOperand(4).getReg(); 1914 break; 1915 } 1916 1917 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1918 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1919 // Do the arithmetic in the larger type. 1920 Register NewOp; 1921 if (CarryIn) { 1922 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1923 NewOp = MIRBuilder 1924 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1925 {LHSExt, RHSExt, *CarryIn}) 1926 .getReg(0); 1927 } else { 1928 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1929 } 1930 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1931 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1932 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1933 // There is no overflow if the ExtOp is the same as NewOp. 1934 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1935 // Now trunc the NewOp to the original result. 1936 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1937 MI.eraseFromParent(); 1938 return Legalized; 1939 } 1940 1941 LegalizerHelper::LegalizeResult 1942 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1943 LLT WideTy) { 1944 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1945 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1946 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1947 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1948 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1949 // We can convert this to: 1950 // 1. Any extend iN to iM 1951 // 2. SHL by M-N 1952 // 3. [US][ADD|SUB|SHL]SAT 1953 // 4. L/ASHR by M-N 1954 // 1955 // It may be more efficient to lower this to a min and a max operation in 1956 // the higher precision arithmetic if the promoted operation isn't legal, 1957 // but this decision is up to the target's lowering request. 1958 Register DstReg = MI.getOperand(0).getReg(); 1959 1960 unsigned NewBits = WideTy.getScalarSizeInBits(); 1961 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1962 1963 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1964 // must not left shift the RHS to preserve the shift amount. 1965 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1966 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1967 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1968 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1969 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1970 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1971 1972 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1973 {ShiftL, ShiftR}, MI.getFlags()); 1974 1975 // Use a shift that will preserve the number of sign bits when the trunc is 1976 // folded away. 1977 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1978 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1979 1980 MIRBuilder.buildTrunc(DstReg, Result); 1981 MI.eraseFromParent(); 1982 return Legalized; 1983 } 1984 1985 LegalizerHelper::LegalizeResult 1986 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 1987 LLT WideTy) { 1988 if (TypeIdx == 1) 1989 return UnableToLegalize; 1990 1991 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 1992 Register Result = MI.getOperand(0).getReg(); 1993 Register OriginalOverflow = MI.getOperand(1).getReg(); 1994 Register LHS = MI.getOperand(2).getReg(); 1995 Register RHS = MI.getOperand(3).getReg(); 1996 LLT SrcTy = MRI.getType(LHS); 1997 LLT OverflowTy = MRI.getType(OriginalOverflow); 1998 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 1999 2000 // To determine if the result overflowed in the larger type, we extend the 2001 // input to the larger type, do the multiply (checking if it overflows), 2002 // then also check the high bits of the result to see if overflow happened 2003 // there. 2004 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2005 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 2006 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 2007 2008 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, 2009 {LeftOperand, RightOperand}); 2010 auto Mul = Mulo->getOperand(0); 2011 MIRBuilder.buildTrunc(Result, Mul); 2012 2013 MachineInstrBuilder ExtResult; 2014 // Overflow occurred if it occurred in the larger type, or if the high part 2015 // of the result does not zero/sign-extend the low part. Check this second 2016 // possibility first. 2017 if (IsSigned) { 2018 // For signed, overflow occurred when the high part does not sign-extend 2019 // the low part. 2020 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 2021 } else { 2022 // Unsigned overflow occurred when the high part does not zero-extend the 2023 // low part. 2024 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 2025 } 2026 2027 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 2028 // so we don't need to check the overflow result of larger type Mulo. 2029 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { 2030 auto Overflow = 2031 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 2032 // Finally check if the multiplication in the larger type itself overflowed. 2033 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 2034 } else { 2035 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 2036 } 2037 MI.eraseFromParent(); 2038 return Legalized; 2039 } 2040 2041 LegalizerHelper::LegalizeResult 2042 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 2043 switch (MI.getOpcode()) { 2044 default: 2045 return UnableToLegalize; 2046 case TargetOpcode::G_ATOMICRMW_XCHG: 2047 case TargetOpcode::G_ATOMICRMW_ADD: 2048 case TargetOpcode::G_ATOMICRMW_SUB: 2049 case TargetOpcode::G_ATOMICRMW_AND: 2050 case TargetOpcode::G_ATOMICRMW_OR: 2051 case TargetOpcode::G_ATOMICRMW_XOR: 2052 case TargetOpcode::G_ATOMICRMW_MIN: 2053 case TargetOpcode::G_ATOMICRMW_MAX: 2054 case TargetOpcode::G_ATOMICRMW_UMIN: 2055 case TargetOpcode::G_ATOMICRMW_UMAX: 2056 assert(TypeIdx == 0 && "atomicrmw with second scalar type"); 2057 Observer.changingInstr(MI); 2058 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2059 widenScalarDst(MI, WideTy, 0); 2060 Observer.changedInstr(MI); 2061 return Legalized; 2062 case TargetOpcode::G_ATOMIC_CMPXCHG: 2063 assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type"); 2064 Observer.changingInstr(MI); 2065 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2066 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2067 widenScalarDst(MI, WideTy, 0); 2068 Observer.changedInstr(MI); 2069 return Legalized; 2070 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: 2071 if (TypeIdx == 0) { 2072 Observer.changingInstr(MI); 2073 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2074 widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT); 2075 widenScalarDst(MI, WideTy, 0); 2076 Observer.changedInstr(MI); 2077 return Legalized; 2078 } 2079 assert(TypeIdx == 1 && 2080 "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"); 2081 Observer.changingInstr(MI); 2082 widenScalarDst(MI, WideTy, 1); 2083 Observer.changedInstr(MI); 2084 return Legalized; 2085 case TargetOpcode::G_EXTRACT: 2086 return widenScalarExtract(MI, TypeIdx, WideTy); 2087 case TargetOpcode::G_INSERT: 2088 return widenScalarInsert(MI, TypeIdx, WideTy); 2089 case TargetOpcode::G_MERGE_VALUES: 2090 return widenScalarMergeValues(MI, TypeIdx, WideTy); 2091 case TargetOpcode::G_UNMERGE_VALUES: 2092 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 2093 case TargetOpcode::G_SADDO: 2094 case TargetOpcode::G_SSUBO: 2095 case TargetOpcode::G_UADDO: 2096 case TargetOpcode::G_USUBO: 2097 case TargetOpcode::G_SADDE: 2098 case TargetOpcode::G_SSUBE: 2099 case TargetOpcode::G_UADDE: 2100 case TargetOpcode::G_USUBE: 2101 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 2102 case TargetOpcode::G_UMULO: 2103 case TargetOpcode::G_SMULO: 2104 return widenScalarMulo(MI, TypeIdx, WideTy); 2105 case TargetOpcode::G_SADDSAT: 2106 case TargetOpcode::G_SSUBSAT: 2107 case TargetOpcode::G_SSHLSAT: 2108 case TargetOpcode::G_UADDSAT: 2109 case TargetOpcode::G_USUBSAT: 2110 case TargetOpcode::G_USHLSAT: 2111 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 2112 case TargetOpcode::G_CTTZ: 2113 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2114 case TargetOpcode::G_CTLZ: 2115 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2116 case TargetOpcode::G_CTPOP: { 2117 if (TypeIdx == 0) { 2118 Observer.changingInstr(MI); 2119 widenScalarDst(MI, WideTy, 0); 2120 Observer.changedInstr(MI); 2121 return Legalized; 2122 } 2123 2124 Register SrcReg = MI.getOperand(1).getReg(); 2125 2126 // First extend the input. 2127 unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ || 2128 MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF 2129 ? TargetOpcode::G_ANYEXT 2130 : TargetOpcode::G_ZEXT; 2131 auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg}); 2132 LLT CurTy = MRI.getType(SrcReg); 2133 unsigned NewOpc = MI.getOpcode(); 2134 if (NewOpc == TargetOpcode::G_CTTZ) { 2135 // The count is the same in the larger type except if the original 2136 // value was zero. This can be handled by setting the bit just off 2137 // the top of the original type. 2138 auto TopBit = 2139 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 2140 MIBSrc = MIRBuilder.buildOr( 2141 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 2142 // Now we know the operand is non-zero, use the more relaxed opcode. 2143 NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF; 2144 } 2145 2146 // Perform the operation at the larger size. 2147 auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc}); 2148 // This is already the correct result for CTPOP and CTTZs 2149 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 2150 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 2151 // The correct result is NewOp - (Difference in widety and current ty). 2152 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 2153 MIBNewOp = MIRBuilder.buildSub( 2154 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 2155 } 2156 2157 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 2158 MI.eraseFromParent(); 2159 return Legalized; 2160 } 2161 case TargetOpcode::G_BSWAP: { 2162 Observer.changingInstr(MI); 2163 Register DstReg = MI.getOperand(0).getReg(); 2164 2165 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 2166 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2167 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 2168 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2169 2170 MI.getOperand(0).setReg(DstExt); 2171 2172 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2173 2174 LLT Ty = MRI.getType(DstReg); 2175 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2176 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 2177 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 2178 2179 MIRBuilder.buildTrunc(DstReg, ShrReg); 2180 Observer.changedInstr(MI); 2181 return Legalized; 2182 } 2183 case TargetOpcode::G_BITREVERSE: { 2184 Observer.changingInstr(MI); 2185 2186 Register DstReg = MI.getOperand(0).getReg(); 2187 LLT Ty = MRI.getType(DstReg); 2188 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2189 2190 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2191 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2192 MI.getOperand(0).setReg(DstExt); 2193 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2194 2195 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 2196 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 2197 MIRBuilder.buildTrunc(DstReg, Shift); 2198 Observer.changedInstr(MI); 2199 return Legalized; 2200 } 2201 case TargetOpcode::G_FREEZE: 2202 Observer.changingInstr(MI); 2203 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2204 widenScalarDst(MI, WideTy); 2205 Observer.changedInstr(MI); 2206 return Legalized; 2207 2208 case TargetOpcode::G_ABS: 2209 Observer.changingInstr(MI); 2210 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2211 widenScalarDst(MI, WideTy); 2212 Observer.changedInstr(MI); 2213 return Legalized; 2214 2215 case TargetOpcode::G_ADD: 2216 case TargetOpcode::G_AND: 2217 case TargetOpcode::G_MUL: 2218 case TargetOpcode::G_OR: 2219 case TargetOpcode::G_XOR: 2220 case TargetOpcode::G_SUB: 2221 // Perform operation at larger width (any extension is fines here, high bits 2222 // don't affect the result) and then truncate the result back to the 2223 // original type. 2224 Observer.changingInstr(MI); 2225 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2226 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2227 widenScalarDst(MI, WideTy); 2228 Observer.changedInstr(MI); 2229 return Legalized; 2230 2231 case TargetOpcode::G_SBFX: 2232 case TargetOpcode::G_UBFX: 2233 Observer.changingInstr(MI); 2234 2235 if (TypeIdx == 0) { 2236 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2237 widenScalarDst(MI, WideTy); 2238 } else { 2239 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2240 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2241 } 2242 2243 Observer.changedInstr(MI); 2244 return Legalized; 2245 2246 case TargetOpcode::G_SHL: 2247 Observer.changingInstr(MI); 2248 2249 if (TypeIdx == 0) { 2250 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2251 widenScalarDst(MI, WideTy); 2252 } else { 2253 assert(TypeIdx == 1); 2254 // The "number of bits to shift" operand must preserve its value as an 2255 // unsigned integer: 2256 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2257 } 2258 2259 Observer.changedInstr(MI); 2260 return Legalized; 2261 2262 case TargetOpcode::G_SDIV: 2263 case TargetOpcode::G_SREM: 2264 case TargetOpcode::G_SMIN: 2265 case TargetOpcode::G_SMAX: 2266 Observer.changingInstr(MI); 2267 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2268 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2269 widenScalarDst(MI, WideTy); 2270 Observer.changedInstr(MI); 2271 return Legalized; 2272 2273 case TargetOpcode::G_SDIVREM: 2274 Observer.changingInstr(MI); 2275 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2276 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2277 widenScalarDst(MI, WideTy); 2278 widenScalarDst(MI, WideTy, 1); 2279 Observer.changedInstr(MI); 2280 return Legalized; 2281 2282 case TargetOpcode::G_ASHR: 2283 case TargetOpcode::G_LSHR: 2284 Observer.changingInstr(MI); 2285 2286 if (TypeIdx == 0) { 2287 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2288 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2289 2290 widenScalarSrc(MI, WideTy, 1, CvtOp); 2291 widenScalarDst(MI, WideTy); 2292 } else { 2293 assert(TypeIdx == 1); 2294 // The "number of bits to shift" operand must preserve its value as an 2295 // unsigned integer: 2296 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2297 } 2298 2299 Observer.changedInstr(MI); 2300 return Legalized; 2301 case TargetOpcode::G_UDIV: 2302 case TargetOpcode::G_UREM: 2303 case TargetOpcode::G_UMIN: 2304 case TargetOpcode::G_UMAX: 2305 Observer.changingInstr(MI); 2306 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2307 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2308 widenScalarDst(MI, WideTy); 2309 Observer.changedInstr(MI); 2310 return Legalized; 2311 2312 case TargetOpcode::G_UDIVREM: 2313 Observer.changingInstr(MI); 2314 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2315 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2316 widenScalarDst(MI, WideTy); 2317 widenScalarDst(MI, WideTy, 1); 2318 Observer.changedInstr(MI); 2319 return Legalized; 2320 2321 case TargetOpcode::G_SELECT: 2322 Observer.changingInstr(MI); 2323 if (TypeIdx == 0) { 2324 // Perform operation at larger width (any extension is fine here, high 2325 // bits don't affect the result) and then truncate the result back to the 2326 // original type. 2327 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2328 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2329 widenScalarDst(MI, WideTy); 2330 } else { 2331 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2332 // Explicit extension is required here since high bits affect the result. 2333 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2334 } 2335 Observer.changedInstr(MI); 2336 return Legalized; 2337 2338 case TargetOpcode::G_FPTOSI: 2339 case TargetOpcode::G_FPTOUI: 2340 Observer.changingInstr(MI); 2341 2342 if (TypeIdx == 0) 2343 widenScalarDst(MI, WideTy); 2344 else 2345 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2346 2347 Observer.changedInstr(MI); 2348 return Legalized; 2349 case TargetOpcode::G_SITOFP: 2350 Observer.changingInstr(MI); 2351 2352 if (TypeIdx == 0) 2353 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2354 else 2355 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2356 2357 Observer.changedInstr(MI); 2358 return Legalized; 2359 case TargetOpcode::G_UITOFP: 2360 Observer.changingInstr(MI); 2361 2362 if (TypeIdx == 0) 2363 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2364 else 2365 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2366 2367 Observer.changedInstr(MI); 2368 return Legalized; 2369 case TargetOpcode::G_LOAD: 2370 case TargetOpcode::G_SEXTLOAD: 2371 case TargetOpcode::G_ZEXTLOAD: 2372 Observer.changingInstr(MI); 2373 widenScalarDst(MI, WideTy); 2374 Observer.changedInstr(MI); 2375 return Legalized; 2376 2377 case TargetOpcode::G_STORE: { 2378 if (TypeIdx != 0) 2379 return UnableToLegalize; 2380 2381 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2382 if (!Ty.isScalar()) 2383 return UnableToLegalize; 2384 2385 Observer.changingInstr(MI); 2386 2387 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2388 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2389 widenScalarSrc(MI, WideTy, 0, ExtType); 2390 2391 Observer.changedInstr(MI); 2392 return Legalized; 2393 } 2394 case TargetOpcode::G_CONSTANT: { 2395 MachineOperand &SrcMO = MI.getOperand(1); 2396 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2397 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2398 MRI.getType(MI.getOperand(0).getReg())); 2399 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2400 ExtOpc == TargetOpcode::G_ANYEXT) && 2401 "Illegal Extend"); 2402 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2403 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2404 ? SrcVal.sext(WideTy.getSizeInBits()) 2405 : SrcVal.zext(WideTy.getSizeInBits()); 2406 Observer.changingInstr(MI); 2407 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2408 2409 widenScalarDst(MI, WideTy); 2410 Observer.changedInstr(MI); 2411 return Legalized; 2412 } 2413 case TargetOpcode::G_FCONSTANT: { 2414 MachineOperand &SrcMO = MI.getOperand(1); 2415 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2416 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2417 bool LosesInfo; 2418 switch (WideTy.getSizeInBits()) { 2419 case 32: 2420 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2421 &LosesInfo); 2422 break; 2423 case 64: 2424 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2425 &LosesInfo); 2426 break; 2427 default: 2428 return UnableToLegalize; 2429 } 2430 2431 assert(!LosesInfo && "extend should always be lossless"); 2432 2433 Observer.changingInstr(MI); 2434 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2435 2436 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2437 Observer.changedInstr(MI); 2438 return Legalized; 2439 } 2440 case TargetOpcode::G_IMPLICIT_DEF: { 2441 Observer.changingInstr(MI); 2442 widenScalarDst(MI, WideTy); 2443 Observer.changedInstr(MI); 2444 return Legalized; 2445 } 2446 case TargetOpcode::G_BRCOND: 2447 Observer.changingInstr(MI); 2448 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2449 Observer.changedInstr(MI); 2450 return Legalized; 2451 2452 case TargetOpcode::G_FCMP: 2453 Observer.changingInstr(MI); 2454 if (TypeIdx == 0) 2455 widenScalarDst(MI, WideTy); 2456 else { 2457 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2458 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2459 } 2460 Observer.changedInstr(MI); 2461 return Legalized; 2462 2463 case TargetOpcode::G_ICMP: 2464 Observer.changingInstr(MI); 2465 if (TypeIdx == 0) 2466 widenScalarDst(MI, WideTy); 2467 else { 2468 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2469 MI.getOperand(1).getPredicate())) 2470 ? TargetOpcode::G_SEXT 2471 : TargetOpcode::G_ZEXT; 2472 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2473 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2474 } 2475 Observer.changedInstr(MI); 2476 return Legalized; 2477 2478 case TargetOpcode::G_PTR_ADD: 2479 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2480 Observer.changingInstr(MI); 2481 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2482 Observer.changedInstr(MI); 2483 return Legalized; 2484 2485 case TargetOpcode::G_PHI: { 2486 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2487 2488 Observer.changingInstr(MI); 2489 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2490 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2491 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2492 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2493 } 2494 2495 MachineBasicBlock &MBB = *MI.getParent(); 2496 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2497 widenScalarDst(MI, WideTy); 2498 Observer.changedInstr(MI); 2499 return Legalized; 2500 } 2501 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2502 if (TypeIdx == 0) { 2503 Register VecReg = MI.getOperand(1).getReg(); 2504 LLT VecTy = MRI.getType(VecReg); 2505 Observer.changingInstr(MI); 2506 2507 widenScalarSrc( 2508 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, 2509 TargetOpcode::G_ANYEXT); 2510 2511 widenScalarDst(MI, WideTy, 0); 2512 Observer.changedInstr(MI); 2513 return Legalized; 2514 } 2515 2516 if (TypeIdx != 2) 2517 return UnableToLegalize; 2518 Observer.changingInstr(MI); 2519 // TODO: Probably should be zext 2520 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2521 Observer.changedInstr(MI); 2522 return Legalized; 2523 } 2524 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2525 if (TypeIdx == 1) { 2526 Observer.changingInstr(MI); 2527 2528 Register VecReg = MI.getOperand(1).getReg(); 2529 LLT VecTy = MRI.getType(VecReg); 2530 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); 2531 2532 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2533 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2534 widenScalarDst(MI, WideVecTy, 0); 2535 Observer.changedInstr(MI); 2536 return Legalized; 2537 } 2538 2539 if (TypeIdx == 2) { 2540 Observer.changingInstr(MI); 2541 // TODO: Probably should be zext 2542 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2543 Observer.changedInstr(MI); 2544 return Legalized; 2545 } 2546 2547 return UnableToLegalize; 2548 } 2549 case TargetOpcode::G_FADD: 2550 case TargetOpcode::G_FMUL: 2551 case TargetOpcode::G_FSUB: 2552 case TargetOpcode::G_FMA: 2553 case TargetOpcode::G_FMAD: 2554 case TargetOpcode::G_FNEG: 2555 case TargetOpcode::G_FABS: 2556 case TargetOpcode::G_FCANONICALIZE: 2557 case TargetOpcode::G_FMINNUM: 2558 case TargetOpcode::G_FMAXNUM: 2559 case TargetOpcode::G_FMINNUM_IEEE: 2560 case TargetOpcode::G_FMAXNUM_IEEE: 2561 case TargetOpcode::G_FMINIMUM: 2562 case TargetOpcode::G_FMAXIMUM: 2563 case TargetOpcode::G_FDIV: 2564 case TargetOpcode::G_FREM: 2565 case TargetOpcode::G_FCEIL: 2566 case TargetOpcode::G_FFLOOR: 2567 case TargetOpcode::G_FCOS: 2568 case TargetOpcode::G_FSIN: 2569 case TargetOpcode::G_FLOG10: 2570 case TargetOpcode::G_FLOG: 2571 case TargetOpcode::G_FLOG2: 2572 case TargetOpcode::G_FRINT: 2573 case TargetOpcode::G_FNEARBYINT: 2574 case TargetOpcode::G_FSQRT: 2575 case TargetOpcode::G_FEXP: 2576 case TargetOpcode::G_FEXP2: 2577 case TargetOpcode::G_FPOW: 2578 case TargetOpcode::G_INTRINSIC_TRUNC: 2579 case TargetOpcode::G_INTRINSIC_ROUND: 2580 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2581 assert(TypeIdx == 0); 2582 Observer.changingInstr(MI); 2583 2584 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2585 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2586 2587 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2588 Observer.changedInstr(MI); 2589 return Legalized; 2590 case TargetOpcode::G_FPOWI: { 2591 if (TypeIdx != 0) 2592 return UnableToLegalize; 2593 Observer.changingInstr(MI); 2594 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2595 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2596 Observer.changedInstr(MI); 2597 return Legalized; 2598 } 2599 case TargetOpcode::G_INTTOPTR: 2600 if (TypeIdx != 1) 2601 return UnableToLegalize; 2602 2603 Observer.changingInstr(MI); 2604 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2605 Observer.changedInstr(MI); 2606 return Legalized; 2607 case TargetOpcode::G_PTRTOINT: 2608 if (TypeIdx != 0) 2609 return UnableToLegalize; 2610 2611 Observer.changingInstr(MI); 2612 widenScalarDst(MI, WideTy, 0); 2613 Observer.changedInstr(MI); 2614 return Legalized; 2615 case TargetOpcode::G_BUILD_VECTOR: { 2616 Observer.changingInstr(MI); 2617 2618 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2619 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2620 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2621 2622 // Avoid changing the result vector type if the source element type was 2623 // requested. 