1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 67 68 if (!Ty.isScalar()) 69 return nullptr; 70 71 switch (Ty.getSizeInBits()) { 72 case 16: 73 return Type::getHalfTy(Ctx); 74 case 32: 75 return Type::getFloatTy(Ctx); 76 case 64: 77 return Type::getDoubleTy(Ctx); 78 case 128: 79 return Type::getFP128Ty(Ctx); 80 default: 81 return nullptr; 82 } 83 } 84 85 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 86 GISelChangeObserver &Observer, 87 MachineIRBuilder &Builder) 88 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 89 LI(*MF.getSubtarget().getLegalizerInfo()) { 90 MIRBuilder.setChangeObserver(Observer); 91 } 92 93 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 94 GISelChangeObserver &Observer, 95 MachineIRBuilder &B) 96 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI) { 97 MIRBuilder.setChangeObserver(Observer); 98 } 99 LegalizerHelper::LegalizeResult 100 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 101 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 102 103 MIRBuilder.setInstrAndDebugLoc(MI); 104 105 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 106 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 107 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 108 auto Step = LI.getAction(MI, MRI); 109 switch (Step.Action) { 110 case Legal: 111 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 112 return AlreadyLegal; 113 case Libcall: 114 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 115 return libcall(MI); 116 case NarrowScalar: 117 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 118 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 119 case WidenScalar: 120 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 121 return widenScalar(MI, Step.TypeIdx, Step.NewType); 122 case Bitcast: 123 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 124 return bitcast(MI, Step.TypeIdx, Step.NewType); 125 case Lower: 126 LLVM_DEBUG(dbgs() << ".. Lower\n"); 127 return lower(MI, Step.TypeIdx, Step.NewType); 128 case FewerElements: 129 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 130 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 131 case MoreElements: 132 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 133 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 134 case Custom: 135 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 136 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 137 default: 138 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 139 return UnableToLegalize; 140 } 141 } 142 143 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 144 SmallVectorImpl<Register> &VRegs) { 145 for (int i = 0; i < NumParts; ++i) 146 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 147 MIRBuilder.buildUnmerge(VRegs, Reg); 148 } 149 150 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 151 LLT MainTy, LLT &LeftoverTy, 152 SmallVectorImpl<Register> &VRegs, 153 SmallVectorImpl<Register> &LeftoverRegs) { 154 assert(!LeftoverTy.isValid() && "this is an out argument"); 155 156 unsigned RegSize = RegTy.getSizeInBits(); 157 unsigned MainSize = MainTy.getSizeInBits(); 158 unsigned NumParts = RegSize / MainSize; 159 unsigned LeftoverSize = RegSize - NumParts * MainSize; 160 161 // Use an unmerge when possible. 162 if (LeftoverSize == 0) { 163 for (unsigned I = 0; I < NumParts; ++I) 164 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 165 MIRBuilder.buildUnmerge(VRegs, Reg); 166 return true; 167 } 168 169 if (MainTy.isVector()) { 170 unsigned EltSize = MainTy.getScalarSizeInBits(); 171 if (LeftoverSize % EltSize != 0) 172 return false; 173 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 174 } else { 175 LeftoverTy = LLT::scalar(LeftoverSize); 176 } 177 178 // For irregular sizes, extract the individual parts. 179 for (unsigned I = 0; I != NumParts; ++I) { 180 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 181 VRegs.push_back(NewReg); 182 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 183 } 184 185 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 186 Offset += LeftoverSize) { 187 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 188 LeftoverRegs.push_back(NewReg); 189 MIRBuilder.buildExtract(NewReg, Reg, Offset); 190 } 191 192 return true; 193 } 194 195 void LegalizerHelper::insertParts(Register DstReg, 196 LLT ResultTy, LLT PartTy, 197 ArrayRef<Register> PartRegs, 198 LLT LeftoverTy, 199 ArrayRef<Register> LeftoverRegs) { 200 if (!LeftoverTy.isValid()) { 201 assert(LeftoverRegs.empty()); 202 203 if (!ResultTy.isVector()) { 204 MIRBuilder.buildMerge(DstReg, PartRegs); 205 return; 206 } 207 208 if (PartTy.isVector()) 209 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 210 else 211 MIRBuilder.buildBuildVector(DstReg, PartRegs); 212 return; 213 } 214 215 unsigned PartSize = PartTy.getSizeInBits(); 216 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 217 218 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 219 MIRBuilder.buildUndef(CurResultReg); 220 221 unsigned Offset = 0; 222 for (Register PartReg : PartRegs) { 223 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 224 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 225 CurResultReg = NewResultReg; 226 Offset += PartSize; 227 } 228 229 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 230 // Use the original output register for the final insert to avoid a copy. 231 Register NewResultReg = (I + 1 == E) ? 232 DstReg : MRI.createGenericVirtualRegister(ResultTy); 233 234 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 235 CurResultReg = NewResultReg; 236 Offset += LeftoverPartSize; 237 } 238 } 239 240 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 241 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 242 const MachineInstr &MI) { 243 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 244 245 const int NumResults = MI.getNumOperands() - 1; 246 Regs.resize(NumResults); 247 for (int I = 0; I != NumResults; ++I) 248 Regs[I] = MI.getOperand(I).getReg(); 249 } 250 251 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 252 LLT NarrowTy, Register SrcReg) { 253 LLT SrcTy = MRI.getType(SrcReg); 254 255 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 256 if (SrcTy == GCDTy) { 257 // If the source already evenly divides the result type, we don't need to do 258 // anything. 259 Parts.push_back(SrcReg); 260 } else { 261 // Need to split into common type sized pieces. 262 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 263 getUnmergeResults(Parts, *Unmerge); 264 } 265 266 return GCDTy; 267 } 268 269 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 270 SmallVectorImpl<Register> &VRegs, 271 unsigned PadStrategy) { 272 LLT LCMTy = getLCMType(DstTy, NarrowTy); 273 274 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 275 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 276 int NumOrigSrc = VRegs.size(); 277 278 Register PadReg; 279 280 // Get a value we can use to pad the source value if the sources won't evenly 281 // cover the result type. 282 if (NumOrigSrc < NumParts * NumSubParts) { 283 if (PadStrategy == TargetOpcode::G_ZEXT) 284 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 285 else if (PadStrategy == TargetOpcode::G_ANYEXT) 286 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 287 else { 288 assert(PadStrategy == TargetOpcode::G_SEXT); 289 290 // Shift the sign bit of the low register through the high register. 291 auto ShiftAmt = 292 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 293 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 294 } 295 } 296 297 // Registers for the final merge to be produced. 298 SmallVector<Register, 4> Remerge(NumParts); 299 300 // Registers needed for intermediate merges, which will be merged into a 301 // source for Remerge. 302 SmallVector<Register, 4> SubMerge(NumSubParts); 303 304 // Once we've fully read off the end of the original source bits, we can reuse 305 // the same high bits for remaining padding elements. 306 Register AllPadReg; 307 308 // Build merges to the LCM type to cover the original result type. 309 for (int I = 0; I != NumParts; ++I) { 310 bool AllMergePartsArePadding = true; 311 312 // Build the requested merges to the requested type. 313 for (int J = 0; J != NumSubParts; ++J) { 314 int Idx = I * NumSubParts + J; 315 if (Idx >= NumOrigSrc) { 316 SubMerge[J] = PadReg; 317 continue; 318 } 319 320 SubMerge[J] = VRegs[Idx]; 321 322 // There are meaningful bits here we can't reuse later. 323 AllMergePartsArePadding = false; 324 } 325 326 // If we've filled up a complete piece with padding bits, we can directly 327 // emit the natural sized constant if applicable, rather than a merge of 328 // smaller constants. 329 if (AllMergePartsArePadding && !AllPadReg) { 330 if (PadStrategy == TargetOpcode::G_ANYEXT) 331 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 332 else if (PadStrategy == TargetOpcode::G_ZEXT) 333 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 334 335 // If this is a sign extension, we can't materialize a trivial constant 336 // with the right type and have to produce a merge. 337 } 338 339 if (AllPadReg) { 340 // Avoid creating additional instructions if we're just adding additional 341 // copies of padding bits. 342 Remerge[I] = AllPadReg; 343 continue; 344 } 345 346 if (NumSubParts == 1) 347 Remerge[I] = SubMerge[0]; 348 else 349 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 350 351 // In the sign extend padding case, re-use the first all-signbit merge. 352 if (AllMergePartsArePadding && !AllPadReg) 353 AllPadReg = Remerge[I]; 354 } 355 356 VRegs = std::move(Remerge); 357 return LCMTy; 358 } 359 360 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 361 ArrayRef<Register> RemergeRegs) { 362 LLT DstTy = MRI.getType(DstReg); 363 364 // Create the merge to the widened source, and extract the relevant bits into 365 // the result. 366 367 if (DstTy == LCMTy) { 368 MIRBuilder.buildMerge(DstReg, RemergeRegs); 369 return; 370 } 371 372 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 373 if (DstTy.isScalar() && LCMTy.isScalar()) { 374 MIRBuilder.buildTrunc(DstReg, Remerge); 375 return; 376 } 377 378 if (LCMTy.isVector()) { 379 MIRBuilder.buildExtract(DstReg, Remerge, 0); 380 return; 381 } 382 383 llvm_unreachable("unhandled case"); 384 } 385 386 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 387 #define RTLIBCASE(LibcallPrefix) \ 388 do { \ 389 switch (Size) { \ 390 case 32: \ 391 return RTLIB::LibcallPrefix##32; \ 392 case 64: \ 393 return RTLIB::LibcallPrefix##64; \ 394 case 128: \ 395 return RTLIB::LibcallPrefix##128; \ 396 default: \ 397 llvm_unreachable("unexpected size"); \ 398 } \ 399 } while (0) 400 401 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 402 403 switch (Opcode) { 404 case TargetOpcode::G_SDIV: 405 RTLIBCASE(SDIV_I); 406 case TargetOpcode::G_UDIV: 407 RTLIBCASE(UDIV_I); 408 case TargetOpcode::G_SREM: 409 RTLIBCASE(SREM_I); 410 case TargetOpcode::G_UREM: 411 RTLIBCASE(UREM_I); 412 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 413 RTLIBCASE(CTLZ_I); 414 case TargetOpcode::G_FADD: 415 RTLIBCASE(ADD_F); 416 case TargetOpcode::G_FSUB: 417 RTLIBCASE(SUB_F); 418 case TargetOpcode::G_FMUL: 419 RTLIBCASE(MUL_F); 420 case TargetOpcode::G_FDIV: 421 RTLIBCASE(DIV_F); 422 case TargetOpcode::G_FEXP: 423 RTLIBCASE(EXP_F); 424 case TargetOpcode::G_FEXP2: 425 RTLIBCASE(EXP2_F); 426 case TargetOpcode::G_FREM: 427 RTLIBCASE(REM_F); 428 case TargetOpcode::G_FPOW: 429 RTLIBCASE(POW_F); 430 case TargetOpcode::G_FMA: 431 RTLIBCASE(FMA_F); 432 case TargetOpcode::G_FSIN: 433 RTLIBCASE(SIN_F); 434 case TargetOpcode::G_FCOS: 435 RTLIBCASE(COS_F); 436 case TargetOpcode::G_FLOG10: 437 RTLIBCASE(LOG10_F); 438 case TargetOpcode::G_FLOG: 439 RTLIBCASE(LOG_F); 440 case TargetOpcode::G_FLOG2: 441 RTLIBCASE(LOG2_F); 442 case TargetOpcode::G_FCEIL: 443 RTLIBCASE(CEIL_F); 444 case TargetOpcode::G_FFLOOR: 445 RTLIBCASE(FLOOR_F); 446 case TargetOpcode::G_FMINNUM: 447 RTLIBCASE(FMIN_F); 448 case TargetOpcode::G_FMAXNUM: 449 RTLIBCASE(FMAX_F); 450 case TargetOpcode::G_FSQRT: 451 RTLIBCASE(SQRT_F); 452 case TargetOpcode::G_FRINT: 453 RTLIBCASE(RINT_F); 454 case TargetOpcode::G_FNEARBYINT: 455 RTLIBCASE(NEARBYINT_F); 456 } 457 llvm_unreachable("Unknown libcall function"); 458 } 459 460 /// True if an instruction is in tail position in its caller. Intended for 461 /// legalizing libcalls as tail calls when possible. 462 static bool isLibCallInTailPosition(MachineInstr &MI) { 463 MachineBasicBlock &MBB = *MI.getParent(); 464 const Function &F = MBB.getParent()->getFunction(); 465 466 // Conservatively require the attributes of the call to match those of 467 // the return. Ignore NoAlias and NonNull because they don't affect the 468 // call sequence. 469 AttributeList CallerAttrs = F.getAttributes(); 470 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 471 .removeAttribute(Attribute::NoAlias) 472 .removeAttribute(Attribute::NonNull) 473 .hasAttributes()) 474 return false; 475 476 // It's not safe to eliminate the sign / zero extension of the return value. 477 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 478 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 479 return false; 480 481 // Only tail call if the following instruction is a standard return. 482 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 483 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 484 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 485 return false; 486 487 return true; 488 } 489 490 LegalizerHelper::LegalizeResult 491 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 492 const CallLowering::ArgInfo &Result, 493 ArrayRef<CallLowering::ArgInfo> Args, 494 const CallingConv::ID CC) { 495 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 496 497 CallLowering::CallLoweringInfo Info; 498 Info.CallConv = CC; 499 Info.Callee = MachineOperand::CreateES(Name); 500 Info.OrigRet = Result; 501 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 502 if (!CLI.lowerCall(MIRBuilder, Info)) 503 return LegalizerHelper::UnableToLegalize; 504 505 return LegalizerHelper::Legalized; 506 } 507 508 LegalizerHelper::LegalizeResult 509 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 510 const CallLowering::ArgInfo &Result, 511 ArrayRef<CallLowering::ArgInfo> Args) { 512 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 513 const char *Name = TLI.getLibcallName(Libcall); 514 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 515 return createLibcall(MIRBuilder, Name, Result, Args, CC); 516 } 517 518 // Useful for libcalls where all operands have the same type. 519 static LegalizerHelper::LegalizeResult 520 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 521 Type *OpType) { 522 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 523 524 SmallVector<CallLowering::ArgInfo, 3> Args; 525 for (unsigned i = 1; i < MI.getNumOperands(); i++) 526 Args.push_back({MI.getOperand(i).getReg(), OpType}); 527 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 528 Args); 529 } 530 531 LegalizerHelper::LegalizeResult 532 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 533 MachineInstr &MI) { 534 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 535 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 536 537 SmallVector<CallLowering::ArgInfo, 3> Args; 538 // Add all the args, except for the last which is an imm denoting 'tail'. 539 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 540 Register Reg = MI.getOperand(i).getReg(); 541 542 // Need derive an IR type for call lowering. 543 LLT OpLLT = MRI.getType(Reg); 544 Type *OpTy = nullptr; 545 if (OpLLT.isPointer()) 546 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 547 else 548 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 549 Args.push_back({Reg, OpTy}); 550 } 551 552 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 553 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 554 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 555 RTLIB::Libcall RTLibcall; 556 switch (ID) { 557 case Intrinsic::memcpy: 558 RTLibcall = RTLIB::MEMCPY; 559 break; 560 case Intrinsic::memset: 561 RTLibcall = RTLIB::MEMSET; 562 break; 563 case Intrinsic::memmove: 564 RTLibcall = RTLIB::MEMMOVE; 565 break; 566 default: 567 return LegalizerHelper::UnableToLegalize; 568 } 569 const char *Name = TLI.getLibcallName(RTLibcall); 570 571 MIRBuilder.setInstrAndDebugLoc(MI); 572 573 CallLowering::CallLoweringInfo Info; 574 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 575 Info.Callee = MachineOperand::CreateES(Name); 576 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 577 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 578 isLibCallInTailPosition(MI); 579 580 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 581 if (!CLI.lowerCall(MIRBuilder, Info)) 582 return LegalizerHelper::UnableToLegalize; 583 584 if (Info.LoweredTailCall) { 585 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 586 // We must have a return following the call (or debug insts) to get past 587 // isLibCallInTailPosition. 588 do { 589 MachineInstr *Next = MI.getNextNode(); 590 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 591 "Expected instr following MI to be return or debug inst?"); 592 // We lowered a tail call, so the call is now the return from the block. 593 // Delete the old return. 594 Next->eraseFromParent(); 595 } while (MI.getNextNode()); 596 } 597 598 return LegalizerHelper::Legalized; 599 } 600 601 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 602 Type *FromType) { 603 auto ToMVT = MVT::getVT(ToType); 604 auto FromMVT = MVT::getVT(FromType); 605 606 switch (Opcode) { 607 case TargetOpcode::G_FPEXT: 608 return RTLIB::getFPEXT(FromMVT, ToMVT); 609 case TargetOpcode::G_FPTRUNC: 610 return RTLIB::getFPROUND(FromMVT, ToMVT); 611 case TargetOpcode::G_FPTOSI: 612 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 613 case TargetOpcode::G_FPTOUI: 614 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 615 case TargetOpcode::G_SITOFP: 616 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 617 case TargetOpcode::G_UITOFP: 618 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 619 } 620 llvm_unreachable("Unsupported libcall function"); 621 } 622 623 static LegalizerHelper::LegalizeResult 624 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 625 Type *FromType) { 626 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 627 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 628 {{MI.getOperand(1).getReg(), FromType}}); 629 } 630 631 LegalizerHelper::LegalizeResult 632 LegalizerHelper::libcall(MachineInstr &MI) { 633 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 634 unsigned Size = LLTy.getSizeInBits(); 635 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 636 637 switch (MI.getOpcode()) { 638 default: 639 return UnableToLegalize; 640 case TargetOpcode::G_SDIV: 641 case TargetOpcode::G_UDIV: 642 case TargetOpcode::G_SREM: 643 case TargetOpcode::G_UREM: 644 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 645 Type *HLTy = IntegerType::get(Ctx, Size); 646 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 647 if (Status != Legalized) 648 return Status; 649 break; 650 } 651 case TargetOpcode::G_FADD: 652 case TargetOpcode::G_FSUB: 653 case TargetOpcode::G_FMUL: 654 case TargetOpcode::G_FDIV: 655 case TargetOpcode::G_FMA: 656 case TargetOpcode::G_FPOW: 657 case TargetOpcode::G_FREM: 658 case TargetOpcode::G_FCOS: 659 case TargetOpcode::G_FSIN: 660 case TargetOpcode::G_FLOG10: 661 case TargetOpcode::G_FLOG: 662 case TargetOpcode::G_FLOG2: 663 case TargetOpcode::G_FEXP: 664 case TargetOpcode::G_FEXP2: 665 case TargetOpcode::G_FCEIL: 666 case TargetOpcode::G_FFLOOR: 667 case TargetOpcode::G_FMINNUM: 668 case TargetOpcode::G_FMAXNUM: 669 case TargetOpcode::G_FSQRT: 670 case TargetOpcode::G_FRINT: 671 case TargetOpcode::G_FNEARBYINT: { 672 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 673 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 674 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 675 return UnableToLegalize; 676 } 677 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 678 if (Status != Legalized) 679 return Status; 680 break; 681 } 682 case TargetOpcode::G_FPEXT: 683 case TargetOpcode::G_FPTRUNC: { 684 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 685 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 686 if (!FromTy || !ToTy) 687 return UnableToLegalize; 688 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 689 if (Status != Legalized) 690 return Status; 691 break; 692 } 693 case TargetOpcode::G_FPTOSI: 694 case TargetOpcode::G_FPTOUI: { 695 // FIXME: Support other types 696 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 697 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 698 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 699 return UnableToLegalize; 700 LegalizeResult Status = conversionLibcall( 701 MI, MIRBuilder, 702 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 703 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 704 if (Status != Legalized) 705 return Status; 706 break; 707 } 708 case TargetOpcode::G_SITOFP: 709 case TargetOpcode::G_UITOFP: { 710 // FIXME: Support other types 711 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 712 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 713 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 714 return UnableToLegalize; 715 LegalizeResult Status = conversionLibcall( 716 MI, MIRBuilder, 717 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 718 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 719 if (Status != Legalized) 720 return Status; 721 break; 722 } 723 } 724 725 MI.eraseFromParent(); 726 return Legalized; 727 } 728 729 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 730 unsigned TypeIdx, 731 LLT NarrowTy) { 732 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 733 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 734 735 switch (MI.getOpcode()) { 736 default: 737 return UnableToLegalize; 738 case TargetOpcode::G_IMPLICIT_DEF: { 739 Register DstReg = MI.getOperand(0).getReg(); 740 LLT DstTy = MRI.getType(DstReg); 741 742 // If SizeOp0 is not an exact multiple of NarrowSize, emit 743 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 744 // FIXME: Although this would also be legal for the general case, it causes 745 // a lot of regressions in the emitted code (superfluous COPYs, artifact 746 // combines not being hit). This seems to be a problem related to the 747 // artifact combiner. 