1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 67 GISelChangeObserver &Observer, 68 MachineIRBuilder &Builder) 69 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 70 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 71 MIRBuilder.setMF(MF); 72 MIRBuilder.setChangeObserver(Observer); 73 } 74 75 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 76 GISelChangeObserver &Observer, 77 MachineIRBuilder &B) 78 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 79 MIRBuilder.setMF(MF); 80 MIRBuilder.setChangeObserver(Observer); 81 } 82 LegalizerHelper::LegalizeResult 83 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 84 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 85 86 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 87 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 88 return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized 89 : UnableToLegalize; 90 auto Step = LI.getAction(MI, MRI); 91 switch (Step.Action) { 92 case Legal: 93 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 94 return AlreadyLegal; 95 case Libcall: 96 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 97 return libcall(MI); 98 case NarrowScalar: 99 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 100 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 101 case WidenScalar: 102 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 103 return widenScalar(MI, Step.TypeIdx, Step.NewType); 104 case Lower: 105 LLVM_DEBUG(dbgs() << ".. Lower\n"); 106 return lower(MI, Step.TypeIdx, Step.NewType); 107 case FewerElements: 108 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 109 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 110 case MoreElements: 111 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 112 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 113 case Custom: 114 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 115 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 116 : UnableToLegalize; 117 default: 118 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 119 return UnableToLegalize; 120 } 121 } 122 123 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 124 SmallVectorImpl<Register> &VRegs) { 125 for (int i = 0; i < NumParts; ++i) 126 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 127 MIRBuilder.buildUnmerge(VRegs, Reg); 128 } 129 130 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 131 LLT MainTy, LLT &LeftoverTy, 132 SmallVectorImpl<Register> &VRegs, 133 SmallVectorImpl<Register> &LeftoverRegs) { 134 assert(!LeftoverTy.isValid() && "this is an out argument"); 135 136 unsigned RegSize = RegTy.getSizeInBits(); 137 unsigned MainSize = MainTy.getSizeInBits(); 138 unsigned NumParts = RegSize / MainSize; 139 unsigned LeftoverSize = RegSize - NumParts * MainSize; 140 141 // Use an unmerge when possible. 142 if (LeftoverSize == 0) { 143 for (unsigned I = 0; I < NumParts; ++I) 144 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 145 MIRBuilder.buildUnmerge(VRegs, Reg); 146 return true; 147 } 148 149 if (MainTy.isVector()) { 150 unsigned EltSize = MainTy.getScalarSizeInBits(); 151 if (LeftoverSize % EltSize != 0) 152 return false; 153 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 154 } else { 155 LeftoverTy = LLT::scalar(LeftoverSize); 156 } 157 158 // For irregular sizes, extract the individual parts. 159 for (unsigned I = 0; I != NumParts; ++I) { 160 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 161 VRegs.push_back(NewReg); 162 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 163 } 164 165 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 166 Offset += LeftoverSize) { 167 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 168 LeftoverRegs.push_back(NewReg); 169 MIRBuilder.buildExtract(NewReg, Reg, Offset); 170 } 171 172 return true; 173 } 174 175 static LLT getGCDType(LLT OrigTy, LLT TargetTy) { 176 if (OrigTy.isVector() && TargetTy.isVector()) { 177 assert(OrigTy.getElementType() == TargetTy.getElementType()); 178 int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 179 TargetTy.getNumElements()); 180 return LLT::scalarOrVector(GCD, OrigTy.getElementType()); 181 } 182 183 if (OrigTy.isVector() && !TargetTy.isVector()) { 184 assert(OrigTy.getElementType() == TargetTy); 185 return TargetTy; 186 } 187 188 assert(!OrigTy.isVector() && !TargetTy.isVector()); 189 190 int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(), 191 TargetTy.getSizeInBits()); 192 return LLT::scalar(GCD); 193 } 194 195 void LegalizerHelper::insertParts(Register DstReg, 196 LLT ResultTy, LLT PartTy, 197 ArrayRef<Register> PartRegs, 198 LLT LeftoverTy, 199 ArrayRef<Register> LeftoverRegs) { 200 if (!LeftoverTy.isValid()) { 201 assert(LeftoverRegs.empty()); 202 203 if (!ResultTy.isVector()) { 204 MIRBuilder.buildMerge(DstReg, PartRegs); 205 return; 206 } 207 208 if (PartTy.isVector()) 209 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 210 else 211 MIRBuilder.buildBuildVector(DstReg, PartRegs); 212 return; 213 } 214 215 unsigned PartSize = PartTy.getSizeInBits(); 216 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 217 218 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 219 MIRBuilder.buildUndef(CurResultReg); 220 221 unsigned Offset = 0; 222 for (Register PartReg : PartRegs) { 223 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 224 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 225 CurResultReg = NewResultReg; 226 Offset += PartSize; 227 } 228 229 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 230 // Use the original output register for the final insert to avoid a copy. 231 Register NewResultReg = (I + 1 == E) ? 232 DstReg : MRI.createGenericVirtualRegister(ResultTy); 233 234 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 235 CurResultReg = NewResultReg; 236 Offset += LeftoverPartSize; 237 } 238 } 239 240 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 241 switch (Opcode) { 242 case TargetOpcode::G_SDIV: 243 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 244 switch (Size) { 245 case 32: 246 return RTLIB::SDIV_I32; 247 case 64: 248 return RTLIB::SDIV_I64; 249 case 128: 250 return RTLIB::SDIV_I128; 251 default: 252 llvm_unreachable("unexpected size"); 253 } 254 case TargetOpcode::G_UDIV: 255 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 256 switch (Size) { 257 case 32: 258 return RTLIB::UDIV_I32; 259 case 64: 260 return RTLIB::UDIV_I64; 261 case 128: 262 return RTLIB::UDIV_I128; 263 default: 264 llvm_unreachable("unexpected size"); 265 } 266 case TargetOpcode::G_SREM: 267 assert((Size == 32 || Size == 64) && "Unsupported size"); 268 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 269 case TargetOpcode::G_UREM: 270 assert((Size == 32 || Size == 64) && "Unsupported size"); 271 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 272 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 273 assert(Size == 32 && "Unsupported size"); 274 return RTLIB::CTLZ_I32; 275 case TargetOpcode::G_FADD: 276 assert((Size == 32 || Size == 64) && "Unsupported size"); 277 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 278 case TargetOpcode::G_FSUB: 279 assert((Size == 32 || Size == 64) && "Unsupported size"); 280 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 281 case TargetOpcode::G_FMUL: 282 assert((Size == 32 || Size == 64) && "Unsupported size"); 283 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 284 case TargetOpcode::G_FDIV: 285 assert((Size == 32 || Size == 64) && "Unsupported size"); 286 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 287 case TargetOpcode::G_FEXP: 288 assert((Size == 32 || Size == 64) && "Unsupported size"); 289 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 290 case TargetOpcode::G_FEXP2: 291 assert((Size == 32 || Size == 64) && "Unsupported size"); 292 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 293 case TargetOpcode::G_FREM: 294 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 295 case TargetOpcode::G_FPOW: 296 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 297 case TargetOpcode::G_FMA: 298 assert((Size == 32 || Size == 64) && "Unsupported size"); 299 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 300 case TargetOpcode::G_FSIN: 301 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 302 return Size == 128 ? RTLIB::SIN_F128 303 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 304 case TargetOpcode::G_FCOS: 305 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 306 return Size == 128 ? RTLIB::COS_F128 307 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 308 case TargetOpcode::G_FLOG10: 309 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 310 return Size == 128 ? RTLIB::LOG10_F128 311 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 312 case TargetOpcode::G_FLOG: 313 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 314 return Size == 128 ? RTLIB::LOG_F128 315 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 316 case TargetOpcode::G_FLOG2: 317 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 318 return Size == 128 ? RTLIB::LOG2_F128 319 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 320 case TargetOpcode::G_FCEIL: 321 assert((Size == 32 || Size == 64) && "Unsupported size"); 322 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 323 case TargetOpcode::G_FFLOOR: 324 assert((Size == 32 || Size == 64) && "Unsupported size"); 325 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 326 } 327 llvm_unreachable("Unknown libcall function"); 328 } 329 330 /// True if an instruction is in tail position in its caller. Intended for 331 /// legalizing libcalls as tail calls when possible. 332 static bool isLibCallInTailPosition(MachineInstr &MI) { 333 const Function &F = MI.getParent()->getParent()->getFunction(); 334 335 // Conservatively require the attributes of the call to match those of 336 // the return. Ignore NoAlias and NonNull because they don't affect the 337 // call sequence. 338 AttributeList CallerAttrs = F.getAttributes(); 339 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 340 .removeAttribute(Attribute::NoAlias) 341 .removeAttribute(Attribute::NonNull) 342 .hasAttributes()) 343 return false; 344 345 // It's not safe to eliminate the sign / zero extension of the return value. 346 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 347 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 348 return false; 349 350 // Only tail call if the following instruction is a standard return. 351 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 352 MachineInstr *Next = MI.getNextNode(); 353 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 354 return false; 355 356 return true; 357 } 358 359 LegalizerHelper::LegalizeResult 360 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 361 const CallLowering::ArgInfo &Result, 362 ArrayRef<CallLowering::ArgInfo> Args) { 363 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 364 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 365 const char *Name = TLI.getLibcallName(Libcall); 366 367 CallLowering::CallLoweringInfo Info; 368 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 369 Info.Callee = MachineOperand::CreateES(Name); 370 Info.OrigRet = Result; 371 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 372 if (!CLI.lowerCall(MIRBuilder, Info)) 373 return LegalizerHelper::UnableToLegalize; 374 375 return LegalizerHelper::Legalized; 376 } 377 378 // Useful for libcalls where all operands have the same type. 379 static LegalizerHelper::LegalizeResult 380 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 381 Type *OpType) { 382 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 383 384 SmallVector<CallLowering::ArgInfo, 3> Args; 385 for (unsigned i = 1; i < MI.getNumOperands(); i++) 386 Args.push_back({MI.getOperand(i).getReg(), OpType}); 387 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 388 Args); 389 } 390 391 LegalizerHelper::LegalizeResult 392 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 393 MachineInstr &MI) { 394 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 395 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 396 397 SmallVector<CallLowering::ArgInfo, 3> Args; 398 // Add all the args, except for the last which is an imm denoting 'tail'. 399 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 400 Register Reg = MI.getOperand(i).getReg(); 401 402 // Need derive an IR type for call lowering. 403 LLT OpLLT = MRI.getType(Reg); 404 Type *OpTy = nullptr; 405 if (OpLLT.isPointer()) 406 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 407 else 408 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 409 Args.push_back({Reg, OpTy}); 410 } 411 412 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 413 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 414 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 415 RTLIB::Libcall RTLibcall; 416 switch (ID) { 417 case Intrinsic::memcpy: 418 RTLibcall = RTLIB::MEMCPY; 419 break; 420 case Intrinsic::memset: 421 RTLibcall = RTLIB::MEMSET; 422 break; 423 case Intrinsic::memmove: 424 RTLibcall = RTLIB::MEMMOVE; 425 break; 426 default: 427 return LegalizerHelper::UnableToLegalize; 428 } 429 const char *Name = TLI.getLibcallName(RTLibcall); 430 431 MIRBuilder.setInstr(MI); 432 433 CallLowering::CallLoweringInfo Info; 434 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 435 Info.Callee = MachineOperand::CreateES(Name); 436 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 437 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 438 isLibCallInTailPosition(MI); 439 440 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 441 if (!CLI.lowerCall(MIRBuilder, Info)) 442 return LegalizerHelper::UnableToLegalize; 443 444 if (Info.LoweredTailCall) { 445 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 446 // We must have a return following the call to get past 447 // isLibCallInTailPosition. 448 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 449 "Expected instr following MI to be a return?"); 450 451 // We lowered a tail call, so the call is now the return from the block. 452 // Delete the old return. 453 MI.getNextNode()->eraseFromParent(); 454 } 455 456 return LegalizerHelper::Legalized; 457 } 458 459 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 460 Type *FromType) { 461 auto ToMVT = MVT::getVT(ToType); 462 auto FromMVT = MVT::getVT(FromType); 463 464 switch (Opcode) { 465 case TargetOpcode::G_FPEXT: 466 return RTLIB::getFPEXT(FromMVT, ToMVT); 467 case TargetOpcode::G_FPTRUNC: 468 return RTLIB::getFPROUND(FromMVT, ToMVT); 469 case TargetOpcode::G_FPTOSI: 470 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 471 case TargetOpcode::G_FPTOUI: 472 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 473 case TargetOpcode::G_SITOFP: 474 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 475 case TargetOpcode::G_UITOFP: 476 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 477 } 478 llvm_unreachable("Unsupported libcall function"); 479 } 480 481 static LegalizerHelper::LegalizeResult 482 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 483 Type *FromType) { 484 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 485 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 486 {{MI.getOperand(1).getReg(), FromType}}); 487 } 488 489 LegalizerHelper::LegalizeResult 490 LegalizerHelper::libcall(MachineInstr &MI) { 491 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 492 unsigned Size = LLTy.getSizeInBits(); 493 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 494 495 MIRBuilder.setInstr(MI); 496 497 switch (MI.getOpcode()) { 498 default: 499 return UnableToLegalize; 500 case TargetOpcode::G_SDIV: 501 case TargetOpcode::G_UDIV: 502 case TargetOpcode::G_SREM: 503 case TargetOpcode::G_UREM: 504 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 505 Type *HLTy = IntegerType::get(Ctx, Size); 506 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 507 if (Status != Legalized) 508 return Status; 509 break; 510 } 511 case TargetOpcode::G_FADD: 512 case TargetOpcode::G_FSUB: 513 case TargetOpcode::G_FMUL: 514 case TargetOpcode::G_FDIV: 515 case TargetOpcode::G_FMA: 516 case TargetOpcode::G_FPOW: 517 case TargetOpcode::G_FREM: 518 case TargetOpcode::G_FCOS: 519 case TargetOpcode::G_FSIN: 520 case TargetOpcode::G_FLOG10: 521 case TargetOpcode::G_FLOG: 522 case TargetOpcode::G_FLOG2: 523 case TargetOpcode::G_FEXP: 524 case TargetOpcode::G_FEXP2: 525 case TargetOpcode::G_FCEIL: 526 case TargetOpcode::G_FFLOOR: { 527 if (Size > 64) { 528 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 529 return UnableToLegalize; 530 } 531 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 532 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 533 if (Status != Legalized) 534 return Status; 535 break; 536 } 537 case TargetOpcode::G_FPEXT: { 538 // FIXME: Support other floating point types (half, fp128 etc) 539 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 540 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 541 if (ToSize != 64 || FromSize != 32) 542 return UnableToLegalize; 543 LegalizeResult Status = conversionLibcall( 544 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 545 if (Status != Legalized) 546 return Status; 547 break; 548 } 549 case TargetOpcode::G_FPTRUNC: { 550 // FIXME: Support other floating point types (half, fp128 etc) 551 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 552 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 553 if (ToSize != 32 || FromSize != 64) 554 return UnableToLegalize; 555 LegalizeResult Status = conversionLibcall( 556 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 557 if (Status != Legalized) 558 return Status; 559 break; 560 } 561 case TargetOpcode::G_FPTOSI: 562 case TargetOpcode::G_FPTOUI: { 563 // FIXME: Support other types 564 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 565 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 566 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 567 return UnableToLegalize; 568 LegalizeResult Status = conversionLibcall( 569 MI, MIRBuilder, 570 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 571 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 572 if (Status != Legalized) 573 return Status; 574 break; 575 } 576 case TargetOpcode::G_SITOFP: 577 case TargetOpcode::G_UITOFP: { 578 // FIXME: Support other types 579 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 580 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 581 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 582 return UnableToLegalize; 583 LegalizeResult Status = conversionLibcall( 584 MI, MIRBuilder, 585 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 586 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 587 if (Status != Legalized) 588 return Status; 589 break; 590 } 591 } 592 593 MI.eraseFromParent(); 594 return Legalized; 595 } 596 597 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 598 unsigned TypeIdx, 599 LLT NarrowTy) { 600 MIRBuilder.setInstr(MI); 601 602 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 603 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 604 605 switch (MI.getOpcode()) { 606 default: 607 return UnableToLegalize; 608 case TargetOpcode::G_IMPLICIT_DEF: { 609 // FIXME: add support for when SizeOp0 isn't an exact multiple of 610 // NarrowSize. 