2624 if (TypeIdx == 1) { 2625 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2626 } else { 2627 widenScalarDst(MI, WideTy, 0); 2628 } 2629 2630 Observer.changedInstr(MI); 2631 return Legalized; 2632 } 2633 case TargetOpcode::G_SEXT_INREG: 2634 if (TypeIdx != 0) 2635 return UnableToLegalize; 2636 2637 Observer.changingInstr(MI); 2638 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2639 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2640 Observer.changedInstr(MI); 2641 return Legalized; 2642 case TargetOpcode::G_PTRMASK: { 2643 if (TypeIdx != 1) 2644 return UnableToLegalize; 2645 Observer.changingInstr(MI); 2646 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2647 Observer.changedInstr(MI); 2648 return Legalized; 2649 } 2650 } 2651 } 2652 2653 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2654 MachineIRBuilder &B, Register Src, LLT Ty) { 2655 auto Unmerge = B.buildUnmerge(Ty, Src); 2656 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2657 Pieces.push_back(Unmerge.getReg(I)); 2658 } 2659 2660 LegalizerHelper::LegalizeResult 2661 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2662 Register Dst = MI.getOperand(0).getReg(); 2663 Register Src = MI.getOperand(1).getReg(); 2664 LLT DstTy = MRI.getType(Dst); 2665 LLT SrcTy = MRI.getType(Src); 2666 2667 if (SrcTy.isVector()) { 2668 LLT SrcEltTy = SrcTy.getElementType(); 2669 SmallVector<Register, 8> SrcRegs; 2670 2671 if (DstTy.isVector()) { 2672 int NumDstElt = DstTy.getNumElements(); 2673 int NumSrcElt = SrcTy.getNumElements(); 2674 2675 LLT DstEltTy = DstTy.getElementType(); 2676 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2677 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2678 2679 // If there's an element size mismatch, insert intermediate casts to match 2680 // the result element type. 2681 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2682 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2683 // 2684 // => 2685 // 2686 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2687 // %3:_(<2 x s8>) = G_BITCAST %2 2688 // %4:_(<2 x s8>) = G_BITCAST %3 2689 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2690 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); 2691 SrcPartTy = SrcEltTy; 2692 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2693 // 2694 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2695 // 2696 // => 2697 // 2698 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2699 // %3:_(s16) = G_BITCAST %2 2700 // %4:_(s16) = G_BITCAST %3 2701 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2702 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); 2703 DstCastTy = DstEltTy; 2704 } 2705 2706 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2707 for (Register &SrcReg : SrcRegs) 2708 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2709 } else 2710 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2711 2712 MIRBuilder.buildMerge(Dst, SrcRegs); 2713 MI.eraseFromParent(); 2714 return Legalized; 2715 } 2716 2717 if (DstTy.isVector()) { 2718 SmallVector<Register, 8> SrcRegs; 2719 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2720 MIRBuilder.buildMerge(Dst, SrcRegs); 2721 MI.eraseFromParent(); 2722 return Legalized; 2723 } 2724 2725 return UnableToLegalize; 2726 } 2727 2728 /// Figure out the bit offset into a register when coercing a vector index for 2729 /// the wide element type. This is only for the case when promoting vector to 2730 /// one with larger elements. 2731 // 2732 /// 2733 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2734 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2735 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2736 Register Idx, 2737 unsigned NewEltSize, 2738 unsigned OldEltSize) { 2739 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2740 LLT IdxTy = B.getMRI()->getType(Idx); 2741 2742 // Now figure out the amount we need to shift to get the target bits. 2743 auto OffsetMask = B.buildConstant( 2744 IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio)); 2745 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2746 return B.buildShl(IdxTy, OffsetIdx, 2747 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2748 } 2749 2750 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2751 /// is casting to a vector with a smaller element size, perform multiple element 2752 /// extracts and merge the results. If this is coercing to a vector with larger 2753 /// elements, index the bitcasted vector and extract the target element with bit 2754 /// operations. This is intended to force the indexing in the native register 2755 /// size for architectures that can dynamically index the register file. 2756 LegalizerHelper::LegalizeResult 2757 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2758 LLT CastTy) { 2759 if (TypeIdx != 1) 2760 return UnableToLegalize; 2761 2762 Register Dst = MI.getOperand(0).getReg(); 2763 Register SrcVec = MI.getOperand(1).getReg(); 2764 Register Idx = MI.getOperand(2).getReg(); 2765 LLT SrcVecTy = MRI.getType(SrcVec); 2766 LLT IdxTy = MRI.getType(Idx); 2767 2768 LLT SrcEltTy = SrcVecTy.getElementType(); 2769 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2770 unsigned OldNumElts = SrcVecTy.getNumElements(); 2771 2772 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2773 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2774 2775 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2776 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2777 if (NewNumElts > OldNumElts) { 2778 // Decreasing the vector element size 2779 // 2780 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2781 // => 2782 // v4i32:castx = bitcast x:v2i64 2783 // 2784 // i64 = bitcast 2785 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2786 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2787 // 2788 if (NewNumElts % OldNumElts != 0) 2789 return UnableToLegalize; 2790 2791 // Type of the intermediate result vector. 2792 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2793 LLT MidTy = 2794 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); 2795 2796 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2797 2798 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2799 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2800 2801 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2802 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2803 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2804 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2805 NewOps[I] = Elt.getReg(0); 2806 } 2807 2808 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2809 MIRBuilder.buildBitcast(Dst, NewVec); 2810 MI.eraseFromParent(); 2811 return Legalized; 2812 } 2813 2814 if (NewNumElts < OldNumElts) { 2815 if (NewEltSize % OldEltSize != 0) 2816 return UnableToLegalize; 2817 2818 // This only depends on powers of 2 because we use bit tricks to figure out 2819 // the bit offset we need to shift to get the target element. A general 2820 // expansion could emit division/multiply. 2821 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2822 return UnableToLegalize; 2823 2824 // Increasing the vector element size. 2825 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2826 // 2827 // => 2828 // 2829 // %cast = G_BITCAST %vec 2830 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2831 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2832 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2833 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2834 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2835 // %elt = G_TRUNC %elt_bits 2836 2837 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2838 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2839 2840 // Divide to get the index in the wider element type. 2841 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2842 2843 Register WideElt = CastVec; 2844 if (CastTy.isVector()) { 2845 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2846 ScaledIdx).getReg(0); 2847 } 2848 2849 // Compute the bit offset into the register of the target element. 2850 Register OffsetBits = getBitcastWiderVectorElementOffset( 2851 MIRBuilder, Idx, NewEltSize, OldEltSize); 2852 2853 // Shift the wide element to get the target element. 2854 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2855 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2856 MI.eraseFromParent(); 2857 return Legalized; 2858 } 2859 2860 return UnableToLegalize; 2861 } 2862 2863 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2864 /// TargetReg, while preserving other bits in \p TargetReg. 2865 /// 2866 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2867 static Register buildBitFieldInsert(MachineIRBuilder &B, 2868 Register TargetReg, Register InsertReg, 2869 Register OffsetBits) { 2870 LLT TargetTy = B.getMRI()->getType(TargetReg); 2871 LLT InsertTy = B.getMRI()->getType(InsertReg); 2872 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2873 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2874 2875 // Produce a bitmask of the value to insert 2876 auto EltMask = B.buildConstant( 2877 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2878 InsertTy.getSizeInBits())); 2879 // Shift it into position 2880 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2881 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2882 2883 // Clear out the bits in the wide element 2884 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2885 2886 // The value to insert has all zeros already, so stick it into the masked 2887 // wide element. 2888 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2889 } 2890 2891 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2892 /// is increasing the element size, perform the indexing in the target element 2893 /// type, and use bit operations to insert at the element position. This is 2894 /// intended for architectures that can dynamically index the register file and 2895 /// want to force indexing in the native register size. 2896 LegalizerHelper::LegalizeResult 2897 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2898 LLT CastTy) { 2899 if (TypeIdx != 0) 2900 return UnableToLegalize; 2901 2902 Register Dst = MI.getOperand(0).getReg(); 2903 Register SrcVec = MI.getOperand(1).getReg(); 2904 Register Val = MI.getOperand(2).getReg(); 2905 Register Idx = MI.getOperand(3).getReg(); 2906 2907 LLT VecTy = MRI.getType(Dst); 2908 LLT IdxTy = MRI.getType(Idx); 2909 2910 LLT VecEltTy = VecTy.getElementType(); 2911 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2912 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2913 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2914 2915 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2916 unsigned OldNumElts = VecTy.getNumElements(); 2917 2918 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2919 if (NewNumElts < OldNumElts) { 2920 if (NewEltSize % OldEltSize != 0) 2921 return UnableToLegalize; 2922 2923 // This only depends on powers of 2 because we use bit tricks to figure out 2924 // the bit offset we need to shift to get the target element. A general 2925 // expansion could emit division/multiply. 2926 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2927 return UnableToLegalize; 2928 2929 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2930 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2931 2932 // Divide to get the index in the wider element type. 2933 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2934 2935 Register ExtractedElt = CastVec; 2936 if (CastTy.isVector()) { 2937 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2938 ScaledIdx).getReg(0); 2939 } 2940 2941 // Compute the bit offset into the register of the target element. 2942 Register OffsetBits = getBitcastWiderVectorElementOffset( 2943 MIRBuilder, Idx, NewEltSize, OldEltSize); 2944 2945 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2946 Val, OffsetBits); 2947 if (CastTy.isVector()) { 2948 InsertedElt = MIRBuilder.buildInsertVectorElement( 2949 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2950 } 2951 2952 MIRBuilder.buildBitcast(Dst, InsertedElt); 2953 MI.eraseFromParent(); 2954 return Legalized; 2955 } 2956 2957 return UnableToLegalize; 2958 } 2959 2960 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) { 2961 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2962 Register DstReg = LoadMI.getDstReg(); 2963 Register PtrReg = LoadMI.getPointerReg(); 2964 LLT DstTy = MRI.getType(DstReg); 2965 MachineMemOperand &MMO = LoadMI.getMMO(); 2966 LLT MemTy = MMO.getMemoryType(); 2967 MachineFunction &MF = MIRBuilder.getMF(); 2968 2969 unsigned MemSizeInBits = MemTy.getSizeInBits(); 2970 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); 2971 2972 if (MemSizeInBits != MemStoreSizeInBits) { 2973 if (MemTy.isVector()) 2974 return UnableToLegalize; 2975 2976 // Promote to a byte-sized load if not loading an integral number of 2977 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 2978 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); 2979 MachineMemOperand *NewMMO = 2980 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); 2981 2982 Register LoadReg = DstReg; 2983 LLT LoadTy = DstTy; 2984 2985 // If this wasn't already an extending load, we need to widen the result 2986 // register to avoid creating a load with a narrower result than the source. 2987 if (MemStoreSizeInBits > DstTy.getSizeInBits()) { 2988 LoadTy = WideMemTy; 2989 LoadReg = MRI.createGenericVirtualRegister(WideMemTy); 2990 } 2991 2992 if (isa<GSExtLoad>(LoadMI)) { 2993 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2994 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); 2995 } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == DstTy) { 2996 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2997 // The extra bits are guaranteed to be zero, since we stored them that 2998 // way. A zext load from Wide thus automatically gives zext from MemVT. 2999 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); 3000 } else { 3001 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); 3002 } 3003 3004 if (DstTy != LoadTy) 3005 MIRBuilder.buildTrunc(DstReg, LoadReg); 3006 3007 LoadMI.eraseFromParent(); 3008 return Legalized; 3009 } 3010 3011 // Big endian lowering not implemented. 3012 if (MIRBuilder.getDataLayout().isBigEndian()) 3013 return UnableToLegalize; 3014 3015 // This load needs splitting into power of 2 sized loads. 3016 // 3017 // Our strategy here is to generate anyextending loads for the smaller 3018 // types up to next power-2 result type, and then combine the two larger 3019 // result values together, before truncating back down to the non-pow-2 3020 // type. 3021 // E.g. v1 = i24 load => 3022 // v2 = i32 zextload (2 byte) 3023 // v3 = i32 load (1 byte) 3024 // v4 = i32 shl v3, 16 3025 // v5 = i32 or v4, v2 3026 // v1 = i24 trunc v5 3027 // By doing this we generate the correct truncate which should get 3028 // combined away as an artifact with a matching extend. 3029 3030 uint64_t LargeSplitSize, SmallSplitSize; 3031 3032 if (!isPowerOf2_32(MemSizeInBits)) { 3033 // This load needs splitting into power of 2 sized loads. 3034 LargeSplitSize = PowerOf2Floor(MemSizeInBits); 3035 SmallSplitSize = MemSizeInBits - LargeSplitSize; 3036 } else { 3037 // This is already a power of 2, but we still need to split this in half. 3038 // 3039 // Assume we're being asked to decompose an unaligned load. 3040 // TODO: If this requires multiple splits, handle them all at once. 3041 auto &Ctx = MF.getFunction().getContext(); 3042 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3043 return UnableToLegalize; 3044 3045 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3046 } 3047 3048 if (MemTy.isVector()) { 3049 // TODO: Handle vector extloads 3050 if (MemTy != DstTy) 3051 return UnableToLegalize; 3052 3053 // TODO: We can do better than scalarizing the vector and at least split it 3054 // in half. 3055 return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType()); 3056 } 3057 3058 MachineMemOperand *LargeMMO = 3059 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3060 MachineMemOperand *SmallMMO = 3061 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3062 3063 LLT PtrTy = MRI.getType(PtrReg); 3064 unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits()); 3065 LLT AnyExtTy = LLT::scalar(AnyExtSize); 3066 auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy, 3067 PtrReg, *LargeMMO); 3068 3069 auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), 3070 LargeSplitSize / 8); 3071 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 3072 auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 3073 auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy, 3074 SmallPtr, *SmallMMO); 3075 3076 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 3077 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 3078 3079 if (AnyExtTy == DstTy) 3080 MIRBuilder.buildOr(DstReg, Shift, LargeLoad); 3081 else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) { 3082 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3083 MIRBuilder.buildTrunc(DstReg, {Or}); 3084 } else { 3085 assert(DstTy.isPointer() && "expected pointer"); 3086 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3087 3088 // FIXME: We currently consider this to be illegal for non-integral address 3089 // spaces, but we need still need a way to reinterpret the bits. 3090 MIRBuilder.buildIntToPtr(DstReg, Or); 3091 } 3092 3093 LoadMI.eraseFromParent(); 3094 return Legalized; 3095 } 3096 3097 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) { 3098 // Lower a non-power of 2 store into multiple pow-2 stores. 3099 // E.g. split an i24 store into an i16 store + i8 store. 3100 // We do this by first extending the stored value to the next largest power 3101 // of 2 type, and then using truncating stores to store the components. 3102 // By doing this, likewise with G_LOAD, generate an extend that can be 3103 // artifact-combined away instead of leaving behind extracts. 3104 Register SrcReg = StoreMI.getValueReg(); 3105 Register PtrReg = StoreMI.getPointerReg(); 3106 LLT SrcTy = MRI.getType(SrcReg); 3107 MachineFunction &MF = MIRBuilder.getMF(); 3108 MachineMemOperand &MMO = **StoreMI.memoperands_begin(); 3109 LLT MemTy = MMO.getMemoryType(); 3110 3111 unsigned StoreWidth = MemTy.getSizeInBits(); 3112 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); 3113 3114 if (StoreWidth != StoreSizeInBits) { 3115 if (SrcTy.isVector()) 3116 return UnableToLegalize; 3117 3118 // Promote to a byte-sized store with upper bits zero if not 3119 // storing an integral number of bytes. For example, promote 3120 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 3121 LLT WideTy = LLT::scalar(StoreSizeInBits); 3122 3123 if (StoreSizeInBits > SrcTy.getSizeInBits()) { 3124 // Avoid creating a store with a narrower source than result. 3125 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 3126 SrcTy = WideTy; 3127 } 3128 3129 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); 3130 3131 MachineMemOperand *NewMMO = 3132 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); 3133 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); 3134 StoreMI.eraseFromParent(); 3135 return Legalized; 3136 } 3137 3138 if (MemTy.isVector()) { 3139 // TODO: Handle vector trunc stores 3140 if (MemTy != SrcTy) 3141 return UnableToLegalize; 3142 3143 // TODO: We can do better than scalarizing the vector and at least split it 3144 // in half. 3145 return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType()); 3146 } 3147 3148 unsigned MemSizeInBits = MemTy.getSizeInBits(); 3149 uint64_t LargeSplitSize, SmallSplitSize; 3150 3151 if (!isPowerOf2_32(MemSizeInBits)) { 3152 LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits()); 3153 SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize; 3154 } else { 3155 auto &Ctx = MF.getFunction().getContext(); 3156 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3157 return UnableToLegalize; // Don't know what we're being asked to do. 3158 3159 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3160 } 3161 3162 // Extend to the next pow-2. If this store was itself the result of lowering, 3163 // e.g. an s56 store being broken into s32 + s24, we might have a stored type 3164 // that's wider than the stored size. 3165 unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits()); 3166 const LLT NewSrcTy = LLT::scalar(AnyExtSize); 3167 3168 if (SrcTy.isPointer()) { 3169 const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits()); 3170 SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0); 3171 } 3172 3173 auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg); 3174 3175 // Obtain the smaller value by shifting away the larger value. 3176 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize); 3177 auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt); 3178 3179 // Generate the PtrAdd and truncating stores. 3180 LLT PtrTy = MRI.getType(PtrReg); 3181 auto OffsetCst = MIRBuilder.buildConstant( 3182 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 3183 auto SmallPtr = 3184 MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst); 3185 3186 MachineMemOperand *LargeMMO = 3187 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3188 MachineMemOperand *SmallMMO = 3189 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3190 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); 3191 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); 3192 StoreMI.eraseFromParent(); 3193 return Legalized; 3194 } 3195 3196 LegalizerHelper::LegalizeResult 3197 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 3198 switch (MI.getOpcode()) { 3199 case TargetOpcode::G_LOAD: { 3200 if (TypeIdx != 0) 3201 return UnableToLegalize; 3202 MachineMemOperand &MMO = **MI.memoperands_begin(); 3203 3204 // Not sure how to interpret a bitcast of an extending load. 3205 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3206 return UnableToLegalize; 3207 3208 Observer.changingInstr(MI); 3209 bitcastDst(MI, CastTy, 0); 3210 MMO.setType(CastTy); 3211 Observer.changedInstr(MI); 3212 return Legalized; 3213 } 3214 case TargetOpcode::G_STORE: { 3215 if (TypeIdx != 0) 3216 return UnableToLegalize; 3217 3218 MachineMemOperand &MMO = **MI.memoperands_begin(); 3219 3220 // Not sure how to interpret a bitcast of a truncating store. 3221 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3222 return UnableToLegalize; 3223 3224 Observer.changingInstr(MI); 3225 bitcastSrc(MI, CastTy, 0); 3226 MMO.setType(CastTy); 3227 Observer.changedInstr(MI); 3228 return Legalized; 3229 } 3230 case TargetOpcode::G_SELECT: { 3231 if (TypeIdx != 0) 3232 return UnableToLegalize; 3233 3234 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 3235 LLVM_DEBUG( 3236 dbgs() << "bitcast action not implemented for vector select\n"); 3237 return UnableToLegalize; 3238 } 3239 3240 Observer.changingInstr(MI); 3241 bitcastSrc(MI, CastTy, 2); 3242 bitcastSrc(MI, CastTy, 3); 3243 bitcastDst(MI, CastTy, 0); 3244 Observer.changedInstr(MI); 3245 return Legalized; 3246 } 3247 case TargetOpcode::G_AND: 3248 case TargetOpcode::G_OR: 3249 case TargetOpcode::G_XOR: { 3250 Observer.changingInstr(MI); 3251 bitcastSrc(MI, CastTy, 1); 3252 bitcastSrc(MI, CastTy, 2); 3253 bitcastDst(MI, CastTy, 0); 3254 Observer.changedInstr(MI); 3255 return Legalized; 3256 } 3257 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 3258 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 3259 case TargetOpcode::G_INSERT_VECTOR_ELT: 3260 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 3261 default: 3262 return UnableToLegalize; 3263 } 3264 } 3265 3266 // Legalize an instruction by changing the opcode in place. 3267 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 3268 Observer.changingInstr(MI); 3269 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 3270 Observer.changedInstr(MI); 3271 } 3272 3273 LegalizerHelper::LegalizeResult 3274 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 3275 using namespace TargetOpcode; 3276 3277 switch(MI.getOpcode()) { 3278 default: 3279 return UnableToLegalize; 3280 case TargetOpcode::G_BITCAST: 3281 return lowerBitcast(MI); 3282 case TargetOpcode::G_SREM: 3283 case TargetOpcode::G_UREM: { 3284 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3285 auto Quot = 3286 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 3287 {MI.getOperand(1), MI.getOperand(2)}); 3288 3289 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 3290 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 3291 MI.eraseFromParent(); 3292 return Legalized; 3293 } 3294 case TargetOpcode::G_SADDO: 3295 case TargetOpcode::G_SSUBO: 3296 return lowerSADDO_SSUBO(MI); 3297 case TargetOpcode::G_UMULH: 3298 case TargetOpcode::G_SMULH: 3299 return lowerSMULH_UMULH(MI); 3300 case TargetOpcode::G_SMULO: 3301 case TargetOpcode::G_UMULO: { 3302 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 3303 // result. 3304 Register Res = MI.getOperand(0).getReg(); 3305 Register Overflow = MI.getOperand(1).getReg(); 3306 Register LHS = MI.getOperand(2).getReg(); 3307 Register RHS = MI.getOperand(3).getReg(); 3308 LLT Ty = MRI.getType(Res); 3309 3310 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 3311 ? TargetOpcode::G_SMULH 3312 : TargetOpcode::G_UMULH; 3313 3314 Observer.changingInstr(MI); 3315 const auto &TII = MIRBuilder.getTII(); 3316 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 3317 MI.RemoveOperand(1); 3318 Observer.changedInstr(MI); 3319 3320 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 3321 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3322 3323 // Move insert point forward so we can use the Res register if needed. 3324 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 3325 3326 // For *signed* multiply, overflow is detected by checking: 3327 // (hi != (lo >> bitwidth-1)) 3328 if (Opcode == TargetOpcode::G_SMULH) { 3329 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 3330 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 3331 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 3332 } else { 3333 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 3334 } 3335 return Legalized; 3336 } 3337 case TargetOpcode::G_FNEG: { 3338 Register Res = MI.getOperand(0).getReg(); 3339 LLT Ty = MRI.getType(Res); 3340 3341 // TODO: Handle vector types once we are able to 3342 // represent them. 3343 if (Ty.isVector()) 3344 return UnableToLegalize; 3345 auto SignMask = 3346 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3347 Register SubByReg = MI.getOperand(1).getReg(); 3348 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3349 MI.eraseFromParent(); 3350 return Legalized; 3351 } 3352 case TargetOpcode::G_FSUB: { 3353 Register Res = MI.getOperand(0).getReg(); 3354 LLT Ty = MRI.getType(Res); 3355 3356 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3357 // First, check if G_FNEG is marked as Lower. If so, we may 3358 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 3359 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 3360 return UnableToLegalize; 3361 Register LHS = MI.getOperand(1).getReg(); 3362 Register RHS = MI.getOperand(2).getReg(); 3363 Register Neg = MRI.createGenericVirtualRegister(Ty); 3364 MIRBuilder.buildFNeg(Neg, RHS); 3365 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3366 MI.eraseFromParent(); 3367 return Legalized; 3368 } 3369 case TargetOpcode::G_FMAD: 3370 return lowerFMad(MI); 3371 case TargetOpcode::G_FFLOOR: 3372 return lowerFFloor(MI); 3373 case TargetOpcode::G_INTRINSIC_ROUND: 3374 return lowerIntrinsicRound(MI); 3375 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 3376 // Since round even is the assumed rounding mode for unconstrained FP 3377 // operations, rint and roundeven are the same operation. 