1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 19 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 20 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 21 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 22 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/CodeGen/GlobalISel/Utils.h" 25 #include "llvm/CodeGen/MachineConstantPool.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 29 #include "llvm/CodeGen/TargetFrameLowering.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetOpcodes.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include <numeric> 40 #include <optional> 41 42 #define DEBUG_TYPE "legalizer" 43 44 using namespace llvm; 45 using namespace LegalizeActions; 46 using namespace MIPatternMatch; 47 48 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 49 /// 50 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 51 /// with any leftover piece as type \p LeftoverTy 52 /// 53 /// Returns -1 in the first element of the pair if the breakdown is not 54 /// satisfiable. 55 static std::pair<int, int> 56 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 57 assert(!LeftoverTy.isValid() && "this is an out argument"); 58 59 unsigned Size = OrigTy.getSizeInBits(); 60 unsigned NarrowSize = NarrowTy.getSizeInBits(); 61 unsigned NumParts = Size / NarrowSize; 62 unsigned LeftoverSize = Size - NumParts * NarrowSize; 63 assert(Size > NarrowSize); 64 65 if (LeftoverSize == 0) 66 return {NumParts, 0}; 67 68 if (NarrowTy.isVector()) { 69 unsigned EltSize = OrigTy.getScalarSizeInBits(); 70 if (LeftoverSize % EltSize != 0) 71 return {-1, -1}; 72 LeftoverTy = 73 LLT::scalarOrVector(ElementCount::getFixed(LeftoverSize / EltSize), 74 OrigTy.getElementType()); 75 } else { 76 LeftoverTy = LLT::scalar(LeftoverSize); 77 } 78 79 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 80 return std::make_pair(NumParts, NumLeftover); 81 } 82 83 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 84 85 if (!Ty.isScalar()) 86 return nullptr; 87 88 switch (Ty.getSizeInBits()) { 89 case 16: 90 return Type::getHalfTy(Ctx); 91 case 32: 92 return Type::getFloatTy(Ctx); 93 case 64: 94 return Type::getDoubleTy(Ctx); 95 case 80: 96 return Type::getX86_FP80Ty(Ctx); 97 case 128: 98 return Type::getFP128Ty(Ctx); 99 default: 100 return nullptr; 101 } 102 } 103 104 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 105 GISelChangeObserver &Observer, 106 MachineIRBuilder &Builder) 107 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 108 LI(*MF.getSubtarget().getLegalizerInfo()), 109 TLI(*MF.getSubtarget().getTargetLowering()), KB(nullptr) {} 110 111 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 112 GISelChangeObserver &Observer, 113 MachineIRBuilder &B, GISelKnownBits *KB) 114 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 115 TLI(*MF.getSubtarget().getTargetLowering()), KB(KB) {} 116 117 LegalizerHelper::LegalizeResult 118 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 119 LostDebugLocObserver &LocObserver) { 120 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 121 122 MIRBuilder.setInstrAndDebugLoc(MI); 123 124 if (isa<GIntrinsic>(MI)) 125 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 126 auto Step = LI.getAction(MI, MRI); 127 switch (Step.Action) { 128 case Legal: 129 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 130 return AlreadyLegal; 131 case Libcall: 132 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 133 return libcall(MI, LocObserver); 134 case NarrowScalar: 135 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 136 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 137 case WidenScalar: 138 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 139 return widenScalar(MI, Step.TypeIdx, Step.NewType); 140 case Bitcast: 141 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 142 return bitcast(MI, Step.TypeIdx, Step.NewType); 143 case Lower: 144 LLVM_DEBUG(dbgs() << ".. Lower\n"); 145 return lower(MI, Step.TypeIdx, Step.NewType); 146 case FewerElements: 147 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 148 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 149 case MoreElements: 150 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 151 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 152 case Custom: 153 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 154 return LI.legalizeCustom(*this, MI, LocObserver) ? Legalized 155 : UnableToLegalize; 156 default: 157 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 158 return UnableToLegalize; 159 } 160 } 161 162 void LegalizerHelper::insertParts(Register DstReg, 163 LLT ResultTy, LLT PartTy, 164 ArrayRef<Register> PartRegs, 165 LLT LeftoverTy, 166 ArrayRef<Register> LeftoverRegs) { 167 if (!LeftoverTy.isValid()) { 168 assert(LeftoverRegs.empty()); 169 170 if (!ResultTy.isVector()) { 171 MIRBuilder.buildMergeLikeInstr(DstReg, PartRegs); 172 return; 173 } 174 175 if (PartTy.isVector()) 176 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 177 else 178 MIRBuilder.buildBuildVector(DstReg, PartRegs); 179 return; 180 } 181 182 // Merge sub-vectors with different number of elements and insert into DstReg. 183 if (ResultTy.isVector()) { 184 assert(LeftoverRegs.size() == 1 && "Expected one leftover register"); 185 SmallVector<Register, 8> AllRegs; 186 for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs)) 187 AllRegs.push_back(Reg); 188 return mergeMixedSubvectors(DstReg, AllRegs); 189 } 190 191 SmallVector<Register> GCDRegs; 192 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy); 193 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs)) 194 extractGCDType(GCDRegs, GCDTy, PartReg); 195 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); 196 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); 197 } 198 199 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts, 200 Register Reg) { 201 LLT Ty = MRI.getType(Reg); 202 SmallVector<Register, 8> RegElts; 203 extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts, 204 MIRBuilder, MRI); 205 Elts.append(RegElts); 206 } 207 208 /// Merge \p PartRegs with different types into \p DstReg. 209 void LegalizerHelper::mergeMixedSubvectors(Register DstReg, 210 ArrayRef<Register> PartRegs) { 211 SmallVector<Register, 8> AllElts; 212 for (unsigned i = 0; i < PartRegs.size() - 1; ++i) 213 appendVectorElts(AllElts, PartRegs[i]); 214 215 Register Leftover = PartRegs[PartRegs.size() - 1]; 216 if (!MRI.getType(Leftover).isVector()) 217 AllElts.push_back(Leftover); 218 else 219 appendVectorElts(AllElts, Leftover); 220 221 MIRBuilder.buildMergeLikeInstr(DstReg, AllElts); 222 } 223 224 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 225 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 226 const MachineInstr &MI) { 227 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 228 229 const int StartIdx = Regs.size(); 230 const int NumResults = MI.getNumOperands() - 1; 231 Regs.resize(Regs.size() + NumResults); 232 for (int I = 0; I != NumResults; ++I) 233 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 234 } 235 236 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 237 LLT GCDTy, Register SrcReg) { 238 LLT SrcTy = MRI.getType(SrcReg); 239 if (SrcTy == GCDTy) { 240 // If the source already evenly divides the result type, we don't need to do 241 // anything. 242 Parts.push_back(SrcReg); 243 } else { 244 // Need to split into common type sized pieces. 245 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 246 getUnmergeResults(Parts, *Unmerge); 247 } 248 } 249 250 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 251 LLT NarrowTy, Register SrcReg) { 252 LLT SrcTy = MRI.getType(SrcReg); 253 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 254 extractGCDType(Parts, GCDTy, SrcReg); 255 return GCDTy; 256 } 257 258 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 259 SmallVectorImpl<Register> &VRegs, 260 unsigned PadStrategy) { 261 LLT LCMTy = getLCMType(DstTy, NarrowTy); 262 263 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 264 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 265 int NumOrigSrc = VRegs.size(); 266 267 Register PadReg; 268 269 // Get a value we can use to pad the source value if the sources won't evenly 270 // cover the result type. 271 if (NumOrigSrc < NumParts * NumSubParts) { 272 if (PadStrategy == TargetOpcode::G_ZEXT) 273 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 274 else if (PadStrategy == TargetOpcode::G_ANYEXT) 275 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 276 else { 277 assert(PadStrategy == TargetOpcode::G_SEXT); 278 279 // Shift the sign bit of the low register through the high register. 280 auto ShiftAmt = 281 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 282 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 283 } 284 } 285 286 // Registers for the final merge to be produced. 287 SmallVector<Register, 4> Remerge(NumParts); 288 289 // Registers needed for intermediate merges, which will be merged into a 290 // source for Remerge. 291 SmallVector<Register, 4> SubMerge(NumSubParts); 292 293 // Once we've fully read off the end of the original source bits, we can reuse 294 // the same high bits for remaining padding elements. 295 Register AllPadReg; 296 297 // Build merges to the LCM type to cover the original result type. 298 for (int I = 0; I != NumParts; ++I) { 299 bool AllMergePartsArePadding = true; 300 301 // Build the requested merges to the requested type. 302 for (int J = 0; J != NumSubParts; ++J) { 303 int Idx = I * NumSubParts + J; 304 if (Idx >= NumOrigSrc) { 305 SubMerge[J] = PadReg; 306 continue; 307 } 308 309 SubMerge[J] = VRegs[Idx]; 310 311 // There are meaningful bits here we can't reuse later. 312 AllMergePartsArePadding = false; 313 } 314 315 // If we've filled up a complete piece with padding bits, we can directly 316 // emit the natural sized constant if applicable, rather than a merge of 317 // smaller constants. 318 if (AllMergePartsArePadding && !AllPadReg) { 319 if (PadStrategy == TargetOpcode::G_ANYEXT) 320 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 321 else if (PadStrategy == TargetOpcode::G_ZEXT) 322 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 323 324 // If this is a sign extension, we can't materialize a trivial constant 325 // with the right type and have to produce a merge. 326 } 327 328 if (AllPadReg) { 329 // Avoid creating additional instructions if we're just adding additional 330 // copies of padding bits. 331 Remerge[I] = AllPadReg; 332 continue; 333 } 334 335 if (NumSubParts == 1) 336 Remerge[I] = SubMerge[0]; 337 else 338 Remerge[I] = MIRBuilder.buildMergeLikeInstr(NarrowTy, SubMerge).getReg(0); 339 340 // In the sign extend padding case, re-use the first all-signbit merge. 341 if (AllMergePartsArePadding && !AllPadReg) 342 AllPadReg = Remerge[I]; 343 } 344 345 VRegs = std::move(Remerge); 346 return LCMTy; 347 } 348 349 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 350 ArrayRef<Register> RemergeRegs) { 351 LLT DstTy = MRI.getType(DstReg); 352 353 // Create the merge to the widened source, and extract the relevant bits into 354 // the result. 355 356 if (DstTy == LCMTy) { 357 MIRBuilder.buildMergeLikeInstr(DstReg, RemergeRegs); 358 return; 359 } 360 361 auto Remerge = MIRBuilder.buildMergeLikeInstr(LCMTy, RemergeRegs); 362 if (DstTy.isScalar() && LCMTy.isScalar()) { 363 MIRBuilder.buildTrunc(DstReg, Remerge); 364 return; 365 } 366 367 if (LCMTy.isVector()) { 368 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 369 SmallVector<Register, 8> UnmergeDefs(NumDefs); 370 UnmergeDefs[0] = DstReg; 371 for (unsigned I = 1; I != NumDefs; ++I) 372 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 373 374 MIRBuilder.buildUnmerge(UnmergeDefs, 375 MIRBuilder.buildMergeLikeInstr(LCMTy, RemergeRegs)); 376 return; 377 } 378 379 llvm_unreachable("unhandled case"); 380 } 381 382 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 383 #define RTLIBCASE_INT(LibcallPrefix) \ 384 do { \ 385 switch (Size) { \ 386 case 32: \ 387 return RTLIB::LibcallPrefix##32; \ 388 case 64: \ 389 return RTLIB::LibcallPrefix##64; \ 390 case 128: \ 391 return RTLIB::LibcallPrefix##128; \ 392 default: \ 393 llvm_unreachable("unexpected size"); \ 394 } \ 395 } while (0) 396 397 #define RTLIBCASE(LibcallPrefix) \ 398 do { \ 399 switch (Size) { \ 400 case 32: \ 401 return RTLIB::LibcallPrefix##32; \ 402 case 64: \ 403 return RTLIB::LibcallPrefix##64; \ 404 case 80: \ 405 return RTLIB::LibcallPrefix##80; \ 406 case 128: \ 407 return RTLIB::LibcallPrefix##128; \ 408 default: \ 409 llvm_unreachable("unexpected size"); \ 410 } \ 411 } while (0) 412 413 switch (Opcode) { 414 case TargetOpcode::G_MUL: 415 RTLIBCASE_INT(MUL_I); 416 case TargetOpcode::G_SDIV: 417 RTLIBCASE_INT(SDIV_I); 418 case TargetOpcode::G_UDIV: 419 RTLIBCASE_INT(UDIV_I); 420 case TargetOpcode::G_SREM: 421 RTLIBCASE_INT(SREM_I); 422 case TargetOpcode::G_UREM: 423 RTLIBCASE_INT(UREM_I); 424 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 425 RTLIBCASE_INT(CTLZ_I); 426 case TargetOpcode::G_FADD: 427 RTLIBCASE(ADD_F); 428 case TargetOpcode::G_FSUB: 429 RTLIBCASE(SUB_F); 430 case TargetOpcode::G_FMUL: 431 RTLIBCASE(MUL_F); 432 case TargetOpcode::G_FDIV: 433 RTLIBCASE(DIV_F); 434 case TargetOpcode::G_FEXP: 435 RTLIBCASE(EXP_F); 436 case TargetOpcode::G_FEXP2: 437 RTLIBCASE(EXP2_F); 438 case TargetOpcode::G_FEXP10: 439 RTLIBCASE(EXP10_F); 440 case TargetOpcode::G_FREM: 441 RTLIBCASE(REM_F); 442 case TargetOpcode::G_FPOW: 443 RTLIBCASE(POW_F); 444 case TargetOpcode::G_FPOWI: 445 RTLIBCASE(POWI_F); 446 case TargetOpcode::G_FMA: 447 RTLIBCASE(FMA_F); 448 case TargetOpcode::G_FSIN: 449 RTLIBCASE(SIN_F); 450 case TargetOpcode::G_FCOS: 451 RTLIBCASE(COS_F); 452 case TargetOpcode::G_FTAN: 453 RTLIBCASE(TAN_F); 454 case TargetOpcode::G_FASIN: 455 RTLIBCASE(ASIN_F); 456 case TargetOpcode::G_FACOS: 457 RTLIBCASE(ACOS_F); 458 case TargetOpcode::G_FATAN: 459 RTLIBCASE(ATAN_F); 460 case TargetOpcode::G_FSINH: 461 RTLIBCASE(SINH_F); 462 case TargetOpcode::G_FCOSH: 463 RTLIBCASE(COSH_F); 464 case TargetOpcode::G_FTANH: 465 RTLIBCASE(TANH_F); 466 case TargetOpcode::G_FLOG10: 467 RTLIBCASE(LOG10_F); 468 case TargetOpcode::G_FLOG: 469 RTLIBCASE(LOG_F); 470 case TargetOpcode::G_FLOG2: 471 RTLIBCASE(LOG2_F); 472 case TargetOpcode::G_FLDEXP: 473 RTLIBCASE(LDEXP_F); 474 case TargetOpcode::G_FCEIL: 475 RTLIBCASE(CEIL_F); 476 case TargetOpcode::G_FFLOOR: 477 RTLIBCASE(FLOOR_F); 478 case TargetOpcode::G_FMINNUM: 479 RTLIBCASE(FMIN_F); 480 case TargetOpcode::G_FMAXNUM: 481 RTLIBCASE(FMAX_F); 482 case TargetOpcode::G_FSQRT: 483 RTLIBCASE(SQRT_F); 484 case TargetOpcode::G_FRINT: 485 RTLIBCASE(RINT_F); 486 case TargetOpcode::G_FNEARBYINT: 487 RTLIBCASE(NEARBYINT_F); 488 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 489 RTLIBCASE(ROUNDEVEN_F); 490 case TargetOpcode::G_INTRINSIC_LRINT: 491 RTLIBCASE(LRINT_F); 492 case TargetOpcode::G_INTRINSIC_LLRINT: 493 RTLIBCASE(LLRINT_F); 494 } 495 llvm_unreachable("Unknown libcall function"); 496 } 497 498 /// True if an instruction is in tail position in its caller. Intended for 499 /// legalizing libcalls as tail calls when possible. 500 static bool isLibCallInTailPosition(const CallLowering::ArgInfo &Result, 501 MachineInstr &MI, 502 const TargetInstrInfo &TII, 503 MachineRegisterInfo &MRI) { 504 MachineBasicBlock &MBB = *MI.getParent(); 505 const Function &F = MBB.getParent()->getFunction(); 506 507 // Conservatively require the attributes of the call to match those of 508 // the return. Ignore NoAlias and NonNull because they don't affect the 509 // call sequence. 510 AttributeList CallerAttrs = F.getAttributes(); 511 if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs()) 512 .removeAttribute(Attribute::NoAlias) 513 .removeAttribute(Attribute::NonNull) 514 .hasAttributes()) 515 return false; 516 517 // It's not safe to eliminate the sign / zero extension of the return value. 518 if (CallerAttrs.hasRetAttr(Attribute::ZExt) || 519 CallerAttrs.hasRetAttr(Attribute::SExt)) 520 return false; 521 522 // Only tail call if the following instruction is a standard return or if we 523 // have a `thisreturn` callee, and a sequence like: 524 // 525 // G_MEMCPY %0, %1, %2 526 // $x0 = COPY %0 527 // RET_ReallyLR implicit $x0 528 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 529 if (Next != MBB.instr_end() && Next->isCopy()) { 530 if (MI.getOpcode() == TargetOpcode::G_BZERO) 531 return false; 532 533 // For MEMCPY/MOMMOVE/MEMSET these will be the first use (the dst), as the 534 // mempy/etc routines return the same parameter. For other it will be the 535 // returned value. 536 Register VReg = MI.getOperand(0).getReg(); 537 if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg()) 538 return false; 539 540 Register PReg = Next->getOperand(0).getReg(); 541 if (!PReg.isPhysical()) 542 return false; 543 544 auto Ret = next_nodbg(Next, MBB.instr_end()); 545 if (Ret == MBB.instr_end() || !Ret->isReturn()) 546 return false; 547 548 if (Ret->getNumImplicitOperands() != 1) 549 return false; 550 551 if (!Ret->getOperand(0).isReg() || PReg != Ret->getOperand(0).getReg()) 552 return false; 553 554 // Skip over the COPY that we just validated. 555 Next = Ret; 556 } 557 558 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 559 return false; 560 561 return true; 562 } 563 564 LegalizerHelper::LegalizeResult 565 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 566 const CallLowering::ArgInfo &Result, 567 ArrayRef<CallLowering::ArgInfo> Args, 568 const CallingConv::ID CC, LostDebugLocObserver &LocObserver, 569 MachineInstr *MI) { 570 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 571 572 CallLowering::CallLoweringInfo Info; 573 Info.CallConv = CC; 574 Info.Callee = MachineOperand::CreateES(Name); 575 Info.OrigRet = Result; 576 if (MI) 577 Info.IsTailCall = 578 (Result.Ty->isVoidTy() || 579 Result.Ty == MIRBuilder.getMF().getFunction().getReturnType()) && 580 isLibCallInTailPosition(Result, *MI, MIRBuilder.getTII(), 581 *MIRBuilder.getMRI()); 582 583 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 584 if (!CLI.lowerCall(MIRBuilder, Info)) 585 return LegalizerHelper::UnableToLegalize; 586 587 if (MI && Info.LoweredTailCall) { 588 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 589 590 // Check debug locations before removing the return. 591 LocObserver.checkpoint(true); 592 593 // We must have a return following the call (or debug insts) to get past 594 // isLibCallInTailPosition. 595 do { 596 MachineInstr *Next = MI->getNextNode(); 597 assert(Next && 598 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && 599 "Expected instr following MI to be return or debug inst?"); 600 // We lowered a tail call, so the call is now the return from the block. 601 // Delete the old return. 602 Next->eraseFromParent(); 603 } while (MI->getNextNode()); 604 605 // We expect to lose the debug location from the return. 606 LocObserver.checkpoint(false); 607 } 608 return LegalizerHelper::Legalized; 609 } 610 611 LegalizerHelper::LegalizeResult 612 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 613 const CallLowering::ArgInfo &Result, 614 ArrayRef<CallLowering::ArgInfo> Args, 615 LostDebugLocObserver &LocObserver, MachineInstr *MI) { 616 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 617 const char *Name = TLI.getLibcallName(Libcall); 618 if (!Name) 619 return LegalizerHelper::UnableToLegalize; 620 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 621 return createLibcall(MIRBuilder, Name, Result, Args, CC, LocObserver, MI); 622 } 623 624 // Useful for libcalls where all operands have the same type. 625 static LegalizerHelper::LegalizeResult 626 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 627 Type *OpType, LostDebugLocObserver &LocObserver) { 628 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 629 630 // FIXME: What does the original arg index mean here? 631 SmallVector<CallLowering::ArgInfo, 3> Args; 632 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 633 Args.push_back({MO.getReg(), OpType, 0}); 634 return createLibcall(MIRBuilder, Libcall, 635 {MI.getOperand(0).getReg(), OpType, 0}, Args, 636 LocObserver, &MI); 637 } 638 639 LegalizerHelper::LegalizeResult 640 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 641 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 642 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 643 644 SmallVector<CallLowering::ArgInfo, 3> Args; 645 // Add all the args, except for the last which is an imm denoting 'tail'. 646 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 647 Register Reg = MI.getOperand(i).getReg(); 648 649 // Need derive an IR type for call lowering. 650 LLT OpLLT = MRI.getType(Reg); 651 Type *OpTy = nullptr; 652 if (OpLLT.isPointer()) 653 OpTy = PointerType::get(Ctx, OpLLT.getAddressSpace()); 654 else 655 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 656 Args.push_back({Reg, OpTy, 0}); 657 } 658 659 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 660 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 661 RTLIB::Libcall RTLibcall; 662 unsigned Opc = MI.getOpcode(); 663 switch (Opc) { 664 case TargetOpcode::G_BZERO: 665 RTLibcall = RTLIB::BZERO; 666 break; 667 case TargetOpcode::G_MEMCPY: 668 RTLibcall = RTLIB::MEMCPY; 669 Args[0].Flags[0].setReturned(); 670 break; 671 case TargetOpcode::G_MEMMOVE: 672 RTLibcall = RTLIB::MEMMOVE; 673 Args[0].Flags[0].setReturned(); 674 break; 675 case TargetOpcode::G_MEMSET: 676 RTLibcall = RTLIB::MEMSET; 677 Args[0].Flags[0].setReturned(); 678 break; 679 default: 680 llvm_unreachable("unsupported opcode"); 681 } 682 const char *Name = TLI.getLibcallName(RTLibcall); 683 684 // Unsupported libcall on the target. 685 if (!Name) { 686 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 687 << MIRBuilder.getTII().getName(Opc) << "\n"); 688 return LegalizerHelper::UnableToLegalize; 689 } 690 691 CallLowering::CallLoweringInfo Info; 692 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 693 Info.Callee = MachineOperand::CreateES(Name); 694 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0); 695 Info.IsTailCall = 696 MI.getOperand(MI.getNumOperands() - 1).getImm() && 697 isLibCallInTailPosition(Info.OrigRet, MI, MIRBuilder.getTII(), MRI); 698 699 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 700 if (!CLI.lowerCall(MIRBuilder, Info)) 701 return LegalizerHelper::UnableToLegalize; 702 703 if (Info.LoweredTailCall) { 704 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 705 706 // Check debug locations before removing the return. 707 LocObserver.checkpoint(true); 708 709 // We must have a return following the call (or debug insts) to get past 710 // isLibCallInTailPosition. 711 do { 712 MachineInstr *Next = MI.getNextNode(); 713 assert(Next && 714 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && 715 "Expected instr following MI to be return or debug inst?"); 716 // We lowered a tail call, so the call is now the return from the block. 717 // Delete the old return. 718 Next->eraseFromParent(); 719 } while (MI.getNextNode()); 720 721 // We expect to lose the debug location from the return. 722 LocObserver.checkpoint(false); 723 } 724 725 return LegalizerHelper::Legalized; 726 } 727 728 static RTLIB::Libcall getOutlineAtomicLibcall(MachineInstr &MI) { 729 unsigned Opc = MI.getOpcode(); 730 auto &AtomicMI = cast<GMemOperation>(MI); 731 auto &MMO = AtomicMI.getMMO(); 732 auto Ordering = MMO.getMergedOrdering(); 733 LLT MemType = MMO.getMemoryType(); 734 uint64_t MemSize = MemType.getSizeInBytes(); 735 if (MemType.isVector()) 736 return RTLIB::UNKNOWN_LIBCALL; 737 738 #define LCALLS(A, B) \ 739 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL } 740 #define LCALL5(A) \ 741 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) 742 switch (Opc) { 743 case TargetOpcode::G_ATOMIC_CMPXCHG: 744 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 745 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_CAS)}; 746 return getOutlineAtomicHelper(LC, Ordering, MemSize); 747 } 748 case TargetOpcode::G_ATOMICRMW_XCHG: { 749 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_SWP)}; 750 return getOutlineAtomicHelper(LC, Ordering, MemSize); 751 } 752 case TargetOpcode::G_ATOMICRMW_ADD: 753 case TargetOpcode::G_ATOMICRMW_SUB: { 754 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDADD)}; 755 return getOutlineAtomicHelper(LC, Ordering, MemSize); 756 } 757 case TargetOpcode::G_ATOMICRMW_AND: { 758 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDCLR)}; 759 return getOutlineAtomicHelper(LC, Ordering, MemSize); 760 } 761 case TargetOpcode::G_ATOMICRMW_OR: { 762 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDSET)}; 763 return getOutlineAtomicHelper(LC, Ordering, MemSize); 764 } 765 case TargetOpcode::G_ATOMICRMW_XOR: { 766 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDEOR)}; 767 return getOutlineAtomicHelper(LC, Ordering, MemSize); 768 } 769 default: 770 return RTLIB::UNKNOWN_LIBCALL; 771 } 772 #undef LCALLS 773 #undef LCALL5 774 } 775 776 static LegalizerHelper::LegalizeResult 777 createAtomicLibcall(MachineIRBuilder &MIRBuilder, MachineInstr &MI) { 778 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 779 780 Type *RetTy; 781 SmallVector<Register> RetRegs; 782 SmallVector<CallLowering::ArgInfo, 3> Args; 783 unsigned Opc = MI.getOpcode(); 784 switch (Opc) { 785 case TargetOpcode::G_ATOMIC_CMPXCHG: 786 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 787 Register Success; 788 LLT SuccessLLT; 789 auto [Ret, RetLLT, Mem, MemLLT, Cmp, CmpLLT, New, NewLLT] = 790 MI.getFirst4RegLLTs(); 791 RetRegs.push_back(Ret); 792 RetTy = IntegerType::get(Ctx, RetLLT.getSizeInBits()); 793 if (Opc == TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS) { 794 std::tie(Ret, RetLLT, Success, SuccessLLT, Mem, MemLLT, Cmp, CmpLLT, New, 795 NewLLT) = MI.getFirst5RegLLTs(); 796 RetRegs.push_back(Success); 797 RetTy = StructType::get( 798 Ctx, {RetTy, IntegerType::get(Ctx, SuccessLLT.getSizeInBits())}); 799 } 800 Args.push_back({Cmp, IntegerType::get(Ctx, CmpLLT.getSizeInBits()), 0}); 801 Args.push_back({New, IntegerType::get(Ctx, NewLLT.getSizeInBits()), 0}); 802 Args.push_back({Mem, PointerType::get(Ctx, MemLLT.getAddressSpace()), 0}); 803 break; 804 } 805 case TargetOpcode::G_ATOMICRMW_XCHG: 806 case TargetOpcode::G_ATOMICRMW_ADD: 807 case TargetOpcode::G_ATOMICRMW_SUB: 808 case TargetOpcode::G_ATOMICRMW_AND: 809 case TargetOpcode::G_ATOMICRMW_OR: 810 case TargetOpcode::G_ATOMICRMW_XOR: { 811 auto [Ret, RetLLT, Mem, MemLLT, Val, ValLLT] = MI.getFirst3RegLLTs(); 812 RetRegs.push_back(Ret); 813 RetTy = IntegerType::get(Ctx, RetLLT.getSizeInBits()); 814 if (Opc == TargetOpcode::G_ATOMICRMW_AND) 815 Val = 816 MIRBuilder.buildXor(ValLLT, MIRBuilder.buildConstant(ValLLT, -1), Val) 817 .getReg(0); 818 else if (Opc == TargetOpcode::G_ATOMICRMW_SUB) 819 Val = 820 MIRBuilder.buildSub(ValLLT, MIRBuilder.buildConstant(ValLLT, 0), Val) 821 .getReg(0); 822 Args.push_back({Val, IntegerType::get(Ctx, ValLLT.getSizeInBits()), 0}); 823 Args.push_back({Mem, PointerType::get(Ctx, MemLLT.getAddressSpace()), 0}); 824 break; 825 } 826 default: 827 llvm_unreachable("unsupported opcode"); 828 } 829 830 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 831 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 832 RTLIB::Libcall RTLibcall = getOutlineAtomicLibcall(MI); 833 const char *Name = TLI.getLibcallName(RTLibcall); 834 835 // Unsupported libcall on the target. 836 if (!Name) { 837 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 838 << MIRBuilder.getTII().getName(Opc) << "\n"); 839 return LegalizerHelper::UnableToLegalize; 840 } 841 842 CallLowering::CallLoweringInfo Info; 843 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 844 Info.Callee = MachineOperand::CreateES(Name); 845 Info.OrigRet = CallLowering::ArgInfo(RetRegs, RetTy, 0); 846 847 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 848 if (!CLI.lowerCall(MIRBuilder, Info)) 849 return LegalizerHelper::UnableToLegalize; 850 851 return LegalizerHelper::Legalized; 852 } 853 854 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 855 Type *FromType) { 856 auto ToMVT = MVT::getVT(ToType); 857 auto FromMVT = MVT::getVT(FromType); 858 859 switch (Opcode) { 860 case TargetOpcode::G_FPEXT: 861 return RTLIB::getFPEXT(FromMVT, ToMVT); 862 case TargetOpcode::G_FPTRUNC: 863 return RTLIB::getFPROUND(FromMVT, ToMVT); 864 case TargetOpcode::G_FPTOSI: 865 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 866 case TargetOpcode::G_FPTOUI: 867 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 868 case TargetOpcode::G_SITOFP: 869 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 870 case TargetOpcode::G_UITOFP: 871 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 872 } 873 llvm_unreachable("Unsupported libcall function"); 874 } 875 876 static LegalizerHelper::LegalizeResult 877 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 878 Type *FromType, LostDebugLocObserver &LocObserver) { 879 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 880 return createLibcall( 881 MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType, 0}, 882 {{MI.getOperand(1).getReg(), FromType, 0}}, LocObserver, &MI); 883 } 884 885 static RTLIB::Libcall 886 getStateLibraryFunctionFor(MachineInstr &MI, const TargetLowering &TLI) { 887 RTLIB::Libcall RTLibcall; 888 switch (MI.getOpcode()) { 889 case TargetOpcode::G_GET_FPENV: 890 RTLibcall = RTLIB::FEGETENV; 891 break; 892 case TargetOpcode::G_SET_FPENV: 893 case TargetOpcode::G_RESET_FPENV: 894 RTLibcall = RTLIB::FESETENV; 895 break; 896 case TargetOpcode::G_GET_FPMODE: 897 RTLibcall = RTLIB::FEGETMODE; 898 break; 899 case TargetOpcode::G_SET_FPMODE: 900 case TargetOpcode::G_RESET_FPMODE: 901 RTLibcall = RTLIB::FESETMODE; 902 break; 903 default: 904 llvm_unreachable("Unexpected opcode"); 905 } 906 return RTLibcall; 907 } 908 909 // Some library functions that read FP state (fegetmode, fegetenv) write the 910 // state into a region in memory. IR intrinsics that do the same operations 911 // (get_fpmode, get_fpenv) return the state as integer value. To implement these 912 // intrinsics via the library functions, we need to use temporary variable, 913 // for example: 914 // 915 // %0:_(s32) = G_GET_FPMODE 916 // 917 // is transformed to: 918 // 919 // %1:_(p0) = G_FRAME_INDEX %stack.0 920 // BL &fegetmode 921 // %0:_(s32) = G_LOAD % 1 922 // 923 LegalizerHelper::LegalizeResult 924 LegalizerHelper::createGetStateLibcall(MachineIRBuilder &MIRBuilder, 925 MachineInstr &MI, 926 LostDebugLocObserver &LocObserver) { 927 const DataLayout &DL = MIRBuilder.getDataLayout(); 928 auto &MF = MIRBuilder.getMF(); 929 auto &MRI = *MIRBuilder.getMRI(); 930 auto &Ctx = MF.getFunction().getContext(); 931 932 // Create temporary, where library function will put the read state. 933 Register Dst = MI.getOperand(0).getReg(); 934 LLT StateTy = MRI.getType(Dst); 935 TypeSize StateSize = StateTy.getSizeInBytes(); 936 Align TempAlign = getStackTemporaryAlignment(StateTy); 937 MachinePointerInfo TempPtrInfo; 938 auto Temp = createStackTemporary(StateSize, TempAlign, TempPtrInfo); 939 940 // Create a call to library function, with the temporary as an argument. 941 unsigned TempAddrSpace = DL.getAllocaAddrSpace(); 942 Type *StatePtrTy = PointerType::get(Ctx, TempAddrSpace); 943 RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI); 944 auto Res = 945 createLibcall(MIRBuilder, RTLibcall, 946 CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0), 947 CallLowering::ArgInfo({Temp.getReg(0), StatePtrTy, 0}), 948 LocObserver, nullptr); 949 if (Res != LegalizerHelper::Legalized) 950 return Res; 951 952 // Create a load from the temporary. 953 MachineMemOperand *MMO = MF.getMachineMemOperand( 954 TempPtrInfo, MachineMemOperand::MOLoad, StateTy, TempAlign); 955 MIRBuilder.buildLoadInstr(TargetOpcode::G_LOAD, Dst, Temp, *MMO); 956 957 return LegalizerHelper::Legalized; 958 } 959 960 // Similar to `createGetStateLibcall` the function calls a library function 961 // using transient space in stack. In this case the library function reads 962 // content of memory region. 963 LegalizerHelper::LegalizeResult 964 LegalizerHelper::createSetStateLibcall(MachineIRBuilder &MIRBuilder, 965 MachineInstr &MI, 966 LostDebugLocObserver &LocObserver) { 967 const DataLayout &DL = MIRBuilder.getDataLayout(); 968 auto &MF = MIRBuilder.getMF(); 969 auto &MRI = *MIRBuilder.getMRI(); 970 auto &Ctx = MF.getFunction().getContext(); 971 972 // Create temporary, where library function will get the new state. 973 Register Src = MI.getOperand(0).getReg(); 974 LLT StateTy = MRI.getType(Src); 975 TypeSize StateSize = StateTy.getSizeInBytes(); 976 Align TempAlign = getStackTemporaryAlignment(StateTy); 977 MachinePointerInfo TempPtrInfo; 978 auto Temp = createStackTemporary(StateSize, TempAlign, TempPtrInfo); 979 980 // Put the new state into the temporary. 981 MachineMemOperand *MMO = MF.getMachineMemOperand( 982 TempPtrInfo, MachineMemOperand::MOStore, StateTy, TempAlign); 983 MIRBuilder.buildStore(Src, Temp, *MMO); 984 985 // Create a call to library function, with the temporary as an argument. 986 unsigned TempAddrSpace = DL.getAllocaAddrSpace(); 987 Type *StatePtrTy = PointerType::get(Ctx, TempAddrSpace); 988 RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI); 989 return createLibcall(MIRBuilder, RTLibcall, 990 CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0), 991 CallLowering::ArgInfo({Temp.getReg(0), StatePtrTy, 0}), 992 LocObserver, nullptr); 993 } 994 995 // The function is used to legalize operations that set default environment 996 // state. In C library a call like `fesetmode(FE_DFL_MODE)` is used for that. 997 // On most targets supported in glibc FE_DFL_MODE is defined as 998 // `((const femode_t *) -1)`. Such assumption is used here. If for some target 999 // it is not true, the target must provide custom lowering. 1000 LegalizerHelper::LegalizeResult 1001 LegalizerHelper::createResetStateLibcall(MachineIRBuilder &MIRBuilder, 1002 MachineInstr &MI, 1003 LostDebugLocObserver &LocObserver) { 1004 const DataLayout &DL = MIRBuilder.getDataLayout(); 1005 auto &MF = MIRBuilder.getMF(); 1006 auto &Ctx = MF.getFunction().getContext(); 1007 1008 // Create an argument for the library function. 1009 unsigned AddrSpace = DL.getDefaultGlobalsAddressSpace(); 1010 Type *StatePtrTy = PointerType::get(Ctx, AddrSpace); 1011 unsigned PtrSize = DL.getPointerSizeInBits(AddrSpace); 1012 LLT MemTy = LLT::pointer(AddrSpace, PtrSize); 1013 auto DefValue = MIRBuilder.buildConstant(LLT::scalar(PtrSize), -1LL); 1014 DstOp Dest(MRI.createGenericVirtualRegister(MemTy)); 1015 MIRBuilder.buildIntToPtr(Dest, DefValue); 1016 1017 RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI); 1018 return createLibcall(MIRBuilder, RTLibcall, 1019 CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0), 1020 CallLowering::ArgInfo({Dest.getReg(), StatePtrTy, 0}), 1021 LocObserver, &MI); 1022 } 1023 1024 LegalizerHelper::LegalizeResult 1025 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 1026 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1027 1028 switch (MI.getOpcode()) { 1029 default: 1030 return UnableToLegalize; 1031 case TargetOpcode::G_MUL: 1032 case TargetOpcode::G_SDIV: 1033 case TargetOpcode::G_UDIV: 1034 case TargetOpcode::G_SREM: 1035 case TargetOpcode::G_UREM: 1036 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 1037 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 1038 unsigned Size = LLTy.getSizeInBits(); 1039 Type *HLTy = IntegerType::get(Ctx, Size); 1040 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy, LocObserver); 1041 if (Status != Legalized) 1042 return Status; 1043 break; 1044 } 1045 case TargetOpcode::G_FADD: 1046 case TargetOpcode::G_FSUB: 1047 case TargetOpcode::G_FMUL: 1048 case TargetOpcode::G_FDIV: 1049 case TargetOpcode::G_FMA: 1050 case TargetOpcode::G_FPOW: 1051 case TargetOpcode::G_FREM: 1052 case TargetOpcode::G_FCOS: 1053 case TargetOpcode::G_FSIN: 1054 case TargetOpcode::G_FTAN: 1055 case TargetOpcode::G_FACOS: 1056 case TargetOpcode::G_FASIN: 1057 case TargetOpcode::G_FATAN: 1058 case TargetOpcode::G_FCOSH: 1059 case TargetOpcode::G_FSINH: 1060 case TargetOpcode::G_FTANH: 1061 case TargetOpcode::G_FLOG10: 1062 case TargetOpcode::G_FLOG: 1063 case TargetOpcode::G_FLOG2: 1064 case TargetOpcode::G_FLDEXP: 1065 case TargetOpcode::G_FEXP: 1066 case TargetOpcode::G_FEXP2: 1067 case TargetOpcode::G_FEXP10: 1068 case TargetOpcode::G_FCEIL: 1069 case TargetOpcode::G_FFLOOR: 1070 case TargetOpcode::G_FMINNUM: 1071 case TargetOpcode::G_FMAXNUM: 1072 case TargetOpcode::G_FSQRT: 1073 case TargetOpcode::G_FRINT: 1074 case TargetOpcode::G_FNEARBYINT: 1075 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 1076 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 1077 unsigned Size = LLTy.getSizeInBits(); 1078 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 1079 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 1080 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 1081 return UnableToLegalize; 1082 } 1083 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy, LocObserver); 1084 if (Status != Legalized) 1085 return Status; 1086 break; 1087 } 1088 case TargetOpcode::G_INTRINSIC_LRINT: 1089 case TargetOpcode::G_INTRINSIC_LLRINT: { 1090 LLT LLTy = MRI.getType(MI.getOperand(1).getReg()); 1091 unsigned Size = LLTy.getSizeInBits(); 1092 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 1093 Type *ITy = IntegerType::get( 1094 Ctx, MRI.getType(MI.getOperand(0).getReg()).getSizeInBits()); 1095 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 1096 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 1097 return UnableToLegalize; 1098 } 1099 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 1100 LegalizeResult Status = 1101 createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ITy, 0}, 1102 {{MI.getOperand(1).getReg(), HLTy, 0}}, LocObserver, &MI); 1103 if (Status != Legalized) 1104 return Status; 1105 MI.eraseFromParent(); 1106 return Legalized; 1107 } 1108 case TargetOpcode::G_FPOWI: { 1109 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 1110 unsigned Size = LLTy.getSizeInBits(); 1111 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 1112 Type *ITy = IntegerType::get( 1113 Ctx, MRI.getType(MI.getOperand(2).getReg()).getSizeInBits()); 1114 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 1115 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 1116 return UnableToLegalize; 1117 } 1118 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 1119 std::initializer_list<CallLowering::ArgInfo> Args = { 1120 {MI.getOperand(1).getReg(), HLTy, 0}, 1121 {MI.getOperand(2).getReg(), ITy, 1}}; 1122 LegalizeResult Status = 1123 createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), HLTy, 0}, 1124 Args, LocObserver, &MI); 1125 if (Status != Legalized) 1126 return Status; 1127 break; 1128 } 1129 case TargetOpcode::G_FPEXT: 1130 case TargetOpcode::G_FPTRUNC: { 1131 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 1132 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 1133 if (!FromTy || !ToTy) 1134 return UnableToLegalize; 1135 LegalizeResult Status = 1136 conversionLibcall(MI, MIRBuilder, ToTy, FromTy, LocObserver); 1137 if (Status != Legalized) 1138 return Status; 1139 break; 1140 } 1141 case TargetOpcode::G_FPTOSI: 1142 case TargetOpcode::G_FPTOUI: { 1143 // FIXME: Support other types 1144 Type *FromTy = 1145 getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 1146 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 1147 if ((ToSize != 32 && ToSize != 64 && ToSize != 128) || !FromTy) 1148 return UnableToLegalize; 1149 LegalizeResult Status = conversionLibcall( 1150 MI, MIRBuilder, Type::getIntNTy(Ctx, ToSize), FromTy, LocObserver); 1151 if (Status != Legalized) 1152 return Status; 1153 break; 1154 } 1155 case TargetOpcode::G_SITOFP: 1156 case TargetOpcode::G_UITOFP: { 1157 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 1158 Type *ToTy = 1159 getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 1160 if ((FromSize != 32 && FromSize != 64 && FromSize != 128) || !ToTy) 1161 return UnableToLegalize; 1162 LegalizeResult Status = conversionLibcall( 1163 MI, MIRBuilder, ToTy, Type::getIntNTy(Ctx, FromSize), LocObserver); 1164 if (Status != Legalized) 1165 return Status; 1166 break; 1167 } 1168 case TargetOpcode::G_ATOMICRMW_XCHG: 1169 case TargetOpcode::G_ATOMICRMW_ADD: 1170 case TargetOpcode::G_ATOMICRMW_SUB: 1171 case TargetOpcode::G_ATOMICRMW_AND: 1172 case TargetOpcode::G_ATOMICRMW_OR: 1173 case TargetOpcode::G_ATOMICRMW_XOR: 1174 case TargetOpcode::G_ATOMIC_CMPXCHG: 1175 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1176 auto Status = createAtomicLibcall(MIRBuilder, MI); 1177 if (Status != Legalized) 1178 return Status; 1179 break; 1180 } 1181 case TargetOpcode::G_BZERO: 1182 case TargetOpcode::G_MEMCPY: 1183 case TargetOpcode::G_MEMMOVE: 1184 case TargetOpcode::G_MEMSET: { 1185 LegalizeResult Result = 1186 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 1187 if (Result != Legalized) 1188 return Result; 1189 MI.eraseFromParent(); 1190 return Result; 1191 } 1192 case TargetOpcode::G_GET_FPENV: 1193 case TargetOpcode::G_GET_FPMODE: { 1194 LegalizeResult Result = createGetStateLibcall(MIRBuilder, MI, LocObserver); 1195 if (Result != Legalized) 1196 return Result; 1197 break; 1198 } 1199 case TargetOpcode::G_SET_FPENV: 1200 case TargetOpcode::G_SET_FPMODE: { 1201 LegalizeResult Result = createSetStateLibcall(MIRBuilder, MI, LocObserver); 1202 if (Result != Legalized) 1203 return Result; 1204 break; 1205 } 1206 case TargetOpcode::G_RESET_FPENV: 1207 case TargetOpcode::G_RESET_FPMODE: { 1208 LegalizeResult Result = 1209 createResetStateLibcall(MIRBuilder, MI, LocObserver); 1210 if (Result != Legalized) 1211 return Result; 1212 break; 1213 } 1214 } 1215 1216 MI.eraseFromParent(); 1217 return Legalized; 1218 } 1219 1220 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 1221 unsigned TypeIdx, 1222 LLT NarrowTy) { 1223 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 1224 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 1225 1226 switch (MI.getOpcode()) { 1227 default: 1228 return UnableToLegalize; 1229 case TargetOpcode::G_IMPLICIT_DEF: { 1230 Register DstReg = MI.getOperand(0).getReg(); 1231 LLT DstTy = MRI.getType(DstReg); 1232 1233 // If SizeOp0 is not an exact multiple of NarrowSize, emit 1234 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 1235 // FIXME: Although this would also be legal for the general case, it causes 1236 // a lot of regressions in the emitted code (superfluous COPYs, artifact 1237 // combines not being hit). This seems to be a problem related to the 1238 // artifact combiner. 