611 if (SizeOp0 % NarrowSize != 0) 612 return UnableToLegalize; 613 int NumParts = SizeOp0 / NarrowSize; 614 615 SmallVector<Register, 2> DstRegs; 616 for (int i = 0; i < NumParts; ++i) 617 DstRegs.push_back( 618 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 619 620 Register DstReg = MI.getOperand(0).getReg(); 621 if(MRI.getType(DstReg).isVector()) 622 MIRBuilder.buildBuildVector(DstReg, DstRegs); 623 else 624 MIRBuilder.buildMerge(DstReg, DstRegs); 625 MI.eraseFromParent(); 626 return Legalized; 627 } 628 case TargetOpcode::G_CONSTANT: { 629 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 630 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 631 unsigned TotalSize = Ty.getSizeInBits(); 632 unsigned NarrowSize = NarrowTy.getSizeInBits(); 633 int NumParts = TotalSize / NarrowSize; 634 635 SmallVector<Register, 4> PartRegs; 636 for (int I = 0; I != NumParts; ++I) { 637 unsigned Offset = I * NarrowSize; 638 auto K = MIRBuilder.buildConstant(NarrowTy, 639 Val.lshr(Offset).trunc(NarrowSize)); 640 PartRegs.push_back(K.getReg(0)); 641 } 642 643 LLT LeftoverTy; 644 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 645 SmallVector<Register, 1> LeftoverRegs; 646 if (LeftoverBits != 0) { 647 LeftoverTy = LLT::scalar(LeftoverBits); 648 auto K = MIRBuilder.buildConstant( 649 LeftoverTy, 650 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 651 LeftoverRegs.push_back(K.getReg(0)); 652 } 653 654 insertParts(MI.getOperand(0).getReg(), 655 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 656 657 MI.eraseFromParent(); 658 return Legalized; 659 } 660 case TargetOpcode::G_SEXT: { 661 if (TypeIdx != 0) 662 return UnableToLegalize; 663 664 Register SrcReg = MI.getOperand(1).getReg(); 665 LLT SrcTy = MRI.getType(SrcReg); 666 667 // FIXME: support the general case where the requested NarrowTy may not be 668 // the same as the source type. E.g. s128 = sext(s32) 669 if ((SrcTy.getSizeInBits() != SizeOp0 / 2) || 670 SrcTy.getSizeInBits() != NarrowTy.getSizeInBits()) { 671 LLVM_DEBUG(dbgs() << "Can't narrow sext to type " << NarrowTy << "\n"); 672 return UnableToLegalize; 673 } 674 675 // Shift the sign bit of the low register through the high register. 676 auto ShiftAmt = 677 MIRBuilder.buildConstant(LLT::scalar(64), NarrowTy.getSizeInBits() - 1); 678 auto Shift = MIRBuilder.buildAShr(NarrowTy, SrcReg, ShiftAmt); 679 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {SrcReg, Shift.getReg(0)}); 680 MI.eraseFromParent(); 681 return Legalized; 682 } 683 case TargetOpcode::G_ZEXT: { 684 if (TypeIdx != 0) 685 return UnableToLegalize; 686 687 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 688 uint64_t SizeOp1 = SrcTy.getSizeInBits(); 689 if (SizeOp0 % SizeOp1 != 0) 690 return UnableToLegalize; 691 692 // Generate a merge where the bottom bits are taken from the source, and 693 // zero everything else. 694 Register ZeroReg = MIRBuilder.buildConstant(SrcTy, 0).getReg(0); 695 unsigned NumParts = SizeOp0 / SizeOp1; 696 SmallVector<Register, 4> Srcs = {MI.getOperand(1).getReg()}; 697 for (unsigned Part = 1; Part < NumParts; ++Part) 698 Srcs.push_back(ZeroReg); 699 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Srcs); 700 MI.eraseFromParent(); 701 return Legalized; 702 } 703 case TargetOpcode::G_TRUNC: { 704 if (TypeIdx != 1) 705 return UnableToLegalize; 706 707 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 708 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 709 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 710 return UnableToLegalize; 711 } 712 713 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); 714 MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Unmerge.getReg(0)); 715 MI.eraseFromParent(); 716 return Legalized; 717 } 718 719 case TargetOpcode::G_ADD: { 720 // FIXME: add support for when SizeOp0 isn't an exact multiple of 721 // NarrowSize. 722 if (SizeOp0 % NarrowSize != 0) 723 return UnableToLegalize; 724 // Expand in terms of carry-setting/consuming G_ADDE instructions. 725 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 726 727 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 728 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 729 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 730 731 Register CarryIn; 732 for (int i = 0; i < NumParts; ++i) { 733 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 734 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 735 736 if (i == 0) 737 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 738 else { 739 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 740 Src2Regs[i], CarryIn); 741 } 742 743 DstRegs.push_back(DstReg); 744 CarryIn = CarryOut; 745 } 746 Register DstReg = MI.getOperand(0).getReg(); 747 if(MRI.getType(DstReg).isVector()) 748 MIRBuilder.buildBuildVector(DstReg, DstRegs); 749 else 750 MIRBuilder.buildMerge(DstReg, DstRegs); 751 MI.eraseFromParent(); 752 return Legalized; 753 } 754 case TargetOpcode::G_SUB: { 755 // FIXME: add support for when SizeOp0 isn't an exact multiple of 756 // NarrowSize. 757 if (SizeOp0 % NarrowSize != 0) 758 return UnableToLegalize; 759 760 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 761 762 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 763 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 764 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 765 766 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 767 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 768 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 769 {Src1Regs[0], Src2Regs[0]}); 770 DstRegs.push_back(DstReg); 771 Register BorrowIn = BorrowOut; 772 for (int i = 1; i < NumParts; ++i) { 773 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 774 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 775 776 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 777 {Src1Regs[i], Src2Regs[i], BorrowIn}); 778 779 DstRegs.push_back(DstReg); 780 BorrowIn = BorrowOut; 781 } 782 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 783 MI.eraseFromParent(); 784 return Legalized; 785 } 786 case TargetOpcode::G_MUL: 787 case TargetOpcode::G_UMULH: 788 return narrowScalarMul(MI, NarrowTy); 789 case TargetOpcode::G_EXTRACT: 790 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 791 case TargetOpcode::G_INSERT: 792 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 793 case TargetOpcode::G_LOAD: { 794 const auto &MMO = **MI.memoperands_begin(); 795 Register DstReg = MI.getOperand(0).getReg(); 796 LLT DstTy = MRI.getType(DstReg); 797 if (DstTy.isVector()) 798 return UnableToLegalize; 799 800 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 801 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 802 auto &MMO = **MI.memoperands_begin(); 803 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); 804 MIRBuilder.buildAnyExt(DstReg, TmpReg); 805 MI.eraseFromParent(); 806 return Legalized; 807 } 808 809 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 810 } 811 case TargetOpcode::G_ZEXTLOAD: 812 case TargetOpcode::G_SEXTLOAD: { 813 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 814 Register DstReg = MI.getOperand(0).getReg(); 815 Register PtrReg = MI.getOperand(1).getReg(); 816 817 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 818 auto &MMO = **MI.memoperands_begin(); 819 if (MMO.getSizeInBits() == NarrowSize) { 820 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 821 } else { 822 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 823 : TargetOpcode::G_SEXTLOAD; 824 MIRBuilder.buildInstr(ExtLoad) 825 .addDef(TmpReg) 826 .addUse(PtrReg) 827 .addMemOperand(&MMO); 828 } 829 830 if (ZExt) 831 MIRBuilder.buildZExt(DstReg, TmpReg); 832 else 833 MIRBuilder.buildSExt(DstReg, TmpReg); 834 835 MI.eraseFromParent(); 836 return Legalized; 837 } 838 case TargetOpcode::G_STORE: { 839 const auto &MMO = **MI.memoperands_begin(); 840 841 Register SrcReg = MI.getOperand(0).getReg(); 842 LLT SrcTy = MRI.getType(SrcReg); 843 if (SrcTy.isVector()) 844 return UnableToLegalize; 845 846 int NumParts = SizeOp0 / NarrowSize; 847 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 848 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 849 if (SrcTy.isVector() && LeftoverBits != 0) 850 return UnableToLegalize; 851 852 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 853 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 854 auto &MMO = **MI.memoperands_begin(); 855 MIRBuilder.buildTrunc(TmpReg, SrcReg); 856 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); 857 MI.eraseFromParent(); 858 return Legalized; 859 } 860 861 return reduceLoadStoreWidth(MI, 0, NarrowTy); 862 } 863 case TargetOpcode::G_SELECT: 864 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 865 case TargetOpcode::G_AND: 866 case TargetOpcode::G_OR: 867 case TargetOpcode::G_XOR: { 868 // Legalize bitwise operation: 869 // A = BinOp<Ty> B, C 870 // into: 871 // B1, ..., BN = G_UNMERGE_VALUES B 872 // C1, ..., CN = G_UNMERGE_VALUES C 873 // A1 = BinOp<Ty/N> B1, C2 874 // ... 875 // AN = BinOp<Ty/N> BN, CN 876 // A = G_MERGE_VALUES A1, ..., AN 877 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 878 } 879 case TargetOpcode::G_SHL: 880 case TargetOpcode::G_LSHR: 881 case TargetOpcode::G_ASHR: 882 return narrowScalarShift(MI, TypeIdx, NarrowTy); 883 case TargetOpcode::G_CTLZ: 884 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 885 case TargetOpcode::G_CTTZ: 886 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 887 case TargetOpcode::G_CTPOP: 888 if (TypeIdx != 0) 889 return UnableToLegalize; // TODO 890 891 Observer.changingInstr(MI); 892 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 893 Observer.changedInstr(MI); 894 return Legalized; 895 case TargetOpcode::G_INTTOPTR: 896 if (TypeIdx != 1) 897 return UnableToLegalize; 898 899 Observer.changingInstr(MI); 900 narrowScalarSrc(MI, NarrowTy, 1); 901 Observer.changedInstr(MI); 902 return Legalized; 903 case TargetOpcode::G_PTRTOINT: 904 if (TypeIdx != 0) 905 return UnableToLegalize; 906 907 Observer.changingInstr(MI); 908 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 909 Observer.changedInstr(MI); 910 return Legalized; 911 case TargetOpcode::G_PHI: { 912 unsigned NumParts = SizeOp0 / NarrowSize; 913 SmallVector<Register, 2> DstRegs; 914 SmallVector<SmallVector<Register, 2>, 2> SrcRegs; 915 DstRegs.resize(NumParts); 916 SrcRegs.resize(MI.getNumOperands() / 2); 917 Observer.changingInstr(MI); 918 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 919 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 920 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 921 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 922 SrcRegs[i / 2]); 923 } 924 MachineBasicBlock &MBB = *MI.getParent(); 925 MIRBuilder.setInsertPt(MBB, MI); 926 for (unsigned i = 0; i < NumParts; ++i) { 927 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 928 MachineInstrBuilder MIB = 929 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 930 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 931 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 932 } 933 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 934 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 935 Observer.changedInstr(MI); 936 MI.eraseFromParent(); 937 return Legalized; 938 } 939 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 940 case TargetOpcode::G_INSERT_VECTOR_ELT: { 941 if (TypeIdx != 2) 942 return UnableToLegalize; 943 944 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 945 Observer.changingInstr(MI); 946 narrowScalarSrc(MI, NarrowTy, OpIdx); 947 Observer.changedInstr(MI); 948 return Legalized; 949 } 950 case TargetOpcode::G_ICMP: { 951 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 952 if (NarrowSize * 2 != SrcSize) 953 return UnableToLegalize; 954 955 Observer.changingInstr(MI); 956 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 957 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 958 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2).getReg()); 959 960 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 961 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 962 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3).getReg()); 963 964 CmpInst::Predicate Pred = 965 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 966 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 967 968 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 969 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 970 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 971 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 972 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 973 MIRBuilder.buildICmp(Pred, MI.getOperand(0).getReg(), Or, Zero); 974 } else { 975 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 976 MachineInstrBuilder CmpHEQ = 977 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 978 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 979 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 980 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), CmpHEQ, CmpLU, CmpH); 981 } 982 Observer.changedInstr(MI); 983 MI.eraseFromParent(); 984 return Legalized; 985 } 986 case TargetOpcode::G_SEXT_INREG: { 987 if (TypeIdx != 0) 988 return UnableToLegalize; 989 990 if (!MI.getOperand(2).isImm()) 991 return UnableToLegalize; 992 int64_t SizeInBits = MI.getOperand(2).getImm(); 993 994 // So long as the new type has more bits than the bits we're extending we 995 // don't need to break it apart. 996 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 997 Observer.changingInstr(MI); 998 // We don't lose any non-extension bits by truncating the src and 999 // sign-extending the dst. 1000 MachineOperand &MO1 = MI.getOperand(1); 1001 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1.getReg()); 1002 MO1.setReg(TruncMIB->getOperand(0).getReg()); 1003 1004 MachineOperand &MO2 = MI.getOperand(0); 1005 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1006 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1007 MIRBuilder.buildInstr(TargetOpcode::G_SEXT, {MO2.getReg()}, {DstExt}); 1008 MO2.setReg(DstExt); 1009 Observer.changedInstr(MI); 1010 return Legalized; 1011 } 1012 1013 // Break it apart. Components below the extension point are unmodified. The 1014 // component containing the extension point becomes a narrower SEXT_INREG. 1015 // Components above it are ashr'd from the component containing the 1016 // extension point. 1017 if (SizeOp0 % NarrowSize != 0) 1018 return UnableToLegalize; 1019 int NumParts = SizeOp0 / NarrowSize; 1020 1021 // List the registers where the destination will be scattered. 1022 SmallVector<Register, 2> DstRegs; 1023 // List the registers where the source will be split. 1024 SmallVector<Register, 2> SrcRegs; 1025 1026 // Create all the temporary registers. 1027 for (int i = 0; i < NumParts; ++i) { 1028 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1029 1030 SrcRegs.push_back(SrcReg); 1031 } 1032 1033 // Explode the big arguments into smaller chunks. 1034 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1).getReg()); 1035 1036 Register AshrCstReg = 1037 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1038 ->getOperand(0) 1039 .getReg(); 1040 Register FullExtensionReg = 0; 1041 Register PartialExtensionReg = 0; 1042 1043 // Do the operation on each small part. 1044 for (int i = 0; i < NumParts; ++i) { 1045 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1046 DstRegs.push_back(SrcRegs[i]); 1047 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1048 assert(PartialExtensionReg && 1049 "Expected to visit partial extension before full"); 1050 if (FullExtensionReg) { 1051 DstRegs.push_back(FullExtensionReg); 1052 continue; 1053 } 1054 DstRegs.push_back(MIRBuilder 1055 .buildInstr(TargetOpcode::G_ASHR, {NarrowTy}, 1056 {PartialExtensionReg, AshrCstReg}) 1057 ->getOperand(0) 1058 .getReg()); 1059 FullExtensionReg = DstRegs.back(); 1060 } else { 1061 DstRegs.push_back( 1062 MIRBuilder 1063 .buildInstr( 1064 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1065 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1066 ->getOperand(0) 1067 .getReg()); 1068 PartialExtensionReg = DstRegs.back(); 1069 } 1070 } 1071 1072 // Gather the destination registers into the final destination. 