3378 changeOpcode(MI, TargetOpcode::G_FRINT); 3379 return Legalized; 3380 } 3381 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3382 Register OldValRes = MI.getOperand(0).getReg(); 3383 Register SuccessRes = MI.getOperand(1).getReg(); 3384 Register Addr = MI.getOperand(2).getReg(); 3385 Register CmpVal = MI.getOperand(3).getReg(); 3386 Register NewVal = MI.getOperand(4).getReg(); 3387 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3388 **MI.memoperands_begin()); 3389 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3390 MI.eraseFromParent(); 3391 return Legalized; 3392 } 3393 case TargetOpcode::G_LOAD: 3394 case TargetOpcode::G_SEXTLOAD: 3395 case TargetOpcode::G_ZEXTLOAD: 3396 return lowerLoad(cast<GAnyLoad>(MI)); 3397 case TargetOpcode::G_STORE: 3398 return lowerStore(cast<GStore>(MI)); 3399 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3400 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3401 case TargetOpcode::G_CTLZ: 3402 case TargetOpcode::G_CTTZ: 3403 case TargetOpcode::G_CTPOP: 3404 return lowerBitCount(MI); 3405 case G_UADDO: { 3406 Register Res = MI.getOperand(0).getReg(); 3407 Register CarryOut = MI.getOperand(1).getReg(); 3408 Register LHS = MI.getOperand(2).getReg(); 3409 Register RHS = MI.getOperand(3).getReg(); 3410 3411 MIRBuilder.buildAdd(Res, LHS, RHS); 3412 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3413 3414 MI.eraseFromParent(); 3415 return Legalized; 3416 } 3417 case G_UADDE: { 3418 Register Res = MI.getOperand(0).getReg(); 3419 Register CarryOut = MI.getOperand(1).getReg(); 3420 Register LHS = MI.getOperand(2).getReg(); 3421 Register RHS = MI.getOperand(3).getReg(); 3422 Register CarryIn = MI.getOperand(4).getReg(); 3423 LLT Ty = MRI.getType(Res); 3424 3425 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3426 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3427 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3428 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3429 3430 MI.eraseFromParent(); 3431 return Legalized; 3432 } 3433 case G_USUBO: { 3434 Register Res = MI.getOperand(0).getReg(); 3435 Register BorrowOut = MI.getOperand(1).getReg(); 3436 Register LHS = MI.getOperand(2).getReg(); 3437 Register RHS = MI.getOperand(3).getReg(); 3438 3439 MIRBuilder.buildSub(Res, LHS, RHS); 3440 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3441 3442 MI.eraseFromParent(); 3443 return Legalized; 3444 } 3445 case G_USUBE: { 3446 Register Res = MI.getOperand(0).getReg(); 3447 Register BorrowOut = MI.getOperand(1).getReg(); 3448 Register LHS = MI.getOperand(2).getReg(); 3449 Register RHS = MI.getOperand(3).getReg(); 3450 Register BorrowIn = MI.getOperand(4).getReg(); 3451 const LLT CondTy = MRI.getType(BorrowOut); 3452 const LLT Ty = MRI.getType(Res); 3453 3454 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3455 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3456 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3457 3458 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3459 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3460 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3461 3462 MI.eraseFromParent(); 3463 return Legalized; 3464 } 3465 case G_UITOFP: 3466 return lowerUITOFP(MI); 3467 case G_SITOFP: 3468 return lowerSITOFP(MI); 3469 case G_FPTOUI: 3470 return lowerFPTOUI(MI); 3471 case G_FPTOSI: 3472 return lowerFPTOSI(MI); 3473 case G_FPTRUNC: 3474 return lowerFPTRUNC(MI); 3475 case G_FPOWI: 3476 return lowerFPOWI(MI); 3477 case G_SMIN: 3478 case G_SMAX: 3479 case G_UMIN: 3480 case G_UMAX: 3481 return lowerMinMax(MI); 3482 case G_FCOPYSIGN: 3483 return lowerFCopySign(MI); 3484 case G_FMINNUM: 3485 case G_FMAXNUM: 3486 return lowerFMinNumMaxNum(MI); 3487 case G_MERGE_VALUES: 3488 return lowerMergeValues(MI); 3489 case G_UNMERGE_VALUES: 3490 return lowerUnmergeValues(MI); 3491 case TargetOpcode::G_SEXT_INREG: { 3492 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3493 int64_t SizeInBits = MI.getOperand(2).getImm(); 3494 3495 Register DstReg = MI.getOperand(0).getReg(); 3496 Register SrcReg = MI.getOperand(1).getReg(); 3497 LLT DstTy = MRI.getType(DstReg); 3498 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3499 3500 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3501 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3502 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3503 MI.eraseFromParent(); 3504 return Legalized; 3505 } 3506 case G_EXTRACT_VECTOR_ELT: 3507 case G_INSERT_VECTOR_ELT: 3508 return lowerExtractInsertVectorElt(MI); 3509 case G_SHUFFLE_VECTOR: 3510 return lowerShuffleVector(MI); 3511 case G_DYN_STACKALLOC: 3512 return lowerDynStackAlloc(MI); 3513 case G_EXTRACT: 3514 return lowerExtract(MI); 3515 case G_INSERT: 3516 return lowerInsert(MI); 3517 case G_BSWAP: 3518 return lowerBswap(MI); 3519 case G_BITREVERSE: 3520 return lowerBitreverse(MI); 3521 case G_READ_REGISTER: 3522 case G_WRITE_REGISTER: 3523 return lowerReadWriteRegister(MI); 3524 case G_UADDSAT: 3525 case G_USUBSAT: { 3526 // Try to make a reasonable guess about which lowering strategy to use. The 3527 // target can override this with custom lowering and calling the 3528 // implementation functions. 3529 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3530 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3531 return lowerAddSubSatToMinMax(MI); 3532 return lowerAddSubSatToAddoSubo(MI); 3533 } 3534 case G_SADDSAT: 3535 case G_SSUBSAT: { 3536 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3537 3538 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3539 // since it's a shorter expansion. However, we would need to figure out the 3540 // preferred boolean type for the carry out for the query. 3541 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3542 return lowerAddSubSatToMinMax(MI); 3543 return lowerAddSubSatToAddoSubo(MI); 3544 } 3545 case G_SSHLSAT: 3546 case G_USHLSAT: 3547 return lowerShlSat(MI); 3548 case G_ABS: 3549 return lowerAbsToAddXor(MI); 3550 case G_SELECT: 3551 return lowerSelect(MI); 3552 case G_SDIVREM: 3553 case G_UDIVREM: 3554 return lowerDIVREM(MI); 3555 case G_FSHL: 3556 case G_FSHR: 3557 return lowerFunnelShift(MI); 3558 case G_ROTL: 3559 case G_ROTR: 3560 return lowerRotate(MI); 3561 case G_MEMSET: 3562 case G_MEMCPY: 3563 case G_MEMMOVE: 3564 return lowerMemCpyFamily(MI); 3565 case G_MEMCPY_INLINE: 3566 return lowerMemcpyInline(MI); 3567 GISEL_VECREDUCE_CASES_NONSEQ 3568 return lowerVectorReduction(MI); 3569 } 3570 } 3571 3572 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3573 Align MinAlign) const { 3574 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3575 // datalayout for the preferred alignment. Also there should be a target hook 3576 // for this to allow targets to reduce the alignment and ignore the 3577 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3578 // the type. 3579 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3580 } 3581 3582 MachineInstrBuilder 3583 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3584 MachinePointerInfo &PtrInfo) { 3585 MachineFunction &MF = MIRBuilder.getMF(); 3586 const DataLayout &DL = MIRBuilder.getDataLayout(); 3587 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3588 3589 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3590 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3591 3592 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3593 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3594 } 3595 3596 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3597 LLT VecTy) { 3598 int64_t IdxVal; 3599 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3600 return IdxReg; 3601 3602 LLT IdxTy = B.getMRI()->getType(IdxReg); 3603 unsigned NElts = VecTy.getNumElements(); 3604 if (isPowerOf2_32(NElts)) { 3605 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3606 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3607 } 3608 3609 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3610 .getReg(0); 3611 } 3612 3613 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3614 Register Index) { 3615 LLT EltTy = VecTy.getElementType(); 3616 3617 // Calculate the element offset and add it to the pointer. 3618 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3619 assert(EltSize * 8 == EltTy.getSizeInBits() && 3620 "Converting bits to bytes lost precision"); 3621 3622 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3623 3624 LLT IdxTy = MRI.getType(Index); 3625 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3626 MIRBuilder.buildConstant(IdxTy, EltSize)); 3627 3628 LLT PtrTy = MRI.getType(VecPtr); 3629 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3630 } 3631 3632 #ifndef NDEBUG 3633 /// Check that all vector operands have same number of elements. Other operands 3634 /// should be listed in NonVecOp. 3635 static bool hasSameNumEltsOnAllVectorOperands( 3636 GenericMachineInstr &MI, MachineRegisterInfo &MRI, 3637 std::initializer_list<unsigned> NonVecOpIndices) { 3638 if (MI.getNumMemOperands() != 0) 3639 return false; 3640 3641 LLT VecTy = MRI.getType(MI.getReg(0)); 3642 if (!VecTy.isVector()) 3643 return false; 3644 unsigned NumElts = VecTy.getNumElements(); 3645 3646 for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) { 3647 MachineOperand &Op = MI.getOperand(OpIdx); 3648 if (!Op.isReg()) { 3649 if (!is_contained(NonVecOpIndices, OpIdx)) 3650 return false; 3651 continue; 3652 } 3653 3654 LLT Ty = MRI.getType(Op.getReg()); 3655 if (!Ty.isVector()) { 3656 if (!is_contained(NonVecOpIndices, OpIdx)) 3657 return false; 3658 continue; 3659 } 3660 3661 if (Ty.getNumElements() != NumElts) 3662 return false; 3663 } 3664 3665 return true; 3666 } 3667 #endif 3668 3669 /// Fill \p DstOps with DstOps that have same number of elements combined as 3670 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are 3671 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple 3672 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements. 3673 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty, 3674 unsigned NumElts) { 3675 LLT LeftoverTy; 3676 assert(Ty.isVector() && "Expected vector type"); 3677 LLT EltTy = Ty.getElementType(); 3678 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 3679 int NumParts, NumLeftover; 3680 std::tie(NumParts, NumLeftover) = 3681 getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy); 3682 3683 assert(NumParts > 0 && "Error in getNarrowTypeBreakDown"); 3684 for (int i = 0; i < NumParts; ++i) { 3685 DstOps.push_back(NarrowTy); 3686 } 3687 3688 if (LeftoverTy.isValid()) { 3689 assert(NumLeftover == 1 && "expected exactly one leftover"); 3690 DstOps.push_back(LeftoverTy); 3691 } 3692 } 3693 3694 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps 3695 /// made from \p Op depending on operand type. 3696 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N, 3697 MachineOperand &Op) { 3698 for (unsigned i = 0; i < N; ++i) { 3699 if (Op.isReg()) 3700 Ops.push_back(Op.getReg()); 3701 else if (Op.isImm()) 3702 Ops.push_back(Op.getImm()); 3703 else if (Op.isPredicate()) 3704 Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate())); 3705 else 3706 llvm_unreachable("Unsupported type"); 3707 } 3708 } 3709 3710 // Handle splitting vector operations which need to have the same number of 3711 // elements in each type index, but each type index may have a different element 3712 // type. 3713 // 3714 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3715 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3716 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3717 // 3718 // Also handles some irregular breakdown cases, e.g. 3719 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3720 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3721 // s64 = G_SHL s64, s32 3722 LegalizerHelper::LegalizeResult 3723 LegalizerHelper::fewerElementsVectorMultiEltType( 3724 GenericMachineInstr &MI, unsigned NumElts, 3725 std::initializer_list<unsigned> NonVecOpIndices) { 3726 assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) && 3727 "Non-compatible opcode or not specified non-vector operands"); 3728 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 3729 3730 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 3731 unsigned NumDefs = MI.getNumDefs(); 3732 3733 // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output. 3734 // Build instructions with DstOps to use instruction found by CSE directly. 3735 // CSE copies found instruction into given vreg when building with vreg dest. 3736 SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs); 3737 // Output registers will be taken from created instructions. 3738 SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs); 3739 for (unsigned i = 0; i < NumDefs; ++i) { 3740 makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts); 3741 } 3742 3743 // Split vector input operands into sub-vectors with NumElts elts + Leftover. 3744 // Operands listed in NonVecOpIndices will be used as is without splitting; 3745 // examples: compare predicate in icmp and fcmp (op 1), vector select with i1 3746 // scalar condition (op 1), immediate in sext_inreg (op 2). 3747 SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs); 3748 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 3749 ++UseIdx, ++UseNo) { 3750 if (is_contained(NonVecOpIndices, UseIdx)) { 3751 broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(), 3752 MI.getOperand(UseIdx)); 3753 } else { 3754 SmallVector<Register, 8> SplitPieces; 3755 extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces); 3756 for (auto Reg : SplitPieces) 3757 InputOpsPieces[UseNo].push_back(Reg); 3758 } 3759 } 3760 3761 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 3762 3763 // Take i-th piece of each input operand split and build sub-vector/scalar 3764 // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s). 3765 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 3766 SmallVector<DstOp, 2> Defs; 3767 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 3768 Defs.push_back(OutputOpsPieces[DstNo][i]); 3769 3770 SmallVector<SrcOp, 3> Uses; 3771 for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo) 3772 Uses.push_back(InputOpsPieces[InputNo][i]); 3773 3774 auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags()); 3775 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 3776 OutputRegs[DstNo].push_back(I.getReg(DstNo)); 3777 } 3778 3779 // Merge small outputs into MI's output for each def operand. 3780 if (NumLeftovers) { 3781 for (unsigned i = 0; i < NumDefs; ++i) 3782 mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]); 3783 } else { 3784 for (unsigned i = 0; i < NumDefs; ++i) 3785 MIRBuilder.buildMerge(MI.getReg(i), OutputRegs[i]); 3786 } 3787 3788 MI.eraseFromParent(); 3789 return Legalized; 3790 } 3791 3792 LegalizerHelper::LegalizeResult 3793 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI, 3794 unsigned NumElts) { 3795 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 3796 3797 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 3798 unsigned NumDefs = MI.getNumDefs(); 3799 3800 SmallVector<DstOp, 8> OutputOpsPieces; 3801 SmallVector<Register, 8> OutputRegs; 3802 makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts); 3803 3804 // Instructions that perform register split will be inserted in basic block 3805 // where register is defined (basic block is in the next operand). 3806 SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2); 3807 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 3808 UseIdx += 2, ++UseNo) { 3809 MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB(); 3810 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3811 extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]); 3812 } 3813 3814 // Build PHIs with fewer elements. 3815 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 3816 MIRBuilder.setInsertPt(*MI.getParent(), MI); 3817 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 3818 auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI); 3819 Phi.addDef( 3820 MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI))); 3821 OutputRegs.push_back(Phi.getReg(0)); 3822 3823 for (unsigned j = 0; j < NumInputs / 2; ++j) { 3824 Phi.addUse(InputOpsPieces[j][i]); 3825 Phi.add(MI.getOperand(1 + j * 2 + 1)); 3826 } 3827 } 3828 3829 // Merge small outputs into MI's def. 3830 if (NumLeftovers) { 3831 mergeMixedSubvectors(MI.getReg(0), OutputRegs); 3832 } else { 3833 MIRBuilder.buildMerge(MI.getReg(0), OutputRegs); 3834 } 3835 3836 MI.eraseFromParent(); 3837 return Legalized; 3838 } 3839 3840 LegalizerHelper::LegalizeResult 3841 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3842 unsigned TypeIdx, 3843 LLT NarrowTy) { 3844 const int NumDst = MI.getNumOperands() - 1; 3845 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3846 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3847 LLT SrcTy = MRI.getType(SrcReg); 3848 3849 if (TypeIdx != 1 || NarrowTy == DstTy) 3850 return UnableToLegalize; 3851 3852 // Requires compatible types. Otherwise SrcReg should have been defined by 3853 // merge-like instruction that would get artifact combined. Most likely 3854 // instruction that defines SrcReg has to perform more/fewer elements 3855 // legalization compatible with NarrowTy. 3856 assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 3857 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3858 3859 if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 3860 (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0)) 3861 return UnableToLegalize; 3862 3863 // This is most likely DstTy (smaller then register size) packed in SrcTy 3864 // (larger then register size) and since unmerge was not combined it will be 3865 // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy 3866 // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy. 3867 3868 // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy) 3869 // 3870 // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence 3871 // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg 3872 // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy) 3873 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg); 3874 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3875 const int PartsPerUnmerge = NumDst / NumUnmerge; 3876 3877 for (int I = 0; I != NumUnmerge; ++I) { 3878 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3879 3880 for (int J = 0; J != PartsPerUnmerge; ++J) 3881 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3882 MIB.addUse(Unmerge.getReg(I)); 3883 } 3884 3885 MI.eraseFromParent(); 3886 return Legalized; 3887 } 3888 3889 LegalizerHelper::LegalizeResult 3890 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3891 LLT NarrowTy) { 3892 Register DstReg = MI.getOperand(0).getReg(); 3893 LLT DstTy = MRI.getType(DstReg); 3894 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3895 // Requires compatible types. Otherwise user of DstReg did not perform unmerge 3896 // that should have been artifact combined. Most likely instruction that uses 3897 // DstReg has to do more/fewer elements legalization compatible with NarrowTy. 3898 assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 3899 assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3900 if (NarrowTy == SrcTy) 3901 return UnableToLegalize; 3902 3903 // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use 3904 // is for old mir tests. Since the changes to more/fewer elements it should no 3905 // longer be possible to generate MIR like this when starting from llvm-ir 3906 // because LCMTy approach was replaced with merge/unmerge to vector elements. 3907 if (TypeIdx == 1) { 3908 assert(SrcTy.isVector() && "Expected vector types"); 3909 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3910 if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 3911 (NarrowTy.getNumElements() >= SrcTy.getNumElements())) 3912 return UnableToLegalize; 3913 // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy) 3914 // 3915 // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy) 3916 // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy) 3917 // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4 3918 // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6 3919 // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8 3920 // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11 3921 3922 SmallVector<Register, 8> Elts; 3923 LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType(); 3924 for (unsigned i = 1; i < MI.getNumOperands(); ++i) { 3925 auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg()); 3926 for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j) 3927 Elts.push_back(Unmerge.getReg(j)); 3928 } 3929 3930 SmallVector<Register, 8> NarrowTyElts; 3931 unsigned NumNarrowTyElts = NarrowTy.getNumElements(); 3932 unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts; 3933 for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces; 3934 ++i, Offset += NumNarrowTyElts) { 3935 ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts); 3936 NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0)); 3937 } 3938 3939 MIRBuilder.buildMerge(DstReg, NarrowTyElts); 3940 MI.eraseFromParent(); 3941 return Legalized; 3942 } 3943 3944 assert(TypeIdx == 0 && "Bad type index"); 3945 if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) || 3946 (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0)) 3947 return UnableToLegalize; 3948 3949 // This is most likely SrcTy (smaller then register size) packed in DstTy 3950 // (larger then register size) and since merge was not combined it will be 3951 // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy 3952 // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy. 3953 3954 // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4 3955 // 3956 // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg 3957 // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4 3958 // %0:_(DstTy) = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence 3959 SmallVector<Register, 8> NarrowTyElts; 3960 unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3961 unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1; 3962 unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts; 3963 for (unsigned i = 0; i < NumParts; ++i) { 3964 SmallVector<Register, 8> Sources; 3965 for (unsigned j = 0; j < NumElts; ++j) 3966 Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg()); 3967 NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Sources).getReg(0)); 3968 } 3969 3970 MIRBuilder.buildMerge(DstReg, NarrowTyElts); 3971 MI.eraseFromParent(); 3972 return Legalized; 3973 } 3974 3975 LegalizerHelper::LegalizeResult 3976 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3977 unsigned TypeIdx, 3978 LLT NarrowVecTy) { 3979 Register DstReg = MI.getOperand(0).getReg(); 3980 Register SrcVec = MI.getOperand(1).getReg(); 3981 Register InsertVal; 3982 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3983 3984 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3985 if (IsInsert) 3986 InsertVal = MI.getOperand(2).getReg(); 3987 3988 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3989 3990 // TODO: Handle total scalarization case. 3991 if (!NarrowVecTy.isVector()) 3992 return UnableToLegalize; 3993 3994 LLT VecTy = MRI.getType(SrcVec); 3995 3996 // If the index is a constant, we can really break this down as you would 3997 // expect, and index into the target size pieces. 3998 int64_t IdxVal; 3999 auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI); 4000 if (MaybeCst) { 4001 IdxVal = MaybeCst->Value.getSExtValue(); 4002 // Avoid out of bounds indexing the pieces. 4003 if (IdxVal >= VecTy.getNumElements()) { 4004 MIRBuilder.buildUndef(DstReg); 4005 MI.eraseFromParent(); 4006 return Legalized; 4007 } 4008 4009 SmallVector<Register, 8> VecParts; 4010 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 4011 4012 // Build a sequence of NarrowTy pieces in VecParts for this operand. 4013 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 4014 TargetOpcode::G_ANYEXT); 4015 4016 unsigned NewNumElts = NarrowVecTy.getNumElements(); 4017 4018 LLT IdxTy = MRI.getType(Idx); 4019 int64_t PartIdx = IdxVal / NewNumElts; 4020 auto NewIdx = 4021 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 4022 4023 if (IsInsert) { 4024 LLT PartTy = MRI.getType(VecParts[PartIdx]); 4025 4026 // Use the adjusted index to insert into one of the subvectors. 4027 auto InsertPart = MIRBuilder.buildInsertVectorElement( 4028 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 4029 VecParts[PartIdx] = InsertPart.getReg(0); 4030 4031 // Recombine the inserted subvector with the others to reform the result 4032 // vector. 4033 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 4034 } else { 4035 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 4036 } 4037 4038 MI.eraseFromParent(); 4039 return Legalized; 4040 } 4041 4042 // With a variable index, we can't perform the operation in a smaller type, so 4043 // we're forced to expand this. 4044 // 4045 // TODO: We could emit a chain of compare/select to figure out which piece to 4046 // index. 4047 return lowerExtractInsertVectorElt(MI); 4048 } 4049 4050 LegalizerHelper::LegalizeResult 4051 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx, 4052 LLT NarrowTy) { 4053 // FIXME: Don't know how to handle secondary types yet. 4054 if (TypeIdx != 0) 4055 return UnableToLegalize; 4056 4057 // This implementation doesn't work for atomics. Give up instead of doing 4058 // something invalid. 4059 if (LdStMI.isAtomic()) 4060 return UnableToLegalize; 4061 4062 bool IsLoad = isa<GLoad>(LdStMI); 4063 Register ValReg = LdStMI.getReg(0); 4064 Register AddrReg = LdStMI.getPointerReg(); 4065 LLT ValTy = MRI.getType(ValReg); 4066 4067 // FIXME: Do we need a distinct NarrowMemory legalize action? 4068 if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) { 4069 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 4070 return UnableToLegalize; 4071 } 4072 4073 int NumParts = -1; 4074 int NumLeftover = -1; 4075 LLT LeftoverTy; 4076 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 4077 if (IsLoad) { 4078 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 4079 } else { 4080 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 4081 NarrowLeftoverRegs)) { 4082 NumParts = NarrowRegs.size(); 4083 NumLeftover = NarrowLeftoverRegs.size(); 4084 } 4085 } 4086 4087 if (NumParts == -1) 4088 return UnableToLegalize; 4089 4090 LLT PtrTy = MRI.getType(AddrReg); 4091 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 4092 4093 unsigned TotalSize = ValTy.getSizeInBits(); 4094 4095 // Split the load/store into PartTy sized pieces starting at Offset. If this 4096 // is a load, return the new registers in ValRegs. For a store, each elements 4097 // of ValRegs should be PartTy. Returns the next offset that needs to be 4098 // handled. 4099 auto MMO = LdStMI.getMMO(); 4100 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 4101 unsigned Offset) -> unsigned { 4102 MachineFunction &MF = MIRBuilder.getMF(); 4103 unsigned PartSize = PartTy.getSizeInBits(); 4104 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 4105 Offset += PartSize, ++Idx) { 4106 unsigned ByteOffset = Offset / 8; 4107 Register NewAddrReg; 4108 4109 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 4110 4111 MachineMemOperand *NewMMO = 4112 MF.getMachineMemOperand(&MMO, ByteOffset, PartTy); 4113 4114 if (IsLoad) { 4115 Register Dst = MRI.createGenericVirtualRegister(PartTy); 4116 ValRegs.push_back(Dst); 4117 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 4118 } else { 4119 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 4120 } 4121 } 4122 4123 return Offset; 4124 }; 4125 4126 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 4127 4128 // Handle the rest of the register if this isn't an even type breakdown. 