1239 if (SizeOp0 % NarrowSize != 0) { 1240 LLT ImplicitTy = NarrowTy; 1241 if (DstTy.isVector()) 1242 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); 1243 1244 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 1245 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 1246 1247 MI.eraseFromParent(); 1248 return Legalized; 1249 } 1250 1251 int NumParts = SizeOp0 / NarrowSize; 1252 1253 SmallVector<Register, 2> DstRegs; 1254 for (int i = 0; i < NumParts; ++i) 1255 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 1256 1257 if (DstTy.isVector()) 1258 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1259 else 1260 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); 1261 MI.eraseFromParent(); 1262 return Legalized; 1263 } 1264 case TargetOpcode::G_CONSTANT: { 1265 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1266 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 1267 unsigned TotalSize = Ty.getSizeInBits(); 1268 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1269 int NumParts = TotalSize / NarrowSize; 1270 1271 SmallVector<Register, 4> PartRegs; 1272 for (int I = 0; I != NumParts; ++I) { 1273 unsigned Offset = I * NarrowSize; 1274 auto K = MIRBuilder.buildConstant(NarrowTy, 1275 Val.lshr(Offset).trunc(NarrowSize)); 1276 PartRegs.push_back(K.getReg(0)); 1277 } 1278 1279 LLT LeftoverTy; 1280 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 1281 SmallVector<Register, 1> LeftoverRegs; 1282 if (LeftoverBits != 0) { 1283 LeftoverTy = LLT::scalar(LeftoverBits); 1284 auto K = MIRBuilder.buildConstant( 1285 LeftoverTy, 1286 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 1287 LeftoverRegs.push_back(K.getReg(0)); 1288 } 1289 1290 insertParts(MI.getOperand(0).getReg(), 1291 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 1292 1293 MI.eraseFromParent(); 1294 return Legalized; 1295 } 1296 case TargetOpcode::G_SEXT: 1297 case TargetOpcode::G_ZEXT: 1298 case TargetOpcode::G_ANYEXT: 1299 return narrowScalarExt(MI, TypeIdx, NarrowTy); 1300 case TargetOpcode::G_TRUNC: { 1301 if (TypeIdx != 1) 1302 return UnableToLegalize; 1303 1304 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 1305 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 1306 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 1307 return UnableToLegalize; 1308 } 1309 1310 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 1311 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 1312 MI.eraseFromParent(); 1313 return Legalized; 1314 } 1315 case TargetOpcode::G_CONSTANT_FOLD_BARRIER: 1316 case TargetOpcode::G_FREEZE: { 1317 if (TypeIdx != 0) 1318 return UnableToLegalize; 1319 1320 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1321 // Should widen scalar first 1322 if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0) 1323 return UnableToLegalize; 1324 1325 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); 1326 SmallVector<Register, 8> Parts; 1327 for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) { 1328 Parts.push_back( 1329 MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, {Unmerge.getReg(i)}) 1330 .getReg(0)); 1331 } 1332 1333 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0).getReg(), Parts); 1334 MI.eraseFromParent(); 1335 return Legalized; 1336 } 1337 case TargetOpcode::G_ADD: 1338 case TargetOpcode::G_SUB: 1339 case TargetOpcode::G_SADDO: 1340 case TargetOpcode::G_SSUBO: 1341 case TargetOpcode::G_SADDE: 1342 case TargetOpcode::G_SSUBE: 1343 case TargetOpcode::G_UADDO: 1344 case TargetOpcode::G_USUBO: 1345 case TargetOpcode::G_UADDE: 1346 case TargetOpcode::G_USUBE: 1347 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 1348 case TargetOpcode::G_MUL: 1349 case TargetOpcode::G_UMULH: 1350 return narrowScalarMul(MI, NarrowTy); 1351 case TargetOpcode::G_EXTRACT: 1352 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 1353 case TargetOpcode::G_INSERT: 1354 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 1355 case TargetOpcode::G_LOAD: { 1356 auto &LoadMI = cast<GLoad>(MI); 1357 Register DstReg = LoadMI.getDstReg(); 1358 LLT DstTy = MRI.getType(DstReg); 1359 if (DstTy.isVector()) 1360 return UnableToLegalize; 1361 1362 if (8 * LoadMI.getMemSize().getValue() != DstTy.getSizeInBits()) { 1363 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1364 MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO()); 1365 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1366 LoadMI.eraseFromParent(); 1367 return Legalized; 1368 } 1369 1370 return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy); 1371 } 1372 case TargetOpcode::G_ZEXTLOAD: 1373 case TargetOpcode::G_SEXTLOAD: { 1374 auto &LoadMI = cast<GExtLoad>(MI); 1375 Register DstReg = LoadMI.getDstReg(); 1376 Register PtrReg = LoadMI.getPointerReg(); 1377 1378 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1379 auto &MMO = LoadMI.getMMO(); 1380 unsigned MemSize = MMO.getSizeInBits().getValue(); 1381 1382 if (MemSize == NarrowSize) { 1383 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1384 } else if (MemSize < NarrowSize) { 1385 MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO); 1386 } else if (MemSize > NarrowSize) { 1387 // FIXME: Need to split the load. 1388 return UnableToLegalize; 1389 } 1390 1391 if (isa<GZExtLoad>(LoadMI)) 1392 MIRBuilder.buildZExt(DstReg, TmpReg); 1393 else 1394 MIRBuilder.buildSExt(DstReg, TmpReg); 1395 1396 LoadMI.eraseFromParent(); 1397 return Legalized; 1398 } 1399 case TargetOpcode::G_STORE: { 1400 auto &StoreMI = cast<GStore>(MI); 1401 1402 Register SrcReg = StoreMI.getValueReg(); 1403 LLT SrcTy = MRI.getType(SrcReg); 1404 if (SrcTy.isVector()) 1405 return UnableToLegalize; 1406 1407 int NumParts = SizeOp0 / NarrowSize; 1408 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 1409 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 1410 if (SrcTy.isVector() && LeftoverBits != 0) 1411 return UnableToLegalize; 1412 1413 if (8 * StoreMI.getMemSize().getValue() != SrcTy.getSizeInBits()) { 1414 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1415 MIRBuilder.buildTrunc(TmpReg, SrcReg); 1416 MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO()); 1417 StoreMI.eraseFromParent(); 1418 return Legalized; 1419 } 1420 1421 return reduceLoadStoreWidth(StoreMI, 0, NarrowTy); 1422 } 1423 case TargetOpcode::G_SELECT: 1424 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1425 case TargetOpcode::G_AND: 1426 case TargetOpcode::G_OR: 1427 case TargetOpcode::G_XOR: { 1428 // Legalize bitwise operation: 1429 // A = BinOp<Ty> B, C 1430 // into: 1431 // B1, ..., BN = G_UNMERGE_VALUES B 1432 // C1, ..., CN = G_UNMERGE_VALUES C 1433 // A1 = BinOp<Ty/N> B1, C2 1434 // ... 1435 // AN = BinOp<Ty/N> BN, CN 1436 // A = G_MERGE_VALUES A1, ..., AN 1437 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1438 } 1439 case TargetOpcode::G_SHL: 1440 case TargetOpcode::G_LSHR: 1441 case TargetOpcode::G_ASHR: 1442 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1443 case TargetOpcode::G_CTLZ: 1444 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1445 case TargetOpcode::G_CTTZ: 1446 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1447 case TargetOpcode::G_CTPOP: 1448 if (TypeIdx == 1) 1449 switch (MI.getOpcode()) { 1450 case TargetOpcode::G_CTLZ: 1451 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1452 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1453 case TargetOpcode::G_CTTZ: 1454 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1455 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1456 case TargetOpcode::G_CTPOP: 1457 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1458 default: 1459 return UnableToLegalize; 1460 } 1461 1462 Observer.changingInstr(MI); 1463 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1464 Observer.changedInstr(MI); 1465 return Legalized; 1466 case TargetOpcode::G_INTTOPTR: 1467 if (TypeIdx != 1) 1468 return UnableToLegalize; 1469 1470 Observer.changingInstr(MI); 1471 narrowScalarSrc(MI, NarrowTy, 1); 1472 Observer.changedInstr(MI); 1473 return Legalized; 1474 case TargetOpcode::G_PTRTOINT: 1475 if (TypeIdx != 0) 1476 return UnableToLegalize; 1477 1478 Observer.changingInstr(MI); 1479 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1480 Observer.changedInstr(MI); 1481 return Legalized; 1482 case TargetOpcode::G_PHI: { 1483 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1484 // NarrowSize. 1485 if (SizeOp0 % NarrowSize != 0) 1486 return UnableToLegalize; 1487 1488 unsigned NumParts = SizeOp0 / NarrowSize; 1489 SmallVector<Register, 2> DstRegs(NumParts); 1490 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1491 Observer.changingInstr(MI); 1492 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1493 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1494 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward()); 1495 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1496 SrcRegs[i / 2], MIRBuilder, MRI); 1497 } 1498 MachineBasicBlock &MBB = *MI.getParent(); 1499 MIRBuilder.setInsertPt(MBB, MI); 1500 for (unsigned i = 0; i < NumParts; ++i) { 1501 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1502 MachineInstrBuilder MIB = 1503 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1504 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1505 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1506 } 1507 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1508 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), DstRegs); 1509 Observer.changedInstr(MI); 1510 MI.eraseFromParent(); 1511 return Legalized; 1512 } 1513 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1514 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1515 if (TypeIdx != 2) 1516 return UnableToLegalize; 1517 1518 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1519 Observer.changingInstr(MI); 1520 narrowScalarSrc(MI, NarrowTy, OpIdx); 1521 Observer.changedInstr(MI); 1522 return Legalized; 1523 } 1524 case TargetOpcode::G_ICMP: { 1525 Register LHS = MI.getOperand(2).getReg(); 1526 LLT SrcTy = MRI.getType(LHS); 1527 uint64_t SrcSize = SrcTy.getSizeInBits(); 1528 CmpInst::Predicate Pred = 1529 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1530 1531 // TODO: Handle the non-equality case for weird sizes. 1532 if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred)) 1533 return UnableToLegalize; 1534 1535 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover) 1536 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs; 1537 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs, 1538 LHSLeftoverRegs, MIRBuilder, MRI)) 1539 return UnableToLegalize; 1540 1541 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type. 1542 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs; 1543 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused, 1544 RHSPartRegs, RHSLeftoverRegs, MIRBuilder, MRI)) 1545 return UnableToLegalize; 1546 1547 // We now have the LHS and RHS of the compare split into narrow-type 1548 // registers, plus potentially some leftover type. 1549 Register Dst = MI.getOperand(0).getReg(); 1550 LLT ResTy = MRI.getType(Dst); 1551 if (ICmpInst::isEquality(Pred)) { 1552 // For each part on the LHS and RHS, keep track of the result of XOR-ing 1553 // them together. For each equal part, the result should be all 0s. For 1554 // each non-equal part, we'll get at least one 1. 1555 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1556 SmallVector<Register, 4> Xors; 1557 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) { 1558 auto LHS = std::get<0>(LHSAndRHS); 1559 auto RHS = std::get<1>(LHSAndRHS); 1560 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0); 1561 Xors.push_back(Xor); 1562 } 1563 1564 // Build a G_XOR for each leftover register. Each G_XOR must be widened 1565 // to the desired narrow type so that we can OR them together later. 1566 SmallVector<Register, 4> WidenedXors; 1567 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) { 1568 auto LHS = std::get<0>(LHSAndRHS); 1569 auto RHS = std::get<1>(LHSAndRHS); 1570 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0); 1571 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor); 1572 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors, 1573 /* PadStrategy = */ TargetOpcode::G_ZEXT); 1574 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end()); 1575 } 1576 1577 // Now, for each part we broke up, we know if they are equal/not equal 1578 // based off the G_XOR. We can OR these all together and compare against 1579 // 0 to get the result. 1580 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?"); 1581 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]); 1582 for (unsigned I = 2, E = Xors.size(); I < E; ++I) 1583 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]); 1584 MIRBuilder.buildICmp(Pred, Dst, Or, Zero); 1585 } else { 1586 // TODO: Handle non-power-of-two types. 1587 assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?"); 1588 assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?"); 1589 Register LHSL = LHSPartRegs[0]; 1590 Register LHSH = LHSPartRegs[1]; 1591 Register RHSL = RHSPartRegs[0]; 1592 Register RHSH = RHSPartRegs[1]; 1593 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1594 MachineInstrBuilder CmpHEQ = 1595 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1596 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1597 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1598 MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH); 1599 } 1600 MI.eraseFromParent(); 1601 return Legalized; 1602 } 1603 case TargetOpcode::G_FCMP: 1604 if (TypeIdx != 0) 1605 return UnableToLegalize; 1606 1607 Observer.changingInstr(MI); 1608 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1609 Observer.changedInstr(MI); 1610 return Legalized; 1611 1612 case TargetOpcode::G_SEXT_INREG: { 1613 if (TypeIdx != 0) 1614 return UnableToLegalize; 1615 1616 int64_t SizeInBits = MI.getOperand(2).getImm(); 1617 1618 // So long as the new type has more bits than the bits we're extending we 1619 // don't need to break it apart. 1620 if (NarrowTy.getScalarSizeInBits() > SizeInBits) { 1621 Observer.changingInstr(MI); 1622 // We don't lose any non-extension bits by truncating the src and 1623 // sign-extending the dst. 1624 MachineOperand &MO1 = MI.getOperand(1); 1625 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1626 MO1.setReg(TruncMIB.getReg(0)); 1627 1628 MachineOperand &MO2 = MI.getOperand(0); 1629 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1630 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1631 MIRBuilder.buildSExt(MO2, DstExt); 1632 MO2.setReg(DstExt); 1633 Observer.changedInstr(MI); 1634 return Legalized; 1635 } 1636 1637 // Break it apart. Components below the extension point are unmodified. The 1638 // component containing the extension point becomes a narrower SEXT_INREG. 1639 // Components above it are ashr'd from the component containing the 1640 // extension point. 1641 if (SizeOp0 % NarrowSize != 0) 1642 return UnableToLegalize; 1643 int NumParts = SizeOp0 / NarrowSize; 1644 1645 // List the registers where the destination will be scattered. 1646 SmallVector<Register, 2> DstRegs; 1647 // List the registers where the source will be split. 1648 SmallVector<Register, 2> SrcRegs; 1649 1650 // Create all the temporary registers. 1651 for (int i = 0; i < NumParts; ++i) { 1652 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1653 1654 SrcRegs.push_back(SrcReg); 1655 } 1656 1657 // Explode the big arguments into smaller chunks. 1658 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1659 1660 Register AshrCstReg = 1661 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1662 .getReg(0); 1663 Register FullExtensionReg; 1664 Register PartialExtensionReg; 1665 1666 // Do the operation on each small part. 1667 for (int i = 0; i < NumParts; ++i) { 1668 if ((i + 1) * NarrowTy.getScalarSizeInBits() <= SizeInBits) { 1669 DstRegs.push_back(SrcRegs[i]); 1670 PartialExtensionReg = DstRegs.back(); 1671 } else if (i * NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1672 assert(PartialExtensionReg && 1673 "Expected to visit partial extension before full"); 1674 if (FullExtensionReg) { 1675 DstRegs.push_back(FullExtensionReg); 1676 continue; 1677 } 1678 DstRegs.push_back( 1679 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1680 .getReg(0)); 1681 FullExtensionReg = DstRegs.back(); 1682 } else { 1683 DstRegs.push_back( 1684 MIRBuilder 1685 .buildInstr( 1686 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1687 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1688 .getReg(0)); 1689 PartialExtensionReg = DstRegs.back(); 1690 } 1691 } 1692 1693 // Gather the destination registers into the final destination. 1694 Register DstReg = MI.getOperand(0).getReg(); 1695 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); 1696 MI.eraseFromParent(); 1697 return Legalized; 1698 } 1699 case TargetOpcode::G_BSWAP: 1700 case TargetOpcode::G_BITREVERSE: { 1701 if (SizeOp0 % NarrowSize != 0) 1702 return UnableToLegalize; 1703 1704 Observer.changingInstr(MI); 1705 SmallVector<Register, 2> SrcRegs, DstRegs; 1706 unsigned NumParts = SizeOp0 / NarrowSize; 1707 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs, 1708 MIRBuilder, MRI); 1709 1710 for (unsigned i = 0; i < NumParts; ++i) { 1711 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1712 {SrcRegs[NumParts - 1 - i]}); 1713 DstRegs.push_back(DstPart.getReg(0)); 1714 } 1715 1716 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), DstRegs); 1717 1718 Observer.changedInstr(MI); 1719 MI.eraseFromParent(); 1720 return Legalized; 1721 } 1722 case TargetOpcode::G_PTR_ADD: 1723 case TargetOpcode::G_PTRMASK: { 1724 if (TypeIdx != 1) 1725 return UnableToLegalize; 1726 Observer.changingInstr(MI); 1727 narrowScalarSrc(MI, NarrowTy, 2); 1728 Observer.changedInstr(MI); 1729 return Legalized; 1730 } 1731 case TargetOpcode::G_FPTOUI: 1732 case TargetOpcode::G_FPTOSI: 1733 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1734 case TargetOpcode::G_FPEXT: 1735 if (TypeIdx != 0) 1736 return UnableToLegalize; 1737 Observer.changingInstr(MI); 1738 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1739 Observer.changedInstr(MI); 1740 return Legalized; 1741 case TargetOpcode::G_FLDEXP: 1742 case TargetOpcode::G_STRICT_FLDEXP: 1743 return narrowScalarFLDEXP(MI, TypeIdx, NarrowTy); 1744 case TargetOpcode::G_VSCALE: { 1745 Register Dst = MI.getOperand(0).getReg(); 1746 LLT Ty = MRI.getType(Dst); 1747 1748 // Assume VSCALE(1) fits into a legal integer 1749 const APInt One(NarrowTy.getSizeInBits(), 1); 1750 auto VScaleBase = MIRBuilder.buildVScale(NarrowTy, One); 1751 auto ZExt = MIRBuilder.buildZExt(Ty, VScaleBase); 1752 auto C = MIRBuilder.buildConstant(Ty, *MI.getOperand(1).getCImm()); 1753 MIRBuilder.buildMul(Dst, ZExt, C); 1754 1755 MI.eraseFromParent(); 1756 return Legalized; 1757 } 1758 } 1759 } 1760 1761 Register LegalizerHelper::coerceToScalar(Register Val) { 1762 LLT Ty = MRI.getType(Val); 1763 if (Ty.isScalar()) 1764 return Val; 1765 1766 const DataLayout &DL = MIRBuilder.getDataLayout(); 1767 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1768 if (Ty.isPointer()) { 1769 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1770 return Register(); 1771 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1772 } 1773 1774 Register NewVal = Val; 1775 1776 assert(Ty.isVector()); 1777 if (Ty.isPointerVector()) 1778 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1779 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1780 } 1781 1782 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1783 unsigned OpIdx, unsigned ExtOpcode) { 1784 MachineOperand &MO = MI.getOperand(OpIdx); 1785 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1786 MO.setReg(ExtB.getReg(0)); 1787 } 1788 1789 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1790 unsigned OpIdx) { 1791 MachineOperand &MO = MI.getOperand(OpIdx); 1792 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1793 MO.setReg(ExtB.getReg(0)); 1794 } 1795 1796 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1797 unsigned OpIdx, unsigned TruncOpcode) { 1798 MachineOperand &MO = MI.getOperand(OpIdx); 1799 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1800 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1801 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1802 MO.setReg(DstExt); 1803 } 1804 1805 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1806 unsigned OpIdx, unsigned ExtOpcode) { 1807 MachineOperand &MO = MI.getOperand(OpIdx); 1808 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1809 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1810 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1811 MO.setReg(DstTrunc); 1812 } 1813 1814 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1815 unsigned OpIdx) { 1816 MachineOperand &MO = MI.getOperand(OpIdx); 1817 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1818 Register Dst = MO.getReg(); 1819 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1820 MO.setReg(DstExt); 1821 MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt); 1822 } 1823 1824 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1825 unsigned OpIdx) { 1826 MachineOperand &MO = MI.getOperand(OpIdx); 1827 SmallVector<Register, 8> Regs; 1828 MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0)); 1829 } 1830 1831 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1832 MachineOperand &Op = MI.getOperand(OpIdx); 1833 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1834 } 1835 1836 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1837 MachineOperand &MO = MI.getOperand(OpIdx); 1838 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1839 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1840 MIRBuilder.buildBitcast(MO, CastDst); 1841 MO.setReg(CastDst); 1842 } 1843 1844 LegalizerHelper::LegalizeResult 1845 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1846 LLT WideTy) { 1847 if (TypeIdx != 1) 1848 return UnableToLegalize; 1849 1850 auto [DstReg, DstTy, Src1Reg, Src1Ty] = MI.getFirst2RegLLTs(); 1851 if (DstTy.isVector()) 1852 return UnableToLegalize; 1853 1854 LLT SrcTy = MRI.getType(Src1Reg); 1855 const int DstSize = DstTy.getSizeInBits(); 1856 const int SrcSize = SrcTy.getSizeInBits(); 1857 const int WideSize = WideTy.getSizeInBits(); 1858 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1859 1860 unsigned NumOps = MI.getNumOperands(); 1861 unsigned NumSrc = MI.getNumOperands() - 1; 1862 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1863 1864 if (WideSize >= DstSize) { 1865 // Directly pack the bits in the target type. 1866 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1Reg).getReg(0); 1867 1868 for (unsigned I = 2; I != NumOps; ++I) { 1869 const unsigned Offset = (I - 1) * PartSize; 1870 1871 Register SrcReg = MI.getOperand(I).getReg(); 1872 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1873 1874 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1875 1876 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1877 MRI.createGenericVirtualRegister(WideTy); 1878 1879 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1880 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1881 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1882 ResultReg = NextResult; 1883 } 1884 1885 if (WideSize > DstSize) 1886 MIRBuilder.buildTrunc(DstReg, ResultReg); 1887 else if (DstTy.isPointer()) 1888 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1889 1890 MI.eraseFromParent(); 1891 return Legalized; 1892 } 1893 1894 // Unmerge the original values to the GCD type, and recombine to the next 1895 // multiple greater than the original type. 1896 // 1897 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1898 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1899 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1900 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1901 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1902 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1903 // %12:_(s12) = G_MERGE_VALUES %10, %11 1904 // 1905 // Padding with undef if necessary: 1906 // 1907 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1908 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1909 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1910 // %7:_(s2) = G_IMPLICIT_DEF 1911 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1912 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1913 // %10:_(s12) = G_MERGE_VALUES %8, %9 1914 1915 const int GCD = std::gcd(SrcSize, WideSize); 1916 LLT GCDTy = LLT::scalar(GCD); 1917 1918 SmallVector<Register, 8> Parts; 1919 SmallVector<Register, 8> NewMergeRegs; 1920 SmallVector<Register, 8> Unmerges; 1921 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1922 1923 // Decompose the original operands if they don't evenly divide. 1924 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 1925 Register SrcReg = MO.getReg(); 1926 if (GCD == SrcSize) { 1927 Unmerges.push_back(SrcReg); 1928 } else { 1929 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1930 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1931 Unmerges.push_back(Unmerge.getReg(J)); 1932 } 1933 } 1934 1935 // Pad with undef to the next size that is a multiple of the requested size. 1936 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1937 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1938 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1939 Unmerges.push_back(UndefReg); 1940 } 1941 1942 const int PartsPerGCD = WideSize / GCD; 1943 1944 // Build merges of each piece. 1945 ArrayRef<Register> Slicer(Unmerges); 1946 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1947 auto Merge = 1948 MIRBuilder.buildMergeLikeInstr(WideTy, Slicer.take_front(PartsPerGCD)); 1949 NewMergeRegs.push_back(Merge.getReg(0)); 1950 } 1951 1952 // A truncate may be necessary if the requested type doesn't evenly divide the 1953 // original result type. 1954 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1955 MIRBuilder.buildMergeLikeInstr(DstReg, NewMergeRegs); 1956 } else { 1957 auto FinalMerge = MIRBuilder.buildMergeLikeInstr(WideDstTy, NewMergeRegs); 1958 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1959 } 1960 1961 MI.eraseFromParent(); 1962 return Legalized; 1963 } 1964 1965 LegalizerHelper::LegalizeResult 1966 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1967 LLT WideTy) { 1968 if (TypeIdx != 0) 1969 return UnableToLegalize; 1970 1971 int NumDst = MI.getNumOperands() - 1; 1972 Register SrcReg = MI.getOperand(NumDst).getReg(); 1973 LLT SrcTy = MRI.getType(SrcReg); 1974 if (SrcTy.isVector()) 1975 return UnableToLegalize; 1976 1977 Register Dst0Reg = MI.getOperand(0).getReg(); 1978 LLT DstTy = MRI.getType(Dst0Reg); 1979 if (!DstTy.isScalar()) 1980 return UnableToLegalize; 1981 1982 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1983 if (SrcTy.isPointer()) { 1984 const DataLayout &DL = MIRBuilder.getDataLayout(); 1985 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1986 LLVM_DEBUG( 1987 dbgs() << "Not casting non-integral address space integer\n"); 1988 return UnableToLegalize; 1989 } 1990 1991 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1992 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1993 } 1994 1995 // Widen SrcTy to WideTy. This does not affect the result, but since the 1996 // user requested this size, it is probably better handled than SrcTy and 1997 // should reduce the total number of legalization artifacts. 1998 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1999 SrcTy = WideTy; 2000 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 2001 } 2002 2003 // Theres no unmerge type to target. Directly extract the bits from the 2004 // source type 2005 unsigned DstSize = DstTy.getSizeInBits(); 2006 2007 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 2008 for (int I = 1; I != NumDst; ++I) { 2009 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 2010 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 2011 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 2012 } 2013 2014 MI.eraseFromParent(); 2015 return Legalized; 2016 } 2017 2018 // Extend the source to a wider type. 2019 LLT LCMTy = getLCMType(SrcTy, WideTy); 2020 2021 Register WideSrc = SrcReg; 2022 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 2023 // TODO: If this is an integral address space, cast to integer and anyext. 2024 if (SrcTy.isPointer()) { 2025 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 2026 return UnableToLegalize; 2027 } 2028 2029 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 2030 } 2031 2032 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 2033 2034 // Create a sequence of unmerges and merges to the original results. Since we 2035 // may have widened the source, we will need to pad the results with dead defs 2036 // to cover the source register. 2037 // e.g. widen s48 to s64: 2038 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 2039 // 2040 // => 2041 // %4:_(s192) = G_ANYEXT %0:_(s96) 2042 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 2043 // ; unpack to GCD type, with extra dead defs 2044 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 2045 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 2046 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 2047 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 2048 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 2049 const LLT GCDTy = getGCDType(WideTy, DstTy); 2050 const int NumUnmerge = Unmerge->getNumOperands() - 1; 2051 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 2052 2053 // Directly unmerge to the destination without going through a GCD type 2054 // if possible 2055 if (PartsPerRemerge == 1) { 2056 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 2057 2058 for (int I = 0; I != NumUnmerge; ++I) { 2059 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 2060 2061 for (int J = 0; J != PartsPerUnmerge; ++J) { 2062 int Idx = I * PartsPerUnmerge + J; 2063 if (Idx < NumDst) 2064 MIB.addDef(MI.getOperand(Idx).getReg()); 2065 else { 2066 // Create dead def for excess components. 2067 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 2068 } 2069 } 2070 2071 MIB.addUse(Unmerge.getReg(I)); 2072 } 2073 } else { 2074 SmallVector<Register, 16> Parts; 2075 for (int J = 0; J != NumUnmerge; ++J) 2076 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 2077 2078 SmallVector<Register, 8> RemergeParts; 2079 for (int I = 0; I != NumDst; ++I) { 2080 for (int J = 0; J < PartsPerRemerge; ++J) { 2081 const int Idx = I * PartsPerRemerge + J; 2082 RemergeParts.emplace_back(Parts[Idx]); 2083 } 2084 2085 MIRBuilder.buildMergeLikeInstr(MI.getOperand(I).getReg(), RemergeParts); 2086 RemergeParts.clear(); 2087 } 2088 } 2089 2090 MI.eraseFromParent(); 2091 return Legalized; 2092 } 2093 2094 LegalizerHelper::LegalizeResult 2095 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 2096 LLT WideTy) { 2097 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 2098 unsigned Offset = MI.getOperand(2).getImm(); 2099 2100 if (TypeIdx == 0) { 2101 if (SrcTy.isVector() || DstTy.isVector()) 2102 return UnableToLegalize; 2103 2104 SrcOp Src(SrcReg); 2105 if (SrcTy.isPointer()) { 2106 // Extracts from pointers can be handled only if they are really just 2107 // simple integers. 2108 const DataLayout &DL = MIRBuilder.getDataLayout(); 2109 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 2110 return UnableToLegalize; 2111 2112 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 2113 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 2114 SrcTy = SrcAsIntTy; 2115 } 2116 2117 if (DstTy.isPointer()) 2118 return UnableToLegalize; 2119 2120 if (Offset == 0) { 2121 // Avoid a shift in the degenerate case. 2122 MIRBuilder.buildTrunc(DstReg, 2123 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 2124 MI.eraseFromParent(); 2125 return Legalized; 2126 } 2127 2128 // Do a shift in the source type. 2129 LLT ShiftTy = SrcTy; 2130 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 2131 Src = MIRBuilder.buildAnyExt(WideTy, Src); 2132 ShiftTy = WideTy; 2133 } 2134 2135 auto LShr = MIRBuilder.buildLShr( 2136 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 2137 MIRBuilder.buildTrunc(DstReg, LShr); 2138 MI.eraseFromParent(); 2139 return Legalized; 2140 } 2141 2142 if (SrcTy.isScalar()) { 2143 Observer.changingInstr(MI); 2144 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2145 Observer.changedInstr(MI); 2146 return Legalized; 2147 } 2148 2149 if (!SrcTy.isVector()) 2150 return UnableToLegalize; 2151 2152 if (DstTy != SrcTy.getElementType()) 2153 return UnableToLegalize; 2154 2155 if (Offset % SrcTy.getScalarSizeInBits() != 0) 2156 return UnableToLegalize; 2157 2158 Observer.changingInstr(MI); 2159 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2160 2161 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 2162 Offset); 2163 widenScalarDst(MI, WideTy.getScalarType(), 0); 2164 Observer.changedInstr(MI); 2165 return Legalized; 2166 } 2167 2168 LegalizerHelper::LegalizeResult 2169 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 2170 LLT WideTy) { 2171 if (TypeIdx != 0 || WideTy.isVector()) 2172 return UnableToLegalize; 2173 Observer.changingInstr(MI); 2174 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2175 widenScalarDst(MI, WideTy); 2176 Observer.changedInstr(MI); 2177 return Legalized; 2178 } 2179 2180 LegalizerHelper::LegalizeResult 2181 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 2182 LLT WideTy) { 2183 unsigned Opcode; 2184 unsigned ExtOpcode; 2185 std::optional<Register> CarryIn; 2186 switch (MI.getOpcode()) { 2187 default: 2188 llvm_unreachable("Unexpected opcode!"); 2189 case TargetOpcode::G_SADDO: 2190 Opcode = TargetOpcode::G_ADD; 2191 ExtOpcode = TargetOpcode::G_SEXT; 2192 break; 2193 case TargetOpcode::G_SSUBO: 2194 Opcode = TargetOpcode::G_SUB; 2195 ExtOpcode = TargetOpcode::G_SEXT; 2196 break; 2197 case TargetOpcode::G_UADDO: 2198 Opcode = TargetOpcode::G_ADD; 2199 ExtOpcode = TargetOpcode::G_ZEXT; 2200 break; 2201 case TargetOpcode::G_USUBO: 2202 Opcode = TargetOpcode::G_SUB; 2203 ExtOpcode = TargetOpcode::G_ZEXT; 2204 break; 2205 case TargetOpcode::G_SADDE: 2206 Opcode = TargetOpcode::G_UADDE; 2207 ExtOpcode = TargetOpcode::G_SEXT; 2208 CarryIn = MI.getOperand(4).getReg(); 2209 break; 2210 case TargetOpcode::G_SSUBE: 2211 Opcode = TargetOpcode::G_USUBE; 2212 ExtOpcode = TargetOpcode::G_SEXT; 2213 CarryIn = MI.getOperand(4).getReg(); 2214 break; 2215 case TargetOpcode::G_UADDE: 2216 Opcode = TargetOpcode::G_UADDE; 2217 ExtOpcode = TargetOpcode::G_ZEXT; 2218 CarryIn = MI.getOperand(4).getReg(); 2219 break; 2220 case TargetOpcode::G_USUBE: 2221 Opcode = TargetOpcode::G_USUBE; 2222 ExtOpcode = TargetOpcode::G_ZEXT; 2223 CarryIn = MI.getOperand(4).getReg(); 2224 break; 2225 } 2226 2227 if (TypeIdx == 1) { 2228 unsigned BoolExtOp = MIRBuilder.getBoolExtOp(WideTy.isVector(), false); 2229 2230 Observer.changingInstr(MI); 2231 if (CarryIn) 2232 widenScalarSrc(MI, WideTy, 4, BoolExtOp); 2233 widenScalarDst(MI, WideTy, 1); 2234 2235 Observer.changedInstr(MI); 2236 return Legalized; 2237 } 2238 2239 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 2240 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 2241 // Do the arithmetic in the larger type. 2242 Register NewOp; 2243 if (CarryIn) { 2244 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 2245 NewOp = MIRBuilder 2246 .buildInstr(Opcode, {WideTy, CarryOutTy}, 2247 {LHSExt, RHSExt, *CarryIn}) 2248 .getReg(0); 2249 } else { 2250 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 2251 } 2252 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 2253 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 2254 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 2255 // There is no overflow if the ExtOp is the same as NewOp. 2256 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 2257 // Now trunc the NewOp to the original result. 2258 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 2259 MI.eraseFromParent(); 2260 return Legalized; 2261 } 2262 2263 LegalizerHelper::LegalizeResult 2264 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 2265 LLT WideTy) { 2266 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 2267 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 2268 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 2269 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 2270 MI.getOpcode() == TargetOpcode::G_USHLSAT; 2271 // We can convert this to: 2272 // 1. Any extend iN to iM 2273 // 2. SHL by M-N 2274 // 3. [US][ADD|SUB|SHL]SAT 2275 // 4. L/ASHR by M-N 2276 // 2277 // It may be more efficient to lower this to a min and a max operation in 2278 // the higher precision arithmetic if the promoted operation isn't legal, 2279 // but this decision is up to the target's lowering request. 2280 Register DstReg = MI.getOperand(0).getReg(); 2281 2282 unsigned NewBits = WideTy.getScalarSizeInBits(); 2283 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 2284 2285 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 2286 // must not left shift the RHS to preserve the shift amount. 2287 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 2288 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 2289 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 2290 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 2291 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 2292 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 2293 2294 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 2295 {ShiftL, ShiftR}, MI.getFlags()); 2296 2297 // Use a shift that will preserve the number of sign bits when the trunc is 2298 // folded away. 2299 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 2300 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 2301 2302 MIRBuilder.buildTrunc(DstReg, Result); 2303 MI.eraseFromParent(); 2304 return Legalized; 2305 } 2306 2307 LegalizerHelper::LegalizeResult 2308 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 2309 LLT WideTy) { 2310 if (TypeIdx == 1) { 2311 Observer.changingInstr(MI); 2312 widenScalarDst(MI, WideTy, 1); 2313 Observer.changedInstr(MI); 2314 return Legalized; 2315 } 2316 2317 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 2318 auto [Result, OriginalOverflow, LHS, RHS] = MI.getFirst4Regs(); 2319 LLT SrcTy = MRI.getType(LHS); 2320 LLT OverflowTy = MRI.getType(OriginalOverflow); 2321 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 2322 2323 // To determine if the result overflowed in the larger type, we extend the 2324 // input to the larger type, do the multiply (checking if it overflows), 2325 // then also check the high bits of the result to see if overflow happened 2326 // there. 2327 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2328 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 2329 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 2330 2331 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 2332 // so we don't need to check the overflow result of larger type Mulo. 2333 bool WideMulCanOverflow = WideTy.getScalarSizeInBits() < 2 * SrcBitWidth; 2334 2335 unsigned MulOpc = 2336 WideMulCanOverflow ? MI.getOpcode() : (unsigned)TargetOpcode::G_MUL; 2337 2338 MachineInstrBuilder Mulo; 2339 if (WideMulCanOverflow) 2340 Mulo = MIRBuilder.buildInstr(MulOpc, {WideTy, OverflowTy}, 2341 {LeftOperand, RightOperand}); 2342 else 2343 Mulo = MIRBuilder.buildInstr(MulOpc, {WideTy}, {LeftOperand, RightOperand}); 2344 2345 auto Mul = Mulo->getOperand(0); 2346 MIRBuilder.buildTrunc(Result, Mul); 2347 2348 MachineInstrBuilder ExtResult; 2349 // Overflow occurred if it occurred in the larger type, or if the high part 2350 // of the result does not zero/sign-extend the low part. Check this second 2351 // possibility first. 