1073 Register DstReg = MI.getOperand(0).getReg(); 1074 MIRBuilder.buildMerge(DstReg, DstRegs); 1075 MI.eraseFromParent(); 1076 return Legalized; 1077 } 1078 } 1079 } 1080 1081 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1082 unsigned OpIdx, unsigned ExtOpcode) { 1083 MachineOperand &MO = MI.getOperand(OpIdx); 1084 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 1085 MO.setReg(ExtB->getOperand(0).getReg()); 1086 } 1087 1088 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1089 unsigned OpIdx) { 1090 MachineOperand &MO = MI.getOperand(OpIdx); 1091 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 1092 {MO.getReg()}); 1093 MO.setReg(ExtB->getOperand(0).getReg()); 1094 } 1095 1096 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1097 unsigned OpIdx, unsigned TruncOpcode) { 1098 MachineOperand &MO = MI.getOperand(OpIdx); 1099 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1100 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1101 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 1102 MO.setReg(DstExt); 1103 } 1104 1105 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1106 unsigned OpIdx, unsigned ExtOpcode) { 1107 MachineOperand &MO = MI.getOperand(OpIdx); 1108 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1109 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1110 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); 1111 MO.setReg(DstTrunc); 1112 } 1113 1114 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1115 unsigned OpIdx) { 1116 MachineOperand &MO = MI.getOperand(OpIdx); 1117 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1118 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1119 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); 1120 MO.setReg(DstExt); 1121 } 1122 1123 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1124 unsigned OpIdx) { 1125 MachineOperand &MO = MI.getOperand(OpIdx); 1126 1127 LLT OldTy = MRI.getType(MO.getReg()); 1128 unsigned OldElts = OldTy.getNumElements(); 1129 unsigned NewElts = MoreTy.getNumElements(); 1130 1131 unsigned NumParts = NewElts / OldElts; 1132 1133 // Use concat_vectors if the result is a multiple of the number of elements. 1134 if (NumParts * OldElts == NewElts) { 1135 SmallVector<Register, 8> Parts; 1136 Parts.push_back(MO.getReg()); 1137 1138 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1139 for (unsigned I = 1; I != NumParts; ++I) 1140 Parts.push_back(ImpDef); 1141 1142 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1143 MO.setReg(Concat.getReg(0)); 1144 return; 1145 } 1146 1147 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1148 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1149 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1150 MO.setReg(MoreReg); 1151 } 1152 1153 LegalizerHelper::LegalizeResult 1154 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1155 LLT WideTy) { 1156 if (TypeIdx != 1) 1157 return UnableToLegalize; 1158 1159 Register DstReg = MI.getOperand(0).getReg(); 1160 LLT DstTy = MRI.getType(DstReg); 1161 if (DstTy.isVector()) 1162 return UnableToLegalize; 1163 1164 Register Src1 = MI.getOperand(1).getReg(); 1165 LLT SrcTy = MRI.getType(Src1); 1166 const int DstSize = DstTy.getSizeInBits(); 1167 const int SrcSize = SrcTy.getSizeInBits(); 1168 const int WideSize = WideTy.getSizeInBits(); 1169 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1170 1171 unsigned NumOps = MI.getNumOperands(); 1172 unsigned NumSrc = MI.getNumOperands() - 1; 1173 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1174 1175 if (WideSize >= DstSize) { 1176 // Directly pack the bits in the target type. 1177 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1178 1179 for (unsigned I = 2; I != NumOps; ++I) { 1180 const unsigned Offset = (I - 1) * PartSize; 1181 1182 Register SrcReg = MI.getOperand(I).getReg(); 1183 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1184 1185 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1186 1187 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1188 MRI.createGenericVirtualRegister(WideTy); 1189 1190 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1191 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1192 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1193 ResultReg = NextResult; 1194 } 1195 1196 if (WideSize > DstSize) 1197 MIRBuilder.buildTrunc(DstReg, ResultReg); 1198 else if (DstTy.isPointer()) 1199 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1200 1201 MI.eraseFromParent(); 1202 return Legalized; 1203 } 1204 1205 // Unmerge the original values to the GCD type, and recombine to the next 1206 // multiple greater than the original type. 1207 // 1208 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1209 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1210 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1211 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1212 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1213 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1214 // %12:_(s12) = G_MERGE_VALUES %10, %11 1215 // 1216 // Padding with undef if necessary: 1217 // 1218 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1219 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1220 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1221 // %7:_(s2) = G_IMPLICIT_DEF 1222 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1223 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1224 // %10:_(s12) = G_MERGE_VALUES %8, %9 1225 1226 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1227 LLT GCDTy = LLT::scalar(GCD); 1228 1229 SmallVector<Register, 8> Parts; 1230 SmallVector<Register, 8> NewMergeRegs; 1231 SmallVector<Register, 8> Unmerges; 1232 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1233 1234 // Decompose the original operands if they don't evenly divide. 1235 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1236 Register SrcReg = MI.getOperand(I).getReg(); 1237 if (GCD == SrcSize) { 1238 Unmerges.push_back(SrcReg); 1239 } else { 1240 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1241 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1242 Unmerges.push_back(Unmerge.getReg(J)); 1243 } 1244 } 1245 1246 // Pad with undef to the next size that is a multiple of the requested size. 1247 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1248 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1249 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1250 Unmerges.push_back(UndefReg); 1251 } 1252 1253 const int PartsPerGCD = WideSize / GCD; 1254 1255 // Build merges of each piece. 1256 ArrayRef<Register> Slicer(Unmerges); 1257 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1258 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1259 NewMergeRegs.push_back(Merge.getReg(0)); 1260 } 1261 1262 // A truncate may be necessary if the requested type doesn't evenly divide the 1263 // original result type. 1264 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1265 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1266 } else { 1267 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1268 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1269 } 1270 1271 MI.eraseFromParent(); 1272 return Legalized; 1273 } 1274 1275 LegalizerHelper::LegalizeResult 1276 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1277 LLT WideTy) { 1278 if (TypeIdx != 0) 1279 return UnableToLegalize; 1280 1281 unsigned NumDst = MI.getNumOperands() - 1; 1282 Register SrcReg = MI.getOperand(NumDst).getReg(); 1283 LLT SrcTy = MRI.getType(SrcReg); 1284 if (!SrcTy.isScalar()) 1285 return UnableToLegalize; 1286 1287 Register Dst0Reg = MI.getOperand(0).getReg(); 1288 LLT DstTy = MRI.getType(Dst0Reg); 1289 if (!DstTy.isScalar()) 1290 return UnableToLegalize; 1291 1292 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 1293 LLT NewSrcTy = LLT::scalar(NewSrcSize); 1294 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 1295 1296 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 1297 1298 for (unsigned I = 1; I != NumDst; ++I) { 1299 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 1300 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 1301 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 1302 } 1303 1304 Observer.changingInstr(MI); 1305 1306 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 1307 for (unsigned I = 0; I != NumDst; ++I) 1308 widenScalarDst(MI, WideTy, I); 1309 1310 Observer.changedInstr(MI); 1311 1312 return Legalized; 1313 } 1314 1315 LegalizerHelper::LegalizeResult 1316 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1317 LLT WideTy) { 1318 Register DstReg = MI.getOperand(0).getReg(); 1319 Register SrcReg = MI.getOperand(1).getReg(); 1320 LLT SrcTy = MRI.getType(SrcReg); 1321 1322 LLT DstTy = MRI.getType(DstReg); 1323 unsigned Offset = MI.getOperand(2).getImm(); 1324 1325 if (TypeIdx == 0) { 1326 if (SrcTy.isVector() || DstTy.isVector()) 1327 return UnableToLegalize; 1328 1329 SrcOp Src(SrcReg); 1330 if (SrcTy.isPointer()) { 1331 // Extracts from pointers can be handled only if they are really just 1332 // simple integers. 1333 const DataLayout &DL = MIRBuilder.getDataLayout(); 1334 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1335 return UnableToLegalize; 1336 1337 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1338 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1339 SrcTy = SrcAsIntTy; 1340 } 1341 1342 if (DstTy.isPointer()) 1343 return UnableToLegalize; 1344 1345 if (Offset == 0) { 1346 // Avoid a shift in the degenerate case. 1347 MIRBuilder.buildTrunc(DstReg, 1348 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1349 MI.eraseFromParent(); 1350 return Legalized; 1351 } 1352 1353 // Do a shift in the source type. 1354 LLT ShiftTy = SrcTy; 1355 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1356 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1357 ShiftTy = WideTy; 1358 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1359 return UnableToLegalize; 1360 1361 auto LShr = MIRBuilder.buildLShr( 1362 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1363 MIRBuilder.buildTrunc(DstReg, LShr); 1364 MI.eraseFromParent(); 1365 return Legalized; 1366 } 1367 1368 if (SrcTy.isScalar()) { 1369 Observer.changingInstr(MI); 1370 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1371 Observer.changedInstr(MI); 1372 return Legalized; 1373 } 1374 1375 if (!SrcTy.isVector()) 1376 return UnableToLegalize; 1377 1378 if (DstTy != SrcTy.getElementType()) 1379 return UnableToLegalize; 1380 1381 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1382 return UnableToLegalize; 1383 1384 Observer.changingInstr(MI); 1385 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1386 1387 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1388 Offset); 1389 widenScalarDst(MI, WideTy.getScalarType(), 0); 1390 Observer.changedInstr(MI); 1391 return Legalized; 1392 } 1393 1394 LegalizerHelper::LegalizeResult 1395 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1396 LLT WideTy) { 1397 if (TypeIdx != 0) 1398 return UnableToLegalize; 1399 Observer.changingInstr(MI); 1400 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1401 widenScalarDst(MI, WideTy); 1402 Observer.changedInstr(MI); 1403 return Legalized; 1404 } 1405 1406 LegalizerHelper::LegalizeResult 1407 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1408 MIRBuilder.setInstr(MI); 1409 1410 switch (MI.getOpcode()) { 1411 default: 1412 return UnableToLegalize; 1413 case TargetOpcode::G_EXTRACT: 1414 return widenScalarExtract(MI, TypeIdx, WideTy); 1415 case TargetOpcode::G_INSERT: 1416 return widenScalarInsert(MI, TypeIdx, WideTy); 1417 case TargetOpcode::G_MERGE_VALUES: 1418 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1419 case TargetOpcode::G_UNMERGE_VALUES: 1420 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1421 case TargetOpcode::G_UADDO: 1422 case TargetOpcode::G_USUBO: { 1423 if (TypeIdx == 1) 1424 return UnableToLegalize; // TODO 1425 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1426 {MI.getOperand(2).getReg()}); 1427 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1428 {MI.getOperand(3).getReg()}); 1429 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1430 ? TargetOpcode::G_ADD 1431 : TargetOpcode::G_SUB; 1432 // Do the arithmetic in the larger type. 1433 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1434 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1435 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 1436 auto AndOp = MIRBuilder.buildInstr( 1437 TargetOpcode::G_AND, {WideTy}, 1438 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 1439 // There is no overflow if the AndOp is the same as NewOp. 1440 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 1441 AndOp); 1442 // Now trunc the NewOp to the original result. 1443 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 1444 MI.eraseFromParent(); 1445 return Legalized; 1446 } 1447 case TargetOpcode::G_CTTZ: 1448 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1449 case TargetOpcode::G_CTLZ: 1450 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1451 case TargetOpcode::G_CTPOP: { 1452 if (TypeIdx == 0) { 1453 Observer.changingInstr(MI); 1454 widenScalarDst(MI, WideTy, 0); 1455 Observer.changedInstr(MI); 1456 return Legalized; 1457 } 1458 1459 Register SrcReg = MI.getOperand(1).getReg(); 1460 1461 // First ZEXT the input. 1462 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1463 LLT CurTy = MRI.getType(SrcReg); 1464 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1465 // The count is the same in the larger type except if the original 1466 // value was zero. This can be handled by setting the bit just off 1467 // the top of the original type. 1468 auto TopBit = 1469 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1470 MIBSrc = MIRBuilder.buildOr( 1471 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1472 } 1473 1474 // Perform the operation at the larger size. 1475 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1476 // This is already the correct result for CTPOP and CTTZs 1477 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1478 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1479 // The correct result is NewOp - (Difference in widety and current ty). 1480 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1481 MIBNewOp = MIRBuilder.buildInstr( 1482 TargetOpcode::G_SUB, {WideTy}, 1483 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 1484 } 1485 1486 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1487 MI.eraseFromParent(); 1488 return Legalized; 1489 } 1490 case TargetOpcode::G_BSWAP: { 1491 Observer.changingInstr(MI); 1492 Register DstReg = MI.getOperand(0).getReg(); 1493 1494 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1495 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1496 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1497 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1498 1499 MI.getOperand(0).setReg(DstExt); 1500 1501 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1502 1503 LLT Ty = MRI.getType(DstReg); 1504 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1505 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1506 MIRBuilder.buildInstr(TargetOpcode::G_LSHR) 1507 .addDef(ShrReg) 1508 .addUse(DstExt) 1509 .addUse(ShiftAmtReg); 1510 1511 MIRBuilder.buildTrunc(DstReg, ShrReg); 1512 Observer.changedInstr(MI); 1513 return Legalized; 1514 } 1515 case TargetOpcode::G_BITREVERSE: { 1516 Observer.changingInstr(MI); 1517 1518 Register DstReg = MI.getOperand(0).getReg(); 1519 LLT Ty = MRI.getType(DstReg); 1520 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1521 1522 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1523 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1524 MI.getOperand(0).setReg(DstExt); 1525 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1526 1527 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1528 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1529 MIRBuilder.buildTrunc(DstReg, Shift); 1530 Observer.changedInstr(MI); 1531 return Legalized; 1532 } 1533 case TargetOpcode::G_ADD: 1534 case TargetOpcode::G_AND: 1535 case TargetOpcode::G_MUL: 1536 case TargetOpcode::G_OR: 1537 case TargetOpcode::G_XOR: 1538 case TargetOpcode::G_SUB: 1539 // Perform operation at larger width (any extension is fines here, high bits 1540 // don't affect the result) and then truncate the result back to the 1541 // original type. 1542 Observer.changingInstr(MI); 1543 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1544 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1545 widenScalarDst(MI, WideTy); 1546 Observer.changedInstr(MI); 1547 return Legalized; 1548 1549 case TargetOpcode::G_SHL: 1550 Observer.changingInstr(MI); 1551 1552 if (TypeIdx == 0) { 1553 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1554 widenScalarDst(MI, WideTy); 1555 } else { 1556 assert(TypeIdx == 1); 1557 // The "number of bits to shift" operand must preserve its value as an 1558 // unsigned integer: 1559 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1560 } 1561 1562 Observer.changedInstr(MI); 1563 return Legalized; 1564 1565 case TargetOpcode::G_SDIV: 1566 case TargetOpcode::G_SREM: 1567 case TargetOpcode::G_SMIN: 1568 case TargetOpcode::G_SMAX: 1569 Observer.changingInstr(MI); 1570 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1571 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1572 widenScalarDst(MI, WideTy); 1573 Observer.changedInstr(MI); 1574 return Legalized; 1575 1576 case TargetOpcode::G_ASHR: 1577 case TargetOpcode::G_LSHR: 1578 Observer.changingInstr(MI); 1579 1580 if (TypeIdx == 0) { 1581 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1582 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1583 1584 widenScalarSrc(MI, WideTy, 1, CvtOp); 1585 widenScalarDst(MI, WideTy); 1586 } else { 1587 assert(TypeIdx == 1); 1588 // The "number of bits to shift" operand must preserve its value as an 1589 // unsigned integer: 1590 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1591 } 1592 1593 Observer.changedInstr(MI); 1594 return Legalized; 1595 case TargetOpcode::G_UDIV: 1596 case TargetOpcode::G_UREM: 1597 case TargetOpcode::G_UMIN: 1598 case TargetOpcode::G_UMAX: 1599 Observer.changingInstr(MI); 1600 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1601 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1602 widenScalarDst(MI, WideTy); 1603 Observer.changedInstr(MI); 1604 return Legalized; 1605 1606 case TargetOpcode::G_SELECT: 1607 Observer.changingInstr(MI); 1608 if (TypeIdx == 0) { 1609 // Perform operation at larger width (any extension is fine here, high 1610 // bits don't affect the result) and then truncate the result back to the 1611 // original type. 1612 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1613 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1614 widenScalarDst(MI, WideTy); 1615 } else { 1616 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1617 // Explicit extension is required here since high bits affect the result. 