4129 if (LeftoverTy.isValid()) 4130 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 4131 4132 if (IsLoad) { 4133 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 4134 LeftoverTy, NarrowLeftoverRegs); 4135 } 4136 4137 LdStMI.eraseFromParent(); 4138 return Legalized; 4139 } 4140 4141 LegalizerHelper::LegalizeResult 4142 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4143 LLT NarrowTy) { 4144 using namespace TargetOpcode; 4145 GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI); 4146 unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 4147 4148 switch (MI.getOpcode()) { 4149 case G_IMPLICIT_DEF: 4150 case G_TRUNC: 4151 case G_AND: 4152 case G_OR: 4153 case G_XOR: 4154 case G_ADD: 4155 case G_SUB: 4156 case G_MUL: 4157 case G_PTR_ADD: 4158 case G_SMULH: 4159 case G_UMULH: 4160 case G_FADD: 4161 case G_FMUL: 4162 case G_FSUB: 4163 case G_FNEG: 4164 case G_FABS: 4165 case G_FCANONICALIZE: 4166 case G_FDIV: 4167 case G_FREM: 4168 case G_FMA: 4169 case G_FMAD: 4170 case G_FPOW: 4171 case G_FEXP: 4172 case G_FEXP2: 4173 case G_FLOG: 4174 case G_FLOG2: 4175 case G_FLOG10: 4176 case G_FNEARBYINT: 4177 case G_FCEIL: 4178 case G_FFLOOR: 4179 case G_FRINT: 4180 case G_INTRINSIC_ROUND: 4181 case G_INTRINSIC_ROUNDEVEN: 4182 case G_INTRINSIC_TRUNC: 4183 case G_FCOS: 4184 case G_FSIN: 4185 case G_FSQRT: 4186 case G_BSWAP: 4187 case G_BITREVERSE: 4188 case G_SDIV: 4189 case G_UDIV: 4190 case G_SREM: 4191 case G_UREM: 4192 case G_SDIVREM: 4193 case G_UDIVREM: 4194 case G_SMIN: 4195 case G_SMAX: 4196 case G_UMIN: 4197 case G_UMAX: 4198 case G_ABS: 4199 case G_FMINNUM: 4200 case G_FMAXNUM: 4201 case G_FMINNUM_IEEE: 4202 case G_FMAXNUM_IEEE: 4203 case G_FMINIMUM: 4204 case G_FMAXIMUM: 4205 case G_FSHL: 4206 case G_FSHR: 4207 case G_ROTL: 4208 case G_ROTR: 4209 case G_FREEZE: 4210 case G_SADDSAT: 4211 case G_SSUBSAT: 4212 case G_UADDSAT: 4213 case G_USUBSAT: 4214 case G_UMULO: 4215 case G_SMULO: 4216 case G_SHL: 4217 case G_LSHR: 4218 case G_ASHR: 4219 case G_SSHLSAT: 4220 case G_USHLSAT: 4221 case G_CTLZ: 4222 case G_CTLZ_ZERO_UNDEF: 4223 case G_CTTZ: 4224 case G_CTTZ_ZERO_UNDEF: 4225 case G_CTPOP: 4226 case G_FCOPYSIGN: 4227 case G_ZEXT: 4228 case G_SEXT: 4229 case G_ANYEXT: 4230 case G_FPEXT: 4231 case G_FPTRUNC: 4232 case G_SITOFP: 4233 case G_UITOFP: 4234 case G_FPTOSI: 4235 case G_FPTOUI: 4236 case G_INTTOPTR: 4237 case G_PTRTOINT: 4238 case G_ADDRSPACE_CAST: 4239 return fewerElementsVectorMultiEltType(GMI, NumElts); 4240 case G_ICMP: 4241 case G_FCMP: 4242 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/}); 4243 case G_SELECT: 4244 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4245 return fewerElementsVectorMultiEltType(GMI, NumElts); 4246 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/}); 4247 case G_PHI: 4248 return fewerElementsVectorPhi(GMI, NumElts); 4249 case G_UNMERGE_VALUES: 4250 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4251 case G_BUILD_VECTOR: 4252 assert(TypeIdx == 0 && "not a vector type index"); 4253 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4254 case G_CONCAT_VECTORS: 4255 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4256 return UnableToLegalize; 4257 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4258 case G_EXTRACT_VECTOR_ELT: 4259 case G_INSERT_VECTOR_ELT: 4260 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4261 case G_LOAD: 4262 case G_STORE: 4263 return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy); 4264 case G_SEXT_INREG: 4265 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/}); 4266 GISEL_VECREDUCE_CASES_NONSEQ 4267 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4268 case G_SHUFFLE_VECTOR: 4269 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 4270 default: 4271 return UnableToLegalize; 4272 } 4273 } 4274 4275 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 4276 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4277 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 4278 if (TypeIdx != 0) 4279 return UnableToLegalize; 4280 4281 Register DstReg = MI.getOperand(0).getReg(); 4282 Register Src1Reg = MI.getOperand(1).getReg(); 4283 Register Src2Reg = MI.getOperand(2).getReg(); 4284 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4285 LLT DstTy = MRI.getType(DstReg); 4286 LLT Src1Ty = MRI.getType(Src1Reg); 4287 LLT Src2Ty = MRI.getType(Src2Reg); 4288 // The shuffle should be canonicalized by now. 4289 if (DstTy != Src1Ty) 4290 return UnableToLegalize; 4291 if (DstTy != Src2Ty) 4292 return UnableToLegalize; 4293 4294 if (!isPowerOf2_32(DstTy.getNumElements())) 4295 return UnableToLegalize; 4296 4297 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 4298 // Further legalization attempts will be needed to do split further. 4299 NarrowTy = 4300 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); 4301 unsigned NewElts = NarrowTy.getNumElements(); 4302 4303 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 4304 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); 4305 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); 4306 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 4307 SplitSrc2Regs[1]}; 4308 4309 Register Hi, Lo; 4310 4311 // If Lo or Hi uses elements from at most two of the four input vectors, then 4312 // express it as a vector shuffle of those two inputs. Otherwise extract the 4313 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 4314 SmallVector<int, 16> Ops; 4315 for (unsigned High = 0; High < 2; ++High) { 4316 Register &Output = High ? Hi : Lo; 4317 4318 // Build a shuffle mask for the output, discovering on the fly which 4319 // input vectors to use as shuffle operands (recorded in InputUsed). 4320 // If building a suitable shuffle vector proves too hard, then bail 4321 // out with useBuildVector set. 4322 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 4323 unsigned FirstMaskIdx = High * NewElts; 4324 bool UseBuildVector = false; 4325 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4326 // The mask element. This indexes into the input. 4327 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4328 4329 // The input vector this mask element indexes into. 4330 unsigned Input = (unsigned)Idx / NewElts; 4331 4332 if (Input >= array_lengthof(Inputs)) { 4333 // The mask element does not index into any input vector. 4334 Ops.push_back(-1); 4335 continue; 4336 } 4337 4338 // Turn the index into an offset from the start of the input vector. 4339 Idx -= Input * NewElts; 4340 4341 // Find or create a shuffle vector operand to hold this input. 4342 unsigned OpNo; 4343 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { 4344 if (InputUsed[OpNo] == Input) { 4345 // This input vector is already an operand. 4346 break; 4347 } else if (InputUsed[OpNo] == -1U) { 4348 // Create a new operand for this input vector. 4349 InputUsed[OpNo] = Input; 4350 break; 4351 } 4352 } 4353 4354 if (OpNo >= array_lengthof(InputUsed)) { 4355 // More than two input vectors used! Give up on trying to create a 4356 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 4357 UseBuildVector = true; 4358 break; 4359 } 4360 4361 // Add the mask index for the new shuffle vector. 4362 Ops.push_back(Idx + OpNo * NewElts); 4363 } 4364 4365 if (UseBuildVector) { 4366 LLT EltTy = NarrowTy.getElementType(); 4367 SmallVector<Register, 16> SVOps; 4368 4369 // Extract the input elements by hand. 4370 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4371 // The mask element. This indexes into the input. 4372 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4373 4374 // The input vector this mask element indexes into. 4375 unsigned Input = (unsigned)Idx / NewElts; 4376 4377 if (Input >= array_lengthof(Inputs)) { 4378 // The mask element is "undef" or indexes off the end of the input. 4379 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 4380 continue; 4381 } 4382 4383 // Turn the index into an offset from the start of the input vector. 4384 Idx -= Input * NewElts; 4385 4386 // Extract the vector element by hand. 4387 SVOps.push_back(MIRBuilder 4388 .buildExtractVectorElement( 4389 EltTy, Inputs[Input], 4390 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 4391 .getReg(0)); 4392 } 4393 4394 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 4395 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 4396 } else if (InputUsed[0] == -1U) { 4397 // No input vectors were used! The result is undefined. 4398 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 4399 } else { 4400 Register Op0 = Inputs[InputUsed[0]]; 4401 // If only one input was used, use an undefined vector for the other. 4402 Register Op1 = InputUsed[1] == -1U 4403 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 4404 : Inputs[InputUsed[1]]; 4405 // At least one input vector was used. Create a new shuffle vector. 4406 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 4407 } 4408 4409 Ops.clear(); 4410 } 4411 4412 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); 4413 MI.eraseFromParent(); 4414 return Legalized; 4415 } 4416 4417 static unsigned getScalarOpcForReduction(unsigned Opc) { 4418 unsigned ScalarOpc; 4419 switch (Opc) { 4420 case TargetOpcode::G_VECREDUCE_FADD: 4421 ScalarOpc = TargetOpcode::G_FADD; 4422 break; 4423 case TargetOpcode::G_VECREDUCE_FMUL: 4424 ScalarOpc = TargetOpcode::G_FMUL; 4425 break; 4426 case TargetOpcode::G_VECREDUCE_FMAX: 4427 ScalarOpc = TargetOpcode::G_FMAXNUM; 4428 break; 4429 case TargetOpcode::G_VECREDUCE_FMIN: 4430 ScalarOpc = TargetOpcode::G_FMINNUM; 4431 break; 4432 case TargetOpcode::G_VECREDUCE_ADD: 4433 ScalarOpc = TargetOpcode::G_ADD; 4434 break; 4435 case TargetOpcode::G_VECREDUCE_MUL: 4436 ScalarOpc = TargetOpcode::G_MUL; 4437 break; 4438 case TargetOpcode::G_VECREDUCE_AND: 4439 ScalarOpc = TargetOpcode::G_AND; 4440 break; 4441 case TargetOpcode::G_VECREDUCE_OR: 4442 ScalarOpc = TargetOpcode::G_OR; 4443 break; 4444 case TargetOpcode::G_VECREDUCE_XOR: 4445 ScalarOpc = TargetOpcode::G_XOR; 4446 break; 4447 case TargetOpcode::G_VECREDUCE_SMAX: 4448 ScalarOpc = TargetOpcode::G_SMAX; 4449 break; 4450 case TargetOpcode::G_VECREDUCE_SMIN: 4451 ScalarOpc = TargetOpcode::G_SMIN; 4452 break; 4453 case TargetOpcode::G_VECREDUCE_UMAX: 4454 ScalarOpc = TargetOpcode::G_UMAX; 4455 break; 4456 case TargetOpcode::G_VECREDUCE_UMIN: 4457 ScalarOpc = TargetOpcode::G_UMIN; 4458 break; 4459 default: 4460 llvm_unreachable("Unhandled reduction"); 4461 } 4462 return ScalarOpc; 4463 } 4464 4465 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4466 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4467 unsigned Opc = MI.getOpcode(); 4468 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && 4469 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && 4470 "Sequential reductions not expected"); 4471 4472 if (TypeIdx != 1) 4473 return UnableToLegalize; 4474 4475 // The semantics of the normal non-sequential reductions allow us to freely 4476 // re-associate the operation. 4477 Register SrcReg = MI.getOperand(1).getReg(); 4478 LLT SrcTy = MRI.getType(SrcReg); 4479 Register DstReg = MI.getOperand(0).getReg(); 4480 LLT DstTy = MRI.getType(DstReg); 4481 4482 if (NarrowTy.isVector() && 4483 (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)) 4484 return UnableToLegalize; 4485 4486 unsigned ScalarOpc = getScalarOpcForReduction(Opc); 4487 SmallVector<Register> SplitSrcs; 4488 // If NarrowTy is a scalar then we're being asked to scalarize. 4489 const unsigned NumParts = 4490 NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements() 4491 : SrcTy.getNumElements(); 4492 4493 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4494 if (NarrowTy.isScalar()) { 4495 if (DstTy != NarrowTy) 4496 return UnableToLegalize; // FIXME: handle implicit extensions. 4497 4498 if (isPowerOf2_32(NumParts)) { 4499 // Generate a tree of scalar operations to reduce the critical path. 4500 SmallVector<Register> PartialResults; 4501 unsigned NumPartsLeft = NumParts; 4502 while (NumPartsLeft > 1) { 4503 for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) { 4504 PartialResults.emplace_back( 4505 MIRBuilder 4506 .buildInstr(ScalarOpc, {NarrowTy}, 4507 {SplitSrcs[Idx], SplitSrcs[Idx + 1]}) 4508 .getReg(0)); 4509 } 4510 SplitSrcs = PartialResults; 4511 PartialResults.clear(); 4512 NumPartsLeft = SplitSrcs.size(); 4513 } 4514 assert(SplitSrcs.size() == 1); 4515 MIRBuilder.buildCopy(DstReg, SplitSrcs[0]); 4516 MI.eraseFromParent(); 4517 return Legalized; 4518 } 4519 // If we can't generate a tree, then just do sequential operations. 4520 Register Acc = SplitSrcs[0]; 4521 for (unsigned Idx = 1; Idx < NumParts; ++Idx) 4522 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]}) 4523 .getReg(0); 4524 MIRBuilder.buildCopy(DstReg, Acc); 4525 MI.eraseFromParent(); 4526 return Legalized; 4527 } 4528 SmallVector<Register> PartialReductions; 4529 for (unsigned Part = 0; Part < NumParts; ++Part) { 4530 PartialReductions.push_back( 4531 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); 4532 } 4533 4534 4535 // If the types involved are powers of 2, we can generate intermediate vector 4536 // ops, before generating a final reduction operation. 4537 if (isPowerOf2_32(SrcTy.getNumElements()) && 4538 isPowerOf2_32(NarrowTy.getNumElements())) { 4539 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4540 } 4541 4542 Register Acc = PartialReductions[0]; 4543 for (unsigned Part = 1; Part < NumParts; ++Part) { 4544 if (Part == NumParts - 1) { 4545 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4546 {Acc, PartialReductions[Part]}); 4547 } else { 4548 Acc = MIRBuilder 4549 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4550 .getReg(0); 4551 } 4552 } 4553 MI.eraseFromParent(); 4554 return Legalized; 4555 } 4556 4557 LegalizerHelper::LegalizeResult 4558 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4559 LLT SrcTy, LLT NarrowTy, 4560 unsigned ScalarOpc) { 4561 SmallVector<Register> SplitSrcs; 4562 // Split the sources into NarrowTy size pieces. 4563 extractParts(SrcReg, NarrowTy, 4564 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4565 // We're going to do a tree reduction using vector operations until we have 4566 // one NarrowTy size value left. 4567 while (SplitSrcs.size() > 1) { 4568 SmallVector<Register> PartialRdxs; 4569 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 4570 Register LHS = SplitSrcs[Idx]; 4571 Register RHS = SplitSrcs[Idx + 1]; 4572 // Create the intermediate vector op. 4573 Register Res = 4574 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 4575 PartialRdxs.push_back(Res); 4576 } 4577 SplitSrcs = std::move(PartialRdxs); 4578 } 4579 // Finally generate the requested NarrowTy based reduction. 4580 Observer.changingInstr(MI); 4581 MI.getOperand(1).setReg(SplitSrcs[0]); 4582 Observer.changedInstr(MI); 4583 return Legalized; 4584 } 4585 4586 LegalizerHelper::LegalizeResult 4587 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4588 const LLT HalfTy, const LLT AmtTy) { 4589 4590 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4591 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4592 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4593 4594 if (Amt.isZero()) { 4595 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4596 MI.eraseFromParent(); 4597 return Legalized; 4598 } 4599 4600 LLT NVT = HalfTy; 4601 unsigned NVTBits = HalfTy.getSizeInBits(); 4602 unsigned VTBits = 2 * NVTBits; 4603 4604 SrcOp Lo(Register(0)), Hi(Register(0)); 4605 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4606 if (Amt.ugt(VTBits)) { 4607 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4608 } else if (Amt.ugt(NVTBits)) { 4609 Lo = MIRBuilder.buildConstant(NVT, 0); 4610 Hi = MIRBuilder.buildShl(NVT, InL, 4611 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4612 } else if (Amt == NVTBits) { 4613 Lo = MIRBuilder.buildConstant(NVT, 0); 4614 Hi = InL; 4615 } else { 4616 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4617 auto OrLHS = 4618 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4619 auto OrRHS = MIRBuilder.buildLShr( 4620 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4621 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4622 } 4623 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4624 if (Amt.ugt(VTBits)) { 4625 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4626 } else if (Amt.ugt(NVTBits)) { 4627 Lo = MIRBuilder.buildLShr(NVT, InH, 4628 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4629 Hi = MIRBuilder.buildConstant(NVT, 0); 4630 } else if (Amt == NVTBits) { 4631 Lo = InH; 4632 Hi = MIRBuilder.buildConstant(NVT, 0); 4633 } else { 4634 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4635 4636 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4637 auto OrRHS = MIRBuilder.buildShl( 4638 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4639 4640 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4641 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4642 } 4643 } else { 4644 if (Amt.ugt(VTBits)) { 4645 Hi = Lo = MIRBuilder.buildAShr( 4646 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4647 } else if (Amt.ugt(NVTBits)) { 4648 Lo = MIRBuilder.buildAShr(NVT, InH, 4649 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4650 Hi = MIRBuilder.buildAShr(NVT, InH, 4651 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4652 } else if (Amt == NVTBits) { 4653 Lo = InH; 4654 Hi = MIRBuilder.buildAShr(NVT, InH, 4655 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4656 } else { 4657 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4658 4659 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4660 auto OrRHS = MIRBuilder.buildShl( 4661 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4662 4663 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4664 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4665 } 4666 } 4667 4668 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4669 MI.eraseFromParent(); 4670 4671 return Legalized; 4672 } 4673 4674 // TODO: Optimize if constant shift amount. 4675 LegalizerHelper::LegalizeResult 4676 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4677 LLT RequestedTy) { 4678 if (TypeIdx == 1) { 4679 Observer.changingInstr(MI); 4680 narrowScalarSrc(MI, RequestedTy, 2); 4681 Observer.changedInstr(MI); 4682 return Legalized; 4683 } 4684 4685 Register DstReg = MI.getOperand(0).getReg(); 4686 LLT DstTy = MRI.getType(DstReg); 4687 if (DstTy.isVector()) 4688 return UnableToLegalize; 4689 4690 Register Amt = MI.getOperand(2).getReg(); 4691 LLT ShiftAmtTy = MRI.getType(Amt); 4692 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4693 if (DstEltSize % 2 != 0) 4694 return UnableToLegalize; 4695 4696 // Ignore the input type. We can only go to exactly half the size of the 4697 // input. If that isn't small enough, the resulting pieces will be further 4698 // legalized. 4699 const unsigned NewBitSize = DstEltSize / 2; 4700 const LLT HalfTy = LLT::scalar(NewBitSize); 4701 const LLT CondTy = LLT::scalar(1); 4702 4703 if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) { 4704 return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy, 4705 ShiftAmtTy); 4706 } 4707 4708 // TODO: Expand with known bits. 4709 4710 // Handle the fully general expansion by an unknown amount. 4711 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4712 4713 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4714 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4715 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4716 4717 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4718 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4719 4720 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4721 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4722 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4723 4724 Register ResultRegs[2]; 4725 switch (MI.getOpcode()) { 4726 case TargetOpcode::G_SHL: { 4727 // Short: ShAmt < NewBitSize 4728 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4729 4730 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4731 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4732 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4733 4734 // Long: ShAmt >= NewBitSize 4735 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4736 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4737 4738 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4739 auto Hi = MIRBuilder.buildSelect( 4740 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4741 4742 ResultRegs[0] = Lo.getReg(0); 4743 ResultRegs[1] = Hi.getReg(0); 4744 break; 4745 } 4746 case TargetOpcode::G_LSHR: 4747 case TargetOpcode::G_ASHR: { 4748 // Short: ShAmt < NewBitSize 4749 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4750 4751 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4752 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4753 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4754 4755 // Long: ShAmt >= NewBitSize 4756 MachineInstrBuilder HiL; 4757 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4758 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4759 } else { 4760 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4761 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4762 } 4763 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4764 {InH, AmtExcess}); // Lo from Hi part. 4765 4766 auto Lo = MIRBuilder.buildSelect( 4767 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4768 4769 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4770 4771 ResultRegs[0] = Lo.getReg(0); 4772 ResultRegs[1] = Hi.getReg(0); 4773 break; 4774 } 4775 default: 4776 llvm_unreachable("not a shift"); 4777 } 4778 4779 MIRBuilder.buildMerge(DstReg, ResultRegs); 4780 MI.eraseFromParent(); 4781 return Legalized; 4782 } 4783 4784 LegalizerHelper::LegalizeResult 4785 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4786 LLT MoreTy) { 4787 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4788 4789 Observer.changingInstr(MI); 4790 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4791 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4792 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4793 moreElementsVectorSrc(MI, MoreTy, I); 4794 } 4795 4796 MachineBasicBlock &MBB = *MI.getParent(); 4797 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4798 moreElementsVectorDst(MI, MoreTy, 0); 4799 Observer.changedInstr(MI); 4800 return Legalized; 4801 } 4802 4803 LegalizerHelper::LegalizeResult 4804 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4805 LLT MoreTy) { 4806 unsigned Opc = MI.getOpcode(); 4807 switch (Opc) { 4808 case TargetOpcode::G_IMPLICIT_DEF: 4809 case TargetOpcode::G_LOAD: { 4810 if (TypeIdx != 0) 4811 return UnableToLegalize; 4812 Observer.changingInstr(MI); 4813 moreElementsVectorDst(MI, MoreTy, 0); 4814 Observer.changedInstr(MI); 4815 return Legalized; 4816 } 4817 case TargetOpcode::G_STORE: 4818 if (TypeIdx != 0) 4819 return UnableToLegalize; 4820 Observer.changingInstr(MI); 4821 moreElementsVectorSrc(MI, MoreTy, 0); 4822 Observer.changedInstr(MI); 4823 return Legalized; 4824 case TargetOpcode::G_AND: 4825 case TargetOpcode::G_OR: 4826 case TargetOpcode::G_XOR: 4827 case TargetOpcode::G_ADD: 4828 case TargetOpcode::G_SUB: 4829 case TargetOpcode::G_MUL: 4830 case TargetOpcode::G_FADD: 4831 case TargetOpcode::G_FMUL: 4832 case TargetOpcode::G_UADDSAT: 4833 case TargetOpcode::G_USUBSAT: 4834 case TargetOpcode::G_SADDSAT: 4835 case TargetOpcode::G_SSUBSAT: 4836 case TargetOpcode::G_SMIN: 4837 case TargetOpcode::G_SMAX: 4838 case TargetOpcode::G_UMIN: 4839 case TargetOpcode::G_UMAX: 4840 case TargetOpcode::G_FMINNUM: 4841 case TargetOpcode::G_FMAXNUM: 4842 case TargetOpcode::G_FMINNUM_IEEE: 4843 case TargetOpcode::G_FMAXNUM_IEEE: 4844 case TargetOpcode::G_FMINIMUM: 4845 case TargetOpcode::G_FMAXIMUM: { 4846 Observer.changingInstr(MI); 4847 moreElementsVectorSrc(MI, MoreTy, 1); 4848 moreElementsVectorSrc(MI, MoreTy, 2); 4849 moreElementsVectorDst(MI, MoreTy, 0); 4850 Observer.changedInstr(MI); 4851 return Legalized; 4852 } 4853 case TargetOpcode::G_FMA: 4854 case TargetOpcode::G_FSHR: 4855 case TargetOpcode::G_FSHL: { 4856 Observer.changingInstr(MI); 4857 moreElementsVectorSrc(MI, MoreTy, 1); 4858 moreElementsVectorSrc(MI, MoreTy, 2); 4859 moreElementsVectorSrc(MI, MoreTy, 3); 4860 moreElementsVectorDst(MI, MoreTy, 0); 4861 Observer.changedInstr(MI); 4862 return Legalized; 4863 } 4864 case TargetOpcode::G_EXTRACT: 4865 if (TypeIdx != 1) 4866 return UnableToLegalize; 4867 Observer.changingInstr(MI); 4868 moreElementsVectorSrc(MI, MoreTy, 1); 4869 Observer.changedInstr(MI); 4870 return Legalized; 4871 case TargetOpcode::G_INSERT: 4872 case TargetOpcode::G_FREEZE: 4873 case TargetOpcode::G_FNEG: 4874 case TargetOpcode::G_FABS: 4875 case TargetOpcode::G_BSWAP: 4876 case TargetOpcode::G_FCANONICALIZE: 4877 case TargetOpcode::G_SEXT_INREG: 4878 if (TypeIdx != 0) 4879 return UnableToLegalize; 4880 Observer.changingInstr(MI); 4881 moreElementsVectorSrc(MI, MoreTy, 1); 4882 moreElementsVectorDst(MI, MoreTy, 0); 4883 Observer.changedInstr(MI); 4884 return Legalized; 4885 case TargetOpcode::G_SELECT: 4886 if (TypeIdx != 0) 4887 return UnableToLegalize; 4888 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4889 return UnableToLegalize; 4890 4891 Observer.changingInstr(MI); 4892 moreElementsVectorSrc(MI, MoreTy, 2); 4893 moreElementsVectorSrc(MI, MoreTy, 3); 4894 moreElementsVectorDst(MI, MoreTy, 0); 4895 Observer.changedInstr(MI); 4896 return Legalized; 4897 case TargetOpcode::G_UNMERGE_VALUES: 4898 return UnableToLegalize; 4899 case TargetOpcode::G_PHI: 4900 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4901 case TargetOpcode::G_SHUFFLE_VECTOR: 4902 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy); 4903 case TargetOpcode::G_BUILD_VECTOR: { 4904 SmallVector<SrcOp, 8> Elts; 4905 for (auto Op : MI.uses()) { 4906 Elts.push_back(Op.getReg()); 4907 } 4908 4909 for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) { 4910 Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType())); 4911 } 4912 4913 MIRBuilder.buildDeleteTrailingVectorElements( 4914 MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts)); 4915 MI.eraseFromParent(); 4916 return Legalized; 4917 } 4918 case TargetOpcode::G_TRUNC: { 4919 Observer.changingInstr(MI); 4920 moreElementsVectorSrc(MI, MoreTy, 1); 4921 moreElementsVectorDst(MI, MoreTy, 0); 4922 Observer.changedInstr(MI); 4923 return Legalized; 4924 } 4925 default: 4926 return UnableToLegalize; 4927 } 4928 } 4929 4930 LegalizerHelper::LegalizeResult 4931 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI, 4932 unsigned int TypeIdx, LLT MoreTy) { 4933 if (TypeIdx != 0) 4934 return UnableToLegalize; 4935 4936 Register DstReg = MI.getOperand(0).getReg(); 4937 Register Src1Reg = MI.getOperand(1).getReg(); 4938 Register Src2Reg = MI.getOperand(2).getReg(); 4939 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4940 LLT DstTy = MRI.getType(DstReg); 4941 LLT Src1Ty = MRI.getType(Src1Reg); 4942 LLT Src2Ty = MRI.getType(Src2Reg); 4943 unsigned NumElts = DstTy.getNumElements(); 4944 unsigned WidenNumElts = MoreTy.getNumElements(); 4945 4946 // Expect a canonicalized shuffle. 