748 if (SizeOp0 % NarrowSize != 0) { 749 LLT ImplicitTy = NarrowTy; 750 if (DstTy.isVector()) 751 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 752 753 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 754 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 755 756 MI.eraseFromParent(); 757 return Legalized; 758 } 759 760 int NumParts = SizeOp0 / NarrowSize; 761 762 SmallVector<Register, 2> DstRegs; 763 for (int i = 0; i < NumParts; ++i) 764 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 765 766 if (DstTy.isVector()) 767 MIRBuilder.buildBuildVector(DstReg, DstRegs); 768 else 769 MIRBuilder.buildMerge(DstReg, DstRegs); 770 MI.eraseFromParent(); 771 return Legalized; 772 } 773 case TargetOpcode::G_CONSTANT: { 774 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 775 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 776 unsigned TotalSize = Ty.getSizeInBits(); 777 unsigned NarrowSize = NarrowTy.getSizeInBits(); 778 int NumParts = TotalSize / NarrowSize; 779 780 SmallVector<Register, 4> PartRegs; 781 for (int I = 0; I != NumParts; ++I) { 782 unsigned Offset = I * NarrowSize; 783 auto K = MIRBuilder.buildConstant(NarrowTy, 784 Val.lshr(Offset).trunc(NarrowSize)); 785 PartRegs.push_back(K.getReg(0)); 786 } 787 788 LLT LeftoverTy; 789 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 790 SmallVector<Register, 1> LeftoverRegs; 791 if (LeftoverBits != 0) { 792 LeftoverTy = LLT::scalar(LeftoverBits); 793 auto K = MIRBuilder.buildConstant( 794 LeftoverTy, 795 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 796 LeftoverRegs.push_back(K.getReg(0)); 797 } 798 799 insertParts(MI.getOperand(0).getReg(), 800 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 801 802 MI.eraseFromParent(); 803 return Legalized; 804 } 805 case TargetOpcode::G_SEXT: 806 case TargetOpcode::G_ZEXT: 807 case TargetOpcode::G_ANYEXT: 808 return narrowScalarExt(MI, TypeIdx, NarrowTy); 809 case TargetOpcode::G_TRUNC: { 810 if (TypeIdx != 1) 811 return UnableToLegalize; 812 813 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 814 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 815 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 816 return UnableToLegalize; 817 } 818 819 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 820 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 821 MI.eraseFromParent(); 822 return Legalized; 823 } 824 825 case TargetOpcode::G_FREEZE: 826 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 827 828 case TargetOpcode::G_ADD: { 829 // FIXME: add support for when SizeOp0 isn't an exact multiple of 830 // NarrowSize. 831 if (SizeOp0 % NarrowSize != 0) 832 return UnableToLegalize; 833 // Expand in terms of carry-setting/consuming G_ADDE instructions. 834 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 835 836 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 837 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 838 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 839 840 Register CarryIn; 841 for (int i = 0; i < NumParts; ++i) { 842 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 843 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 844 845 if (i == 0) 846 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 847 else { 848 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 849 Src2Regs[i], CarryIn); 850 } 851 852 DstRegs.push_back(DstReg); 853 CarryIn = CarryOut; 854 } 855 Register DstReg = MI.getOperand(0).getReg(); 856 if(MRI.getType(DstReg).isVector()) 857 MIRBuilder.buildBuildVector(DstReg, DstRegs); 858 else 859 MIRBuilder.buildMerge(DstReg, DstRegs); 860 MI.eraseFromParent(); 861 return Legalized; 862 } 863 case TargetOpcode::G_SUB: { 864 // FIXME: add support for when SizeOp0 isn't an exact multiple of 865 // NarrowSize. 866 if (SizeOp0 % NarrowSize != 0) 867 return UnableToLegalize; 868 869 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 870 871 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 872 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 873 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 874 875 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 876 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 877 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 878 {Src1Regs[0], Src2Regs[0]}); 879 DstRegs.push_back(DstReg); 880 Register BorrowIn = BorrowOut; 881 for (int i = 1; i < NumParts; ++i) { 882 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 883 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 884 885 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 886 {Src1Regs[i], Src2Regs[i], BorrowIn}); 887 888 DstRegs.push_back(DstReg); 889 BorrowIn = BorrowOut; 890 } 891 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 892 MI.eraseFromParent(); 893 return Legalized; 894 } 895 case TargetOpcode::G_MUL: 896 case TargetOpcode::G_UMULH: 897 return narrowScalarMul(MI, NarrowTy); 898 case TargetOpcode::G_EXTRACT: 899 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 900 case TargetOpcode::G_INSERT: 901 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 902 case TargetOpcode::G_LOAD: { 903 const auto &MMO = **MI.memoperands_begin(); 904 Register DstReg = MI.getOperand(0).getReg(); 905 LLT DstTy = MRI.getType(DstReg); 906 if (DstTy.isVector()) 907 return UnableToLegalize; 908 909 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 910 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 911 auto &MMO = **MI.memoperands_begin(); 912 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 913 MIRBuilder.buildAnyExt(DstReg, TmpReg); 914 MI.eraseFromParent(); 915 return Legalized; 916 } 917 918 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 919 } 920 case TargetOpcode::G_ZEXTLOAD: 921 case TargetOpcode::G_SEXTLOAD: { 922 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 923 Register DstReg = MI.getOperand(0).getReg(); 924 Register PtrReg = MI.getOperand(1).getReg(); 925 926 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 927 auto &MMO = **MI.memoperands_begin(); 928 if (MMO.getSizeInBits() == NarrowSize) { 929 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 930 } else { 931 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 932 } 933 934 if (ZExt) 935 MIRBuilder.buildZExt(DstReg, TmpReg); 936 else 937 MIRBuilder.buildSExt(DstReg, TmpReg); 938 939 MI.eraseFromParent(); 940 return Legalized; 941 } 942 case TargetOpcode::G_STORE: { 943 const auto &MMO = **MI.memoperands_begin(); 944 945 Register SrcReg = MI.getOperand(0).getReg(); 946 LLT SrcTy = MRI.getType(SrcReg); 947 if (SrcTy.isVector()) 948 return UnableToLegalize; 949 950 int NumParts = SizeOp0 / NarrowSize; 951 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 952 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 953 if (SrcTy.isVector() && LeftoverBits != 0) 954 return UnableToLegalize; 955 956 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 957 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 958 auto &MMO = **MI.memoperands_begin(); 959 MIRBuilder.buildTrunc(TmpReg, SrcReg); 960 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 961 MI.eraseFromParent(); 962 return Legalized; 963 } 964 965 return reduceLoadStoreWidth(MI, 0, NarrowTy); 966 } 967 case TargetOpcode::G_SELECT: 968 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 969 case TargetOpcode::G_AND: 970 case TargetOpcode::G_OR: 971 case TargetOpcode::G_XOR: { 972 // Legalize bitwise operation: 973 // A = BinOp<Ty> B, C 974 // into: 975 // B1, ..., BN = G_UNMERGE_VALUES B 976 // C1, ..., CN = G_UNMERGE_VALUES C 977 // A1 = BinOp<Ty/N> B1, C2 978 // ... 979 // AN = BinOp<Ty/N> BN, CN 980 // A = G_MERGE_VALUES A1, ..., AN 981 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 982 } 983 case TargetOpcode::G_SHL: 984 case TargetOpcode::G_LSHR: 985 case TargetOpcode::G_ASHR: 986 return narrowScalarShift(MI, TypeIdx, NarrowTy); 987 case TargetOpcode::G_CTLZ: 988 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 989 case TargetOpcode::G_CTTZ: 990 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 991 case TargetOpcode::G_CTPOP: 992 if (TypeIdx == 1) 993 switch (MI.getOpcode()) { 994 case TargetOpcode::G_CTLZ: 995 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 996 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 997 case TargetOpcode::G_CTTZ: 998 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 999 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1000 case TargetOpcode::G_CTPOP: 1001 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1002 default: 1003 return UnableToLegalize; 1004 } 1005 1006 Observer.changingInstr(MI); 1007 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1008 Observer.changedInstr(MI); 1009 return Legalized; 1010 case TargetOpcode::G_INTTOPTR: 1011 if (TypeIdx != 1) 1012 return UnableToLegalize; 1013 1014 Observer.changingInstr(MI); 1015 narrowScalarSrc(MI, NarrowTy, 1); 1016 Observer.changedInstr(MI); 1017 return Legalized; 1018 case TargetOpcode::G_PTRTOINT: 1019 if (TypeIdx != 0) 1020 return UnableToLegalize; 1021 1022 Observer.changingInstr(MI); 1023 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1024 Observer.changedInstr(MI); 1025 return Legalized; 1026 case TargetOpcode::G_PHI: { 1027 unsigned NumParts = SizeOp0 / NarrowSize; 1028 SmallVector<Register, 2> DstRegs(NumParts); 1029 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1030 Observer.changingInstr(MI); 1031 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1032 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1033 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1034 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1035 SrcRegs[i / 2]); 1036 } 1037 MachineBasicBlock &MBB = *MI.getParent(); 1038 MIRBuilder.setInsertPt(MBB, MI); 1039 for (unsigned i = 0; i < NumParts; ++i) { 1040 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1041 MachineInstrBuilder MIB = 1042 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1043 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1044 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1045 } 1046 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1047 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1048 Observer.changedInstr(MI); 1049 MI.eraseFromParent(); 1050 return Legalized; 1051 } 1052 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1053 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1054 if (TypeIdx != 2) 1055 return UnableToLegalize; 1056 1057 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1058 Observer.changingInstr(MI); 1059 narrowScalarSrc(MI, NarrowTy, OpIdx); 1060 Observer.changedInstr(MI); 1061 return Legalized; 1062 } 1063 case TargetOpcode::G_ICMP: { 1064 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1065 if (NarrowSize * 2 != SrcSize) 1066 return UnableToLegalize; 1067 1068 Observer.changingInstr(MI); 1069 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1070 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1071 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1072 1073 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1074 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1075 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1076 1077 CmpInst::Predicate Pred = 1078 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1079 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1080 1081 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1082 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1083 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1084 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1085 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1086 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1087 } else { 1088 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1089 MachineInstrBuilder CmpHEQ = 1090 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1091 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1092 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1093 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1094 } 1095 Observer.changedInstr(MI); 1096 MI.eraseFromParent(); 1097 return Legalized; 1098 } 1099 case TargetOpcode::G_SEXT_INREG: { 1100 if (TypeIdx != 0) 1101 return UnableToLegalize; 1102 1103 int64_t SizeInBits = MI.getOperand(2).getImm(); 1104 1105 // So long as the new type has more bits than the bits we're extending we 1106 // don't need to break it apart. 1107 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1108 Observer.changingInstr(MI); 1109 // We don't lose any non-extension bits by truncating the src and 1110 // sign-extending the dst. 1111 MachineOperand &MO1 = MI.getOperand(1); 1112 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1113 MO1.setReg(TruncMIB.getReg(0)); 1114 1115 MachineOperand &MO2 = MI.getOperand(0); 1116 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1117 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1118 MIRBuilder.buildSExt(MO2, DstExt); 1119 MO2.setReg(DstExt); 1120 Observer.changedInstr(MI); 1121 return Legalized; 1122 } 1123 1124 // Break it apart. Components below the extension point are unmodified. The 1125 // component containing the extension point becomes a narrower SEXT_INREG. 1126 // Components above it are ashr'd from the component containing the 1127 // extension point. 1128 if (SizeOp0 % NarrowSize != 0) 1129 return UnableToLegalize; 1130 int NumParts = SizeOp0 / NarrowSize; 1131 1132 // List the registers where the destination will be scattered. 1133 SmallVector<Register, 2> DstRegs; 1134 // List the registers where the source will be split. 1135 SmallVector<Register, 2> SrcRegs; 1136 1137 // Create all the temporary registers. 1138 for (int i = 0; i < NumParts; ++i) { 1139 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1140 1141 SrcRegs.push_back(SrcReg); 1142 } 1143 1144 // Explode the big arguments into smaller chunks. 1145 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1146 1147 Register AshrCstReg = 1148 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1149 .getReg(0); 1150 Register FullExtensionReg = 0; 1151 Register PartialExtensionReg = 0; 1152 1153 // Do the operation on each small part. 1154 for (int i = 0; i < NumParts; ++i) { 1155 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1156 DstRegs.push_back(SrcRegs[i]); 1157 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1158 assert(PartialExtensionReg && 1159 "Expected to visit partial extension before full"); 1160 if (FullExtensionReg) { 1161 DstRegs.push_back(FullExtensionReg); 1162 continue; 1163 } 1164 DstRegs.push_back( 1165 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1166 .getReg(0)); 1167 FullExtensionReg = DstRegs.back(); 1168 } else { 1169 DstRegs.push_back( 1170 MIRBuilder 1171 .buildInstr( 1172 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1173 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1174 .getReg(0)); 1175 PartialExtensionReg = DstRegs.back(); 1176 } 1177 } 1178 1179 // Gather the destination registers into the final destination. 1180 Register DstReg = MI.getOperand(0).getReg(); 1181 MIRBuilder.buildMerge(DstReg, DstRegs); 1182 MI.eraseFromParent(); 1183 return Legalized; 1184 } 1185 case TargetOpcode::G_BSWAP: 1186 case TargetOpcode::G_BITREVERSE: { 1187 if (SizeOp0 % NarrowSize != 0) 1188 return UnableToLegalize; 1189 1190 Observer.changingInstr(MI); 1191 SmallVector<Register, 2> SrcRegs, DstRegs; 1192 unsigned NumParts = SizeOp0 / NarrowSize; 1193 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1194 1195 for (unsigned i = 0; i < NumParts; ++i) { 1196 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1197 {SrcRegs[NumParts - 1 - i]}); 1198 DstRegs.push_back(DstPart.getReg(0)); 1199 } 1200 1201 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1202 1203 Observer.changedInstr(MI); 1204 MI.eraseFromParent(); 1205 return Legalized; 1206 } 1207 case TargetOpcode::G_PTRMASK: { 1208 if (TypeIdx != 1) 1209 return UnableToLegalize; 1210 Observer.changingInstr(MI); 1211 narrowScalarSrc(MI, NarrowTy, 2); 1212 Observer.changedInstr(MI); 1213 return Legalized; 1214 } 1215 } 1216 } 1217 1218 Register LegalizerHelper::coerceToScalar(Register Val) { 1219 LLT Ty = MRI.getType(Val); 1220 if (Ty.isScalar()) 1221 return Val; 1222 1223 const DataLayout &DL = MIRBuilder.getDataLayout(); 1224 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1225 if (Ty.isPointer()) { 1226 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1227 return Register(); 1228 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1229 } 1230 1231 Register NewVal = Val; 1232 1233 assert(Ty.isVector()); 1234 LLT EltTy = Ty.getElementType(); 1235 if (EltTy.isPointer()) 1236 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1237 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1238 } 1239 1240 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1241 unsigned OpIdx, unsigned ExtOpcode) { 1242 MachineOperand &MO = MI.getOperand(OpIdx); 1243 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1244 MO.setReg(ExtB.getReg(0)); 1245 } 1246 1247 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1248 unsigned OpIdx) { 1249 MachineOperand &MO = MI.getOperand(OpIdx); 1250 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1251 MO.setReg(ExtB.getReg(0)); 1252 } 1253 1254 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1255 unsigned OpIdx, unsigned TruncOpcode) { 1256 MachineOperand &MO = MI.getOperand(OpIdx); 1257 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1258 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1259 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1260 MO.setReg(DstExt); 1261 } 1262 1263 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1264 unsigned OpIdx, unsigned ExtOpcode) { 1265 MachineOperand &MO = MI.getOperand(OpIdx); 1266 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1267 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1268 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1269 MO.setReg(DstTrunc); 1270 } 1271 1272 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1273 unsigned OpIdx) { 1274 MachineOperand &MO = MI.getOperand(OpIdx); 1275 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1276 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1277 MIRBuilder.buildExtract(MO, DstExt, 0); 1278 MO.setReg(DstExt); 1279 } 1280 1281 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1282 unsigned OpIdx) { 1283 MachineOperand &MO = MI.getOperand(OpIdx); 1284 1285 LLT OldTy = MRI.getType(MO.getReg()); 1286 unsigned OldElts = OldTy.getNumElements(); 1287 unsigned NewElts = MoreTy.getNumElements(); 1288 1289 unsigned NumParts = NewElts / OldElts; 1290 1291 // Use concat_vectors if the result is a multiple of the number of elements. 1292 if (NumParts * OldElts == NewElts) { 1293 SmallVector<Register, 8> Parts; 1294 Parts.push_back(MO.getReg()); 1295 1296 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1297 for (unsigned I = 1; I != NumParts; ++I) 1298 Parts.push_back(ImpDef); 1299 1300 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1301 MO.setReg(Concat.getReg(0)); 1302 return; 1303 } 1304 1305 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1306 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1307 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1308 MO.setReg(MoreReg); 1309 } 1310 1311 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1312 MachineOperand &Op = MI.getOperand(OpIdx); 1313 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1314 } 1315 1316 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1317 MachineOperand &MO = MI.getOperand(OpIdx); 1318 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1319 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1320 MIRBuilder.buildBitcast(MO, CastDst); 1321 MO.setReg(CastDst); 1322 } 1323 1324 LegalizerHelper::LegalizeResult 1325 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1326 LLT WideTy) { 1327 if (TypeIdx != 1) 1328 return UnableToLegalize; 1329 1330 Register DstReg = MI.getOperand(0).getReg(); 1331 LLT DstTy = MRI.getType(DstReg); 1332 if (DstTy.isVector()) 1333 return UnableToLegalize; 1334 1335 Register Src1 = MI.getOperand(1).getReg(); 1336 LLT SrcTy = MRI.getType(Src1); 1337 const int DstSize = DstTy.getSizeInBits(); 1338 const int SrcSize = SrcTy.getSizeInBits(); 1339 const int WideSize = WideTy.getSizeInBits(); 1340 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1341 1342 unsigned NumOps = MI.getNumOperands(); 1343 unsigned NumSrc = MI.getNumOperands() - 1; 1344 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1345 1346 if (WideSize >= DstSize) { 1347 // Directly pack the bits in the target type. 1348 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1349 1350 for (unsigned I = 2; I != NumOps; ++I) { 1351 const unsigned Offset = (I - 1) * PartSize; 1352 1353 Register SrcReg = MI.getOperand(I).getReg(); 1354 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1355 1356 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1357 1358 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1359 MRI.createGenericVirtualRegister(WideTy); 1360 1361 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1362 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1363 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1364 ResultReg = NextResult; 1365 } 1366 1367 if (WideSize > DstSize) 1368 MIRBuilder.buildTrunc(DstReg, ResultReg); 1369 else if (DstTy.isPointer()) 1370 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1371 1372 MI.eraseFromParent(); 1373 return Legalized; 1374 } 1375 1376 // Unmerge the original values to the GCD type, and recombine to the next 1377 // multiple greater than the original type. 1378 // 1379 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1380 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1381 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1382 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1383 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1384 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1385 // %12:_(s12) = G_MERGE_VALUES %10, %11 1386 // 1387 // Padding with undef if necessary: 1388 // 1389 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1390 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1391 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1392 // %7:_(s2) = G_IMPLICIT_DEF 1393 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1394 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1395 // %10:_(s12) = G_MERGE_VALUES %8, %9 1396 1397 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1398 LLT GCDTy = LLT::scalar(GCD); 1399 1400 SmallVector<Register, 8> Parts; 1401 SmallVector<Register, 8> NewMergeRegs; 1402 SmallVector<Register, 8> Unmerges; 1403 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1404 1405 // Decompose the original operands if they don't evenly divide. 1406 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1407 Register SrcReg = MI.getOperand(I).getReg(); 1408 if (GCD == SrcSize) { 1409 Unmerges.push_back(SrcReg); 1410 } else { 1411 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1412 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1413 Unmerges.push_back(Unmerge.getReg(J)); 1414 } 1415 } 1416 1417 // Pad with undef to the next size that is a multiple of the requested size. 1418 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1419 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1420 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1421 Unmerges.push_back(UndefReg); 1422 } 1423 1424 const int PartsPerGCD = WideSize / GCD; 1425 1426 // Build merges of each piece. 