1618 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1619 } 1620 Observer.changedInstr(MI); 1621 return Legalized; 1622 1623 case TargetOpcode::G_FPTOSI: 1624 case TargetOpcode::G_FPTOUI: 1625 Observer.changingInstr(MI); 1626 1627 if (TypeIdx == 0) 1628 widenScalarDst(MI, WideTy); 1629 else 1630 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1631 1632 Observer.changedInstr(MI); 1633 return Legalized; 1634 case TargetOpcode::G_SITOFP: 1635 if (TypeIdx != 1) 1636 return UnableToLegalize; 1637 Observer.changingInstr(MI); 1638 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1639 Observer.changedInstr(MI); 1640 return Legalized; 1641 1642 case TargetOpcode::G_UITOFP: 1643 if (TypeIdx != 1) 1644 return UnableToLegalize; 1645 Observer.changingInstr(MI); 1646 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1647 Observer.changedInstr(MI); 1648 return Legalized; 1649 1650 case TargetOpcode::G_LOAD: 1651 case TargetOpcode::G_SEXTLOAD: 1652 case TargetOpcode::G_ZEXTLOAD: 1653 Observer.changingInstr(MI); 1654 widenScalarDst(MI, WideTy); 1655 Observer.changedInstr(MI); 1656 return Legalized; 1657 1658 case TargetOpcode::G_STORE: { 1659 if (TypeIdx != 0) 1660 return UnableToLegalize; 1661 1662 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1663 if (!isPowerOf2_32(Ty.getSizeInBits())) 1664 return UnableToLegalize; 1665 1666 Observer.changingInstr(MI); 1667 1668 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1669 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1670 widenScalarSrc(MI, WideTy, 0, ExtType); 1671 1672 Observer.changedInstr(MI); 1673 return Legalized; 1674 } 1675 case TargetOpcode::G_CONSTANT: { 1676 MachineOperand &SrcMO = MI.getOperand(1); 1677 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1678 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); 1679 Observer.changingInstr(MI); 1680 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1681 1682 widenScalarDst(MI, WideTy); 1683 Observer.changedInstr(MI); 1684 return Legalized; 1685 } 1686 case TargetOpcode::G_FCONSTANT: { 1687 MachineOperand &SrcMO = MI.getOperand(1); 1688 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1689 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1690 bool LosesInfo; 1691 switch (WideTy.getSizeInBits()) { 1692 case 32: 1693 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1694 &LosesInfo); 1695 break; 1696 case 64: 1697 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1698 &LosesInfo); 1699 break; 1700 default: 1701 return UnableToLegalize; 1702 } 1703 1704 assert(!LosesInfo && "extend should always be lossless"); 1705 1706 Observer.changingInstr(MI); 1707 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1708 1709 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1710 Observer.changedInstr(MI); 1711 return Legalized; 1712 } 1713 case TargetOpcode::G_IMPLICIT_DEF: { 1714 Observer.changingInstr(MI); 1715 widenScalarDst(MI, WideTy); 1716 Observer.changedInstr(MI); 1717 return Legalized; 1718 } 1719 case TargetOpcode::G_BRCOND: 1720 Observer.changingInstr(MI); 1721 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1722 Observer.changedInstr(MI); 1723 return Legalized; 1724 1725 case TargetOpcode::G_FCMP: 1726 Observer.changingInstr(MI); 1727 if (TypeIdx == 0) 1728 widenScalarDst(MI, WideTy); 1729 else { 1730 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1731 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1732 } 1733 Observer.changedInstr(MI); 1734 return Legalized; 1735 1736 case TargetOpcode::G_ICMP: 1737 Observer.changingInstr(MI); 1738 if (TypeIdx == 0) 1739 widenScalarDst(MI, WideTy); 1740 else { 1741 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1742 MI.getOperand(1).getPredicate())) 1743 ? TargetOpcode::G_SEXT 1744 : TargetOpcode::G_ZEXT; 1745 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1746 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1747 } 1748 Observer.changedInstr(MI); 1749 return Legalized; 1750 1751 case TargetOpcode::G_GEP: 1752 assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); 1753 Observer.changingInstr(MI); 1754 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1755 Observer.changedInstr(MI); 1756 return Legalized; 1757 1758 case TargetOpcode::G_PHI: { 1759 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1760 1761 Observer.changingInstr(MI); 1762 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1763 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1764 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1765 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1766 } 1767 1768 MachineBasicBlock &MBB = *MI.getParent(); 1769 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1770 widenScalarDst(MI, WideTy); 1771 Observer.changedInstr(MI); 1772 return Legalized; 1773 } 1774 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1775 if (TypeIdx == 0) { 1776 Register VecReg = MI.getOperand(1).getReg(); 1777 LLT VecTy = MRI.getType(VecReg); 1778 Observer.changingInstr(MI); 1779 1780 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1781 WideTy.getSizeInBits()), 1782 1, TargetOpcode::G_SEXT); 1783 1784 widenScalarDst(MI, WideTy, 0); 1785 Observer.changedInstr(MI); 1786 return Legalized; 1787 } 1788 1789 if (TypeIdx != 2) 1790 return UnableToLegalize; 1791 Observer.changingInstr(MI); 1792 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1793 Observer.changedInstr(MI); 1794 return Legalized; 1795 } 1796 case TargetOpcode::G_FADD: 1797 case TargetOpcode::G_FMUL: 1798 case TargetOpcode::G_FSUB: 1799 case TargetOpcode::G_FMA: 1800 case TargetOpcode::G_FMAD: 1801 case TargetOpcode::G_FNEG: 1802 case TargetOpcode::G_FABS: 1803 case TargetOpcode::G_FCANONICALIZE: 1804 case TargetOpcode::G_FMINNUM: 1805 case TargetOpcode::G_FMAXNUM: 1806 case TargetOpcode::G_FMINNUM_IEEE: 1807 case TargetOpcode::G_FMAXNUM_IEEE: 1808 case TargetOpcode::G_FMINIMUM: 1809 case TargetOpcode::G_FMAXIMUM: 1810 case TargetOpcode::G_FDIV: 1811 case TargetOpcode::G_FREM: 1812 case TargetOpcode::G_FCEIL: 1813 case TargetOpcode::G_FFLOOR: 1814 case TargetOpcode::G_FCOS: 1815 case TargetOpcode::G_FSIN: 1816 case TargetOpcode::G_FLOG10: 1817 case TargetOpcode::G_FLOG: 1818 case TargetOpcode::G_FLOG2: 1819 case TargetOpcode::G_FRINT: 1820 case TargetOpcode::G_FNEARBYINT: 1821 case TargetOpcode::G_FSQRT: 1822 case TargetOpcode::G_FEXP: 1823 case TargetOpcode::G_FEXP2: 1824 case TargetOpcode::G_FPOW: 1825 case TargetOpcode::G_INTRINSIC_TRUNC: 1826 case TargetOpcode::G_INTRINSIC_ROUND: 1827 assert(TypeIdx == 0); 1828 Observer.changingInstr(MI); 1829 1830 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1831 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1832 1833 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1834 Observer.changedInstr(MI); 1835 return Legalized; 1836 case TargetOpcode::G_INTTOPTR: 1837 if (TypeIdx != 1) 1838 return UnableToLegalize; 1839 1840 Observer.changingInstr(MI); 1841 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1842 Observer.changedInstr(MI); 1843 return Legalized; 1844 case TargetOpcode::G_PTRTOINT: 1845 if (TypeIdx != 0) 1846 return UnableToLegalize; 1847 1848 Observer.changingInstr(MI); 1849 widenScalarDst(MI, WideTy, 0); 1850 Observer.changedInstr(MI); 1851 return Legalized; 1852 case TargetOpcode::G_BUILD_VECTOR: { 1853 Observer.changingInstr(MI); 1854 1855 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 1856 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 1857 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 1858 1859 // Avoid changing the result vector type if the source element type was 1860 // requested. 1861 if (TypeIdx == 1) { 1862 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 1863 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 1864 } else { 1865 widenScalarDst(MI, WideTy, 0); 1866 } 1867 1868 Observer.changedInstr(MI); 1869 return Legalized; 1870 } 1871 case TargetOpcode::G_SEXT_INREG: 1872 if (TypeIdx != 0) 1873 return UnableToLegalize; 1874 1875 Observer.changingInstr(MI); 1876 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1877 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 1878 Observer.changedInstr(MI); 1879 return Legalized; 1880 } 1881 } 1882 1883 LegalizerHelper::LegalizeResult 1884 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1885 using namespace TargetOpcode; 1886 MIRBuilder.setInstr(MI); 1887 1888 switch(MI.getOpcode()) { 1889 default: 1890 return UnableToLegalize; 1891 case TargetOpcode::G_SREM: 1892 case TargetOpcode::G_UREM: { 1893 Register QuotReg = MRI.createGenericVirtualRegister(Ty); 1894 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1895 .addDef(QuotReg) 1896 .addUse(MI.getOperand(1).getReg()) 1897 .addUse(MI.getOperand(2).getReg()); 1898 1899 Register ProdReg = MRI.createGenericVirtualRegister(Ty); 1900 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1901 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1902 ProdReg); 1903 MI.eraseFromParent(); 1904 return Legalized; 1905 } 1906 case TargetOpcode::G_SADDO: 1907 case TargetOpcode::G_SSUBO: 1908 return lowerSADDO_SSUBO(MI); 1909 case TargetOpcode::G_SMULO: 1910 case TargetOpcode::G_UMULO: { 1911 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1912 // result. 1913 Register Res = MI.getOperand(0).getReg(); 1914 Register Overflow = MI.getOperand(1).getReg(); 1915 Register LHS = MI.getOperand(2).getReg(); 1916 Register RHS = MI.getOperand(3).getReg(); 1917 1918 MIRBuilder.buildMul(Res, LHS, RHS); 1919 1920 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 1921 ? TargetOpcode::G_SMULH 1922 : TargetOpcode::G_UMULH; 1923 1924 Register HiPart = MRI.createGenericVirtualRegister(Ty); 1925 MIRBuilder.buildInstr(Opcode) 1926 .addDef(HiPart) 1927 .addUse(LHS) 1928 .addUse(RHS); 1929 1930 Register Zero = MRI.createGenericVirtualRegister(Ty); 1931 MIRBuilder.buildConstant(Zero, 0); 1932 1933 // For *signed* multiply, overflow is detected by checking: 1934 // (hi != (lo >> bitwidth-1)) 1935 if (Opcode == TargetOpcode::G_SMULH) { 1936 Register Shifted = MRI.createGenericVirtualRegister(Ty); 1937 Register ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1938 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1939 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1940 .addDef(Shifted) 1941 .addUse(Res) 1942 .addUse(ShiftAmt); 1943 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1944 } else { 1945 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 1946 } 1947 MI.eraseFromParent(); 1948 return Legalized; 1949 } 1950 case TargetOpcode::G_FNEG: { 1951 // TODO: Handle vector types once we are able to 1952 // represent them. 1953 if (Ty.isVector()) 1954 return UnableToLegalize; 1955 Register Res = MI.getOperand(0).getReg(); 1956 Type *ZeroTy; 1957 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1958 switch (Ty.getSizeInBits()) { 1959 case 16: 1960 ZeroTy = Type::getHalfTy(Ctx); 1961 break; 1962 case 32: 1963 ZeroTy = Type::getFloatTy(Ctx); 1964 break; 1965 case 64: 1966 ZeroTy = Type::getDoubleTy(Ctx); 1967 break; 1968 case 128: 1969 ZeroTy = Type::getFP128Ty(Ctx); 1970 break; 1971 default: 1972 llvm_unreachable("unexpected floating-point type"); 1973 } 1974 ConstantFP &ZeroForNegation = 1975 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 1976 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 1977 Register SubByReg = MI.getOperand(1).getReg(); 1978 Register ZeroReg = Zero->getOperand(0).getReg(); 1979 MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg}, 1980 MI.getFlags()); 1981 MI.eraseFromParent(); 1982 return Legalized; 1983 } 1984 case TargetOpcode::G_FSUB: { 1985 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 1986 // First, check if G_FNEG is marked as Lower. If so, we may 1987 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 1988 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 1989 return UnableToLegalize; 1990 Register Res = MI.getOperand(0).getReg(); 1991 Register LHS = MI.getOperand(1).getReg(); 1992 Register RHS = MI.getOperand(2).getReg(); 1993 Register Neg = MRI.createGenericVirtualRegister(Ty); 1994 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 1995 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags()); 1996 MI.eraseFromParent(); 1997 return Legalized; 1998 } 1999 case TargetOpcode::G_FMAD: 2000 return lowerFMad(MI); 2001 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2002 Register OldValRes = MI.getOperand(0).getReg(); 2003 Register SuccessRes = MI.getOperand(1).getReg(); 2004 Register Addr = MI.getOperand(2).getReg(); 2005 Register CmpVal = MI.getOperand(3).getReg(); 2006 Register NewVal = MI.getOperand(4).getReg(); 2007 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2008 **MI.memoperands_begin()); 2009 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2010 MI.eraseFromParent(); 2011 return Legalized; 2012 } 2013 case TargetOpcode::G_LOAD: 2014 case TargetOpcode::G_SEXTLOAD: 2015 case TargetOpcode::G_ZEXTLOAD: { 2016 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2017 Register DstReg = MI.getOperand(0).getReg(); 2018 Register PtrReg = MI.getOperand(1).getReg(); 2019 LLT DstTy = MRI.getType(DstReg); 2020 auto &MMO = **MI.memoperands_begin(); 2021 2022 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2023 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2024 // This load needs splitting into power of 2 sized loads. 2025 if (DstTy.isVector()) 2026 return UnableToLegalize; 2027 if (isPowerOf2_32(DstTy.getSizeInBits())) 2028 return UnableToLegalize; // Don't know what we're being asked to do. 2029 2030 // Our strategy here is to generate anyextending loads for the smaller 2031 // types up to next power-2 result type, and then combine the two larger 2032 // result values together, before truncating back down to the non-pow-2 2033 // type. 2034 // E.g. v1 = i24 load => 2035 // v2 = i32 load (2 byte) 2036 // v3 = i32 load (1 byte) 2037 // v4 = i32 shl v3, 16 2038 // v5 = i32 or v4, v2 2039 // v1 = i24 trunc v5 2040 // By doing this we generate the correct truncate which should get 2041 // combined away as an artifact with a matching extend. 2042 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2043 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2044 2045 MachineFunction &MF = MIRBuilder.getMF(); 2046 MachineMemOperand *LargeMMO = 2047 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2048 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2049 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2050 2051 LLT PtrTy = MRI.getType(PtrReg); 2052 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2053 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2054 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2055 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2056 auto LargeLoad = 2057 MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO); 2058 2059 auto OffsetCst = 2060 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 2061 Register GEPReg = MRI.createGenericVirtualRegister(PtrTy); 2062 auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0)); 2063 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2064 *SmallMMO); 2065 2066 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2067 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2068 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2069 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2070 MI.eraseFromParent(); 2071 return Legalized; 2072 } 2073 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2074 MI.eraseFromParent(); 2075 return Legalized; 2076 } 2077 2078 if (DstTy.isScalar()) { 2079 Register TmpReg = 2080 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2081 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2082 switch (MI.getOpcode()) { 2083 default: 2084 llvm_unreachable("Unexpected opcode"); 2085 case TargetOpcode::G_LOAD: 2086 MIRBuilder.buildAnyExt(DstReg, TmpReg); 2087 break; 2088 case TargetOpcode::G_SEXTLOAD: 2089 MIRBuilder.buildSExt(DstReg, TmpReg); 2090 break; 2091 case TargetOpcode::G_ZEXTLOAD: 2092 MIRBuilder.buildZExt(DstReg, TmpReg); 2093 break; 2094 } 2095 MI.eraseFromParent(); 2096 return Legalized; 2097 } 2098 2099 return UnableToLegalize; 2100 } 2101 case TargetOpcode::G_STORE: { 2102 // Lower a non-power of 2 store into multiple pow-2 stores. 2103 // E.g. split an i24 store into an i16 store + i8 store. 2104 // We do this by first extending the stored value to the next largest power 2105 // of 2 type, and then using truncating stores to store the components. 2106 // By doing this, likewise with G_LOAD, generate an extend that can be 2107 // artifact-combined away instead of leaving behind extracts. 2108 Register SrcReg = MI.getOperand(0).getReg(); 2109 Register PtrReg = MI.getOperand(1).getReg(); 2110 LLT SrcTy = MRI.getType(SrcReg); 2111 MachineMemOperand &MMO = **MI.memoperands_begin(); 2112 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2113 return UnableToLegalize; 2114 if (SrcTy.isVector()) 2115 return UnableToLegalize; 2116 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2117 return UnableToLegalize; // Don't know what we're being asked to do. 2118 2119 // Extend to the next pow-2. 2120 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2121 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2122 2123 // Obtain the smaller value by shifting away the larger value. 2124 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2125 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2126 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2127 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2128 2129 // Generate the GEP and truncating stores. 