4947 if (DstTy != Src1Ty || DstTy != Src2Ty) 4948 return UnableToLegalize; 4949 4950 moreElementsVectorSrc(MI, MoreTy, 1); 4951 moreElementsVectorSrc(MI, MoreTy, 2); 4952 4953 // Adjust mask based on new input vector length. 4954 SmallVector<int, 16> NewMask; 4955 for (unsigned I = 0; I != NumElts; ++I) { 4956 int Idx = Mask[I]; 4957 if (Idx < static_cast<int>(NumElts)) 4958 NewMask.push_back(Idx); 4959 else 4960 NewMask.push_back(Idx - NumElts + WidenNumElts); 4961 } 4962 for (unsigned I = NumElts; I != WidenNumElts; ++I) 4963 NewMask.push_back(-1); 4964 moreElementsVectorDst(MI, MoreTy, 0); 4965 MIRBuilder.setInstrAndDebugLoc(MI); 4966 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), 4967 MI.getOperand(1).getReg(), 4968 MI.getOperand(2).getReg(), NewMask); 4969 MI.eraseFromParent(); 4970 return Legalized; 4971 } 4972 4973 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4974 ArrayRef<Register> Src1Regs, 4975 ArrayRef<Register> Src2Regs, 4976 LLT NarrowTy) { 4977 MachineIRBuilder &B = MIRBuilder; 4978 unsigned SrcParts = Src1Regs.size(); 4979 unsigned DstParts = DstRegs.size(); 4980 4981 unsigned DstIdx = 0; // Low bits of the result. 4982 Register FactorSum = 4983 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4984 DstRegs[DstIdx] = FactorSum; 4985 4986 unsigned CarrySumPrevDstIdx; 4987 SmallVector<Register, 4> Factors; 4988 4989 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4990 // Collect low parts of muls for DstIdx. 4991 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4992 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4993 MachineInstrBuilder Mul = 4994 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4995 Factors.push_back(Mul.getReg(0)); 4996 } 4997 // Collect high parts of muls from previous DstIdx. 4998 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4999 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 5000 MachineInstrBuilder Umulh = 5001 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 5002 Factors.push_back(Umulh.getReg(0)); 5003 } 5004 // Add CarrySum from additions calculated for previous DstIdx. 5005 if (DstIdx != 1) { 5006 Factors.push_back(CarrySumPrevDstIdx); 5007 } 5008 5009 Register CarrySum; 5010 // Add all factors and accumulate all carries into CarrySum. 5011 if (DstIdx != DstParts - 1) { 5012 MachineInstrBuilder Uaddo = 5013 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 5014 FactorSum = Uaddo.getReg(0); 5015 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 5016 for (unsigned i = 2; i < Factors.size(); ++i) { 5017 MachineInstrBuilder Uaddo = 5018 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 5019 FactorSum = Uaddo.getReg(0); 5020 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 5021 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 5022 } 5023 } else { 5024 // Since value for the next index is not calculated, neither is CarrySum. 5025 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 5026 for (unsigned i = 2; i < Factors.size(); ++i) 5027 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 5028 } 5029 5030 CarrySumPrevDstIdx = CarrySum; 5031 DstRegs[DstIdx] = FactorSum; 5032 Factors.clear(); 5033 } 5034 } 5035 5036 LegalizerHelper::LegalizeResult 5037 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 5038 LLT NarrowTy) { 5039 if (TypeIdx != 0) 5040 return UnableToLegalize; 5041 5042 Register DstReg = MI.getOperand(0).getReg(); 5043 LLT DstType = MRI.getType(DstReg); 5044 // FIXME: add support for vector types 5045 if (DstType.isVector()) 5046 return UnableToLegalize; 5047 5048 unsigned Opcode = MI.getOpcode(); 5049 unsigned OpO, OpE, OpF; 5050 switch (Opcode) { 5051 case TargetOpcode::G_SADDO: 5052 case TargetOpcode::G_SADDE: 5053 case TargetOpcode::G_UADDO: 5054 case TargetOpcode::G_UADDE: 5055 case TargetOpcode::G_ADD: 5056 OpO = TargetOpcode::G_UADDO; 5057 OpE = TargetOpcode::G_UADDE; 5058 OpF = TargetOpcode::G_UADDE; 5059 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 5060 OpF = TargetOpcode::G_SADDE; 5061 break; 5062 case TargetOpcode::G_SSUBO: 5063 case TargetOpcode::G_SSUBE: 5064 case TargetOpcode::G_USUBO: 5065 case TargetOpcode::G_USUBE: 5066 case TargetOpcode::G_SUB: 5067 OpO = TargetOpcode::G_USUBO; 5068 OpE = TargetOpcode::G_USUBE; 5069 OpF = TargetOpcode::G_USUBE; 5070 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 5071 OpF = TargetOpcode::G_SSUBE; 5072 break; 5073 default: 5074 llvm_unreachable("Unexpected add/sub opcode!"); 5075 } 5076 5077 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 5078 unsigned NumDefs = MI.getNumExplicitDefs(); 5079 Register Src1 = MI.getOperand(NumDefs).getReg(); 5080 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 5081 Register CarryDst, CarryIn; 5082 if (NumDefs == 2) 5083 CarryDst = MI.getOperand(1).getReg(); 5084 if (MI.getNumOperands() == NumDefs + 3) 5085 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 5086 5087 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5088 LLT LeftoverTy, DummyTy; 5089 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; 5090 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left); 5091 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left); 5092 5093 int NarrowParts = Src1Regs.size(); 5094 for (int I = 0, E = Src1Left.size(); I != E; ++I) { 5095 Src1Regs.push_back(Src1Left[I]); 5096 Src2Regs.push_back(Src2Left[I]); 5097 } 5098 DstRegs.reserve(Src1Regs.size()); 5099 5100 for (int i = 0, e = Src1Regs.size(); i != e; ++i) { 5101 Register DstReg = 5102 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); 5103 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 5104 // Forward the final carry-out to the destination register 5105 if (i == e - 1 && CarryDst) 5106 CarryOut = CarryDst; 5107 5108 if (!CarryIn) { 5109 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 5110 {Src1Regs[i], Src2Regs[i]}); 5111 } else if (i == e - 1) { 5112 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 5113 {Src1Regs[i], Src2Regs[i], CarryIn}); 5114 } else { 5115 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 5116 {Src1Regs[i], Src2Regs[i], CarryIn}); 5117 } 5118 5119 DstRegs.push_back(DstReg); 5120 CarryIn = CarryOut; 5121 } 5122 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, 5123 makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, 5124 makeArrayRef(DstRegs).drop_front(NarrowParts)); 5125 5126 MI.eraseFromParent(); 5127 return Legalized; 5128 } 5129 5130 LegalizerHelper::LegalizeResult 5131 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 5132 Register DstReg = MI.getOperand(0).getReg(); 5133 Register Src1 = MI.getOperand(1).getReg(); 5134 Register Src2 = MI.getOperand(2).getReg(); 5135 5136 LLT Ty = MRI.getType(DstReg); 5137 if (Ty.isVector()) 5138 return UnableToLegalize; 5139 5140 unsigned Size = Ty.getSizeInBits(); 5141 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5142 if (Size % NarrowSize != 0) 5143 return UnableToLegalize; 5144 5145 unsigned NumParts = Size / NarrowSize; 5146 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 5147 unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1); 5148 5149 SmallVector<Register, 2> Src1Parts, Src2Parts; 5150 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 5151 extractParts(Src1, NarrowTy, NumParts, Src1Parts); 5152 extractParts(Src2, NarrowTy, NumParts, Src2Parts); 5153 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 5154 5155 // Take only high half of registers if this is high mul. 5156 ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts); 5157 MIRBuilder.buildMerge(DstReg, DstRegs); 5158 MI.eraseFromParent(); 5159 return Legalized; 5160 } 5161 5162 LegalizerHelper::LegalizeResult 5163 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 5164 LLT NarrowTy) { 5165 if (TypeIdx != 0) 5166 return UnableToLegalize; 5167 5168 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 5169 5170 Register Src = MI.getOperand(1).getReg(); 5171 LLT SrcTy = MRI.getType(Src); 5172 5173 // If all finite floats fit into the narrowed integer type, we can just swap 5174 // out the result type. This is practically only useful for conversions from 5175 // half to at least 16-bits, so just handle the one case. 5176 if (SrcTy.getScalarType() != LLT::scalar(16) || 5177 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 5178 return UnableToLegalize; 5179 5180 Observer.changingInstr(MI); 5181 narrowScalarDst(MI, NarrowTy, 0, 5182 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 5183 Observer.changedInstr(MI); 5184 return Legalized; 5185 } 5186 5187 LegalizerHelper::LegalizeResult 5188 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 5189 LLT NarrowTy) { 5190 if (TypeIdx != 1) 5191 return UnableToLegalize; 5192 5193 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5194 5195 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 5196 // FIXME: add support for when SizeOp1 isn't an exact multiple of 5197 // NarrowSize. 5198 if (SizeOp1 % NarrowSize != 0) 5199 return UnableToLegalize; 5200 int NumParts = SizeOp1 / NarrowSize; 5201 5202 SmallVector<Register, 2> SrcRegs, DstRegs; 5203 SmallVector<uint64_t, 2> Indexes; 5204 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5205 5206 Register OpReg = MI.getOperand(0).getReg(); 5207 uint64_t OpStart = MI.getOperand(2).getImm(); 5208 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5209 for (int i = 0; i < NumParts; ++i) { 5210 unsigned SrcStart = i * NarrowSize; 5211 5212 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 5213 // No part of the extract uses this subregister, ignore it. 5214 continue; 5215 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5216 // The entire subregister is extracted, forward the value. 5217 DstRegs.push_back(SrcRegs[i]); 5218 continue; 5219 } 5220 5221 // OpSegStart is where this destination segment would start in OpReg if it 5222 // extended infinitely in both directions. 5223 int64_t ExtractOffset; 5224 uint64_t SegSize; 5225 if (OpStart < SrcStart) { 5226 ExtractOffset = 0; 5227 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 5228 } else { 5229 ExtractOffset = OpStart - SrcStart; 5230 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 5231 } 5232 5233 Register SegReg = SrcRegs[i]; 5234 if (ExtractOffset != 0 || SegSize != NarrowSize) { 5235 // A genuine extract is needed. 5236 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5237 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 5238 } 5239 5240 DstRegs.push_back(SegReg); 5241 } 5242 5243 Register DstReg = MI.getOperand(0).getReg(); 5244 if (MRI.getType(DstReg).isVector()) 5245 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5246 else if (DstRegs.size() > 1) 5247 MIRBuilder.buildMerge(DstReg, DstRegs); 5248 else 5249 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 5250 MI.eraseFromParent(); 5251 return Legalized; 5252 } 5253 5254 LegalizerHelper::LegalizeResult 5255 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 5256 LLT NarrowTy) { 5257 // FIXME: Don't know how to handle secondary types yet. 5258 if (TypeIdx != 0) 5259 return UnableToLegalize; 5260 5261 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; 5262 SmallVector<uint64_t, 2> Indexes; 5263 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5264 LLT LeftoverTy; 5265 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, 5266 LeftoverRegs); 5267 5268 for (Register Reg : LeftoverRegs) 5269 SrcRegs.push_back(Reg); 5270 5271 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5272 Register OpReg = MI.getOperand(2).getReg(); 5273 uint64_t OpStart = MI.getOperand(3).getImm(); 5274 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5275 for (int I = 0, E = SrcRegs.size(); I != E; ++I) { 5276 unsigned DstStart = I * NarrowSize; 5277 5278 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5279 // The entire subregister is defined by this insert, forward the new 5280 // value. 5281 DstRegs.push_back(OpReg); 5282 continue; 5283 } 5284 5285 Register SrcReg = SrcRegs[I]; 5286 if (MRI.getType(SrcRegs[I]) == LeftoverTy) { 5287 // The leftover reg is smaller than NarrowTy, so we need to extend it. 5288 SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 5289 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); 5290 } 5291 5292 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 5293 // No part of the insert affects this subregister, forward the original. 5294 DstRegs.push_back(SrcReg); 5295 continue; 5296 } 5297 5298 // OpSegStart is where this destination segment would start in OpReg if it 5299 // extended infinitely in both directions. 5300 int64_t ExtractOffset, InsertOffset; 5301 uint64_t SegSize; 5302 if (OpStart < DstStart) { 5303 InsertOffset = 0; 5304 ExtractOffset = DstStart - OpStart; 5305 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 5306 } else { 5307 InsertOffset = OpStart - DstStart; 5308 ExtractOffset = 0; 5309 SegSize = 5310 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 5311 } 5312 5313 Register SegReg = OpReg; 5314 if (ExtractOffset != 0 || SegSize != OpSize) { 5315 // A genuine extract is needed. 5316 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5317 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5318 } 5319 5320 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5321 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); 5322 DstRegs.push_back(DstReg); 5323 } 5324 5325 uint64_t WideSize = DstRegs.size() * NarrowSize; 5326 Register DstReg = MI.getOperand(0).getReg(); 5327 if (WideSize > RegTy.getSizeInBits()) { 5328 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); 5329 MIRBuilder.buildMerge(MergeReg, DstRegs); 5330 MIRBuilder.buildTrunc(DstReg, MergeReg); 5331 } else 5332 MIRBuilder.buildMerge(DstReg, DstRegs); 5333 5334 MI.eraseFromParent(); 5335 return Legalized; 5336 } 5337 5338 LegalizerHelper::LegalizeResult 5339 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5340 LLT NarrowTy) { 5341 Register DstReg = MI.getOperand(0).getReg(); 5342 LLT DstTy = MRI.getType(DstReg); 5343 5344 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5345 5346 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5347 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5348 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5349 LLT LeftoverTy; 5350 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5351 Src0Regs, Src0LeftoverRegs)) 5352 return UnableToLegalize; 5353 5354 LLT Unused; 5355 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5356 Src1Regs, Src1LeftoverRegs)) 5357 llvm_unreachable("inconsistent extractParts result"); 5358 5359 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5360 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5361 {Src0Regs[I], Src1Regs[I]}); 5362 DstRegs.push_back(Inst.getReg(0)); 5363 } 5364 5365 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5366 auto Inst = MIRBuilder.buildInstr( 5367 MI.getOpcode(), 5368 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5369 DstLeftoverRegs.push_back(Inst.getReg(0)); 5370 } 5371 5372 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5373 LeftoverTy, DstLeftoverRegs); 5374 5375 MI.eraseFromParent(); 5376 return Legalized; 5377 } 5378 5379 LegalizerHelper::LegalizeResult 5380 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5381 LLT NarrowTy) { 5382 if (TypeIdx != 0) 5383 return UnableToLegalize; 5384 5385 Register DstReg = MI.getOperand(0).getReg(); 5386 Register SrcReg = MI.getOperand(1).getReg(); 5387 5388 LLT DstTy = MRI.getType(DstReg); 5389 if (DstTy.isVector()) 5390 return UnableToLegalize; 5391 5392 SmallVector<Register, 8> Parts; 5393 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5394 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5395 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5396 5397 MI.eraseFromParent(); 5398 return Legalized; 5399 } 5400 5401 LegalizerHelper::LegalizeResult 5402 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5403 LLT NarrowTy) { 5404 if (TypeIdx != 0) 5405 return UnableToLegalize; 5406 5407 Register CondReg = MI.getOperand(1).getReg(); 5408 LLT CondTy = MRI.getType(CondReg); 5409 if (CondTy.isVector()) // TODO: Handle vselect 5410 return UnableToLegalize; 5411 5412 Register DstReg = MI.getOperand(0).getReg(); 5413 LLT DstTy = MRI.getType(DstReg); 5414 5415 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5416 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5417 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5418 LLT LeftoverTy; 5419 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5420 Src1Regs, Src1LeftoverRegs)) 5421 return UnableToLegalize; 5422 5423 LLT Unused; 5424 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5425 Src2Regs, Src2LeftoverRegs)) 5426 llvm_unreachable("inconsistent extractParts result"); 5427 5428 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5429 auto Select = MIRBuilder.buildSelect(NarrowTy, 5430 CondReg, Src1Regs[I], Src2Regs[I]); 5431 DstRegs.push_back(Select.getReg(0)); 5432 } 5433 5434 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5435 auto Select = MIRBuilder.buildSelect( 5436 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5437 DstLeftoverRegs.push_back(Select.getReg(0)); 5438 } 5439 5440 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5441 LeftoverTy, DstLeftoverRegs); 5442 5443 MI.eraseFromParent(); 5444 return Legalized; 5445 } 5446 5447 LegalizerHelper::LegalizeResult 5448 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5449 LLT NarrowTy) { 5450 if (TypeIdx != 1) 5451 return UnableToLegalize; 5452 5453 Register DstReg = MI.getOperand(0).getReg(); 5454 Register SrcReg = MI.getOperand(1).getReg(); 5455 LLT DstTy = MRI.getType(DstReg); 5456 LLT SrcTy = MRI.getType(SrcReg); 5457 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5458 5459 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5460 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5461 5462 MachineIRBuilder &B = MIRBuilder; 5463 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5464 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 5465 auto C_0 = B.buildConstant(NarrowTy, 0); 5466 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5467 UnmergeSrc.getReg(1), C_0); 5468 auto LoCTLZ = IsUndef ? 5469 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 5470 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 5471 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5472 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 5473 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 5474 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 5475 5476 MI.eraseFromParent(); 5477 return Legalized; 5478 } 5479 5480 return UnableToLegalize; 5481 } 5482 5483 LegalizerHelper::LegalizeResult 5484 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 5485 LLT NarrowTy) { 5486 if (TypeIdx != 1) 5487 return UnableToLegalize; 5488 5489 Register DstReg = MI.getOperand(0).getReg(); 5490 Register SrcReg = MI.getOperand(1).getReg(); 5491 LLT DstTy = MRI.getType(DstReg); 5492 LLT SrcTy = MRI.getType(SrcReg); 5493 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5494 5495 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5496 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 5497 5498 MachineIRBuilder &B = MIRBuilder; 5499 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5500 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 5501 auto C_0 = B.buildConstant(NarrowTy, 0); 5502 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5503 UnmergeSrc.getReg(0), C_0); 5504 auto HiCTTZ = IsUndef ? 5505 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 5506 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 5507 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5508 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 5509 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 5510 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 5511 5512 MI.eraseFromParent(); 5513 return Legalized; 5514 } 5515 5516 return UnableToLegalize; 5517 } 5518 5519 LegalizerHelper::LegalizeResult 5520 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 5521 LLT NarrowTy) { 5522 if (TypeIdx != 1) 5523 return UnableToLegalize; 5524 5525 Register DstReg = MI.getOperand(0).getReg(); 5526 LLT DstTy = MRI.getType(DstReg); 5527 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5528 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5529 5530 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5531 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 5532 5533 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 5534 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 5535 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 5536 5537 MI.eraseFromParent(); 5538 return Legalized; 5539 } 5540 5541 return UnableToLegalize; 5542 } 5543 5544 LegalizerHelper::LegalizeResult 5545 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 5546 unsigned Opc = MI.getOpcode(); 5547 const auto &TII = MIRBuilder.getTII(); 5548 auto isSupported = [this](const LegalityQuery &Q) { 5549 auto QAction = LI.getAction(Q).Action; 5550 return QAction == Legal || QAction == Libcall || QAction == Custom; 5551 }; 5552 switch (Opc) { 5553 default: 5554 return UnableToLegalize; 5555 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 5556 // This trivially expands to CTLZ. 5557 Observer.changingInstr(MI); 5558 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 5559 Observer.changedInstr(MI); 5560 return Legalized; 5561 } 5562 case TargetOpcode::G_CTLZ: { 5563 Register DstReg = MI.getOperand(0).getReg(); 5564 Register SrcReg = MI.getOperand(1).getReg(); 5565 LLT DstTy = MRI.getType(DstReg); 5566 LLT SrcTy = MRI.getType(SrcReg); 5567 unsigned Len = SrcTy.getSizeInBits(); 5568 5569 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5570 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 5571 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 5572 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 5573 auto ICmp = MIRBuilder.buildICmp( 5574 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 5575 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5576 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 5577 MI.eraseFromParent(); 5578 return Legalized; 5579 } 5580 // for now, we do this: 5581 // NewLen = NextPowerOf2(Len); 5582 // x = x | (x >> 1); 5583 // x = x | (x >> 2); 5584 // ... 5585 // x = x | (x >>16); 5586 // x = x | (x >>32); // for 64-bit input 5587 // Upto NewLen/2 5588 // return Len - popcount(x); 5589 // 5590 // Ref: "Hacker's Delight" by Henry Warren 5591 Register Op = SrcReg; 5592 unsigned NewLen = PowerOf2Ceil(Len); 5593 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 5594 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 5595 auto MIBOp = MIRBuilder.buildOr( 5596 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 5597 Op = MIBOp.getReg(0); 5598 } 5599 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 5600 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 5601 MIBPop); 5602 MI.eraseFromParent(); 5603 return Legalized; 5604 } 5605 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 5606 // This trivially expands to CTTZ. 5607 Observer.changingInstr(MI); 5608 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5609 Observer.changedInstr(MI); 5610 return Legalized; 5611 } 5612 case TargetOpcode::G_CTTZ: { 5613 Register DstReg = MI.getOperand(0).getReg(); 5614 Register SrcReg = MI.getOperand(1).getReg(); 5615 LLT DstTy = MRI.getType(DstReg); 5616 LLT SrcTy = MRI.getType(SrcReg); 5617 5618 unsigned Len = SrcTy.getSizeInBits(); 5619 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5620 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5621 // zero. 5622 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5623 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5624 auto ICmp = MIRBuilder.buildICmp( 5625 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5626 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5627 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5628 MI.eraseFromParent(); 5629 return Legalized; 5630 } 5631 // for now, we use: { return popcount(~x & (x - 1)); } 5632 // unless the target has ctlz but not ctpop, in which case we use: 5633 // { return 32 - nlz(~x & (x-1)); } 5634 // Ref: "Hacker's Delight" by Henry Warren 5635 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5636 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5637 auto MIBTmp = MIRBuilder.buildAnd( 5638 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5639 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5640 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5641 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5642 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5643 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5644 MI.eraseFromParent(); 5645 return Legalized; 5646 } 5647 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5648 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5649 return Legalized; 5650 } 5651 case TargetOpcode::G_CTPOP: { 5652 Register SrcReg = MI.getOperand(1).getReg(); 5653 LLT Ty = MRI.getType(SrcReg); 5654 unsigned Size = Ty.getSizeInBits(); 5655 MachineIRBuilder &B = MIRBuilder; 5656 5657 // Count set bits in blocks of 2 bits. Default approach would be 5658 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5659 // We use following formula instead: 5660 // B2Count = val - { (val >> 1) & 0x55555555 } 5661 // since it gives same result in blocks of 2 with one instruction less. 5662 auto C_1 = B.buildConstant(Ty, 1); 5663 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5664 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5665 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5666 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5667 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5668 5669 // In order to get count in blocks of 4 add values from adjacent block of 2. 