2352 if (IsSigned) { 2353 // For signed, overflow occurred when the high part does not sign-extend 2354 // the low part. 2355 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 2356 } else { 2357 // Unsigned overflow occurred when the high part does not zero-extend the 2358 // low part. 2359 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 2360 } 2361 2362 if (WideMulCanOverflow) { 2363 auto Overflow = 2364 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 2365 // Finally check if the multiplication in the larger type itself overflowed. 2366 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 2367 } else { 2368 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 2369 } 2370 MI.eraseFromParent(); 2371 return Legalized; 2372 } 2373 2374 LegalizerHelper::LegalizeResult 2375 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 2376 switch (MI.getOpcode()) { 2377 default: 2378 return UnableToLegalize; 2379 case TargetOpcode::G_ATOMICRMW_XCHG: 2380 case TargetOpcode::G_ATOMICRMW_ADD: 2381 case TargetOpcode::G_ATOMICRMW_SUB: 2382 case TargetOpcode::G_ATOMICRMW_AND: 2383 case TargetOpcode::G_ATOMICRMW_OR: 2384 case TargetOpcode::G_ATOMICRMW_XOR: 2385 case TargetOpcode::G_ATOMICRMW_MIN: 2386 case TargetOpcode::G_ATOMICRMW_MAX: 2387 case TargetOpcode::G_ATOMICRMW_UMIN: 2388 case TargetOpcode::G_ATOMICRMW_UMAX: 2389 assert(TypeIdx == 0 && "atomicrmw with second scalar type"); 2390 Observer.changingInstr(MI); 2391 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2392 widenScalarDst(MI, WideTy, 0); 2393 Observer.changedInstr(MI); 2394 return Legalized; 2395 case TargetOpcode::G_ATOMIC_CMPXCHG: 2396 assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type"); 2397 Observer.changingInstr(MI); 2398 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2399 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2400 widenScalarDst(MI, WideTy, 0); 2401 Observer.changedInstr(MI); 2402 return Legalized; 2403 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: 2404 if (TypeIdx == 0) { 2405 Observer.changingInstr(MI); 2406 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2407 widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT); 2408 widenScalarDst(MI, WideTy, 0); 2409 Observer.changedInstr(MI); 2410 return Legalized; 2411 } 2412 assert(TypeIdx == 1 && 2413 "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"); 2414 Observer.changingInstr(MI); 2415 widenScalarDst(MI, WideTy, 1); 2416 Observer.changedInstr(MI); 2417 return Legalized; 2418 case TargetOpcode::G_EXTRACT: 2419 return widenScalarExtract(MI, TypeIdx, WideTy); 2420 case TargetOpcode::G_INSERT: 2421 return widenScalarInsert(MI, TypeIdx, WideTy); 2422 case TargetOpcode::G_MERGE_VALUES: 2423 return widenScalarMergeValues(MI, TypeIdx, WideTy); 2424 case TargetOpcode::G_UNMERGE_VALUES: 2425 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 2426 case TargetOpcode::G_SADDO: 2427 case TargetOpcode::G_SSUBO: 2428 case TargetOpcode::G_UADDO: 2429 case TargetOpcode::G_USUBO: 2430 case TargetOpcode::G_SADDE: 2431 case TargetOpcode::G_SSUBE: 2432 case TargetOpcode::G_UADDE: 2433 case TargetOpcode::G_USUBE: 2434 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 2435 case TargetOpcode::G_UMULO: 2436 case TargetOpcode::G_SMULO: 2437 return widenScalarMulo(MI, TypeIdx, WideTy); 2438 case TargetOpcode::G_SADDSAT: 2439 case TargetOpcode::G_SSUBSAT: 2440 case TargetOpcode::G_SSHLSAT: 2441 case TargetOpcode::G_UADDSAT: 2442 case TargetOpcode::G_USUBSAT: 2443 case TargetOpcode::G_USHLSAT: 2444 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 2445 case TargetOpcode::G_CTTZ: 2446 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2447 case TargetOpcode::G_CTLZ: 2448 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2449 case TargetOpcode::G_CTPOP: { 2450 if (TypeIdx == 0) { 2451 Observer.changingInstr(MI); 2452 widenScalarDst(MI, WideTy, 0); 2453 Observer.changedInstr(MI); 2454 return Legalized; 2455 } 2456 2457 Register SrcReg = MI.getOperand(1).getReg(); 2458 2459 // First extend the input. 2460 unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ || 2461 MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF 2462 ? TargetOpcode::G_ANYEXT 2463 : TargetOpcode::G_ZEXT; 2464 auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg}); 2465 LLT CurTy = MRI.getType(SrcReg); 2466 unsigned NewOpc = MI.getOpcode(); 2467 if (NewOpc == TargetOpcode::G_CTTZ) { 2468 // The count is the same in the larger type except if the original 2469 // value was zero. This can be handled by setting the bit just off 2470 // the top of the original type. 2471 auto TopBit = 2472 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 2473 MIBSrc = MIRBuilder.buildOr( 2474 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 2475 // Now we know the operand is non-zero, use the more relaxed opcode. 2476 NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF; 2477 } 2478 2479 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 2480 2481 if (MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 2482 // An optimization where the result is the CTLZ after the left shift by 2483 // (Difference in widety and current ty), that is, 2484 // MIBSrc = MIBSrc << (sizeinbits(WideTy) - sizeinbits(CurTy)) 2485 // Result = ctlz MIBSrc 2486 MIBSrc = MIRBuilder.buildShl(WideTy, MIBSrc, 2487 MIRBuilder.buildConstant(WideTy, SizeDiff)); 2488 } 2489 2490 // Perform the operation at the larger size. 2491 auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc}); 2492 // This is already the correct result for CTPOP and CTTZs 2493 if (MI.getOpcode() == TargetOpcode::G_CTLZ) { 2494 // The correct result is NewOp - (Difference in widety and current ty). 2495 MIBNewOp = MIRBuilder.buildSub( 2496 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 2497 } 2498 2499 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 2500 MI.eraseFromParent(); 2501 return Legalized; 2502 } 2503 case TargetOpcode::G_BSWAP: { 2504 Observer.changingInstr(MI); 2505 Register DstReg = MI.getOperand(0).getReg(); 2506 2507 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 2508 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2509 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 2510 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2511 2512 MI.getOperand(0).setReg(DstExt); 2513 2514 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2515 2516 LLT Ty = MRI.getType(DstReg); 2517 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2518 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 2519 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 2520 2521 MIRBuilder.buildTrunc(DstReg, ShrReg); 2522 Observer.changedInstr(MI); 2523 return Legalized; 2524 } 2525 case TargetOpcode::G_BITREVERSE: { 2526 Observer.changingInstr(MI); 2527 2528 Register DstReg = MI.getOperand(0).getReg(); 2529 LLT Ty = MRI.getType(DstReg); 2530 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2531 2532 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2533 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2534 MI.getOperand(0).setReg(DstExt); 2535 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2536 2537 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 2538 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 2539 MIRBuilder.buildTrunc(DstReg, Shift); 2540 Observer.changedInstr(MI); 2541 return Legalized; 2542 } 2543 case TargetOpcode::G_FREEZE: 2544 case TargetOpcode::G_CONSTANT_FOLD_BARRIER: 2545 Observer.changingInstr(MI); 2546 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2547 widenScalarDst(MI, WideTy); 2548 Observer.changedInstr(MI); 2549 return Legalized; 2550 2551 case TargetOpcode::G_ABS: 2552 Observer.changingInstr(MI); 2553 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2554 widenScalarDst(MI, WideTy); 2555 Observer.changedInstr(MI); 2556 return Legalized; 2557 2558 case TargetOpcode::G_ADD: 2559 case TargetOpcode::G_AND: 2560 case TargetOpcode::G_MUL: 2561 case TargetOpcode::G_OR: 2562 case TargetOpcode::G_XOR: 2563 case TargetOpcode::G_SUB: 2564 case TargetOpcode::G_SHUFFLE_VECTOR: 2565 // Perform operation at larger width (any extension is fines here, high bits 2566 // don't affect the result) and then truncate the result back to the 2567 // original type. 2568 Observer.changingInstr(MI); 2569 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2570 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2571 widenScalarDst(MI, WideTy); 2572 Observer.changedInstr(MI); 2573 return Legalized; 2574 2575 case TargetOpcode::G_SBFX: 2576 case TargetOpcode::G_UBFX: 2577 Observer.changingInstr(MI); 2578 2579 if (TypeIdx == 0) { 2580 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2581 widenScalarDst(MI, WideTy); 2582 } else { 2583 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2584 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2585 } 2586 2587 Observer.changedInstr(MI); 2588 return Legalized; 2589 2590 case TargetOpcode::G_SHL: 2591 Observer.changingInstr(MI); 2592 2593 if (TypeIdx == 0) { 2594 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2595 widenScalarDst(MI, WideTy); 2596 } else { 2597 assert(TypeIdx == 1); 2598 // The "number of bits to shift" operand must preserve its value as an 2599 // unsigned integer: 2600 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2601 } 2602 2603 Observer.changedInstr(MI); 2604 return Legalized; 2605 2606 case TargetOpcode::G_ROTR: 2607 case TargetOpcode::G_ROTL: 2608 if (TypeIdx != 1) 2609 return UnableToLegalize; 2610 2611 Observer.changingInstr(MI); 2612 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2613 Observer.changedInstr(MI); 2614 return Legalized; 2615 2616 case TargetOpcode::G_SDIV: 2617 case TargetOpcode::G_SREM: 2618 case TargetOpcode::G_SMIN: 2619 case TargetOpcode::G_SMAX: 2620 Observer.changingInstr(MI); 2621 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2622 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2623 widenScalarDst(MI, WideTy); 2624 Observer.changedInstr(MI); 2625 return Legalized; 2626 2627 case TargetOpcode::G_SDIVREM: 2628 Observer.changingInstr(MI); 2629 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2630 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2631 widenScalarDst(MI, WideTy); 2632 widenScalarDst(MI, WideTy, 1); 2633 Observer.changedInstr(MI); 2634 return Legalized; 2635 2636 case TargetOpcode::G_ASHR: 2637 case TargetOpcode::G_LSHR: 2638 Observer.changingInstr(MI); 2639 2640 if (TypeIdx == 0) { 2641 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2642 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2643 2644 widenScalarSrc(MI, WideTy, 1, CvtOp); 2645 widenScalarDst(MI, WideTy); 2646 } else { 2647 assert(TypeIdx == 1); 2648 // The "number of bits to shift" operand must preserve its value as an 2649 // unsigned integer: 2650 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2651 } 2652 2653 Observer.changedInstr(MI); 2654 return Legalized; 2655 case TargetOpcode::G_UDIV: 2656 case TargetOpcode::G_UREM: 2657 case TargetOpcode::G_UMIN: 2658 case TargetOpcode::G_UMAX: 2659 Observer.changingInstr(MI); 2660 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2661 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2662 widenScalarDst(MI, WideTy); 2663 Observer.changedInstr(MI); 2664 return Legalized; 2665 2666 case TargetOpcode::G_UDIVREM: 2667 Observer.changingInstr(MI); 2668 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2669 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2670 widenScalarDst(MI, WideTy); 2671 widenScalarDst(MI, WideTy, 1); 2672 Observer.changedInstr(MI); 2673 return Legalized; 2674 2675 case TargetOpcode::G_SELECT: 2676 Observer.changingInstr(MI); 2677 if (TypeIdx == 0) { 2678 // Perform operation at larger width (any extension is fine here, high 2679 // bits don't affect the result) and then truncate the result back to the 2680 // original type. 2681 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2682 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2683 widenScalarDst(MI, WideTy); 2684 } else { 2685 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2686 // Explicit extension is required here since high bits affect the result. 2687 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2688 } 2689 Observer.changedInstr(MI); 2690 return Legalized; 2691 2692 case TargetOpcode::G_FPTOSI: 2693 case TargetOpcode::G_FPTOUI: 2694 case TargetOpcode::G_INTRINSIC_LRINT: 2695 case TargetOpcode::G_INTRINSIC_LLRINT: 2696 case TargetOpcode::G_IS_FPCLASS: 2697 Observer.changingInstr(MI); 2698 2699 if (TypeIdx == 0) 2700 widenScalarDst(MI, WideTy); 2701 else 2702 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2703 2704 Observer.changedInstr(MI); 2705 return Legalized; 2706 case TargetOpcode::G_SITOFP: 2707 Observer.changingInstr(MI); 2708 2709 if (TypeIdx == 0) 2710 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2711 else 2712 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2713 2714 Observer.changedInstr(MI); 2715 return Legalized; 2716 case TargetOpcode::G_UITOFP: 2717 Observer.changingInstr(MI); 2718 2719 if (TypeIdx == 0) 2720 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2721 else 2722 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2723 2724 Observer.changedInstr(MI); 2725 return Legalized; 2726 case TargetOpcode::G_LOAD: 2727 case TargetOpcode::G_SEXTLOAD: 2728 case TargetOpcode::G_ZEXTLOAD: 2729 Observer.changingInstr(MI); 2730 widenScalarDst(MI, WideTy); 2731 Observer.changedInstr(MI); 2732 return Legalized; 2733 2734 case TargetOpcode::G_STORE: { 2735 if (TypeIdx != 0) 2736 return UnableToLegalize; 2737 2738 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2739 if (!Ty.isScalar()) 2740 return UnableToLegalize; 2741 2742 Observer.changingInstr(MI); 2743 2744 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2745 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2746 widenScalarSrc(MI, WideTy, 0, ExtType); 2747 2748 Observer.changedInstr(MI); 2749 return Legalized; 2750 } 2751 case TargetOpcode::G_CONSTANT: { 2752 MachineOperand &SrcMO = MI.getOperand(1); 2753 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2754 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2755 MRI.getType(MI.getOperand(0).getReg())); 2756 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2757 ExtOpc == TargetOpcode::G_ANYEXT) && 2758 "Illegal Extend"); 2759 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2760 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2761 ? SrcVal.sext(WideTy.getSizeInBits()) 2762 : SrcVal.zext(WideTy.getSizeInBits()); 2763 Observer.changingInstr(MI); 2764 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2765 2766 widenScalarDst(MI, WideTy); 2767 Observer.changedInstr(MI); 2768 return Legalized; 2769 } 2770 case TargetOpcode::G_FCONSTANT: { 2771 // To avoid changing the bits of the constant due to extension to a larger 2772 // type and then using G_FPTRUNC, we simply convert to a G_CONSTANT. 2773 MachineOperand &SrcMO = MI.getOperand(1); 2774 APInt Val = SrcMO.getFPImm()->getValueAPF().bitcastToAPInt(); 2775 MIRBuilder.setInstrAndDebugLoc(MI); 2776 auto IntCst = MIRBuilder.buildConstant(MI.getOperand(0).getReg(), Val); 2777 widenScalarDst(*IntCst, WideTy, 0, TargetOpcode::G_TRUNC); 2778 MI.eraseFromParent(); 2779 return Legalized; 2780 } 2781 case TargetOpcode::G_IMPLICIT_DEF: { 2782 Observer.changingInstr(MI); 2783 widenScalarDst(MI, WideTy); 2784 Observer.changedInstr(MI); 2785 return Legalized; 2786 } 2787 case TargetOpcode::G_BRCOND: 2788 Observer.changingInstr(MI); 2789 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2790 Observer.changedInstr(MI); 2791 return Legalized; 2792 2793 case TargetOpcode::G_FCMP: 2794 Observer.changingInstr(MI); 2795 if (TypeIdx == 0) 2796 widenScalarDst(MI, WideTy); 2797 else { 2798 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2799 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2800 } 2801 Observer.changedInstr(MI); 2802 return Legalized; 2803 2804 case TargetOpcode::G_ICMP: 2805 Observer.changingInstr(MI); 2806 if (TypeIdx == 0) 2807 widenScalarDst(MI, WideTy); 2808 else { 2809 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2810 MI.getOperand(1).getPredicate())) 2811 ? TargetOpcode::G_SEXT 2812 : TargetOpcode::G_ZEXT; 2813 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2814 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2815 } 2816 Observer.changedInstr(MI); 2817 return Legalized; 2818 2819 case TargetOpcode::G_PTR_ADD: 2820 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2821 Observer.changingInstr(MI); 2822 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2823 Observer.changedInstr(MI); 2824 return Legalized; 2825 2826 case TargetOpcode::G_PHI: { 2827 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2828 2829 Observer.changingInstr(MI); 2830 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2831 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2832 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward()); 2833 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2834 } 2835 2836 MachineBasicBlock &MBB = *MI.getParent(); 2837 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2838 widenScalarDst(MI, WideTy); 2839 Observer.changedInstr(MI); 2840 return Legalized; 2841 } 2842 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2843 if (TypeIdx == 0) { 2844 Register VecReg = MI.getOperand(1).getReg(); 2845 LLT VecTy = MRI.getType(VecReg); 2846 Observer.changingInstr(MI); 2847 2848 widenScalarSrc( 2849 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, 2850 TargetOpcode::G_ANYEXT); 2851 2852 widenScalarDst(MI, WideTy, 0); 2853 Observer.changedInstr(MI); 2854 return Legalized; 2855 } 2856 2857 if (TypeIdx != 2) 2858 return UnableToLegalize; 2859 Observer.changingInstr(MI); 2860 // TODO: Probably should be zext 2861 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2862 Observer.changedInstr(MI); 2863 return Legalized; 2864 } 2865 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2866 if (TypeIdx == 0) { 2867 Observer.changingInstr(MI); 2868 const LLT WideEltTy = WideTy.getElementType(); 2869 2870 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2871 widenScalarSrc(MI, WideEltTy, 2, TargetOpcode::G_ANYEXT); 2872 widenScalarDst(MI, WideTy, 0); 2873 Observer.changedInstr(MI); 2874 return Legalized; 2875 } 2876 2877 if (TypeIdx == 1) { 2878 Observer.changingInstr(MI); 2879 2880 Register VecReg = MI.getOperand(1).getReg(); 2881 LLT VecTy = MRI.getType(VecReg); 2882 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); 2883 2884 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2885 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2886 widenScalarDst(MI, WideVecTy, 0); 2887 Observer.changedInstr(MI); 2888 return Legalized; 2889 } 2890 2891 if (TypeIdx == 2) { 2892 Observer.changingInstr(MI); 2893 // TODO: Probably should be zext 2894 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2895 Observer.changedInstr(MI); 2896 return Legalized; 2897 } 2898 2899 return UnableToLegalize; 2900 } 2901 case TargetOpcode::G_FADD: 2902 case TargetOpcode::G_FMUL: 2903 case TargetOpcode::G_FSUB: 2904 case TargetOpcode::G_FMA: 2905 case TargetOpcode::G_FMAD: 2906 case TargetOpcode::G_FNEG: 2907 case TargetOpcode::G_FABS: 2908 case TargetOpcode::G_FCANONICALIZE: 2909 case TargetOpcode::G_FMINNUM: 2910 case TargetOpcode::G_FMAXNUM: 2911 case TargetOpcode::G_FMINNUM_IEEE: 2912 case TargetOpcode::G_FMAXNUM_IEEE: 2913 case TargetOpcode::G_FMINIMUM: 2914 case TargetOpcode::G_FMAXIMUM: 2915 case TargetOpcode::G_FDIV: 2916 case TargetOpcode::G_FREM: 2917 case TargetOpcode::G_FCEIL: 2918 case TargetOpcode::G_FFLOOR: 2919 case TargetOpcode::G_FCOS: 2920 case TargetOpcode::G_FSIN: 2921 case TargetOpcode::G_FTAN: 2922 case TargetOpcode::G_FACOS: 2923 case TargetOpcode::G_FASIN: 2924 case TargetOpcode::G_FATAN: 2925 case TargetOpcode::G_FCOSH: 2926 case TargetOpcode::G_FSINH: 2927 case TargetOpcode::G_FTANH: 2928 case TargetOpcode::G_FLOG10: 2929 case TargetOpcode::G_FLOG: 2930 case TargetOpcode::G_FLOG2: 2931 case TargetOpcode::G_FRINT: 2932 case TargetOpcode::G_FNEARBYINT: 2933 case TargetOpcode::G_FSQRT: 2934 case TargetOpcode::G_FEXP: 2935 case TargetOpcode::G_FEXP2: 2936 case TargetOpcode::G_FEXP10: 2937 case TargetOpcode::G_FPOW: 2938 case TargetOpcode::G_INTRINSIC_TRUNC: 2939 case TargetOpcode::G_INTRINSIC_ROUND: 2940 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2941 assert(TypeIdx == 0); 2942 Observer.changingInstr(MI); 2943 2944 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2945 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2946 2947 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2948 Observer.changedInstr(MI); 2949 return Legalized; 2950 case TargetOpcode::G_FPOWI: 2951 case TargetOpcode::G_FLDEXP: 2952 case TargetOpcode::G_STRICT_FLDEXP: { 2953 if (TypeIdx == 0) { 2954 if (MI.getOpcode() == TargetOpcode::G_STRICT_FLDEXP) 2955 return UnableToLegalize; 2956 2957 Observer.changingInstr(MI); 2958 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2959 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2960 Observer.changedInstr(MI); 2961 return Legalized; 2962 } 2963 2964 if (TypeIdx == 1) { 2965 // For some reason SelectionDAG tries to promote to a libcall without 2966 // actually changing the integer type for promotion. 2967 Observer.changingInstr(MI); 2968 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2969 Observer.changedInstr(MI); 2970 return Legalized; 2971 } 2972 2973 return UnableToLegalize; 2974 } 2975 case TargetOpcode::G_FFREXP: { 2976 Observer.changingInstr(MI); 2977 2978 if (TypeIdx == 0) { 2979 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2980 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2981 } else { 2982 widenScalarDst(MI, WideTy, 1); 2983 } 2984 2985 Observer.changedInstr(MI); 2986 return Legalized; 2987 } 2988 case TargetOpcode::G_INTTOPTR: 2989 if (TypeIdx != 1) 2990 return UnableToLegalize; 2991 2992 Observer.changingInstr(MI); 2993 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2994 Observer.changedInstr(MI); 2995 return Legalized; 2996 case TargetOpcode::G_PTRTOINT: 2997 if (TypeIdx != 0) 2998 return UnableToLegalize; 2999 3000 Observer.changingInstr(MI); 3001 widenScalarDst(MI, WideTy, 0); 3002 Observer.changedInstr(MI); 3003 return Legalized; 3004 case TargetOpcode::G_BUILD_VECTOR: { 3005 Observer.changingInstr(MI); 3006 3007 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 3008 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 3009 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 3010 3011 // Avoid changing the result vector type if the source element type was 3012 // requested. 3013 if (TypeIdx == 1) { 3014 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 3015 } else { 3016 widenScalarDst(MI, WideTy, 0); 3017 } 3018 3019 Observer.changedInstr(MI); 3020 return Legalized; 3021 } 3022 case TargetOpcode::G_SEXT_INREG: 3023 if (TypeIdx != 0) 3024 return UnableToLegalize; 3025 3026 Observer.changingInstr(MI); 3027 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 3028 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 3029 Observer.changedInstr(MI); 3030 return Legalized; 3031 case TargetOpcode::G_PTRMASK: { 3032 if (TypeIdx != 1) 3033 return UnableToLegalize; 3034 Observer.changingInstr(MI); 3035 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 3036 Observer.changedInstr(MI); 3037 return Legalized; 3038 } 3039 case TargetOpcode::G_VECREDUCE_FADD: 3040 case TargetOpcode::G_VECREDUCE_FMUL: 3041 case TargetOpcode::G_VECREDUCE_FMIN: 3042 case TargetOpcode::G_VECREDUCE_FMAX: 3043 case TargetOpcode::G_VECREDUCE_FMINIMUM: 3044 case TargetOpcode::G_VECREDUCE_FMAXIMUM: { 3045 if (TypeIdx != 0) 3046 return UnableToLegalize; 3047 Observer.changingInstr(MI); 3048 Register VecReg = MI.getOperand(1).getReg(); 3049 LLT VecTy = MRI.getType(VecReg); 3050 LLT WideVecTy = VecTy.isVector() 3051 ? LLT::vector(VecTy.getElementCount(), WideTy) 3052 : WideTy; 3053 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_FPEXT); 3054 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 3055 Observer.changedInstr(MI); 3056 return Legalized; 3057 } 3058 case TargetOpcode::G_VSCALE: { 3059 MachineOperand &SrcMO = MI.getOperand(1); 3060 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 3061 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 3062 // The CImm is always a signed value 3063 const APInt Val = SrcVal.sext(WideTy.getSizeInBits()); 3064 Observer.changingInstr(MI); 3065 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 3066 widenScalarDst(MI, WideTy); 3067 Observer.changedInstr(MI); 3068 return Legalized; 3069 } 3070 case TargetOpcode::G_SPLAT_VECTOR: { 3071 if (TypeIdx != 1) 3072 return UnableToLegalize; 3073 3074 Observer.changingInstr(MI); 3075 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 3076 Observer.changedInstr(MI); 3077 return Legalized; 3078 } 3079 } 3080 } 3081 3082 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 3083 MachineIRBuilder &B, Register Src, LLT Ty) { 3084 auto Unmerge = B.buildUnmerge(Ty, Src); 3085 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 3086 Pieces.push_back(Unmerge.getReg(I)); 3087 } 3088 3089 static void emitLoadFromConstantPool(Register DstReg, const Constant *ConstVal, 3090 MachineIRBuilder &MIRBuilder) { 3091 MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); 3092 MachineFunction &MF = MIRBuilder.getMF(); 3093 const DataLayout &DL = MIRBuilder.getDataLayout(); 3094 unsigned AddrSpace = DL.getDefaultGlobalsAddressSpace(); 3095 LLT AddrPtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3096 LLT DstLLT = MRI.getType(DstReg); 3097 3098 Align Alignment(DL.getABITypeAlign(ConstVal->getType())); 3099 3100 auto Addr = MIRBuilder.buildConstantPool( 3101 AddrPtrTy, 3102 MF.getConstantPool()->getConstantPoolIndex(ConstVal, Alignment)); 3103 3104 MachineMemOperand *MMO = 3105 MF.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF), 3106 MachineMemOperand::MOLoad, DstLLT, Alignment); 3107 3108 MIRBuilder.buildLoadInstr(TargetOpcode::G_LOAD, DstReg, Addr, *MMO); 3109 } 3110 3111 LegalizerHelper::LegalizeResult 3112 LegalizerHelper::lowerConstant(MachineInstr &MI) { 3113 const MachineOperand &ConstOperand = MI.getOperand(1); 3114 const Constant *ConstantVal = ConstOperand.getCImm(); 3115 3116 emitLoadFromConstantPool(MI.getOperand(0).getReg(), ConstantVal, MIRBuilder); 3117 MI.eraseFromParent(); 3118 3119 return Legalized; 3120 } 3121 3122 LegalizerHelper::LegalizeResult 3123 LegalizerHelper::lowerFConstant(MachineInstr &MI) { 3124 const MachineOperand &ConstOperand = MI.getOperand(1); 3125 const Constant *ConstantVal = ConstOperand.getFPImm(); 3126 3127 emitLoadFromConstantPool(MI.getOperand(0).getReg(), ConstantVal, MIRBuilder); 3128 MI.eraseFromParent(); 3129 3130 return Legalized; 3131 } 3132 3133 LegalizerHelper::LegalizeResult 3134 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 3135 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); 3136 if (SrcTy.isVector()) { 3137 LLT SrcEltTy = SrcTy.getElementType(); 3138 SmallVector<Register, 8> SrcRegs; 3139 3140 if (DstTy.isVector()) { 3141 int NumDstElt = DstTy.getNumElements(); 3142 int NumSrcElt = SrcTy.getNumElements(); 3143 3144 LLT DstEltTy = DstTy.getElementType(); 3145 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 3146 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 3147 3148 // If there's an element size mismatch, insert intermediate casts to match 3149 // the result element type. 3150 if (NumSrcElt < NumDstElt) { // Source element type is larger. 3151 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 3152 // 3153 // => 3154 // 3155 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 3156 // %3:_(<2 x s8>) = G_BITCAST %2 3157 // %4:_(<2 x s8>) = G_BITCAST %3 3158 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 3159 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); 3160 SrcPartTy = SrcEltTy; 3161 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 3162 // 3163 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 3164 // 3165 // => 3166 // 3167 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 3168 // %3:_(s16) = G_BITCAST %2 3169 // %4:_(s16) = G_BITCAST %3 3170 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 3171 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); 3172 DstCastTy = DstEltTy; 3173 } 3174 3175 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 3176 for (Register &SrcReg : SrcRegs) 3177 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 3178 } else 3179 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 3180 3181 MIRBuilder.buildMergeLikeInstr(Dst, SrcRegs); 3182 MI.eraseFromParent(); 3183 return Legalized; 3184 } 3185 3186 if (DstTy.isVector()) { 3187 SmallVector<Register, 8> SrcRegs; 3188 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 3189 MIRBuilder.buildMergeLikeInstr(Dst, SrcRegs); 3190 MI.eraseFromParent(); 3191 return Legalized; 3192 } 3193 3194 return UnableToLegalize; 3195 } 3196 3197 /// Figure out the bit offset into a register when coercing a vector index for 3198 /// the wide element type. This is only for the case when promoting vector to 3199 /// one with larger elements. 3200 // 3201 /// 3202 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 3203 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 3204 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 3205 Register Idx, 3206 unsigned NewEltSize, 3207 unsigned OldEltSize) { 3208 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 3209 LLT IdxTy = B.getMRI()->getType(Idx); 3210 3211 // Now figure out the amount we need to shift to get the target bits. 3212 auto OffsetMask = B.buildConstant( 3213 IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio)); 3214 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 3215 return B.buildShl(IdxTy, OffsetIdx, 3216 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 3217 } 3218 3219 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 3220 /// is casting to a vector with a smaller element size, perform multiple element 3221 /// extracts and merge the results. If this is coercing to a vector with larger 3222 /// elements, index the bitcasted vector and extract the target element with bit 3223 /// operations. This is intended to force the indexing in the native register 3224 /// size for architectures that can dynamically index the register file. 3225 LegalizerHelper::LegalizeResult 3226 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 3227 LLT CastTy) { 3228 if (TypeIdx != 1) 3229 return UnableToLegalize; 3230 3231 auto [Dst, DstTy, SrcVec, SrcVecTy, Idx, IdxTy] = MI.getFirst3RegLLTs(); 3232 3233 LLT SrcEltTy = SrcVecTy.getElementType(); 3234 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 3235 unsigned OldNumElts = SrcVecTy.getNumElements(); 3236 3237 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 3238 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 3239 3240 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 3241 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 3242 if (NewNumElts > OldNumElts) { 3243 // Decreasing the vector element size 3244 // 3245 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 3246 // => 3247 // v4i32:castx = bitcast x:v2i64 3248 // 3249 // i64 = bitcast 3250 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 3251 // (i32 (extract_vector_elt castx, (2 * y + 1))) 3252 // 3253 if (NewNumElts % OldNumElts != 0) 3254 return UnableToLegalize; 3255 3256 // Type of the intermediate result vector. 3257 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 3258 LLT MidTy = 3259 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); 3260 3261 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 3262 3263 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 3264 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 3265 3266 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 3267 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 3268 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 3269 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 3270 NewOps[I] = Elt.getReg(0); 3271 } 3272 3273 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 3274 MIRBuilder.buildBitcast(Dst, NewVec); 3275 MI.eraseFromParent(); 3276 return Legalized; 3277 } 3278 3279 if (NewNumElts < OldNumElts) { 3280 if (NewEltSize % OldEltSize != 0) 3281 return UnableToLegalize; 3282 3283 // This only depends on powers of 2 because we use bit tricks to figure out 3284 // the bit offset we need to shift to get the target element. A general 3285 // expansion could emit division/multiply. 3286 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 3287 return UnableToLegalize; 3288 3289 // Increasing the vector element size. 3290 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 3291 // 3292 // => 3293 // 3294 // %cast = G_BITCAST %vec 3295 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 3296 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 3297 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 3298 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 3299 // %elt_bits = G_LSHR %wide_elt, %offset_bits 3300 // %elt = G_TRUNC %elt_bits 3301 3302 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 3303 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 3304 3305 // Divide to get the index in the wider element type. 3306 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 3307 3308 Register WideElt = CastVec; 3309 if (CastTy.isVector()) { 3310 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 3311 ScaledIdx).getReg(0); 3312 } 3313 3314 // Compute the bit offset into the register of the target element. 3315 Register OffsetBits = getBitcastWiderVectorElementOffset( 3316 MIRBuilder, Idx, NewEltSize, OldEltSize); 3317 3318 // Shift the wide element to get the target element. 3319 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 3320 MIRBuilder.buildTrunc(Dst, ExtractedBits); 3321 MI.eraseFromParent(); 3322 return Legalized; 3323 } 3324 3325 return UnableToLegalize; 3326 } 3327 3328 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 3329 /// TargetReg, while preserving other bits in \p TargetReg. 3330 /// 3331 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 3332 static Register buildBitFieldInsert(MachineIRBuilder &B, 3333 Register TargetReg, Register InsertReg, 3334 Register OffsetBits) { 3335 LLT TargetTy = B.getMRI()->getType(TargetReg); 3336 LLT InsertTy = B.getMRI()->getType(InsertReg); 3337 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 3338 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 3339 3340 // Produce a bitmask of the value to insert 3341 auto EltMask = B.buildConstant( 3342 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 3343 InsertTy.getSizeInBits())); 3344 // Shift it into position 3345 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 3346 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 3347 3348 // Clear out the bits in the wide element 3349 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 3350 3351 // The value to insert has all zeros already, so stick it into the masked 3352 // wide element. 3353 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 3354 } 3355 3356 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 3357 /// is increasing the element size, perform the indexing in the target element 3358 /// type, and use bit operations to insert at the element position. This is 3359 /// intended for architectures that can dynamically index the register file and 3360 /// want to force indexing in the native register size. 3361 LegalizerHelper::LegalizeResult 3362 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 3363 LLT CastTy) { 3364 if (TypeIdx != 0) 3365 return UnableToLegalize; 3366 3367 auto [Dst, DstTy, SrcVec, SrcVecTy, Val, ValTy, Idx, IdxTy] = 3368 MI.getFirst4RegLLTs(); 3369 LLT VecTy = DstTy; 3370 3371 LLT VecEltTy = VecTy.getElementType(); 3372 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 3373 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 3374 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 3375 3376 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 3377 unsigned OldNumElts = VecTy.getNumElements(); 3378 3379 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 3380 if (NewNumElts < OldNumElts) { 3381 if (NewEltSize % OldEltSize != 0) 3382 return UnableToLegalize; 3383 3384 // This only depends on powers of 2 because we use bit tricks to figure out 3385 // the bit offset we need to shift to get the target element. A general 3386 // expansion could emit division/multiply. 3387 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 3388 return UnableToLegalize; 3389 3390 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 3391 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 3392 3393 // Divide to get the index in the wider element type. 3394 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 3395 3396 Register ExtractedElt = CastVec; 3397 if (CastTy.isVector()) { 3398 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 3399 ScaledIdx).getReg(0); 3400 } 3401 3402 // Compute the bit offset into the register of the target element. 3403 Register OffsetBits = getBitcastWiderVectorElementOffset( 3404 MIRBuilder, Idx, NewEltSize, OldEltSize); 3405 3406 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 3407 Val, OffsetBits); 3408 if (CastTy.isVector()) { 3409 InsertedElt = MIRBuilder.buildInsertVectorElement( 3410 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 3411 } 3412 3413 MIRBuilder.buildBitcast(Dst, InsertedElt); 3414 MI.eraseFromParent(); 3415 return Legalized; 3416 } 3417 3418 return UnableToLegalize; 3419 } 3420 3421 // This attempts to handle G_CONCAT_VECTORS with illegal operands, particularly 3422 // those that have smaller than legal operands. 3423 // 3424 // <16 x s8> = G_CONCAT_VECTORS <4 x s8>, <4 x s8>, <4 x s8>, <4 x s8> 3425 // 3426 // ===> 3427 // 3428 // s32 = G_BITCAST <4 x s8> 3429 // s32 = G_BITCAST <4 x s8> 3430 // s32 = G_BITCAST <4 x s8> 3431 // s32 = G_BITCAST <4 x s8> 3432 // <4 x s32> = G_BUILD_VECTOR s32, s32, s32, s32 3433 // <16 x s8> = G_BITCAST <4 x s32> 3434 LegalizerHelper::LegalizeResult 3435 LegalizerHelper::bitcastConcatVector(MachineInstr &MI, unsigned TypeIdx, 3436 LLT CastTy) { 3437 // Convert it to CONCAT instruction 3438 auto ConcatMI = dyn_cast<GConcatVectors>(&MI); 3439 if (!ConcatMI) { 3440 return UnableToLegalize; 3441 } 3442 3443 // Check if bitcast is Legal 3444 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 3445 LLT SrcScalTy = LLT::scalar(SrcTy.getSizeInBits()); 3446 3447 // Check if the build vector is Legal 3448 if (!LI.isLegal({TargetOpcode::G_BUILD_VECTOR, {CastTy, SrcScalTy}})) { 3449 return UnableToLegalize; 3450 } 3451 3452 // Bitcast the sources 3453 SmallVector<Register> BitcastRegs; 3454 for (unsigned i = 0; i < ConcatMI->getNumSources(); i++) { 3455 BitcastRegs.push_back( 3456 MIRBuilder.buildBitcast(SrcScalTy, ConcatMI->getSourceReg(i)) 3457 .getReg(0)); 3458 } 3459 3460 // Build the scalar values into a vector 3461 Register BuildReg = 3462 MIRBuilder.buildBuildVector(CastTy, BitcastRegs).getReg(0); 3463 MIRBuilder.buildBitcast(DstReg, BuildReg); 3464 3465 MI.eraseFromParent(); 3466 return Legalized; 3467 } 3468 3469 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) { 3470 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 3471 Register DstReg = LoadMI.getDstReg(); 3472 Register PtrReg = LoadMI.getPointerReg(); 3473 LLT DstTy = MRI.getType(DstReg); 3474 MachineMemOperand &MMO = LoadMI.getMMO(); 3475 LLT MemTy = MMO.getMemoryType(); 3476 MachineFunction &MF = MIRBuilder.getMF(); 3477 3478 unsigned MemSizeInBits = MemTy.getSizeInBits(); 3479 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); 3480 3481 if (MemSizeInBits != MemStoreSizeInBits) { 3482 if (MemTy.isVector()) 3483 return UnableToLegalize; 3484 3485 // Promote to a byte-sized load if not loading an integral number of 3486 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 3487 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); 3488 MachineMemOperand *NewMMO = 3489 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); 3490 3491 Register LoadReg = DstReg; 3492 LLT LoadTy = DstTy; 3493 3494 // If this wasn't already an extending load, we need to widen the result 3495 // register to avoid creating a load with a narrower result than the source. 3496 if (MemStoreSizeInBits > DstTy.getSizeInBits()) { 3497 LoadTy = WideMemTy; 3498 LoadReg = MRI.createGenericVirtualRegister(WideMemTy); 3499 } 3500 3501 if (isa<GSExtLoad>(LoadMI)) { 3502 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 3503 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); 3504 } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == LoadTy) { 3505 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 3506 // The extra bits are guaranteed to be zero, since we stored them that 3507 // way. A zext load from Wide thus automatically gives zext from MemVT. 