1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 20 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 23 #include "llvm/CodeGen/GlobalISel/Utils.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/TargetFrameLowering.h" 27 #include "llvm/CodeGen/TargetInstrInfo.h" 28 #include "llvm/CodeGen/TargetLowering.h" 29 #include "llvm/CodeGen/TargetOpcodes.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 37 #define DEBUG_TYPE "legalizer" 38 39 using namespace llvm; 40 using namespace LegalizeActions; 41 using namespace MIPatternMatch; 42 43 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 44 /// 45 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 46 /// with any leftover piece as type \p LeftoverTy 47 /// 48 /// Returns -1 in the first element of the pair if the breakdown is not 49 /// satisfiable. 50 static std::pair<int, int> 51 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 52 assert(!LeftoverTy.isValid() && "this is an out argument"); 53 54 unsigned Size = OrigTy.getSizeInBits(); 55 unsigned NarrowSize = NarrowTy.getSizeInBits(); 56 unsigned NumParts = Size / NarrowSize; 57 unsigned LeftoverSize = Size - NumParts * NarrowSize; 58 assert(Size > NarrowSize); 59 60 if (LeftoverSize == 0) 61 return {NumParts, 0}; 62 63 if (NarrowTy.isVector()) { 64 unsigned EltSize = OrigTy.getScalarSizeInBits(); 65 if (LeftoverSize % EltSize != 0) 66 return {-1, -1}; 67 LeftoverTy = LLT::scalarOrVector( 68 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 69 } else { 70 LeftoverTy = LLT::scalar(LeftoverSize); 71 } 72 73 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 74 return std::make_pair(NumParts, NumLeftover); 75 } 76 77 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 78 79 if (!Ty.isScalar()) 80 return nullptr; 81 82 switch (Ty.getSizeInBits()) { 83 case 16: 84 return Type::getHalfTy(Ctx); 85 case 32: 86 return Type::getFloatTy(Ctx); 87 case 64: 88 return Type::getDoubleTy(Ctx); 89 case 80: 90 return Type::getX86_FP80Ty(Ctx); 91 case 128: 92 return Type::getFP128Ty(Ctx); 93 default: 94 return nullptr; 95 } 96 } 97 98 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 99 GISelChangeObserver &Observer, 100 MachineIRBuilder &Builder) 101 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 102 LI(*MF.getSubtarget().getLegalizerInfo()), 103 TLI(*MF.getSubtarget().getTargetLowering()) { } 104 105 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 106 GISelChangeObserver &Observer, 107 MachineIRBuilder &B) 108 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 109 TLI(*MF.getSubtarget().getTargetLowering()) { } 110 111 LegalizerHelper::LegalizeResult 112 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 113 LostDebugLocObserver &LocObserver) { 114 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 115 116 MIRBuilder.setInstrAndDebugLoc(MI); 117 118 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 119 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 120 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 121 auto Step = LI.getAction(MI, MRI); 122 switch (Step.Action) { 123 case Legal: 124 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 125 return AlreadyLegal; 126 case Libcall: 127 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 128 return libcall(MI, LocObserver); 129 case NarrowScalar: 130 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 131 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 132 case WidenScalar: 133 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 134 return widenScalar(MI, Step.TypeIdx, Step.NewType); 135 case Bitcast: 136 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 137 return bitcast(MI, Step.TypeIdx, Step.NewType); 138 case Lower: 139 LLVM_DEBUG(dbgs() << ".. Lower\n"); 140 return lower(MI, Step.TypeIdx, Step.NewType); 141 case FewerElements: 142 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 143 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 144 case MoreElements: 145 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 146 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 147 case Custom: 148 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 149 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 150 default: 151 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 152 return UnableToLegalize; 153 } 154 } 155 156 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 157 SmallVectorImpl<Register> &VRegs) { 158 for (int i = 0; i < NumParts; ++i) 159 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 160 MIRBuilder.buildUnmerge(VRegs, Reg); 161 } 162 163 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 164 LLT MainTy, LLT &LeftoverTy, 165 SmallVectorImpl<Register> &VRegs, 166 SmallVectorImpl<Register> &LeftoverRegs) { 167 assert(!LeftoverTy.isValid() && "this is an out argument"); 168 169 unsigned RegSize = RegTy.getSizeInBits(); 170 unsigned MainSize = MainTy.getSizeInBits(); 171 unsigned NumParts = RegSize / MainSize; 172 unsigned LeftoverSize = RegSize - NumParts * MainSize; 173 174 // Use an unmerge when possible. 