5670 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5671 auto C_2 = B.buildConstant(Ty, 2); 5672 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5673 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5674 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5675 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5676 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5677 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5678 5679 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5680 // addition since count value sits in range {0,...,8} and 4 bits are enough 5681 // to hold such binary values. After addition high 4 bits still hold count 5682 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5683 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5684 auto C_4 = B.buildConstant(Ty, 4); 5685 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5686 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5687 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5688 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5689 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5690 5691 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5692 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5693 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5694 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5695 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5696 5697 // Shift count result from 8 high bits to low bits. 5698 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5699 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5700 5701 MI.eraseFromParent(); 5702 return Legalized; 5703 } 5704 } 5705 } 5706 5707 // Check that (every element of) Reg is undef or not an exact multiple of BW. 5708 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 5709 Register Reg, unsigned BW) { 5710 return matchUnaryPredicate( 5711 MRI, Reg, 5712 [=](const Constant *C) { 5713 // Null constant here means an undef. 5714 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 5715 return !CI || CI->getValue().urem(BW) != 0; 5716 }, 5717 /*AllowUndefs*/ true); 5718 } 5719 5720 LegalizerHelper::LegalizeResult 5721 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 5722 Register Dst = MI.getOperand(0).getReg(); 5723 Register X = MI.getOperand(1).getReg(); 5724 Register Y = MI.getOperand(2).getReg(); 5725 Register Z = MI.getOperand(3).getReg(); 5726 LLT Ty = MRI.getType(Dst); 5727 LLT ShTy = MRI.getType(Z); 5728 5729 unsigned BW = Ty.getScalarSizeInBits(); 5730 5731 if (!isPowerOf2_32(BW)) 5732 return UnableToLegalize; 5733 5734 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5735 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5736 5737 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5738 // fshl X, Y, Z -> fshr X, Y, -Z 5739 // fshr X, Y, Z -> fshl X, Y, -Z 5740 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 5741 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 5742 } else { 5743 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 5744 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 5745 auto One = MIRBuilder.buildConstant(ShTy, 1); 5746 if (IsFSHL) { 5747 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5748 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 5749 } else { 5750 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5751 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 5752 } 5753 5754 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 5755 } 5756 5757 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 5758 MI.eraseFromParent(); 5759 return Legalized; 5760 } 5761 5762 LegalizerHelper::LegalizeResult 5763 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 5764 Register Dst = MI.getOperand(0).getReg(); 5765 Register X = MI.getOperand(1).getReg(); 5766 Register Y = MI.getOperand(2).getReg(); 5767 Register Z = MI.getOperand(3).getReg(); 5768 LLT Ty = MRI.getType(Dst); 5769 LLT ShTy = MRI.getType(Z); 5770 5771 const unsigned BW = Ty.getScalarSizeInBits(); 5772 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5773 5774 Register ShX, ShY; 5775 Register ShAmt, InvShAmt; 5776 5777 // FIXME: Emit optimized urem by constant instead of letting it expand later. 5778 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5779 // fshl: X << C | Y >> (BW - C) 5780 // fshr: X << (BW - C) | Y >> C 5781 // where C = Z % BW is not zero 5782 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5783 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5784 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 5785 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 5786 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 5787 } else { 5788 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 5789 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 5790 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 5791 if (isPowerOf2_32(BW)) { 5792 // Z % BW -> Z & (BW - 1) 5793 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 5794 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 5795 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 5796 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 5797 } else { 5798 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5799 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5800 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 5801 } 5802 5803 auto One = MIRBuilder.buildConstant(ShTy, 1); 5804 if (IsFSHL) { 5805 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 5806 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 5807 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 5808 } else { 5809 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 5810 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 5811 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 5812 } 5813 } 5814 5815 MIRBuilder.buildOr(Dst, ShX, ShY); 5816 MI.eraseFromParent(); 5817 return Legalized; 5818 } 5819 5820 LegalizerHelper::LegalizeResult 5821 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 5822 // These operations approximately do the following (while avoiding undefined 5823 // shifts by BW): 5824 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5825 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5826 Register Dst = MI.getOperand(0).getReg(); 5827 LLT Ty = MRI.getType(Dst); 5828 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 5829 5830 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5831 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5832 5833 // TODO: Use smarter heuristic that accounts for vector legalization. 5834 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 5835 return lowerFunnelShiftAsShifts(MI); 5836 5837 // This only works for powers of 2, fallback to shifts if it fails. 5838 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 5839 if (Result == UnableToLegalize) 5840 return lowerFunnelShiftAsShifts(MI); 5841 return Result; 5842 } 5843 5844 LegalizerHelper::LegalizeResult 5845 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 5846 Register Dst = MI.getOperand(0).getReg(); 5847 Register Src = MI.getOperand(1).getReg(); 5848 Register Amt = MI.getOperand(2).getReg(); 5849 LLT AmtTy = MRI.getType(Amt); 5850 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5851 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5852 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5853 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5854 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 5855 MI.eraseFromParent(); 5856 return Legalized; 5857 } 5858 5859 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 5860 Register Dst = MI.getOperand(0).getReg(); 5861 Register Src = MI.getOperand(1).getReg(); 5862 Register Amt = MI.getOperand(2).getReg(); 5863 LLT DstTy = MRI.getType(Dst); 5864 LLT SrcTy = MRI.getType(Src); 5865 LLT AmtTy = MRI.getType(Amt); 5866 5867 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 5868 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5869 5870 MIRBuilder.setInstrAndDebugLoc(MI); 5871 5872 // If a rotate in the other direction is supported, use it. 5873 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5874 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 5875 isPowerOf2_32(EltSizeInBits)) 5876 return lowerRotateWithReverseRotate(MI); 5877 5878 // If a funnel shift is supported, use it. 5879 unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 5880 unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 5881 bool IsFShLegal = false; 5882 if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) || 5883 LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) { 5884 auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2, 5885 Register R3) { 5886 MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3}); 5887 MI.eraseFromParent(); 5888 return Legalized; 5889 }; 5890 // If a funnel shift in the other direction is supported, use it. 5891 if (IsFShLegal) { 5892 return buildFunnelShift(FShOpc, Dst, Src, Amt); 5893 } else if (isPowerOf2_32(EltSizeInBits)) { 5894 Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0); 5895 return buildFunnelShift(RevFsh, Dst, Src, Amt); 5896 } 5897 } 5898 5899 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5900 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 5901 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 5902 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 5903 Register ShVal; 5904 Register RevShiftVal; 5905 if (isPowerOf2_32(EltSizeInBits)) { 5906 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 5907 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 5908 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5909 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 5910 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5911 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 5912 RevShiftVal = 5913 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 5914 } else { 5915 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 5916 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 5917 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 5918 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 5919 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5920 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 5921 auto One = MIRBuilder.buildConstant(AmtTy, 1); 5922 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 5923 RevShiftVal = 5924 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 5925 } 5926 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 5927 MI.eraseFromParent(); 5928 return Legalized; 5929 } 5930 5931 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5932 // representation. 5933 LegalizerHelper::LegalizeResult 5934 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5935 Register Dst = MI.getOperand(0).getReg(); 5936 Register Src = MI.getOperand(1).getReg(); 5937 const LLT S64 = LLT::scalar(64); 5938 const LLT S32 = LLT::scalar(32); 5939 const LLT S1 = LLT::scalar(1); 5940 5941 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5942 5943 // unsigned cul2f(ulong u) { 5944 // uint lz = clz(u); 5945 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5946 // u = (u << lz) & 0x7fffffffffffffffUL; 5947 // ulong t = u & 0xffffffffffUL; 5948 // uint v = (e << 23) | (uint)(u >> 40); 5949 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5950 // return as_float(v + r); 5951 // } 5952 5953 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5954 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5955 5956 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5957 5958 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5959 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5960 5961 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5962 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5963 5964 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5965 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5966 5967 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5968 5969 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5970 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5971 5972 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5973 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5974 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5975 5976 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5977 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5978 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5979 auto One = MIRBuilder.buildConstant(S32, 1); 5980 5981 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5982 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5983 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5984 MIRBuilder.buildAdd(Dst, V, R); 5985 5986 MI.eraseFromParent(); 5987 return Legalized; 5988 } 5989 5990 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5991 Register Dst = MI.getOperand(0).getReg(); 5992 Register Src = MI.getOperand(1).getReg(); 5993 LLT DstTy = MRI.getType(Dst); 5994 LLT SrcTy = MRI.getType(Src); 5995 5996 if (SrcTy == LLT::scalar(1)) { 5997 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5998 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5999 MIRBuilder.buildSelect(Dst, Src, True, False); 6000 MI.eraseFromParent(); 6001 return Legalized; 6002 } 6003 6004 if (SrcTy != LLT::scalar(64)) 6005 return UnableToLegalize; 6006 6007 if (DstTy == LLT::scalar(32)) { 6008 // TODO: SelectionDAG has several alternative expansions to port which may 6009 // be more reasonble depending on the available instructions. If a target 6010 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 6011 // intermediate type, this is probably worse. 6012 return lowerU64ToF32BitOps(MI); 6013 } 6014 6015 return UnableToLegalize; 6016 } 6017 6018 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 6019 Register Dst = MI.getOperand(0).getReg(); 6020 Register Src = MI.getOperand(1).getReg(); 6021 LLT DstTy = MRI.getType(Dst); 6022 LLT SrcTy = MRI.getType(Src); 6023 6024 const LLT S64 = LLT::scalar(64); 6025 const LLT S32 = LLT::scalar(32); 6026 const LLT S1 = LLT::scalar(1); 6027 6028 if (SrcTy == S1) { 6029 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 6030 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6031 MIRBuilder.buildSelect(Dst, Src, True, False); 6032 MI.eraseFromParent(); 6033 return Legalized; 6034 } 6035 6036 if (SrcTy != S64) 6037 return UnableToLegalize; 6038 6039 if (DstTy == S32) { 6040 // signed cl2f(long l) { 6041 // long s = l >> 63; 6042 // float r = cul2f((l + s) ^ s); 6043 // return s ? -r : r; 6044 // } 6045 Register L = Src; 6046 auto SignBit = MIRBuilder.buildConstant(S64, 63); 6047 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 6048 6049 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 6050 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 6051 auto R = MIRBuilder.buildUITOFP(S32, Xor); 6052 6053 auto RNeg = MIRBuilder.buildFNeg(S32, R); 6054 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 6055 MIRBuilder.buildConstant(S64, 0)); 6056 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 6057 MI.eraseFromParent(); 6058 return Legalized; 6059 } 6060 6061 return UnableToLegalize; 6062 } 6063 6064 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 6065 Register Dst = MI.getOperand(0).getReg(); 6066 Register Src = MI.getOperand(1).getReg(); 6067 LLT DstTy = MRI.getType(Dst); 6068 LLT SrcTy = MRI.getType(Src); 6069 const LLT S64 = LLT::scalar(64); 6070 const LLT S32 = LLT::scalar(32); 6071 6072 if (SrcTy != S64 && SrcTy != S32) 6073 return UnableToLegalize; 6074 if (DstTy != S32 && DstTy != S64) 6075 return UnableToLegalize; 6076 6077 // FPTOSI gives same result as FPTOUI for positive signed integers. 6078 // FPTOUI needs to deal with fp values that convert to unsigned integers 6079 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 6080 6081 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 6082 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 6083 : APFloat::IEEEdouble(), 6084 APInt::getZero(SrcTy.getSizeInBits())); 6085 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 6086 6087 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 6088 6089 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 6090 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 6091 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 6092 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 6093 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 6094 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 6095 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 6096 6097 const LLT S1 = LLT::scalar(1); 6098 6099 MachineInstrBuilder FCMP = 6100 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 6101 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 6102 6103 MI.eraseFromParent(); 6104 return Legalized; 6105 } 6106 6107 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 6108 Register Dst = MI.getOperand(0).getReg(); 6109 Register Src = MI.getOperand(1).getReg(); 6110 LLT DstTy = MRI.getType(Dst); 6111 LLT SrcTy = MRI.getType(Src); 6112 const LLT S64 = LLT::scalar(64); 6113 const LLT S32 = LLT::scalar(32); 6114 6115 // FIXME: Only f32 to i64 conversions are supported. 6116 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 6117 return UnableToLegalize; 6118 6119 // Expand f32 -> i64 conversion 6120 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6121 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6122 6123 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 6124 6125 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 6126 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 6127 6128 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 6129 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 6130 6131 auto SignMask = MIRBuilder.buildConstant(SrcTy, 6132 APInt::getSignMask(SrcEltBits)); 6133 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 6134 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 6135 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 6136 Sign = MIRBuilder.buildSExt(DstTy, Sign); 6137 6138 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 6139 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 6140 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 6141 6142 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 6143 R = MIRBuilder.buildZExt(DstTy, R); 6144 6145 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 6146 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 6147 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 6148 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 6149 6150 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 6151 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 6152 6153 const LLT S1 = LLT::scalar(1); 6154 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 6155 S1, Exponent, ExponentLoBit); 6156 6157 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 6158 6159 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 6160 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 6161 6162 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 6163 6164 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 6165 S1, Exponent, ZeroSrcTy); 6166 6167 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 6168 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 6169 6170 MI.eraseFromParent(); 6171 return Legalized; 6172 } 6173 6174 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 6175 LegalizerHelper::LegalizeResult 6176 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 6177 Register Dst = MI.getOperand(0).getReg(); 6178 Register Src = MI.getOperand(1).getReg(); 6179 6180 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 6181 return UnableToLegalize; 6182 6183 const unsigned ExpMask = 0x7ff; 6184 const unsigned ExpBiasf64 = 1023; 6185 const unsigned ExpBiasf16 = 15; 6186 const LLT S32 = LLT::scalar(32); 6187 const LLT S1 = LLT::scalar(1); 6188 6189 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 6190 Register U = Unmerge.getReg(0); 6191 Register UH = Unmerge.getReg(1); 6192 6193 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 6194 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 6195 6196 // Subtract the fp64 exponent bias (1023) to get the real exponent and 6197 // add the f16 bias (15) to get the biased exponent for the f16 format. 6198 E = MIRBuilder.buildAdd( 6199 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 6200 6201 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 6202 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 6203 6204 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 6205 MIRBuilder.buildConstant(S32, 0x1ff)); 6206 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 6207 6208 auto Zero = MIRBuilder.buildConstant(S32, 0); 6209 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 6210 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 6211 M = MIRBuilder.buildOr(S32, M, Lo40Set); 6212 6213 // (M != 0 ? 0x0200 : 0) | 0x7c00; 6214 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 6215 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 6216 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 6217 6218 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 6219 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 6220 6221 // N = M | (E << 12); 6222 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 6223 auto N = MIRBuilder.buildOr(S32, M, EShl12); 6224 6225 // B = clamp(1-E, 0, 13); 6226 auto One = MIRBuilder.buildConstant(S32, 1); 6227 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 6228 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 6229 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 6230 6231 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 6232 MIRBuilder.buildConstant(S32, 0x1000)); 6233 6234 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 6235 auto D0 = MIRBuilder.buildShl(S32, D, B); 6236 6237 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 6238 D0, SigSetHigh); 6239 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 6240 D = MIRBuilder.buildOr(S32, D, D1); 6241 6242 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 6243 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 6244 6245 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 6246 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 6247 6248 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 6249 MIRBuilder.buildConstant(S32, 3)); 6250 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 6251 6252 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 6253 MIRBuilder.buildConstant(S32, 5)); 6254 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 6255 6256 V1 = MIRBuilder.buildOr(S32, V0, V1); 6257 V = MIRBuilder.buildAdd(S32, V, V1); 6258 6259 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 6260 E, MIRBuilder.buildConstant(S32, 30)); 6261 V = MIRBuilder.buildSelect(S32, CmpEGt30, 6262 MIRBuilder.buildConstant(S32, 0x7c00), V); 6263 6264 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 6265 E, MIRBuilder.buildConstant(S32, 1039)); 6266 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 6267 6268 // Extract the sign bit. 6269 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 6270 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 6271 6272 // Insert the sign bit 6273 V = MIRBuilder.buildOr(S32, Sign, V); 6274 6275 MIRBuilder.buildTrunc(Dst, V); 6276 MI.eraseFromParent(); 6277 return Legalized; 6278 } 6279 6280 LegalizerHelper::LegalizeResult 6281 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 6282 Register Dst = MI.getOperand(0).getReg(); 6283 Register Src = MI.getOperand(1).getReg(); 6284 6285 LLT DstTy = MRI.getType(Dst); 6286 LLT SrcTy = MRI.getType(Src); 6287 const LLT S64 = LLT::scalar(64); 6288 const LLT S16 = LLT::scalar(16); 6289 6290 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 6291 return lowerFPTRUNC_F64_TO_F16(MI); 6292 6293 return UnableToLegalize; 6294 } 6295 6296 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 6297 // multiplication tree. 6298 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 6299 Register Dst = MI.getOperand(0).getReg(); 6300 Register Src0 = MI.getOperand(1).getReg(); 6301 Register Src1 = MI.getOperand(2).getReg(); 6302 LLT Ty = MRI.getType(Dst); 6303 6304 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 6305 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 6306 MI.eraseFromParent(); 6307 return Legalized; 6308 } 6309 6310 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 6311 switch (Opc) { 6312 case TargetOpcode::G_SMIN: 6313 return CmpInst::ICMP_SLT; 6314 case TargetOpcode::G_SMAX: 6315 return CmpInst::ICMP_SGT; 6316 case TargetOpcode::G_UMIN: 6317 return CmpInst::ICMP_ULT; 6318 case TargetOpcode::G_UMAX: 6319 return CmpInst::ICMP_UGT; 6320 default: 6321 llvm_unreachable("not in integer min/max"); 6322 } 6323 } 6324 6325 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 6326 Register Dst = MI.getOperand(0).getReg(); 6327 Register Src0 = MI.getOperand(1).getReg(); 6328 Register Src1 = MI.getOperand(2).getReg(); 6329 6330 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 6331 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 6332 6333 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 6334 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 6335 6336 MI.eraseFromParent(); 6337 return Legalized; 6338 } 6339 6340 LegalizerHelper::LegalizeResult 6341 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6342 Register Dst = MI.getOperand(0).getReg(); 6343 Register Src0 = MI.getOperand(1).getReg(); 6344 Register Src1 = MI.getOperand(2).getReg(); 6345 6346 const LLT Src0Ty = MRI.getType(Src0); 6347 const LLT Src1Ty = MRI.getType(Src1); 6348 6349 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6350 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6351 6352 auto SignBitMask = MIRBuilder.buildConstant( 6353 Src0Ty, APInt::getSignMask(Src0Size)); 6354 6355 auto NotSignBitMask = MIRBuilder.buildConstant( 6356 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6357 6358 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6359 Register And1; 6360 if (Src0Ty == Src1Ty) { 6361 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6362 } else if (Src0Size > Src1Size) { 6363 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6364 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6365 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6366 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6367 } else { 6368 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6369 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6370 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6371 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6372 } 6373 6374 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6375 // constants are a nan and -0.0, but the final result should preserve 6376 // everything. 