3508 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); 3509 } else { 3510 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); 3511 } 3512 3513 if (DstTy != LoadTy) 3514 MIRBuilder.buildTrunc(DstReg, LoadReg); 3515 3516 LoadMI.eraseFromParent(); 3517 return Legalized; 3518 } 3519 3520 // Big endian lowering not implemented. 3521 if (MIRBuilder.getDataLayout().isBigEndian()) 3522 return UnableToLegalize; 3523 3524 // This load needs splitting into power of 2 sized loads. 3525 // 3526 // Our strategy here is to generate anyextending loads for the smaller 3527 // types up to next power-2 result type, and then combine the two larger 3528 // result values together, before truncating back down to the non-pow-2 3529 // type. 3530 // E.g. v1 = i24 load => 3531 // v2 = i32 zextload (2 byte) 3532 // v3 = i32 load (1 byte) 3533 // v4 = i32 shl v3, 16 3534 // v5 = i32 or v4, v2 3535 // v1 = i24 trunc v5 3536 // By doing this we generate the correct truncate which should get 3537 // combined away as an artifact with a matching extend. 3538 3539 uint64_t LargeSplitSize, SmallSplitSize; 3540 3541 if (!isPowerOf2_32(MemSizeInBits)) { 3542 // This load needs splitting into power of 2 sized loads. 3543 LargeSplitSize = llvm::bit_floor(MemSizeInBits); 3544 SmallSplitSize = MemSizeInBits - LargeSplitSize; 3545 } else { 3546 // This is already a power of 2, but we still need to split this in half. 3547 // 3548 // Assume we're being asked to decompose an unaligned load. 3549 // TODO: If this requires multiple splits, handle them all at once. 3550 auto &Ctx = MF.getFunction().getContext(); 3551 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3552 return UnableToLegalize; 3553 3554 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3555 } 3556 3557 if (MemTy.isVector()) { 3558 // TODO: Handle vector extloads 3559 if (MemTy != DstTy) 3560 return UnableToLegalize; 3561 3562 // TODO: We can do better than scalarizing the vector and at least split it 3563 // in half. 3564 return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType()); 3565 } 3566 3567 MachineMemOperand *LargeMMO = 3568 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3569 MachineMemOperand *SmallMMO = 3570 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3571 3572 LLT PtrTy = MRI.getType(PtrReg); 3573 unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits()); 3574 LLT AnyExtTy = LLT::scalar(AnyExtSize); 3575 auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy, 3576 PtrReg, *LargeMMO); 3577 3578 auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), 3579 LargeSplitSize / 8); 3580 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 3581 auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 3582 auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy, 3583 SmallPtr, *SmallMMO); 3584 3585 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 3586 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 3587 3588 if (AnyExtTy == DstTy) 3589 MIRBuilder.buildOr(DstReg, Shift, LargeLoad); 3590 else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) { 3591 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3592 MIRBuilder.buildTrunc(DstReg, {Or}); 3593 } else { 3594 assert(DstTy.isPointer() && "expected pointer"); 3595 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3596 3597 // FIXME: We currently consider this to be illegal for non-integral address 3598 // spaces, but we need still need a way to reinterpret the bits. 3599 MIRBuilder.buildIntToPtr(DstReg, Or); 3600 } 3601 3602 LoadMI.eraseFromParent(); 3603 return Legalized; 3604 } 3605 3606 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) { 3607 // Lower a non-power of 2 store into multiple pow-2 stores. 3608 // E.g. split an i24 store into an i16 store + i8 store. 3609 // We do this by first extending the stored value to the next largest power 3610 // of 2 type, and then using truncating stores to store the components. 3611 // By doing this, likewise with G_LOAD, generate an extend that can be 3612 // artifact-combined away instead of leaving behind extracts. 3613 Register SrcReg = StoreMI.getValueReg(); 3614 Register PtrReg = StoreMI.getPointerReg(); 3615 LLT SrcTy = MRI.getType(SrcReg); 3616 MachineFunction &MF = MIRBuilder.getMF(); 3617 MachineMemOperand &MMO = **StoreMI.memoperands_begin(); 3618 LLT MemTy = MMO.getMemoryType(); 3619 3620 unsigned StoreWidth = MemTy.getSizeInBits(); 3621 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); 3622 3623 if (StoreWidth != StoreSizeInBits) { 3624 if (SrcTy.isVector()) 3625 return UnableToLegalize; 3626 3627 // Promote to a byte-sized store with upper bits zero if not 3628 // storing an integral number of bytes. For example, promote 3629 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 3630 LLT WideTy = LLT::scalar(StoreSizeInBits); 3631 3632 if (StoreSizeInBits > SrcTy.getSizeInBits()) { 3633 // Avoid creating a store with a narrower source than result. 3634 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 3635 SrcTy = WideTy; 3636 } 3637 3638 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); 3639 3640 MachineMemOperand *NewMMO = 3641 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); 3642 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); 3643 StoreMI.eraseFromParent(); 3644 return Legalized; 3645 } 3646 3647 if (MemTy.isVector()) { 3648 // TODO: Handle vector trunc stores 3649 if (MemTy != SrcTy) 3650 return UnableToLegalize; 3651 3652 // TODO: We can do better than scalarizing the vector and at least split it 3653 // in half. 3654 return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType()); 3655 } 3656 3657 unsigned MemSizeInBits = MemTy.getSizeInBits(); 3658 uint64_t LargeSplitSize, SmallSplitSize; 3659 3660 if (!isPowerOf2_32(MemSizeInBits)) { 3661 LargeSplitSize = llvm::bit_floor<uint64_t>(MemTy.getSizeInBits()); 3662 SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize; 3663 } else { 3664 auto &Ctx = MF.getFunction().getContext(); 3665 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3666 return UnableToLegalize; // Don't know what we're being asked to do. 3667 3668 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3669 } 3670 3671 // Extend to the next pow-2. If this store was itself the result of lowering, 3672 // e.g. an s56 store being broken into s32 + s24, we might have a stored type 3673 // that's wider than the stored size. 3674 unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits()); 3675 const LLT NewSrcTy = LLT::scalar(AnyExtSize); 3676 3677 if (SrcTy.isPointer()) { 3678 const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits()); 3679 SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0); 3680 } 3681 3682 auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg); 3683 3684 // Obtain the smaller value by shifting away the larger value. 3685 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize); 3686 auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt); 3687 3688 // Generate the PtrAdd and truncating stores. 3689 LLT PtrTy = MRI.getType(PtrReg); 3690 auto OffsetCst = MIRBuilder.buildConstant( 3691 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 3692 auto SmallPtr = 3693 MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst); 3694 3695 MachineMemOperand *LargeMMO = 3696 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3697 MachineMemOperand *SmallMMO = 3698 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3699 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); 3700 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); 3701 StoreMI.eraseFromParent(); 3702 return Legalized; 3703 } 3704 3705 LegalizerHelper::LegalizeResult 3706 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 3707 switch (MI.getOpcode()) { 3708 case TargetOpcode::G_LOAD: { 3709 if (TypeIdx != 0) 3710 return UnableToLegalize; 3711 MachineMemOperand &MMO = **MI.memoperands_begin(); 3712 3713 // Not sure how to interpret a bitcast of an extending load. 3714 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3715 return UnableToLegalize; 3716 3717 Observer.changingInstr(MI); 3718 bitcastDst(MI, CastTy, 0); 3719 MMO.setType(CastTy); 3720 // The range metadata is no longer valid when reinterpreted as a different 3721 // type. 3722 MMO.clearRanges(); 3723 Observer.changedInstr(MI); 3724 return Legalized; 3725 } 3726 case TargetOpcode::G_STORE: { 3727 if (TypeIdx != 0) 3728 return UnableToLegalize; 3729 3730 MachineMemOperand &MMO = **MI.memoperands_begin(); 3731 3732 // Not sure how to interpret a bitcast of a truncating store. 3733 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3734 return UnableToLegalize; 3735 3736 Observer.changingInstr(MI); 3737 bitcastSrc(MI, CastTy, 0); 3738 MMO.setType(CastTy); 3739 Observer.changedInstr(MI); 3740 return Legalized; 3741 } 3742 case TargetOpcode::G_SELECT: { 3743 if (TypeIdx != 0) 3744 return UnableToLegalize; 3745 3746 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 3747 LLVM_DEBUG( 3748 dbgs() << "bitcast action not implemented for vector select\n"); 3749 return UnableToLegalize; 3750 } 3751 3752 Observer.changingInstr(MI); 3753 bitcastSrc(MI, CastTy, 2); 3754 bitcastSrc(MI, CastTy, 3); 3755 bitcastDst(MI, CastTy, 0); 3756 Observer.changedInstr(MI); 3757 return Legalized; 3758 } 3759 case TargetOpcode::G_AND: 3760 case TargetOpcode::G_OR: 3761 case TargetOpcode::G_XOR: { 3762 Observer.changingInstr(MI); 3763 bitcastSrc(MI, CastTy, 1); 3764 bitcastSrc(MI, CastTy, 2); 3765 bitcastDst(MI, CastTy, 0); 3766 Observer.changedInstr(MI); 3767 return Legalized; 3768 } 3769 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 3770 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 3771 case TargetOpcode::G_INSERT_VECTOR_ELT: 3772 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 3773 case TargetOpcode::G_CONCAT_VECTORS: 3774 return bitcastConcatVector(MI, TypeIdx, CastTy); 3775 default: 3776 return UnableToLegalize; 3777 } 3778 } 3779 3780 // Legalize an instruction by changing the opcode in place. 3781 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 3782 Observer.changingInstr(MI); 3783 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 3784 Observer.changedInstr(MI); 3785 } 3786 3787 LegalizerHelper::LegalizeResult 3788 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 3789 using namespace TargetOpcode; 3790 3791 switch(MI.getOpcode()) { 3792 default: 3793 return UnableToLegalize; 3794 case TargetOpcode::G_FCONSTANT: 3795 return lowerFConstant(MI); 3796 case TargetOpcode::G_BITCAST: 3797 return lowerBitcast(MI); 3798 case TargetOpcode::G_SREM: 3799 case TargetOpcode::G_UREM: { 3800 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3801 auto Quot = 3802 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 3803 {MI.getOperand(1), MI.getOperand(2)}); 3804 3805 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 3806 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 3807 MI.eraseFromParent(); 3808 return Legalized; 3809 } 3810 case TargetOpcode::G_SADDO: 3811 case TargetOpcode::G_SSUBO: 3812 return lowerSADDO_SSUBO(MI); 3813 case TargetOpcode::G_UMULH: 3814 case TargetOpcode::G_SMULH: 3815 return lowerSMULH_UMULH(MI); 3816 case TargetOpcode::G_SMULO: 3817 case TargetOpcode::G_UMULO: { 3818 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 3819 // result. 3820 auto [Res, Overflow, LHS, RHS] = MI.getFirst4Regs(); 3821 LLT Ty = MRI.getType(Res); 3822 3823 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 3824 ? TargetOpcode::G_SMULH 3825 : TargetOpcode::G_UMULH; 3826 3827 Observer.changingInstr(MI); 3828 const auto &TII = MIRBuilder.getTII(); 3829 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 3830 MI.removeOperand(1); 3831 Observer.changedInstr(MI); 3832 3833 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 3834 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3835 3836 // Move insert point forward so we can use the Res register if needed. 3837 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 3838 3839 // For *signed* multiply, overflow is detected by checking: 3840 // (hi != (lo >> bitwidth-1)) 3841 if (Opcode == TargetOpcode::G_SMULH) { 3842 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 3843 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 3844 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 3845 } else { 3846 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 3847 } 3848 return Legalized; 3849 } 3850 case TargetOpcode::G_FNEG: { 3851 auto [Res, SubByReg] = MI.getFirst2Regs(); 3852 LLT Ty = MRI.getType(Res); 3853 3854 // TODO: Handle vector types once we are able to 3855 // represent them. 3856 if (Ty.isVector()) 3857 return UnableToLegalize; 3858 auto SignMask = 3859 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3860 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3861 MI.eraseFromParent(); 3862 return Legalized; 3863 } 3864 case TargetOpcode::G_FSUB: 3865 case TargetOpcode::G_STRICT_FSUB: { 3866 auto [Res, LHS, RHS] = MI.getFirst3Regs(); 3867 LLT Ty = MRI.getType(Res); 3868 3869 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3870 auto Neg = MIRBuilder.buildFNeg(Ty, RHS); 3871 3872 if (MI.getOpcode() == TargetOpcode::G_STRICT_FSUB) 3873 MIRBuilder.buildStrictFAdd(Res, LHS, Neg, MI.getFlags()); 3874 else 3875 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3876 3877 MI.eraseFromParent(); 3878 return Legalized; 3879 } 3880 case TargetOpcode::G_FMAD: 3881 return lowerFMad(MI); 3882 case TargetOpcode::G_FFLOOR: 3883 return lowerFFloor(MI); 3884 case TargetOpcode::G_INTRINSIC_ROUND: 3885 return lowerIntrinsicRound(MI); 3886 case TargetOpcode::G_FRINT: { 3887 // Since round even is the assumed rounding mode for unconstrained FP 3888 // operations, rint and roundeven are the same operation. 3889 changeOpcode(MI, TargetOpcode::G_INTRINSIC_ROUNDEVEN); 3890 return Legalized; 3891 } 3892 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3893 auto [OldValRes, SuccessRes, Addr, CmpVal, NewVal] = MI.getFirst5Regs(); 3894 Register NewOldValRes = MRI.cloneVirtualRegister(OldValRes); 3895 MIRBuilder.buildAtomicCmpXchg(NewOldValRes, Addr, CmpVal, NewVal, 3896 **MI.memoperands_begin()); 3897 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, NewOldValRes, CmpVal); 3898 MIRBuilder.buildCopy(OldValRes, NewOldValRes); 3899 MI.eraseFromParent(); 3900 return Legalized; 3901 } 3902 case TargetOpcode::G_LOAD: 3903 case TargetOpcode::G_SEXTLOAD: 3904 case TargetOpcode::G_ZEXTLOAD: 3905 return lowerLoad(cast<GAnyLoad>(MI)); 3906 case TargetOpcode::G_STORE: 3907 return lowerStore(cast<GStore>(MI)); 3908 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3909 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3910 case TargetOpcode::G_CTLZ: 3911 case TargetOpcode::G_CTTZ: 3912 case TargetOpcode::G_CTPOP: 3913 return lowerBitCount(MI); 3914 case G_UADDO: { 3915 auto [Res, CarryOut, LHS, RHS] = MI.getFirst4Regs(); 3916 3917 Register NewRes = MRI.cloneVirtualRegister(Res); 3918 3919 MIRBuilder.buildAdd(NewRes, LHS, RHS); 3920 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, NewRes, RHS); 3921 3922 MIRBuilder.buildCopy(Res, NewRes); 3923 3924 MI.eraseFromParent(); 3925 return Legalized; 3926 } 3927 case G_UADDE: { 3928 auto [Res, CarryOut, LHS, RHS, CarryIn] = MI.getFirst5Regs(); 3929 const LLT CondTy = MRI.getType(CarryOut); 3930 const LLT Ty = MRI.getType(Res); 3931 3932 Register NewRes = MRI.cloneVirtualRegister(Res); 3933 3934 // Initial add of the two operands. 3935 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3936 3937 // Initial check for carry. 3938 auto Carry = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, TmpRes, LHS); 3939 3940 // Add the sum and the carry. 3941 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3942 MIRBuilder.buildAdd(NewRes, TmpRes, ZExtCarryIn); 3943 3944 // Second check for carry. We can only carry if the initial sum is all 1s 3945 // and the carry is set, resulting in a new sum of 0. 3946 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3947 auto ResEqZero = 3948 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, NewRes, Zero); 3949 auto Carry2 = MIRBuilder.buildAnd(CondTy, ResEqZero, CarryIn); 3950 MIRBuilder.buildOr(CarryOut, Carry, Carry2); 3951 3952 MIRBuilder.buildCopy(Res, NewRes); 3953 3954 MI.eraseFromParent(); 3955 return Legalized; 3956 } 3957 case G_USUBO: { 3958 auto [Res, BorrowOut, LHS, RHS] = MI.getFirst4Regs(); 3959 3960 MIRBuilder.buildSub(Res, LHS, RHS); 3961 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3962 3963 MI.eraseFromParent(); 3964 return Legalized; 3965 } 3966 case G_USUBE: { 3967 auto [Res, BorrowOut, LHS, RHS, BorrowIn] = MI.getFirst5Regs(); 3968 const LLT CondTy = MRI.getType(BorrowOut); 3969 const LLT Ty = MRI.getType(Res); 3970 3971 // Initial subtract of the two operands. 3972 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3973 3974 // Initial check for borrow. 3975 auto Borrow = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, CondTy, TmpRes, LHS); 3976 3977 // Subtract the borrow from the first subtract. 3978 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3979 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3980 3981 // Second check for borrow. We can only borrow if the initial difference is 3982 // 0 and the borrow is set, resulting in a new difference of all 1s. 3983 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3984 auto TmpResEqZero = 3985 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, TmpRes, Zero); 3986 auto Borrow2 = MIRBuilder.buildAnd(CondTy, TmpResEqZero, BorrowIn); 3987 MIRBuilder.buildOr(BorrowOut, Borrow, Borrow2); 3988 3989 MI.eraseFromParent(); 3990 return Legalized; 3991 } 3992 case G_UITOFP: 3993 return lowerUITOFP(MI); 3994 case G_SITOFP: 3995 return lowerSITOFP(MI); 3996 case G_FPTOUI: 3997 return lowerFPTOUI(MI); 3998 case G_FPTOSI: 3999 return lowerFPTOSI(MI); 4000 case G_FPTRUNC: 4001 return lowerFPTRUNC(MI); 4002 case G_FPOWI: 4003 return lowerFPOWI(MI); 4004 case G_SMIN: 4005 case G_SMAX: 4006 case G_UMIN: 4007 case G_UMAX: 4008 return lowerMinMax(MI); 4009 case G_SCMP: 4010 case G_UCMP: 4011 return lowerThreewayCompare(MI); 4012 case G_FCOPYSIGN: 4013 return lowerFCopySign(MI); 4014 case G_FMINNUM: 4015 case G_FMAXNUM: 4016 return lowerFMinNumMaxNum(MI); 4017 case G_MERGE_VALUES: 4018 return lowerMergeValues(MI); 4019 case G_UNMERGE_VALUES: 4020 return lowerUnmergeValues(MI); 4021 case TargetOpcode::G_SEXT_INREG: { 4022 assert(MI.getOperand(2).isImm() && "Expected immediate"); 4023 int64_t SizeInBits = MI.getOperand(2).getImm(); 4024 4025 auto [DstReg, SrcReg] = MI.getFirst2Regs(); 4026 LLT DstTy = MRI.getType(DstReg); 4027 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 4028 4029 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 4030 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 4031 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 4032 MI.eraseFromParent(); 4033 return Legalized; 4034 } 4035 case G_EXTRACT_VECTOR_ELT: 4036 case G_INSERT_VECTOR_ELT: 4037 return lowerExtractInsertVectorElt(MI); 4038 case G_SHUFFLE_VECTOR: 4039 return lowerShuffleVector(MI); 4040 case G_VECTOR_COMPRESS: 4041 return lowerVECTOR_COMPRESS(MI); 4042 case G_DYN_STACKALLOC: 4043 return lowerDynStackAlloc(MI); 4044 case G_STACKSAVE: 4045 return lowerStackSave(MI); 4046 case G_STACKRESTORE: 4047 return lowerStackRestore(MI); 4048 case G_EXTRACT: 4049 return lowerExtract(MI); 4050 case G_INSERT: 4051 return lowerInsert(MI); 4052 case G_BSWAP: 4053 return lowerBswap(MI); 4054 case G_BITREVERSE: 4055 return lowerBitreverse(MI); 4056 case G_READ_REGISTER: 4057 case G_WRITE_REGISTER: 4058 return lowerReadWriteRegister(MI); 4059 case G_UADDSAT: 4060 case G_USUBSAT: { 4061 // Try to make a reasonable guess about which lowering strategy to use. The 4062 // target can override this with custom lowering and calling the 4063 // implementation functions. 4064 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 4065 if (LI.isLegalOrCustom({G_UMIN, Ty})) 4066 return lowerAddSubSatToMinMax(MI); 4067 return lowerAddSubSatToAddoSubo(MI); 4068 } 4069 case G_SADDSAT: 4070 case G_SSUBSAT: { 4071 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 4072 4073 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 4074 // since it's a shorter expansion. However, we would need to figure out the 4075 // preferred boolean type for the carry out for the query. 4076 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 4077 return lowerAddSubSatToMinMax(MI); 4078 return lowerAddSubSatToAddoSubo(MI); 4079 } 4080 case G_SSHLSAT: 4081 case G_USHLSAT: 4082 return lowerShlSat(MI); 4083 case G_ABS: 4084 return lowerAbsToAddXor(MI); 4085 case G_SELECT: 4086 return lowerSelect(MI); 4087 case G_IS_FPCLASS: 4088 return lowerISFPCLASS(MI); 4089 case G_SDIVREM: 4090 case G_UDIVREM: 4091 return lowerDIVREM(MI); 4092 case G_FSHL: 4093 case G_FSHR: 4094 return lowerFunnelShift(MI); 4095 case G_ROTL: 4096 case G_ROTR: 4097 return lowerRotate(MI); 4098 case G_MEMSET: 4099 case G_MEMCPY: 4100 case G_MEMMOVE: 4101 return lowerMemCpyFamily(MI); 4102 case G_MEMCPY_INLINE: 4103 return lowerMemcpyInline(MI); 4104 case G_ZEXT: 4105 case G_SEXT: 4106 case G_ANYEXT: 4107 return lowerEXT(MI); 4108 case G_TRUNC: 4109 return lowerTRUNC(MI); 4110 GISEL_VECREDUCE_CASES_NONSEQ 4111 return lowerVectorReduction(MI); 4112 case G_VAARG: 4113 return lowerVAArg(MI); 4114 } 4115 } 4116 4117 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 4118 Align MinAlign) const { 4119 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 4120 // datalayout for the preferred alignment. Also there should be a target hook 4121 // for this to allow targets to reduce the alignment and ignore the 4122 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 4123 // the type. 4124 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 4125 } 4126 4127 MachineInstrBuilder 4128 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 4129 MachinePointerInfo &PtrInfo) { 4130 MachineFunction &MF = MIRBuilder.getMF(); 4131 const DataLayout &DL = MIRBuilder.getDataLayout(); 4132 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 4133 4134 unsigned AddrSpace = DL.getAllocaAddrSpace(); 4135 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 4136 4137 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 4138 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 4139 } 4140 4141 static Register clampVectorIndex(MachineIRBuilder &B, Register IdxReg, 4142 LLT VecTy) { 4143 LLT IdxTy = B.getMRI()->getType(IdxReg); 4144 unsigned NElts = VecTy.getNumElements(); 4145 4146 int64_t IdxVal; 4147 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) { 4148 if (IdxVal < VecTy.getNumElements()) 4149 return IdxReg; 4150 // If a constant index would be out of bounds, clamp it as well. 4151 } 4152 4153 if (isPowerOf2_32(NElts)) { 4154 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 4155 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 4156 } 4157 4158 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 4159 .getReg(0); 4160 } 4161 4162 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 4163 Register Index) { 4164 LLT EltTy = VecTy.getElementType(); 4165 4166 // Calculate the element offset and add it to the pointer. 4167 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 4168 assert(EltSize * 8 == EltTy.getSizeInBits() && 4169 "Converting bits to bytes lost precision"); 4170 4171 Index = clampVectorIndex(MIRBuilder, Index, VecTy); 4172 4173 // Convert index to the correct size for the address space. 4174 const DataLayout &DL = MIRBuilder.getDataLayout(); 4175 unsigned AS = MRI.getType(VecPtr).getAddressSpace(); 4176 unsigned IndexSizeInBits = DL.getIndexSize(AS) * 8; 4177 LLT IdxTy = MRI.getType(Index).changeElementSize(IndexSizeInBits); 4178 if (IdxTy != MRI.getType(Index)) 4179 Index = MIRBuilder.buildSExtOrTrunc(IdxTy, Index).getReg(0); 4180 4181 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 4182 MIRBuilder.buildConstant(IdxTy, EltSize)); 4183 4184 LLT PtrTy = MRI.getType(VecPtr); 4185 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 4186 } 4187 4188 #ifndef NDEBUG 4189 /// Check that all vector operands have same number of elements. Other operands 4190 /// should be listed in NonVecOp. 4191 static bool hasSameNumEltsOnAllVectorOperands( 4192 GenericMachineInstr &MI, MachineRegisterInfo &MRI, 4193 std::initializer_list<unsigned> NonVecOpIndices) { 4194 if (MI.getNumMemOperands() != 0) 4195 return false; 4196 4197 LLT VecTy = MRI.getType(MI.getReg(0)); 4198 if (!VecTy.isVector()) 4199 return false; 4200 unsigned NumElts = VecTy.getNumElements(); 4201 4202 for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) { 4203 MachineOperand &Op = MI.getOperand(OpIdx); 4204 if (!Op.isReg()) { 4205 if (!is_contained(NonVecOpIndices, OpIdx)) 4206 return false; 4207 continue; 4208 } 4209 4210 LLT Ty = MRI.getType(Op.getReg()); 4211 if (!Ty.isVector()) { 4212 if (!is_contained(NonVecOpIndices, OpIdx)) 4213 return false; 4214 continue; 4215 } 4216 4217 if (Ty.getNumElements() != NumElts) 4218 return false; 4219 } 4220 4221 return true; 4222 } 4223 #endif 4224 4225 /// Fill \p DstOps with DstOps that have same number of elements combined as 4226 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are 4227 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple 4228 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements. 4229 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty, 4230 unsigned NumElts) { 4231 LLT LeftoverTy; 4232 assert(Ty.isVector() && "Expected vector type"); 4233 LLT EltTy = Ty.getElementType(); 4234 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 4235 int NumParts, NumLeftover; 4236 std::tie(NumParts, NumLeftover) = 4237 getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy); 4238 4239 assert(NumParts > 0 && "Error in getNarrowTypeBreakDown"); 4240 for (int i = 0; i < NumParts; ++i) { 4241 DstOps.push_back(NarrowTy); 4242 } 4243 4244 if (LeftoverTy.isValid()) { 4245 assert(NumLeftover == 1 && "expected exactly one leftover"); 4246 DstOps.push_back(LeftoverTy); 4247 } 4248 } 4249 4250 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps 4251 /// made from \p Op depending on operand type. 4252 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N, 4253 MachineOperand &Op) { 4254 for (unsigned i = 0; i < N; ++i) { 4255 if (Op.isReg()) 4256 Ops.push_back(Op.getReg()); 4257 else if (Op.isImm()) 4258 Ops.push_back(Op.getImm()); 4259 else if (Op.isPredicate()) 4260 Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate())); 4261 else 4262 llvm_unreachable("Unsupported type"); 4263 } 4264 } 4265 4266 // Handle splitting vector operations which need to have the same number of 4267 // elements in each type index, but each type index may have a different element 4268 // type. 4269 // 4270 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 4271 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 4272 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 4273 // 4274 // Also handles some irregular breakdown cases, e.g. 4275 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 4276 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 4277 // s64 = G_SHL s64, s32 4278 LegalizerHelper::LegalizeResult 4279 LegalizerHelper::fewerElementsVectorMultiEltType( 4280 GenericMachineInstr &MI, unsigned NumElts, 4281 std::initializer_list<unsigned> NonVecOpIndices) { 4282 assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) && 4283 "Non-compatible opcode or not specified non-vector operands"); 4284 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 4285 4286 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 4287 unsigned NumDefs = MI.getNumDefs(); 4288 4289 // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output. 4290 // Build instructions with DstOps to use instruction found by CSE directly. 4291 // CSE copies found instruction into given vreg when building with vreg dest. 4292 SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs); 4293 // Output registers will be taken from created instructions. 4294 SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs); 4295 for (unsigned i = 0; i < NumDefs; ++i) { 4296 makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts); 4297 } 4298 4299 // Split vector input operands into sub-vectors with NumElts elts + Leftover. 4300 // Operands listed in NonVecOpIndices will be used as is without splitting; 4301 // examples: compare predicate in icmp and fcmp (op 1), vector select with i1 4302 // scalar condition (op 1), immediate in sext_inreg (op 2). 4303 SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs); 4304 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 4305 ++UseIdx, ++UseNo) { 4306 if (is_contained(NonVecOpIndices, UseIdx)) { 4307 broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(), 4308 MI.getOperand(UseIdx)); 4309 } else { 4310 SmallVector<Register, 8> SplitPieces; 4311 extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces, MIRBuilder, 4312 MRI); 4313 for (auto Reg : SplitPieces) 4314 InputOpsPieces[UseNo].push_back(Reg); 4315 } 4316 } 4317 4318 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 4319 4320 // Take i-th piece of each input operand split and build sub-vector/scalar 4321 // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s). 4322 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 4323 SmallVector<DstOp, 2> Defs; 4324 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 4325 Defs.push_back(OutputOpsPieces[DstNo][i]); 4326 4327 SmallVector<SrcOp, 3> Uses; 4328 for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo) 4329 Uses.push_back(InputOpsPieces[InputNo][i]); 4330 4331 auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags()); 4332 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 4333 OutputRegs[DstNo].push_back(I.getReg(DstNo)); 4334 } 4335 4336 // Merge small outputs into MI's output for each def operand. 4337 if (NumLeftovers) { 4338 for (unsigned i = 0; i < NumDefs; ++i) 4339 mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]); 4340 } else { 4341 for (unsigned i = 0; i < NumDefs; ++i) 4342 MIRBuilder.buildMergeLikeInstr(MI.getReg(i), OutputRegs[i]); 4343 } 4344 4345 MI.eraseFromParent(); 4346 return Legalized; 4347 } 4348 4349 LegalizerHelper::LegalizeResult 4350 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI, 4351 unsigned NumElts) { 4352 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 4353 4354 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 4355 unsigned NumDefs = MI.getNumDefs(); 4356 4357 SmallVector<DstOp, 8> OutputOpsPieces; 4358 SmallVector<Register, 8> OutputRegs; 4359 makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts); 4360 4361 // Instructions that perform register split will be inserted in basic block 4362 // where register is defined (basic block is in the next operand). 4363 SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2); 4364 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 4365 UseIdx += 2, ++UseNo) { 4366 MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB(); 4367 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward()); 4368 extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo], 4369 MIRBuilder, MRI); 4370 } 4371 4372 // Build PHIs with fewer elements. 4373 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 4374 MIRBuilder.setInsertPt(*MI.getParent(), MI); 4375 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 4376 auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI); 4377 Phi.addDef( 4378 MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI))); 4379 OutputRegs.push_back(Phi.getReg(0)); 4380 4381 for (unsigned j = 0; j < NumInputs / 2; ++j) { 4382 Phi.addUse(InputOpsPieces[j][i]); 4383 Phi.add(MI.getOperand(1 + j * 2 + 1)); 4384 } 4385 } 4386 4387 // Set the insert point after the existing PHIs 4388 MachineBasicBlock &MBB = *MI.getParent(); 4389 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 4390 4391 // Merge small outputs into MI's def. 4392 if (NumLeftovers) { 4393 mergeMixedSubvectors(MI.getReg(0), OutputRegs); 4394 } else { 4395 MIRBuilder.buildMergeLikeInstr(MI.getReg(0), OutputRegs); 4396 } 4397 4398 MI.eraseFromParent(); 4399 return Legalized; 4400 } 4401 4402 LegalizerHelper::LegalizeResult 4403 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 4404 unsigned TypeIdx, 4405 LLT NarrowTy) { 4406 const int NumDst = MI.getNumOperands() - 1; 4407 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4408 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4409 LLT SrcTy = MRI.getType(SrcReg); 4410 4411 if (TypeIdx != 1 || NarrowTy == DstTy) 4412 return UnableToLegalize; 4413 4414 // Requires compatible types. Otherwise SrcReg should have been defined by 4415 // merge-like instruction that would get artifact combined. Most likely 4416 // instruction that defines SrcReg has to perform more/fewer elements 4417 // legalization compatible with NarrowTy. 4418 assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 4419 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 4420 4421 if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 4422 (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0)) 4423 return UnableToLegalize; 4424 4425 // This is most likely DstTy (smaller then register size) packed in SrcTy 4426 // (larger then register size) and since unmerge was not combined it will be 4427 // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy 4428 // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy. 4429 4430 // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy) 4431 // 4432 // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence 4433 // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg 4434 // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy) 4435 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg); 4436 const int NumUnmerge = Unmerge->getNumOperands() - 1; 4437 const int PartsPerUnmerge = NumDst / NumUnmerge; 4438 4439 for (int I = 0; I != NumUnmerge; ++I) { 4440 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4441 4442 for (int J = 0; J != PartsPerUnmerge; ++J) 4443 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 4444 MIB.addUse(Unmerge.getReg(I)); 4445 } 4446 4447 MI.eraseFromParent(); 4448 return Legalized; 4449 } 4450 4451 LegalizerHelper::LegalizeResult 4452 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 4453 LLT NarrowTy) { 4454 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 4455 // Requires compatible types. Otherwise user of DstReg did not perform unmerge 4456 // that should have been artifact combined. Most likely instruction that uses 4457 // DstReg has to do more/fewer elements legalization compatible with NarrowTy. 4458 assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 4459 assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 4460 if (NarrowTy == SrcTy) 4461 return UnableToLegalize; 4462 4463 // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use 4464 // is for old mir tests. Since the changes to more/fewer elements it should no 4465 // longer be possible to generate MIR like this when starting from llvm-ir 4466 // because LCMTy approach was replaced with merge/unmerge to vector elements. 4467 if (TypeIdx == 1) { 4468 assert(SrcTy.isVector() && "Expected vector types"); 4469 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 4470 if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 4471 (NarrowTy.getNumElements() >= SrcTy.getNumElements())) 4472 return UnableToLegalize; 4473 // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy) 4474 // 4475 // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy) 4476 // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy) 4477 // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4 4478 // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6 4479 // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8 4480 // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11 4481 4482 SmallVector<Register, 8> Elts; 4483 LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType(); 4484 for (unsigned i = 1; i < MI.getNumOperands(); ++i) { 4485 auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg()); 4486 for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j) 4487 Elts.push_back(Unmerge.getReg(j)); 4488 } 4489 4490 SmallVector<Register, 8> NarrowTyElts; 4491 unsigned NumNarrowTyElts = NarrowTy.getNumElements(); 4492 unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts; 4493 for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces; 4494 ++i, Offset += NumNarrowTyElts) { 4495 ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts); 4496 NarrowTyElts.push_back( 4497 MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0)); 4498 } 4499 4500 MIRBuilder.buildMergeLikeInstr(DstReg, NarrowTyElts); 4501 MI.eraseFromParent(); 4502 return Legalized; 4503 } 4504 4505 assert(TypeIdx == 0 && "Bad type index"); 4506 if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) || 4507 (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0)) 4508 return UnableToLegalize; 4509 4510 // This is most likely SrcTy (smaller then register size) packed in DstTy 4511 // (larger then register size) and since merge was not combined it will be 4512 // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy 4513 // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy. 4514 4515 // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4 4516 // 4517 // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg 4518 // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4 4519 // %0:_(DstTy) = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence 4520 SmallVector<Register, 8> NarrowTyElts; 4521 unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 4522 unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1; 4523 unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts; 4524 for (unsigned i = 0; i < NumParts; ++i) { 4525 SmallVector<Register, 8> Sources; 4526 for (unsigned j = 0; j < NumElts; ++j) 4527 Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg()); 4528 NarrowTyElts.push_back( 4529 MIRBuilder.buildMergeLikeInstr(NarrowTy, Sources).getReg(0)); 4530 } 4531 4532 MIRBuilder.buildMergeLikeInstr(DstReg, NarrowTyElts); 4533 MI.eraseFromParent(); 4534 return Legalized; 4535 } 4536 4537 LegalizerHelper::LegalizeResult 4538 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 4539 unsigned TypeIdx, 4540 LLT NarrowVecTy) { 4541 auto [DstReg, SrcVec] = MI.getFirst2Regs(); 4542 Register InsertVal; 4543 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 4544 4545 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 4546 if (IsInsert) 4547 InsertVal = MI.getOperand(2).getReg(); 4548 4549 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 4550 4551 // TODO: Handle total scalarization case. 4552 if (!NarrowVecTy.isVector()) 4553 return UnableToLegalize; 4554 4555 LLT VecTy = MRI.getType(SrcVec); 4556 4557 // If the index is a constant, we can really break this down as you would 4558 // expect, and index into the target size pieces. 4559 int64_t IdxVal; 4560 auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI); 4561 if (MaybeCst) { 4562 IdxVal = MaybeCst->Value.getSExtValue(); 4563 // Avoid out of bounds indexing the pieces. 4564 if (IdxVal >= VecTy.getNumElements()) { 4565 MIRBuilder.buildUndef(DstReg); 4566 MI.eraseFromParent(); 4567 return Legalized; 4568 } 4569 4570 SmallVector<Register, 8> VecParts; 4571 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 4572 4573 // Build a sequence of NarrowTy pieces in VecParts for this operand. 4574 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 4575 TargetOpcode::G_ANYEXT); 4576 4577 unsigned NewNumElts = NarrowVecTy.getNumElements(); 4578 4579 LLT IdxTy = MRI.getType(Idx); 4580 int64_t PartIdx = IdxVal / NewNumElts; 4581 auto NewIdx = 4582 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 4583 4584 if (IsInsert) { 4585 LLT PartTy = MRI.getType(VecParts[PartIdx]); 4586 4587 // Use the adjusted index to insert into one of the subvectors. 4588 auto InsertPart = MIRBuilder.buildInsertVectorElement( 4589 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 4590 VecParts[PartIdx] = InsertPart.getReg(0); 4591 4592 // Recombine the inserted subvector with the others to reform the result 4593 // vector. 4594 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 4595 } else { 4596 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 4597 } 4598 4599 MI.eraseFromParent(); 4600 return Legalized; 4601 } 4602 4603 // With a variable index, we can't perform the operation in a smaller type, so 4604 // we're forced to expand this. 4605 // 4606 // TODO: We could emit a chain of compare/select to figure out which piece to 4607 // index. 4608 return lowerExtractInsertVectorElt(MI); 4609 } 4610 4611 LegalizerHelper::LegalizeResult 4612 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx, 4613 LLT NarrowTy) { 4614 // FIXME: Don't know how to handle secondary types yet. 4615 if (TypeIdx != 0) 4616 return UnableToLegalize; 4617 4618 // This implementation doesn't work for atomics. Give up instead of doing 4619 // something invalid. 4620 if (LdStMI.isAtomic()) 4621 return UnableToLegalize; 4622 4623 bool IsLoad = isa<GLoad>(LdStMI); 4624 Register ValReg = LdStMI.getReg(0); 4625 Register AddrReg = LdStMI.getPointerReg(); 4626 LLT ValTy = MRI.getType(ValReg); 4627 4628 // FIXME: Do we need a distinct NarrowMemory legalize action? 