1427 ArrayRef<Register> Slicer(Unmerges); 1428 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1429 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1430 NewMergeRegs.push_back(Merge.getReg(0)); 1431 } 1432 1433 // A truncate may be necessary if the requested type doesn't evenly divide the 1434 // original result type. 1435 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1436 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1437 } else { 1438 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1439 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1440 } 1441 1442 MI.eraseFromParent(); 1443 return Legalized; 1444 } 1445 1446 LegalizerHelper::LegalizeResult 1447 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1448 LLT WideTy) { 1449 if (TypeIdx != 0) 1450 return UnableToLegalize; 1451 1452 int NumDst = MI.getNumOperands() - 1; 1453 Register SrcReg = MI.getOperand(NumDst).getReg(); 1454 LLT SrcTy = MRI.getType(SrcReg); 1455 if (SrcTy.isVector()) 1456 return UnableToLegalize; 1457 1458 Register Dst0Reg = MI.getOperand(0).getReg(); 1459 LLT DstTy = MRI.getType(Dst0Reg); 1460 if (!DstTy.isScalar()) 1461 return UnableToLegalize; 1462 1463 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1464 if (SrcTy.isPointer()) { 1465 const DataLayout &DL = MIRBuilder.getDataLayout(); 1466 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1467 LLVM_DEBUG( 1468 dbgs() << "Not casting non-integral address space integer\n"); 1469 return UnableToLegalize; 1470 } 1471 1472 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1473 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1474 } 1475 1476 // Widen SrcTy to WideTy. This does not affect the result, but since the 1477 // user requested this size, it is probably better handled than SrcTy and 1478 // should reduce the total number of legalization artifacts 1479 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1480 SrcTy = WideTy; 1481 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1482 } 1483 1484 // Theres no unmerge type to target. Directly extract the bits from the 1485 // source type 1486 unsigned DstSize = DstTy.getSizeInBits(); 1487 1488 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1489 for (int I = 1; I != NumDst; ++I) { 1490 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1491 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1492 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1493 } 1494 1495 MI.eraseFromParent(); 1496 return Legalized; 1497 } 1498 1499 // Extend the source to a wider type. 1500 LLT LCMTy = getLCMType(SrcTy, WideTy); 1501 1502 Register WideSrc = SrcReg; 1503 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1504 // TODO: If this is an integral address space, cast to integer and anyext. 1505 if (SrcTy.isPointer()) { 1506 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1507 return UnableToLegalize; 1508 } 1509 1510 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1511 } 1512 1513 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1514 1515 // Create a sequence of unmerges to the original results. since we may have 1516 // widened the source, we will need to pad the results with dead defs to cover 1517 // the source register. 1518 // e.g. widen s16 to s32: 1519 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1520 // 1521 // => 1522 // %4:_(s64) = G_ANYEXT %0:_(s48) 1523 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1524 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1525 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1526 1527 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1528 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1529 1530 for (int I = 0; I != NumUnmerge; ++I) { 1531 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1532 1533 for (int J = 0; J != PartsPerUnmerge; ++J) { 1534 int Idx = I * PartsPerUnmerge + J; 1535 if (Idx < NumDst) 1536 MIB.addDef(MI.getOperand(Idx).getReg()); 1537 else { 1538 // Create dead def for excess components. 1539 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1540 } 1541 } 1542 1543 MIB.addUse(Unmerge.getReg(I)); 1544 } 1545 1546 MI.eraseFromParent(); 1547 return Legalized; 1548 } 1549 1550 LegalizerHelper::LegalizeResult 1551 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1552 LLT WideTy) { 1553 Register DstReg = MI.getOperand(0).getReg(); 1554 Register SrcReg = MI.getOperand(1).getReg(); 1555 LLT SrcTy = MRI.getType(SrcReg); 1556 1557 LLT DstTy = MRI.getType(DstReg); 1558 unsigned Offset = MI.getOperand(2).getImm(); 1559 1560 if (TypeIdx == 0) { 1561 if (SrcTy.isVector() || DstTy.isVector()) 1562 return UnableToLegalize; 1563 1564 SrcOp Src(SrcReg); 1565 if (SrcTy.isPointer()) { 1566 // Extracts from pointers can be handled only if they are really just 1567 // simple integers. 1568 const DataLayout &DL = MIRBuilder.getDataLayout(); 1569 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1570 return UnableToLegalize; 1571 1572 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1573 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1574 SrcTy = SrcAsIntTy; 1575 } 1576 1577 if (DstTy.isPointer()) 1578 return UnableToLegalize; 1579 1580 if (Offset == 0) { 1581 // Avoid a shift in the degenerate case. 1582 MIRBuilder.buildTrunc(DstReg, 1583 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1584 MI.eraseFromParent(); 1585 return Legalized; 1586 } 1587 1588 // Do a shift in the source type. 1589 LLT ShiftTy = SrcTy; 1590 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1591 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1592 ShiftTy = WideTy; 1593 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1594 return UnableToLegalize; 1595 1596 auto LShr = MIRBuilder.buildLShr( 1597 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1598 MIRBuilder.buildTrunc(DstReg, LShr); 1599 MI.eraseFromParent(); 1600 return Legalized; 1601 } 1602 1603 if (SrcTy.isScalar()) { 1604 Observer.changingInstr(MI); 1605 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1606 Observer.changedInstr(MI); 1607 return Legalized; 1608 } 1609 1610 if (!SrcTy.isVector()) 1611 return UnableToLegalize; 1612 1613 if (DstTy != SrcTy.getElementType()) 1614 return UnableToLegalize; 1615 1616 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1617 return UnableToLegalize; 1618 1619 Observer.changingInstr(MI); 1620 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1621 1622 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1623 Offset); 1624 widenScalarDst(MI, WideTy.getScalarType(), 0); 1625 Observer.changedInstr(MI); 1626 return Legalized; 1627 } 1628 1629 LegalizerHelper::LegalizeResult 1630 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1631 LLT WideTy) { 1632 if (TypeIdx != 0) 1633 return UnableToLegalize; 1634 Observer.changingInstr(MI); 1635 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1636 widenScalarDst(MI, WideTy); 1637 Observer.changedInstr(MI); 1638 return Legalized; 1639 } 1640 1641 LegalizerHelper::LegalizeResult 1642 LegalizerHelper::widenScalarAddSubSat(MachineInstr &MI, unsigned TypeIdx, 1643 LLT WideTy) { 1644 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1645 MI.getOpcode() == TargetOpcode::G_SSUBSAT; 1646 // We can convert this to: 1647 // 1. Any extend iN to iM 1648 // 2. SHL by M-N 1649 // 3. [US][ADD|SUB]SAT 1650 // 4. L/ASHR by M-N 1651 // 1652 // It may be more efficient to lower this to a min and a max operation in 1653 // the higher precision arithmetic if the promoted operation isn't legal, 1654 // but this decision is up to the target's lowering request. 1655 Register DstReg = MI.getOperand(0).getReg(); 1656 1657 unsigned NewBits = WideTy.getScalarSizeInBits(); 1658 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1659 1660 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1661 auto RHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1662 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1663 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1664 auto ShiftR = MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1665 1666 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1667 {ShiftL, ShiftR}, MI.getFlags()); 1668 1669 // Use a shift that will preserve the number of sign bits when the trunc is 1670 // folded away. 1671 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1672 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1673 1674 MIRBuilder.buildTrunc(DstReg, Result); 1675 MI.eraseFromParent(); 1676 return Legalized; 1677 } 1678 1679 LegalizerHelper::LegalizeResult 1680 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1681 switch (MI.getOpcode()) { 1682 default: 1683 return UnableToLegalize; 1684 case TargetOpcode::G_EXTRACT: 1685 return widenScalarExtract(MI, TypeIdx, WideTy); 1686 case TargetOpcode::G_INSERT: 1687 return widenScalarInsert(MI, TypeIdx, WideTy); 1688 case TargetOpcode::G_MERGE_VALUES: 1689 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1690 case TargetOpcode::G_UNMERGE_VALUES: 1691 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1692 case TargetOpcode::G_UADDO: 1693 case TargetOpcode::G_USUBO: { 1694 if (TypeIdx == 1) 1695 return UnableToLegalize; // TODO 1696 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1697 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1698 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1699 ? TargetOpcode::G_ADD 1700 : TargetOpcode::G_SUB; 1701 // Do the arithmetic in the larger type. 1702 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1703 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1704 APInt Mask = 1705 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1706 auto AndOp = MIRBuilder.buildAnd( 1707 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1708 // There is no overflow if the AndOp is the same as NewOp. 1709 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1710 // Now trunc the NewOp to the original result. 1711 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1712 MI.eraseFromParent(); 1713 return Legalized; 1714 } 1715 case TargetOpcode::G_SADDSAT: 1716 case TargetOpcode::G_SSUBSAT: 1717 case TargetOpcode::G_UADDSAT: 1718 case TargetOpcode::G_USUBSAT: 1719 return widenScalarAddSubSat(MI, TypeIdx, WideTy); 1720 case TargetOpcode::G_CTTZ: 1721 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1722 case TargetOpcode::G_CTLZ: 1723 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1724 case TargetOpcode::G_CTPOP: { 1725 if (TypeIdx == 0) { 1726 Observer.changingInstr(MI); 1727 widenScalarDst(MI, WideTy, 0); 1728 Observer.changedInstr(MI); 1729 return Legalized; 1730 } 1731 1732 Register SrcReg = MI.getOperand(1).getReg(); 1733 1734 // First ZEXT the input. 1735 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1736 LLT CurTy = MRI.getType(SrcReg); 1737 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1738 // The count is the same in the larger type except if the original 1739 // value was zero. This can be handled by setting the bit just off 1740 // the top of the original type. 1741 auto TopBit = 1742 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1743 MIBSrc = MIRBuilder.buildOr( 1744 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1745 } 1746 1747 // Perform the operation at the larger size. 1748 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1749 // This is already the correct result for CTPOP and CTTZs 1750 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1751 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1752 // The correct result is NewOp - (Difference in widety and current ty). 1753 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1754 MIBNewOp = MIRBuilder.buildSub( 1755 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1756 } 1757 1758 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1759 MI.eraseFromParent(); 1760 return Legalized; 1761 } 1762 case TargetOpcode::G_BSWAP: { 1763 Observer.changingInstr(MI); 1764 Register DstReg = MI.getOperand(0).getReg(); 1765 1766 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1767 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1768 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1769 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1770 1771 MI.getOperand(0).setReg(DstExt); 1772 1773 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1774 1775 LLT Ty = MRI.getType(DstReg); 1776 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1777 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1778 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1779 1780 MIRBuilder.buildTrunc(DstReg, ShrReg); 1781 Observer.changedInstr(MI); 1782 return Legalized; 1783 } 1784 case TargetOpcode::G_BITREVERSE: { 1785 Observer.changingInstr(MI); 1786 1787 Register DstReg = MI.getOperand(0).getReg(); 1788 LLT Ty = MRI.getType(DstReg); 1789 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1790 1791 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1792 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1793 MI.getOperand(0).setReg(DstExt); 1794 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1795 1796 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1797 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1798 MIRBuilder.buildTrunc(DstReg, Shift); 1799 Observer.changedInstr(MI); 1800 return Legalized; 1801 } 1802 case TargetOpcode::G_FREEZE: 1803 Observer.changingInstr(MI); 1804 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1805 widenScalarDst(MI, WideTy); 1806 Observer.changedInstr(MI); 1807 return Legalized; 1808 1809 case TargetOpcode::G_ADD: 1810 case TargetOpcode::G_AND: 1811 case TargetOpcode::G_MUL: 1812 case TargetOpcode::G_OR: 1813 case TargetOpcode::G_XOR: 1814 case TargetOpcode::G_SUB: 1815 // Perform operation at larger width (any extension is fines here, high bits 1816 // don't affect the result) and then truncate the result back to the 1817 // original type. 1818 Observer.changingInstr(MI); 1819 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1820 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1821 widenScalarDst(MI, WideTy); 1822 Observer.changedInstr(MI); 1823 return Legalized; 1824 1825 case TargetOpcode::G_SHL: 1826 Observer.changingInstr(MI); 1827 1828 if (TypeIdx == 0) { 1829 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1830 widenScalarDst(MI, WideTy); 1831 } else { 1832 assert(TypeIdx == 1); 1833 // The "number of bits to shift" operand must preserve its value as an 1834 // unsigned integer: 1835 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1836 } 1837 1838 Observer.changedInstr(MI); 1839 return Legalized; 1840 1841 case TargetOpcode::G_SDIV: 1842 case TargetOpcode::G_SREM: 1843 case TargetOpcode::G_SMIN: 1844 case TargetOpcode::G_SMAX: 1845 Observer.changingInstr(MI); 1846 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1847 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1848 widenScalarDst(MI, WideTy); 1849 Observer.changedInstr(MI); 1850 return Legalized; 1851 1852 case TargetOpcode::G_ASHR: 1853 case TargetOpcode::G_LSHR: 1854 Observer.changingInstr(MI); 1855 1856 if (TypeIdx == 0) { 1857 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1858 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1859 1860 widenScalarSrc(MI, WideTy, 1, CvtOp); 1861 widenScalarDst(MI, WideTy); 1862 } else { 1863 assert(TypeIdx == 1); 1864 // The "number of bits to shift" operand must preserve its value as an 1865 // unsigned integer: 1866 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1867 } 1868 1869 Observer.changedInstr(MI); 1870 return Legalized; 1871 case TargetOpcode::G_UDIV: 1872 case TargetOpcode::G_UREM: 1873 case TargetOpcode::G_UMIN: 1874 case TargetOpcode::G_UMAX: 1875 Observer.changingInstr(MI); 1876 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1877 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1878 widenScalarDst(MI, WideTy); 1879 Observer.changedInstr(MI); 1880 return Legalized; 1881 1882 case TargetOpcode::G_SELECT: 1883 Observer.changingInstr(MI); 1884 if (TypeIdx == 0) { 1885 // Perform operation at larger width (any extension is fine here, high 1886 // bits don't affect the result) and then truncate the result back to the 1887 // original type. 1888 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1889 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1890 widenScalarDst(MI, WideTy); 1891 } else { 1892 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1893 // Explicit extension is required here since high bits affect the result. 1894 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1895 } 1896 Observer.changedInstr(MI); 1897 return Legalized; 1898 1899 case TargetOpcode::G_FPTOSI: 1900 case TargetOpcode::G_FPTOUI: 1901 Observer.changingInstr(MI); 1902 1903 if (TypeIdx == 0) 1904 widenScalarDst(MI, WideTy); 1905 else 1906 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1907 1908 Observer.changedInstr(MI); 1909 return Legalized; 1910 case TargetOpcode::G_SITOFP: 1911 if (TypeIdx != 1) 1912 return UnableToLegalize; 1913 Observer.changingInstr(MI); 1914 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1915 Observer.changedInstr(MI); 1916 return Legalized; 1917 1918 case TargetOpcode::G_UITOFP: 1919 if (TypeIdx != 1) 1920 return UnableToLegalize; 1921 Observer.changingInstr(MI); 1922 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1923 Observer.changedInstr(MI); 1924 return Legalized; 1925 1926 case TargetOpcode::G_LOAD: 1927 case TargetOpcode::G_SEXTLOAD: 1928 case TargetOpcode::G_ZEXTLOAD: 1929 Observer.changingInstr(MI); 1930 widenScalarDst(MI, WideTy); 1931 Observer.changedInstr(MI); 1932 return Legalized; 1933 1934 case TargetOpcode::G_STORE: { 1935 if (TypeIdx != 0) 1936 return UnableToLegalize; 1937 1938 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1939 if (!isPowerOf2_32(Ty.getSizeInBits())) 1940 return UnableToLegalize; 1941 1942 Observer.changingInstr(MI); 1943 1944 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1945 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1946 widenScalarSrc(MI, WideTy, 0, ExtType); 1947 1948 Observer.changedInstr(MI); 1949 return Legalized; 1950 } 1951 case TargetOpcode::G_CONSTANT: { 1952 MachineOperand &SrcMO = MI.getOperand(1); 1953 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1954 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1955 MRI.getType(MI.getOperand(0).getReg())); 1956 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1957 ExtOpc == TargetOpcode::G_ANYEXT) && 1958 "Illegal Extend"); 1959 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1960 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1961 ? SrcVal.sext(WideTy.getSizeInBits()) 1962 : SrcVal.zext(WideTy.getSizeInBits()); 1963 Observer.changingInstr(MI); 1964 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1965 1966 widenScalarDst(MI, WideTy); 1967 Observer.changedInstr(MI); 1968 return Legalized; 1969 } 1970 case TargetOpcode::G_FCONSTANT: { 1971 MachineOperand &SrcMO = MI.getOperand(1); 1972 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1973 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1974 bool LosesInfo; 1975 switch (WideTy.getSizeInBits()) { 1976 case 32: 1977 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1978 &LosesInfo); 1979 break; 1980 case 64: 1981 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1982 &LosesInfo); 1983 break; 1984 default: 1985 return UnableToLegalize; 1986 } 1987 1988 assert(!LosesInfo && "extend should always be lossless"); 1989 1990 Observer.changingInstr(MI); 1991 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1992 1993 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1994 Observer.changedInstr(MI); 1995 return Legalized; 1996 } 1997 case TargetOpcode::G_IMPLICIT_DEF: { 1998 Observer.changingInstr(MI); 1999 widenScalarDst(MI, WideTy); 2000 Observer.changedInstr(MI); 2001 return Legalized; 2002 } 2003 case TargetOpcode::G_BRCOND: 2004 Observer.changingInstr(MI); 2005 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2006 Observer.changedInstr(MI); 2007 return Legalized; 2008 2009 case TargetOpcode::G_FCMP: 2010 Observer.changingInstr(MI); 2011 if (TypeIdx == 0) 2012 widenScalarDst(MI, WideTy); 2013 else { 2014 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2015 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2016 } 2017 Observer.changedInstr(MI); 2018 return Legalized; 2019 2020 case TargetOpcode::G_ICMP: 2021 Observer.changingInstr(MI); 2022 if (TypeIdx == 0) 2023 widenScalarDst(MI, WideTy); 2024 else { 2025 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2026 MI.getOperand(1).getPredicate())) 2027 ? TargetOpcode::G_SEXT 2028 : TargetOpcode::G_ZEXT; 2029 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2030 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2031 } 2032 Observer.changedInstr(MI); 2033 return Legalized; 2034 2035 case TargetOpcode::G_PTR_ADD: 2036 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2037 Observer.changingInstr(MI); 2038 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2039 Observer.changedInstr(MI); 2040 return Legalized; 2041 2042 case TargetOpcode::G_PHI: { 2043 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2044 2045 Observer.changingInstr(MI); 2046 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2047 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2048 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2049 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2050 } 2051 2052 MachineBasicBlock &MBB = *MI.getParent(); 2053 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2054 widenScalarDst(MI, WideTy); 2055 Observer.changedInstr(MI); 2056 return Legalized; 2057 } 2058 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2059 if (TypeIdx == 0) { 2060 Register VecReg = MI.getOperand(1).getReg(); 2061 LLT VecTy = MRI.getType(VecReg); 2062 Observer.changingInstr(MI); 2063 2064 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2065 WideTy.getSizeInBits()), 2066 1, TargetOpcode::G_SEXT); 2067 2068 widenScalarDst(MI, WideTy, 0); 2069 Observer.changedInstr(MI); 2070 return Legalized; 2071 } 2072 2073 if (TypeIdx != 2) 2074 return UnableToLegalize; 2075 Observer.changingInstr(MI); 2076 // TODO: Probably should be zext 2077 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2078 Observer.changedInstr(MI); 2079 return Legalized; 2080 } 2081 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2082 if (TypeIdx == 1) { 2083 Observer.changingInstr(MI); 2084 2085 Register VecReg = MI.getOperand(1).getReg(); 2086 LLT VecTy = MRI.getType(VecReg); 2087 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2088 2089 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2090 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2091 widenScalarDst(MI, WideVecTy, 0); 2092 Observer.changedInstr(MI); 2093 return Legalized; 2094 } 2095 2096 if (TypeIdx == 2) { 2097 Observer.changingInstr(MI); 2098 // TODO: Probably should be zext 2099 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2100 Observer.changedInstr(MI); 2101 return Legalized; 2102 } 2103 2104 return UnableToLegalize; 2105 } 2106 case TargetOpcode::G_FADD: 2107 case TargetOpcode::G_FMUL: 2108 case TargetOpcode::G_FSUB: 2109 case TargetOpcode::G_FMA: 2110 case TargetOpcode::G_FMAD: 2111 case TargetOpcode::G_FNEG: 2112 case TargetOpcode::G_FABS: 2113 case TargetOpcode::G_FCANONICALIZE: 2114 case TargetOpcode::G_FMINNUM: 2115 case TargetOpcode::G_FMAXNUM: 2116 case TargetOpcode::G_FMINNUM_IEEE: 2117 case TargetOpcode::G_FMAXNUM_IEEE: 2118 case TargetOpcode::G_FMINIMUM: 2119 case TargetOpcode::G_FMAXIMUM: 2120 case TargetOpcode::G_FDIV: 2121 case TargetOpcode::G_FREM: 2122 case TargetOpcode::G_FCEIL: 2123 case TargetOpcode::G_FFLOOR: 2124 case TargetOpcode::G_FCOS: 2125 case TargetOpcode::G_FSIN: 2126 case TargetOpcode::G_FLOG10: 2127 case TargetOpcode::G_FLOG: 2128 case TargetOpcode::G_FLOG2: 2129 case TargetOpcode::G_FRINT: 2130 case TargetOpcode::G_FNEARBYINT: 2131 case TargetOpcode::G_FSQRT: 2132 case TargetOpcode::G_FEXP: 2133 case TargetOpcode::G_FEXP2: 2134 case TargetOpcode::G_FPOW: 2135 case TargetOpcode::G_INTRINSIC_TRUNC: 2136 case TargetOpcode::G_INTRINSIC_ROUND: 2137 assert(TypeIdx == 0); 2138 Observer.changingInstr(MI); 2139 2140 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2141 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2142 2143 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2144 Observer.changedInstr(MI); 2145 return Legalized; 2146 case TargetOpcode::G_INTTOPTR: 2147 if (TypeIdx != 1) 2148 return UnableToLegalize; 2149 2150 Observer.changingInstr(MI); 2151 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2152 Observer.changedInstr(MI); 2153 return Legalized; 2154 case TargetOpcode::G_PTRTOINT: 2155 if (TypeIdx != 0) 2156 return UnableToLegalize; 2157 2158 Observer.changingInstr(MI); 2159 widenScalarDst(MI, WideTy, 0); 2160 Observer.changedInstr(MI); 2161 return Legalized; 2162 case TargetOpcode::G_BUILD_VECTOR: { 2163 Observer.changingInstr(MI); 2164 2165 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2166 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2167 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2168 2169 // Avoid changing the result vector type if the source element type was 2170 // requested. 