6377 unsigned Flags = MI.getFlags(); 6378 MIRBuilder.buildOr(Dst, And0, And1, Flags); 6379 6380 MI.eraseFromParent(); 6381 return Legalized; 6382 } 6383 6384 LegalizerHelper::LegalizeResult 6385 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 6386 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 6387 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 6388 6389 Register Dst = MI.getOperand(0).getReg(); 6390 Register Src0 = MI.getOperand(1).getReg(); 6391 Register Src1 = MI.getOperand(2).getReg(); 6392 LLT Ty = MRI.getType(Dst); 6393 6394 if (!MI.getFlag(MachineInstr::FmNoNans)) { 6395 // Insert canonicalizes if it's possible we need to quiet to get correct 6396 // sNaN behavior. 6397 6398 // Note this must be done here, and not as an optimization combine in the 6399 // absence of a dedicate quiet-snan instruction as we're using an 6400 // omni-purpose G_FCANONICALIZE. 6401 if (!isKnownNeverSNaN(Src0, MRI)) 6402 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 6403 6404 if (!isKnownNeverSNaN(Src1, MRI)) 6405 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 6406 } 6407 6408 // If there are no nans, it's safe to simply replace this with the non-IEEE 6409 // version. 6410 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 6411 MI.eraseFromParent(); 6412 return Legalized; 6413 } 6414 6415 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 6416 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 6417 Register DstReg = MI.getOperand(0).getReg(); 6418 LLT Ty = MRI.getType(DstReg); 6419 unsigned Flags = MI.getFlags(); 6420 6421 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 6422 Flags); 6423 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 6424 MI.eraseFromParent(); 6425 return Legalized; 6426 } 6427 6428 LegalizerHelper::LegalizeResult 6429 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 6430 Register DstReg = MI.getOperand(0).getReg(); 6431 Register X = MI.getOperand(1).getReg(); 6432 const unsigned Flags = MI.getFlags(); 6433 const LLT Ty = MRI.getType(DstReg); 6434 const LLT CondTy = Ty.changeElementSize(1); 6435 6436 // round(x) => 6437 // t = trunc(x); 6438 // d = fabs(x - t); 6439 // o = copysign(1.0f, x); 6440 // return t + (d >= 0.5 ? o : 0.0); 6441 6442 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 6443 6444 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 6445 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 6446 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6447 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 6448 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 6449 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 6450 6451 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 6452 Flags); 6453 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 6454 6455 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 6456 6457 MI.eraseFromParent(); 6458 return Legalized; 6459 } 6460 6461 LegalizerHelper::LegalizeResult 6462 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 6463 Register DstReg = MI.getOperand(0).getReg(); 6464 Register SrcReg = MI.getOperand(1).getReg(); 6465 unsigned Flags = MI.getFlags(); 6466 LLT Ty = MRI.getType(DstReg); 6467 const LLT CondTy = Ty.changeElementSize(1); 6468 6469 // result = trunc(src); 6470 // if (src < 0.0 && src != result) 6471 // result += -1.0. 6472 6473 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 6474 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6475 6476 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 6477 SrcReg, Zero, Flags); 6478 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 6479 SrcReg, Trunc, Flags); 6480 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 6481 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 6482 6483 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 6484 MI.eraseFromParent(); 6485 return Legalized; 6486 } 6487 6488 LegalizerHelper::LegalizeResult 6489 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 6490 const unsigned NumOps = MI.getNumOperands(); 6491 Register DstReg = MI.getOperand(0).getReg(); 6492 Register Src0Reg = MI.getOperand(1).getReg(); 6493 LLT DstTy = MRI.getType(DstReg); 6494 LLT SrcTy = MRI.getType(Src0Reg); 6495 unsigned PartSize = SrcTy.getSizeInBits(); 6496 6497 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 6498 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 6499 6500 for (unsigned I = 2; I != NumOps; ++I) { 6501 const unsigned Offset = (I - 1) * PartSize; 6502 6503 Register SrcReg = MI.getOperand(I).getReg(); 6504 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 6505 6506 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 6507 MRI.createGenericVirtualRegister(WideTy); 6508 6509 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 6510 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 6511 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 6512 ResultReg = NextResult; 6513 } 6514 6515 if (DstTy.isPointer()) { 6516 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 6517 DstTy.getAddressSpace())) { 6518 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 6519 return UnableToLegalize; 6520 } 6521 6522 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 6523 } 6524 6525 MI.eraseFromParent(); 6526 return Legalized; 6527 } 6528 6529 LegalizerHelper::LegalizeResult 6530 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 6531 const unsigned NumDst = MI.getNumOperands() - 1; 6532 Register SrcReg = MI.getOperand(NumDst).getReg(); 6533 Register Dst0Reg = MI.getOperand(0).getReg(); 6534 LLT DstTy = MRI.getType(Dst0Reg); 6535 if (DstTy.isPointer()) 6536 return UnableToLegalize; // TODO 6537 6538 SrcReg = coerceToScalar(SrcReg); 6539 if (!SrcReg) 6540 return UnableToLegalize; 6541 6542 // Expand scalarizing unmerge as bitcast to integer and shift. 6543 LLT IntTy = MRI.getType(SrcReg); 6544 6545 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 6546 6547 const unsigned DstSize = DstTy.getSizeInBits(); 6548 unsigned Offset = DstSize; 6549 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 6550 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 6551 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 6552 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 6553 } 6554 6555 MI.eraseFromParent(); 6556 return Legalized; 6557 } 6558 6559 /// Lower a vector extract or insert by writing the vector to a stack temporary 6560 /// and reloading the element or vector. 6561 /// 6562 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 6563 /// => 6564 /// %stack_temp = G_FRAME_INDEX 6565 /// G_STORE %vec, %stack_temp 6566 /// %idx = clamp(%idx, %vec.getNumElements()) 6567 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 6568 /// %dst = G_LOAD %element_ptr 6569 LegalizerHelper::LegalizeResult 6570 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 6571 Register DstReg = MI.getOperand(0).getReg(); 6572 Register SrcVec = MI.getOperand(1).getReg(); 6573 Register InsertVal; 6574 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 6575 InsertVal = MI.getOperand(2).getReg(); 6576 6577 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 6578 6579 LLT VecTy = MRI.getType(SrcVec); 6580 LLT EltTy = VecTy.getElementType(); 6581 unsigned NumElts = VecTy.getNumElements(); 6582 6583 int64_t IdxVal; 6584 if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) { 6585 SmallVector<Register, 8> SrcRegs; 6586 extractParts(SrcVec, EltTy, NumElts, SrcRegs); 6587 6588 if (InsertVal) { 6589 SrcRegs[IdxVal] = MI.getOperand(2).getReg(); 6590 MIRBuilder.buildMerge(DstReg, SrcRegs); 6591 } else { 6592 MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]); 6593 } 6594 6595 MI.eraseFromParent(); 6596 return Legalized; 6597 } 6598 6599 if (!EltTy.isByteSized()) { // Not implemented. 6600 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 6601 return UnableToLegalize; 6602 } 6603 6604 unsigned EltBytes = EltTy.getSizeInBytes(); 6605 Align VecAlign = getStackTemporaryAlignment(VecTy); 6606 Align EltAlign; 6607 6608 MachinePointerInfo PtrInfo; 6609 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 6610 VecAlign, PtrInfo); 6611 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 6612 6613 // Get the pointer to the element, and be sure not to hit undefined behavior 6614 // if the index is out of bounds. 6615 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 6616 6617 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 6618 int64_t Offset = IdxVal * EltBytes; 6619 PtrInfo = PtrInfo.getWithOffset(Offset); 6620 EltAlign = commonAlignment(VecAlign, Offset); 6621 } else { 6622 // We lose information with a variable offset. 6623 EltAlign = getStackTemporaryAlignment(EltTy); 6624 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 6625 } 6626 6627 if (InsertVal) { 6628 // Write the inserted element 6629 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 6630 6631 // Reload the whole vector. 6632 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 6633 } else { 6634 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 6635 } 6636 6637 MI.eraseFromParent(); 6638 return Legalized; 6639 } 6640 6641 LegalizerHelper::LegalizeResult 6642 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 6643 Register DstReg = MI.getOperand(0).getReg(); 6644 Register Src0Reg = MI.getOperand(1).getReg(); 6645 Register Src1Reg = MI.getOperand(2).getReg(); 6646 LLT Src0Ty = MRI.getType(Src0Reg); 6647 LLT DstTy = MRI.getType(DstReg); 6648 LLT IdxTy = LLT::scalar(32); 6649 6650 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6651 6652 if (DstTy.isScalar()) { 6653 if (Src0Ty.isVector()) 6654 return UnableToLegalize; 6655 6656 // This is just a SELECT. 6657 assert(Mask.size() == 1 && "Expected a single mask element"); 6658 Register Val; 6659 if (Mask[0] < 0 || Mask[0] > 1) 6660 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 6661 else 6662 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 6663 MIRBuilder.buildCopy(DstReg, Val); 6664 MI.eraseFromParent(); 6665 return Legalized; 6666 } 6667 6668 Register Undef; 6669 SmallVector<Register, 32> BuildVec; 6670 LLT EltTy = DstTy.getElementType(); 6671 6672 for (int Idx : Mask) { 6673 if (Idx < 0) { 6674 if (!Undef.isValid()) 6675 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 6676 BuildVec.push_back(Undef); 6677 continue; 6678 } 6679 6680 if (Src0Ty.isScalar()) { 6681 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 6682 } else { 6683 int NumElts = Src0Ty.getNumElements(); 6684 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 6685 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 6686 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 6687 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 6688 BuildVec.push_back(Extract.getReg(0)); 6689 } 6690 } 6691 6692 MIRBuilder.buildBuildVector(DstReg, BuildVec); 6693 MI.eraseFromParent(); 6694 return Legalized; 6695 } 6696 6697 LegalizerHelper::LegalizeResult 6698 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 6699 const auto &MF = *MI.getMF(); 6700 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 6701 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 6702 return UnableToLegalize; 6703 6704 Register Dst = MI.getOperand(0).getReg(); 6705 Register AllocSize = MI.getOperand(1).getReg(); 6706 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 6707 6708 LLT PtrTy = MRI.getType(Dst); 6709 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 6710 6711 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 6712 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 6713 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 6714 6715 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 6716 // have to generate an extra instruction to negate the alloc and then use 6717 // G_PTR_ADD to add the negative offset. 6718 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 6719 if (Alignment > Align(1)) { 6720 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 6721 AlignMask.negate(); 6722 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 6723 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 6724 } 6725 6726 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 6727 MIRBuilder.buildCopy(SPReg, SPTmp); 6728 MIRBuilder.buildCopy(Dst, SPTmp); 6729 6730 MI.eraseFromParent(); 6731 return Legalized; 6732 } 6733 6734 LegalizerHelper::LegalizeResult 6735 LegalizerHelper::lowerExtract(MachineInstr &MI) { 6736 Register Dst = MI.getOperand(0).getReg(); 6737 Register Src = MI.getOperand(1).getReg(); 6738 unsigned Offset = MI.getOperand(2).getImm(); 6739 6740 LLT DstTy = MRI.getType(Dst); 6741 LLT SrcTy = MRI.getType(Src); 6742 6743 // Extract sub-vector or one element 6744 if (SrcTy.isVector()) { 6745 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits(); 6746 unsigned DstSize = DstTy.getSizeInBits(); 6747 6748 if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) && 6749 (Offset + DstSize <= SrcTy.getSizeInBits())) { 6750 // Unmerge and allow access to each Src element for the artifact combiner. 6751 auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), Src); 6752 6753 // Take element(s) we need to extract and copy it (merge them). 6754 SmallVector<Register, 8> SubVectorElts; 6755 for (unsigned Idx = Offset / SrcEltSize; 6756 Idx < (Offset + DstSize) / SrcEltSize; ++Idx) { 6757 SubVectorElts.push_back(Unmerge.getReg(Idx)); 6758 } 6759 if (SubVectorElts.size() == 1) 6760 MIRBuilder.buildCopy(Dst, SubVectorElts[0]); 6761 else 6762 MIRBuilder.buildMerge(Dst, SubVectorElts); 6763 6764 MI.eraseFromParent(); 6765 return Legalized; 6766 } 6767 } 6768 6769 if (DstTy.isScalar() && 6770 (SrcTy.isScalar() || 6771 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 6772 LLT SrcIntTy = SrcTy; 6773 if (!SrcTy.isScalar()) { 6774 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 6775 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 6776 } 6777 6778 if (Offset == 0) 6779 MIRBuilder.buildTrunc(Dst, Src); 6780 else { 6781 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 6782 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 6783 MIRBuilder.buildTrunc(Dst, Shr); 6784 } 6785 6786 MI.eraseFromParent(); 6787 return Legalized; 6788 } 6789 6790 return UnableToLegalize; 6791 } 6792 6793 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 6794 Register Dst = MI.getOperand(0).getReg(); 6795 Register Src = MI.getOperand(1).getReg(); 6796 Register InsertSrc = MI.getOperand(2).getReg(); 6797 uint64_t Offset = MI.getOperand(3).getImm(); 6798 6799 LLT DstTy = MRI.getType(Src); 6800 LLT InsertTy = MRI.getType(InsertSrc); 6801 6802 // Insert sub-vector or one element 6803 if (DstTy.isVector() && !InsertTy.isPointer()) { 6804 LLT EltTy = DstTy.getElementType(); 6805 unsigned EltSize = EltTy.getSizeInBits(); 6806 unsigned InsertSize = InsertTy.getSizeInBits(); 6807 6808 if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) && 6809 (Offset + InsertSize <= DstTy.getSizeInBits())) { 6810 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src); 6811 SmallVector<Register, 8> DstElts; 6812 unsigned Idx = 0; 6813 // Elements from Src before insert start Offset 6814 for (; Idx < Offset / EltSize; ++Idx) { 6815 DstElts.push_back(UnmergeSrc.getReg(Idx)); 6816 } 6817 6818 // Replace elements in Src with elements from InsertSrc 6819 if (InsertTy.getSizeInBits() > EltSize) { 6820 auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc); 6821 for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize; 6822 ++Idx, ++i) { 6823 DstElts.push_back(UnmergeInsertSrc.getReg(i)); 6824 } 6825 } else { 6826 DstElts.push_back(InsertSrc); 6827 ++Idx; 6828 } 6829 6830 // Remaining elements from Src after insert 6831 for (; Idx < DstTy.getNumElements(); ++Idx) { 6832 DstElts.push_back(UnmergeSrc.getReg(Idx)); 6833 } 6834 6835 MIRBuilder.buildMerge(Dst, DstElts); 6836 MI.eraseFromParent(); 6837 return Legalized; 6838 } 6839 } 6840 6841 if (InsertTy.isVector() || 6842 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 6843 return UnableToLegalize; 6844 6845 const DataLayout &DL = MIRBuilder.getDataLayout(); 6846 if ((DstTy.isPointer() && 6847 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 6848 (InsertTy.isPointer() && 6849 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 6850 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 6851 return UnableToLegalize; 6852 } 6853 6854 LLT IntDstTy = DstTy; 6855 6856 if (!DstTy.isScalar()) { 6857 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 6858 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 6859 } 6860 6861 if (!InsertTy.isScalar()) { 6862 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 6863 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 6864 } 6865 6866 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 6867 if (Offset != 0) { 6868 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 6869 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 6870 } 6871 6872 APInt MaskVal = APInt::getBitsSetWithWrap( 6873 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 6874 6875 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 6876 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 6877 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 6878 6879 MIRBuilder.buildCast(Dst, Or); 6880 MI.eraseFromParent(); 6881 return Legalized; 6882 } 6883 6884 LegalizerHelper::LegalizeResult 6885 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 6886 Register Dst0 = MI.getOperand(0).getReg(); 6887 Register Dst1 = MI.getOperand(1).getReg(); 6888 Register LHS = MI.getOperand(2).getReg(); 6889 Register RHS = MI.getOperand(3).getReg(); 6890 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 6891 6892 LLT Ty = MRI.getType(Dst0); 6893 LLT BoolTy = MRI.getType(Dst1); 6894 6895 if (IsAdd) 6896 MIRBuilder.buildAdd(Dst0, LHS, RHS); 6897 else 6898 MIRBuilder.buildSub(Dst0, LHS, RHS); 6899 6900 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6901 6902 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6903 6904 // For an addition, the result should be less than one of the operands (LHS) 6905 // if and only if the other operand (RHS) is negative, otherwise there will 6906 // be overflow. 6907 // For a subtraction, the result should be less than one of the operands 6908 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 6909 // otherwise there will be overflow. 6910 auto ResultLowerThanLHS = 6911 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 6912 auto ConditionRHS = MIRBuilder.buildICmp( 6913 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 6914 6915 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 6916 MI.eraseFromParent(); 6917 return Legalized; 6918 } 6919 6920 LegalizerHelper::LegalizeResult 6921 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6922 Register Res = MI.getOperand(0).getReg(); 6923 Register LHS = MI.getOperand(1).getReg(); 6924 Register RHS = MI.getOperand(2).getReg(); 6925 LLT Ty = MRI.getType(Res); 6926 bool IsSigned; 6927 bool IsAdd; 6928 unsigned BaseOp; 6929 switch (MI.getOpcode()) { 6930 default: 6931 llvm_unreachable("unexpected addsat/subsat opcode"); 6932 case TargetOpcode::G_UADDSAT: 6933 IsSigned = false; 6934 IsAdd = true; 6935 BaseOp = TargetOpcode::G_ADD; 6936 break; 6937 case TargetOpcode::G_SADDSAT: 6938 IsSigned = true; 6939 IsAdd = true; 6940 BaseOp = TargetOpcode::G_ADD; 6941 break; 6942 case TargetOpcode::G_USUBSAT: 6943 IsSigned = false; 6944 IsAdd = false; 6945 BaseOp = TargetOpcode::G_SUB; 6946 break; 6947 case TargetOpcode::G_SSUBSAT: 6948 IsSigned = true; 6949 IsAdd = false; 6950 BaseOp = TargetOpcode::G_SUB; 6951 break; 6952 } 6953 6954 if (IsSigned) { 6955 // sadd.sat(a, b) -> 6956 // hi = 0x7fffffff - smax(a, 0) 6957 // lo = 0x80000000 - smin(a, 0) 6958 // a + smin(smax(lo, b), hi) 6959 // ssub.sat(a, b) -> 6960 // lo = smax(a, -1) - 0x7fffffff 6961 // hi = smin(a, -1) - 0x80000000 6962 // a - smin(smax(lo, b), hi) 6963 // TODO: AMDGPU can use a "median of 3" instruction here: 6964 // a +/- med3(lo, b, hi) 6965 uint64_t NumBits = Ty.getScalarSizeInBits(); 6966 auto MaxVal = 6967 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 6968 auto MinVal = 6969 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6970 MachineInstrBuilder Hi, Lo; 6971 if (IsAdd) { 6972 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6973 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 6974 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 6975 } else { 6976 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 6977 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 6978 MaxVal); 6979 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 6980 MinVal); 6981 } 6982 auto RHSClamped = 6983 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 6984 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 6985 } else { 6986 // uadd.sat(a, b) -> a + umin(~a, b) 6987 // usub.sat(a, b) -> a - umin(a, b) 6988 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 6989 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 6990 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 6991 } 6992 6993 MI.eraseFromParent(); 6994 return Legalized; 6995 } 6996 6997 LegalizerHelper::LegalizeResult 6998 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 6999 Register Res = MI.getOperand(0).getReg(); 7000 Register LHS = MI.getOperand(1).getReg(); 7001 Register RHS = MI.getOperand(2).getReg(); 7002 LLT Ty = MRI.getType(Res); 7003 LLT BoolTy = Ty.changeElementSize(1); 7004 bool IsSigned; 7005 bool IsAdd; 7006 unsigned OverflowOp; 7007 switch (MI.getOpcode()) { 7008 default: 7009 llvm_unreachable("unexpected addsat/subsat opcode"); 7010 case TargetOpcode::G_UADDSAT: 7011 IsSigned = false; 7012 IsAdd = true; 7013 OverflowOp = TargetOpcode::G_UADDO; 7014 break; 7015 case TargetOpcode::G_SADDSAT: 7016 IsSigned = true; 7017 IsAdd = true; 7018 OverflowOp = TargetOpcode::G_SADDO; 7019 break; 7020 case TargetOpcode::G_USUBSAT: 7021 IsSigned = false; 7022 IsAdd = false; 7023 OverflowOp = TargetOpcode::G_USUBO; 7024 break; 7025 case TargetOpcode::G_SSUBSAT: 7026 IsSigned = true; 7027 IsAdd = false; 7028 OverflowOp = TargetOpcode::G_SSUBO; 7029 break; 7030 } 7031 7032 auto OverflowRes = 7033 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 7034 Register Tmp = OverflowRes.getReg(0); 7035 Register Ov = OverflowRes.getReg(1); 7036 MachineInstrBuilder Clamp; 7037 if (IsSigned) { 7038 // sadd.sat(a, b) -> 7039 // {tmp, ov} = saddo(a, b) 7040 // ov ? (tmp >>s 31) + 0x80000000 : r 7041 // ssub.sat(a, b) -> 7042 // {tmp, ov} = ssubo(a, b) 7043 // ov ? (tmp >>s 31) + 0x80000000 : r 7044 uint64_t NumBits = Ty.getScalarSizeInBits(); 7045 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 7046 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 7047 auto MinVal = 7048 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 7049 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 7050 } else { 7051 // uadd.sat(a, b) -> 7052 // {tmp, ov} = uaddo(a, b) 7053 // ov ? 0xffffffff : tmp 7054 // usub.sat(a, b) -> 7055 // {tmp, ov} = usubo(a, b) 7056 // ov ? 0 : tmp 7057 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 7058 } 7059 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 7060 7061 MI.eraseFromParent(); 7062 return Legalized; 7063 } 7064 7065 LegalizerHelper::LegalizeResult 7066 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 7067 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 7068 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 7069 "Expected shlsat opcode!"); 7070 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 7071 Register Res = MI.getOperand(0).getReg(); 7072 Register LHS = MI.getOperand(1).getReg(); 7073 Register RHS = MI.getOperand(2).getReg(); 7074 LLT Ty = MRI.getType(Res); 7075 LLT BoolTy = Ty.changeElementSize(1); 7076 7077 unsigned BW = Ty.getScalarSizeInBits(); 7078 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 7079 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 7080 : MIRBuilder.buildLShr(Ty, Result, RHS); 7081 7082 MachineInstrBuilder SatVal; 7083 if (IsSigned) { 7084 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 7085 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 7086 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 7087 MIRBuilder.buildConstant(Ty, 0)); 7088 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 7089 } else { 7090 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 7091 } 7092 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 7093 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 7094 7095 MI.eraseFromParent(); 7096 return Legalized; 7097 } 7098 7099 LegalizerHelper::LegalizeResult 7100 LegalizerHelper::lowerBswap(MachineInstr &MI) { 7101 Register Dst = MI.getOperand(0).getReg(); 7102 Register Src = MI.getOperand(1).getReg(); 7103 const LLT Ty = MRI.getType(Src); 7104 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 7105 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 7106 7107 // Swap most and least significant byte, set remaining bytes in Res to zero. 7108 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 7109 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 7110 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7111 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 7112 7113 // Set i-th high/low byte in Res to i-th low/high byte from Src. 7114 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 7115 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 7116 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 7117 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 7118 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 7119 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 7120 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 7121 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 7122 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 7123 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 7124 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7125 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 7126 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 7127 } 7128 Res.getInstr()->getOperand(0).setReg(Dst); 7129 7130 MI.eraseFromParent(); 7131 return Legalized; 7132 } 7133 7134 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 7135 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 7136 MachineInstrBuilder Src, APInt Mask) { 7137 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 7138 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 7139 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 7140 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 7141 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 7142 return B.buildOr(Dst, LHS, RHS); 7143 } 7144 7145 LegalizerHelper::LegalizeResult 7146 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 7147 Register Dst = MI.getOperand(0).getReg(); 7148 Register Src = MI.getOperand(1).getReg(); 7149 const LLT Ty = MRI.getType(Src); 7150 unsigned Size = Ty.getSizeInBits(); 7151 7152 MachineInstrBuilder BSWAP = 7153 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 7154 7155 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 7156 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 7157 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 7158 MachineInstrBuilder Swap4 = 7159 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 7160 7161 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 7162 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 7163 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 7164 MachineInstrBuilder Swap2 = 7165 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 7166 7167 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 7168 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 7169 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 7170 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 7171 7172 MI.eraseFromParent(); 7173 return Legalized; 7174 } 7175 7176 LegalizerHelper::LegalizeResult 7177 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 7178 MachineFunction &MF = MIRBuilder.getMF(); 7179 7180 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 7181 int NameOpIdx = IsRead ? 