4629 if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize().getValue()) { 4630 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 4631 return UnableToLegalize; 4632 } 4633 4634 int NumParts = -1; 4635 int NumLeftover = -1; 4636 LLT LeftoverTy; 4637 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 4638 if (IsLoad) { 4639 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 4640 } else { 4641 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 4642 NarrowLeftoverRegs, MIRBuilder, MRI)) { 4643 NumParts = NarrowRegs.size(); 4644 NumLeftover = NarrowLeftoverRegs.size(); 4645 } 4646 } 4647 4648 if (NumParts == -1) 4649 return UnableToLegalize; 4650 4651 LLT PtrTy = MRI.getType(AddrReg); 4652 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 4653 4654 unsigned TotalSize = ValTy.getSizeInBits(); 4655 4656 // Split the load/store into PartTy sized pieces starting at Offset. If this 4657 // is a load, return the new registers in ValRegs. For a store, each elements 4658 // of ValRegs should be PartTy. Returns the next offset that needs to be 4659 // handled. 4660 bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian(); 4661 auto MMO = LdStMI.getMMO(); 4662 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 4663 unsigned NumParts, unsigned Offset) -> unsigned { 4664 MachineFunction &MF = MIRBuilder.getMF(); 4665 unsigned PartSize = PartTy.getSizeInBits(); 4666 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 4667 ++Idx) { 4668 unsigned ByteOffset = Offset / 8; 4669 Register NewAddrReg; 4670 4671 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 4672 4673 MachineMemOperand *NewMMO = 4674 MF.getMachineMemOperand(&MMO, ByteOffset, PartTy); 4675 4676 if (IsLoad) { 4677 Register Dst = MRI.createGenericVirtualRegister(PartTy); 4678 ValRegs.push_back(Dst); 4679 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 4680 } else { 4681 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 4682 } 4683 Offset = isBigEndian ? Offset - PartSize : Offset + PartSize; 4684 } 4685 4686 return Offset; 4687 }; 4688 4689 unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0; 4690 unsigned HandledOffset = 4691 splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset); 4692 4693 // Handle the rest of the register if this isn't an even type breakdown. 4694 if (LeftoverTy.isValid()) 4695 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset); 4696 4697 if (IsLoad) { 4698 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 4699 LeftoverTy, NarrowLeftoverRegs); 4700 } 4701 4702 LdStMI.eraseFromParent(); 4703 return Legalized; 4704 } 4705 4706 LegalizerHelper::LegalizeResult 4707 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4708 LLT NarrowTy) { 4709 using namespace TargetOpcode; 4710 GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI); 4711 unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 4712 4713 switch (MI.getOpcode()) { 4714 case G_IMPLICIT_DEF: 4715 case G_TRUNC: 4716 case G_AND: 4717 case G_OR: 4718 case G_XOR: 4719 case G_ADD: 4720 case G_SUB: 4721 case G_MUL: 4722 case G_PTR_ADD: 4723 case G_SMULH: 4724 case G_UMULH: 4725 case G_FADD: 4726 case G_FMUL: 4727 case G_FSUB: 4728 case G_FNEG: 4729 case G_FABS: 4730 case G_FCANONICALIZE: 4731 case G_FDIV: 4732 case G_FREM: 4733 case G_FMA: 4734 case G_FMAD: 4735 case G_FPOW: 4736 case G_FEXP: 4737 case G_FEXP2: 4738 case G_FEXP10: 4739 case G_FLOG: 4740 case G_FLOG2: 4741 case G_FLOG10: 4742 case G_FLDEXP: 4743 case G_FNEARBYINT: 4744 case G_FCEIL: 4745 case G_FFLOOR: 4746 case G_FRINT: 4747 case G_INTRINSIC_ROUND: 4748 case G_INTRINSIC_ROUNDEVEN: 4749 case G_INTRINSIC_TRUNC: 4750 case G_FCOS: 4751 case G_FSIN: 4752 case G_FTAN: 4753 case G_FACOS: 4754 case G_FASIN: 4755 case G_FATAN: 4756 case G_FCOSH: 4757 case G_FSINH: 4758 case G_FTANH: 4759 case G_FSQRT: 4760 case G_BSWAP: 4761 case G_BITREVERSE: 4762 case G_SDIV: 4763 case G_UDIV: 4764 case G_SREM: 4765 case G_UREM: 4766 case G_SDIVREM: 4767 case G_UDIVREM: 4768 case G_SMIN: 4769 case G_SMAX: 4770 case G_UMIN: 4771 case G_UMAX: 4772 case G_ABS: 4773 case G_FMINNUM: 4774 case G_FMAXNUM: 4775 case G_FMINNUM_IEEE: 4776 case G_FMAXNUM_IEEE: 4777 case G_FMINIMUM: 4778 case G_FMAXIMUM: 4779 case G_FSHL: 4780 case G_FSHR: 4781 case G_ROTL: 4782 case G_ROTR: 4783 case G_FREEZE: 4784 case G_SADDSAT: 4785 case G_SSUBSAT: 4786 case G_UADDSAT: 4787 case G_USUBSAT: 4788 case G_UMULO: 4789 case G_SMULO: 4790 case G_SHL: 4791 case G_LSHR: 4792 case G_ASHR: 4793 case G_SSHLSAT: 4794 case G_USHLSAT: 4795 case G_CTLZ: 4796 case G_CTLZ_ZERO_UNDEF: 4797 case G_CTTZ: 4798 case G_CTTZ_ZERO_UNDEF: 4799 case G_CTPOP: 4800 case G_FCOPYSIGN: 4801 case G_ZEXT: 4802 case G_SEXT: 4803 case G_ANYEXT: 4804 case G_FPEXT: 4805 case G_FPTRUNC: 4806 case G_SITOFP: 4807 case G_UITOFP: 4808 case G_FPTOSI: 4809 case G_FPTOUI: 4810 case G_INTTOPTR: 4811 case G_PTRTOINT: 4812 case G_ADDRSPACE_CAST: 4813 case G_UADDO: 4814 case G_USUBO: 4815 case G_UADDE: 4816 case G_USUBE: 4817 case G_SADDO: 4818 case G_SSUBO: 4819 case G_SADDE: 4820 case G_SSUBE: 4821 case G_STRICT_FADD: 4822 case G_STRICT_FSUB: 4823 case G_STRICT_FMUL: 4824 case G_STRICT_FMA: 4825 case G_STRICT_FLDEXP: 4826 case G_FFREXP: 4827 return fewerElementsVectorMultiEltType(GMI, NumElts); 4828 case G_ICMP: 4829 case G_FCMP: 4830 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/}); 4831 case G_IS_FPCLASS: 4832 return fewerElementsVectorMultiEltType(GMI, NumElts, {2, 3 /*mask,fpsem*/}); 4833 case G_SELECT: 4834 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4835 return fewerElementsVectorMultiEltType(GMI, NumElts); 4836 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/}); 4837 case G_PHI: 4838 return fewerElementsVectorPhi(GMI, NumElts); 4839 case G_UNMERGE_VALUES: 4840 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4841 case G_BUILD_VECTOR: 4842 assert(TypeIdx == 0 && "not a vector type index"); 4843 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4844 case G_CONCAT_VECTORS: 4845 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4846 return UnableToLegalize; 4847 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4848 case G_EXTRACT_VECTOR_ELT: 4849 case G_INSERT_VECTOR_ELT: 4850 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4851 case G_LOAD: 4852 case G_STORE: 4853 return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy); 4854 case G_SEXT_INREG: 4855 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/}); 4856 GISEL_VECREDUCE_CASES_NONSEQ 4857 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4858 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 4859 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: 4860 return fewerElementsVectorSeqReductions(MI, TypeIdx, NarrowTy); 4861 case G_SHUFFLE_VECTOR: 4862 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 4863 case G_FPOWI: 4864 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*pow*/}); 4865 case G_BITCAST: 4866 return fewerElementsBitcast(MI, TypeIdx, NarrowTy); 4867 case G_INTRINSIC_FPTRUNC_ROUND: 4868 return fewerElementsVectorMultiEltType(GMI, NumElts, {2}); 4869 default: 4870 return UnableToLegalize; 4871 } 4872 } 4873 4874 LegalizerHelper::LegalizeResult 4875 LegalizerHelper::fewerElementsBitcast(MachineInstr &MI, unsigned int TypeIdx, 4876 LLT NarrowTy) { 4877 assert(MI.getOpcode() == TargetOpcode::G_BITCAST && 4878 "Not a bitcast operation"); 4879 4880 if (TypeIdx != 0) 4881 return UnableToLegalize; 4882 4883 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 4884 4885 unsigned SrcScalSize = SrcTy.getScalarSizeInBits(); 4886 LLT SrcNarrowTy = 4887 LLT::fixed_vector(NarrowTy.getSizeInBits() / SrcScalSize, SrcScalSize); 4888 4889 // Split the Src and Dst Reg into smaller registers 4890 SmallVector<Register> SrcVRegs, BitcastVRegs; 4891 if (extractGCDType(SrcVRegs, DstTy, SrcNarrowTy, SrcReg) != SrcNarrowTy) 4892 return UnableToLegalize; 4893 4894 // Build new smaller bitcast instructions 4895 // Not supporting Leftover types for now but will have to 4896 for (unsigned i = 0; i < SrcVRegs.size(); i++) 4897 BitcastVRegs.push_back( 4898 MIRBuilder.buildBitcast(NarrowTy, SrcVRegs[i]).getReg(0)); 4899 4900 MIRBuilder.buildMergeLikeInstr(DstReg, BitcastVRegs); 4901 MI.eraseFromParent(); 4902 return Legalized; 4903 } 4904 4905 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 4906 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4907 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 4908 if (TypeIdx != 0) 4909 return UnableToLegalize; 4910 4911 auto [DstReg, DstTy, Src1Reg, Src1Ty, Src2Reg, Src2Ty] = 4912 MI.getFirst3RegLLTs(); 4913 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4914 // The shuffle should be canonicalized by now. 4915 if (DstTy != Src1Ty) 4916 return UnableToLegalize; 4917 if (DstTy != Src2Ty) 4918 return UnableToLegalize; 4919 4920 if (!isPowerOf2_32(DstTy.getNumElements())) 4921 return UnableToLegalize; 4922 4923 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 4924 // Further legalization attempts will be needed to do split further. 4925 NarrowTy = 4926 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); 4927 unsigned NewElts = NarrowTy.getNumElements(); 4928 4929 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 4930 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs, MIRBuilder, MRI); 4931 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs, MIRBuilder, MRI); 4932 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 4933 SplitSrc2Regs[1]}; 4934 4935 Register Hi, Lo; 4936 4937 // If Lo or Hi uses elements from at most two of the four input vectors, then 4938 // express it as a vector shuffle of those two inputs. Otherwise extract the 4939 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 4940 SmallVector<int, 16> Ops; 4941 for (unsigned High = 0; High < 2; ++High) { 4942 Register &Output = High ? Hi : Lo; 4943 4944 // Build a shuffle mask for the output, discovering on the fly which 4945 // input vectors to use as shuffle operands (recorded in InputUsed). 4946 // If building a suitable shuffle vector proves too hard, then bail 4947 // out with useBuildVector set. 4948 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 4949 unsigned FirstMaskIdx = High * NewElts; 4950 bool UseBuildVector = false; 4951 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4952 // The mask element. This indexes into the input. 4953 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4954 4955 // The input vector this mask element indexes into. 4956 unsigned Input = (unsigned)Idx / NewElts; 4957 4958 if (Input >= std::size(Inputs)) { 4959 // The mask element does not index into any input vector. 4960 Ops.push_back(-1); 4961 continue; 4962 } 4963 4964 // Turn the index into an offset from the start of the input vector. 4965 Idx -= Input * NewElts; 4966 4967 // Find or create a shuffle vector operand to hold this input. 4968 unsigned OpNo; 4969 for (OpNo = 0; OpNo < std::size(InputUsed); ++OpNo) { 4970 if (InputUsed[OpNo] == Input) { 4971 // This input vector is already an operand. 4972 break; 4973 } else if (InputUsed[OpNo] == -1U) { 4974 // Create a new operand for this input vector. 4975 InputUsed[OpNo] = Input; 4976 break; 4977 } 4978 } 4979 4980 if (OpNo >= std::size(InputUsed)) { 4981 // More than two input vectors used! Give up on trying to create a 4982 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 4983 UseBuildVector = true; 4984 break; 4985 } 4986 4987 // Add the mask index for the new shuffle vector. 4988 Ops.push_back(Idx + OpNo * NewElts); 4989 } 4990 4991 if (UseBuildVector) { 4992 LLT EltTy = NarrowTy.getElementType(); 4993 SmallVector<Register, 16> SVOps; 4994 4995 // Extract the input elements by hand. 4996 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4997 // The mask element. This indexes into the input. 4998 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4999 5000 // The input vector this mask element indexes into. 5001 unsigned Input = (unsigned)Idx / NewElts; 5002 5003 if (Input >= std::size(Inputs)) { 5004 // The mask element is "undef" or indexes off the end of the input. 5005 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 5006 continue; 5007 } 5008 5009 // Turn the index into an offset from the start of the input vector. 5010 Idx -= Input * NewElts; 5011 5012 // Extract the vector element by hand. 5013 SVOps.push_back(MIRBuilder 5014 .buildExtractVectorElement( 5015 EltTy, Inputs[Input], 5016 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 5017 .getReg(0)); 5018 } 5019 5020 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 5021 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 5022 } else if (InputUsed[0] == -1U) { 5023 // No input vectors were used! The result is undefined. 5024 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 5025 } else { 5026 Register Op0 = Inputs[InputUsed[0]]; 5027 // If only one input was used, use an undefined vector for the other. 5028 Register Op1 = InputUsed[1] == -1U 5029 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 5030 : Inputs[InputUsed[1]]; 5031 // At least one input vector was used. Create a new shuffle vector. 5032 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 5033 } 5034 5035 Ops.clear(); 5036 } 5037 5038 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); 5039 MI.eraseFromParent(); 5040 return Legalized; 5041 } 5042 5043 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 5044 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 5045 auto &RdxMI = cast<GVecReduce>(MI); 5046 5047 if (TypeIdx != 1) 5048 return UnableToLegalize; 5049 5050 // The semantics of the normal non-sequential reductions allow us to freely 5051 // re-associate the operation. 5052 auto [DstReg, DstTy, SrcReg, SrcTy] = RdxMI.getFirst2RegLLTs(); 5053 5054 if (NarrowTy.isVector() && 5055 (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)) 5056 return UnableToLegalize; 5057 5058 unsigned ScalarOpc = RdxMI.getScalarOpcForReduction(); 5059 SmallVector<Register> SplitSrcs; 5060 // If NarrowTy is a scalar then we're being asked to scalarize. 5061 const unsigned NumParts = 5062 NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements() 5063 : SrcTy.getNumElements(); 5064 5065 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs, MIRBuilder, MRI); 5066 if (NarrowTy.isScalar()) { 5067 if (DstTy != NarrowTy) 5068 return UnableToLegalize; // FIXME: handle implicit extensions. 5069 5070 if (isPowerOf2_32(NumParts)) { 5071 // Generate a tree of scalar operations to reduce the critical path. 5072 SmallVector<Register> PartialResults; 5073 unsigned NumPartsLeft = NumParts; 5074 while (NumPartsLeft > 1) { 5075 for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) { 5076 PartialResults.emplace_back( 5077 MIRBuilder 5078 .buildInstr(ScalarOpc, {NarrowTy}, 5079 {SplitSrcs[Idx], SplitSrcs[Idx + 1]}) 5080 .getReg(0)); 5081 } 5082 SplitSrcs = PartialResults; 5083 PartialResults.clear(); 5084 NumPartsLeft = SplitSrcs.size(); 5085 } 5086 assert(SplitSrcs.size() == 1); 5087 MIRBuilder.buildCopy(DstReg, SplitSrcs[0]); 5088 MI.eraseFromParent(); 5089 return Legalized; 5090 } 5091 // If we can't generate a tree, then just do sequential operations. 5092 Register Acc = SplitSrcs[0]; 5093 for (unsigned Idx = 1; Idx < NumParts; ++Idx) 5094 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]}) 5095 .getReg(0); 5096 MIRBuilder.buildCopy(DstReg, Acc); 5097 MI.eraseFromParent(); 5098 return Legalized; 5099 } 5100 SmallVector<Register> PartialReductions; 5101 for (unsigned Part = 0; Part < NumParts; ++Part) { 5102 PartialReductions.push_back( 5103 MIRBuilder.buildInstr(RdxMI.getOpcode(), {DstTy}, {SplitSrcs[Part]}) 5104 .getReg(0)); 5105 } 5106 5107 // If the types involved are powers of 2, we can generate intermediate vector 5108 // ops, before generating a final reduction operation. 5109 if (isPowerOf2_32(SrcTy.getNumElements()) && 5110 isPowerOf2_32(NarrowTy.getNumElements())) { 5111 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 5112 } 5113 5114 Register Acc = PartialReductions[0]; 5115 for (unsigned Part = 1; Part < NumParts; ++Part) { 5116 if (Part == NumParts - 1) { 5117 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 5118 {Acc, PartialReductions[Part]}); 5119 } else { 5120 Acc = MIRBuilder 5121 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 5122 .getReg(0); 5123 } 5124 } 5125 MI.eraseFromParent(); 5126 return Legalized; 5127 } 5128 5129 LegalizerHelper::LegalizeResult 5130 LegalizerHelper::fewerElementsVectorSeqReductions(MachineInstr &MI, 5131 unsigned int TypeIdx, 5132 LLT NarrowTy) { 5133 auto [DstReg, DstTy, ScalarReg, ScalarTy, SrcReg, SrcTy] = 5134 MI.getFirst3RegLLTs(); 5135 if (!NarrowTy.isScalar() || TypeIdx != 2 || DstTy != ScalarTy || 5136 DstTy != NarrowTy) 5137 return UnableToLegalize; 5138 5139 assert((MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FADD || 5140 MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FMUL) && 5141 "Unexpected vecreduce opcode"); 5142 unsigned ScalarOpc = MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FADD 5143 ? TargetOpcode::G_FADD 5144 : TargetOpcode::G_FMUL; 5145 5146 SmallVector<Register> SplitSrcs; 5147 unsigned NumParts = SrcTy.getNumElements(); 5148 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs, MIRBuilder, MRI); 5149 Register Acc = ScalarReg; 5150 for (unsigned i = 0; i < NumParts; i++) 5151 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[i]}) 5152 .getReg(0); 5153 5154 MIRBuilder.buildCopy(DstReg, Acc); 5155 MI.eraseFromParent(); 5156 return Legalized; 5157 } 5158 5159 LegalizerHelper::LegalizeResult 5160 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 5161 LLT SrcTy, LLT NarrowTy, 5162 unsigned ScalarOpc) { 5163 SmallVector<Register> SplitSrcs; 5164 // Split the sources into NarrowTy size pieces. 5165 extractParts(SrcReg, NarrowTy, 5166 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs, 5167 MIRBuilder, MRI); 5168 // We're going to do a tree reduction using vector operations until we have 5169 // one NarrowTy size value left. 5170 while (SplitSrcs.size() > 1) { 5171 SmallVector<Register> PartialRdxs; 5172 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 5173 Register LHS = SplitSrcs[Idx]; 5174 Register RHS = SplitSrcs[Idx + 1]; 5175 // Create the intermediate vector op. 5176 Register Res = 5177 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 5178 PartialRdxs.push_back(Res); 5179 } 5180 SplitSrcs = std::move(PartialRdxs); 5181 } 5182 // Finally generate the requested NarrowTy based reduction. 5183 Observer.changingInstr(MI); 5184 MI.getOperand(1).setReg(SplitSrcs[0]); 5185 Observer.changedInstr(MI); 5186 return Legalized; 5187 } 5188 5189 LegalizerHelper::LegalizeResult 5190 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 5191 const LLT HalfTy, const LLT AmtTy) { 5192 5193 Register InL = MRI.createGenericVirtualRegister(HalfTy); 5194 Register InH = MRI.createGenericVirtualRegister(HalfTy); 5195 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 5196 5197 if (Amt.isZero()) { 5198 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), {InL, InH}); 5199 MI.eraseFromParent(); 5200 return Legalized; 5201 } 5202 5203 LLT NVT = HalfTy; 5204 unsigned NVTBits = HalfTy.getSizeInBits(); 5205 unsigned VTBits = 2 * NVTBits; 5206 5207 SrcOp Lo(Register(0)), Hi(Register(0)); 5208 if (MI.getOpcode() == TargetOpcode::G_SHL) { 5209 if (Amt.ugt(VTBits)) { 5210 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 5211 } else if (Amt.ugt(NVTBits)) { 5212 Lo = MIRBuilder.buildConstant(NVT, 0); 5213 Hi = MIRBuilder.buildShl(NVT, InL, 5214 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 5215 } else if (Amt == NVTBits) { 5216 Lo = MIRBuilder.buildConstant(NVT, 0); 5217 Hi = InL; 5218 } else { 5219 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 5220 auto OrLHS = 5221 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 5222 auto OrRHS = MIRBuilder.buildLShr( 5223 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 5224 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 5225 } 5226 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 5227 if (Amt.ugt(VTBits)) { 5228 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 5229 } else if (Amt.ugt(NVTBits)) { 5230 Lo = MIRBuilder.buildLShr(NVT, InH, 5231 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 5232 Hi = MIRBuilder.buildConstant(NVT, 0); 5233 } else if (Amt == NVTBits) { 5234 Lo = InH; 5235 Hi = MIRBuilder.buildConstant(NVT, 0); 5236 } else { 5237 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 5238 5239 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 5240 auto OrRHS = MIRBuilder.buildShl( 5241 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 5242 5243 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 5244 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 5245 } 5246 } else { 5247 if (Amt.ugt(VTBits)) { 5248 Hi = Lo = MIRBuilder.buildAShr( 5249 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 5250 } else if (Amt.ugt(NVTBits)) { 5251 Lo = MIRBuilder.buildAShr(NVT, InH, 5252 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 5253 Hi = MIRBuilder.buildAShr(NVT, InH, 5254 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 5255 } else if (Amt == NVTBits) { 5256 Lo = InH; 5257 Hi = MIRBuilder.buildAShr(NVT, InH, 5258 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 5259 } else { 5260 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 5261 5262 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 5263 auto OrRHS = MIRBuilder.buildShl( 5264 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 5265 5266 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 5267 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 5268 } 5269 } 5270 5271 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), {Lo, Hi}); 5272 MI.eraseFromParent(); 5273 5274 return Legalized; 5275 } 5276 5277 // TODO: Optimize if constant shift amount. 5278 LegalizerHelper::LegalizeResult 5279 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 5280 LLT RequestedTy) { 5281 if (TypeIdx == 1) { 5282 Observer.changingInstr(MI); 5283 narrowScalarSrc(MI, RequestedTy, 2); 5284 Observer.changedInstr(MI); 5285 return Legalized; 5286 } 5287 5288 Register DstReg = MI.getOperand(0).getReg(); 5289 LLT DstTy = MRI.getType(DstReg); 5290 if (DstTy.isVector()) 5291 return UnableToLegalize; 5292 5293 Register Amt = MI.getOperand(2).getReg(); 5294 LLT ShiftAmtTy = MRI.getType(Amt); 5295 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 5296 if (DstEltSize % 2 != 0) 5297 return UnableToLegalize; 5298 5299 // Ignore the input type. We can only go to exactly half the size of the 5300 // input. If that isn't small enough, the resulting pieces will be further 5301 // legalized. 5302 const unsigned NewBitSize = DstEltSize / 2; 5303 const LLT HalfTy = LLT::scalar(NewBitSize); 5304 const LLT CondTy = LLT::scalar(1); 5305 5306 if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) { 5307 return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy, 5308 ShiftAmtTy); 5309 } 5310 5311 // TODO: Expand with known bits. 5312 5313 // Handle the fully general expansion by an unknown amount. 5314 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 5315 5316 Register InL = MRI.createGenericVirtualRegister(HalfTy); 5317 Register InH = MRI.createGenericVirtualRegister(HalfTy); 5318 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 5319 5320 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 5321 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 5322 5323 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 5324 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 5325 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 5326 5327 Register ResultRegs[2]; 5328 switch (MI.getOpcode()) { 5329 case TargetOpcode::G_SHL: { 5330 // Short: ShAmt < NewBitSize 5331 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 5332 5333 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 5334 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 5335 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 5336 5337 // Long: ShAmt >= NewBitSize 5338 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 5339 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 5340 5341 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 5342 auto Hi = MIRBuilder.buildSelect( 5343 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 5344 5345 ResultRegs[0] = Lo.getReg(0); 5346 ResultRegs[1] = Hi.getReg(0); 5347 break; 5348 } 5349 case TargetOpcode::G_LSHR: 5350 case TargetOpcode::G_ASHR: { 5351 // Short: ShAmt < NewBitSize 5352 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 5353 5354 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 5355 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 5356 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 5357 5358 // Long: ShAmt >= NewBitSize 5359 MachineInstrBuilder HiL; 5360 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 5361 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 5362 } else { 5363 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 5364 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 5365 } 5366 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 5367 {InH, AmtExcess}); // Lo from Hi part. 5368 5369 auto Lo = MIRBuilder.buildSelect( 5370 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 5371 5372 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 5373 5374 ResultRegs[0] = Lo.getReg(0); 5375 ResultRegs[1] = Hi.getReg(0); 5376 break; 5377 } 5378 default: 5379 llvm_unreachable("not a shift"); 5380 } 5381 5382 MIRBuilder.buildMergeLikeInstr(DstReg, ResultRegs); 5383 MI.eraseFromParent(); 5384 return Legalized; 5385 } 5386 5387 LegalizerHelper::LegalizeResult 5388 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 5389 LLT MoreTy) { 5390 assert(TypeIdx == 0 && "Expecting only Idx 0"); 5391 5392 Observer.changingInstr(MI); 5393 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 5394 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 5395 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 5396 moreElementsVectorSrc(MI, MoreTy, I); 5397 } 5398 5399 MachineBasicBlock &MBB = *MI.getParent(); 5400 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 5401 moreElementsVectorDst(MI, MoreTy, 0); 5402 Observer.changedInstr(MI); 5403 return Legalized; 5404 } 5405 5406 MachineInstrBuilder LegalizerHelper::getNeutralElementForVecReduce( 5407 unsigned Opcode, MachineIRBuilder &MIRBuilder, LLT Ty) { 5408 assert(Ty.isScalar() && "Expected scalar type to make neutral element for"); 5409 5410 switch (Opcode) { 5411 default: 5412 llvm_unreachable( 5413 "getNeutralElementForVecReduce called with invalid opcode!"); 5414 case TargetOpcode::G_VECREDUCE_ADD: 5415 case TargetOpcode::G_VECREDUCE_OR: 5416 case TargetOpcode::G_VECREDUCE_XOR: 5417 case TargetOpcode::G_VECREDUCE_UMAX: 5418 return MIRBuilder.buildConstant(Ty, 0); 5419 case TargetOpcode::G_VECREDUCE_MUL: 5420 return MIRBuilder.buildConstant(Ty, 1); 5421 case TargetOpcode::G_VECREDUCE_AND: 5422 case TargetOpcode::G_VECREDUCE_UMIN: 5423 return MIRBuilder.buildConstant( 5424 Ty, APInt::getAllOnes(Ty.getScalarSizeInBits())); 5425 case TargetOpcode::G_VECREDUCE_SMAX: 5426 return MIRBuilder.buildConstant( 5427 Ty, APInt::getSignedMinValue(Ty.getSizeInBits())); 5428 case TargetOpcode::G_VECREDUCE_SMIN: 5429 return MIRBuilder.buildConstant( 5430 Ty, APInt::getSignedMaxValue(Ty.getSizeInBits())); 5431 case TargetOpcode::G_VECREDUCE_FADD: 5432 return MIRBuilder.buildFConstant(Ty, -0.0); 5433 case TargetOpcode::G_VECREDUCE_FMUL: 5434 return MIRBuilder.buildFConstant(Ty, 1.0); 5435 case TargetOpcode::G_VECREDUCE_FMINIMUM: 5436 case TargetOpcode::G_VECREDUCE_FMAXIMUM: 5437 assert(false && "getNeutralElementForVecReduce unimplemented for " 5438 "G_VECREDUCE_FMINIMUM and G_VECREDUCE_FMAXIMUM!"); 5439 } 5440 llvm_unreachable("switch expected to return!"); 5441 } 5442 5443 LegalizerHelper::LegalizeResult 5444 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 5445 LLT MoreTy) { 5446 unsigned Opc = MI.getOpcode(); 5447 switch (Opc) { 5448 case TargetOpcode::G_IMPLICIT_DEF: 5449 case TargetOpcode::G_LOAD: { 5450 if (TypeIdx != 0) 5451 return UnableToLegalize; 5452 Observer.changingInstr(MI); 5453 moreElementsVectorDst(MI, MoreTy, 0); 5454 Observer.changedInstr(MI); 5455 return Legalized; 5456 } 5457 case TargetOpcode::G_STORE: 5458 if (TypeIdx != 0) 5459 return UnableToLegalize; 5460 Observer.changingInstr(MI); 5461 moreElementsVectorSrc(MI, MoreTy, 0); 5462 Observer.changedInstr(MI); 5463 return Legalized; 5464 case TargetOpcode::G_AND: 5465 case TargetOpcode::G_OR: 5466 case TargetOpcode::G_XOR: 5467 case TargetOpcode::G_ADD: 5468 case TargetOpcode::G_SUB: 5469 case TargetOpcode::G_MUL: 5470 case TargetOpcode::G_FADD: 5471 case TargetOpcode::G_FSUB: 5472 case TargetOpcode::G_FMUL: 5473 case TargetOpcode::G_FDIV: 5474 case TargetOpcode::G_FCOPYSIGN: 5475 case TargetOpcode::G_UADDSAT: 5476 case TargetOpcode::G_USUBSAT: 5477 case TargetOpcode::G_SADDSAT: 5478 case TargetOpcode::G_SSUBSAT: 5479 case TargetOpcode::G_SMIN: 5480 case TargetOpcode::G_SMAX: 5481 case TargetOpcode::G_UMIN: 5482 case TargetOpcode::G_UMAX: 5483 case TargetOpcode::G_FMINNUM: 5484 case TargetOpcode::G_FMAXNUM: 5485 case TargetOpcode::G_FMINNUM_IEEE: 5486 case TargetOpcode::G_FMAXNUM_IEEE: 5487 case TargetOpcode::G_FMINIMUM: 5488 case TargetOpcode::G_FMAXIMUM: 5489 case TargetOpcode::G_STRICT_FADD: 5490 case TargetOpcode::G_STRICT_FSUB: 5491 case TargetOpcode::G_STRICT_FMUL: 5492 case TargetOpcode::G_SHL: 5493 case TargetOpcode::G_ASHR: 5494 case TargetOpcode::G_LSHR: { 5495 Observer.changingInstr(MI); 5496 moreElementsVectorSrc(MI, MoreTy, 1); 5497 moreElementsVectorSrc(MI, MoreTy, 2); 5498 moreElementsVectorDst(MI, MoreTy, 0); 5499 Observer.changedInstr(MI); 5500 return Legalized; 5501 } 5502 case TargetOpcode::G_FMA: 5503 case TargetOpcode::G_STRICT_FMA: 5504 case TargetOpcode::G_FSHR: 5505 case TargetOpcode::G_FSHL: { 5506 Observer.changingInstr(MI); 5507 moreElementsVectorSrc(MI, MoreTy, 1); 5508 moreElementsVectorSrc(MI, MoreTy, 2); 5509 moreElementsVectorSrc(MI, MoreTy, 3); 5510 moreElementsVectorDst(MI, MoreTy, 0); 5511 Observer.changedInstr(MI); 5512 return Legalized; 5513 } 5514 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 5515 case TargetOpcode::G_EXTRACT: 5516 if (TypeIdx != 1) 5517 return UnableToLegalize; 5518 Observer.changingInstr(MI); 5519 moreElementsVectorSrc(MI, MoreTy, 1); 5520 Observer.changedInstr(MI); 5521 return Legalized; 5522 case TargetOpcode::G_INSERT: 5523 case TargetOpcode::G_INSERT_VECTOR_ELT: 5524 case TargetOpcode::G_FREEZE: 5525 case TargetOpcode::G_FNEG: 5526 case TargetOpcode::G_FABS: 5527 case TargetOpcode::G_FSQRT: 5528 case TargetOpcode::G_FCEIL: 5529 case TargetOpcode::G_FFLOOR: 5530 case TargetOpcode::G_FNEARBYINT: 5531 case TargetOpcode::G_FRINT: 5532 case TargetOpcode::G_INTRINSIC_ROUND: 5533 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 5534 case TargetOpcode::G_INTRINSIC_TRUNC: 5535 case TargetOpcode::G_BSWAP: 5536 case TargetOpcode::G_FCANONICALIZE: 5537 case TargetOpcode::G_SEXT_INREG: 5538 case TargetOpcode::G_ABS: 5539 if (TypeIdx != 0) 5540 return UnableToLegalize; 5541 Observer.changingInstr(MI); 5542 moreElementsVectorSrc(MI, MoreTy, 1); 5543 moreElementsVectorDst(MI, MoreTy, 0); 5544 Observer.changedInstr(MI); 5545 return Legalized; 5546 case TargetOpcode::G_SELECT: { 5547 auto [DstReg, DstTy, CondReg, CondTy] = MI.getFirst2RegLLTs(); 5548 if (TypeIdx == 1) { 5549 if (!CondTy.isScalar() || 5550 DstTy.getElementCount() != MoreTy.getElementCount()) 5551 return UnableToLegalize; 5552 5553 // This is turning a scalar select of vectors into a vector 5554 // select. Broadcast the select condition. 5555 auto ShufSplat = MIRBuilder.buildShuffleSplat(MoreTy, CondReg); 5556 Observer.changingInstr(MI); 5557 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 5558 Observer.changedInstr(MI); 5559 return Legalized; 5560 } 5561 5562 if (CondTy.isVector()) 5563 return UnableToLegalize; 5564 5565 Observer.changingInstr(MI); 5566 moreElementsVectorSrc(MI, MoreTy, 2); 5567 moreElementsVectorSrc(MI, MoreTy, 3); 5568 moreElementsVectorDst(MI, MoreTy, 0); 5569 Observer.changedInstr(MI); 5570 return Legalized; 5571 } 5572 case TargetOpcode::G_UNMERGE_VALUES: 5573 return UnableToLegalize; 5574 case TargetOpcode::G_PHI: 5575 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 5576 case TargetOpcode::G_SHUFFLE_VECTOR: 5577 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy); 5578 case TargetOpcode::G_BUILD_VECTOR: { 5579 SmallVector<SrcOp, 8> Elts; 5580 for (auto Op : MI.uses()) { 5581 Elts.push_back(Op.getReg()); 5582 } 5583 5584 for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) { 5585 Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType())); 5586 } 5587 5588 MIRBuilder.buildDeleteTrailingVectorElements( 5589 MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts)); 5590 MI.eraseFromParent(); 5591 return Legalized; 5592 } 5593 case TargetOpcode::G_SEXT: 5594 case TargetOpcode::G_ZEXT: 5595 case TargetOpcode::G_ANYEXT: 5596 case TargetOpcode::G_TRUNC: 5597 case TargetOpcode::G_FPTRUNC: 5598 case TargetOpcode::G_FPEXT: 5599 case TargetOpcode::G_FPTOSI: 5600 case TargetOpcode::G_FPTOUI: 5601 case TargetOpcode::G_SITOFP: 5602 case TargetOpcode::G_UITOFP: { 5603 Observer.changingInstr(MI); 5604 LLT SrcExtTy; 5605 LLT DstExtTy; 5606 if (TypeIdx == 0) { 5607 DstExtTy = MoreTy; 5608 SrcExtTy = LLT::fixed_vector( 5609 MoreTy.getNumElements(), 5610 MRI.getType(MI.getOperand(1).getReg()).getElementType()); 5611 } else { 5612 DstExtTy = LLT::fixed_vector( 5613 MoreTy.getNumElements(), 5614 MRI.getType(MI.getOperand(0).getReg()).getElementType()); 5615 SrcExtTy = MoreTy; 5616 } 5617 moreElementsVectorSrc(MI, SrcExtTy, 1); 5618 moreElementsVectorDst(MI, DstExtTy, 0); 5619 Observer.changedInstr(MI); 5620 return Legalized; 5621 } 5622 case TargetOpcode::G_ICMP: 5623 case TargetOpcode::G_FCMP: { 5624 if (TypeIdx != 1) 5625 return UnableToLegalize; 5626 5627 Observer.changingInstr(MI); 5628 moreElementsVectorSrc(MI, MoreTy, 2); 5629 moreElementsVectorSrc(MI, MoreTy, 3); 5630 LLT CondTy = LLT::fixed_vector( 5631 MoreTy.getNumElements(), 5632 MRI.getType(MI.getOperand(0).getReg()).getElementType()); 5633 moreElementsVectorDst(MI, CondTy, 0); 5634 Observer.changedInstr(MI); 5635 return Legalized; 5636 } 5637 case TargetOpcode::G_BITCAST: { 5638 if (TypeIdx != 0) 5639 return UnableToLegalize; 5640 5641 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5642 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5643 5644 unsigned coefficient = SrcTy.getNumElements() * MoreTy.getNumElements(); 5645 if (coefficient % DstTy.getNumElements() != 0) 5646 return UnableToLegalize; 5647 5648 coefficient = coefficient / DstTy.getNumElements(); 5649 5650 LLT NewTy = SrcTy.changeElementCount( 5651 ElementCount::get(coefficient, MoreTy.isScalable())); 5652 Observer.changingInstr(MI); 5653 moreElementsVectorSrc(MI, NewTy, 1); 5654 moreElementsVectorDst(MI, MoreTy, 0); 5655 Observer.changedInstr(MI); 5656 return Legalized; 5657 } 5658 case TargetOpcode::G_VECREDUCE_FADD: 5659 case TargetOpcode::G_VECREDUCE_FMUL: 5660 case TargetOpcode::G_VECREDUCE_ADD: 5661 case TargetOpcode::G_VECREDUCE_MUL: 5662 case TargetOpcode::G_VECREDUCE_AND: 5663 case TargetOpcode::G_VECREDUCE_OR: 5664 case TargetOpcode::G_VECREDUCE_XOR: 5665 case TargetOpcode::G_VECREDUCE_SMAX: 5666 case TargetOpcode::G_VECREDUCE_SMIN: 5667 case TargetOpcode::G_VECREDUCE_UMAX: 5668 case TargetOpcode::G_VECREDUCE_UMIN: { 5669 LLT OrigTy = MRI.getType(MI.getOperand(1).getReg()); 5670 MachineOperand &MO = MI.getOperand(1); 5671 auto NewVec = MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO); 5672 auto NeutralElement = getNeutralElementForVecReduce( 5673 MI.getOpcode(), MIRBuilder, MoreTy.getElementType()); 5674 5675 LLT IdxTy(TLI.getVectorIdxTy(MIRBuilder.getDataLayout())); 5676 for (size_t i = OrigTy.getNumElements(), e = MoreTy.getNumElements(); 5677 i != e; i++) { 5678 auto Idx = MIRBuilder.buildConstant(IdxTy, i); 5679 NewVec = MIRBuilder.buildInsertVectorElement(MoreTy, NewVec, 5680 NeutralElement, Idx); 5681 } 5682 5683 Observer.changingInstr(MI); 5684 MO.setReg(NewVec.getReg(0)); 5685 Observer.changedInstr(MI); 5686 return Legalized; 5687 } 5688 5689 default: 5690 return UnableToLegalize; 5691 } 5692 } 5693 5694 LegalizerHelper::LegalizeResult 5695 LegalizerHelper::equalizeVectorShuffleLengths(MachineInstr &MI) { 5696 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 5697 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5698 unsigned MaskNumElts = Mask.size(); 5699 unsigned SrcNumElts = SrcTy.getNumElements(); 5700 LLT DestEltTy = DstTy.getElementType(); 5701 5702 if (MaskNumElts == SrcNumElts) 5703 return Legalized; 5704 5705 if (MaskNumElts < SrcNumElts) { 5706 // Extend mask to match new destination vector size with 5707 // undef values. 5708 SmallVector<int, 16> NewMask(Mask); 5709 for (unsigned I = MaskNumElts; I < SrcNumElts; ++I) 5710 NewMask.push_back(-1); 5711 5712 moreElementsVectorDst(MI, SrcTy, 0); 5713 MIRBuilder.setInstrAndDebugLoc(MI); 5714 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), 5715 MI.getOperand(1).getReg(), 5716 MI.getOperand(2).getReg(), NewMask); 5717 MI.eraseFromParent(); 5718 5719 return Legalized; 5720 } 5721 5722 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 5723 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 5724 LLT PaddedTy = LLT::fixed_vector(PaddedMaskNumElts, DestEltTy); 5725 5726 // Create new source vectors by concatenating the initial 5727 // source vectors with undefined vectors of the same size. 5728 auto Undef = MIRBuilder.buildUndef(SrcTy); 5729 SmallVector<Register, 8> MOps1(NumConcat, Undef.getReg(0)); 5730 SmallVector<Register, 8> MOps2(NumConcat, Undef.getReg(0)); 5731 MOps1[0] = MI.getOperand(1).getReg(); 5732 MOps2[0] = MI.getOperand(2).getReg(); 5733 5734 auto Src1 = MIRBuilder.buildConcatVectors(PaddedTy, MOps1); 5735 auto Src2 = MIRBuilder.buildConcatVectors(PaddedTy, MOps2); 5736 5737 // Readjust mask for new input vector length. 5738 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 5739 for (unsigned I = 0; I != MaskNumElts; ++I) { 5740 int Idx = Mask[I]; 5741 if (Idx >= static_cast<int>(SrcNumElts)) 5742 Idx += PaddedMaskNumElts - SrcNumElts; 5743 MappedOps[I] = Idx; 5744 } 5745 5746 // If we got more elements than required, extract subvector. 5747 if (MaskNumElts != PaddedMaskNumElts) { 5748 auto Shuffle = 5749 MIRBuilder.buildShuffleVector(PaddedTy, Src1, Src2, MappedOps); 5750 5751 SmallVector<Register, 16> Elts(MaskNumElts); 5752 for (unsigned I = 0; I < MaskNumElts; ++I) { 5753 Elts[I] = 5754 MIRBuilder.buildExtractVectorElementConstant(DestEltTy, Shuffle, I) 5755 .getReg(0); 5756 } 5757 MIRBuilder.buildBuildVector(DstReg, Elts); 5758 } else { 5759 MIRBuilder.buildShuffleVector(DstReg, Src1, Src2, MappedOps); 5760 } 5761 5762 MI.eraseFromParent(); 5763 return LegalizerHelper::LegalizeResult::Legalized; 5764 } 5765 5766 LegalizerHelper::LegalizeResult 5767 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI, 5768 unsigned int TypeIdx, LLT MoreTy) { 5769 auto [DstTy, Src1Ty, Src2Ty] = MI.getFirst3LLTs(); 5770 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5771 unsigned NumElts = DstTy.getNumElements(); 5772 unsigned WidenNumElts = MoreTy.getNumElements(); 5773 5774 if (DstTy.isVector() && Src1Ty.isVector() && 5775 DstTy.getNumElements() != Src1Ty.getNumElements()) { 5776 return equalizeVectorShuffleLengths(MI); 5777 } 5778 5779 if (TypeIdx != 0) 5780 return UnableToLegalize; 5781 5782 // Expect a canonicalized shuffle. 5783 if (DstTy != Src1Ty || DstTy != Src2Ty) 5784 return UnableToLegalize; 5785 5786 moreElementsVectorSrc(MI, MoreTy, 1); 5787 moreElementsVectorSrc(MI, MoreTy, 2); 5788 5789 // Adjust mask based on new input vector length. 5790 SmallVector<int, 16> NewMask; 5791 for (unsigned I = 0; I != NumElts; ++I) { 5792 int Idx = Mask[I]; 5793 if (Idx < static_cast<int>(NumElts)) 5794 NewMask.push_back(Idx); 5795 else 5796 NewMask.push_back(Idx - NumElts + WidenNumElts); 5797 } 5798 for (unsigned I = NumElts; I != WidenNumElts; ++I) 5799 NewMask.push_back(-1); 5800 moreElementsVectorDst(MI, MoreTy, 0); 5801 MIRBuilder.setInstrAndDebugLoc(MI); 5802 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), 5803 MI.getOperand(1).getReg(), 5804 MI.getOperand(2).getReg(), NewMask); 5805 MI.eraseFromParent(); 5806 return Legalized; 5807 } 5808 5809 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 5810 ArrayRef<Register> Src1Regs, 5811 ArrayRef<Register> Src2Regs, 5812 LLT NarrowTy) { 5813 MachineIRBuilder &B = MIRBuilder; 5814 unsigned SrcParts = Src1Regs.size(); 5815 unsigned DstParts = DstRegs.size(); 5816 5817 unsigned DstIdx = 0; // Low bits of the result. 5818 Register FactorSum = 5819 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 5820 DstRegs[DstIdx] = FactorSum; 5821 5822 unsigned CarrySumPrevDstIdx; 5823 SmallVector<Register, 4> Factors; 5824 5825 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 5826 // Collect low parts of muls for DstIdx. 