2171 if (TypeIdx == 1) { 2172 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2173 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2174 } else { 2175 widenScalarDst(MI, WideTy, 0); 2176 } 2177 2178 Observer.changedInstr(MI); 2179 return Legalized; 2180 } 2181 case TargetOpcode::G_SEXT_INREG: 2182 if (TypeIdx != 0) 2183 return UnableToLegalize; 2184 2185 Observer.changingInstr(MI); 2186 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2187 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2188 Observer.changedInstr(MI); 2189 return Legalized; 2190 case TargetOpcode::G_PTRMASK: { 2191 if (TypeIdx != 1) 2192 return UnableToLegalize; 2193 Observer.changingInstr(MI); 2194 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2195 Observer.changedInstr(MI); 2196 return Legalized; 2197 } 2198 } 2199 } 2200 2201 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2202 MachineIRBuilder &B, Register Src, LLT Ty) { 2203 auto Unmerge = B.buildUnmerge(Ty, Src); 2204 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2205 Pieces.push_back(Unmerge.getReg(I)); 2206 } 2207 2208 LegalizerHelper::LegalizeResult 2209 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2210 Register Dst = MI.getOperand(0).getReg(); 2211 Register Src = MI.getOperand(1).getReg(); 2212 LLT DstTy = MRI.getType(Dst); 2213 LLT SrcTy = MRI.getType(Src); 2214 2215 if (SrcTy.isVector()) { 2216 LLT SrcEltTy = SrcTy.getElementType(); 2217 SmallVector<Register, 8> SrcRegs; 2218 2219 if (DstTy.isVector()) { 2220 int NumDstElt = DstTy.getNumElements(); 2221 int NumSrcElt = SrcTy.getNumElements(); 2222 2223 LLT DstEltTy = DstTy.getElementType(); 2224 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2225 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2226 2227 // If there's an element size mismatch, insert intermediate casts to match 2228 // the result element type. 2229 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2230 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2231 // 2232 // => 2233 // 2234 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2235 // %3:_(<2 x s8>) = G_BITCAST %2 2236 // %4:_(<2 x s8>) = G_BITCAST %3 2237 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2238 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2239 SrcPartTy = SrcEltTy; 2240 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2241 // 2242 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2243 // 2244 // => 2245 // 2246 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2247 // %3:_(s16) = G_BITCAST %2 2248 // %4:_(s16) = G_BITCAST %3 2249 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2250 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2251 DstCastTy = DstEltTy; 2252 } 2253 2254 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2255 for (Register &SrcReg : SrcRegs) 2256 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2257 } else 2258 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2259 2260 MIRBuilder.buildMerge(Dst, SrcRegs); 2261 MI.eraseFromParent(); 2262 return Legalized; 2263 } 2264 2265 if (DstTy.isVector()) { 2266 SmallVector<Register, 8> SrcRegs; 2267 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2268 MIRBuilder.buildMerge(Dst, SrcRegs); 2269 MI.eraseFromParent(); 2270 return Legalized; 2271 } 2272 2273 return UnableToLegalize; 2274 } 2275 2276 LegalizerHelper::LegalizeResult 2277 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2278 switch (MI.getOpcode()) { 2279 case TargetOpcode::G_LOAD: { 2280 if (TypeIdx != 0) 2281 return UnableToLegalize; 2282 2283 Observer.changingInstr(MI); 2284 bitcastDst(MI, CastTy, 0); 2285 Observer.changedInstr(MI); 2286 return Legalized; 2287 } 2288 case TargetOpcode::G_STORE: { 2289 if (TypeIdx != 0) 2290 return UnableToLegalize; 2291 2292 Observer.changingInstr(MI); 2293 bitcastSrc(MI, CastTy, 0); 2294 Observer.changedInstr(MI); 2295 return Legalized; 2296 } 2297 case TargetOpcode::G_SELECT: { 2298 if (TypeIdx != 0) 2299 return UnableToLegalize; 2300 2301 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2302 LLVM_DEBUG( 2303 dbgs() << "bitcast action not implemented for vector select\n"); 2304 return UnableToLegalize; 2305 } 2306 2307 Observer.changingInstr(MI); 2308 bitcastSrc(MI, CastTy, 2); 2309 bitcastSrc(MI, CastTy, 3); 2310 bitcastDst(MI, CastTy, 0); 2311 Observer.changedInstr(MI); 2312 return Legalized; 2313 } 2314 case TargetOpcode::G_AND: 2315 case TargetOpcode::G_OR: 2316 case TargetOpcode::G_XOR: { 2317 Observer.changingInstr(MI); 2318 bitcastSrc(MI, CastTy, 1); 2319 bitcastSrc(MI, CastTy, 2); 2320 bitcastDst(MI, CastTy, 0); 2321 Observer.changedInstr(MI); 2322 return Legalized; 2323 } 2324 default: 2325 return UnableToLegalize; 2326 } 2327 } 2328 2329 LegalizerHelper::LegalizeResult 2330 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2331 using namespace TargetOpcode; 2332 2333 switch(MI.getOpcode()) { 2334 default: 2335 return UnableToLegalize; 2336 case TargetOpcode::G_BITCAST: 2337 return lowerBitcast(MI); 2338 case TargetOpcode::G_SREM: 2339 case TargetOpcode::G_UREM: { 2340 auto Quot = 2341 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2342 {MI.getOperand(1), MI.getOperand(2)}); 2343 2344 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2345 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2346 MI.eraseFromParent(); 2347 return Legalized; 2348 } 2349 case TargetOpcode::G_SADDO: 2350 case TargetOpcode::G_SSUBO: 2351 return lowerSADDO_SSUBO(MI); 2352 case TargetOpcode::G_SMULO: 2353 case TargetOpcode::G_UMULO: { 2354 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2355 // result. 2356 Register Res = MI.getOperand(0).getReg(); 2357 Register Overflow = MI.getOperand(1).getReg(); 2358 Register LHS = MI.getOperand(2).getReg(); 2359 Register RHS = MI.getOperand(3).getReg(); 2360 2361 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2362 ? TargetOpcode::G_SMULH 2363 : TargetOpcode::G_UMULH; 2364 2365 Observer.changingInstr(MI); 2366 const auto &TII = MIRBuilder.getTII(); 2367 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2368 MI.RemoveOperand(1); 2369 Observer.changedInstr(MI); 2370 2371 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2372 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2373 2374 // Move insert point forward so we can use the Res register if needed. 2375 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2376 2377 // For *signed* multiply, overflow is detected by checking: 2378 // (hi != (lo >> bitwidth-1)) 2379 if (Opcode == TargetOpcode::G_SMULH) { 2380 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2381 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2382 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2383 } else { 2384 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2385 } 2386 return Legalized; 2387 } 2388 case TargetOpcode::G_FNEG: { 2389 // TODO: Handle vector types once we are able to 2390 // represent them. 2391 if (Ty.isVector()) 2392 return UnableToLegalize; 2393 Register Res = MI.getOperand(0).getReg(); 2394 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2395 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2396 if (!ZeroTy) 2397 return UnableToLegalize; 2398 ConstantFP &ZeroForNegation = 2399 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2400 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2401 Register SubByReg = MI.getOperand(1).getReg(); 2402 Register ZeroReg = Zero.getReg(0); 2403 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2404 MI.eraseFromParent(); 2405 return Legalized; 2406 } 2407 case TargetOpcode::G_FSUB: { 2408 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2409 // First, check if G_FNEG is marked as Lower. If so, we may 2410 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2411 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2412 return UnableToLegalize; 2413 Register Res = MI.getOperand(0).getReg(); 2414 Register LHS = MI.getOperand(1).getReg(); 2415 Register RHS = MI.getOperand(2).getReg(); 2416 Register Neg = MRI.createGenericVirtualRegister(Ty); 2417 MIRBuilder.buildFNeg(Neg, RHS); 2418 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2419 MI.eraseFromParent(); 2420 return Legalized; 2421 } 2422 case TargetOpcode::G_FMAD: 2423 return lowerFMad(MI); 2424 case TargetOpcode::G_FFLOOR: 2425 return lowerFFloor(MI); 2426 case TargetOpcode::G_INTRINSIC_ROUND: 2427 return lowerIntrinsicRound(MI); 2428 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2429 Register OldValRes = MI.getOperand(0).getReg(); 2430 Register SuccessRes = MI.getOperand(1).getReg(); 2431 Register Addr = MI.getOperand(2).getReg(); 2432 Register CmpVal = MI.getOperand(3).getReg(); 2433 Register NewVal = MI.getOperand(4).getReg(); 2434 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2435 **MI.memoperands_begin()); 2436 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2437 MI.eraseFromParent(); 2438 return Legalized; 2439 } 2440 case TargetOpcode::G_LOAD: 2441 case TargetOpcode::G_SEXTLOAD: 2442 case TargetOpcode::G_ZEXTLOAD: { 2443 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2444 Register DstReg = MI.getOperand(0).getReg(); 2445 Register PtrReg = MI.getOperand(1).getReg(); 2446 LLT DstTy = MRI.getType(DstReg); 2447 auto &MMO = **MI.memoperands_begin(); 2448 2449 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2450 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2451 // This load needs splitting into power of 2 sized loads. 2452 if (DstTy.isVector()) 2453 return UnableToLegalize; 2454 if (isPowerOf2_32(DstTy.getSizeInBits())) 2455 return UnableToLegalize; // Don't know what we're being asked to do. 2456 2457 // Our strategy here is to generate anyextending loads for the smaller 2458 // types up to next power-2 result type, and then combine the two larger 2459 // result values together, before truncating back down to the non-pow-2 2460 // type. 2461 // E.g. v1 = i24 load => 2462 // v2 = i32 zextload (2 byte) 2463 // v3 = i32 load (1 byte) 2464 // v4 = i32 shl v3, 16 2465 // v5 = i32 or v4, v2 2466 // v1 = i24 trunc v5 2467 // By doing this we generate the correct truncate which should get 2468 // combined away as an artifact with a matching extend. 2469 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2470 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2471 2472 MachineFunction &MF = MIRBuilder.getMF(); 2473 MachineMemOperand *LargeMMO = 2474 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2475 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2476 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2477 2478 LLT PtrTy = MRI.getType(PtrReg); 2479 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2480 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2481 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2482 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2483 auto LargeLoad = MIRBuilder.buildLoadInstr( 2484 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2485 2486 auto OffsetCst = MIRBuilder.buildConstant( 2487 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2488 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2489 auto SmallPtr = 2490 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2491 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2492 *SmallMMO); 2493 2494 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2495 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2496 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2497 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2498 MI.eraseFromParent(); 2499 return Legalized; 2500 } 2501 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2502 MI.eraseFromParent(); 2503 return Legalized; 2504 } 2505 2506 if (DstTy.isScalar()) { 2507 Register TmpReg = 2508 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2509 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2510 switch (MI.getOpcode()) { 2511 default: 2512 llvm_unreachable("Unexpected opcode"); 2513 case TargetOpcode::G_LOAD: 2514 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2515 break; 2516 case TargetOpcode::G_SEXTLOAD: 2517 MIRBuilder.buildSExt(DstReg, TmpReg); 2518 break; 2519 case TargetOpcode::G_ZEXTLOAD: 2520 MIRBuilder.buildZExt(DstReg, TmpReg); 2521 break; 2522 } 2523 MI.eraseFromParent(); 2524 return Legalized; 2525 } 2526 2527 return UnableToLegalize; 2528 } 2529 case TargetOpcode::G_STORE: { 2530 // Lower a non-power of 2 store into multiple pow-2 stores. 2531 // E.g. split an i24 store into an i16 store + i8 store. 2532 // We do this by first extending the stored value to the next largest power 2533 // of 2 type, and then using truncating stores to store the components. 2534 // By doing this, likewise with G_LOAD, generate an extend that can be 2535 // artifact-combined away instead of leaving behind extracts. 2536 Register SrcReg = MI.getOperand(0).getReg(); 2537 Register PtrReg = MI.getOperand(1).getReg(); 2538 LLT SrcTy = MRI.getType(SrcReg); 2539 MachineMemOperand &MMO = **MI.memoperands_begin(); 2540 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2541 return UnableToLegalize; 2542 if (SrcTy.isVector()) 2543 return UnableToLegalize; 2544 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2545 return UnableToLegalize; // Don't know what we're being asked to do. 2546 2547 // Extend to the next pow-2. 2548 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2549 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2550 2551 // Obtain the smaller value by shifting away the larger value. 2552 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2553 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2554 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2555 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2556 2557 // Generate the PtrAdd and truncating stores. 2558 LLT PtrTy = MRI.getType(PtrReg); 2559 auto OffsetCst = MIRBuilder.buildConstant( 2560 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2561 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2562 auto SmallPtr = 2563 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2564 2565 MachineFunction &MF = MIRBuilder.getMF(); 2566 MachineMemOperand *LargeMMO = 2567 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2568 MachineMemOperand *SmallMMO = 2569 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2570 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2571 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2572 MI.eraseFromParent(); 2573 return Legalized; 2574 } 2575 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2576 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2577 case TargetOpcode::G_CTLZ: 2578 case TargetOpcode::G_CTTZ: 2579 case TargetOpcode::G_CTPOP: 2580 return lowerBitCount(MI, TypeIdx, Ty); 2581 case G_UADDO: { 2582 Register Res = MI.getOperand(0).getReg(); 2583 Register CarryOut = MI.getOperand(1).getReg(); 2584 Register LHS = MI.getOperand(2).getReg(); 2585 Register RHS = MI.getOperand(3).getReg(); 2586 2587 MIRBuilder.buildAdd(Res, LHS, RHS); 2588 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2589 2590 MI.eraseFromParent(); 2591 return Legalized; 2592 } 2593 case G_UADDE: { 2594 Register Res = MI.getOperand(0).getReg(); 2595 Register CarryOut = MI.getOperand(1).getReg(); 2596 Register LHS = MI.getOperand(2).getReg(); 2597 Register RHS = MI.getOperand(3).getReg(); 2598 Register CarryIn = MI.getOperand(4).getReg(); 2599 LLT Ty = MRI.getType(Res); 2600 2601 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2602 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2603 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2604 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2605 2606 MI.eraseFromParent(); 2607 return Legalized; 2608 } 2609 case G_USUBO: { 2610 Register Res = MI.getOperand(0).getReg(); 2611 Register BorrowOut = MI.getOperand(1).getReg(); 2612 Register LHS = MI.getOperand(2).getReg(); 2613 Register RHS = MI.getOperand(3).getReg(); 2614 2615 MIRBuilder.buildSub(Res, LHS, RHS); 2616 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2617 2618 MI.eraseFromParent(); 2619 return Legalized; 2620 } 2621 case G_USUBE: { 2622 Register Res = MI.getOperand(0).getReg(); 2623 Register BorrowOut = MI.getOperand(1).getReg(); 2624 Register LHS = MI.getOperand(2).getReg(); 2625 Register RHS = MI.getOperand(3).getReg(); 2626 Register BorrowIn = MI.getOperand(4).getReg(); 2627 const LLT CondTy = MRI.getType(BorrowOut); 2628 const LLT Ty = MRI.getType(Res); 2629 2630 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2631 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2632 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2633 2634 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2635 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2636 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2637 2638 MI.eraseFromParent(); 2639 return Legalized; 2640 } 2641 case G_UITOFP: 2642 return lowerUITOFP(MI, TypeIdx, Ty); 2643 case G_SITOFP: 2644 return lowerSITOFP(MI, TypeIdx, Ty); 2645 case G_FPTOUI: 2646 return lowerFPTOUI(MI, TypeIdx, Ty); 2647 case G_FPTOSI: 2648 return lowerFPTOSI(MI); 2649 case G_FPTRUNC: 2650 return lowerFPTRUNC(MI, TypeIdx, Ty); 2651 case G_SMIN: 2652 case G_SMAX: 2653 case G_UMIN: 2654 case G_UMAX: 2655 return lowerMinMax(MI, TypeIdx, Ty); 2656 case G_FCOPYSIGN: 2657 return lowerFCopySign(MI, TypeIdx, Ty); 2658 case G_FMINNUM: 2659 case G_FMAXNUM: 2660 return lowerFMinNumMaxNum(MI); 2661 case G_MERGE_VALUES: 2662 return lowerMergeValues(MI); 2663 case G_UNMERGE_VALUES: 2664 return lowerUnmergeValues(MI); 2665 case TargetOpcode::G_SEXT_INREG: { 2666 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2667 int64_t SizeInBits = MI.getOperand(2).getImm(); 2668 2669 Register DstReg = MI.getOperand(0).getReg(); 2670 Register SrcReg = MI.getOperand(1).getReg(); 2671 LLT DstTy = MRI.getType(DstReg); 2672 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2673 2674 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2675 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2676 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2677 MI.eraseFromParent(); 2678 return Legalized; 2679 } 2680 case G_SHUFFLE_VECTOR: 2681 return lowerShuffleVector(MI); 2682 case G_DYN_STACKALLOC: 2683 return lowerDynStackAlloc(MI); 2684 case G_EXTRACT: 2685 return lowerExtract(MI); 2686 case G_INSERT: 2687 return lowerInsert(MI); 2688 case G_BSWAP: 2689 return lowerBswap(MI); 2690 case G_BITREVERSE: 2691 return lowerBitreverse(MI); 2692 case G_READ_REGISTER: 2693 case G_WRITE_REGISTER: 2694 return lowerReadWriteRegister(MI); 2695 } 2696 } 2697 2698 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2699 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2700 SmallVector<Register, 2> DstRegs; 2701 2702 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2703 Register DstReg = MI.getOperand(0).getReg(); 2704 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2705 int NumParts = Size / NarrowSize; 2706 // FIXME: Don't know how to handle the situation where the small vectors 2707 // aren't all the same size yet. 2708 if (Size % NarrowSize != 0) 2709 return UnableToLegalize; 2710 2711 for (int i = 0; i < NumParts; ++i) { 2712 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2713 MIRBuilder.buildUndef(TmpReg); 2714 DstRegs.push_back(TmpReg); 2715 } 2716 2717 if (NarrowTy.isVector()) 2718 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2719 else 2720 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2721 2722 MI.eraseFromParent(); 2723 return Legalized; 2724 } 2725 2726 // Handle splitting vector operations which need to have the same number of 2727 // elements in each type index, but each type index may have a different element 2728 // type. 2729 // 2730 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2731 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2732 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2733 // 2734 // Also handles some irregular breakdown cases, e.g. 2735 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2736 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2737 // s64 = G_SHL s64, s32 2738 LegalizerHelper::LegalizeResult 2739 LegalizerHelper::fewerElementsVectorMultiEltType( 2740 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2741 if (TypeIdx != 0) 2742 return UnableToLegalize; 2743 2744 const LLT NarrowTy0 = NarrowTyArg; 2745 const unsigned NewNumElts = 2746 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2747 2748 const Register DstReg = MI.getOperand(0).getReg(); 2749 LLT DstTy = MRI.getType(DstReg); 2750 LLT LeftoverTy0; 2751 2752 // All of the operands need to have the same number of elements, so if we can 2753 // determine a type breakdown for the result type, we can for all of the 2754 // source types. 