2130 LLT PtrTy = MRI.getType(PtrReg); 2131 auto OffsetCst = 2132 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 2133 Register GEPReg = MRI.createGenericVirtualRegister(PtrTy); 2134 auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0)); 2135 2136 MachineFunction &MF = MIRBuilder.getMF(); 2137 MachineMemOperand *LargeMMO = 2138 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2139 MachineMemOperand *SmallMMO = 2140 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2141 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2142 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2143 MI.eraseFromParent(); 2144 return Legalized; 2145 } 2146 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2147 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2148 case TargetOpcode::G_CTLZ: 2149 case TargetOpcode::G_CTTZ: 2150 case TargetOpcode::G_CTPOP: 2151 return lowerBitCount(MI, TypeIdx, Ty); 2152 case G_UADDO: { 2153 Register Res = MI.getOperand(0).getReg(); 2154 Register CarryOut = MI.getOperand(1).getReg(); 2155 Register LHS = MI.getOperand(2).getReg(); 2156 Register RHS = MI.getOperand(3).getReg(); 2157 2158 MIRBuilder.buildAdd(Res, LHS, RHS); 2159 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2160 2161 MI.eraseFromParent(); 2162 return Legalized; 2163 } 2164 case G_UADDE: { 2165 Register Res = MI.getOperand(0).getReg(); 2166 Register CarryOut = MI.getOperand(1).getReg(); 2167 Register LHS = MI.getOperand(2).getReg(); 2168 Register RHS = MI.getOperand(3).getReg(); 2169 Register CarryIn = MI.getOperand(4).getReg(); 2170 2171 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2172 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 2173 2174 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 2175 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 2176 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2177 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2178 2179 MI.eraseFromParent(); 2180 return Legalized; 2181 } 2182 case G_USUBO: { 2183 Register Res = MI.getOperand(0).getReg(); 2184 Register BorrowOut = MI.getOperand(1).getReg(); 2185 Register LHS = MI.getOperand(2).getReg(); 2186 Register RHS = MI.getOperand(3).getReg(); 2187 2188 MIRBuilder.buildSub(Res, LHS, RHS); 2189 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2190 2191 MI.eraseFromParent(); 2192 return Legalized; 2193 } 2194 case G_USUBE: { 2195 Register Res = MI.getOperand(0).getReg(); 2196 Register BorrowOut = MI.getOperand(1).getReg(); 2197 Register LHS = MI.getOperand(2).getReg(); 2198 Register RHS = MI.getOperand(3).getReg(); 2199 Register BorrowIn = MI.getOperand(4).getReg(); 2200 2201 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2202 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 2203 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2204 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2205 2206 MIRBuilder.buildSub(TmpRes, LHS, RHS); 2207 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 2208 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2209 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 2210 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 2211 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2212 2213 MI.eraseFromParent(); 2214 return Legalized; 2215 } 2216 case G_UITOFP: 2217 return lowerUITOFP(MI, TypeIdx, Ty); 2218 case G_SITOFP: 2219 return lowerSITOFP(MI, TypeIdx, Ty); 2220 case G_FPTOUI: 2221 return lowerFPTOUI(MI, TypeIdx, Ty); 2222 case G_SMIN: 2223 case G_SMAX: 2224 case G_UMIN: 2225 case G_UMAX: 2226 return lowerMinMax(MI, TypeIdx, Ty); 2227 case G_FCOPYSIGN: 2228 return lowerFCopySign(MI, TypeIdx, Ty); 2229 case G_FMINNUM: 2230 case G_FMAXNUM: 2231 return lowerFMinNumMaxNum(MI); 2232 case G_UNMERGE_VALUES: 2233 return lowerUnmergeValues(MI); 2234 case TargetOpcode::G_SEXT_INREG: { 2235 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2236 int64_t SizeInBits = MI.getOperand(2).getImm(); 2237 2238 Register DstReg = MI.getOperand(0).getReg(); 2239 Register SrcReg = MI.getOperand(1).getReg(); 2240 LLT DstTy = MRI.getType(DstReg); 2241 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2242 2243 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2244 MIRBuilder.buildInstr(TargetOpcode::G_SHL, {TmpRes}, {SrcReg, MIBSz->getOperand(0).getReg()}); 2245 MIRBuilder.buildInstr(TargetOpcode::G_ASHR, {DstReg}, {TmpRes, MIBSz->getOperand(0).getReg()}); 2246 MI.eraseFromParent(); 2247 return Legalized; 2248 } 2249 case G_SHUFFLE_VECTOR: 2250 return lowerShuffleVector(MI); 2251 case G_DYN_STACKALLOC: 2252 return lowerDynStackAlloc(MI); 2253 case G_EXTRACT: 2254 return lowerExtract(MI); 2255 case G_INSERT: 2256 return lowerInsert(MI); 2257 } 2258 } 2259 2260 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2261 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2262 SmallVector<Register, 2> DstRegs; 2263 2264 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2265 Register DstReg = MI.getOperand(0).getReg(); 2266 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2267 int NumParts = Size / NarrowSize; 2268 // FIXME: Don't know how to handle the situation where the small vectors 2269 // aren't all the same size yet. 2270 if (Size % NarrowSize != 0) 2271 return UnableToLegalize; 2272 2273 for (int i = 0; i < NumParts; ++i) { 2274 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2275 MIRBuilder.buildUndef(TmpReg); 2276 DstRegs.push_back(TmpReg); 2277 } 2278 2279 if (NarrowTy.isVector()) 2280 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2281 else 2282 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2283 2284 MI.eraseFromParent(); 2285 return Legalized; 2286 } 2287 2288 LegalizerHelper::LegalizeResult 2289 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2290 LLT NarrowTy) { 2291 const unsigned Opc = MI.getOpcode(); 2292 const unsigned NumOps = MI.getNumOperands() - 1; 2293 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2294 const Register DstReg = MI.getOperand(0).getReg(); 2295 const unsigned Flags = MI.getFlags(); 2296 const LLT DstTy = MRI.getType(DstReg); 2297 const unsigned Size = DstTy.getSizeInBits(); 2298 const int NumParts = Size / NarrowSize; 2299 const LLT EltTy = DstTy.getElementType(); 2300 const unsigned EltSize = EltTy.getSizeInBits(); 2301 const unsigned BitsForNumParts = NarrowSize * NumParts; 2302 2303 // Check if we have any leftovers. If we do, then only handle the case where 2304 // the leftover is one element. 2305 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 2306 return UnableToLegalize; 2307 2308 if (BitsForNumParts != Size) { 2309 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 2310 MIRBuilder.buildUndef(AccumDstReg); 2311 2312 // Handle the pieces which evenly divide into the requested type with 2313 // extract/op/insert sequence. 2314 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 2315 SmallVector<SrcOp, 4> SrcOps; 2316 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2317 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 2318 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); 2319 SrcOps.push_back(PartOpReg); 2320 } 2321 2322 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 2323 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2324 2325 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 2326 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 2327 AccumDstReg = PartInsertReg; 2328 } 2329 2330 // Handle the remaining element sized leftover piece. 2331 SmallVector<SrcOp, 4> SrcOps; 2332 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2333 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); 2334 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), 2335 BitsForNumParts); 2336 SrcOps.push_back(PartOpReg); 2337 } 2338 2339 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); 2340 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2341 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 2342 MI.eraseFromParent(); 2343 2344 return Legalized; 2345 } 2346 2347 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2348 2349 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 2350 2351 if (NumOps >= 2) 2352 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 2353 2354 if (NumOps >= 3) 2355 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 2356 2357 for (int i = 0; i < NumParts; ++i) { 2358 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2359 2360 if (NumOps == 1) 2361 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 2362 else if (NumOps == 2) { 2363 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 2364 } else if (NumOps == 3) { 2365 MIRBuilder.buildInstr(Opc, {DstReg}, 2366 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 2367 } 2368 2369 DstRegs.push_back(DstReg); 2370 } 2371 2372 if (NarrowTy.isVector()) 2373 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2374 else 2375 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2376 2377 MI.eraseFromParent(); 2378 return Legalized; 2379 } 2380 2381 // Handle splitting vector operations which need to have the same number of 2382 // elements in each type index, but each type index may have a different element 2383 // type. 2384 // 2385 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2386 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2387 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2388 // 2389 // Also handles some irregular breakdown cases, e.g. 2390 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2391 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2392 // s64 = G_SHL s64, s32 2393 LegalizerHelper::LegalizeResult 2394 LegalizerHelper::fewerElementsVectorMultiEltType( 2395 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2396 if (TypeIdx != 0) 2397 return UnableToLegalize; 2398 2399 const LLT NarrowTy0 = NarrowTyArg; 2400 const unsigned NewNumElts = 2401 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2402 2403 const Register DstReg = MI.getOperand(0).getReg(); 2404 LLT DstTy = MRI.getType(DstReg); 2405 LLT LeftoverTy0; 2406 2407 // All of the operands need to have the same number of elements, so if we can 2408 // determine a type breakdown for the result type, we can for all of the 2409 // source types. 2410 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2411 if (NumParts < 0) 2412 return UnableToLegalize; 2413 2414 SmallVector<MachineInstrBuilder, 4> NewInsts; 2415 2416 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2417 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2418 2419 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2420 LLT LeftoverTy; 2421 Register SrcReg = MI.getOperand(I).getReg(); 2422 LLT SrcTyI = MRI.getType(SrcReg); 2423 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2424 LLT LeftoverTyI; 2425 2426 // Split this operand into the requested typed registers, and any leftover 2427 // required to reproduce the original type. 2428 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2429 LeftoverRegs)) 2430 return UnableToLegalize; 2431 2432 if (I == 1) { 2433 // For the first operand, create an instruction for each part and setup 2434 // the result. 2435 for (Register PartReg : PartRegs) { 2436 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2437 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2438 .addDef(PartDstReg) 2439 .addUse(PartReg)); 2440 DstRegs.push_back(PartDstReg); 2441 } 2442 2443 for (Register LeftoverReg : LeftoverRegs) { 2444 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2445 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2446 .addDef(PartDstReg) 2447 .addUse(LeftoverReg)); 2448 LeftoverDstRegs.push_back(PartDstReg); 2449 } 2450 } else { 2451 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2452 2453 // Add the newly created operand splits to the existing instructions. The 2454 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2455 // pieces. 2456 unsigned InstCount = 0; 2457 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2458 NewInsts[InstCount++].addUse(PartRegs[J]); 2459 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2460 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2461 } 2462 2463 PartRegs.clear(); 2464 LeftoverRegs.clear(); 2465 } 2466 2467 // Insert the newly built operations and rebuild the result register. 2468 for (auto &MIB : NewInsts) 2469 MIRBuilder.insertInstr(MIB); 2470 2471 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2472 2473 MI.eraseFromParent(); 2474 return Legalized; 2475 } 2476 2477 LegalizerHelper::LegalizeResult 2478 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2479 LLT NarrowTy) { 2480 if (TypeIdx != 0) 2481 return UnableToLegalize; 2482 2483 Register DstReg = MI.getOperand(0).getReg(); 2484 Register SrcReg = MI.getOperand(1).getReg(); 2485 LLT DstTy = MRI.getType(DstReg); 2486 LLT SrcTy = MRI.getType(SrcReg); 2487 2488 LLT NarrowTy0 = NarrowTy; 2489 LLT NarrowTy1; 2490 unsigned NumParts; 2491 2492 if (NarrowTy.isVector()) { 2493 // Uneven breakdown not handled. 2494 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2495 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2496 return UnableToLegalize; 2497 2498 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2499 } else { 2500 NumParts = DstTy.getNumElements(); 2501 NarrowTy1 = SrcTy.getElementType(); 2502 } 2503 2504 SmallVector<Register, 4> SrcRegs, DstRegs; 2505 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2506 2507 for (unsigned I = 0; I < NumParts; ++I) { 2508 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2509 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) 2510 .addDef(DstReg) 2511 .addUse(SrcRegs[I]); 2512 2513 NewInst->setFlags(MI.getFlags()); 2514 DstRegs.push_back(DstReg); 2515 } 2516 2517 if (NarrowTy.isVector()) 2518 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2519 else 2520 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2521 2522 MI.eraseFromParent(); 2523 return Legalized; 2524 } 2525 2526 LegalizerHelper::LegalizeResult 2527 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2528 LLT NarrowTy) { 2529 Register DstReg = MI.getOperand(0).getReg(); 2530 Register Src0Reg = MI.getOperand(2).getReg(); 2531 LLT DstTy = MRI.getType(DstReg); 2532 LLT SrcTy = MRI.getType(Src0Reg); 2533 2534 unsigned NumParts; 2535 LLT NarrowTy0, NarrowTy1; 2536 2537 if (TypeIdx == 0) { 2538 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2539 unsigned OldElts = DstTy.getNumElements(); 2540 2541 NarrowTy0 = NarrowTy; 2542 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2543 NarrowTy1 = NarrowTy.isVector() ? 2544 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2545 SrcTy.getElementType(); 2546 2547 } else { 2548 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2549 unsigned OldElts = SrcTy.getNumElements(); 2550 2551 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2552 NarrowTy.getNumElements(); 2553 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2554 DstTy.getScalarSizeInBits()); 2555 NarrowTy1 = NarrowTy; 2556 } 2557 2558 // FIXME: Don't know how to handle the situation where the small vectors 2559 // aren't all the same size yet. 2560 if (NarrowTy1.isVector() && 2561 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2562 return UnableToLegalize; 2563 2564 CmpInst::Predicate Pred 2565 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2566 2567 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2568 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2569 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2570 2571 for (unsigned I = 0; I < NumParts; ++I) { 2572 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2573 DstRegs.push_back(DstReg); 2574 2575 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2576 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2577 else { 2578 MachineInstr *NewCmp 2579 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2580 NewCmp->setFlags(MI.getFlags()); 2581 } 2582 } 2583 2584 if (NarrowTy1.isVector()) 2585 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2586 else 2587 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2588 2589 MI.eraseFromParent(); 2590 return Legalized; 2591 } 2592 2593 LegalizerHelper::LegalizeResult 2594 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2595 LLT NarrowTy) { 2596 Register DstReg = MI.getOperand(0).getReg(); 2597 Register CondReg = MI.getOperand(1).getReg(); 2598 2599 unsigned NumParts = 0; 2600 LLT NarrowTy0, NarrowTy1; 2601 2602 LLT DstTy = MRI.getType(DstReg); 2603 LLT CondTy = MRI.getType(CondReg); 2604 unsigned Size = DstTy.getSizeInBits(); 2605 2606 assert(TypeIdx == 0 || CondTy.isVector()); 2607 2608 if (TypeIdx == 0) { 2609 NarrowTy0 = NarrowTy; 2610 NarrowTy1 = CondTy; 2611 2612 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2613 // FIXME: Don't know how to handle the situation where the small vectors 2614 // aren't all the same size yet. 2615 if (Size % NarrowSize != 0) 2616 return UnableToLegalize; 2617 2618 NumParts = Size / NarrowSize; 2619 2620 // Need to break down the condition type 2621 if (CondTy.isVector()) { 2622 if (CondTy.getNumElements() == NumParts) 2623 NarrowTy1 = CondTy.getElementType(); 2624 else 2625 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2626 CondTy.getScalarSizeInBits()); 2627 } 2628 } else { 2629 NumParts = CondTy.getNumElements(); 2630 if (NarrowTy.isVector()) { 2631 // TODO: Handle uneven breakdown. 2632 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2633 return UnableToLegalize; 2634 2635 return UnableToLegalize; 2636 } else { 2637 NarrowTy0 = DstTy.getElementType(); 2638 NarrowTy1 = NarrowTy; 2639 } 2640 } 2641 2642 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2643 if (CondTy.isVector()) 2644 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2645 2646 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2647 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2648 2649 for (unsigned i = 0; i < NumParts; ++i) { 2650 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2651 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2652 Src1Regs[i], Src2Regs[i]); 2653 DstRegs.push_back(DstReg); 2654 } 2655 2656 if (NarrowTy0.isVector()) 2657 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2658 else 2659 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2660 2661 MI.eraseFromParent(); 2662 return Legalized; 2663 } 2664 2665 LegalizerHelper::LegalizeResult 2666 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2667 LLT NarrowTy) { 2668 const Register DstReg = MI.getOperand(0).getReg(); 2669 LLT PhiTy = MRI.getType(DstReg); 2670 LLT LeftoverTy; 2671 2672 // All of the operands need to have the same number of elements, so if we can 2673 // determine a type breakdown for the result type, we can for all of the 2674 // source types. 