5827 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 5828 i <= std::min(DstIdx, SrcParts - 1); ++i) { 5829 MachineInstrBuilder Mul = 5830 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 5831 Factors.push_back(Mul.getReg(0)); 5832 } 5833 // Collect high parts of muls from previous DstIdx. 5834 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 5835 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 5836 MachineInstrBuilder Umulh = 5837 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 5838 Factors.push_back(Umulh.getReg(0)); 5839 } 5840 // Add CarrySum from additions calculated for previous DstIdx. 5841 if (DstIdx != 1) { 5842 Factors.push_back(CarrySumPrevDstIdx); 5843 } 5844 5845 Register CarrySum; 5846 // Add all factors and accumulate all carries into CarrySum. 5847 if (DstIdx != DstParts - 1) { 5848 MachineInstrBuilder Uaddo = 5849 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 5850 FactorSum = Uaddo.getReg(0); 5851 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 5852 for (unsigned i = 2; i < Factors.size(); ++i) { 5853 MachineInstrBuilder Uaddo = 5854 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 5855 FactorSum = Uaddo.getReg(0); 5856 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 5857 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 5858 } 5859 } else { 5860 // Since value for the next index is not calculated, neither is CarrySum. 5861 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 5862 for (unsigned i = 2; i < Factors.size(); ++i) 5863 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 5864 } 5865 5866 CarrySumPrevDstIdx = CarrySum; 5867 DstRegs[DstIdx] = FactorSum; 5868 Factors.clear(); 5869 } 5870 } 5871 5872 LegalizerHelper::LegalizeResult 5873 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 5874 LLT NarrowTy) { 5875 if (TypeIdx != 0) 5876 return UnableToLegalize; 5877 5878 Register DstReg = MI.getOperand(0).getReg(); 5879 LLT DstType = MRI.getType(DstReg); 5880 // FIXME: add support for vector types 5881 if (DstType.isVector()) 5882 return UnableToLegalize; 5883 5884 unsigned Opcode = MI.getOpcode(); 5885 unsigned OpO, OpE, OpF; 5886 switch (Opcode) { 5887 case TargetOpcode::G_SADDO: 5888 case TargetOpcode::G_SADDE: 5889 case TargetOpcode::G_UADDO: 5890 case TargetOpcode::G_UADDE: 5891 case TargetOpcode::G_ADD: 5892 OpO = TargetOpcode::G_UADDO; 5893 OpE = TargetOpcode::G_UADDE; 5894 OpF = TargetOpcode::G_UADDE; 5895 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 5896 OpF = TargetOpcode::G_SADDE; 5897 break; 5898 case TargetOpcode::G_SSUBO: 5899 case TargetOpcode::G_SSUBE: 5900 case TargetOpcode::G_USUBO: 5901 case TargetOpcode::G_USUBE: 5902 case TargetOpcode::G_SUB: 5903 OpO = TargetOpcode::G_USUBO; 5904 OpE = TargetOpcode::G_USUBE; 5905 OpF = TargetOpcode::G_USUBE; 5906 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 5907 OpF = TargetOpcode::G_SSUBE; 5908 break; 5909 default: 5910 llvm_unreachable("Unexpected add/sub opcode!"); 5911 } 5912 5913 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 5914 unsigned NumDefs = MI.getNumExplicitDefs(); 5915 Register Src1 = MI.getOperand(NumDefs).getReg(); 5916 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 5917 Register CarryDst, CarryIn; 5918 if (NumDefs == 2) 5919 CarryDst = MI.getOperand(1).getReg(); 5920 if (MI.getNumOperands() == NumDefs + 3) 5921 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 5922 5923 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5924 LLT LeftoverTy, DummyTy; 5925 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; 5926 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left, 5927 MIRBuilder, MRI); 5928 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left, MIRBuilder, 5929 MRI); 5930 5931 int NarrowParts = Src1Regs.size(); 5932 for (int I = 0, E = Src1Left.size(); I != E; ++I) { 5933 Src1Regs.push_back(Src1Left[I]); 5934 Src2Regs.push_back(Src2Left[I]); 5935 } 5936 DstRegs.reserve(Src1Regs.size()); 5937 5938 for (int i = 0, e = Src1Regs.size(); i != e; ++i) { 5939 Register DstReg = 5940 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); 5941 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 5942 // Forward the final carry-out to the destination register 5943 if (i == e - 1 && CarryDst) 5944 CarryOut = CarryDst; 5945 5946 if (!CarryIn) { 5947 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 5948 {Src1Regs[i], Src2Regs[i]}); 5949 } else if (i == e - 1) { 5950 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 5951 {Src1Regs[i], Src2Regs[i], CarryIn}); 5952 } else { 5953 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 5954 {Src1Regs[i], Src2Regs[i], CarryIn}); 5955 } 5956 5957 DstRegs.push_back(DstReg); 5958 CarryIn = CarryOut; 5959 } 5960 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, 5961 ArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, 5962 ArrayRef(DstRegs).drop_front(NarrowParts)); 5963 5964 MI.eraseFromParent(); 5965 return Legalized; 5966 } 5967 5968 LegalizerHelper::LegalizeResult 5969 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 5970 auto [DstReg, Src1, Src2] = MI.getFirst3Regs(); 5971 5972 LLT Ty = MRI.getType(DstReg); 5973 if (Ty.isVector()) 5974 return UnableToLegalize; 5975 5976 unsigned Size = Ty.getSizeInBits(); 5977 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5978 if (Size % NarrowSize != 0) 5979 return UnableToLegalize; 5980 5981 unsigned NumParts = Size / NarrowSize; 5982 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 5983 unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1); 5984 5985 SmallVector<Register, 2> Src1Parts, Src2Parts; 5986 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 5987 extractParts(Src1, NarrowTy, NumParts, Src1Parts, MIRBuilder, MRI); 5988 extractParts(Src2, NarrowTy, NumParts, Src2Parts, MIRBuilder, MRI); 5989 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 5990 5991 // Take only high half of registers if this is high mul. 5992 ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts); 5993 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); 5994 MI.eraseFromParent(); 5995 return Legalized; 5996 } 5997 5998 LegalizerHelper::LegalizeResult 5999 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 6000 LLT NarrowTy) { 6001 if (TypeIdx != 0) 6002 return UnableToLegalize; 6003 6004 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 6005 6006 Register Src = MI.getOperand(1).getReg(); 6007 LLT SrcTy = MRI.getType(Src); 6008 6009 // If all finite floats fit into the narrowed integer type, we can just swap 6010 // out the result type. This is practically only useful for conversions from 6011 // half to at least 16-bits, so just handle the one case. 6012 if (SrcTy.getScalarType() != LLT::scalar(16) || 6013 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 6014 return UnableToLegalize; 6015 6016 Observer.changingInstr(MI); 6017 narrowScalarDst(MI, NarrowTy, 0, 6018 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 6019 Observer.changedInstr(MI); 6020 return Legalized; 6021 } 6022 6023 LegalizerHelper::LegalizeResult 6024 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 6025 LLT NarrowTy) { 6026 if (TypeIdx != 1) 6027 return UnableToLegalize; 6028 6029 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 6030 6031 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 6032 // FIXME: add support for when SizeOp1 isn't an exact multiple of 6033 // NarrowSize. 6034 if (SizeOp1 % NarrowSize != 0) 6035 return UnableToLegalize; 6036 int NumParts = SizeOp1 / NarrowSize; 6037 6038 SmallVector<Register, 2> SrcRegs, DstRegs; 6039 SmallVector<uint64_t, 2> Indexes; 6040 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs, 6041 MIRBuilder, MRI); 6042 6043 Register OpReg = MI.getOperand(0).getReg(); 6044 uint64_t OpStart = MI.getOperand(2).getImm(); 6045 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 6046 for (int i = 0; i < NumParts; ++i) { 6047 unsigned SrcStart = i * NarrowSize; 6048 6049 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 6050 // No part of the extract uses this subregister, ignore it. 6051 continue; 6052 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 6053 // The entire subregister is extracted, forward the value. 6054 DstRegs.push_back(SrcRegs[i]); 6055 continue; 6056 } 6057 6058 // OpSegStart is where this destination segment would start in OpReg if it 6059 // extended infinitely in both directions. 6060 int64_t ExtractOffset; 6061 uint64_t SegSize; 6062 if (OpStart < SrcStart) { 6063 ExtractOffset = 0; 6064 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 6065 } else { 6066 ExtractOffset = OpStart - SrcStart; 6067 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 6068 } 6069 6070 Register SegReg = SrcRegs[i]; 6071 if (ExtractOffset != 0 || SegSize != NarrowSize) { 6072 // A genuine extract is needed. 6073 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 6074 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 6075 } 6076 6077 DstRegs.push_back(SegReg); 6078 } 6079 6080 Register DstReg = MI.getOperand(0).getReg(); 6081 if (MRI.getType(DstReg).isVector()) 6082 MIRBuilder.buildBuildVector(DstReg, DstRegs); 6083 else if (DstRegs.size() > 1) 6084 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); 6085 else 6086 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 6087 MI.eraseFromParent(); 6088 return Legalized; 6089 } 6090 6091 LegalizerHelper::LegalizeResult 6092 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 6093 LLT NarrowTy) { 6094 // FIXME: Don't know how to handle secondary types yet. 6095 if (TypeIdx != 0) 6096 return UnableToLegalize; 6097 6098 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; 6099 SmallVector<uint64_t, 2> Indexes; 6100 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 6101 LLT LeftoverTy; 6102 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, 6103 LeftoverRegs, MIRBuilder, MRI); 6104 6105 for (Register Reg : LeftoverRegs) 6106 SrcRegs.push_back(Reg); 6107 6108 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 6109 Register OpReg = MI.getOperand(2).getReg(); 6110 uint64_t OpStart = MI.getOperand(3).getImm(); 6111 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 6112 for (int I = 0, E = SrcRegs.size(); I != E; ++I) { 6113 unsigned DstStart = I * NarrowSize; 6114 6115 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 6116 // The entire subregister is defined by this insert, forward the new 6117 // value. 6118 DstRegs.push_back(OpReg); 6119 continue; 6120 } 6121 6122 Register SrcReg = SrcRegs[I]; 6123 if (MRI.getType(SrcRegs[I]) == LeftoverTy) { 6124 // The leftover reg is smaller than NarrowTy, so we need to extend it. 6125 SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 6126 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); 6127 } 6128 6129 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 6130 // No part of the insert affects this subregister, forward the original. 6131 DstRegs.push_back(SrcReg); 6132 continue; 6133 } 6134 6135 // OpSegStart is where this destination segment would start in OpReg if it 6136 // extended infinitely in both directions. 6137 int64_t ExtractOffset, InsertOffset; 6138 uint64_t SegSize; 6139 if (OpStart < DstStart) { 6140 InsertOffset = 0; 6141 ExtractOffset = DstStart - OpStart; 6142 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 6143 } else { 6144 InsertOffset = OpStart - DstStart; 6145 ExtractOffset = 0; 6146 SegSize = 6147 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 6148 } 6149 6150 Register SegReg = OpReg; 6151 if (ExtractOffset != 0 || SegSize != OpSize) { 6152 // A genuine extract is needed. 6153 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 6154 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 6155 } 6156 6157 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 6158 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); 6159 DstRegs.push_back(DstReg); 6160 } 6161 6162 uint64_t WideSize = DstRegs.size() * NarrowSize; 6163 Register DstReg = MI.getOperand(0).getReg(); 6164 if (WideSize > RegTy.getSizeInBits()) { 6165 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); 6166 MIRBuilder.buildMergeLikeInstr(MergeReg, DstRegs); 6167 MIRBuilder.buildTrunc(DstReg, MergeReg); 6168 } else 6169 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); 6170 6171 MI.eraseFromParent(); 6172 return Legalized; 6173 } 6174 6175 LegalizerHelper::LegalizeResult 6176 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 6177 LLT NarrowTy) { 6178 Register DstReg = MI.getOperand(0).getReg(); 6179 LLT DstTy = MRI.getType(DstReg); 6180 6181 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 6182 6183 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 6184 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 6185 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 6186 LLT LeftoverTy; 6187 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 6188 Src0Regs, Src0LeftoverRegs, MIRBuilder, MRI)) 6189 return UnableToLegalize; 6190 6191 LLT Unused; 6192 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 6193 Src1Regs, Src1LeftoverRegs, MIRBuilder, MRI)) 6194 llvm_unreachable("inconsistent extractParts result"); 6195 6196 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 6197 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 6198 {Src0Regs[I], Src1Regs[I]}); 6199 DstRegs.push_back(Inst.getReg(0)); 6200 } 6201 6202 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 6203 auto Inst = MIRBuilder.buildInstr( 6204 MI.getOpcode(), 6205 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 6206 DstLeftoverRegs.push_back(Inst.getReg(0)); 6207 } 6208 6209 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 6210 LeftoverTy, DstLeftoverRegs); 6211 6212 MI.eraseFromParent(); 6213 return Legalized; 6214 } 6215 6216 LegalizerHelper::LegalizeResult 6217 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 6218 LLT NarrowTy) { 6219 if (TypeIdx != 0) 6220 return UnableToLegalize; 6221 6222 auto [DstReg, SrcReg] = MI.getFirst2Regs(); 6223 6224 LLT DstTy = MRI.getType(DstReg); 6225 if (DstTy.isVector()) 6226 return UnableToLegalize; 6227 6228 SmallVector<Register, 8> Parts; 6229 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 6230 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 6231 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 6232 6233 MI.eraseFromParent(); 6234 return Legalized; 6235 } 6236 6237 LegalizerHelper::LegalizeResult 6238 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 6239 LLT NarrowTy) { 6240 if (TypeIdx != 0) 6241 return UnableToLegalize; 6242 6243 Register CondReg = MI.getOperand(1).getReg(); 6244 LLT CondTy = MRI.getType(CondReg); 6245 if (CondTy.isVector()) // TODO: Handle vselect 6246 return UnableToLegalize; 6247 6248 Register DstReg = MI.getOperand(0).getReg(); 6249 LLT DstTy = MRI.getType(DstReg); 6250 6251 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 6252 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 6253 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 6254 LLT LeftoverTy; 6255 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 6256 Src1Regs, Src1LeftoverRegs, MIRBuilder, MRI)) 6257 return UnableToLegalize; 6258 6259 LLT Unused; 6260 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 6261 Src2Regs, Src2LeftoverRegs, MIRBuilder, MRI)) 6262 llvm_unreachable("inconsistent extractParts result"); 6263 6264 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 6265 auto Select = MIRBuilder.buildSelect(NarrowTy, 6266 CondReg, Src1Regs[I], Src2Regs[I]); 6267 DstRegs.push_back(Select.getReg(0)); 6268 } 6269 6270 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 6271 auto Select = MIRBuilder.buildSelect( 6272 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 6273 DstLeftoverRegs.push_back(Select.getReg(0)); 6274 } 6275 6276 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 6277 LeftoverTy, DstLeftoverRegs); 6278 6279 MI.eraseFromParent(); 6280 return Legalized; 6281 } 6282 6283 LegalizerHelper::LegalizeResult 6284 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 6285 LLT NarrowTy) { 6286 if (TypeIdx != 1) 6287 return UnableToLegalize; 6288 6289 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 6290 unsigned NarrowSize = NarrowTy.getSizeInBits(); 6291 6292 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 6293 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 6294 6295 MachineIRBuilder &B = MIRBuilder; 6296 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 6297 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 6298 auto C_0 = B.buildConstant(NarrowTy, 0); 6299 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 6300 UnmergeSrc.getReg(1), C_0); 6301 auto LoCTLZ = IsUndef ? 6302 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 6303 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 6304 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 6305 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 6306 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 6307 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 6308 6309 MI.eraseFromParent(); 6310 return Legalized; 6311 } 6312 6313 return UnableToLegalize; 6314 } 6315 6316 LegalizerHelper::LegalizeResult 6317 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 6318 LLT NarrowTy) { 6319 if (TypeIdx != 1) 6320 return UnableToLegalize; 6321 6322 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 6323 unsigned NarrowSize = NarrowTy.getSizeInBits(); 6324 6325 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 6326 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 6327 6328 MachineIRBuilder &B = MIRBuilder; 6329 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 6330 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 6331 auto C_0 = B.buildConstant(NarrowTy, 0); 6332 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 6333 UnmergeSrc.getReg(0), C_0); 6334 auto HiCTTZ = IsUndef ? 6335 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 6336 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 6337 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 6338 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 6339 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 6340 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 6341 6342 MI.eraseFromParent(); 6343 return Legalized; 6344 } 6345 6346 return UnableToLegalize; 6347 } 6348 6349 LegalizerHelper::LegalizeResult 6350 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 6351 LLT NarrowTy) { 6352 if (TypeIdx != 1) 6353 return UnableToLegalize; 6354 6355 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 6356 unsigned NarrowSize = NarrowTy.getSizeInBits(); 6357 6358 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 6359 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 6360 6361 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 6362 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 6363 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 6364 6365 MI.eraseFromParent(); 6366 return Legalized; 6367 } 6368 6369 return UnableToLegalize; 6370 } 6371 6372 LegalizerHelper::LegalizeResult 6373 LegalizerHelper::narrowScalarFLDEXP(MachineInstr &MI, unsigned TypeIdx, 6374 LLT NarrowTy) { 6375 if (TypeIdx != 1) 6376 return UnableToLegalize; 6377 6378 MachineIRBuilder &B = MIRBuilder; 6379 Register ExpReg = MI.getOperand(2).getReg(); 6380 LLT ExpTy = MRI.getType(ExpReg); 6381 6382 unsigned ClampSize = NarrowTy.getScalarSizeInBits(); 6383 6384 // Clamp the exponent to the range of the target type. 6385 auto MinExp = B.buildConstant(ExpTy, minIntN(ClampSize)); 6386 auto ClampMin = B.buildSMax(ExpTy, ExpReg, MinExp); 6387 auto MaxExp = B.buildConstant(ExpTy, maxIntN(ClampSize)); 6388 auto Clamp = B.buildSMin(ExpTy, ClampMin, MaxExp); 6389 6390 auto Trunc = B.buildTrunc(NarrowTy, Clamp); 6391 Observer.changingInstr(MI); 6392 MI.getOperand(2).setReg(Trunc.getReg(0)); 6393 Observer.changedInstr(MI); 6394 return Legalized; 6395 } 6396 6397 LegalizerHelper::LegalizeResult 6398 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 6399 unsigned Opc = MI.getOpcode(); 6400 const auto &TII = MIRBuilder.getTII(); 6401 auto isSupported = [this](const LegalityQuery &Q) { 6402 auto QAction = LI.getAction(Q).Action; 6403 return QAction == Legal || QAction == Libcall || QAction == Custom; 6404 }; 6405 switch (Opc) { 6406 default: 6407 return UnableToLegalize; 6408 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 6409 // This trivially expands to CTLZ. 6410 Observer.changingInstr(MI); 6411 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 6412 Observer.changedInstr(MI); 6413 return Legalized; 6414 } 6415 case TargetOpcode::G_CTLZ: { 6416 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 6417 unsigned Len = SrcTy.getSizeInBits(); 6418 6419 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 6420 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 6421 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 6422 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 6423 auto ICmp = MIRBuilder.buildICmp( 6424 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 6425 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 6426 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 6427 MI.eraseFromParent(); 6428 return Legalized; 6429 } 6430 // for now, we do this: 6431 // NewLen = NextPowerOf2(Len); 6432 // x = x | (x >> 1); 6433 // x = x | (x >> 2); 6434 // ... 6435 // x = x | (x >>16); 6436 // x = x | (x >>32); // for 64-bit input 6437 // Upto NewLen/2 6438 // return Len - popcount(x); 6439 // 6440 // Ref: "Hacker's Delight" by Henry Warren 6441 Register Op = SrcReg; 6442 unsigned NewLen = PowerOf2Ceil(Len); 6443 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 6444 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 6445 auto MIBOp = MIRBuilder.buildOr( 6446 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 6447 Op = MIBOp.getReg(0); 6448 } 6449 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 6450 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 6451 MIBPop); 6452 MI.eraseFromParent(); 6453 return Legalized; 6454 } 6455 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 6456 // This trivially expands to CTTZ. 6457 Observer.changingInstr(MI); 6458 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 6459 Observer.changedInstr(MI); 6460 return Legalized; 6461 } 6462 case TargetOpcode::G_CTTZ: { 6463 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 6464 6465 unsigned Len = SrcTy.getSizeInBits(); 6466 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 6467 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 6468 // zero. 6469 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 6470 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 6471 auto ICmp = MIRBuilder.buildICmp( 6472 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 6473 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 6474 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 6475 MI.eraseFromParent(); 6476 return Legalized; 6477 } 6478 // for now, we use: { return popcount(~x & (x - 1)); } 6479 // unless the target has ctlz but not ctpop, in which case we use: 6480 // { return 32 - nlz(~x & (x-1)); } 6481 // Ref: "Hacker's Delight" by Henry Warren 6482 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 6483 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 6484 auto MIBTmp = MIRBuilder.buildAnd( 6485 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 6486 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 6487 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 6488 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 6489 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 6490 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 6491 MI.eraseFromParent(); 6492 return Legalized; 6493 } 6494 Observer.changingInstr(MI); 6495 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 6496 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 6497 Observer.changedInstr(MI); 6498 return Legalized; 6499 } 6500 case TargetOpcode::G_CTPOP: { 6501 Register SrcReg = MI.getOperand(1).getReg(); 6502 LLT Ty = MRI.getType(SrcReg); 6503 unsigned Size = Ty.getSizeInBits(); 6504 MachineIRBuilder &B = MIRBuilder; 6505 6506 // Count set bits in blocks of 2 bits. Default approach would be 6507 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 6508 // We use following formula instead: 6509 // B2Count = val - { (val >> 1) & 0x55555555 } 6510 // since it gives same result in blocks of 2 with one instruction less. 6511 auto C_1 = B.buildConstant(Ty, 1); 6512 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 6513 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 6514 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 6515 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 6516 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 6517 6518 // In order to get count in blocks of 4 add values from adjacent block of 2. 6519 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 6520 auto C_2 = B.buildConstant(Ty, 2); 6521 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 6522 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 6523 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 6524 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 6525 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 6526 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 6527 6528 // For count in blocks of 8 bits we don't have to mask high 4 bits before 6529 // addition since count value sits in range {0,...,8} and 4 bits are enough 6530 // to hold such binary values. After addition high 4 bits still hold count 6531 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 6532 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 6533 auto C_4 = B.buildConstant(Ty, 4); 6534 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 6535 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 6536 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 6537 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 6538 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 6539 6540 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 6541 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 6542 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 6543 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 6544 6545 // Shift count result from 8 high bits to low bits. 6546 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 6547 6548 auto IsMulSupported = [this](const LLT Ty) { 6549 auto Action = LI.getAction({TargetOpcode::G_MUL, {Ty}}).Action; 6550 return Action == Legal || Action == WidenScalar || Action == Custom; 6551 }; 6552 if (IsMulSupported(Ty)) { 6553 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 6554 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 6555 } else { 6556 auto ResTmp = B8Count; 6557 for (unsigned Shift = 8; Shift < Size; Shift *= 2) { 6558 auto ShiftC = B.buildConstant(Ty, Shift); 6559 auto Shl = B.buildShl(Ty, ResTmp, ShiftC); 6560 ResTmp = B.buildAdd(Ty, ResTmp, Shl); 6561 } 6562 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 6563 } 6564 MI.eraseFromParent(); 6565 return Legalized; 6566 } 6567 } 6568 } 6569 6570 // Check that (every element of) Reg is undef or not an exact multiple of BW. 6571 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 6572 Register Reg, unsigned BW) { 6573 return matchUnaryPredicate( 6574 MRI, Reg, 6575 [=](const Constant *C) { 6576 // Null constant here means an undef. 6577 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 6578 return !CI || CI->getValue().urem(BW) != 0; 6579 }, 6580 /*AllowUndefs*/ true); 6581 } 6582 6583 LegalizerHelper::LegalizeResult 6584 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 6585 auto [Dst, X, Y, Z] = MI.getFirst4Regs(); 6586 LLT Ty = MRI.getType(Dst); 6587 LLT ShTy = MRI.getType(Z); 6588 6589 unsigned BW = Ty.getScalarSizeInBits(); 6590 6591 if (!isPowerOf2_32(BW)) 6592 return UnableToLegalize; 6593 6594 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 6595 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 6596 6597 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 6598 // fshl X, Y, Z -> fshr X, Y, -Z 6599 // fshr X, Y, Z -> fshl X, Y, -Z 6600 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 6601 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 6602 } else { 6603 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6604 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6605 auto One = MIRBuilder.buildConstant(ShTy, 1); 6606 if (IsFSHL) { 6607 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 6608 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 6609 } else { 6610 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 6611 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 6612 } 6613 6614 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 6615 } 6616 6617 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 6618 MI.eraseFromParent(); 6619 return Legalized; 6620 } 6621 6622 LegalizerHelper::LegalizeResult 6623 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 6624 auto [Dst, X, Y, Z] = MI.getFirst4Regs(); 6625 LLT Ty = MRI.getType(Dst); 6626 LLT ShTy = MRI.getType(Z); 6627 6628 const unsigned BW = Ty.getScalarSizeInBits(); 6629 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 6630 6631 Register ShX, ShY; 6632 Register ShAmt, InvShAmt; 6633 6634 // FIXME: Emit optimized urem by constant instead of letting it expand later. 6635 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 6636 // fshl: X << C | Y >> (BW - C) 6637 // fshr: X << (BW - C) | Y >> C 6638 // where C = Z % BW is not zero 6639 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 6640 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 6641 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 6642 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 6643 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 6644 } else { 6645 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6646 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6647 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 6648 if (isPowerOf2_32(BW)) { 6649 // Z % BW -> Z & (BW - 1) 6650 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 6651 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6652 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 6653 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 6654 } else { 6655 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 6656 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 6657 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 6658 } 6659 6660 auto One = MIRBuilder.buildConstant(ShTy, 1); 6661 if (IsFSHL) { 6662 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 6663 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 6664 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 6665 } else { 6666 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 6667 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 6668 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 6669 } 6670 } 6671 6672 MIRBuilder.buildOr(Dst, ShX, ShY); 6673 MI.eraseFromParent(); 6674 return Legalized; 6675 } 6676 6677 LegalizerHelper::LegalizeResult 6678 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 6679 // These operations approximately do the following (while avoiding undefined 6680 // shifts by BW): 6681 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6682 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6683 Register Dst = MI.getOperand(0).getReg(); 6684 LLT Ty = MRI.getType(Dst); 6685 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 6686 6687 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 6688 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 6689 6690 // TODO: Use smarter heuristic that accounts for vector legalization. 6691 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 6692 return lowerFunnelShiftAsShifts(MI); 6693 6694 // This only works for powers of 2, fallback to shifts if it fails. 6695 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 6696 if (Result == UnableToLegalize) 6697 return lowerFunnelShiftAsShifts(MI); 6698 return Result; 6699 } 6700 6701 LegalizerHelper::LegalizeResult LegalizerHelper::lowerEXT(MachineInstr &MI) { 6702 auto [Dst, Src] = MI.getFirst2Regs(); 6703 LLT DstTy = MRI.getType(Dst); 6704 LLT SrcTy = MRI.getType(Src); 6705 6706 uint32_t DstTySize = DstTy.getSizeInBits(); 6707 uint32_t DstTyScalarSize = DstTy.getScalarSizeInBits(); 6708 uint32_t SrcTyScalarSize = SrcTy.getScalarSizeInBits(); 6709 6710 if (!isPowerOf2_32(DstTySize) || !isPowerOf2_32(DstTyScalarSize) || 6711 !isPowerOf2_32(SrcTyScalarSize)) 6712 return UnableToLegalize; 6713 6714 // The step between extend is too large, split it by creating an intermediate 6715 // extend instruction 6716 if (SrcTyScalarSize * 2 < DstTyScalarSize) { 6717 LLT MidTy = SrcTy.changeElementSize(SrcTyScalarSize * 2); 6718 // If the destination type is illegal, split it into multiple statements 6719 // zext x -> zext(merge(zext(unmerge), zext(unmerge))) 6720 auto NewExt = MIRBuilder.buildInstr(MI.getOpcode(), {MidTy}, {Src}); 6721 // Unmerge the vector 6722 LLT EltTy = MidTy.changeElementCount( 6723 MidTy.getElementCount().divideCoefficientBy(2)); 6724 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, NewExt); 6725 6726 // ZExt the vectors 6727 LLT ZExtResTy = DstTy.changeElementCount( 6728 DstTy.getElementCount().divideCoefficientBy(2)); 6729 auto ZExtRes1 = MIRBuilder.buildInstr(MI.getOpcode(), {ZExtResTy}, 6730 {UnmergeSrc.getReg(0)}); 6731 auto ZExtRes2 = MIRBuilder.buildInstr(MI.getOpcode(), {ZExtResTy}, 6732 {UnmergeSrc.getReg(1)}); 6733 6734 // Merge the ending vectors 6735 MIRBuilder.buildMergeLikeInstr(Dst, {ZExtRes1, ZExtRes2}); 6736 6737 MI.eraseFromParent(); 6738 return Legalized; 6739 } 6740 return UnableToLegalize; 6741 } 6742 6743 LegalizerHelper::LegalizeResult LegalizerHelper::lowerTRUNC(MachineInstr &MI) { 6744 // MachineIRBuilder &MIRBuilder = Helper.MIRBuilder; 6745 MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); 6746 // Similar to how operand splitting is done in SelectiondDAG, we can handle 6747 // %res(v8s8) = G_TRUNC %in(v8s32) by generating: 6748 // %inlo(<4x s32>), %inhi(<4 x s32>) = G_UNMERGE %in(<8 x s32>) 6749 // %lo16(<4 x s16>) = G_TRUNC %inlo 6750 // %hi16(<4 x s16>) = G_TRUNC %inhi 6751 // %in16(<8 x s16>) = G_CONCAT_VECTORS %lo16, %hi16 6752 // %res(<8 x s8>) = G_TRUNC %in16 6753 6754 assert(MI.getOpcode() == TargetOpcode::G_TRUNC); 6755 6756 Register DstReg = MI.getOperand(0).getReg(); 6757 Register SrcReg = MI.getOperand(1).getReg(); 6758 LLT DstTy = MRI.getType(DstReg); 6759 LLT SrcTy = MRI.getType(SrcReg); 6760 6761 if (DstTy.isVector() && isPowerOf2_32(DstTy.getNumElements()) && 6762 isPowerOf2_32(DstTy.getScalarSizeInBits()) && 6763 isPowerOf2_32(SrcTy.getNumElements()) && 6764 isPowerOf2_32(SrcTy.getScalarSizeInBits())) { 6765 // Split input type. 6766 LLT SplitSrcTy = SrcTy.changeElementCount( 6767 SrcTy.getElementCount().divideCoefficientBy(2)); 6768 6769 // First, split the source into two smaller vectors. 6770 SmallVector<Register, 2> SplitSrcs; 6771 extractParts(SrcReg, SplitSrcTy, 2, SplitSrcs, MIRBuilder, MRI); 6772 6773 // Truncate the splits into intermediate narrower elements. 6774 LLT InterTy; 6775 if (DstTy.getScalarSizeInBits() * 2 < SrcTy.getScalarSizeInBits()) 6776 InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits() * 2); 6777 else 6778 InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits()); 6779 for (unsigned I = 0; I < SplitSrcs.size(); ++I) { 6780 SplitSrcs[I] = MIRBuilder.buildTrunc(InterTy, SplitSrcs[I]).getReg(0); 6781 } 6782 6783 // Combine the new truncates into one vector 6784 auto Merge = MIRBuilder.buildMergeLikeInstr( 6785 DstTy.changeElementSize(InterTy.getScalarSizeInBits()), SplitSrcs); 6786 6787 // Truncate the new vector to the final result type 6788 if (DstTy.getScalarSizeInBits() * 2 < SrcTy.getScalarSizeInBits()) 6789 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), Merge.getReg(0)); 6790 else 6791 MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Merge.getReg(0)); 6792 6793 MI.eraseFromParent(); 6794 6795 return Legalized; 6796 } 6797 return UnableToLegalize; 6798 } 6799 6800 LegalizerHelper::LegalizeResult 6801 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 6802 auto [Dst, DstTy, Src, SrcTy, Amt, AmtTy] = MI.getFirst3RegLLTs(); 6803 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 6804 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 6805 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 6806 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 6807 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 6808 MI.eraseFromParent(); 6809 return Legalized; 6810 } 6811 6812 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 6813 auto [Dst, DstTy, Src, SrcTy, Amt, AmtTy] = MI.getFirst3RegLLTs(); 6814 6815 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 6816 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 6817 6818 MIRBuilder.setInstrAndDebugLoc(MI); 6819 6820 // If a rotate in the other direction is supported, use it. 6821 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 6822 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 6823 isPowerOf2_32(EltSizeInBits)) 6824 return lowerRotateWithReverseRotate(MI); 6825 6826 // If a funnel shift is supported, use it. 6827 unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 6828 unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 6829 bool IsFShLegal = false; 6830 if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) || 6831 LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) { 6832 auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2, 6833 Register R3) { 6834 MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3}); 6835 MI.eraseFromParent(); 6836 return Legalized; 6837 }; 6838 // If a funnel shift in the other direction is supported, use it. 6839 if (IsFShLegal) { 6840 return buildFunnelShift(FShOpc, Dst, Src, Amt); 6841 } else if (isPowerOf2_32(EltSizeInBits)) { 6842 Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0); 6843 return buildFunnelShift(RevFsh, Dst, Src, Amt); 6844 } 6845 } 6846 6847 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 6848 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 6849 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 6850 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 6851 Register ShVal; 6852 Register RevShiftVal; 6853 if (isPowerOf2_32(EltSizeInBits)) { 6854 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6855 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6856 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 6857 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 6858 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 6859 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 6860 RevShiftVal = 6861 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 6862 } else { 6863 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6864 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6865 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 6866 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 6867 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 6868 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 6869 auto One = MIRBuilder.buildConstant(AmtTy, 1); 6870 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 6871 RevShiftVal = 6872 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 6873 } 6874 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 6875 MI.eraseFromParent(); 6876 return Legalized; 6877 } 6878 6879 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 6880 // representation. 6881 LegalizerHelper::LegalizeResult 6882 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 6883 auto [Dst, Src] = MI.getFirst2Regs(); 6884 const LLT S64 = LLT::scalar(64); 6885 const LLT S32 = LLT::scalar(32); 6886 const LLT S1 = LLT::scalar(1); 6887 6888 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 6889 6890 // unsigned cul2f(ulong u) { 6891 // uint lz = clz(u); 6892 // uint e = (u != 0) ? 