2755 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2756 if (NumParts < 0) 2757 return UnableToLegalize; 2758 2759 SmallVector<MachineInstrBuilder, 4> NewInsts; 2760 2761 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2762 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2763 2764 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2765 Register SrcReg = MI.getOperand(I).getReg(); 2766 LLT SrcTyI = MRI.getType(SrcReg); 2767 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2768 LLT LeftoverTyI; 2769 2770 // Split this operand into the requested typed registers, and any leftover 2771 // required to reproduce the original type. 2772 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2773 LeftoverRegs)) 2774 return UnableToLegalize; 2775 2776 if (I == 1) { 2777 // For the first operand, create an instruction for each part and setup 2778 // the result. 2779 for (Register PartReg : PartRegs) { 2780 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2781 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2782 .addDef(PartDstReg) 2783 .addUse(PartReg)); 2784 DstRegs.push_back(PartDstReg); 2785 } 2786 2787 for (Register LeftoverReg : LeftoverRegs) { 2788 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2789 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2790 .addDef(PartDstReg) 2791 .addUse(LeftoverReg)); 2792 LeftoverDstRegs.push_back(PartDstReg); 2793 } 2794 } else { 2795 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2796 2797 // Add the newly created operand splits to the existing instructions. The 2798 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2799 // pieces. 2800 unsigned InstCount = 0; 2801 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2802 NewInsts[InstCount++].addUse(PartRegs[J]); 2803 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2804 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2805 } 2806 2807 PartRegs.clear(); 2808 LeftoverRegs.clear(); 2809 } 2810 2811 // Insert the newly built operations and rebuild the result register. 2812 for (auto &MIB : NewInsts) 2813 MIRBuilder.insertInstr(MIB); 2814 2815 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2816 2817 MI.eraseFromParent(); 2818 return Legalized; 2819 } 2820 2821 LegalizerHelper::LegalizeResult 2822 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2823 LLT NarrowTy) { 2824 if (TypeIdx != 0) 2825 return UnableToLegalize; 2826 2827 Register DstReg = MI.getOperand(0).getReg(); 2828 Register SrcReg = MI.getOperand(1).getReg(); 2829 LLT DstTy = MRI.getType(DstReg); 2830 LLT SrcTy = MRI.getType(SrcReg); 2831 2832 LLT NarrowTy0 = NarrowTy; 2833 LLT NarrowTy1; 2834 unsigned NumParts; 2835 2836 if (NarrowTy.isVector()) { 2837 // Uneven breakdown not handled. 2838 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2839 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2840 return UnableToLegalize; 2841 2842 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2843 } else { 2844 NumParts = DstTy.getNumElements(); 2845 NarrowTy1 = SrcTy.getElementType(); 2846 } 2847 2848 SmallVector<Register, 4> SrcRegs, DstRegs; 2849 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2850 2851 for (unsigned I = 0; I < NumParts; ++I) { 2852 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2853 MachineInstr *NewInst = 2854 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2855 2856 NewInst->setFlags(MI.getFlags()); 2857 DstRegs.push_back(DstReg); 2858 } 2859 2860 if (NarrowTy.isVector()) 2861 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2862 else 2863 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2864 2865 MI.eraseFromParent(); 2866 return Legalized; 2867 } 2868 2869 LegalizerHelper::LegalizeResult 2870 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2871 LLT NarrowTy) { 2872 Register DstReg = MI.getOperand(0).getReg(); 2873 Register Src0Reg = MI.getOperand(2).getReg(); 2874 LLT DstTy = MRI.getType(DstReg); 2875 LLT SrcTy = MRI.getType(Src0Reg); 2876 2877 unsigned NumParts; 2878 LLT NarrowTy0, NarrowTy1; 2879 2880 if (TypeIdx == 0) { 2881 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2882 unsigned OldElts = DstTy.getNumElements(); 2883 2884 NarrowTy0 = NarrowTy; 2885 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2886 NarrowTy1 = NarrowTy.isVector() ? 2887 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2888 SrcTy.getElementType(); 2889 2890 } else { 2891 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2892 unsigned OldElts = SrcTy.getNumElements(); 2893 2894 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2895 NarrowTy.getNumElements(); 2896 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2897 DstTy.getScalarSizeInBits()); 2898 NarrowTy1 = NarrowTy; 2899 } 2900 2901 // FIXME: Don't know how to handle the situation where the small vectors 2902 // aren't all the same size yet. 2903 if (NarrowTy1.isVector() && 2904 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2905 return UnableToLegalize; 2906 2907 CmpInst::Predicate Pred 2908 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2909 2910 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2911 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2912 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2913 2914 for (unsigned I = 0; I < NumParts; ++I) { 2915 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2916 DstRegs.push_back(DstReg); 2917 2918 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2919 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2920 else { 2921 MachineInstr *NewCmp 2922 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2923 NewCmp->setFlags(MI.getFlags()); 2924 } 2925 } 2926 2927 if (NarrowTy1.isVector()) 2928 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2929 else 2930 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2931 2932 MI.eraseFromParent(); 2933 return Legalized; 2934 } 2935 2936 LegalizerHelper::LegalizeResult 2937 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2938 LLT NarrowTy) { 2939 Register DstReg = MI.getOperand(0).getReg(); 2940 Register CondReg = MI.getOperand(1).getReg(); 2941 2942 unsigned NumParts = 0; 2943 LLT NarrowTy0, NarrowTy1; 2944 2945 LLT DstTy = MRI.getType(DstReg); 2946 LLT CondTy = MRI.getType(CondReg); 2947 unsigned Size = DstTy.getSizeInBits(); 2948 2949 assert(TypeIdx == 0 || CondTy.isVector()); 2950 2951 if (TypeIdx == 0) { 2952 NarrowTy0 = NarrowTy; 2953 NarrowTy1 = CondTy; 2954 2955 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2956 // FIXME: Don't know how to handle the situation where the small vectors 2957 // aren't all the same size yet. 2958 if (Size % NarrowSize != 0) 2959 return UnableToLegalize; 2960 2961 NumParts = Size / NarrowSize; 2962 2963 // Need to break down the condition type 2964 if (CondTy.isVector()) { 2965 if (CondTy.getNumElements() == NumParts) 2966 NarrowTy1 = CondTy.getElementType(); 2967 else 2968 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2969 CondTy.getScalarSizeInBits()); 2970 } 2971 } else { 2972 NumParts = CondTy.getNumElements(); 2973 if (NarrowTy.isVector()) { 2974 // TODO: Handle uneven breakdown. 2975 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2976 return UnableToLegalize; 2977 2978 return UnableToLegalize; 2979 } else { 2980 NarrowTy0 = DstTy.getElementType(); 2981 NarrowTy1 = NarrowTy; 2982 } 2983 } 2984 2985 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2986 if (CondTy.isVector()) 2987 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2988 2989 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2990 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2991 2992 for (unsigned i = 0; i < NumParts; ++i) { 2993 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2994 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2995 Src1Regs[i], Src2Regs[i]); 2996 DstRegs.push_back(DstReg); 2997 } 2998 2999 if (NarrowTy0.isVector()) 3000 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3001 else 3002 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3003 3004 MI.eraseFromParent(); 3005 return Legalized; 3006 } 3007 3008 LegalizerHelper::LegalizeResult 3009 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3010 LLT NarrowTy) { 3011 const Register DstReg = MI.getOperand(0).getReg(); 3012 LLT PhiTy = MRI.getType(DstReg); 3013 LLT LeftoverTy; 3014 3015 // All of the operands need to have the same number of elements, so if we can 3016 // determine a type breakdown for the result type, we can for all of the 3017 // source types. 3018 int NumParts, NumLeftover; 3019 std::tie(NumParts, NumLeftover) 3020 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3021 if (NumParts < 0) 3022 return UnableToLegalize; 3023 3024 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3025 SmallVector<MachineInstrBuilder, 4> NewInsts; 3026 3027 const int TotalNumParts = NumParts + NumLeftover; 3028 3029 // Insert the new phis in the result block first. 3030 for (int I = 0; I != TotalNumParts; ++I) { 3031 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3032 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3033 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3034 .addDef(PartDstReg)); 3035 if (I < NumParts) 3036 DstRegs.push_back(PartDstReg); 3037 else 3038 LeftoverDstRegs.push_back(PartDstReg); 3039 } 3040 3041 MachineBasicBlock *MBB = MI.getParent(); 3042 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3043 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3044 3045 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3046 3047 // Insert code to extract the incoming values in each predecessor block. 3048 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3049 PartRegs.clear(); 3050 LeftoverRegs.clear(); 3051 3052 Register SrcReg = MI.getOperand(I).getReg(); 3053 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3054 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3055 3056 LLT Unused; 3057 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3058 LeftoverRegs)) 3059 return UnableToLegalize; 3060 3061 // Add the newly created operand splits to the existing instructions. The 3062 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3063 // pieces. 3064 for (int J = 0; J != TotalNumParts; ++J) { 3065 MachineInstrBuilder MIB = NewInsts[J]; 3066 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3067 MIB.addMBB(&OpMBB); 3068 } 3069 } 3070 3071 MI.eraseFromParent(); 3072 return Legalized; 3073 } 3074 3075 LegalizerHelper::LegalizeResult 3076 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3077 unsigned TypeIdx, 3078 LLT NarrowTy) { 3079 if (TypeIdx != 1) 3080 return UnableToLegalize; 3081 3082 const int NumDst = MI.getNumOperands() - 1; 3083 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3084 LLT SrcTy = MRI.getType(SrcReg); 3085 3086 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3087 3088 // TODO: Create sequence of extracts. 3089 if (DstTy == NarrowTy) 3090 return UnableToLegalize; 3091 3092 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3093 if (DstTy == GCDTy) { 3094 // This would just be a copy of the same unmerge. 3095 // TODO: Create extracts, pad with undef and create intermediate merges. 3096 return UnableToLegalize; 3097 } 3098 3099 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3100 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3101 const int PartsPerUnmerge = NumDst / NumUnmerge; 3102 3103 for (int I = 0; I != NumUnmerge; ++I) { 3104 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3105 3106 for (int J = 0; J != PartsPerUnmerge; ++J) 3107 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3108 MIB.addUse(Unmerge.getReg(I)); 3109 } 3110 3111 MI.eraseFromParent(); 3112 return Legalized; 3113 } 3114 3115 LegalizerHelper::LegalizeResult 3116 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3117 unsigned TypeIdx, 3118 LLT NarrowTy) { 3119 assert(TypeIdx == 0 && "not a vector type index"); 3120 Register DstReg = MI.getOperand(0).getReg(); 3121 LLT DstTy = MRI.getType(DstReg); 3122 LLT SrcTy = DstTy.getElementType(); 3123 3124 int DstNumElts = DstTy.getNumElements(); 3125 int NarrowNumElts = NarrowTy.getNumElements(); 3126 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3127 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3128 3129 SmallVector<Register, 8> ConcatOps; 3130 SmallVector<Register, 8> SubBuildVector; 3131 3132 Register UndefReg; 3133 if (WidenedDstTy != DstTy) 3134 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3135 3136 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3137 // necessary. 3138 // 3139 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3140 // -> <2 x s16> 3141 // 3142 // %4:_(s16) = G_IMPLICIT_DEF 3143 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3144 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3145 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3146 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3147 for (int I = 0; I != NumConcat; ++I) { 3148 for (int J = 0; J != NarrowNumElts; ++J) { 3149 int SrcIdx = NarrowNumElts * I + J; 3150 3151 if (SrcIdx < DstNumElts) { 3152 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3153 SubBuildVector.push_back(SrcReg); 3154 } else 3155 SubBuildVector.push_back(UndefReg); 3156 } 3157 3158 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3159 ConcatOps.push_back(BuildVec.getReg(0)); 3160 SubBuildVector.clear(); 3161 } 3162 3163 if (DstTy == WidenedDstTy) 3164 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3165 else { 3166 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3167 MIRBuilder.buildExtract(DstReg, Concat, 0); 3168 } 3169 3170 MI.eraseFromParent(); 3171 return Legalized; 3172 } 3173 3174 LegalizerHelper::LegalizeResult 3175 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3176 LLT NarrowTy) { 3177 // FIXME: Don't know how to handle secondary types yet. 3178 if (TypeIdx != 0) 3179 return UnableToLegalize; 3180 3181 MachineMemOperand *MMO = *MI.memoperands_begin(); 3182 3183 // This implementation doesn't work for atomics. Give up instead of doing 3184 // something invalid. 3185 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3186 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3187 return UnableToLegalize; 3188 3189 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3190 Register ValReg = MI.getOperand(0).getReg(); 3191 Register AddrReg = MI.getOperand(1).getReg(); 3192 LLT ValTy = MRI.getType(ValReg); 3193 3194 // FIXME: Do we need a distinct NarrowMemory legalize action? 3195 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3196 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3197 return UnableToLegalize; 3198 } 3199 3200 int NumParts = -1; 3201 int NumLeftover = -1; 3202 LLT LeftoverTy; 3203 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3204 if (IsLoad) { 3205 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3206 } else { 3207 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3208 NarrowLeftoverRegs)) { 3209 NumParts = NarrowRegs.size(); 3210 NumLeftover = NarrowLeftoverRegs.size(); 3211 } 3212 } 3213 3214 if (NumParts == -1) 3215 return UnableToLegalize; 3216 3217 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3218 3219 unsigned TotalSize = ValTy.getSizeInBits(); 3220 3221 // Split the load/store into PartTy sized pieces starting at Offset. If this 3222 // is a load, return the new registers in ValRegs. For a store, each elements 3223 // of ValRegs should be PartTy. Returns the next offset that needs to be 3224 // handled. 3225 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3226 unsigned Offset) -> unsigned { 3227 MachineFunction &MF = MIRBuilder.getMF(); 3228 unsigned PartSize = PartTy.getSizeInBits(); 3229 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3230 Offset += PartSize, ++Idx) { 3231 unsigned ByteSize = PartSize / 8; 3232 unsigned ByteOffset = Offset / 8; 3233 Register NewAddrReg; 3234 3235 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3236 3237 MachineMemOperand *NewMMO = 3238 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3239 3240 if (IsLoad) { 3241 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3242 ValRegs.push_back(Dst); 3243 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3244 } else { 3245 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3246 } 3247 } 3248 3249 return Offset; 3250 }; 3251 3252 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3253 3254 // Handle the rest of the register if this isn't an even type breakdown. 3255 if (LeftoverTy.isValid()) 3256 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3257 3258 if (IsLoad) { 3259 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3260 LeftoverTy, NarrowLeftoverRegs); 3261 } 3262 3263 MI.eraseFromParent(); 3264 return Legalized; 3265 } 3266 3267 LegalizerHelper::LegalizeResult 3268 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3269 LLT NarrowTy) { 3270 assert(TypeIdx == 0 && "only one type index expected"); 3271 3272 const unsigned Opc = MI.getOpcode(); 3273 const int NumOps = MI.getNumOperands() - 1; 3274 const Register DstReg = MI.getOperand(0).getReg(); 3275 const unsigned Flags = MI.getFlags(); 3276 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3277 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3278 3279 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3280 3281 // First of all check whether we are narrowing (changing the element type) 3282 // or reducing the vector elements 3283 const LLT DstTy = MRI.getType(DstReg); 3284 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3285 3286 SmallVector<Register, 8> ExtractedRegs[3]; 3287 SmallVector<Register, 8> Parts; 3288 3289 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3290 3291 // Break down all the sources into NarrowTy pieces we can operate on. This may 3292 // involve creating merges to a wider type, padded with undef. 3293 for (int I = 0; I != NumOps; ++I) { 3294 Register SrcReg = MI.getOperand(I + 1).getReg(); 3295 LLT SrcTy = MRI.getType(SrcReg); 3296 3297 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3298 // For fewerElements, this is a smaller vector with the same element type. 3299 LLT OpNarrowTy; 3300 if (IsNarrow) { 3301 OpNarrowTy = NarrowScalarTy; 3302 3303 // In case of narrowing, we need to cast vectors to scalars for this to 3304 // work properly 3305 // FIXME: Can we do without the bitcast here if we're narrowing? 3306 if (SrcTy.isVector()) { 3307 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3308 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3309 } 3310 } else { 3311 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3312 } 3313 3314 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3315 3316 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3317 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3318 TargetOpcode::G_ANYEXT); 3319 } 3320 3321 SmallVector<Register, 8> ResultRegs; 3322 3323 // Input operands for each sub-instruction. 3324 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3325 3326 int NumParts = ExtractedRegs[0].size(); 3327 const unsigned DstSize = DstTy.getSizeInBits(); 3328 const LLT DstScalarTy = LLT::scalar(DstSize); 3329 3330 // Narrowing needs to use scalar types 3331 LLT DstLCMTy, NarrowDstTy; 3332 if (IsNarrow) { 3333 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3334 NarrowDstTy = NarrowScalarTy; 3335 } else { 3336 DstLCMTy = getLCMType(DstTy, NarrowTy); 3337 NarrowDstTy = NarrowTy; 3338 } 3339 3340 // We widened the source registers to satisfy merge/unmerge size 3341 // constraints. We'll have some extra fully undef parts. 3342 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3343 3344 for (int I = 0; I != NumRealParts; ++I) { 3345 // Emit this instruction on each of the split pieces. 3346 for (int J = 0; J != NumOps; ++J) 3347 InputRegs[J] = ExtractedRegs[J][I]; 3348 3349 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3350 ResultRegs.push_back(Inst.getReg(0)); 3351 } 3352 3353 // Fill out the widened result with undef instead of creating instructions 3354 // with undef inputs. 3355 int NumUndefParts = NumParts - NumRealParts; 3356 if (NumUndefParts != 0) 3357 ResultRegs.append(NumUndefParts, 3358 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3359 3360 // Extract the possibly padded result. Use a scratch register if we need to do 3361 // a final bitcast, otherwise use the original result register. 