2675 int NumParts, NumLeftover; 2676 std::tie(NumParts, NumLeftover) 2677 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2678 if (NumParts < 0) 2679 return UnableToLegalize; 2680 2681 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2682 SmallVector<MachineInstrBuilder, 4> NewInsts; 2683 2684 const int TotalNumParts = NumParts + NumLeftover; 2685 2686 // Insert the new phis in the result block first. 2687 for (int I = 0; I != TotalNumParts; ++I) { 2688 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2689 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2690 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2691 .addDef(PartDstReg)); 2692 if (I < NumParts) 2693 DstRegs.push_back(PartDstReg); 2694 else 2695 LeftoverDstRegs.push_back(PartDstReg); 2696 } 2697 2698 MachineBasicBlock *MBB = MI.getParent(); 2699 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2700 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2701 2702 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2703 2704 // Insert code to extract the incoming values in each predecessor block. 2705 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2706 PartRegs.clear(); 2707 LeftoverRegs.clear(); 2708 2709 Register SrcReg = MI.getOperand(I).getReg(); 2710 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2711 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2712 2713 LLT Unused; 2714 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2715 LeftoverRegs)) 2716 return UnableToLegalize; 2717 2718 // Add the newly created operand splits to the existing instructions. The 2719 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2720 // pieces. 2721 for (int J = 0; J != TotalNumParts; ++J) { 2722 MachineInstrBuilder MIB = NewInsts[J]; 2723 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2724 MIB.addMBB(&OpMBB); 2725 } 2726 } 2727 2728 MI.eraseFromParent(); 2729 return Legalized; 2730 } 2731 2732 LegalizerHelper::LegalizeResult 2733 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 2734 unsigned TypeIdx, 2735 LLT NarrowTy) { 2736 if (TypeIdx != 1) 2737 return UnableToLegalize; 2738 2739 const int NumDst = MI.getNumOperands() - 1; 2740 const Register SrcReg = MI.getOperand(NumDst).getReg(); 2741 LLT SrcTy = MRI.getType(SrcReg); 2742 2743 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2744 2745 // TODO: Create sequence of extracts. 2746 if (DstTy == NarrowTy) 2747 return UnableToLegalize; 2748 2749 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 2750 if (DstTy == GCDTy) { 2751 // This would just be a copy of the same unmerge. 2752 // TODO: Create extracts, pad with undef and create intermediate merges. 2753 return UnableToLegalize; 2754 } 2755 2756 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 2757 const int NumUnmerge = Unmerge->getNumOperands() - 1; 2758 const int PartsPerUnmerge = NumDst / NumUnmerge; 2759 2760 for (int I = 0; I != NumUnmerge; ++I) { 2761 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 2762 2763 for (int J = 0; J != PartsPerUnmerge; ++J) 2764 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 2765 MIB.addUse(Unmerge.getReg(I)); 2766 } 2767 2768 MI.eraseFromParent(); 2769 return Legalized; 2770 } 2771 2772 LegalizerHelper::LegalizeResult 2773 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 2774 unsigned TypeIdx, 2775 LLT NarrowTy) { 2776 assert(TypeIdx == 0 && "not a vector type index"); 2777 Register DstReg = MI.getOperand(0).getReg(); 2778 LLT DstTy = MRI.getType(DstReg); 2779 LLT SrcTy = DstTy.getElementType(); 2780 2781 int DstNumElts = DstTy.getNumElements(); 2782 int NarrowNumElts = NarrowTy.getNumElements(); 2783 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 2784 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 2785 2786 SmallVector<Register, 8> ConcatOps; 2787 SmallVector<Register, 8> SubBuildVector; 2788 2789 Register UndefReg; 2790 if (WidenedDstTy != DstTy) 2791 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 2792 2793 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 2794 // necessary. 2795 // 2796 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 2797 // -> <2 x s16> 2798 // 2799 // %4:_(s16) = G_IMPLICIT_DEF 2800 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 2801 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 2802 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 2803 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 2804 for (int I = 0; I != NumConcat; ++I) { 2805 for (int J = 0; J != NarrowNumElts; ++J) { 2806 int SrcIdx = NarrowNumElts * I + J; 2807 2808 if (SrcIdx < DstNumElts) { 2809 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 2810 SubBuildVector.push_back(SrcReg); 2811 } else 2812 SubBuildVector.push_back(UndefReg); 2813 } 2814 2815 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 2816 ConcatOps.push_back(BuildVec.getReg(0)); 2817 SubBuildVector.clear(); 2818 } 2819 2820 if (DstTy == WidenedDstTy) 2821 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 2822 else { 2823 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 2824 MIRBuilder.buildExtract(DstReg, Concat, 0); 2825 } 2826 2827 MI.eraseFromParent(); 2828 return Legalized; 2829 } 2830 2831 LegalizerHelper::LegalizeResult 2832 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 2833 LLT NarrowTy) { 2834 // FIXME: Don't know how to handle secondary types yet. 2835 if (TypeIdx != 0) 2836 return UnableToLegalize; 2837 2838 MachineMemOperand *MMO = *MI.memoperands_begin(); 2839 2840 // This implementation doesn't work for atomics. Give up instead of doing 2841 // something invalid. 2842 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 2843 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 2844 return UnableToLegalize; 2845 2846 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 2847 Register ValReg = MI.getOperand(0).getReg(); 2848 Register AddrReg = MI.getOperand(1).getReg(); 2849 LLT ValTy = MRI.getType(ValReg); 2850 2851 int NumParts = -1; 2852 int NumLeftover = -1; 2853 LLT LeftoverTy; 2854 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 2855 if (IsLoad) { 2856 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 2857 } else { 2858 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 2859 NarrowLeftoverRegs)) { 2860 NumParts = NarrowRegs.size(); 2861 NumLeftover = NarrowLeftoverRegs.size(); 2862 } 2863 } 2864 2865 if (NumParts == -1) 2866 return UnableToLegalize; 2867 2868 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 2869 2870 unsigned TotalSize = ValTy.getSizeInBits(); 2871 2872 // Split the load/store into PartTy sized pieces starting at Offset. If this 2873 // is a load, return the new registers in ValRegs. For a store, each elements 2874 // of ValRegs should be PartTy. Returns the next offset that needs to be 2875 // handled. 2876 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 2877 unsigned Offset) -> unsigned { 2878 MachineFunction &MF = MIRBuilder.getMF(); 2879 unsigned PartSize = PartTy.getSizeInBits(); 2880 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 2881 Offset += PartSize, ++Idx) { 2882 unsigned ByteSize = PartSize / 8; 2883 unsigned ByteOffset = Offset / 8; 2884 Register NewAddrReg; 2885 2886 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 2887 2888 MachineMemOperand *NewMMO = 2889 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 2890 2891 if (IsLoad) { 2892 Register Dst = MRI.createGenericVirtualRegister(PartTy); 2893 ValRegs.push_back(Dst); 2894 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 2895 } else { 2896 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 2897 } 2898 } 2899 2900 return Offset; 2901 }; 2902 2903 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 2904 2905 // Handle the rest of the register if this isn't an even type breakdown. 2906 if (LeftoverTy.isValid()) 2907 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 2908 2909 if (IsLoad) { 2910 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 2911 LeftoverTy, NarrowLeftoverRegs); 2912 } 2913 2914 MI.eraseFromParent(); 2915 return Legalized; 2916 } 2917 2918 LegalizerHelper::LegalizeResult 2919 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 2920 LLT NarrowTy) { 2921 using namespace TargetOpcode; 2922 2923 MIRBuilder.setInstr(MI); 2924 switch (MI.getOpcode()) { 2925 case G_IMPLICIT_DEF: 2926 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 2927 case G_AND: 2928 case G_OR: 2929 case G_XOR: 2930 case G_ADD: 2931 case G_SUB: 2932 case G_MUL: 2933 case G_SMULH: 2934 case G_UMULH: 2935 case G_FADD: 2936 case G_FMUL: 2937 case G_FSUB: 2938 case G_FNEG: 2939 case G_FABS: 2940 case G_FCANONICALIZE: 2941 case G_FDIV: 2942 case G_FREM: 2943 case G_FMA: 2944 case G_FMAD: 2945 case G_FPOW: 2946 case G_FEXP: 2947 case G_FEXP2: 2948 case G_FLOG: 2949 case G_FLOG2: 2950 case G_FLOG10: 2951 case G_FNEARBYINT: 2952 case G_FCEIL: 2953 case G_FFLOOR: 2954 case G_FRINT: 2955 case G_INTRINSIC_ROUND: 2956 case G_INTRINSIC_TRUNC: 2957 case G_FCOS: 2958 case G_FSIN: 2959 case G_FSQRT: 2960 case G_BSWAP: 2961 case G_BITREVERSE: 2962 case G_SDIV: 2963 case G_SMIN: 2964 case G_SMAX: 2965 case G_UMIN: 2966 case G_UMAX: 2967 case G_FMINNUM: 2968 case G_FMAXNUM: 2969 case G_FMINNUM_IEEE: 2970 case G_FMAXNUM_IEEE: 2971 case G_FMINIMUM: 2972 case G_FMAXIMUM: 2973 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 2974 case G_SHL: 2975 case G_LSHR: 2976 case G_ASHR: 2977 case G_CTLZ: 2978 case G_CTLZ_ZERO_UNDEF: 2979 case G_CTTZ: 2980 case G_CTTZ_ZERO_UNDEF: 2981 case G_CTPOP: 2982 case G_FCOPYSIGN: 2983 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 2984 case G_ZEXT: 2985 case G_SEXT: 2986 case G_ANYEXT: 2987 case G_FPEXT: 2988 case G_FPTRUNC: 2989 case G_SITOFP: 2990 case G_UITOFP: 2991 case G_FPTOSI: 2992 case G_FPTOUI: 2993 case G_INTTOPTR: 2994 case G_PTRTOINT: 2995 case G_ADDRSPACE_CAST: 2996 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 2997 case G_ICMP: 2998 case G_FCMP: 2999 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3000 case G_SELECT: 3001 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3002 case G_PHI: 3003 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3004 case G_UNMERGE_VALUES: 3005 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3006 case G_BUILD_VECTOR: 3007 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3008 case G_LOAD: 3009 case G_STORE: 3010 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3011 default: 3012 return UnableToLegalize; 3013 } 3014 } 3015 3016 LegalizerHelper::LegalizeResult 3017 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3018 const LLT HalfTy, const LLT AmtTy) { 3019 3020 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3021 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3022 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 3023 3024 if (Amt.isNullValue()) { 3025 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); 3026 MI.eraseFromParent(); 3027 return Legalized; 3028 } 3029 3030 LLT NVT = HalfTy; 3031 unsigned NVTBits = HalfTy.getSizeInBits(); 3032 unsigned VTBits = 2 * NVTBits; 3033 3034 SrcOp Lo(Register(0)), Hi(Register(0)); 3035 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3036 if (Amt.ugt(VTBits)) { 3037 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3038 } else if (Amt.ugt(NVTBits)) { 3039 Lo = MIRBuilder.buildConstant(NVT, 0); 3040 Hi = MIRBuilder.buildShl(NVT, InL, 3041 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3042 } else if (Amt == NVTBits) { 3043 Lo = MIRBuilder.buildConstant(NVT, 0); 3044 Hi = InL; 3045 } else { 3046 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3047 auto OrLHS = 3048 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3049 auto OrRHS = MIRBuilder.buildLShr( 3050 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3051 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3052 } 3053 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3054 if (Amt.ugt(VTBits)) { 3055 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3056 } else if (Amt.ugt(NVTBits)) { 3057 Lo = MIRBuilder.buildLShr(NVT, InH, 3058 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3059 Hi = MIRBuilder.buildConstant(NVT, 0); 3060 } else if (Amt == NVTBits) { 3061 Lo = InH; 3062 Hi = MIRBuilder.buildConstant(NVT, 0); 3063 } else { 3064 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3065 3066 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3067 auto OrRHS = MIRBuilder.buildShl( 3068 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3069 3070 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3071 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3072 } 3073 } else { 3074 if (Amt.ugt(VTBits)) { 3075 Hi = Lo = MIRBuilder.buildAShr( 3076 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3077 } else if (Amt.ugt(NVTBits)) { 3078 Lo = MIRBuilder.buildAShr(NVT, InH, 3079 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3080 Hi = MIRBuilder.buildAShr(NVT, InH, 3081 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3082 } else if (Amt == NVTBits) { 3083 Lo = InH; 3084 Hi = MIRBuilder.buildAShr(NVT, InH, 3085 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3086 } else { 3087 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3088 3089 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3090 auto OrRHS = MIRBuilder.buildShl( 3091 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3092 3093 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3094 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3095 } 3096 } 3097 3098 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); 3099 MI.eraseFromParent(); 3100 3101 return Legalized; 3102 } 3103 3104 // TODO: Optimize if constant shift amount. 3105 LegalizerHelper::LegalizeResult 3106 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3107 LLT RequestedTy) { 3108 if (TypeIdx == 1) { 3109 Observer.changingInstr(MI); 3110 narrowScalarSrc(MI, RequestedTy, 2); 3111 Observer.changedInstr(MI); 3112 return Legalized; 3113 } 3114 3115 Register DstReg = MI.getOperand(0).getReg(); 3116 LLT DstTy = MRI.getType(DstReg); 3117 if (DstTy.isVector()) 3118 return UnableToLegalize; 3119 3120 Register Amt = MI.getOperand(2).getReg(); 3121 LLT ShiftAmtTy = MRI.getType(Amt); 3122 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3123 if (DstEltSize % 2 != 0) 3124 return UnableToLegalize; 3125 3126 // Ignore the input type. We can only go to exactly half the size of the 3127 // input. If that isn't small enough, the resulting pieces will be further 3128 // legalized. 3129 const unsigned NewBitSize = DstEltSize / 2; 3130 const LLT HalfTy = LLT::scalar(NewBitSize); 3131 const LLT CondTy = LLT::scalar(1); 3132 3133 if (const MachineInstr *KShiftAmt = 3134 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3135 return narrowScalarShiftByConstant( 3136 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3137 } 3138 3139 // TODO: Expand with known bits. 3140 3141 // Handle the fully general expansion by an unknown amount. 3142 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3143 3144 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3145 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3146 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 3147 3148 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3149 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3150 3151 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3152 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3153 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3154 3155 Register ResultRegs[2]; 3156 switch (MI.getOpcode()) { 3157 case TargetOpcode::G_SHL: { 3158 // Short: ShAmt < NewBitSize 3159 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3160 3161 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3162 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3163 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3164 3165 // Long: ShAmt >= NewBitSize 3166 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3167 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3168 3169 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3170 auto Hi = MIRBuilder.buildSelect( 3171 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3172 3173 ResultRegs[0] = Lo.getReg(0); 3174 ResultRegs[1] = Hi.getReg(0); 3175 break; 3176 } 3177 case TargetOpcode::G_LSHR: 3178 case TargetOpcode::G_ASHR: { 3179 // Short: ShAmt < NewBitSize 3180 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3181 3182 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3183 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3184 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3185 3186 // Long: ShAmt >= NewBitSize 3187 MachineInstrBuilder HiL; 3188 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3189 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3190 } else { 3191 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3192 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3193 } 3194 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3195 {InH, AmtExcess}); // Lo from Hi part. 3196 3197 auto Lo = MIRBuilder.buildSelect( 3198 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3199 3200 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3201 3202 ResultRegs[0] = Lo.getReg(0); 3203 ResultRegs[1] = Hi.getReg(0); 3204 break; 3205 } 3206 default: 3207 llvm_unreachable("not a shift"); 3208 } 3209 3210 MIRBuilder.buildMerge(DstReg, ResultRegs); 3211 MI.eraseFromParent(); 3212 return Legalized; 3213 } 3214 3215 LegalizerHelper::LegalizeResult 3216 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3217 LLT MoreTy) { 3218 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3219 3220 Observer.changingInstr(MI); 3221 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3222 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3223 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3224 moreElementsVectorSrc(MI, MoreTy, I); 3225 } 3226 3227 MachineBasicBlock &MBB = *MI.getParent(); 3228 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3229 moreElementsVectorDst(MI, MoreTy, 0); 3230 Observer.changedInstr(MI); 3231 return Legalized; 3232 } 3233 3234 LegalizerHelper::LegalizeResult 3235 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3236 LLT MoreTy) { 3237 MIRBuilder.setInstr(MI); 3238 unsigned Opc = MI.getOpcode(); 3239 switch (Opc) { 3240 case