127U + 63U - lz : 0; 6893 // u = (u << lz) & 0x7fffffffffffffffUL; 6894 // ulong t = u & 0xffffffffffUL; 6895 // uint v = (e << 23) | (uint)(u >> 40); 6896 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 6897 // return as_float(v + r); 6898 // } 6899 6900 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 6901 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 6902 6903 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 6904 6905 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 6906 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 6907 6908 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 6909 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 6910 6911 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 6912 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 6913 6914 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 6915 6916 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 6917 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 6918 6919 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 6920 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 6921 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 6922 6923 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 6924 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 6925 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 6926 auto One = MIRBuilder.buildConstant(S32, 1); 6927 6928 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 6929 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 6930 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 6931 MIRBuilder.buildAdd(Dst, V, R); 6932 6933 MI.eraseFromParent(); 6934 return Legalized; 6935 } 6936 6937 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 6938 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); 6939 6940 if (SrcTy == LLT::scalar(1)) { 6941 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 6942 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6943 MIRBuilder.buildSelect(Dst, Src, True, False); 6944 MI.eraseFromParent(); 6945 return Legalized; 6946 } 6947 6948 if (SrcTy != LLT::scalar(64)) 6949 return UnableToLegalize; 6950 6951 if (DstTy == LLT::scalar(32)) { 6952 // TODO: SelectionDAG has several alternative expansions to port which may 6953 // be more reasonble depending on the available instructions. If a target 6954 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 6955 // intermediate type, this is probably worse. 6956 return lowerU64ToF32BitOps(MI); 6957 } 6958 6959 return UnableToLegalize; 6960 } 6961 6962 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 6963 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); 6964 6965 const LLT S64 = LLT::scalar(64); 6966 const LLT S32 = LLT::scalar(32); 6967 const LLT S1 = LLT::scalar(1); 6968 6969 if (SrcTy == S1) { 6970 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 6971 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6972 MIRBuilder.buildSelect(Dst, Src, True, False); 6973 MI.eraseFromParent(); 6974 return Legalized; 6975 } 6976 6977 if (SrcTy != S64) 6978 return UnableToLegalize; 6979 6980 if (DstTy == S32) { 6981 // signed cl2f(long l) { 6982 // long s = l >> 63; 6983 // float r = cul2f((l + s) ^ s); 6984 // return s ? -r : r; 6985 // } 6986 Register L = Src; 6987 auto SignBit = MIRBuilder.buildConstant(S64, 63); 6988 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 6989 6990 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 6991 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 6992 auto R = MIRBuilder.buildUITOFP(S32, Xor); 6993 6994 auto RNeg = MIRBuilder.buildFNeg(S32, R); 6995 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 6996 MIRBuilder.buildConstant(S64, 0)); 6997 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 6998 MI.eraseFromParent(); 6999 return Legalized; 7000 } 7001 7002 return UnableToLegalize; 7003 } 7004 7005 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 7006 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); 7007 const LLT S64 = LLT::scalar(64); 7008 const LLT S32 = LLT::scalar(32); 7009 7010 if (SrcTy != S64 && SrcTy != S32) 7011 return UnableToLegalize; 7012 if (DstTy != S32 && DstTy != S64) 7013 return UnableToLegalize; 7014 7015 // FPTOSI gives same result as FPTOUI for positive signed integers. 7016 // FPTOUI needs to deal with fp values that convert to unsigned integers 7017 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 7018 7019 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 7020 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 7021 : APFloat::IEEEdouble(), 7022 APInt::getZero(SrcTy.getSizeInBits())); 7023 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 7024 7025 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 7026 7027 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 7028 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 7029 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 7030 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 7031 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 7032 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 7033 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 7034 7035 const LLT S1 = LLT::scalar(1); 7036 7037 MachineInstrBuilder FCMP = 7038 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 7039 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 7040 7041 MI.eraseFromParent(); 7042 return Legalized; 7043 } 7044 7045 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 7046 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); 7047 const LLT S64 = LLT::scalar(64); 7048 const LLT S32 = LLT::scalar(32); 7049 7050 // FIXME: Only f32 to i64 conversions are supported. 7051 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 7052 return UnableToLegalize; 7053 7054 // Expand f32 -> i64 conversion 7055 // This algorithm comes from compiler-rt's implementation of fixsfdi: 7056 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 7057 7058 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 7059 7060 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 7061 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 7062 7063 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 7064 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 7065 7066 auto SignMask = MIRBuilder.buildConstant(SrcTy, 7067 APInt::getSignMask(SrcEltBits)); 7068 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 7069 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 7070 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 7071 Sign = MIRBuilder.buildSExt(DstTy, Sign); 7072 7073 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 7074 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 7075 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 7076 7077 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 7078 R = MIRBuilder.buildZExt(DstTy, R); 7079 7080 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 7081 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 7082 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 7083 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 7084 7085 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 7086 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 7087 7088 const LLT S1 = LLT::scalar(1); 7089 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 7090 S1, Exponent, ExponentLoBit); 7091 7092 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 7093 7094 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 7095 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 7096 7097 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 7098 7099 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 7100 S1, Exponent, ZeroSrcTy); 7101 7102 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 7103 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 7104 7105 MI.eraseFromParent(); 7106 return Legalized; 7107 } 7108 7109 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 7110 LegalizerHelper::LegalizeResult 7111 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 7112 const LLT S1 = LLT::scalar(1); 7113 const LLT S32 = LLT::scalar(32); 7114 7115 auto [Dst, Src] = MI.getFirst2Regs(); 7116 assert(MRI.getType(Dst).getScalarType() == LLT::scalar(16) && 7117 MRI.getType(Src).getScalarType() == LLT::scalar(64)); 7118 7119 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 7120 return UnableToLegalize; 7121 7122 if (MIRBuilder.getMF().getTarget().Options.UnsafeFPMath) { 7123 unsigned Flags = MI.getFlags(); 7124 auto Src32 = MIRBuilder.buildFPTrunc(S32, Src, Flags); 7125 MIRBuilder.buildFPTrunc(Dst, Src32, Flags); 7126 MI.eraseFromParent(); 7127 return Legalized; 7128 } 7129 7130 const unsigned ExpMask = 0x7ff; 7131 const unsigned ExpBiasf64 = 1023; 7132 const unsigned ExpBiasf16 = 15; 7133 7134 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 7135 Register U = Unmerge.getReg(0); 7136 Register UH = Unmerge.getReg(1); 7137 7138 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 7139 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 7140 7141 // Subtract the fp64 exponent bias (1023) to get the real exponent and 7142 // add the f16 bias (15) to get the biased exponent for the f16 format. 7143 E = MIRBuilder.buildAdd( 7144 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 7145 7146 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 7147 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 7148 7149 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 7150 MIRBuilder.buildConstant(S32, 0x1ff)); 7151 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 7152 7153 auto Zero = MIRBuilder.buildConstant(S32, 0); 7154 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 7155 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 7156 M = MIRBuilder.buildOr(S32, M, Lo40Set); 7157 7158 // (M != 0 ? 0x0200 : 0) | 0x7c00; 7159 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 7160 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 7161 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 7162 7163 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 7164 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 7165 7166 // N = M | (E << 12); 7167 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 7168 auto N = MIRBuilder.buildOr(S32, M, EShl12); 7169 7170 // B = clamp(1-E, 0, 13); 7171 auto One = MIRBuilder.buildConstant(S32, 1); 7172 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 7173 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 7174 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 7175 7176 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 7177 MIRBuilder.buildConstant(S32, 0x1000)); 7178 7179 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 7180 auto D0 = MIRBuilder.buildShl(S32, D, B); 7181 7182 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 7183 D0, SigSetHigh); 7184 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 7185 D = MIRBuilder.buildOr(S32, D, D1); 7186 7187 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 7188 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 7189 7190 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 7191 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 7192 7193 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 7194 MIRBuilder.buildConstant(S32, 3)); 7195 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 7196 7197 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 7198 MIRBuilder.buildConstant(S32, 5)); 7199 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 7200 7201 V1 = MIRBuilder.buildOr(S32, V0, V1); 7202 V = MIRBuilder.buildAdd(S32, V, V1); 7203 7204 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 7205 E, MIRBuilder.buildConstant(S32, 30)); 7206 V = MIRBuilder.buildSelect(S32, CmpEGt30, 7207 MIRBuilder.buildConstant(S32, 0x7c00), V); 7208 7209 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 7210 E, MIRBuilder.buildConstant(S32, 1039)); 7211 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 7212 7213 // Extract the sign bit. 7214 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 7215 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 7216 7217 // Insert the sign bit 7218 V = MIRBuilder.buildOr(S32, Sign, V); 7219 7220 MIRBuilder.buildTrunc(Dst, V); 7221 MI.eraseFromParent(); 7222 return Legalized; 7223 } 7224 7225 LegalizerHelper::LegalizeResult 7226 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 7227 auto [DstTy, SrcTy] = MI.getFirst2LLTs(); 7228 const LLT S64 = LLT::scalar(64); 7229 const LLT S16 = LLT::scalar(16); 7230 7231 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 7232 return lowerFPTRUNC_F64_TO_F16(MI); 7233 7234 return UnableToLegalize; 7235 } 7236 7237 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 7238 auto [Dst, Src0, Src1] = MI.getFirst3Regs(); 7239 LLT Ty = MRI.getType(Dst); 7240 7241 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 7242 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 7243 MI.eraseFromParent(); 7244 return Legalized; 7245 } 7246 7247 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 7248 switch (Opc) { 7249 case TargetOpcode::G_SMIN: 7250 return CmpInst::ICMP_SLT; 7251 case TargetOpcode::G_SMAX: 7252 return CmpInst::ICMP_SGT; 7253 case TargetOpcode::G_UMIN: 7254 return CmpInst::ICMP_ULT; 7255 case TargetOpcode::G_UMAX: 7256 return CmpInst::ICMP_UGT; 7257 default: 7258 llvm_unreachable("not in integer min/max"); 7259 } 7260 } 7261 7262 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 7263 auto [Dst, Src0, Src1] = MI.getFirst3Regs(); 7264 7265 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 7266 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 7267 7268 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 7269 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 7270 7271 MI.eraseFromParent(); 7272 return Legalized; 7273 } 7274 7275 LegalizerHelper::LegalizeResult 7276 LegalizerHelper::lowerThreewayCompare(MachineInstr &MI) { 7277 GSUCmp *Cmp = cast<GSUCmp>(&MI); 7278 7279 Register Dst = Cmp->getReg(0); 7280 LLT DstTy = MRI.getType(Dst); 7281 LLT CmpTy = DstTy.changeElementSize(1); 7282 7283 CmpInst::Predicate LTPredicate = Cmp->isSigned() 7284 ? CmpInst::Predicate::ICMP_SLT 7285 : CmpInst::Predicate::ICMP_ULT; 7286 CmpInst::Predicate GTPredicate = Cmp->isSigned() 7287 ? CmpInst::Predicate::ICMP_SGT 7288 : CmpInst::Predicate::ICMP_UGT; 7289 7290 auto One = MIRBuilder.buildConstant(DstTy, 1); 7291 auto Zero = MIRBuilder.buildConstant(DstTy, 0); 7292 auto IsGT = MIRBuilder.buildICmp(GTPredicate, CmpTy, Cmp->getLHSReg(), 7293 Cmp->getRHSReg()); 7294 auto SelectZeroOrOne = MIRBuilder.buildSelect(DstTy, IsGT, One, Zero); 7295 7296 auto MinusOne = MIRBuilder.buildConstant(DstTy, -1); 7297 auto IsLT = MIRBuilder.buildICmp(LTPredicate, CmpTy, Cmp->getLHSReg(), 7298 Cmp->getRHSReg()); 7299 MIRBuilder.buildSelect(Dst, IsLT, MinusOne, SelectZeroOrOne); 7300 7301 MI.eraseFromParent(); 7302 return Legalized; 7303 } 7304 7305 LegalizerHelper::LegalizeResult 7306 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 7307 auto [Dst, DstTy, Src0, Src0Ty, Src1, Src1Ty] = MI.getFirst3RegLLTs(); 7308 const int Src0Size = Src0Ty.getScalarSizeInBits(); 7309 const int Src1Size = Src1Ty.getScalarSizeInBits(); 7310 7311 auto SignBitMask = MIRBuilder.buildConstant( 7312 Src0Ty, APInt::getSignMask(Src0Size)); 7313 7314 auto NotSignBitMask = MIRBuilder.buildConstant( 7315 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 7316 7317 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 7318 Register And1; 7319 if (Src0Ty == Src1Ty) { 7320 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 7321 } else if (Src0Size > Src1Size) { 7322 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 7323 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 7324 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 7325 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 7326 } else { 7327 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 7328 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 7329 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 7330 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 7331 } 7332 7333 // Be careful about setting nsz/nnan/ninf on every instruction, since the 7334 // constants are a nan and -0.0, but the final result should preserve 7335 // everything. 7336 unsigned Flags = MI.getFlags(); 7337 7338 // We masked the sign bit and the not-sign bit, so these are disjoint. 7339 Flags |= MachineInstr::Disjoint; 7340 7341 MIRBuilder.buildOr(Dst, And0, And1, Flags); 7342 7343 MI.eraseFromParent(); 7344 return Legalized; 7345 } 7346 7347 LegalizerHelper::LegalizeResult 7348 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 7349 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 7350 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 7351 7352 auto [Dst, Src0, Src1] = MI.getFirst3Regs(); 7353 LLT Ty = MRI.getType(Dst); 7354 7355 if (!MI.getFlag(MachineInstr::FmNoNans)) { 7356 // Insert canonicalizes if it's possible we need to quiet to get correct 7357 // sNaN behavior. 7358 7359 // Note this must be done here, and not as an optimization combine in the 7360 // absence of a dedicate quiet-snan instruction as we're using an 7361 // omni-purpose G_FCANONICALIZE. 7362 if (!isKnownNeverSNaN(Src0, MRI)) 7363 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 7364 7365 if (!isKnownNeverSNaN(Src1, MRI)) 7366 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 7367 } 7368 7369 // If there are no nans, it's safe to simply replace this with the non-IEEE 7370 // version. 7371 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 7372 MI.eraseFromParent(); 7373 return Legalized; 7374 } 7375 7376 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 7377 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 7378 Register DstReg = MI.getOperand(0).getReg(); 7379 LLT Ty = MRI.getType(DstReg); 7380 unsigned Flags = MI.getFlags(); 7381 7382 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 7383 Flags); 7384 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 7385 MI.eraseFromParent(); 7386 return Legalized; 7387 } 7388 7389 LegalizerHelper::LegalizeResult 7390 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 7391 auto [DstReg, X] = MI.getFirst2Regs(); 7392 const unsigned Flags = MI.getFlags(); 7393 const LLT Ty = MRI.getType(DstReg); 7394 const LLT CondTy = Ty.changeElementSize(1); 7395 7396 // round(x) => 7397 // t = trunc(x); 7398 // d = fabs(x - t); 7399 // o = copysign(d >= 0.5 ? 1.0 : 0.0, x); 7400 // return t + o; 7401 7402 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 7403 7404 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 7405 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 7406 7407 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 7408 auto Cmp = 7409 MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, Flags); 7410 7411 // Could emit G_UITOFP instead 7412 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 7413 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 7414 auto BoolFP = MIRBuilder.buildSelect(Ty, Cmp, One, Zero); 7415 auto SignedOffset = MIRBuilder.buildFCopysign(Ty, BoolFP, X); 7416 7417 MIRBuilder.buildFAdd(DstReg, T, SignedOffset, Flags); 7418 7419 MI.eraseFromParent(); 7420 return Legalized; 7421 } 7422 7423 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFFloor(MachineInstr &MI) { 7424 auto [DstReg, SrcReg] = MI.getFirst2Regs(); 7425 unsigned Flags = MI.getFlags(); 7426 LLT Ty = MRI.getType(DstReg); 7427 const LLT CondTy = Ty.changeElementSize(1); 7428 7429 // result = trunc(src); 7430 // if (src < 0.0 && src != result) 7431 // result += -1.0. 7432 7433 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 7434 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 7435 7436 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 7437 SrcReg, Zero, Flags); 7438 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 7439 SrcReg, Trunc, Flags); 7440 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 7441 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 7442 7443 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 7444 MI.eraseFromParent(); 7445 return Legalized; 7446 } 7447 7448 LegalizerHelper::LegalizeResult 7449 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 7450 const unsigned NumOps = MI.getNumOperands(); 7451 auto [DstReg, DstTy, Src0Reg, Src0Ty] = MI.getFirst2RegLLTs(); 7452 unsigned PartSize = Src0Ty.getSizeInBits(); 7453 7454 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 7455 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 7456 7457 for (unsigned I = 2; I != NumOps; ++I) { 7458 const unsigned Offset = (I - 1) * PartSize; 7459 7460 Register SrcReg = MI.getOperand(I).getReg(); 7461 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 7462 7463 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 7464 MRI.createGenericVirtualRegister(WideTy); 7465 7466 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 7467 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 7468 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 7469 ResultReg = NextResult; 7470 } 7471 7472 if (DstTy.isPointer()) { 7473 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 7474 DstTy.getAddressSpace())) { 7475 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 7476 return UnableToLegalize; 7477 } 7478 7479 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 7480 } 7481 7482 MI.eraseFromParent(); 7483 return Legalized; 7484 } 7485 7486 LegalizerHelper::LegalizeResult 7487 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 7488 const unsigned NumDst = MI.getNumOperands() - 1; 7489 Register SrcReg = MI.getOperand(NumDst).getReg(); 7490 Register Dst0Reg = MI.getOperand(0).getReg(); 7491 LLT DstTy = MRI.getType(Dst0Reg); 7492 if (DstTy.isPointer()) 7493 return UnableToLegalize; // TODO 7494 7495 SrcReg = coerceToScalar(SrcReg); 7496 if (!SrcReg) 7497 return UnableToLegalize; 7498 7499 // Expand scalarizing unmerge as bitcast to integer and shift. 7500 LLT IntTy = MRI.getType(SrcReg); 7501 7502 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 7503 7504 const unsigned DstSize = DstTy.getSizeInBits(); 7505 unsigned Offset = DstSize; 7506 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 7507 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 7508 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 7509 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 7510 } 7511 7512 MI.eraseFromParent(); 7513 return Legalized; 7514 } 7515 7516 /// Lower a vector extract or insert by writing the vector to a stack temporary 7517 /// and reloading the element or vector. 7518 /// 7519 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 7520 /// => 7521 /// %stack_temp = G_FRAME_INDEX 7522 /// G_STORE %vec, %stack_temp 7523 /// %idx = clamp(%idx, %vec.getNumElements()) 7524 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 7525 /// %dst = G_LOAD %element_ptr 7526 LegalizerHelper::LegalizeResult 7527 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 7528 Register DstReg = MI.getOperand(0).getReg(); 7529 Register SrcVec = MI.getOperand(1).getReg(); 7530 Register InsertVal; 7531 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 7532 InsertVal = MI.getOperand(2).getReg(); 7533 7534 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 7535 7536 LLT VecTy = MRI.getType(SrcVec); 7537 LLT EltTy = VecTy.getElementType(); 7538 unsigned NumElts = VecTy.getNumElements(); 7539 7540 int64_t IdxVal; 7541 if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) { 7542 SmallVector<Register, 8> SrcRegs; 7543 extractParts(SrcVec, EltTy, NumElts, SrcRegs, MIRBuilder, MRI); 7544 7545 if (InsertVal) { 7546 SrcRegs[IdxVal] = MI.getOperand(2).getReg(); 7547 MIRBuilder.buildMergeLikeInstr(DstReg, SrcRegs); 7548 } else { 7549 MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]); 7550 } 7551 7552 MI.eraseFromParent(); 7553 return Legalized; 7554 } 7555 7556 if (!EltTy.isByteSized()) { // Not implemented. 7557 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 7558 return UnableToLegalize; 7559 } 7560 7561 unsigned EltBytes = EltTy.getSizeInBytes(); 7562 Align VecAlign = getStackTemporaryAlignment(VecTy); 7563 Align EltAlign; 7564 7565 MachinePointerInfo PtrInfo; 7566 auto StackTemp = createStackTemporary( 7567 TypeSize::getFixed(VecTy.getSizeInBytes()), VecAlign, PtrInfo); 7568 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 7569 7570 // Get the pointer to the element, and be sure not to hit undefined behavior 7571 // if the index is out of bounds. 7572 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 7573 7574 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 7575 int64_t Offset = IdxVal * EltBytes; 7576 PtrInfo = PtrInfo.getWithOffset(Offset); 7577 EltAlign = commonAlignment(VecAlign, Offset); 7578 } else { 7579 // We lose information with a variable offset. 7580 EltAlign = getStackTemporaryAlignment(EltTy); 7581 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 7582 } 7583 7584 if (InsertVal) { 7585 // Write the inserted element 7586 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 7587 7588 // Reload the whole vector. 7589 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 7590 } else { 7591 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 7592 } 7593 7594 MI.eraseFromParent(); 7595 return Legalized; 7596 } 7597 7598 LegalizerHelper::LegalizeResult 7599 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 7600 auto [DstReg, DstTy, Src0Reg, Src0Ty, Src1Reg, Src1Ty] = 7601 MI.getFirst3RegLLTs(); 7602 LLT IdxTy = LLT::scalar(32); 7603 7604 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 7605 Register Undef; 7606 SmallVector<Register, 32> BuildVec; 7607 LLT EltTy = DstTy.getScalarType(); 7608 7609 for (int Idx : Mask) { 7610 if (Idx < 0) { 7611 if (!Undef.isValid()) 7612 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 7613 BuildVec.push_back(Undef); 7614 continue; 7615 } 7616 7617 if (Src0Ty.isScalar()) { 7618 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 7619 } else { 7620 int NumElts = Src0Ty.getNumElements(); 7621 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 7622 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 7623 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 7624 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 7625 BuildVec.push_back(Extract.getReg(0)); 7626 } 7627 } 7628 7629 if (DstTy.isScalar()) 7630 MIRBuilder.buildCopy(DstReg, BuildVec[0]); 7631 else 7632 MIRBuilder.buildBuildVector(DstReg, BuildVec); 7633 MI.eraseFromParent(); 7634 return Legalized; 7635 } 7636 7637 LegalizerHelper::LegalizeResult 7638 LegalizerHelper::lowerVECTOR_COMPRESS(llvm::MachineInstr &MI) { 7639 auto [Dst, DstTy, Vec, VecTy, Mask, MaskTy, Passthru, PassthruTy] = 7640 MI.getFirst4RegLLTs(); 7641 7642 if (VecTy.isScalableVector()) 7643 report_fatal_error("Cannot expand masked_compress for scalable vectors."); 7644 7645 Align VecAlign = getStackTemporaryAlignment(VecTy); 7646 MachinePointerInfo PtrInfo; 7647 Register StackPtr = 7648 createStackTemporary(TypeSize::getFixed(VecTy.getSizeInBytes()), VecAlign, 7649 PtrInfo) 7650 .getReg(0); 7651 MachinePointerInfo ValPtrInfo = 7652 MachinePointerInfo::getUnknownStack(*MI.getMF()); 7653 7654 LLT IdxTy = LLT::scalar(32); 7655 LLT ValTy = VecTy.getElementType(); 7656 Align ValAlign = getStackTemporaryAlignment(ValTy); 7657 7658 auto OutPos = MIRBuilder.buildConstant(IdxTy, 0); 7659 7660 bool HasPassthru = 7661 MRI.getVRegDef(Passthru)->getOpcode() != TargetOpcode::G_IMPLICIT_DEF; 7662 7663 if (HasPassthru) 7664 MIRBuilder.buildStore(Passthru, StackPtr, PtrInfo, VecAlign); 7665 7666 Register LastWriteVal; 7667 std::optional<APInt> PassthruSplatVal = 7668 isConstantOrConstantSplatVector(*MRI.getVRegDef(Passthru), MRI); 7669 7670 if (PassthruSplatVal.has_value()) { 7671 LastWriteVal = 7672 MIRBuilder.buildConstant(ValTy, PassthruSplatVal.value()).getReg(0); 7673 } else if (HasPassthru) { 7674 auto Popcount = MIRBuilder.buildZExt(MaskTy.changeElementSize(32), Mask); 7675 Popcount = MIRBuilder.buildInstr(TargetOpcode::G_VECREDUCE_ADD, 7676 {LLT::scalar(32)}, {Popcount}); 7677 7678 Register LastElmtPtr = 7679 getVectorElementPointer(StackPtr, VecTy, Popcount.getReg(0)); 7680 LastWriteVal = 7681 MIRBuilder.buildLoad(ValTy, LastElmtPtr, ValPtrInfo, ValAlign) 7682 .getReg(0); 7683 } 7684 7685 unsigned NumElmts = VecTy.getNumElements(); 7686 for (unsigned I = 0; I < NumElmts; ++I) { 7687 auto Idx = MIRBuilder.buildConstant(IdxTy, I); 7688 auto Val = MIRBuilder.buildExtractVectorElement(ValTy, Vec, Idx); 7689 Register ElmtPtr = 7690 getVectorElementPointer(StackPtr, VecTy, OutPos.getReg(0)); 7691 MIRBuilder.buildStore(Val, ElmtPtr, ValPtrInfo, ValAlign); 7692 7693 LLT MaskITy = MaskTy.getElementType(); 7694 auto MaskI = MIRBuilder.buildExtractVectorElement(MaskITy, Mask, Idx); 7695 if (MaskITy.getSizeInBits() > 1) 7696 MaskI = MIRBuilder.buildTrunc(LLT::scalar(1), MaskI); 7697 7698 MaskI = MIRBuilder.buildZExt(IdxTy, MaskI); 7699 OutPos = MIRBuilder.buildAdd(IdxTy, OutPos, MaskI); 7700 7701 if (HasPassthru && I == NumElmts - 1) { 7702 auto EndOfVector = 7703 MIRBuilder.buildConstant(IdxTy, VecTy.getNumElements() - 1); 7704 auto AllLanesSelected = MIRBuilder.buildICmp( 7705 CmpInst::ICMP_UGT, LLT::scalar(1), OutPos, EndOfVector); 7706 OutPos = MIRBuilder.buildInstr(TargetOpcode::G_UMIN, {IdxTy}, 7707 {OutPos, EndOfVector}); 7708 ElmtPtr = getVectorElementPointer(StackPtr, VecTy, OutPos.getReg(0)); 7709 7710 LastWriteVal = 7711 MIRBuilder.buildSelect(ValTy, AllLanesSelected, Val, LastWriteVal) 7712 .getReg(0); 7713 MIRBuilder.buildStore(LastWriteVal, ElmtPtr, ValPtrInfo, ValAlign); 7714 } 7715 } 7716 7717 // TODO: Use StackPtr's FrameIndex alignment. 7718 MIRBuilder.buildLoad(Dst, StackPtr, PtrInfo, VecAlign); 7719 7720 MI.eraseFromParent(); 7721 return Legalized; 7722 } 7723 7724 Register LegalizerHelper::getDynStackAllocTargetPtr(Register SPReg, 7725 Register AllocSize, 7726 Align Alignment, 7727 LLT PtrTy) { 7728 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 7729 7730 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 7731 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 7732 7733 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 7734 // have to generate an extra instruction to negate the alloc and then use 7735 // G_PTR_ADD to add the negative offset. 7736 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 7737 if (Alignment > Align(1)) { 7738 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 7739 AlignMask.negate(); 7740 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 7741 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 7742 } 7743 7744 return MIRBuilder.buildCast(PtrTy, Alloc).getReg(0); 7745 } 7746 7747 LegalizerHelper::LegalizeResult 7748 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 7749 const auto &MF = *MI.getMF(); 7750 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 7751 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 7752 return UnableToLegalize; 7753 7754 Register Dst = MI.getOperand(0).getReg(); 7755 Register AllocSize = MI.getOperand(1).getReg(); 7756 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 7757 7758 LLT PtrTy = MRI.getType(Dst); 7759 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 7760 Register SPTmp = 7761 getDynStackAllocTargetPtr(SPReg, AllocSize, Alignment, PtrTy); 7762 7763 MIRBuilder.buildCopy(SPReg, SPTmp); 7764 MIRBuilder.buildCopy(Dst, SPTmp); 7765 7766 MI.eraseFromParent(); 7767 return Legalized; 7768 } 7769 7770 LegalizerHelper::LegalizeResult 7771 LegalizerHelper::lowerStackSave(MachineInstr &MI) { 7772 Register StackPtr = TLI.getStackPointerRegisterToSaveRestore(); 7773 if (!StackPtr) 7774 return UnableToLegalize; 7775 7776 MIRBuilder.buildCopy(MI.getOperand(0), StackPtr); 7777 MI.eraseFromParent(); 7778 return Legalized; 7779 } 7780 7781 LegalizerHelper::LegalizeResult 7782 LegalizerHelper::lowerStackRestore(MachineInstr &MI) { 7783 Register StackPtr = TLI.getStackPointerRegisterToSaveRestore(); 7784 if (!StackPtr) 7785 return UnableToLegalize; 7786 7787 MIRBuilder.buildCopy(StackPtr, MI.getOperand(0)); 7788 MI.eraseFromParent(); 7789 return Legalized; 7790 } 7791 7792 LegalizerHelper::LegalizeResult 7793 LegalizerHelper::lowerExtract(MachineInstr &MI) { 7794 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 7795 unsigned Offset = MI.getOperand(2).getImm(); 7796 7797 // Extract sub-vector or one element 7798 if (SrcTy.isVector()) { 7799 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits(); 7800 unsigned DstSize = DstTy.getSizeInBits(); 7801 7802 if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) && 7803 (Offset + DstSize <= SrcTy.getSizeInBits())) { 7804 // Unmerge and allow access to each Src element for the artifact combiner. 7805 auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), SrcReg); 7806 7807 // Take element(s) we need to extract and copy it (merge them). 7808 SmallVector<Register, 8> SubVectorElts; 7809 for (unsigned Idx = Offset / SrcEltSize; 7810 Idx < (Offset + DstSize) / SrcEltSize; ++Idx) { 7811 SubVectorElts.push_back(Unmerge.getReg(Idx)); 7812 } 7813 if (SubVectorElts.size() == 1) 7814 MIRBuilder.buildCopy(DstReg, SubVectorElts[0]); 7815 else 7816 MIRBuilder.buildMergeLikeInstr(DstReg, SubVectorElts); 7817 7818 MI.eraseFromParent(); 7819 return Legalized; 7820 } 7821 } 7822 7823 if (DstTy.isScalar() && 7824 (SrcTy.isScalar() || 7825 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 7826 LLT SrcIntTy = SrcTy; 7827 if (!SrcTy.isScalar()) { 7828 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 7829 SrcReg = MIRBuilder.buildBitcast(SrcIntTy, SrcReg).getReg(0); 7830 } 7831 7832 if (Offset == 0) 7833 MIRBuilder.buildTrunc(DstReg, SrcReg); 7834 else { 7835 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 7836 auto Shr = MIRBuilder.buildLShr(SrcIntTy, SrcReg, ShiftAmt); 7837 MIRBuilder.buildTrunc(DstReg, Shr); 7838 } 7839 7840 MI.eraseFromParent(); 7841 return Legalized; 7842 } 7843 7844 return UnableToLegalize; 7845 } 7846 7847 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 7848 auto [Dst, Src, InsertSrc] = MI.getFirst3Regs(); 7849 uint64_t Offset = MI.getOperand(3).getImm(); 7850 7851 LLT DstTy = MRI.getType(Src); 7852 LLT InsertTy = MRI.getType(InsertSrc); 7853 7854 // Insert sub-vector or one element 7855 if (DstTy.isVector() && !InsertTy.isPointer()) { 7856 LLT EltTy = DstTy.getElementType(); 7857 unsigned EltSize = EltTy.getSizeInBits(); 7858 unsigned InsertSize = InsertTy.getSizeInBits(); 7859 7860 if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) && 7861 (Offset + InsertSize <= DstTy.getSizeInBits())) { 7862 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src); 7863 SmallVector<Register, 8> DstElts; 7864 unsigned Idx = 0; 7865 // Elements from Src before insert start Offset 7866 for (; Idx < Offset / EltSize; ++Idx) { 7867 DstElts.push_back(UnmergeSrc.getReg(Idx)); 7868 } 7869 7870 // Replace elements in Src with elements from InsertSrc 7871 if (InsertTy.getSizeInBits() > EltSize) { 7872 auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc); 7873 for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize; 7874 ++Idx, ++i) { 7875 DstElts.push_back(UnmergeInsertSrc.getReg(i)); 7876 } 7877 } else { 7878 DstElts.push_back(InsertSrc); 7879 ++Idx; 7880 } 7881 7882 // Remaining elements from Src after insert 7883 for (; Idx < DstTy.getNumElements(); ++Idx) { 7884 DstElts.push_back(UnmergeSrc.getReg(Idx)); 7885 } 7886 7887 MIRBuilder.buildMergeLikeInstr(Dst, DstElts); 7888 MI.eraseFromParent(); 7889 return Legalized; 7890 } 7891 } 7892 7893 if (InsertTy.isVector() || 7894 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 7895 return UnableToLegalize; 7896 7897 const DataLayout &DL = MIRBuilder.getDataLayout(); 7898 if ((DstTy.isPointer() && 7899 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 7900 (InsertTy.isPointer() && 7901 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 7902 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 7903 return UnableToLegalize; 7904 } 7905 7906 LLT IntDstTy = DstTy; 7907 7908 if (!DstTy.isScalar()) { 7909 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 7910 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 7911 } 7912 7913 if (!InsertTy.isScalar()) { 7914 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 7915 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 7916 } 7917 7918 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 7919 if (Offset != 0) { 7920 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 7921 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 7922 } 7923 7924 APInt MaskVal = APInt::getBitsSetWithWrap( 7925 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 7926 7927 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 7928 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 7929 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 7930 7931 MIRBuilder.buildCast(Dst, Or); 7932 MI.eraseFromParent(); 7933 return Legalized; 7934 } 7935 7936 LegalizerHelper::LegalizeResult 7937 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 7938 auto [Dst0, Dst0Ty, Dst1, Dst1Ty, LHS, LHSTy, RHS, RHSTy] = 7939 MI.getFirst4RegLLTs(); 7940 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 7941 7942 LLT Ty = Dst0Ty; 7943 LLT BoolTy = Dst1Ty; 7944 7945 Register NewDst0 = MRI.cloneVirtualRegister(Dst0); 7946 7947 if (IsAdd) 7948 MIRBuilder.buildAdd(NewDst0, LHS, RHS); 7949 else 7950 MIRBuilder.buildSub(NewDst0, LHS, RHS); 7951 7952 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7953 7954 auto Zero = MIRBuilder.buildConstant(Ty, 0); 7955 7956 // For an addition, the result should be less than one of the operands (LHS) 7957 // if and only if the other operand (RHS) is negative, otherwise there will 7958 // be overflow. 7959 // For a subtraction, the result should be less than one of the operands 7960 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7961 // otherwise there will be overflow. 7962 auto ResultLowerThanLHS = 7963 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, NewDst0, LHS); 7964 auto ConditionRHS = MIRBuilder.buildICmp( 7965 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 7966 7967 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 7968 7969 MIRBuilder.buildCopy(Dst0, NewDst0); 7970 MI.eraseFromParent(); 7971 7972 return Legalized; 7973 } 7974 7975 LegalizerHelper::LegalizeResult 7976 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 7977 auto [Res, LHS, RHS] = MI.getFirst3Regs(); 7978 LLT Ty = MRI.getType(Res); 7979 bool IsSigned; 7980 bool IsAdd; 7981 unsigned BaseOp; 7982 switch (MI.getOpcode()) { 7983 default: 7984 llvm_unreachable("unexpected addsat/subsat opcode"); 7985 case TargetOpcode::G_UADDSAT: 7986 IsSigned = false; 7987 IsAdd = true; 7988 BaseOp = TargetOpcode::G_ADD; 7989 break; 7990 case TargetOpcode::G_SADDSAT: 7991 IsSigned = true; 7992 IsAdd = true; 7993 BaseOp = TargetOpcode::G_ADD; 7994 break; 7995 case TargetOpcode::G_USUBSAT: 7996 IsSigned = false; 7997 IsAdd = false; 7998 BaseOp = TargetOpcode::G_SUB; 7999 break; 8000 case TargetOpcode::G_SSUBSAT: 8001 IsSigned = true; 8002 IsAdd = false; 8003 BaseOp = TargetOpcode::G_SUB; 8004 break; 8005 } 8006 8007 if (IsSigned) { 8008 // sadd.sat(a, b) -> 8009 // hi = 0x7fffffff - smax(a, 0) 8010 // lo = 0x80000000 - smin(a, 0) 8011 // a + smin(smax(lo, b), hi) 8012 // ssub.sat(a, b) -> 8013 // lo = smax(a, -1) - 0x7fffffff 8014 // hi = smin(a, -1) - 0x80000000 8015 // a - smin(smax(lo, b), hi) 8016 // TODO: AMDGPU can use a "median of 3" instruction here: 8017 // a +/- med3(lo, b, hi) 8018 uint64_t NumBits = Ty.getScalarSizeInBits(); 8019 auto MaxVal = 8020 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 8021 auto MinVal = 8022 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 8023 MachineInstrBuilder Hi, Lo; 8024 if (IsAdd) { 8025 auto Zero = MIRBuilder.buildConstant(Ty, 0); 8026 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 8027 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 8028 } else { 8029 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 8030 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 8031 MaxVal); 8032 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 8033 MinVal); 8034 } 8035 auto RHSClamped = 8036 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 8037 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 8038 } else { 8039 // uadd.sat(a, b) -> a + umin(~a, b) 8040 // usub.sat(a, b) -> a - umin(a, b) 8041 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 8042 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 8043 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 8044 } 8045 8046 MI.eraseFromParent(); 8047 return Legalized; 8048 } 8049 8050 LegalizerHelper::LegalizeResult 8051 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 8052 auto [Res, LHS, RHS] = MI.getFirst3Regs(); 8053 LLT Ty = MRI.getType(Res); 8054 LLT BoolTy = Ty.changeElementSize(1); 8055 bool IsSigned; 8056 bool IsAdd; 8057 unsigned OverflowOp; 8058 switch (MI.getOpcode()) { 8059 default: 8060 llvm_unreachable("unexpected addsat/subsat opcode"); 8061 case TargetOpcode::G_UADDSAT: 8062 IsSigned = false; 8063 IsAdd = true; 8064 OverflowOp = TargetOpcode::G_UADDO; 8065 break; 8066 case TargetOpcode::G_SADDSAT: 8067 IsSigned = true; 8068 IsAdd = true; 8069 OverflowOp = TargetOpcode::G_SADDO; 8070 break; 8071 case TargetOpcode::G_USUBSAT: 8072 IsSigned = false; 8073 IsAdd = false; 8074 OverflowOp = TargetOpcode::G_USUBO; 8075 break; 8076 case TargetOpcode::G_SSUBSAT: 8077 IsSigned = true; 8078 IsAdd = false; 8079 OverflowOp = TargetOpcode::G_SSUBO; 8080 break; 8081 } 8082 8083 auto OverflowRes = 8084 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 8085 Register Tmp = OverflowRes.getReg(0); 8086 Register Ov = OverflowRes.getReg(1); 8087 MachineInstrBuilder Clamp; 8088 if (IsSigned) { 8089 // sadd.sat(a, b) -> 8090 // {tmp, ov} = saddo(a, b) 8091 // ov ? (tmp >>s 31) + 0x80000000 : r 8092 // ssub.sat(a, b) -> 8093 // {tmp, ov} = ssubo(a, b) 8094 // ov ? (tmp >>s 31) + 0x80000000 : r 8095 uint64_t NumBits = Ty.getScalarSizeInBits(); 8096 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 8097 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 8098 auto MinVal = 8099 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 8100 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 8101 } else { 8102 // uadd.sat(a, b) -> 8103 // {tmp, ov} = uaddo(a, b) 8104 // ov ? 