1 : 0; 7182 int ValRegIndex = IsRead ? 0 : 1; 7183 7184 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 7185 const LLT Ty = MRI.getType(ValReg); 7186 const MDString *RegStr = cast<MDString>( 7187 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 7188 7189 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 7190 if (!PhysReg.isValid()) 7191 return UnableToLegalize; 7192 7193 if (IsRead) 7194 MIRBuilder.buildCopy(ValReg, PhysReg); 7195 else 7196 MIRBuilder.buildCopy(PhysReg, ValReg); 7197 7198 MI.eraseFromParent(); 7199 return Legalized; 7200 } 7201 7202 LegalizerHelper::LegalizeResult 7203 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 7204 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 7205 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 7206 Register Result = MI.getOperand(0).getReg(); 7207 LLT OrigTy = MRI.getType(Result); 7208 auto SizeInBits = OrigTy.getScalarSizeInBits(); 7209 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 7210 7211 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 7212 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 7213 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 7214 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 7215 7216 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 7217 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 7218 MIRBuilder.buildTrunc(Result, Shifted); 7219 7220 MI.eraseFromParent(); 7221 return Legalized; 7222 } 7223 7224 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 7225 // Implement vector G_SELECT in terms of XOR, AND, OR. 7226 Register DstReg = MI.getOperand(0).getReg(); 7227 Register MaskReg = MI.getOperand(1).getReg(); 7228 Register Op1Reg = MI.getOperand(2).getReg(); 7229 Register Op2Reg = MI.getOperand(3).getReg(); 7230 LLT DstTy = MRI.getType(DstReg); 7231 LLT MaskTy = MRI.getType(MaskReg); 7232 LLT Op1Ty = MRI.getType(Op1Reg); 7233 if (!DstTy.isVector()) 7234 return UnableToLegalize; 7235 7236 // Vector selects can have a scalar predicate. If so, splat into a vector and 7237 // finish for later legalization attempts to try again. 7238 if (MaskTy.isScalar()) { 7239 Register MaskElt = MaskReg; 7240 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 7241 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 7242 // Generate a vector splat idiom to be pattern matched later. 7243 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 7244 Observer.changingInstr(MI); 7245 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 7246 Observer.changedInstr(MI); 7247 return Legalized; 7248 } 7249 7250 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 7251 return UnableToLegalize; 7252 } 7253 7254 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 7255 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 7256 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 7257 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 7258 MI.eraseFromParent(); 7259 return Legalized; 7260 } 7261 7262 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 7263 // Split DIVREM into individual instructions. 7264 unsigned Opcode = MI.getOpcode(); 7265 7266 MIRBuilder.buildInstr( 7267 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 7268 : TargetOpcode::G_UDIV, 7269 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7270 MIRBuilder.buildInstr( 7271 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 7272 : TargetOpcode::G_UREM, 7273 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7274 MI.eraseFromParent(); 7275 return Legalized; 7276 } 7277 7278 LegalizerHelper::LegalizeResult 7279 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { 7280 // Expand %res = G_ABS %a into: 7281 // %v1 = G_ASHR %a, scalar_size-1 7282 // %v2 = G_ADD %a, %v1 7283 // %res = G_XOR %v2, %v1 7284 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 7285 Register OpReg = MI.getOperand(1).getReg(); 7286 auto ShiftAmt = 7287 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 7288 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 7289 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 7290 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 7291 MI.eraseFromParent(); 7292 return Legalized; 7293 } 7294 7295 LegalizerHelper::LegalizeResult 7296 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { 7297 // Expand %res = G_ABS %a into: 7298 // %v1 = G_CONSTANT 0 7299 // %v2 = G_SUB %v1, %a 7300 // %res = G_SMAX %a, %v2 7301 Register SrcReg = MI.getOperand(1).getReg(); 7302 LLT Ty = MRI.getType(SrcReg); 7303 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); 7304 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); 7305 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); 7306 MI.eraseFromParent(); 7307 return Legalized; 7308 } 7309 7310 LegalizerHelper::LegalizeResult 7311 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) { 7312 Register SrcReg = MI.getOperand(1).getReg(); 7313 LLT SrcTy = MRI.getType(SrcReg); 7314 LLT DstTy = MRI.getType(SrcReg); 7315 7316 // The source could be a scalar if the IR type was <1 x sN>. 7317 if (SrcTy.isScalar()) { 7318 if (DstTy.getSizeInBits() > SrcTy.getSizeInBits()) 7319 return UnableToLegalize; // FIXME: handle extension. 7320 // This can be just a plain copy. 7321 Observer.changingInstr(MI); 7322 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY)); 7323 Observer.changedInstr(MI); 7324 return Legalized; 7325 } 7326 return UnableToLegalize;; 7327 } 7328 7329 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 7330 // On Darwin, -Os means optimize for size without hurting performance, so 7331 // only really optimize for size when -Oz (MinSize) is used. 7332 if (MF.getTarget().getTargetTriple().isOSDarwin()) 7333 return MF.getFunction().hasMinSize(); 7334 return MF.getFunction().hasOptSize(); 7335 } 7336 7337 // Returns a list of types to use for memory op lowering in MemOps. A partial 7338 // port of findOptimalMemOpLowering in TargetLowering. 7339 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 7340 unsigned Limit, const MemOp &Op, 7341 unsigned DstAS, unsigned SrcAS, 7342 const AttributeList &FuncAttributes, 7343 const TargetLowering &TLI) { 7344 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 7345 return false; 7346 7347 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 7348 7349 if (Ty == LLT()) { 7350 // Use the largest scalar type whose alignment constraints are satisfied. 7351 // We only need to check DstAlign here as SrcAlign is always greater or 7352 // equal to DstAlign (or zero). 7353 Ty = LLT::scalar(64); 7354 if (Op.isFixedDstAlign()) 7355 while (Op.getDstAlign() < Ty.getSizeInBytes() && 7356 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 7357 Ty = LLT::scalar(Ty.getSizeInBytes()); 7358 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 7359 // FIXME: check for the largest legal type we can load/store to. 7360 } 7361 7362 unsigned NumMemOps = 0; 7363 uint64_t Size = Op.size(); 7364 while (Size) { 7365 unsigned TySize = Ty.getSizeInBytes(); 7366 while (TySize > Size) { 7367 // For now, only use non-vector load / store's for the left-over pieces. 7368 LLT NewTy = Ty; 7369 // FIXME: check for mem op safety and legality of the types. Not all of 7370 // SDAGisms map cleanly to GISel concepts. 7371 if (NewTy.isVector()) 7372 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 7373 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 7374 unsigned NewTySize = NewTy.getSizeInBytes(); 7375 assert(NewTySize > 0 && "Could not find appropriate type"); 7376 7377 // If the new LLT cannot cover all of the remaining bits, then consider 7378 // issuing a (or a pair of) unaligned and overlapping load / store. 7379 bool Fast; 7380 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 7381 MVT VT = getMVTForLLT(Ty); 7382 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 7383 TLI.allowsMisalignedMemoryAccesses( 7384 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 7385 MachineMemOperand::MONone, &Fast) && 7386 Fast) 7387 TySize = Size; 7388 else { 7389 Ty = NewTy; 7390 TySize = NewTySize; 7391 } 7392 } 7393 7394 if (++NumMemOps > Limit) 7395 return false; 7396 7397 MemOps.push_back(Ty); 7398 Size -= TySize; 7399 } 7400 7401 return true; 7402 } 7403 7404 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 7405 if (Ty.isVector()) 7406 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 7407 Ty.getNumElements()); 7408 return IntegerType::get(C, Ty.getSizeInBits()); 7409 } 7410 7411 // Get a vectorized representation of the memset value operand, GISel edition. 7412 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 7413 MachineRegisterInfo &MRI = *MIB.getMRI(); 7414 unsigned NumBits = Ty.getScalarSizeInBits(); 7415 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 7416 if (!Ty.isVector() && ValVRegAndVal) { 7417 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 7418 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 7419 return MIB.buildConstant(Ty, SplatVal).getReg(0); 7420 } 7421 7422 // Extend the byte value to the larger type, and then multiply by a magic 7423 // value 0x010101... in order to replicate it across every byte. 7424 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 7425 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 7426 return MIB.buildConstant(Ty, 0).getReg(0); 7427 } 7428 7429 LLT ExtType = Ty.getScalarType(); 7430 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 7431 if (NumBits > 8) { 7432 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 7433 auto MagicMI = MIB.buildConstant(ExtType, Magic); 7434 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 7435 } 7436 7437 // For vector types create a G_BUILD_VECTOR. 7438 if (Ty.isVector()) 7439 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 7440 7441 return Val; 7442 } 7443 7444 LegalizerHelper::LegalizeResult 7445 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val, 7446 uint64_t KnownLen, Align Alignment, 7447 bool IsVolatile) { 7448 auto &MF = *MI.getParent()->getParent(); 7449 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7450 auto &DL = MF.getDataLayout(); 7451 LLVMContext &C = MF.getFunction().getContext(); 7452 7453 assert(KnownLen != 0 && "Have a zero length memset length!"); 7454 7455 bool DstAlignCanChange = false; 7456 MachineFrameInfo &MFI = MF.getFrameInfo(); 7457 bool OptSize = shouldLowerMemFuncForSize(MF); 7458 7459 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7460 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7461 DstAlignCanChange = true; 7462 7463 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 7464 std::vector<LLT> MemOps; 7465 7466 const auto &DstMMO = **MI.memoperands_begin(); 7467 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7468 7469 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 7470 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 7471 7472 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 7473 MemOp::Set(KnownLen, DstAlignCanChange, 7474 Alignment, 7475 /*IsZeroMemset=*/IsZeroVal, 7476 /*IsVolatile=*/IsVolatile), 7477 DstPtrInfo.getAddrSpace(), ~0u, 7478 MF.getFunction().getAttributes(), TLI)) 7479 return UnableToLegalize; 7480 7481 if (DstAlignCanChange) { 7482 // Get an estimate of the type from the LLT. 7483 Type *IRTy = getTypeForLLT(MemOps[0], C); 7484 Align NewAlign = DL.getABITypeAlign(IRTy); 7485 if (NewAlign > Alignment) { 7486 Alignment = NewAlign; 7487 unsigned FI = FIDef->getOperand(1).getIndex(); 7488 // Give the stack frame object a larger alignment if needed. 7489 if (MFI.getObjectAlign(FI) < Alignment) 7490 MFI.setObjectAlignment(FI, Alignment); 7491 } 7492 } 7493 7494 MachineIRBuilder MIB(MI); 7495 // Find the largest store and generate the bit pattern for it. 7496 LLT LargestTy = MemOps[0]; 7497 for (unsigned i = 1; i < MemOps.size(); i++) 7498 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 7499 LargestTy = MemOps[i]; 7500 7501 // The memset stored value is always defined as an s8, so in order to make it 7502 // work with larger store types we need to repeat the bit pattern across the 7503 // wider type. 7504 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 7505 7506 if (!MemSetValue) 7507 return UnableToLegalize; 7508 7509 // Generate the stores. For each store type in the list, we generate the 7510 // matching store of that type to the destination address. 7511 LLT PtrTy = MRI.getType(Dst); 7512 unsigned DstOff = 0; 7513 unsigned Size = KnownLen; 7514 for (unsigned I = 0; I < MemOps.size(); I++) { 7515 LLT Ty = MemOps[I]; 7516 unsigned TySize = Ty.getSizeInBytes(); 7517 if (TySize > Size) { 7518 // Issuing an unaligned load / store pair that overlaps with the previous 7519 // pair. Adjust the offset accordingly. 7520 assert(I == MemOps.size() - 1 && I != 0); 7521 DstOff -= TySize - Size; 7522 } 7523 7524 // If this store is smaller than the largest store see whether we can get 7525 // the smaller value for free with a truncate. 7526 Register Value = MemSetValue; 7527 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 7528 MVT VT = getMVTForLLT(Ty); 7529 MVT LargestVT = getMVTForLLT(LargestTy); 7530 if (!LargestTy.isVector() && !Ty.isVector() && 7531 TLI.isTruncateFree(LargestVT, VT)) 7532 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 7533 else 7534 Value = getMemsetValue(Val, Ty, MIB); 7535 if (!Value) 7536 return UnableToLegalize; 7537 } 7538 7539 auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty); 7540 7541 Register Ptr = Dst; 7542 if (DstOff != 0) { 7543 auto Offset = 7544 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 7545 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 7546 } 7547 7548 MIB.buildStore(Value, Ptr, *StoreMMO); 7549 DstOff += Ty.getSizeInBytes(); 7550 Size -= TySize; 7551 } 7552 7553 MI.eraseFromParent(); 7554 return Legalized; 7555 } 7556 7557 LegalizerHelper::LegalizeResult 7558 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) { 7559 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 7560 7561 Register Dst = MI.getOperand(0).getReg(); 7562 Register Src = MI.getOperand(1).getReg(); 7563 Register Len = MI.getOperand(2).getReg(); 7564 7565 const auto *MMOIt = MI.memoperands_begin(); 7566 const MachineMemOperand *MemOp = *MMOIt; 7567 bool IsVolatile = MemOp->isVolatile(); 7568 7569 // See if this is a constant length copy 7570 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 7571 // FIXME: support dynamically sized G_MEMCPY_INLINE 7572 assert(LenVRegAndVal.hasValue() && 7573 "inline memcpy with dynamic size is not yet supported"); 7574 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 7575 if (KnownLen == 0) { 7576 MI.eraseFromParent(); 7577 return Legalized; 7578 } 7579 7580 const auto &DstMMO = **MI.memoperands_begin(); 7581 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7582 Align DstAlign = DstMMO.getBaseAlign(); 7583 Align SrcAlign = SrcMMO.getBaseAlign(); 7584 7585 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 7586 IsVolatile); 7587 } 7588 7589 LegalizerHelper::LegalizeResult 7590 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src, 7591 uint64_t KnownLen, Align DstAlign, 7592 Align SrcAlign, bool IsVolatile) { 7593 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 7594 return lowerMemcpy(MI, Dst, Src, KnownLen, 7595 std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign, 7596 IsVolatile); 7597 } 7598 7599 LegalizerHelper::LegalizeResult 7600 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src, 7601 uint64_t KnownLen, uint64_t Limit, Align DstAlign, 7602 Align SrcAlign, bool IsVolatile) { 7603 auto &MF = *MI.getParent()->getParent(); 7604 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7605 auto &DL = MF.getDataLayout(); 7606 LLVMContext &C = MF.getFunction().getContext(); 7607 7608 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 7609 7610 bool DstAlignCanChange = false; 7611 MachineFrameInfo &MFI = MF.getFrameInfo(); 7612 Align Alignment = commonAlignment(DstAlign, SrcAlign); 7613 7614 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7615 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7616 DstAlignCanChange = true; 7617 7618 // FIXME: infer better src pointer alignment like SelectionDAG does here. 7619 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 7620 // if the memcpy is in a tail call position. 7621 7622 std::vector<LLT> MemOps; 7623 7624 const auto &DstMMO = **MI.memoperands_begin(); 7625 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7626 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7627 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 7628 7629 if (!findGISelOptimalMemOpLowering( 7630 MemOps, Limit, 7631 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 7632 IsVolatile), 7633 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 7634 MF.getFunction().getAttributes(), TLI)) 7635 return UnableToLegalize; 7636 7637 if (DstAlignCanChange) { 7638 // Get an estimate of the type from the LLT. 7639 Type *IRTy = getTypeForLLT(MemOps[0], C); 7640 Align NewAlign = DL.getABITypeAlign(IRTy); 7641 7642 // Don't promote to an alignment that would require dynamic stack 7643 // realignment. 7644 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7645 if (!TRI->hasStackRealignment(MF)) 7646 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7647 NewAlign = NewAlign / 2; 7648 7649 if (NewAlign > Alignment) { 7650 Alignment = NewAlign; 7651 unsigned FI = FIDef->getOperand(1).getIndex(); 7652 // Give the stack frame object a larger alignment if needed. 7653 if (MFI.getObjectAlign(FI) < Alignment) 7654 MFI.setObjectAlignment(FI, Alignment); 7655 } 7656 } 7657 7658 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 7659 7660 MachineIRBuilder MIB(MI); 7661 // Now we need to emit a pair of load and stores for each of the types we've 7662 // collected. I.e. for each type, generate a load from the source pointer of 7663 // that type width, and then generate a corresponding store to the dest buffer 7664 // of that value loaded. This can result in a sequence of loads and stores 7665 // mixed types, depending on what the target specifies as good types to use. 7666 unsigned CurrOffset = 0; 7667 unsigned Size = KnownLen; 7668 for (auto CopyTy : MemOps) { 7669 // Issuing an unaligned load / store pair that overlaps with the previous 7670 // pair. Adjust the offset accordingly. 7671 if (CopyTy.getSizeInBytes() > Size) 7672 CurrOffset -= CopyTy.getSizeInBytes() - Size; 7673 7674 // Construct MMOs for the accesses. 7675 auto *LoadMMO = 7676 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 7677 auto *StoreMMO = 7678 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 7679 7680 // Create the load. 7681 Register LoadPtr = Src; 7682 Register Offset; 7683 if (CurrOffset != 0) { 7684 LLT SrcTy = MRI.getType(Src); 7685 Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset) 7686 .getReg(0); 7687 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 7688 } 7689 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 7690 7691 // Create the store. 7692 Register StorePtr = Dst; 7693 if (CurrOffset != 0) { 7694 LLT DstTy = MRI.getType(Dst); 7695 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 7696 } 7697 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 7698 CurrOffset += CopyTy.getSizeInBytes(); 7699 Size -= CopyTy.getSizeInBytes(); 7700 } 7701 7702 MI.eraseFromParent(); 7703 return Legalized; 7704 } 7705 7706 LegalizerHelper::LegalizeResult 7707 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src, 7708 uint64_t KnownLen, Align DstAlign, Align SrcAlign, 7709 bool IsVolatile) { 7710 auto &MF = *MI.getParent()->getParent(); 7711 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7712 auto &DL = MF.getDataLayout(); 7713 LLVMContext &C = MF.getFunction().getContext(); 7714 7715 assert(KnownLen != 0 && "Have a zero length memmove length!"); 7716 7717 bool DstAlignCanChange = false; 7718 MachineFrameInfo &MFI = MF.getFrameInfo(); 7719 bool OptSize = shouldLowerMemFuncForSize(MF); 7720 Align Alignment = commonAlignment(DstAlign, SrcAlign); 7721 7722 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7723 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7724 DstAlignCanChange = true; 7725 7726 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 7727 std::vector<LLT> MemOps; 7728 7729 const auto &DstMMO = **MI.memoperands_begin(); 7730 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7731 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7732 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 7733 7734 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 7735 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 7736 // same thing here. 7737 if (!findGISelOptimalMemOpLowering( 7738 MemOps, Limit, 7739 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 7740 /*IsVolatile*/ true), 7741 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 7742 MF.getFunction().getAttributes(), TLI)) 7743 return UnableToLegalize; 7744 7745 if (DstAlignCanChange) { 7746 // Get an estimate of the type from the LLT. 7747 Type *IRTy = getTypeForLLT(MemOps[0], C); 7748 Align NewAlign = DL.getABITypeAlign(IRTy); 7749 7750 // Don't promote to an alignment that would require dynamic stack 7751 // realignment. 7752 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7753 if (!TRI->hasStackRealignment(MF)) 7754 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7755 NewAlign = NewAlign / 2; 7756 7757 if (NewAlign > Alignment) { 7758 Alignment = NewAlign; 7759 unsigned FI = FIDef->getOperand(1).getIndex(); 7760 // Give the stack frame object a larger alignment if needed. 7761 if (MFI.getObjectAlign(FI) < Alignment) 7762 MFI.setObjectAlignment(FI, Alignment); 7763 } 7764 } 7765 7766 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 7767 7768 MachineIRBuilder MIB(MI); 7769 // Memmove requires that we perform the loads first before issuing the stores. 7770 // Apart from that, this loop is pretty much doing the same thing as the 7771 // memcpy codegen function. 7772 unsigned CurrOffset = 0; 7773 SmallVector<Register, 16> LoadVals; 7774 for (auto CopyTy : MemOps) { 7775 // Construct MMO for the load. 7776 auto *LoadMMO = 7777 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 7778 7779 // Create the load. 7780 Register LoadPtr = Src; 7781 if (CurrOffset != 0) { 7782 LLT SrcTy = MRI.getType(Src); 7783 auto Offset = 7784 MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset); 7785 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 7786 } 7787 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 7788 CurrOffset += CopyTy.getSizeInBytes(); 7789 } 7790 7791 CurrOffset = 0; 7792 for (unsigned I = 0; I < MemOps.size(); ++I) { 7793 LLT CopyTy = MemOps[I]; 7794 // Now store the values loaded. 7795 auto *StoreMMO = 7796 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 7797 7798 Register StorePtr = Dst; 7799 if (CurrOffset != 0) { 7800 LLT DstTy = MRI.getType(Dst); 7801 auto Offset = 7802 MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset); 7803 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 7804 } 7805 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 7806 CurrOffset += CopyTy.getSizeInBytes(); 7807 } 7808 MI.eraseFromParent(); 7809 return Legalized; 7810 } 7811 7812 LegalizerHelper::LegalizeResult 7813 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 7814 const unsigned Opc = MI.getOpcode(); 7815 // This combine is fairly complex so it's not written with a separate 7816 // matcher function. 7817 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 7818 Opc == TargetOpcode::G_MEMSET) && 7819 "Expected memcpy like instruction"); 7820 7821 auto MMOIt = MI.memoperands_begin(); 7822 const MachineMemOperand *MemOp = *MMOIt; 7823 7824 Align DstAlign = MemOp->getBaseAlign(); 7825 Align SrcAlign; 7826 Register Dst = MI.getOperand(0).getReg(); 7827 Register Src = MI.getOperand(1).getReg(); 7828 Register Len = MI.getOperand(2).getReg(); 7829 7830 if (Opc != TargetOpcode::G_MEMSET) { 7831 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 7832 MemOp = *(++MMOIt); 7833 SrcAlign = MemOp->getBaseAlign(); 7834 } 7835 7836 // See if this is a constant length copy 7837 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 7838 if (!LenVRegAndVal) 7839 return UnableToLegalize; 7840 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 7841 7842 if (KnownLen == 0) { 7843 MI.eraseFromParent(); 7844 return Legalized; 7845 } 7846 7847 bool IsVolatile = MemOp->isVolatile(); 7848 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 7849 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 7850 IsVolatile); 7851 7852 // Don't try to optimize volatile. 7853 if (IsVolatile) 7854 return UnableToLegalize; 7855 7856 if (MaxLen && KnownLen > MaxLen) 7857 return UnableToLegalize; 7858 7859 if (Opc == TargetOpcode::G_MEMCPY) { 7860 auto &MF = *MI.getParent()->getParent(); 7861 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7862 bool OptSize = shouldLowerMemFuncForSize(MF); 7863 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 7864 return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 7865 IsVolatile); 7866 } 7867 if (Opc == TargetOpcode::G_MEMMOVE) 7868 return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 7869 if (Opc == TargetOpcode::G_MEMSET) 7870 return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 7871 return UnableToLegalize; 7872 } 7873