TargetOpcode::G_IMPLICIT_DEF: 3241 case TargetOpcode::G_LOAD: { 3242 if (TypeIdx != 0) 3243 return UnableToLegalize; 3244 Observer.changingInstr(MI); 3245 moreElementsVectorDst(MI, MoreTy, 0); 3246 Observer.changedInstr(MI); 3247 return Legalized; 3248 } 3249 case TargetOpcode::G_STORE: 3250 if (TypeIdx != 0) 3251 return UnableToLegalize; 3252 Observer.changingInstr(MI); 3253 moreElementsVectorSrc(MI, MoreTy, 0); 3254 Observer.changedInstr(MI); 3255 return Legalized; 3256 case TargetOpcode::G_AND: 3257 case TargetOpcode::G_OR: 3258 case TargetOpcode::G_XOR: 3259 case TargetOpcode::G_SMIN: 3260 case TargetOpcode::G_SMAX: 3261 case TargetOpcode::G_UMIN: 3262 case TargetOpcode::G_UMAX: { 3263 Observer.changingInstr(MI); 3264 moreElementsVectorSrc(MI, MoreTy, 1); 3265 moreElementsVectorSrc(MI, MoreTy, 2); 3266 moreElementsVectorDst(MI, MoreTy, 0); 3267 Observer.changedInstr(MI); 3268 return Legalized; 3269 } 3270 case TargetOpcode::G_EXTRACT: 3271 if (TypeIdx != 1) 3272 return UnableToLegalize; 3273 Observer.changingInstr(MI); 3274 moreElementsVectorSrc(MI, MoreTy, 1); 3275 Observer.changedInstr(MI); 3276 return Legalized; 3277 case TargetOpcode::G_INSERT: 3278 if (TypeIdx != 0) 3279 return UnableToLegalize; 3280 Observer.changingInstr(MI); 3281 moreElementsVectorSrc(MI, MoreTy, 1); 3282 moreElementsVectorDst(MI, MoreTy, 0); 3283 Observer.changedInstr(MI); 3284 return Legalized; 3285 case TargetOpcode::G_SELECT: 3286 if (TypeIdx != 0) 3287 return UnableToLegalize; 3288 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3289 return UnableToLegalize; 3290 3291 Observer.changingInstr(MI); 3292 moreElementsVectorSrc(MI, MoreTy, 2); 3293 moreElementsVectorSrc(MI, MoreTy, 3); 3294 moreElementsVectorDst(MI, MoreTy, 0); 3295 Observer.changedInstr(MI); 3296 return Legalized; 3297 case TargetOpcode::G_UNMERGE_VALUES: { 3298 if (TypeIdx != 1) 3299 return UnableToLegalize; 3300 3301 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3302 int NumDst = MI.getNumOperands() - 1; 3303 moreElementsVectorSrc(MI, MoreTy, NumDst); 3304 3305 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3306 for (int I = 0; I != NumDst; ++I) 3307 MIB.addDef(MI.getOperand(I).getReg()); 3308 3309 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3310 for (int I = NumDst; I != NewNumDst; ++I) 3311 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3312 3313 MIB.addUse(MI.getOperand(NumDst).getReg()); 3314 MI.eraseFromParent(); 3315 return Legalized; 3316 } 3317 case TargetOpcode::G_PHI: 3318 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3319 default: 3320 return UnableToLegalize; 3321 } 3322 } 3323 3324 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3325 ArrayRef<Register> Src1Regs, 3326 ArrayRef<Register> Src2Regs, 3327 LLT NarrowTy) { 3328 MachineIRBuilder &B = MIRBuilder; 3329 unsigned SrcParts = Src1Regs.size(); 3330 unsigned DstParts = DstRegs.size(); 3331 3332 unsigned DstIdx = 0; // Low bits of the result. 3333 Register FactorSum = 3334 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3335 DstRegs[DstIdx] = FactorSum; 3336 3337 unsigned CarrySumPrevDstIdx; 3338 SmallVector<Register, 4> Factors; 3339 3340 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3341 // Collect low parts of muls for DstIdx. 3342 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3343 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3344 MachineInstrBuilder Mul = 3345 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3346 Factors.push_back(Mul.getReg(0)); 3347 } 3348 // Collect high parts of muls from previous DstIdx. 3349 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3350 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3351 MachineInstrBuilder Umulh = 3352 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3353 Factors.push_back(Umulh.getReg(0)); 3354 } 3355 // Add CarrySum from additons calculated for previous DstIdx. 3356 if (DstIdx != 1) { 3357 Factors.push_back(CarrySumPrevDstIdx); 3358 } 3359 3360 Register CarrySum; 3361 // Add all factors and accumulate all carries into CarrySum. 3362 if (DstIdx != DstParts - 1) { 3363 MachineInstrBuilder Uaddo = 3364 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3365 FactorSum = Uaddo.getReg(0); 3366 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3367 for (unsigned i = 2; i < Factors.size(); ++i) { 3368 MachineInstrBuilder Uaddo = 3369 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3370 FactorSum = Uaddo.getReg(0); 3371 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3372 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3373 } 3374 } else { 3375 // Since value for the next index is not calculated, neither is CarrySum. 3376 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3377 for (unsigned i = 2; i < Factors.size(); ++i) 3378 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3379 } 3380 3381 CarrySumPrevDstIdx = CarrySum; 3382 DstRegs[DstIdx] = FactorSum; 3383 Factors.clear(); 3384 } 3385 } 3386 3387 LegalizerHelper::LegalizeResult 3388 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3389 Register DstReg = MI.getOperand(0).getReg(); 3390 Register Src1 = MI.getOperand(1).getReg(); 3391 Register Src2 = MI.getOperand(2).getReg(); 3392 3393 LLT Ty = MRI.getType(DstReg); 3394 if (Ty.isVector()) 3395 return UnableToLegalize; 3396 3397 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3398 unsigned DstSize = Ty.getSizeInBits(); 3399 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3400 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3401 return UnableToLegalize; 3402 3403 unsigned NumDstParts = DstSize / NarrowSize; 3404 unsigned NumSrcParts = SrcSize / NarrowSize; 3405 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3406 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3407 3408 SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs; 3409 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3410 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3411 DstTmpRegs.resize(DstTmpParts); 3412 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3413 3414 // Take only high half of registers if this is high mul. 3415 ArrayRef<Register> DstRegs( 3416 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3417 MIRBuilder.buildMerge(DstReg, DstRegs); 3418 MI.eraseFromParent(); 3419 return Legalized; 3420 } 3421 3422 LegalizerHelper::LegalizeResult 3423 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3424 LLT NarrowTy) { 3425 if (TypeIdx != 1) 3426 return UnableToLegalize; 3427 3428 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3429 3430 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3431 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3432 // NarrowSize. 3433 if (SizeOp1 % NarrowSize != 0) 3434 return UnableToLegalize; 3435 int NumParts = SizeOp1 / NarrowSize; 3436 3437 SmallVector<Register, 2> SrcRegs, DstRegs; 3438 SmallVector<uint64_t, 2> Indexes; 3439 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3440 3441 Register OpReg = MI.getOperand(0).getReg(); 3442 uint64_t OpStart = MI.getOperand(2).getImm(); 3443 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3444 for (int i = 0; i < NumParts; ++i) { 3445 unsigned SrcStart = i * NarrowSize; 3446 3447 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3448 // No part of the extract uses this subregister, ignore it. 3449 continue; 3450 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3451 // The entire subregister is extracted, forward the value. 3452 DstRegs.push_back(SrcRegs[i]); 3453 continue; 3454 } 3455 3456 // OpSegStart is where this destination segment would start in OpReg if it 3457 // extended infinitely in both directions. 3458 int64_t ExtractOffset; 3459 uint64_t SegSize; 3460 if (OpStart < SrcStart) { 3461 ExtractOffset = 0; 3462 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3463 } else { 3464 ExtractOffset = OpStart - SrcStart; 3465 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3466 } 3467 3468 Register SegReg = SrcRegs[i]; 3469 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3470 // A genuine extract is needed. 3471 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3472 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3473 } 3474 3475 DstRegs.push_back(SegReg); 3476 } 3477 3478 Register DstReg = MI.getOperand(0).getReg(); 3479 if(MRI.getType(DstReg).isVector()) 3480 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3481 else 3482 MIRBuilder.buildMerge(DstReg, DstRegs); 3483 MI.eraseFromParent(); 3484 return Legalized; 3485 } 3486 3487 LegalizerHelper::LegalizeResult 3488 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3489 LLT NarrowTy) { 3490 // FIXME: Don't know how to handle secondary types yet. 3491 if (TypeIdx != 0) 3492 return UnableToLegalize; 3493 3494 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3495 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3496 3497 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3498 // NarrowSize. 3499 if (SizeOp0 % NarrowSize != 0) 3500 return UnableToLegalize; 3501 3502 int NumParts = SizeOp0 / NarrowSize; 3503 3504 SmallVector<Register, 2> SrcRegs, DstRegs; 3505 SmallVector<uint64_t, 2> Indexes; 3506 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3507 3508 Register OpReg = MI.getOperand(2).getReg(); 3509 uint64_t OpStart = MI.getOperand(3).getImm(); 3510 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3511 for (int i = 0; i < NumParts; ++i) { 3512 unsigned DstStart = i * NarrowSize; 3513 3514 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3515 // No part of the insert affects this subregister, forward the original. 3516 DstRegs.push_back(SrcRegs[i]); 3517 continue; 3518 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3519 // The entire subregister is defined by this insert, forward the new 3520 // value. 3521 DstRegs.push_back(OpReg); 3522 continue; 3523 } 3524 3525 // OpSegStart is where this destination segment would start in OpReg if it 3526 // extended infinitely in both directions. 3527 int64_t ExtractOffset, InsertOffset; 3528 uint64_t SegSize; 3529 if (OpStart < DstStart) { 3530 InsertOffset = 0; 3531 ExtractOffset = DstStart - OpStart; 3532 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3533 } else { 3534 InsertOffset = OpStart - DstStart; 3535 ExtractOffset = 0; 3536 SegSize = 3537 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3538 } 3539 3540 Register SegReg = OpReg; 3541 if (ExtractOffset != 0 || SegSize != OpSize) { 3542 // A genuine extract is needed. 3543 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3544 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3545 } 3546 3547 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3548 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3549 DstRegs.push_back(DstReg); 3550 } 3551 3552 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3553 Register DstReg = MI.getOperand(0).getReg(); 3554 if(MRI.getType(DstReg).isVector()) 3555 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3556 else 3557 MIRBuilder.buildMerge(DstReg, DstRegs); 3558 MI.eraseFromParent(); 3559 return Legalized; 3560 } 3561 3562 LegalizerHelper::LegalizeResult 3563 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3564 LLT NarrowTy) { 3565 Register DstReg = MI.getOperand(0).getReg(); 3566 LLT DstTy = MRI.getType(DstReg); 3567 3568 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3569 3570 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3571 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3572 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3573 LLT LeftoverTy; 3574 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3575 Src0Regs, Src0LeftoverRegs)) 3576 return UnableToLegalize; 3577 3578 LLT Unused; 3579 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3580 Src1Regs, Src1LeftoverRegs)) 3581 llvm_unreachable("inconsistent extractParts result"); 3582 3583 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3584 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3585 {Src0Regs[I], Src1Regs[I]}); 3586 DstRegs.push_back(Inst->getOperand(0).getReg()); 3587 } 3588 3589 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3590 auto Inst = MIRBuilder.buildInstr( 3591 MI.getOpcode(), 3592 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3593 DstLeftoverRegs.push_back(Inst->getOperand(0).getReg()); 3594 } 3595 3596 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3597 LeftoverTy, DstLeftoverRegs); 3598 3599 MI.eraseFromParent(); 3600 return Legalized; 3601 } 3602 3603 LegalizerHelper::LegalizeResult 3604 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3605 LLT NarrowTy) { 3606 if (TypeIdx != 0) 3607 return UnableToLegalize; 3608 3609 Register CondReg = MI.getOperand(1).getReg(); 3610 LLT CondTy = MRI.getType(CondReg); 3611 if (CondTy.isVector()) // TODO: Handle vselect 3612 return UnableToLegalize; 3613 3614 Register DstReg = MI.getOperand(0).getReg(); 3615 LLT DstTy = MRI.getType(DstReg); 3616 3617 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3618 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3619 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3620 LLT LeftoverTy; 3621 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3622 Src1Regs, Src1LeftoverRegs)) 3623 return UnableToLegalize; 3624 3625 LLT Unused; 3626 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3627 Src2Regs, Src2LeftoverRegs)) 3628 llvm_unreachable("inconsistent extractParts result"); 3629 3630 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3631 auto Select = MIRBuilder.buildSelect(NarrowTy, 3632 CondReg, Src1Regs[I], Src2Regs[I]); 3633 DstRegs.push_back(Select->getOperand(0).getReg()); 3634 } 3635 3636 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3637 auto Select = MIRBuilder.buildSelect( 3638 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3639 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 3640 } 3641 3642 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3643 LeftoverTy, DstLeftoverRegs); 3644 3645 MI.eraseFromParent(); 3646 return Legalized; 3647 } 3648 3649 LegalizerHelper::LegalizeResult 3650 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3651 unsigned Opc = MI.getOpcode(); 3652 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 3653 auto isSupported = [this](const LegalityQuery &Q) { 3654 auto QAction = LI.getAction(Q).Action; 3655 return QAction == Legal || QAction == Libcall || QAction == Custom; 3656 }; 3657 switch (Opc) { 3658 default: 3659 return UnableToLegalize; 3660 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 3661 // This trivially expands to CTLZ. 3662 Observer.changingInstr(MI); 3663 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 3664 Observer.changedInstr(MI); 3665 return Legalized; 3666 } 3667 case TargetOpcode::G_CTLZ: { 3668 Register SrcReg = MI.getOperand(1).getReg(); 3669 unsigned Len = Ty.getSizeInBits(); 3670 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 3671 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 3672 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 3673 {Ty}, {SrcReg}); 3674 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3675 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3676 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3677 SrcReg, MIBZero); 3678 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3679 MIBCtlzZU); 3680 MI.eraseFromParent(); 3681 return Legalized; 3682 } 3683 // for now, we do this: 3684 // NewLen = NextPowerOf2(Len); 3685 // x = x | (x >> 1); 3686 // x = x | (x >> 2); 3687 // ... 3688 // x = x | (x >>16); 3689 // x = x | (x >>32); // for 64-bit input 3690 // Upto NewLen/2 3691 // return Len - popcount(x); 3692 // 3693 // Ref: "Hacker's Delight" by Henry Warren 3694 Register Op = SrcReg; 3695 unsigned NewLen = PowerOf2Ceil(Len); 3696 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 3697 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 3698 auto MIBOp = MIRBuilder.buildInstr( 3699 TargetOpcode::G_OR, {Ty}, 3700 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 3701 {Op, MIBShiftAmt})}); 3702 Op = MIBOp->getOperand(0).getReg(); 3703 } 3704 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 3705 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3706 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 3707 MI.eraseFromParent(); 3708 return Legalized; 3709 } 3710 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 3711 // This trivially expands to CTTZ. 3712 Observer.changingInstr(MI); 3713 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 3714 Observer.changedInstr(MI); 3715 return Legalized; 3716 } 3717 case TargetOpcode::G_CTTZ: { 3718 Register SrcReg = MI.getOperand(1).getReg(); 3719 unsigned Len = Ty.getSizeInBits(); 3720 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 3721 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 3722 // zero. 3723 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 3724 {Ty}, {SrcReg}); 3725 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3726 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3727 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3728 SrcReg, MIBZero); 3729 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3730 MIBCttzZU); 3731 MI.eraseFromParent(); 3732 return Legalized; 3733 } 3734 // for now, we use: { return popcount(~x & (x - 1)); } 3735 // unless the target has ctlz but not ctpop, in which case we use: 3736 // { return 32 - nlz(~x & (x-1)); } 3737 // Ref: "Hacker's Delight" by Henry Warren 3738 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 3739 auto MIBNot = 3740 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 3741 auto MIBTmp = MIRBuilder.buildInstr( 3742 TargetOpcode::G_AND, {Ty}, 3743 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 3744 {SrcReg, MIBCstNeg1})}); 3745 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 3746 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 3747 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 3748 MIRBuilder.buildInstr( 3749 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3750 {MIBCstLen, 3751 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 3752 MI.eraseFromParent(); 3753 return Legalized; 3754 } 3755 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 3756 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 3757 return Legalized; 3758 } 3759 } 3760 } 3761 3762 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 3763 // representation. 