3362 Register MergeDstReg; 3363 if (IsNarrow && DstTy.isVector()) 3364 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3365 else 3366 MergeDstReg = DstReg; 3367 3368 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3369 3370 // Recast to vector if we narrowed a vector 3371 if (IsNarrow && DstTy.isVector()) 3372 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3373 3374 MI.eraseFromParent(); 3375 return Legalized; 3376 } 3377 3378 LegalizerHelper::LegalizeResult 3379 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3380 LLT NarrowTy) { 3381 Register DstReg = MI.getOperand(0).getReg(); 3382 Register SrcReg = MI.getOperand(1).getReg(); 3383 int64_t Imm = MI.getOperand(2).getImm(); 3384 3385 LLT DstTy = MRI.getType(DstReg); 3386 3387 SmallVector<Register, 8> Parts; 3388 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3389 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3390 3391 for (Register &R : Parts) 3392 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3393 3394 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3395 3396 MI.eraseFromParent(); 3397 return Legalized; 3398 } 3399 3400 LegalizerHelper::LegalizeResult 3401 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3402 LLT NarrowTy) { 3403 using namespace TargetOpcode; 3404 3405 switch (MI.getOpcode()) { 3406 case G_IMPLICIT_DEF: 3407 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3408 case G_TRUNC: 3409 case G_AND: 3410 case G_OR: 3411 case G_XOR: 3412 case G_ADD: 3413 case G_SUB: 3414 case G_MUL: 3415 case G_SMULH: 3416 case G_UMULH: 3417 case G_FADD: 3418 case G_FMUL: 3419 case G_FSUB: 3420 case G_FNEG: 3421 case G_FABS: 3422 case G_FCANONICALIZE: 3423 case G_FDIV: 3424 case G_FREM: 3425 case G_FMA: 3426 case G_FMAD: 3427 case G_FPOW: 3428 case G_FEXP: 3429 case G_FEXP2: 3430 case G_FLOG: 3431 case G_FLOG2: 3432 case G_FLOG10: 3433 case G_FNEARBYINT: 3434 case G_FCEIL: 3435 case G_FFLOOR: 3436 case G_FRINT: 3437 case G_INTRINSIC_ROUND: 3438 case G_INTRINSIC_TRUNC: 3439 case G_FCOS: 3440 case G_FSIN: 3441 case G_FSQRT: 3442 case G_BSWAP: 3443 case G_BITREVERSE: 3444 case G_SDIV: 3445 case G_UDIV: 3446 case G_SREM: 3447 case G_UREM: 3448 case G_SMIN: 3449 case G_SMAX: 3450 case G_UMIN: 3451 case G_UMAX: 3452 case G_FMINNUM: 3453 case G_FMAXNUM: 3454 case G_FMINNUM_IEEE: 3455 case G_FMAXNUM_IEEE: 3456 case G_FMINIMUM: 3457 case G_FMAXIMUM: 3458 case G_FSHL: 3459 case G_FSHR: 3460 case G_FREEZE: 3461 case G_SADDSAT: 3462 case G_SSUBSAT: 3463 case G_UADDSAT: 3464 case G_USUBSAT: 3465 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 3466 case G_SHL: 3467 case G_LSHR: 3468 case G_ASHR: 3469 case G_CTLZ: 3470 case G_CTLZ_ZERO_UNDEF: 3471 case G_CTTZ: 3472 case G_CTTZ_ZERO_UNDEF: 3473 case G_CTPOP: 3474 case G_FCOPYSIGN: 3475 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3476 case G_ZEXT: 3477 case G_SEXT: 3478 case G_ANYEXT: 3479 case G_FPEXT: 3480 case G_FPTRUNC: 3481 case G_SITOFP: 3482 case G_UITOFP: 3483 case G_FPTOSI: 3484 case G_FPTOUI: 3485 case G_INTTOPTR: 3486 case G_PTRTOINT: 3487 case G_ADDRSPACE_CAST: 3488 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3489 case G_ICMP: 3490 case G_FCMP: 3491 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3492 case G_SELECT: 3493 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3494 case G_PHI: 3495 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3496 case G_UNMERGE_VALUES: 3497 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3498 case G_BUILD_VECTOR: 3499 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3500 case G_LOAD: 3501 case G_STORE: 3502 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3503 case G_SEXT_INREG: 3504 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3505 default: 3506 return UnableToLegalize; 3507 } 3508 } 3509 3510 LegalizerHelper::LegalizeResult 3511 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3512 const LLT HalfTy, const LLT AmtTy) { 3513 3514 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3515 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3516 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3517 3518 if (Amt.isNullValue()) { 3519 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3520 MI.eraseFromParent(); 3521 return Legalized; 3522 } 3523 3524 LLT NVT = HalfTy; 3525 unsigned NVTBits = HalfTy.getSizeInBits(); 3526 unsigned VTBits = 2 * NVTBits; 3527 3528 SrcOp Lo(Register(0)), Hi(Register(0)); 3529 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3530 if (Amt.ugt(VTBits)) { 3531 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3532 } else if (Amt.ugt(NVTBits)) { 3533 Lo = MIRBuilder.buildConstant(NVT, 0); 3534 Hi = MIRBuilder.buildShl(NVT, InL, 3535 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3536 } else if (Amt == NVTBits) { 3537 Lo = MIRBuilder.buildConstant(NVT, 0); 3538 Hi = InL; 3539 } else { 3540 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3541 auto OrLHS = 3542 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3543 auto OrRHS = MIRBuilder.buildLShr( 3544 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3545 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3546 } 3547 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3548 if (Amt.ugt(VTBits)) { 3549 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3550 } else if (Amt.ugt(NVTBits)) { 3551 Lo = MIRBuilder.buildLShr(NVT, InH, 3552 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3553 Hi = MIRBuilder.buildConstant(NVT, 0); 3554 } else if (Amt == NVTBits) { 3555 Lo = InH; 3556 Hi = MIRBuilder.buildConstant(NVT, 0); 3557 } else { 3558 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3559 3560 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3561 auto OrRHS = MIRBuilder.buildShl( 3562 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3563 3564 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3565 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3566 } 3567 } else { 3568 if (Amt.ugt(VTBits)) { 3569 Hi = Lo = MIRBuilder.buildAShr( 3570 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3571 } else if (Amt.ugt(NVTBits)) { 3572 Lo = MIRBuilder.buildAShr(NVT, InH, 3573 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3574 Hi = MIRBuilder.buildAShr(NVT, InH, 3575 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3576 } else if (Amt == NVTBits) { 3577 Lo = InH; 3578 Hi = MIRBuilder.buildAShr(NVT, InH, 3579 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3580 } else { 3581 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3582 3583 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3584 auto OrRHS = MIRBuilder.buildShl( 3585 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3586 3587 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3588 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3589 } 3590 } 3591 3592 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3593 MI.eraseFromParent(); 3594 3595 return Legalized; 3596 } 3597 3598 // TODO: Optimize if constant shift amount. 3599 LegalizerHelper::LegalizeResult 3600 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3601 LLT RequestedTy) { 3602 if (TypeIdx == 1) { 3603 Observer.changingInstr(MI); 3604 narrowScalarSrc(MI, RequestedTy, 2); 3605 Observer.changedInstr(MI); 3606 return Legalized; 3607 } 3608 3609 Register DstReg = MI.getOperand(0).getReg(); 3610 LLT DstTy = MRI.getType(DstReg); 3611 if (DstTy.isVector()) 3612 return UnableToLegalize; 3613 3614 Register Amt = MI.getOperand(2).getReg(); 3615 LLT ShiftAmtTy = MRI.getType(Amt); 3616 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3617 if (DstEltSize % 2 != 0) 3618 return UnableToLegalize; 3619 3620 // Ignore the input type. We can only go to exactly half the size of the 3621 // input. If that isn't small enough, the resulting pieces will be further 3622 // legalized. 3623 const unsigned NewBitSize = DstEltSize / 2; 3624 const LLT HalfTy = LLT::scalar(NewBitSize); 3625 const LLT CondTy = LLT::scalar(1); 3626 3627 if (const MachineInstr *KShiftAmt = 3628 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3629 return narrowScalarShiftByConstant( 3630 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3631 } 3632 3633 // TODO: Expand with known bits. 3634 3635 // Handle the fully general expansion by an unknown amount. 3636 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3637 3638 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3639 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3640 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3641 3642 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3643 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3644 3645 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3646 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3647 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3648 3649 Register ResultRegs[2]; 3650 switch (MI.getOpcode()) { 3651 case TargetOpcode::G_SHL: { 3652 // Short: ShAmt < NewBitSize 3653 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3654 3655 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3656 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3657 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3658 3659 // Long: ShAmt >= NewBitSize 3660 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3661 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3662 3663 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3664 auto Hi = MIRBuilder.buildSelect( 3665 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3666 3667 ResultRegs[0] = Lo.getReg(0); 3668 ResultRegs[1] = Hi.getReg(0); 3669 break; 3670 } 3671 case TargetOpcode::G_LSHR: 3672 case TargetOpcode::G_ASHR: { 3673 // Short: ShAmt < NewBitSize 3674 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3675 3676 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3677 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3678 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3679 3680 // Long: ShAmt >= NewBitSize 3681 MachineInstrBuilder HiL; 3682 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3683 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3684 } else { 3685 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3686 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3687 } 3688 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3689 {InH, AmtExcess}); // Lo from Hi part. 3690 3691 auto Lo = MIRBuilder.buildSelect( 3692 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3693 3694 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3695 3696 ResultRegs[0] = Lo.getReg(0); 3697 ResultRegs[1] = Hi.getReg(0); 3698 break; 3699 } 3700 default: 3701 llvm_unreachable("not a shift"); 3702 } 3703 3704 MIRBuilder.buildMerge(DstReg, ResultRegs); 3705 MI.eraseFromParent(); 3706 return Legalized; 3707 } 3708 3709 LegalizerHelper::LegalizeResult 3710 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3711 LLT MoreTy) { 3712 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3713 3714 Observer.changingInstr(MI); 3715 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3716 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3717 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3718 moreElementsVectorSrc(MI, MoreTy, I); 3719 } 3720 3721 MachineBasicBlock &MBB = *MI.getParent(); 3722 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3723 moreElementsVectorDst(MI, MoreTy, 0); 3724 Observer.changedInstr(MI); 3725 return Legalized; 3726 } 3727 3728 LegalizerHelper::LegalizeResult 3729 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3730 LLT MoreTy) { 3731 unsigned Opc = MI.getOpcode(); 3732 switch (Opc) { 3733 case TargetOpcode::G_IMPLICIT_DEF: 3734 case TargetOpcode::G_LOAD: { 3735 if (TypeIdx != 0) 3736 return UnableToLegalize; 3737 Observer.changingInstr(MI); 3738 moreElementsVectorDst(MI, MoreTy, 0); 3739 Observer.changedInstr(MI); 3740 return Legalized; 3741 } 3742 case TargetOpcode::G_STORE: 3743 if (TypeIdx != 0) 3744 return UnableToLegalize; 3745 Observer.changingInstr(MI); 3746 moreElementsVectorSrc(MI, MoreTy, 0); 3747 Observer.changedInstr(MI); 3748 return Legalized; 3749 case TargetOpcode::G_AND: 3750 case TargetOpcode::G_OR: 3751 case TargetOpcode::G_XOR: 3752 case TargetOpcode::G_SMIN: 3753 case TargetOpcode::G_SMAX: 3754 case TargetOpcode::G_UMIN: 3755 case TargetOpcode::G_UMAX: 3756 case TargetOpcode::G_FMINNUM: 3757 case TargetOpcode::G_FMAXNUM: 3758 case TargetOpcode::G_FMINNUM_IEEE: 3759 case TargetOpcode::G_FMAXNUM_IEEE: 3760 case TargetOpcode::G_FMINIMUM: 3761 case TargetOpcode::G_FMAXIMUM: { 3762 Observer.changingInstr(MI); 3763 moreElementsVectorSrc(MI, MoreTy, 1); 3764 moreElementsVectorSrc(MI, MoreTy, 2); 3765 moreElementsVectorDst(MI, MoreTy, 0); 3766 Observer.changedInstr(MI); 3767 return Legalized; 3768 } 3769 case TargetOpcode::G_EXTRACT: 3770 if (TypeIdx != 1) 3771 return UnableToLegalize; 3772 Observer.changingInstr(MI); 3773 moreElementsVectorSrc(MI, MoreTy, 1); 3774 Observer.changedInstr(MI); 3775 return Legalized; 3776 case TargetOpcode::G_INSERT: 3777 case TargetOpcode::G_FREEZE: 3778 if (TypeIdx != 0) 3779 return UnableToLegalize; 3780 Observer.changingInstr(MI); 3781 moreElementsVectorSrc(MI, MoreTy, 1); 3782 moreElementsVectorDst(MI, MoreTy, 0); 3783 Observer.changedInstr(MI); 3784 return Legalized; 3785 case TargetOpcode::G_SELECT: 3786 if (TypeIdx != 0) 3787 return UnableToLegalize; 3788 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3789 return UnableToLegalize; 3790 3791 Observer.changingInstr(MI); 3792 moreElementsVectorSrc(MI, MoreTy, 2); 3793 moreElementsVectorSrc(MI, MoreTy, 3); 3794 moreElementsVectorDst(MI, MoreTy, 0); 3795 Observer.changedInstr(MI); 3796 return Legalized; 3797 case TargetOpcode::G_UNMERGE_VALUES: { 3798 if (TypeIdx != 1) 3799 return UnableToLegalize; 3800 3801 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3802 int NumDst = MI.getNumOperands() - 1; 3803 moreElementsVectorSrc(MI, MoreTy, NumDst); 3804 3805 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3806 for (int I = 0; I != NumDst; ++I) 3807 MIB.addDef(MI.getOperand(I).getReg()); 3808 3809 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3810 for (int I = NumDst; I != NewNumDst; ++I) 3811 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3812 3813 MIB.addUse(MI.getOperand(NumDst).getReg()); 3814 MI.eraseFromParent(); 3815 return Legalized; 3816 } 3817 case TargetOpcode::G_PHI: 3818 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3819 default: 3820 return UnableToLegalize; 3821 } 3822 } 3823 3824 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3825 ArrayRef<Register> Src1Regs, 3826 ArrayRef<Register> Src2Regs, 3827 LLT NarrowTy) { 3828 MachineIRBuilder &B = MIRBuilder; 3829 unsigned SrcParts = Src1Regs.size(); 3830 unsigned DstParts = DstRegs.size(); 3831 3832 unsigned DstIdx = 0; // Low bits of the result. 3833 Register FactorSum = 3834 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3835 DstRegs[DstIdx] = FactorSum; 3836 3837 unsigned CarrySumPrevDstIdx; 3838 SmallVector<Register, 4> Factors; 3839 3840 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3841 // Collect low parts of muls for DstIdx. 3842 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3843 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3844 MachineInstrBuilder Mul = 3845 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3846 Factors.push_back(Mul.getReg(0)); 3847 } 3848 // Collect high parts of muls from previous DstIdx. 3849 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3850 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3851 MachineInstrBuilder Umulh = 3852 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3853 Factors.push_back(Umulh.getReg(0)); 3854 } 3855 // Add CarrySum from additions calculated for previous DstIdx. 3856 if (DstIdx != 1) { 3857 Factors.push_back(CarrySumPrevDstIdx); 3858 } 3859 3860 Register CarrySum; 3861 // Add all factors and accumulate all carries into CarrySum. 3862 if (DstIdx != DstParts - 1) { 3863 MachineInstrBuilder Uaddo = 3864 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3865 FactorSum = Uaddo.getReg(0); 3866 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3867 for (unsigned i = 2; i < Factors.size(); ++i) { 3868 MachineInstrBuilder Uaddo = 3869 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3870 FactorSum = Uaddo.getReg(0); 3871 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3872 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3873 } 3874 } else { 3875 // Since value for the next index is not calculated, neither is CarrySum. 3876 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3877 for (unsigned i = 2; i < Factors.size(); ++i) 3878 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3879 } 3880 3881 CarrySumPrevDstIdx = CarrySum; 3882 DstRegs[DstIdx] = FactorSum; 3883 Factors.clear(); 3884 } 3885 } 3886 3887 LegalizerHelper::LegalizeResult 3888 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3889 Register DstReg = MI.getOperand(0).getReg(); 3890 Register Src1 = MI.getOperand(1).getReg(); 3891 Register Src2 = MI.getOperand(2).getReg(); 3892 3893 LLT Ty = MRI.getType(DstReg); 3894 if (Ty.isVector()) 3895 return UnableToLegalize; 3896 3897 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3898 unsigned DstSize = Ty.getSizeInBits(); 3899 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3900 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3901 return UnableToLegalize; 3902 3903 unsigned NumDstParts = DstSize / NarrowSize; 3904 unsigned NumSrcParts = SrcSize / NarrowSize; 3905 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3906 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3907 3908 SmallVector<Register, 2> Src1Parts, Src2Parts; 3909 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3910 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3911 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3912 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3913 3914 // Take only high half of registers if this is high mul. 3915 ArrayRef<Register> DstRegs( 3916 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3917 MIRBuilder.buildMerge(DstReg, DstRegs); 3918 MI.eraseFromParent(); 3919 return Legalized; 3920 } 3921 3922 LegalizerHelper::LegalizeResult 3923 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3924 LLT NarrowTy) { 3925 if (TypeIdx != 1) 3926 return UnableToLegalize; 3927 3928 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3929 3930 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3931 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3932 // NarrowSize. 3933 if (SizeOp1 % NarrowSize != 0) 3934 return UnableToLegalize; 3935 int NumParts = SizeOp1 / NarrowSize; 3936 3937 SmallVector<Register, 2> SrcRegs, DstRegs; 3938 SmallVector<uint64_t, 2> Indexes; 3939 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3940 3941 Register OpReg = MI.getOperand(0).getReg(); 3942 uint64_t OpStart = MI.getOperand(2).getImm(); 3943 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3944 for (int i = 0; i < NumParts; ++i) { 3945 unsigned SrcStart = i * NarrowSize; 3946 3947 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3948 // No part of the extract uses this subregister, ignore it. 3949 continue; 3950 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3951 // The entire subregister is extracted, forward the value. 3952 DstRegs.push_back(SrcRegs[i]); 3953 continue; 3954 } 3955 3956 // OpSegStart is where this destination segment would start in OpReg if it 3957 // extended infinitely in both directions. 3958 int64_t ExtractOffset; 3959 uint64_t SegSize; 3960 if (OpStart < SrcStart) { 3961 ExtractOffset = 0; 3962 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3963 } else { 3964 ExtractOffset = OpStart - SrcStart; 3965 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3966 } 3967 3968 Register SegReg = SrcRegs[i]; 3969 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3970 // A genuine extract is needed. 3971 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3972 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3973 } 3974 3975 DstRegs.push_back(SegReg); 3976 } 3977 3978 Register DstReg = MI.getOperand(0).getReg(); 3979 if (MRI.getType(DstReg).isVector()) 3980 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3981 else if (DstRegs.size() > 1) 3982 MIRBuilder.buildMerge(DstReg, DstRegs); 3983 else 3984 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 3985 MI.eraseFromParent(); 3986 return Legalized; 3987 } 3988 3989 LegalizerHelper::LegalizeResult 3990 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3991 LLT NarrowTy) { 3992 // FIXME: Don't know how to handle secondary types yet. 3993 if (TypeIdx != 0) 3994 return UnableToLegalize; 3995 3996 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3997 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3998 3999 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4000 // NarrowSize. 4001 if (SizeOp0 % NarrowSize != 0) 4002 return UnableToLegalize; 4003 4004 int NumParts = SizeOp0 / NarrowSize; 4005 4006 SmallVector<Register, 2> SrcRegs, DstRegs; 4007 SmallVector<uint64_t, 2> Indexes; 4008 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4009 4010 Register OpReg = MI.getOperand(2).getReg(); 4011 uint64_t OpStart = MI.getOperand(3).getImm(); 4012 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4013 for (int i = 0; i < NumParts; ++i) { 4014 unsigned DstStart = i * NarrowSize; 4015 4016 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4017 // No part of the insert affects this subregister, forward the original. 4018 DstRegs.push_back(SrcRegs[i]); 4019 continue; 4020 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4021 // The entire subregister is defined by this insert, forward the new 4022 // value. 4023 DstRegs.push_back(OpReg); 4024 continue; 4025 } 4026 4027 // OpSegStart is where this destination segment would start in OpReg if it 4028 // extended infinitely in both directions. 4029 int64_t ExtractOffset, InsertOffset; 4030 uint64_t SegSize; 4031 if (OpStart < DstStart) { 4032 InsertOffset = 0; 4033 ExtractOffset = DstStart - OpStart; 4034 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4035 } else { 4036 InsertOffset = OpStart - DstStart; 4037 ExtractOffset = 0; 4038 SegSize = 4039 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4040 } 4041 4042 Register SegReg = OpReg; 4043 if (ExtractOffset != 0 || SegSize != OpSize) { 4044 // A genuine extract is needed. 