0xffffffff : tmp 8105 // usub.sat(a, b) -> 8106 // {tmp, ov} = usubo(a, b) 8107 // ov ? 0 : tmp 8108 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 8109 } 8110 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 8111 8112 MI.eraseFromParent(); 8113 return Legalized; 8114 } 8115 8116 LegalizerHelper::LegalizeResult 8117 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 8118 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 8119 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 8120 "Expected shlsat opcode!"); 8121 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 8122 auto [Res, LHS, RHS] = MI.getFirst3Regs(); 8123 LLT Ty = MRI.getType(Res); 8124 LLT BoolTy = Ty.changeElementSize(1); 8125 8126 unsigned BW = Ty.getScalarSizeInBits(); 8127 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 8128 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 8129 : MIRBuilder.buildLShr(Ty, Result, RHS); 8130 8131 MachineInstrBuilder SatVal; 8132 if (IsSigned) { 8133 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 8134 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 8135 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 8136 MIRBuilder.buildConstant(Ty, 0)); 8137 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 8138 } else { 8139 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 8140 } 8141 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 8142 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 8143 8144 MI.eraseFromParent(); 8145 return Legalized; 8146 } 8147 8148 LegalizerHelper::LegalizeResult LegalizerHelper::lowerBswap(MachineInstr &MI) { 8149 auto [Dst, Src] = MI.getFirst2Regs(); 8150 const LLT Ty = MRI.getType(Src); 8151 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 8152 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 8153 8154 // Swap most and least significant byte, set remaining bytes in Res to zero. 8155 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 8156 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 8157 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 8158 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 8159 8160 // Set i-th high/low byte in Res to i-th low/high byte from Src. 8161 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 8162 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 8163 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 8164 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 8165 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 8166 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 8167 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 8168 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 8169 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 8170 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 8171 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 8172 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 8173 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 8174 } 8175 Res.getInstr()->getOperand(0).setReg(Dst); 8176 8177 MI.eraseFromParent(); 8178 return Legalized; 8179 } 8180 8181 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 8182 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 8183 MachineInstrBuilder Src, const APInt &Mask) { 8184 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 8185 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 8186 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 8187 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 8188 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 8189 return B.buildOr(Dst, LHS, RHS); 8190 } 8191 8192 LegalizerHelper::LegalizeResult 8193 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 8194 auto [Dst, Src] = MI.getFirst2Regs(); 8195 const LLT Ty = MRI.getType(Src); 8196 unsigned Size = Ty.getScalarSizeInBits(); 8197 8198 if (Size >= 8) { 8199 MachineInstrBuilder BSWAP = 8200 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 8201 8202 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 8203 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 8204 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 8205 MachineInstrBuilder Swap4 = 8206 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 8207 8208 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 8209 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 8210 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 8211 MachineInstrBuilder Swap2 = 8212 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 8213 8214 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 8215 // 6|7 8216 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 8217 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 8218 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 8219 } else { 8220 // Expand bitreverse for types smaller than 8 bits. 8221 MachineInstrBuilder Tmp; 8222 for (unsigned I = 0, J = Size - 1; I < Size; ++I, --J) { 8223 MachineInstrBuilder Tmp2; 8224 if (I < J) { 8225 auto ShAmt = MIRBuilder.buildConstant(Ty, J - I); 8226 Tmp2 = MIRBuilder.buildShl(Ty, Src, ShAmt); 8227 } else { 8228 auto ShAmt = MIRBuilder.buildConstant(Ty, I - J); 8229 Tmp2 = MIRBuilder.buildLShr(Ty, Src, ShAmt); 8230 } 8231 8232 auto Mask = MIRBuilder.buildConstant(Ty, 1ULL << J); 8233 Tmp2 = MIRBuilder.buildAnd(Ty, Tmp2, Mask); 8234 if (I == 0) 8235 Tmp = Tmp2; 8236 else 8237 Tmp = MIRBuilder.buildOr(Ty, Tmp, Tmp2); 8238 } 8239 MIRBuilder.buildCopy(Dst, Tmp); 8240 } 8241 8242 MI.eraseFromParent(); 8243 return Legalized; 8244 } 8245 8246 LegalizerHelper::LegalizeResult 8247 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 8248 MachineFunction &MF = MIRBuilder.getMF(); 8249 8250 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 8251 int NameOpIdx = IsRead ? 1 : 0; 8252 int ValRegIndex = IsRead ? 0 : 1; 8253 8254 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 8255 const LLT Ty = MRI.getType(ValReg); 8256 const MDString *RegStr = cast<MDString>( 8257 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 8258 8259 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 8260 if (!PhysReg.isValid()) 8261 return UnableToLegalize; 8262 8263 if (IsRead) 8264 MIRBuilder.buildCopy(ValReg, PhysReg); 8265 else 8266 MIRBuilder.buildCopy(PhysReg, ValReg); 8267 8268 MI.eraseFromParent(); 8269 return Legalized; 8270 } 8271 8272 LegalizerHelper::LegalizeResult 8273 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 8274 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 8275 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 8276 Register Result = MI.getOperand(0).getReg(); 8277 LLT OrigTy = MRI.getType(Result); 8278 auto SizeInBits = OrigTy.getScalarSizeInBits(); 8279 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 8280 8281 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 8282 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 8283 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 8284 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 8285 8286 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 8287 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 8288 MIRBuilder.buildTrunc(Result, Shifted); 8289 8290 MI.eraseFromParent(); 8291 return Legalized; 8292 } 8293 8294 LegalizerHelper::LegalizeResult 8295 LegalizerHelper::lowerISFPCLASS(MachineInstr &MI) { 8296 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 8297 FPClassTest Mask = static_cast<FPClassTest>(MI.getOperand(2).getImm()); 8298 8299 if (Mask == fcNone) { 8300 MIRBuilder.buildConstant(DstReg, 0); 8301 MI.eraseFromParent(); 8302 return Legalized; 8303 } 8304 if (Mask == fcAllFlags) { 8305 MIRBuilder.buildConstant(DstReg, 1); 8306 MI.eraseFromParent(); 8307 return Legalized; 8308 } 8309 8310 // TODO: Try inverting the test with getInvertedFPClassTest like the DAG 8311 // version 8312 8313 unsigned BitSize = SrcTy.getScalarSizeInBits(); 8314 const fltSemantics &Semantics = getFltSemanticForLLT(SrcTy.getScalarType()); 8315 8316 LLT IntTy = LLT::scalar(BitSize); 8317 if (SrcTy.isVector()) 8318 IntTy = LLT::vector(SrcTy.getElementCount(), IntTy); 8319 auto AsInt = MIRBuilder.buildCopy(IntTy, SrcReg); 8320 8321 // Various masks. 8322 APInt SignBit = APInt::getSignMask(BitSize); 8323 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 8324 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 8325 APInt ExpMask = Inf; 8326 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 8327 APInt QNaNBitMask = 8328 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 8329 APInt InvertionMask = APInt::getAllOnes(DstTy.getScalarSizeInBits()); 8330 8331 auto SignBitC = MIRBuilder.buildConstant(IntTy, SignBit); 8332 auto ValueMaskC = MIRBuilder.buildConstant(IntTy, ValueMask); 8333 auto InfC = MIRBuilder.buildConstant(IntTy, Inf); 8334 auto ExpMaskC = MIRBuilder.buildConstant(IntTy, ExpMask); 8335 auto ZeroC = MIRBuilder.buildConstant(IntTy, 0); 8336 8337 auto Abs = MIRBuilder.buildAnd(IntTy, AsInt, ValueMaskC); 8338 auto Sign = 8339 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_NE, DstTy, AsInt, Abs); 8340 8341 auto Res = MIRBuilder.buildConstant(DstTy, 0); 8342 // Clang doesn't support capture of structured bindings: 8343 LLT DstTyCopy = DstTy; 8344 const auto appendToRes = [&](MachineInstrBuilder ToAppend) { 8345 Res = MIRBuilder.buildOr(DstTyCopy, Res, ToAppend); 8346 }; 8347 8348 // Tests that involve more than one class should be processed first. 8349 if ((Mask & fcFinite) == fcFinite) { 8350 // finite(V) ==> abs(V) u< exp_mask 8351 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, Abs, 8352 ExpMaskC)); 8353 Mask &= ~fcFinite; 8354 } else if ((Mask & fcFinite) == fcPosFinite) { 8355 // finite(V) && V > 0 ==> V u< exp_mask 8356 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, AsInt, 8357 ExpMaskC)); 8358 Mask &= ~fcPosFinite; 8359 } else if ((Mask & fcFinite) == fcNegFinite) { 8360 // finite(V) && V < 0 ==> abs(V) u< exp_mask && signbit == 1 8361 auto Cmp = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, Abs, 8362 ExpMaskC); 8363 auto And = MIRBuilder.buildAnd(DstTy, Cmp, Sign); 8364 appendToRes(And); 8365 Mask &= ~fcNegFinite; 8366 } 8367 8368 if (FPClassTest PartialCheck = Mask & (fcZero | fcSubnormal)) { 8369 // fcZero | fcSubnormal => test all exponent bits are 0 8370 // TODO: Handle sign bit specific cases 8371 // TODO: Handle inverted case 8372 if (PartialCheck == (fcZero | fcSubnormal)) { 8373 auto ExpBits = MIRBuilder.buildAnd(IntTy, AsInt, ExpMaskC); 8374 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, 8375 ExpBits, ZeroC)); 8376 Mask &= ~PartialCheck; 8377 } 8378 } 8379 8380 // Check for individual classes. 8381 if (FPClassTest PartialCheck = Mask & fcZero) { 8382 if (PartialCheck == fcPosZero) 8383 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, 8384 AsInt, ZeroC)); 8385 else if (PartialCheck == fcZero) 8386 appendToRes( 8387 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, Abs, ZeroC)); 8388 else // fcNegZero 8389 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, 8390 AsInt, SignBitC)); 8391 } 8392 8393 if (FPClassTest PartialCheck = Mask & fcSubnormal) { 8394 // issubnormal(V) ==> unsigned(abs(V) - 1) u< (all mantissa bits set) 8395 // issubnormal(V) && V>0 ==> unsigned(V - 1) u< (all mantissa bits set) 8396 auto V = (PartialCheck == fcPosSubnormal) ? AsInt : Abs; 8397 auto OneC = MIRBuilder.buildConstant(IntTy, 1); 8398 auto VMinusOne = MIRBuilder.buildSub(IntTy, V, OneC); 8399 auto SubnormalRes = 8400 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, VMinusOne, 8401 MIRBuilder.buildConstant(IntTy, AllOneMantissa)); 8402 if (PartialCheck == fcNegSubnormal) 8403 SubnormalRes = MIRBuilder.buildAnd(DstTy, SubnormalRes, Sign); 8404 appendToRes(SubnormalRes); 8405 } 8406 8407 if (FPClassTest PartialCheck = Mask & fcInf) { 8408 if (PartialCheck == fcPosInf) 8409 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, 8410 AsInt, InfC)); 8411 else if (PartialCheck == fcInf) 8412 appendToRes( 8413 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, Abs, InfC)); 8414 else { // fcNegInf 8415 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 8416 auto NegInfC = MIRBuilder.buildConstant(IntTy, NegInf); 8417 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, 8418 AsInt, NegInfC)); 8419 } 8420 } 8421 8422 if (FPClassTest PartialCheck = Mask & fcNan) { 8423 auto InfWithQnanBitC = MIRBuilder.buildConstant(IntTy, Inf | QNaNBitMask); 8424 if (PartialCheck == fcNan) { 8425 // isnan(V) ==> abs(V) u> int(inf) 8426 appendToRes( 8427 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGT, DstTy, Abs, InfC)); 8428 } else if (PartialCheck == fcQNan) { 8429 // isquiet(V) ==> abs(V) u>= (unsigned(Inf) | quiet_bit) 8430 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGE, DstTy, Abs, 8431 InfWithQnanBitC)); 8432 } else { // fcSNan 8433 // issignaling(V) ==> abs(V) u> unsigned(Inf) && 8434 // abs(V) u< (unsigned(Inf) | quiet_bit) 8435 auto IsNan = 8436 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGT, DstTy, Abs, InfC); 8437 auto IsNotQnan = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, 8438 Abs, InfWithQnanBitC); 8439 appendToRes(MIRBuilder.buildAnd(DstTy, IsNan, IsNotQnan)); 8440 } 8441 } 8442 8443 if (FPClassTest PartialCheck = Mask & fcNormal) { 8444 // isnormal(V) ==> (0 u< exp u< max_exp) ==> (unsigned(exp-1) u< 8445 // (max_exp-1)) 8446 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 8447 auto ExpMinusOne = MIRBuilder.buildSub( 8448 IntTy, Abs, MIRBuilder.buildConstant(IntTy, ExpLSB)); 8449 APInt MaxExpMinusOne = ExpMask - ExpLSB; 8450 auto NormalRes = 8451 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, ExpMinusOne, 8452 MIRBuilder.buildConstant(IntTy, MaxExpMinusOne)); 8453 if (PartialCheck == fcNegNormal) 8454 NormalRes = MIRBuilder.buildAnd(DstTy, NormalRes, Sign); 8455 else if (PartialCheck == fcPosNormal) { 8456 auto PosSign = MIRBuilder.buildXor( 8457 DstTy, Sign, MIRBuilder.buildConstant(DstTy, InvertionMask)); 8458 NormalRes = MIRBuilder.buildAnd(DstTy, NormalRes, PosSign); 8459 } 8460 appendToRes(NormalRes); 8461 } 8462 8463 MIRBuilder.buildCopy(DstReg, Res); 8464 MI.eraseFromParent(); 8465 return Legalized; 8466 } 8467 8468 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 8469 // Implement G_SELECT in terms of XOR, AND, OR. 8470 auto [DstReg, DstTy, MaskReg, MaskTy, Op1Reg, Op1Ty, Op2Reg, Op2Ty] = 8471 MI.getFirst4RegLLTs(); 8472 8473 bool IsEltPtr = DstTy.isPointerOrPointerVector(); 8474 if (IsEltPtr) { 8475 LLT ScalarPtrTy = LLT::scalar(DstTy.getScalarSizeInBits()); 8476 LLT NewTy = DstTy.changeElementType(ScalarPtrTy); 8477 Op1Reg = MIRBuilder.buildPtrToInt(NewTy, Op1Reg).getReg(0); 8478 Op2Reg = MIRBuilder.buildPtrToInt(NewTy, Op2Reg).getReg(0); 8479 DstTy = NewTy; 8480 } 8481 8482 if (MaskTy.isScalar()) { 8483 // Turn the scalar condition into a vector condition mask if needed. 8484 8485 Register MaskElt = MaskReg; 8486 8487 // The condition was potentially zero extended before, but we want a sign 8488 // extended boolean. 8489 if (MaskTy != LLT::scalar(1)) 8490 MaskElt = MIRBuilder.buildSExtInReg(MaskTy, MaskElt, 1).getReg(0); 8491 8492 // Continue the sign extension (or truncate) to match the data type. 8493 MaskElt = 8494 MIRBuilder.buildSExtOrTrunc(DstTy.getScalarType(), MaskElt).getReg(0); 8495 8496 if (DstTy.isVector()) { 8497 // Generate a vector splat idiom. 8498 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 8499 MaskReg = ShufSplat.getReg(0); 8500 } else { 8501 MaskReg = MaskElt; 8502 } 8503 MaskTy = DstTy; 8504 } else if (!DstTy.isVector()) { 8505 // Cannot handle the case that mask is a vector and dst is a scalar. 8506 return UnableToLegalize; 8507 } 8508 8509 if (MaskTy.getSizeInBits() != DstTy.getSizeInBits()) { 8510 return UnableToLegalize; 8511 } 8512 8513 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 8514 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 8515 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 8516 if (IsEltPtr) { 8517 auto Or = MIRBuilder.buildOr(DstTy, NewOp1, NewOp2); 8518 MIRBuilder.buildIntToPtr(DstReg, Or); 8519 } else { 8520 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 8521 } 8522 MI.eraseFromParent(); 8523 return Legalized; 8524 } 8525 8526 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 8527 // Split DIVREM into individual instructions. 8528 unsigned Opcode = MI.getOpcode(); 8529 8530 MIRBuilder.buildInstr( 8531 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 8532 : TargetOpcode::G_UDIV, 8533 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 8534 MIRBuilder.buildInstr( 8535 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 8536 : TargetOpcode::G_UREM, 8537 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 8538 MI.eraseFromParent(); 8539 return Legalized; 8540 } 8541 8542 LegalizerHelper::LegalizeResult 8543 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { 8544 // Expand %res = G_ABS %a into: 8545 // %v1 = G_ASHR %a, scalar_size-1 8546 // %v2 = G_ADD %a, %v1 8547 // %res = G_XOR %v2, %v1 8548 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 8549 Register OpReg = MI.getOperand(1).getReg(); 8550 auto ShiftAmt = 8551 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 8552 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 8553 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 8554 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 8555 MI.eraseFromParent(); 8556 return Legalized; 8557 } 8558 8559 LegalizerHelper::LegalizeResult 8560 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { 8561 // Expand %res = G_ABS %a into: 8562 // %v1 = G_CONSTANT 0 8563 // %v2 = G_SUB %v1, %a 8564 // %res = G_SMAX %a, %v2 8565 Register SrcReg = MI.getOperand(1).getReg(); 8566 LLT Ty = MRI.getType(SrcReg); 8567 auto Zero = MIRBuilder.buildConstant(Ty, 0); 8568 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg); 8569 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); 8570 MI.eraseFromParent(); 8571 return Legalized; 8572 } 8573 8574 LegalizerHelper::LegalizeResult 8575 LegalizerHelper::lowerAbsToCNeg(MachineInstr &MI) { 8576 Register SrcReg = MI.getOperand(1).getReg(); 8577 Register DestReg = MI.getOperand(0).getReg(); 8578 LLT Ty = MRI.getType(SrcReg), IType = LLT::scalar(1); 8579 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); 8580 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); 8581 auto ICmp = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, IType, SrcReg, Zero); 8582 MIRBuilder.buildSelect(DestReg, ICmp, SrcReg, Sub); 8583 MI.eraseFromParent(); 8584 return Legalized; 8585 } 8586 8587 LegalizerHelper::LegalizeResult 8588 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) { 8589 Register SrcReg = MI.getOperand(1).getReg(); 8590 LLT SrcTy = MRI.getType(SrcReg); 8591 LLT DstTy = MRI.getType(SrcReg); 8592 8593 // The source could be a scalar if the IR type was <1 x sN>. 8594 if (SrcTy.isScalar()) { 8595 if (DstTy.getSizeInBits() > SrcTy.getSizeInBits()) 8596 return UnableToLegalize; // FIXME: handle extension. 8597 // This can be just a plain copy. 8598 Observer.changingInstr(MI); 8599 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY)); 8600 Observer.changedInstr(MI); 8601 return Legalized; 8602 } 8603 return UnableToLegalize; 8604 } 8605 8606 LegalizerHelper::LegalizeResult LegalizerHelper::lowerVAArg(MachineInstr &MI) { 8607 MachineFunction &MF = *MI.getMF(); 8608 const DataLayout &DL = MIRBuilder.getDataLayout(); 8609 LLVMContext &Ctx = MF.getFunction().getContext(); 8610 Register ListPtr = MI.getOperand(1).getReg(); 8611 LLT PtrTy = MRI.getType(ListPtr); 8612 8613 // LstPtr is a pointer to the head of the list. Get the address 8614 // of the head of the list. 8615 Align PtrAlignment = DL.getABITypeAlign(getTypeForLLT(PtrTy, Ctx)); 8616 MachineMemOperand *PtrLoadMMO = MF.getMachineMemOperand( 8617 MachinePointerInfo(), MachineMemOperand::MOLoad, PtrTy, PtrAlignment); 8618 auto VAList = MIRBuilder.buildLoad(PtrTy, ListPtr, *PtrLoadMMO).getReg(0); 8619 8620 const Align A(MI.getOperand(2).getImm()); 8621 LLT PtrTyAsScalarTy = LLT::scalar(PtrTy.getSizeInBits()); 8622 if (A > TLI.getMinStackArgumentAlignment()) { 8623 Register AlignAmt = 8624 MIRBuilder.buildConstant(PtrTyAsScalarTy, A.value() - 1).getReg(0); 8625 auto AddDst = MIRBuilder.buildPtrAdd(PtrTy, VAList, AlignAmt); 8626 auto AndDst = MIRBuilder.buildMaskLowPtrBits(PtrTy, AddDst, Log2(A)); 8627 VAList = AndDst.getReg(0); 8628 } 8629 8630 // Increment the pointer, VAList, to the next vaarg 8631 // The list should be bumped by the size of element in the current head of 8632 // list. 8633 Register Dst = MI.getOperand(0).getReg(); 8634 LLT LLTTy = MRI.getType(Dst); 8635 Type *Ty = getTypeForLLT(LLTTy, Ctx); 8636 auto IncAmt = 8637 MIRBuilder.buildConstant(PtrTyAsScalarTy, DL.getTypeAllocSize(Ty)); 8638 auto Succ = MIRBuilder.buildPtrAdd(PtrTy, VAList, IncAmt); 8639 8640 // Store the increment VAList to the legalized pointer 8641 MachineMemOperand *StoreMMO = MF.getMachineMemOperand( 8642 MachinePointerInfo(), MachineMemOperand::MOStore, PtrTy, PtrAlignment); 8643 MIRBuilder.buildStore(Succ, ListPtr, *StoreMMO); 8644 // Load the actual argument out of the pointer VAList 8645 Align EltAlignment = DL.getABITypeAlign(Ty); 8646 MachineMemOperand *EltLoadMMO = MF.getMachineMemOperand( 8647 MachinePointerInfo(), MachineMemOperand::MOLoad, LLTTy, EltAlignment); 8648 MIRBuilder.buildLoad(Dst, VAList, *EltLoadMMO); 8649 8650 MI.eraseFromParent(); 8651 return Legalized; 8652 } 8653 8654 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 8655 // On Darwin, -Os means optimize for size without hurting performance, so 8656 // only really optimize for size when -Oz (MinSize) is used. 8657 if (MF.getTarget().getTargetTriple().isOSDarwin()) 8658 return MF.getFunction().hasMinSize(); 8659 return MF.getFunction().hasOptSize(); 8660 } 8661 8662 // Returns a list of types to use for memory op lowering in MemOps. A partial 8663 // port of findOptimalMemOpLowering in TargetLowering. 8664 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 8665 unsigned Limit, const MemOp &Op, 8666 unsigned DstAS, unsigned SrcAS, 8667 const AttributeList &FuncAttributes, 8668 const TargetLowering &TLI) { 8669 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 8670 return false; 8671 8672 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 8673 8674 if (Ty == LLT()) { 8675 // Use the largest scalar type whose alignment constraints are satisfied. 8676 // We only need to check DstAlign here as SrcAlign is always greater or 8677 // equal to DstAlign (or zero). 8678 Ty = LLT::scalar(64); 8679 if (Op.isFixedDstAlign()) 8680 while (Op.getDstAlign() < Ty.getSizeInBytes() && 8681 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 8682 Ty = LLT::scalar(Ty.getSizeInBytes()); 8683 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 8684 // FIXME: check for the largest legal type we can load/store to. 8685 } 8686 8687 unsigned NumMemOps = 0; 8688 uint64_t Size = Op.size(); 8689 while (Size) { 8690 unsigned TySize = Ty.getSizeInBytes(); 8691 while (TySize > Size) { 8692 // For now, only use non-vector load / store's for the left-over pieces. 8693 LLT NewTy = Ty; 8694 // FIXME: check for mem op safety and legality of the types. Not all of 8695 // SDAGisms map cleanly to GISel concepts. 8696 if (NewTy.isVector()) 8697 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 8698 NewTy = LLT::scalar(llvm::bit_floor(NewTy.getSizeInBits() - 1)); 8699 unsigned NewTySize = NewTy.getSizeInBytes(); 8700 assert(NewTySize > 0 && "Could not find appropriate type"); 8701 8702 // If the new LLT cannot cover all of the remaining bits, then consider 8703 // issuing a (or a pair of) unaligned and overlapping load / store. 8704 unsigned Fast; 8705 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 8706 MVT VT = getMVTForLLT(Ty); 8707 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 8708 TLI.allowsMisalignedMemoryAccesses( 8709 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 8710 MachineMemOperand::MONone, &Fast) && 8711 Fast) 8712 TySize = Size; 8713 else { 8714 Ty = NewTy; 8715 TySize = NewTySize; 8716 } 8717 } 8718 8719 if (++NumMemOps > Limit) 8720 return false; 8721 8722 MemOps.push_back(Ty); 8723 Size -= TySize; 8724 } 8725 8726 return true; 8727 } 8728 8729 // Get a vectorized representation of the memset value operand, GISel edition. 8730 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 8731 MachineRegisterInfo &MRI = *MIB.getMRI(); 8732 unsigned NumBits = Ty.getScalarSizeInBits(); 8733 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 8734 if (!Ty.isVector() && ValVRegAndVal) { 8735 APInt Scalar = ValVRegAndVal->Value.trunc(8); 8736 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 8737 return MIB.buildConstant(Ty, SplatVal).getReg(0); 8738 } 8739 8740 // Extend the byte value to the larger type, and then multiply by a magic 8741 // value 0x010101... in order to replicate it across every byte. 8742 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 8743 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 8744 return MIB.buildConstant(Ty, 0).getReg(0); 8745 } 8746 8747 LLT ExtType = Ty.getScalarType(); 8748 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 8749 if (NumBits > 8) { 8750 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 8751 auto MagicMI = MIB.buildConstant(ExtType, Magic); 8752 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 8753 } 8754 8755 // For vector types create a G_BUILD_VECTOR. 8756 if (Ty.isVector()) 8757 Val = MIB.buildSplatBuildVector(Ty, Val).getReg(0); 8758 8759 return Val; 8760 } 8761 8762 LegalizerHelper::LegalizeResult 8763 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val, 8764 uint64_t KnownLen, Align Alignment, 8765 bool IsVolatile) { 8766 auto &MF = *MI.getParent()->getParent(); 8767 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 8768 auto &DL = MF.getDataLayout(); 8769 LLVMContext &C = MF.getFunction().getContext(); 8770 8771 assert(KnownLen != 0 && "Have a zero length memset length!"); 8772 8773 bool DstAlignCanChange = false; 8774 MachineFrameInfo &MFI = MF.getFrameInfo(); 8775 bool OptSize = shouldLowerMemFuncForSize(MF); 8776 8777 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 8778 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 8779 DstAlignCanChange = true; 8780 8781 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 8782 std::vector<LLT> MemOps; 8783 8784 const auto &DstMMO = **MI.memoperands_begin(); 8785 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 8786 8787 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 8788 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 8789 8790 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 8791 MemOp::Set(KnownLen, DstAlignCanChange, 8792 Alignment, 8793 /*IsZeroMemset=*/IsZeroVal, 8794 /*IsVolatile=*/IsVolatile), 8795 DstPtrInfo.getAddrSpace(), ~0u, 8796 MF.getFunction().getAttributes(), TLI)) 8797 return UnableToLegalize; 8798 8799 if (DstAlignCanChange) { 8800 // Get an estimate of the type from the LLT. 8801 Type *IRTy = getTypeForLLT(MemOps[0], C); 8802 Align NewAlign = DL.getABITypeAlign(IRTy); 8803 if (NewAlign > Alignment) { 8804 Alignment = NewAlign; 8805 unsigned FI = FIDef->getOperand(1).getIndex(); 8806 // Give the stack frame object a larger alignment if needed. 8807 if (MFI.getObjectAlign(FI) < Alignment) 8808 MFI.setObjectAlignment(FI, Alignment); 8809 } 8810 } 8811 8812 MachineIRBuilder MIB(MI); 8813 // Find the largest store and generate the bit pattern for it. 8814 LLT LargestTy = MemOps[0]; 8815 for (unsigned i = 1; i < MemOps.size(); i++) 8816 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 8817 LargestTy = MemOps[i]; 8818 8819 // The memset stored value is always defined as an s8, so in order to make it 8820 // work with larger store types we need to repeat the bit pattern across the 8821 // wider type. 8822 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 8823 8824 if (!MemSetValue) 8825 return UnableToLegalize; 8826 8827 // Generate the stores. For each store type in the list, we generate the 8828 // matching store of that type to the destination address. 8829 LLT PtrTy = MRI.getType(Dst); 8830 unsigned DstOff = 0; 8831 unsigned Size = KnownLen; 8832 for (unsigned I = 0; I < MemOps.size(); I++) { 8833 LLT Ty = MemOps[I]; 8834 unsigned TySize = Ty.getSizeInBytes(); 8835 if (TySize > Size) { 8836 // Issuing an unaligned load / store pair that overlaps with the previous 8837 // pair. Adjust the offset accordingly. 8838 assert(I == MemOps.size() - 1 && I != 0); 8839 DstOff -= TySize - Size; 8840 } 8841 8842 // If this store is smaller than the largest store see whether we can get 8843 // the smaller value for free with a truncate. 8844 Register Value = MemSetValue; 8845 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 8846 MVT VT = getMVTForLLT(Ty); 8847 MVT LargestVT = getMVTForLLT(LargestTy); 8848 if (!LargestTy.isVector() && !Ty.isVector() && 8849 TLI.isTruncateFree(LargestVT, VT)) 8850 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 8851 else 8852 Value = getMemsetValue(Val, Ty, MIB); 8853 if (!Value) 8854 return UnableToLegalize; 8855 } 8856 8857 auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty); 8858 8859 Register Ptr = Dst; 8860 if (DstOff != 0) { 8861 auto Offset = 8862 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 8863 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 8864 } 8865 8866 MIB.buildStore(Value, Ptr, *StoreMMO); 8867 DstOff += Ty.getSizeInBytes(); 8868 Size -= TySize; 8869 } 8870 8871 MI.eraseFromParent(); 8872 return Legalized; 8873 } 8874 8875 LegalizerHelper::LegalizeResult 8876 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) { 8877 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 8878 8879 auto [Dst, Src, Len] = MI.getFirst3Regs(); 8880 8881 const auto *MMOIt = MI.memoperands_begin(); 8882 const MachineMemOperand *MemOp = *MMOIt; 8883 bool IsVolatile = MemOp->isVolatile(); 8884 8885 // See if this is a constant length copy 8886 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 8887 // FIXME: support dynamically sized G_MEMCPY_INLINE 8888 assert(LenVRegAndVal && 8889 "inline memcpy with dynamic size is not yet supported"); 8890 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 8891 if (KnownLen == 0) { 8892 MI.eraseFromParent(); 8893 return Legalized; 8894 } 8895 8896 const auto &DstMMO = **MI.memoperands_begin(); 8897 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 8898 Align DstAlign = DstMMO.getBaseAlign(); 8899 Align SrcAlign = SrcMMO.getBaseAlign(); 8900 8901 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 8902 IsVolatile); 8903 } 8904 8905 LegalizerHelper::LegalizeResult 8906 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src, 8907 uint64_t KnownLen, Align DstAlign, 8908 Align SrcAlign, bool IsVolatile) { 8909 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 8910 return lowerMemcpy(MI, Dst, Src, KnownLen, 8911 std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign, 8912 IsVolatile); 8913 } 8914 8915 LegalizerHelper::LegalizeResult 8916 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src, 8917 uint64_t KnownLen, uint64_t Limit, Align DstAlign, 8918 Align SrcAlign, bool IsVolatile) { 8919 auto &MF = *MI.getParent()->getParent(); 8920 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 8921 auto &DL = MF.getDataLayout(); 8922 LLVMContext &C = MF.getFunction().getContext(); 8923 8924 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 8925 8926 bool DstAlignCanChange = false; 8927 MachineFrameInfo &MFI = MF.getFrameInfo(); 8928 Align Alignment = std::min(DstAlign, SrcAlign); 8929 8930 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 8931 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 8932 DstAlignCanChange = true; 8933 8934 // FIXME: infer better src pointer alignment like SelectionDAG does here. 8935 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 8936 // if the memcpy is in a tail call position. 8937 8938 std::vector<LLT> MemOps; 8939 8940 const auto &DstMMO = **MI.memoperands_begin(); 8941 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 8942 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 8943 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 8944 8945 if (!findGISelOptimalMemOpLowering( 8946 MemOps, Limit, 8947 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 8948 IsVolatile), 8949 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 8950 MF.getFunction().getAttributes(), TLI)) 8951 return UnableToLegalize; 8952 8953 if (DstAlignCanChange) { 8954 // Get an estimate of the type from the LLT. 8955 Type *IRTy = getTypeForLLT(MemOps[0], C); 8956 Align NewAlign = DL.getABITypeAlign(IRTy); 8957 8958 // Don't promote to an alignment that would require dynamic stack 8959 // realignment. 8960 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 8961 if (!TRI->hasStackRealignment(MF)) 8962 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 8963 NewAlign = NewAlign.previous(); 8964 8965 if (NewAlign > Alignment) { 8966 Alignment = NewAlign; 8967 unsigned FI = FIDef->getOperand(1).getIndex(); 8968 // Give the stack frame object a larger alignment if needed. 8969 if (MFI.getObjectAlign(FI) < Alignment) 8970 MFI.setObjectAlignment(FI, Alignment); 8971 } 8972 } 8973 8974 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 8975 8976 MachineIRBuilder MIB(MI); 8977 // Now we need to emit a pair of load and stores for each of the types we've 8978 // collected. I.e. for each type, generate a load from the source pointer of 8979 // that type width, and then generate a corresponding store to the dest buffer 8980 // of that value loaded. This can result in a sequence of loads and stores 8981 // mixed types, depending on what the target specifies as good types to use. 8982 unsigned CurrOffset = 0; 8983 unsigned Size = KnownLen; 8984 for (auto CopyTy : MemOps) { 8985 // Issuing an unaligned load / store pair that overlaps with the previous 8986 // pair. Adjust the offset accordingly. 8987 if (CopyTy.getSizeInBytes() > Size) 8988 CurrOffset -= CopyTy.getSizeInBytes() - Size; 8989 8990 // Construct MMOs for the accesses. 8991 auto *LoadMMO = 8992 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 8993 auto *StoreMMO = 8994 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 8995 8996 // Create the load. 8997 Register LoadPtr = Src; 8998 Register Offset; 8999 if (CurrOffset != 0) { 9000 LLT SrcTy = MRI.getType(Src); 9001 Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset) 9002 .getReg(0); 9003 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 9004 } 9005 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 9006 9007 // Create the store. 9008 Register StorePtr = Dst; 9009 if (CurrOffset != 0) { 9010 LLT DstTy = MRI.getType(Dst); 9011 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 9012 } 9013 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 9014 CurrOffset += CopyTy.getSizeInBytes(); 9015 Size -= CopyTy.getSizeInBytes(); 9016 } 9017 9018 MI.eraseFromParent(); 9019 return Legalized; 9020 } 9021 9022 LegalizerHelper::LegalizeResult 9023 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src, 9024 uint64_t KnownLen, Align DstAlign, Align SrcAlign, 9025 bool IsVolatile) { 9026 auto &MF = *MI.getParent()->getParent(); 9027 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 9028 auto &DL = MF.getDataLayout(); 9029 LLVMContext &C = MF.getFunction().getContext(); 9030 9031 assert(KnownLen != 0 && "Have a zero length memmove length!"); 9032 9033 bool DstAlignCanChange = false; 9034 MachineFrameInfo &MFI = MF.getFrameInfo(); 9035 bool OptSize = shouldLowerMemFuncForSize(MF); 9036 Align Alignment = std::min(DstAlign, SrcAlign); 9037 9038 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 9039 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 9040 DstAlignCanChange = true; 9041 9042 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 9043 std::vector<LLT> MemOps; 9044 9045 const auto &DstMMO = **MI.memoperands_begin(); 9046 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 9047 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 9048 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 9049 9050 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 9051 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 9052 // same thing here. 9053 if (!findGISelOptimalMemOpLowering( 9054 MemOps, Limit, 9055 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 9056 /*IsVolatile*/ true), 9057 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 9058 MF.getFunction().getAttributes(), TLI)) 9059 return UnableToLegalize; 9060 9061 if (DstAlignCanChange) { 9062 // Get an estimate of the type from the LLT. 9063 Type *IRTy = getTypeForLLT(MemOps[0], C); 9064 Align NewAlign = DL.getABITypeAlign(IRTy); 9065 9066 // Don't promote to an alignment that would require dynamic stack 9067 // realignment. 9068 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 9069 if (!TRI->hasStackRealignment(MF)) 9070 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 9071 NewAlign = NewAlign.previous(); 9072 9073 if (NewAlign > Alignment) { 9074 Alignment = NewAlign; 9075 unsigned FI = FIDef->getOperand(1).getIndex(); 9076 // Give the stack frame object a larger alignment if needed. 9077 if (MFI.getObjectAlign(FI) < Alignment) 9078 MFI.setObjectAlignment(FI, Alignment); 9079 } 9080 } 9081 9082 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 9083 9084 MachineIRBuilder MIB(MI); 9085 // Memmove requires that we perform the loads first before issuing the stores. 9086 // Apart from that, this loop is pretty much doing the same thing as the 9087 // memcpy codegen function. 9088 unsigned CurrOffset = 0; 9089 SmallVector<Register, 16> LoadVals; 9090 for (auto CopyTy : MemOps) { 9091 // Construct MMO for the load. 9092 auto *LoadMMO = 9093 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 9094 9095 // Create the load. 9096 Register LoadPtr = Src; 9097 if (CurrOffset != 0) { 9098 LLT SrcTy = MRI.getType(Src); 9099 auto Offset = 9100 MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset); 9101 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 9102 } 9103 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 9104 CurrOffset += CopyTy.getSizeInBytes(); 9105 } 9106 9107 CurrOffset = 0; 9108 for (unsigned I = 0; I < MemOps.size(); ++I) { 9109 LLT CopyTy = MemOps[I]; 9110 // Now store the values loaded. 9111 auto *StoreMMO = 9112 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 9113 9114 Register StorePtr = Dst; 9115 if (CurrOffset != 0) { 9116 LLT DstTy = MRI.getType(Dst); 9117 auto Offset = 9118 MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset); 9119 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 9120 } 9121 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 9122 CurrOffset += CopyTy.getSizeInBytes(); 9123 } 9124 MI.eraseFromParent(); 9125 return Legalized; 9126 } 9127 9128 LegalizerHelper::LegalizeResult 9129 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 9130 const unsigned Opc = MI.getOpcode(); 9131 // This combine is fairly complex so it's not written with a separate 9132 // matcher function. 9133 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 9134 Opc == TargetOpcode::G_MEMSET) && 9135 "Expected memcpy like instruction"); 9136 9137 auto MMOIt = MI.memoperands_begin(); 9138 const MachineMemOperand *MemOp = *MMOIt; 9139 9140 Align DstAlign = MemOp->getBaseAlign(); 9141 Align SrcAlign; 9142 auto [Dst, Src, Len] = MI.getFirst3Regs(); 9143 9144 if (Opc != TargetOpcode::G_MEMSET) { 9145 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 9146 MemOp = *(++MMOIt); 9147 SrcAlign = MemOp->getBaseAlign(); 9148 } 9149 9150 // See if this is a constant length copy 9151 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 9152 if (!LenVRegAndVal) 9153 return UnableToLegalize; 9154 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 9155 9156 if (KnownLen == 0) { 9157 MI.eraseFromParent(); 9158 return Legalized; 9159 } 9160 9161 bool IsVolatile = MemOp->isVolatile(); 9162 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 9163 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 9164 IsVolatile); 9165 9166 // Don't try to optimize volatile. 9167 if (IsVolatile) 9168 return UnableToLegalize; 9169 9170 if (MaxLen && KnownLen > MaxLen) 9171 return UnableToLegalize; 9172 9173 if (Opc == TargetOpcode::G_MEMCPY) { 9174 auto &MF = *MI.getParent()->getParent(); 9175 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 9176 bool OptSize = shouldLowerMemFuncForSize(MF); 9177 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 9178 return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 9179 IsVolatile); 9180 } 9181 if (Opc == TargetOpcode::G_MEMMOVE) 9182 return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 9183 if (Opc == TargetOpcode::G_MEMSET) 9184 return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 9185 return UnableToLegalize; 9186 } 9187