3764 LegalizerHelper::LegalizeResult 3765 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 3766 Register Dst = MI.getOperand(0).getReg(); 3767 Register Src = MI.getOperand(1).getReg(); 3768 const LLT S64 = LLT::scalar(64); 3769 const LLT S32 = LLT::scalar(32); 3770 const LLT S1 = LLT::scalar(1); 3771 3772 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 3773 3774 // unsigned cul2f(ulong u) { 3775 // uint lz = clz(u); 3776 // uint e = (u != 0) ? 127U + 63U - lz : 0; 3777 // u = (u << lz) & 0x7fffffffffffffffUL; 3778 // ulong t = u & 0xffffffffffUL; 3779 // uint v = (e << 23) | (uint)(u >> 40); 3780 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 3781 // return as_float(v + r); 3782 // } 3783 3784 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 3785 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 3786 3787 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 3788 3789 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 3790 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 3791 3792 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 3793 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 3794 3795 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 3796 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 3797 3798 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 3799 3800 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 3801 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 3802 3803 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 3804 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 3805 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 3806 3807 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 3808 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 3809 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 3810 auto One = MIRBuilder.buildConstant(S32, 1); 3811 3812 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 3813 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 3814 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 3815 MIRBuilder.buildAdd(Dst, V, R); 3816 3817 return Legalized; 3818 } 3819 3820 LegalizerHelper::LegalizeResult 3821 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3822 Register Dst = MI.getOperand(0).getReg(); 3823 Register Src = MI.getOperand(1).getReg(); 3824 LLT DstTy = MRI.getType(Dst); 3825 LLT SrcTy = MRI.getType(Src); 3826 3827 if (SrcTy != LLT::scalar(64)) 3828 return UnableToLegalize; 3829 3830 if (DstTy == LLT::scalar(32)) { 3831 // TODO: SelectionDAG has several alternative expansions to port which may 3832 // be more reasonble depending on the available instructions. If a target 3833 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 3834 // intermediate type, this is probably worse. 3835 return lowerU64ToF32BitOps(MI); 3836 } 3837 3838 return UnableToLegalize; 3839 } 3840 3841 LegalizerHelper::LegalizeResult 3842 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3843 Register Dst = MI.getOperand(0).getReg(); 3844 Register Src = MI.getOperand(1).getReg(); 3845 LLT DstTy = MRI.getType(Dst); 3846 LLT SrcTy = MRI.getType(Src); 3847 3848 const LLT S64 = LLT::scalar(64); 3849 const LLT S32 = LLT::scalar(32); 3850 const LLT S1 = LLT::scalar(1); 3851 3852 if (SrcTy != S64) 3853 return UnableToLegalize; 3854 3855 if (DstTy == S32) { 3856 // signed cl2f(long l) { 3857 // long s = l >> 63; 3858 // float r = cul2f((l + s) ^ s); 3859 // return s ? -r : r; 3860 // } 3861 Register L = Src; 3862 auto SignBit = MIRBuilder.buildConstant(S64, 63); 3863 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 3864 3865 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 3866 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 3867 auto R = MIRBuilder.buildUITOFP(S32, Xor); 3868 3869 auto RNeg = MIRBuilder.buildFNeg(S32, R); 3870 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 3871 MIRBuilder.buildConstant(S64, 0)); 3872 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 3873 return Legalized; 3874 } 3875 3876 return UnableToLegalize; 3877 } 3878 3879 LegalizerHelper::LegalizeResult 3880 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3881 Register Dst = MI.getOperand(0).getReg(); 3882 Register Src = MI.getOperand(1).getReg(); 3883 LLT DstTy = MRI.getType(Dst); 3884 LLT SrcTy = MRI.getType(Src); 3885 const LLT S64 = LLT::scalar(64); 3886 const LLT S32 = LLT::scalar(32); 3887 3888 if (SrcTy != S64 && SrcTy != S32) 3889 return UnableToLegalize; 3890 if (DstTy != S32 && DstTy != S64) 3891 return UnableToLegalize; 3892 3893 // FPTOSI gives same result as FPTOUI for positive signed integers. 3894 // FPTOUI needs to deal with fp values that convert to unsigned integers 3895 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 3896 3897 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 3898 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 3899 : APFloat::IEEEdouble(), 3900 APInt::getNullValue(SrcTy.getSizeInBits())); 3901 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 3902 3903 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 3904 3905 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 3906 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 3907 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 3908 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 3909 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 3910 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 3911 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 3912 3913 MachineInstrBuilder FCMP = 3914 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, DstTy, Src, Threshold); 3915 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 3916 3917 MI.eraseFromParent(); 3918 return Legalized; 3919 } 3920 3921 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 3922 switch (Opc) { 3923 case TargetOpcode::G_SMIN: 3924 return CmpInst::ICMP_SLT; 3925 case TargetOpcode::G_SMAX: 3926 return CmpInst::ICMP_SGT; 3927 case TargetOpcode::G_UMIN: 3928 return CmpInst::ICMP_ULT; 3929 case TargetOpcode::G_UMAX: 3930 return CmpInst::ICMP_UGT; 3931 default: 3932 llvm_unreachable("not in integer min/max"); 3933 } 3934 } 3935 3936 LegalizerHelper::LegalizeResult 3937 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3938 Register Dst = MI.getOperand(0).getReg(); 3939 Register Src0 = MI.getOperand(1).getReg(); 3940 Register Src1 = MI.getOperand(2).getReg(); 3941 3942 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 3943 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 3944 3945 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 3946 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 3947 3948 MI.eraseFromParent(); 3949 return Legalized; 3950 } 3951 3952 LegalizerHelper::LegalizeResult 3953 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3954 Register Dst = MI.getOperand(0).getReg(); 3955 Register Src0 = MI.getOperand(1).getReg(); 3956 Register Src1 = MI.getOperand(2).getReg(); 3957 3958 const LLT Src0Ty = MRI.getType(Src0); 3959 const LLT Src1Ty = MRI.getType(Src1); 3960 3961 const int Src0Size = Src0Ty.getScalarSizeInBits(); 3962 const int Src1Size = Src1Ty.getScalarSizeInBits(); 3963 3964 auto SignBitMask = MIRBuilder.buildConstant( 3965 Src0Ty, APInt::getSignMask(Src0Size)); 3966 3967 auto NotSignBitMask = MIRBuilder.buildConstant( 3968 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 3969 3970 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 3971 MachineInstr *Or; 3972 3973 if (Src0Ty == Src1Ty) { 3974 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 3975 Or = MIRBuilder.buildOr(Dst, And0, And1); 3976 } else if (Src0Size > Src1Size) { 3977 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 3978 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 3979 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 3980 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 3981 Or = MIRBuilder.buildOr(Dst, And0, And1); 3982 } else { 3983 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 3984 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 3985 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 3986 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 3987 Or = MIRBuilder.buildOr(Dst, And0, And1); 3988 } 3989 3990 // Be careful about setting nsz/nnan/ninf on every instruction, since the 3991 // constants are a nan and -0.0, but the final result should preserve 3992 // everything. 3993 if (unsigned Flags = MI.getFlags()) 3994 Or->setFlags(Flags); 3995 3996 MI.eraseFromParent(); 3997 return Legalized; 3998 } 3999 4000 LegalizerHelper::LegalizeResult 4001 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4002 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4003 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4004 4005 Register Dst = MI.getOperand(0).getReg(); 4006 Register Src0 = MI.getOperand(1).getReg(); 4007 Register Src1 = MI.getOperand(2).getReg(); 4008 LLT Ty = MRI.getType(Dst); 4009 4010 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4011 // Insert canonicalizes if it's possible we need to quiet to get correct 4012 // sNaN behavior. 4013 4014 // Note this must be done here, and not as an optimization combine in the 4015 // absence of a dedicate quiet-snan instruction as we're using an 4016 // omni-purpose G_FCANONICALIZE. 4017 if (!isKnownNeverSNaN(Src0, MRI)) 4018 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4019 4020 if (!isKnownNeverSNaN(Src1, MRI)) 4021 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4022 } 4023 4024 // If there are no nans, it's safe to simply replace this with the non-IEEE 4025 // version. 4026 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4027 MI.eraseFromParent(); 4028 return Legalized; 4029 } 4030 4031 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4032 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4033 Register DstReg = MI.getOperand(0).getReg(); 4034 LLT Ty = MRI.getType(DstReg); 4035 unsigned Flags = MI.getFlags(); 4036 4037 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4038 Flags); 4039 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4040 MI.eraseFromParent(); 4041 return Legalized; 4042 } 4043 4044 LegalizerHelper::LegalizeResult 4045 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4046 const unsigned NumDst = MI.getNumOperands() - 1; 4047 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4048 LLT SrcTy = MRI.getType(SrcReg); 4049 4050 Register Dst0Reg = MI.getOperand(0).getReg(); 4051 LLT DstTy = MRI.getType(Dst0Reg); 4052 4053 4054 // Expand scalarizing unmerge as bitcast to integer and shift. 4055 if (!DstTy.isVector() && SrcTy.isVector() && 4056 SrcTy.getElementType() == DstTy) { 4057 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4058 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4059 4060 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4061 4062 const unsigned DstSize = DstTy.getSizeInBits(); 4063 unsigned Offset = DstSize; 4064 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4065 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4066 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4067 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4068 } 4069 4070 MI.eraseFromParent(); 4071 return Legalized; 4072 } 4073 4074 return UnableToLegalize; 4075 } 4076 4077 LegalizerHelper::LegalizeResult 4078 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4079 Register DstReg = MI.getOperand(0).getReg(); 4080 Register Src0Reg = MI.getOperand(1).getReg(); 4081 Register Src1Reg = MI.getOperand(2).getReg(); 4082 LLT Src0Ty = MRI.getType(Src0Reg); 4083 LLT DstTy = MRI.getType(DstReg); 4084 LLT IdxTy = LLT::scalar(32); 4085 4086 const Constant *ShufMask = MI.getOperand(3).getShuffleMask(); 4087 4088 SmallVector<int, 32> Mask; 4089 ShuffleVectorInst::getShuffleMask(ShufMask, Mask); 4090 4091 if (DstTy.isScalar()) { 4092 if (Src0Ty.isVector()) 4093 return UnableToLegalize; 4094 4095 // This is just a SELECT. 4096 assert(Mask.size() == 1 && "Expected a single mask element"); 4097 Register Val; 4098 if (Mask[0] < 0 || Mask[0] > 1) 4099 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4100 else 4101 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4102 MIRBuilder.buildCopy(DstReg, Val); 4103 MI.eraseFromParent(); 4104 return Legalized; 4105 } 4106 4107 Register Undef; 4108 SmallVector<Register, 32> BuildVec; 4109 LLT EltTy = DstTy.getElementType(); 4110 4111 for (int Idx : Mask) { 4112 if (Idx < 0) { 4113 if (!Undef.isValid()) 4114 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4115 BuildVec.push_back(Undef); 4116 continue; 4117 } 4118 4119 if (Src0Ty.isScalar()) { 4120 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4121 } else { 4122 int NumElts = Src0Ty.getNumElements(); 4123 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4124 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4125 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4126 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4127 BuildVec.push_back(Extract.getReg(0)); 4128 } 4129 } 4130 4131 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4132 MI.eraseFromParent(); 4133 return Legalized; 4134 } 4135 4136 LegalizerHelper::LegalizeResult 4137 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4138 Register Dst = MI.getOperand(0).getReg(); 4139 Register AllocSize = MI.getOperand(1).getReg(); 4140 unsigned Align = MI.getOperand(2).getImm(); 4141 4142 const auto &MF = *MI.getMF(); 4143 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4144 4145 LLT PtrTy = MRI.getType(Dst); 4146 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4147 4148 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4149 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4150 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4151 4152 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4153 // have to generate an extra instruction to negate the alloc and then use 4154 // G_GEP to add the negative offset. 4155 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4156 if (Align) { 4157 APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true); 4158 AlignMask.negate(); 4159 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4160 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4161 } 4162 4163 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4164 MIRBuilder.buildCopy(SPReg, SPTmp); 4165 MIRBuilder.buildCopy(Dst, SPTmp); 4166 4167 MI.eraseFromParent(); 4168 return Legalized; 4169 } 4170 4171 LegalizerHelper::LegalizeResult 4172 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4173 Register Dst = MI.getOperand(0).getReg(); 4174 Register Src = MI.getOperand(1).getReg(); 4175 unsigned Offset = MI.getOperand(2).getImm(); 4176 4177 LLT DstTy = MRI.getType(Dst); 4178 LLT SrcTy = MRI.getType(Src); 4179 4180 if (DstTy.isScalar() && 4181 (SrcTy.isScalar() || 4182 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4183 LLT SrcIntTy = SrcTy; 4184 if (!SrcTy.isScalar()) { 4185 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4186 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 4187 } 4188 4189 if (Offset == 0) 4190 MIRBuilder.buildTrunc(Dst, Src); 4191 else { 4192 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 4193 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 4194 MIRBuilder.buildTrunc(Dst, Shr); 4195 } 4196 4197 MI.eraseFromParent(); 4198 return Legalized; 4199 } 4200 4201 return UnableToLegalize; 4202 } 4203 4204 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 4205 Register Dst = MI.getOperand(0).getReg(); 4206 Register Src = MI.getOperand(1).getReg(); 4207 Register InsertSrc = MI.getOperand(2).getReg(); 4208 uint64_t Offset = MI.getOperand(3).getImm(); 4209 4210 LLT DstTy = MRI.getType(Src); 4211 LLT InsertTy = MRI.getType(InsertSrc); 4212 4213 if (InsertTy.isScalar() && 4214 (DstTy.isScalar() || 4215 (DstTy.isVector() && DstTy.getElementType() == InsertTy))) { 4216 LLT IntDstTy = DstTy; 4217 if (!DstTy.isScalar()) { 4218 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 4219 Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0); 4220 } 4221 4222 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 4223 if (Offset != 0) { 4224 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 4225 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 4226 } 4227 4228 APInt MaskVal = ~APInt::getBitsSet(DstTy.getSizeInBits(), Offset, 4229 InsertTy.getSizeInBits()); 4230 4231 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 4232 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 4233 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 4234 4235 MIRBuilder.buildBitcast(Dst, Or); 4236 MI.eraseFromParent(); 4237 return Legalized; 4238 } 4239 4240 return UnableToLegalize; 4241 } 4242 4243 LegalizerHelper::LegalizeResult 4244 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 4245 Register Dst0 = MI.getOperand(0).getReg(); 4246 Register Dst1 = MI.getOperand(1).getReg(); 4247 Register LHS = MI.getOperand(2).getReg(); 4248 Register RHS = MI.getOperand(3).getReg(); 4249 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 4250 4251 LLT Ty = MRI.getType(Dst0); 4252 LLT BoolTy = MRI.getType(Dst1); 4253 4254 if (IsAdd) 4255 MIRBuilder.buildAdd(Dst0, LHS, RHS); 4256 else 4257 MIRBuilder.buildSub(Dst0, LHS, RHS); 4258 4259 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 4260 4261 auto Zero = MIRBuilder.buildConstant(Ty, 0); 4262 4263 // For an addition, the result should be less than one of the operands (LHS) 4264 // if and only if the other operand (RHS) is negative, otherwise there will 4265 // be overflow. 4266 // For a subtraction, the result should be less than one of the operands 4267 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 4268 // otherwise there will be overflow. 4269 auto ResultLowerThanLHS = 4270 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 4271 auto ConditionRHS = MIRBuilder.buildICmp( 4272 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 4273 4274 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 4275 MI.eraseFromParent(); 4276 return Legalized; 4277 } 4278