4045 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4046 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4047 } 4048 4049 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4050 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4051 DstRegs.push_back(DstReg); 4052 } 4053 4054 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4055 Register DstReg = MI.getOperand(0).getReg(); 4056 if(MRI.getType(DstReg).isVector()) 4057 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4058 else 4059 MIRBuilder.buildMerge(DstReg, DstRegs); 4060 MI.eraseFromParent(); 4061 return Legalized; 4062 } 4063 4064 LegalizerHelper::LegalizeResult 4065 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4066 LLT NarrowTy) { 4067 Register DstReg = MI.getOperand(0).getReg(); 4068 LLT DstTy = MRI.getType(DstReg); 4069 4070 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4071 4072 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4073 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4074 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4075 LLT LeftoverTy; 4076 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4077 Src0Regs, Src0LeftoverRegs)) 4078 return UnableToLegalize; 4079 4080 LLT Unused; 4081 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4082 Src1Regs, Src1LeftoverRegs)) 4083 llvm_unreachable("inconsistent extractParts result"); 4084 4085 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4086 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4087 {Src0Regs[I], Src1Regs[I]}); 4088 DstRegs.push_back(Inst.getReg(0)); 4089 } 4090 4091 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4092 auto Inst = MIRBuilder.buildInstr( 4093 MI.getOpcode(), 4094 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4095 DstLeftoverRegs.push_back(Inst.getReg(0)); 4096 } 4097 4098 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4099 LeftoverTy, DstLeftoverRegs); 4100 4101 MI.eraseFromParent(); 4102 return Legalized; 4103 } 4104 4105 LegalizerHelper::LegalizeResult 4106 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4107 LLT NarrowTy) { 4108 if (TypeIdx != 0) 4109 return UnableToLegalize; 4110 4111 Register DstReg = MI.getOperand(0).getReg(); 4112 Register SrcReg = MI.getOperand(1).getReg(); 4113 4114 LLT DstTy = MRI.getType(DstReg); 4115 if (DstTy.isVector()) 4116 return UnableToLegalize; 4117 4118 SmallVector<Register, 8> Parts; 4119 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4120 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4121 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4122 4123 MI.eraseFromParent(); 4124 return Legalized; 4125 } 4126 4127 LegalizerHelper::LegalizeResult 4128 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4129 LLT NarrowTy) { 4130 if (TypeIdx != 0) 4131 return UnableToLegalize; 4132 4133 Register CondReg = MI.getOperand(1).getReg(); 4134 LLT CondTy = MRI.getType(CondReg); 4135 if (CondTy.isVector()) // TODO: Handle vselect 4136 return UnableToLegalize; 4137 4138 Register DstReg = MI.getOperand(0).getReg(); 4139 LLT DstTy = MRI.getType(DstReg); 4140 4141 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4142 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4143 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4144 LLT LeftoverTy; 4145 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4146 Src1Regs, Src1LeftoverRegs)) 4147 return UnableToLegalize; 4148 4149 LLT Unused; 4150 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4151 Src2Regs, Src2LeftoverRegs)) 4152 llvm_unreachable("inconsistent extractParts result"); 4153 4154 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4155 auto Select = MIRBuilder.buildSelect(NarrowTy, 4156 CondReg, Src1Regs[I], Src2Regs[I]); 4157 DstRegs.push_back(Select.getReg(0)); 4158 } 4159 4160 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4161 auto Select = MIRBuilder.buildSelect( 4162 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4163 DstLeftoverRegs.push_back(Select.getReg(0)); 4164 } 4165 4166 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4167 LeftoverTy, DstLeftoverRegs); 4168 4169 MI.eraseFromParent(); 4170 return Legalized; 4171 } 4172 4173 LegalizerHelper::LegalizeResult 4174 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4175 LLT NarrowTy) { 4176 if (TypeIdx != 1) 4177 return UnableToLegalize; 4178 4179 Register DstReg = MI.getOperand(0).getReg(); 4180 Register SrcReg = MI.getOperand(1).getReg(); 4181 LLT DstTy = MRI.getType(DstReg); 4182 LLT SrcTy = MRI.getType(SrcReg); 4183 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4184 4185 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4186 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4187 4188 MachineIRBuilder &B = MIRBuilder; 4189 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4190 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4191 auto C_0 = B.buildConstant(NarrowTy, 0); 4192 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4193 UnmergeSrc.getReg(1), C_0); 4194 auto LoCTLZ = IsUndef ? 4195 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4196 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4197 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4198 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4199 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4200 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4201 4202 MI.eraseFromParent(); 4203 return Legalized; 4204 } 4205 4206 return UnableToLegalize; 4207 } 4208 4209 LegalizerHelper::LegalizeResult 4210 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4211 LLT NarrowTy) { 4212 if (TypeIdx != 1) 4213 return UnableToLegalize; 4214 4215 Register DstReg = MI.getOperand(0).getReg(); 4216 Register SrcReg = MI.getOperand(1).getReg(); 4217 LLT DstTy = MRI.getType(DstReg); 4218 LLT SrcTy = MRI.getType(SrcReg); 4219 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4220 4221 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4222 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4223 4224 MachineIRBuilder &B = MIRBuilder; 4225 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4226 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4227 auto C_0 = B.buildConstant(NarrowTy, 0); 4228 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4229 UnmergeSrc.getReg(0), C_0); 4230 auto HiCTTZ = IsUndef ? 4231 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4232 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4233 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4234 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4235 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4236 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4237 4238 MI.eraseFromParent(); 4239 return Legalized; 4240 } 4241 4242 return UnableToLegalize; 4243 } 4244 4245 LegalizerHelper::LegalizeResult 4246 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4247 LLT NarrowTy) { 4248 if (TypeIdx != 1) 4249 return UnableToLegalize; 4250 4251 Register DstReg = MI.getOperand(0).getReg(); 4252 LLT DstTy = MRI.getType(DstReg); 4253 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4254 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4255 4256 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4257 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4258 4259 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4260 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4261 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4262 4263 MI.eraseFromParent(); 4264 return Legalized; 4265 } 4266 4267 return UnableToLegalize; 4268 } 4269 4270 LegalizerHelper::LegalizeResult 4271 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4272 unsigned Opc = MI.getOpcode(); 4273 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4274 auto isSupported = [this](const LegalityQuery &Q) { 4275 auto QAction = LI.getAction(Q).Action; 4276 return QAction == Legal || QAction == Libcall || QAction == Custom; 4277 }; 4278 switch (Opc) { 4279 default: 4280 return UnableToLegalize; 4281 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4282 // This trivially expands to CTLZ. 4283 Observer.changingInstr(MI); 4284 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4285 Observer.changedInstr(MI); 4286 return Legalized; 4287 } 4288 case TargetOpcode::G_CTLZ: { 4289 Register DstReg = MI.getOperand(0).getReg(); 4290 Register SrcReg = MI.getOperand(1).getReg(); 4291 LLT DstTy = MRI.getType(DstReg); 4292 LLT SrcTy = MRI.getType(SrcReg); 4293 unsigned Len = SrcTy.getSizeInBits(); 4294 4295 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4296 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4297 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4298 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4299 auto ICmp = MIRBuilder.buildICmp( 4300 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4301 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4302 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4303 MI.eraseFromParent(); 4304 return Legalized; 4305 } 4306 // for now, we do this: 4307 // NewLen = NextPowerOf2(Len); 4308 // x = x | (x >> 1); 4309 // x = x | (x >> 2); 4310 // ... 4311 // x = x | (x >>16); 4312 // x = x | (x >>32); // for 64-bit input 4313 // Upto NewLen/2 4314 // return Len - popcount(x); 4315 // 4316 // Ref: "Hacker's Delight" by Henry Warren 4317 Register Op = SrcReg; 4318 unsigned NewLen = PowerOf2Ceil(Len); 4319 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4320 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4321 auto MIBOp = MIRBuilder.buildOr( 4322 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4323 Op = MIBOp.getReg(0); 4324 } 4325 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4326 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4327 MIBPop); 4328 MI.eraseFromParent(); 4329 return Legalized; 4330 } 4331 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4332 // This trivially expands to CTTZ. 4333 Observer.changingInstr(MI); 4334 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4335 Observer.changedInstr(MI); 4336 return Legalized; 4337 } 4338 case TargetOpcode::G_CTTZ: { 4339 Register DstReg = MI.getOperand(0).getReg(); 4340 Register SrcReg = MI.getOperand(1).getReg(); 4341 LLT DstTy = MRI.getType(DstReg); 4342 LLT SrcTy = MRI.getType(SrcReg); 4343 4344 unsigned Len = SrcTy.getSizeInBits(); 4345 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4346 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4347 // zero. 4348 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4349 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4350 auto ICmp = MIRBuilder.buildICmp( 4351 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4352 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4353 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4354 MI.eraseFromParent(); 4355 return Legalized; 4356 } 4357 // for now, we use: { return popcount(~x & (x - 1)); } 4358 // unless the target has ctlz but not ctpop, in which case we use: 4359 // { return 32 - nlz(~x & (x-1)); } 4360 // Ref: "Hacker's Delight" by Henry Warren 4361 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4362 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4363 auto MIBTmp = MIRBuilder.buildAnd( 4364 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4365 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4366 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4367 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4368 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4369 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4370 MI.eraseFromParent(); 4371 return Legalized; 4372 } 4373 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4374 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4375 return Legalized; 4376 } 4377 case TargetOpcode::G_CTPOP: { 4378 unsigned Size = Ty.getSizeInBits(); 4379 MachineIRBuilder &B = MIRBuilder; 4380 4381 // Count set bits in blocks of 2 bits. Default approach would be 4382 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4383 // We use following formula instead: 4384 // B2Count = val - { (val >> 1) & 0x55555555 } 4385 // since it gives same result in blocks of 2 with one instruction less. 4386 auto C_1 = B.buildConstant(Ty, 1); 4387 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4388 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4389 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4390 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4391 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4392 4393 // In order to get count in blocks of 4 add values from adjacent block of 2. 4394 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4395 auto C_2 = B.buildConstant(Ty, 2); 4396 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4397 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4398 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4399 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4400 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4401 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4402 4403 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4404 // addition since count value sits in range {0,...,8} and 4 bits are enough 4405 // to hold such binary values. After addition high 4 bits still hold count 4406 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4407 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4408 auto C_4 = B.buildConstant(Ty, 4); 4409 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4410 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4411 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4412 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4413 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4414 4415 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4416 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4417 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4418 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4419 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4420 4421 // Shift count result from 8 high bits to low bits. 4422 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4423 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4424 4425 MI.eraseFromParent(); 4426 return Legalized; 4427 } 4428 } 4429 } 4430 4431 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4432 // representation. 4433 LegalizerHelper::LegalizeResult 4434 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4435 Register Dst = MI.getOperand(0).getReg(); 4436 Register Src = MI.getOperand(1).getReg(); 4437 const LLT S64 = LLT::scalar(64); 4438 const LLT S32 = LLT::scalar(32); 4439 const LLT S1 = LLT::scalar(1); 4440 4441 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4442 4443 // unsigned cul2f(ulong u) { 4444 // uint lz = clz(u); 4445 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4446 // u = (u << lz) & 0x7fffffffffffffffUL; 4447 // ulong t = u & 0xffffffffffUL; 4448 // uint v = (e << 23) | (uint)(u >> 40); 4449 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4450 // return as_float(v + r); 4451 // } 4452 4453 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4454 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4455 4456 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4457 4458 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4459 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4460 4461 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4462 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4463 4464 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4465 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4466 4467 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4468 4469 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4470 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4471 4472 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4473 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4474 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4475 4476 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4477 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4478 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4479 auto One = MIRBuilder.buildConstant(S32, 1); 4480 4481 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4482 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4483 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4484 MIRBuilder.buildAdd(Dst, V, R); 4485 4486 MI.eraseFromParent(); 4487 return Legalized; 4488 } 4489 4490 LegalizerHelper::LegalizeResult 4491 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4492 Register Dst = MI.getOperand(0).getReg(); 4493 Register Src = MI.getOperand(1).getReg(); 4494 LLT DstTy = MRI.getType(Dst); 4495 LLT SrcTy = MRI.getType(Src); 4496 4497 if (SrcTy == LLT::scalar(1)) { 4498 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4499 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4500 MIRBuilder.buildSelect(Dst, Src, True, False); 4501 MI.eraseFromParent(); 4502 return Legalized; 4503 } 4504 4505 if (SrcTy != LLT::scalar(64)) 4506 return UnableToLegalize; 4507 4508 if (DstTy == LLT::scalar(32)) { 4509 // TODO: SelectionDAG has several alternative expansions to port which may 4510 // be more reasonble depending on the available instructions. If a target 4511 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4512 // intermediate type, this is probably worse. 4513 return lowerU64ToF32BitOps(MI); 4514 } 4515 4516 return UnableToLegalize; 4517 } 4518 4519 LegalizerHelper::LegalizeResult 4520 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4521 Register Dst = MI.getOperand(0).getReg(); 4522 Register Src = MI.getOperand(1).getReg(); 4523 LLT DstTy = MRI.getType(Dst); 4524 LLT SrcTy = MRI.getType(Src); 4525 4526 const LLT S64 = LLT::scalar(64); 4527 const LLT S32 = LLT::scalar(32); 4528 const LLT S1 = LLT::scalar(1); 4529 4530 if (SrcTy == S1) { 4531 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4532 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4533 MIRBuilder.buildSelect(Dst, Src, True, False); 4534 MI.eraseFromParent(); 4535 return Legalized; 4536 } 4537 4538 if (SrcTy != S64) 4539 return UnableToLegalize; 4540 4541 if (DstTy == S32) { 4542 // signed cl2f(long l) { 4543 // long s = l >> 63; 4544 // float r = cul2f((l + s) ^ s); 4545 // return s ? -r : r; 4546 // } 4547 Register L = Src; 4548 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4549 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4550 4551 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4552 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4553 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4554 4555 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4556 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4557 MIRBuilder.buildConstant(S64, 0)); 4558 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4559 MI.eraseFromParent(); 4560 return Legalized; 4561 } 4562 4563 return UnableToLegalize; 4564 } 4565 4566 LegalizerHelper::LegalizeResult 4567 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4568 Register Dst = MI.getOperand(0).getReg(); 4569 Register Src = MI.getOperand(1).getReg(); 4570 LLT DstTy = MRI.getType(Dst); 4571 LLT SrcTy = MRI.getType(Src); 4572 const LLT S64 = LLT::scalar(64); 4573 const LLT S32 = LLT::scalar(32); 4574 4575 if (SrcTy != S64 && SrcTy != S32) 4576 return UnableToLegalize; 4577 if (DstTy != S32 && DstTy != S64) 4578 return UnableToLegalize; 4579 4580 // FPTOSI gives same result as FPTOUI for positive signed integers. 4581 // FPTOUI needs to deal with fp values that convert to unsigned integers 4582 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4583 4584 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4585 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4586 : APFloat::IEEEdouble(), 4587 APInt::getNullValue(SrcTy.getSizeInBits())); 4588 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4589 4590 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4591 4592 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4593 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4594 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4595 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4596 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4597 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4598 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4599 4600 const LLT S1 = LLT::scalar(1); 4601 4602 MachineInstrBuilder FCMP = 4603 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4604 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4605 4606 MI.eraseFromParent(); 4607 return Legalized; 4608 } 4609 4610 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4611 Register Dst = MI.getOperand(0).getReg(); 4612 Register Src = MI.getOperand(1).getReg(); 4613 LLT DstTy = MRI.getType(Dst); 4614 LLT SrcTy = MRI.getType(Src); 4615 const LLT S64 = LLT::scalar(64); 4616 const LLT S32 = LLT::scalar(32); 4617 4618 // FIXME: Only f32 to i64 conversions are supported. 4619 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4620 return UnableToLegalize; 4621 4622 // Expand f32 -> i64 conversion 4623 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4624 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4625 4626 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4627 4628 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4629 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4630 4631 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4632 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4633 4634 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4635 APInt::getSignMask(SrcEltBits)); 4636 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4637 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4638 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4639 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4640 4641 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4642 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4643 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4644 4645 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4646 R = MIRBuilder.buildZExt(DstTy, R); 4647 4648 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4649 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4650 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4651 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4652 4653 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4654 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4655 4656 const LLT S1 = LLT::scalar(1); 4657 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4658 S1, Exponent, ExponentLoBit); 4659 4660 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4661 4662 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4663 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4664 4665 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4666 4667 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4668 S1, Exponent, ZeroSrcTy); 4669 4670 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4671 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4672 4673 MI.eraseFromParent(); 4674 return Legalized; 4675 } 4676 4677 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4678 LegalizerHelper::LegalizeResult 4679 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4680 Register Dst = MI.getOperand(0).getReg(); 4681 Register Src = MI.getOperand(1).getReg(); 4682 4683 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4684 return UnableToLegalize; 4685 4686 const unsigned ExpMask = 0x7ff; 4687 const unsigned ExpBiasf64 = 1023; 4688 const unsigned ExpBiasf16 = 15; 4689 const LLT S32 = LLT::scalar(32); 4690 const LLT S1 = LLT::scalar(1); 4691 4692 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4693 Register U = Unmerge.getReg(0); 4694 Register UH = Unmerge.getReg(1); 4695 4696 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4697 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4698 4699 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4700 // add the f16 bias (15) to get the biased exponent for the f16 format. 4701 E = MIRBuilder.buildAdd( 4702 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4703 4704 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4705 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4706 4707 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4708 MIRBuilder.buildConstant(S32, 0x1ff)); 4709 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4710 4711 auto Zero = MIRBuilder.buildConstant(S32, 0); 4712 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4713 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4714 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4715 4716 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4717 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4718 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4719 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4720 4721 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4722 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4723 4724 // N = M | (E << 12); 4725 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4726 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4727 4728 // B = clamp(1-E, 0, 13); 4729 auto One = MIRBuilder.buildConstant(S32, 1); 4730 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4731 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4732 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4733 4734 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4735 MIRBuilder.buildConstant(S32, 0x1000)); 4736 4737 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4738 auto D0 = MIRBuilder.buildShl(S32, D, B); 4739 4740 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4741 D0, SigSetHigh); 4742 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4743 D = MIRBuilder.buildOr(S32, D, D1); 4744 4745 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4746 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4747 4748 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4749 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4750 4751 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4752 MIRBuilder.buildConstant(S32, 3)); 4753 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4754 4755 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4756 MIRBuilder.buildConstant(S32, 5)); 4757 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4758 4759 V1 = MIRBuilder.buildOr(S32, V0, V1); 4760 V = MIRBuilder.buildAdd(S32, V, V1); 4761 4762 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4763 E, MIRBuilder.buildConstant(S32, 30)); 4764 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4765 MIRBuilder.buildConstant(S32, 0x7c00), V); 4766 4767 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4768 E, MIRBuilder.buildConstant(S32, 1039)); 4769 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4770 4771 // Extract the sign bit. 4772 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4773 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4774 4775 // Insert the sign bit 4776 V = MIRBuilder.buildOr(S32, Sign, V); 4777 4778 MIRBuilder.buildTrunc(Dst, V); 4779 MI.eraseFromParent(); 4780 return Legalized; 4781 } 4782 4783 LegalizerHelper::LegalizeResult 4784 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4785 Register Dst = MI.getOperand(0).getReg(); 4786 Register Src = MI.getOperand(1).getReg(); 4787 4788 LLT DstTy = MRI.getType(Dst); 4789 LLT SrcTy = MRI.getType(Src); 4790 const LLT S64 = LLT::scalar(64); 4791 const LLT S16 = LLT::scalar(16); 4792 4793 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4794 return lowerFPTRUNC_F64_TO_F16(MI); 4795 4796 return UnableToLegalize; 4797 } 4798 4799 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4800 switch (Opc) { 4801 case TargetOpcode::G_SMIN: 4802 return CmpInst::ICMP_SLT; 4803 case TargetOpcode::G_SMAX: 4804 return CmpInst::ICMP_SGT; 4805 case TargetOpcode::G_UMIN: 4806 return CmpInst::ICMP_ULT; 4807 case TargetOpcode::G_UMAX: 4808 return CmpInst::ICMP_UGT; 4809 default: 4810 llvm_unreachable("not in integer min/max"); 4811 } 4812 } 4813 4814 LegalizerHelper::LegalizeResult 4815 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4816 Register Dst = MI.getOperand(0).getReg(); 4817 Register Src0 = MI.getOperand(1).getReg(); 4818 Register Src1 = MI.getOperand(2).getReg(); 4819 4820 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4821 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4822 4823 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4824 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4825 4826 MI.eraseFromParent(); 4827 return Legalized; 4828 } 4829 4830 LegalizerHelper::LegalizeResult 4831 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4832 Register Dst = MI.getOperand(0).getReg(); 4833 Register Src0 = MI.getOperand(1).getReg(); 4834 Register Src1 = MI.getOperand(2).getReg(); 4835 4836 const LLT Src0Ty = MRI.getType(Src0); 4837 const LLT Src1Ty = MRI.getType(Src1); 4838 4839 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4840 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4841 4842 auto SignBitMask = MIRBuilder.buildConstant( 4843 Src0Ty, APInt::getSignMask(Src0Size)); 4844 4845 auto NotSignBitMask = MIRBuilder.buildConstant( 4846 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4847 4848 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4849 MachineInstr *Or; 4850 4851 if (Src0Ty == Src1Ty) { 4852 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 4853 Or = MIRBuilder.buildOr(Dst, And0, And1); 4854 } else if (Src0Size > Src1Size) { 4855 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4856 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4857 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4858 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4859 Or = MIRBuilder.buildOr(Dst, And0, And1); 4860 } else { 4861 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4862 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4863 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4864 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4865 Or = MIRBuilder.buildOr(Dst, And0, And1); 4866 } 4867 4868 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4869 // constants are a nan and -0.0, but the final result should preserve 4870 // everything. 4871 if (unsigned Flags = MI.getFlags()) 4872 Or->setFlags(Flags); 4873 4874 MI.eraseFromParent(); 4875 return Legalized; 4876 } 4877 4878 LegalizerHelper::LegalizeResult 4879 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4880 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4881 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4882 4883 Register Dst = MI.getOperand(0).getReg(); 4884 Register Src0 = MI.getOperand(1).getReg(); 4885 Register Src1 = MI.getOperand(2).getReg(); 4886 LLT Ty = MRI.getType(Dst); 4887 4888 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4889 // Insert canonicalizes if it's possible we need to quiet to get correct 4890 // sNaN behavior. 4891 4892 // Note this must be done here, and not as an optimization combine in the 4893 // absence of a dedicate quiet-snan instruction as we're using an 4894 // omni-purpose G_FCANONICALIZE. 4895 if (!isKnownNeverSNaN(Src0, MRI)) 4896 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4897 4898 if (!isKnownNeverSNaN(Src1, MRI)) 4899 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4900 } 4901 4902 // If there are no nans, it's safe to simply replace this with the non-IEEE 4903 // version. 4904 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4905 MI.eraseFromParent(); 4906 return Legalized; 4907 } 4908 4909 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4910 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4911 Register DstReg = MI.getOperand(0).getReg(); 4912 LLT Ty = MRI.getType(DstReg); 4913 unsigned Flags = MI.getFlags(); 4914 4915 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4916 Flags); 4917 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4918 MI.eraseFromParent(); 4919 return Legalized; 4920 } 4921 4922 LegalizerHelper::LegalizeResult 4923 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4924 Register DstReg = MI.getOperand(0).getReg(); 4925 Register X = MI.getOperand(1).getReg(); 4926 const unsigned Flags = MI.getFlags(); 4927 const LLT Ty = MRI.getType(DstReg); 4928 const LLT CondTy = Ty.changeElementSize(1); 4929 4930 // round(x) => 4931 // t = trunc(x); 4932 // d = fabs(x - t); 4933 // o = copysign(1.0f, x); 4934 // return t + (d >= 0.5 ? o : 0.0); 4935 4936 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 4937 4938 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 4939 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 4940 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4941 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 4942 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 4943 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 4944 4945 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 4946 Flags); 4947 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 4948 4949 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 4950 4951 MI.eraseFromParent(); 4952 return Legalized; 4953 } 4954 4955 LegalizerHelper::LegalizeResult 4956 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 4957 Register DstReg = MI.getOperand(0).getReg(); 4958 Register SrcReg = MI.getOperand(1).getReg(); 4959 unsigned Flags = MI.getFlags(); 4960 LLT Ty = MRI.getType(DstReg); 4961 const LLT CondTy = Ty.changeElementSize(1); 4962 4963 // result = trunc(src); 4964 // if (src < 0.0 && src != result) 4965 // result += -1.0. 4966 4967 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4968 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4969 4970 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4971 SrcReg, Zero, Flags); 4972 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4973 SrcReg, Trunc, Flags); 4974 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4975 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4976 4977 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 4978 MI.eraseFromParent(); 4979 return Legalized; 4980 } 4981 4982 LegalizerHelper::LegalizeResult 4983 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 4984 const unsigned NumOps = MI.getNumOperands(); 4985 Register DstReg = MI.getOperand(0).getReg(); 4986 Register Src0Reg = MI.getOperand(1).getReg(); 4987 LLT DstTy = MRI.getType(DstReg); 4988 LLT SrcTy = MRI.getType(Src0Reg); 4989 unsigned PartSize = SrcTy.getSizeInBits(); 4990 4991 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 4992 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 4993 4994 for (unsigned I = 2; I != NumOps; ++I) { 4995 const unsigned Offset = (I - 1) * PartSize; 4996 4997 Register SrcReg = MI.getOperand(I).getReg(); 4998 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 4999 5000 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5001 MRI.createGenericVirtualRegister(WideTy); 5002 5003 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5004 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5005 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5006 ResultReg = NextResult; 5007 } 5008 5009 if (DstTy.isPointer()) { 5010 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5011 DstTy.getAddressSpace())) { 5012 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5013 return UnableToLegalize; 5014 } 5015 5016 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5017 } 5018 5019 MI.eraseFromParent(); 5020 return Legalized; 5021 } 5022 5023 LegalizerHelper::LegalizeResult 5024 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5025 const unsigned NumDst = MI.getNumOperands() - 1; 5026 Register SrcReg = MI.getOperand(NumDst).getReg(); 5027 Register Dst0Reg = MI.getOperand(0).getReg(); 5028 LLT DstTy = MRI.getType(Dst0Reg); 5029 if (DstTy.isPointer()) 5030 return UnableToLegalize; // TODO 5031 5032 SrcReg = coerceToScalar(SrcReg); 5033 if (!SrcReg) 5034 return UnableToLegalize; 5035 5036 // Expand scalarizing unmerge as bitcast to integer and shift. 5037 LLT IntTy = MRI.getType(SrcReg); 5038 5039 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5040 5041 const unsigned DstSize = DstTy.getSizeInBits(); 5042 unsigned Offset = DstSize; 5043 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5044 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5045 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5046 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5047 } 5048 5049 MI.eraseFromParent(); 5050 return Legalized; 5051 } 5052 5053 LegalizerHelper::LegalizeResult 5054 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5055 Register DstReg = MI.getOperand(0).getReg(); 5056 Register Src0Reg = MI.getOperand(1).getReg(); 5057 Register Src1Reg = MI.getOperand(2).getReg(); 5058 LLT Src0Ty = MRI.getType(Src0Reg); 5059 LLT DstTy = MRI.getType(DstReg); 5060 LLT IdxTy = LLT::scalar(32); 5061 5062 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5063 5064 if (DstTy.isScalar()) { 5065 if (Src0Ty.isVector()) 5066 return UnableToLegalize; 5067 5068 // This is just a SELECT. 5069 assert(Mask.size() == 1 && "Expected a single mask element"); 5070 Register Val; 5071 if (Mask[0] < 0 || Mask[0] > 1) 5072 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5073 else 5074 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5075 MIRBuilder.buildCopy(DstReg, Val); 5076 MI.eraseFromParent(); 5077 return Legalized; 5078 } 5079 5080 Register Undef; 5081 SmallVector<Register, 32> BuildVec; 5082 LLT EltTy = DstTy.getElementType(); 5083 5084 for (int Idx : Mask) { 5085 if (Idx < 0) { 5086 if (!Undef.isValid()) 5087 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5088 BuildVec.push_back(Undef); 5089 continue; 5090 } 5091 5092 if (Src0Ty.isScalar()) { 5093 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5094 } else { 5095 int NumElts = Src0Ty.getNumElements(); 5096 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5097 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5098 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5099 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5100 BuildVec.push_back(Extract.getReg(0)); 5101 } 5102 } 5103 5104 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5105 MI.eraseFromParent(); 5106 return Legalized; 5107 } 5108 5109 LegalizerHelper::LegalizeResult 5110 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5111 const auto &MF = *MI.getMF(); 5112 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5113 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5114 return UnableToLegalize; 5115 5116 Register Dst = MI.getOperand(0).getReg(); 5117 Register AllocSize = MI.getOperand(1).getReg(); 5118 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5119 5120 LLT PtrTy = MRI.getType(Dst); 5121 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5122 5123 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 5124 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5125 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5126 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5127 5128 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5129 // have to generate an extra instruction to negate the alloc and then use 5130 // G_PTR_ADD to add the negative offset. 5131 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5132 if (Alignment > Align(1)) { 5133 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5134 AlignMask.negate(); 5135 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5136 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5137 } 5138 5139 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5140 MIRBuilder.buildCopy(SPReg, SPTmp); 5141 MIRBuilder.buildCopy(Dst, SPTmp); 5142 5143 MI.eraseFromParent(); 5144 return Legalized; 5145 } 5146 5147 LegalizerHelper::LegalizeResult 5148 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5149 Register Dst = MI.getOperand(0).getReg(); 5150 Register Src = MI.getOperand(1).getReg(); 5151 unsigned Offset = MI.getOperand(2).getImm(); 5152 5153 LLT DstTy = MRI.getType(Dst); 5154 LLT SrcTy = MRI.getType(Src); 5155 5156 if (DstTy.isScalar() && 5157 (SrcTy.isScalar() || 5158 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5159 LLT SrcIntTy = SrcTy; 5160 if (!SrcTy.isScalar()) { 5161 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5162 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5163 } 5164 5165 if (Offset == 0) 5166 MIRBuilder.buildTrunc(Dst, Src); 5167 else { 5168 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5169 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5170 MIRBuilder.buildTrunc(Dst, Shr); 5171 } 5172 5173 MI.eraseFromParent(); 5174 return Legalized; 5175 } 5176 5177 return UnableToLegalize; 5178 } 5179 5180 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5181 Register Dst = MI.getOperand(0).getReg(); 5182 Register Src = MI.getOperand(1).getReg(); 5183 Register InsertSrc = MI.getOperand(2).getReg(); 5184 uint64_t Offset = MI.getOperand(3).getImm(); 5185 5186 LLT DstTy = MRI.getType(Src); 5187 LLT InsertTy = MRI.getType(InsertSrc); 5188 5189 if (InsertTy.isVector() || 5190 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5191 return UnableToLegalize; 5192 5193 const DataLayout &DL = MIRBuilder.getDataLayout(); 5194 if ((DstTy.isPointer() && 5195 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5196 (InsertTy.isPointer() && 5197 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5198 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5199 return UnableToLegalize; 5200 } 5201 5202 LLT IntDstTy = DstTy; 5203 5204 if (!DstTy.isScalar()) { 5205 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5206 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5207 } 5208 5209 if (!InsertTy.isScalar()) { 5210 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5211 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5212 } 5213 5214 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5215 if (Offset != 0) { 5216 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5217 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5218 } 5219 5220 APInt MaskVal = APInt::getBitsSetWithWrap( 5221 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5222 5223 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5224 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5225 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5226 5227 MIRBuilder.buildCast(Dst, Or); 5228 MI.eraseFromParent(); 5229 return Legalized; 5230 } 5231 5232 LegalizerHelper::LegalizeResult 5233 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5234 Register Dst0 = MI.getOperand(0).getReg(); 5235 Register Dst1 = MI.getOperand(1).getReg(); 5236 Register LHS = MI.getOperand(2).getReg(); 5237 Register RHS = MI.getOperand(3).getReg(); 5238 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5239 5240 LLT Ty = MRI.getType(Dst0); 5241 LLT BoolTy = MRI.getType(Dst1); 5242 5243 if (IsAdd) 5244 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5245 else 5246 MIRBuilder.buildSub(Dst0, LHS, RHS); 5247 5248 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5249 5250 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5251 5252 // For an addition, the result should be less than one of the operands (LHS) 5253 // if and only if the other operand (RHS) is negative, otherwise there will 5254 // be overflow. 5255 // For a subtraction, the result should be less than one of the operands 5256 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5257 // otherwise there will be overflow. 5258 auto ResultLowerThanLHS = 5259 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5260 auto ConditionRHS = MIRBuilder.buildICmp( 5261 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5262 5263 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5264 MI.eraseFromParent(); 5265 return Legalized; 5266 } 5267 5268 LegalizerHelper::LegalizeResult 5269 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5270 Register Dst = MI.getOperand(0).getReg(); 5271 Register Src = MI.getOperand(1).getReg(); 5272 const LLT Ty = MRI.getType(Src); 5273 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5274 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5275 5276 // Swap most and least significant byte, set remaining bytes in Res to zero. 5277 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5278 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5279 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5280 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5281 5282 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5283 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5284 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5285 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5286 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5287 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5288 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5289 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5290 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5291 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5292 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5293 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5294 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5295 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5296 } 5297 Res.getInstr()->getOperand(0).setReg(Dst); 5298 5299 MI.eraseFromParent(); 5300 return Legalized; 5301 } 5302 5303 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5304 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5305 MachineInstrBuilder Src, APInt Mask) { 5306 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5307 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5308 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5309 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5310 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5311 return B.buildOr(Dst, LHS, RHS); 5312 } 5313 5314 LegalizerHelper::LegalizeResult 5315 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5316 Register Dst = MI.getOperand(0).getReg(); 5317 Register Src = MI.getOperand(1).getReg(); 5318 const LLT Ty = MRI.getType(Src); 5319 unsigned Size = Ty.getSizeInBits(); 5320 5321 MachineInstrBuilder BSWAP = 5322 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5323 5324 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5325 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5326 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5327 MachineInstrBuilder Swap4 = 5328 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5329 5330 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5331 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5332 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5333 MachineInstrBuilder Swap2 = 5334 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5335 5336 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5337 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5338 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5339 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5340 5341 MI.eraseFromParent(); 5342 return Legalized; 5343 } 5344 5345 LegalizerHelper::LegalizeResult 5346 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5347 MachineFunction &MF = MIRBuilder.getMF(); 5348 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5349 const TargetLowering *TLI = STI.getTargetLowering(); 5350 5351 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5352 int NameOpIdx = IsRead ? 1 : 0; 5353 int ValRegIndex = IsRead ? 0 : 1; 5354 5355 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5356 const LLT Ty = MRI.getType(ValReg); 5357 const MDString *RegStr = cast<MDString>( 5358 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5359 5360 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5361 if (!PhysReg.isValid()) 5362 return UnableToLegalize; 5363 5364 if (IsRead) 5365 MIRBuilder.buildCopy(ValReg, PhysReg); 5366 else 5367 MIRBuilder.buildCopy(PhysReg, ValReg); 5368 5369 MI.eraseFromParent(); 5370 return Legalized; 5371 } 5372