175 if (LeftoverSize == 0) { 176 for (unsigned I = 0; I < NumParts; ++I) 177 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 178 MIRBuilder.buildUnmerge(VRegs, Reg); 179 return true; 180 } 181 182 // Perform irregular split. Leftover is last element of RegPieces. 183 if (MainTy.isVector()) { 184 SmallVector<Register, 8> RegPieces; 185 extractVectorParts(Reg, MainTy.getNumElements(), RegPieces); 186 for (unsigned i = 0; i < RegPieces.size() - 1; ++i) 187 VRegs.push_back(RegPieces[i]); 188 LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]); 189 LeftoverTy = MRI.getType(LeftoverRegs[0]); 190 return true; 191 } 192 193 LeftoverTy = LLT::scalar(LeftoverSize); 194 // For irregular sizes, extract the individual parts. 195 for (unsigned I = 0; I != NumParts; ++I) { 196 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 197 VRegs.push_back(NewReg); 198 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 199 } 200 201 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 202 Offset += LeftoverSize) { 203 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 204 LeftoverRegs.push_back(NewReg); 205 MIRBuilder.buildExtract(NewReg, Reg, Offset); 206 } 207 208 return true; 209 } 210 211 void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts, 212 SmallVectorImpl<Register> &VRegs) { 213 LLT RegTy = MRI.getType(Reg); 214 assert(RegTy.isVector() && "Expected a vector type"); 215 216 LLT EltTy = RegTy.getElementType(); 217 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 218 unsigned RegNumElts = RegTy.getNumElements(); 219 unsigned LeftoverNumElts = RegNumElts % NumElts; 220 unsigned NumNarrowTyPieces = RegNumElts / NumElts; 221 222 // Perfect split without leftover 223 if (LeftoverNumElts == 0) 224 return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs); 225 226 // Irregular split. Provide direct access to all elements for artifact 227 // combiner using unmerge to elements. Then build vectors with NumElts 228 // elements. Remaining element(s) will be (used to build vector) Leftover. 229 SmallVector<Register, 8> Elts; 230 extractParts(Reg, EltTy, RegNumElts, Elts); 231 232 unsigned Offset = 0; 233 // Requested sub-vectors of NarrowTy. 234 for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) { 235 ArrayRef<Register> Pieces(&Elts[Offset], NumElts); 236 VRegs.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0)); 237 } 238 239 // Leftover element(s). 240 if (LeftoverNumElts == 1) { 241 VRegs.push_back(Elts[Offset]); 242 } else { 243 LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy); 244 ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts); 245 VRegs.push_back(MIRBuilder.buildMerge(LeftoverTy, Pieces).getReg(0)); 246 } 247 } 248 249 void LegalizerHelper::insertParts(Register DstReg, 250 LLT ResultTy, LLT PartTy, 251 ArrayRef<Register> PartRegs, 252 LLT LeftoverTy, 253 ArrayRef<Register> LeftoverRegs) { 254 if (!LeftoverTy.isValid()) { 255 assert(LeftoverRegs.empty()); 256 257 if (!ResultTy.isVector()) { 258 MIRBuilder.buildMerge(DstReg, PartRegs); 259 return; 260 } 261 262 if (PartTy.isVector()) 263 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 264 else 265 MIRBuilder.buildBuildVector(DstReg, PartRegs); 266 return; 267 } 268 269 // Merge sub-vectors with different number of elements and insert into DstReg. 270 if (ResultTy.isVector()) { 271 assert(LeftoverRegs.size() == 1 && "Expected one leftover register"); 272 SmallVector<Register, 8> AllRegs; 273 for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs)) 274 AllRegs.push_back(Reg); 275 return mergeMixedSubvectors(DstReg, AllRegs); 276 } 277 278 SmallVector<Register> GCDRegs; 279 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy); 280 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs)) 281 extractGCDType(GCDRegs, GCDTy, PartReg); 282 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); 283 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); 284 } 285 286 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts, 287 Register Reg) { 288 LLT Ty = MRI.getType(Reg); 289 SmallVector<Register, 8> RegElts; 290 extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts); 291 Elts.append(RegElts); 292 } 293 294 /// Merge \p PartRegs with different types into \p DstReg. 295 void LegalizerHelper::mergeMixedSubvectors(Register DstReg, 296 ArrayRef<Register> PartRegs) { 297 SmallVector<Register, 8> AllElts; 298 for (unsigned i = 0; i < PartRegs.size() - 1; ++i) 299 appendVectorElts(AllElts, PartRegs[i]); 300 301 Register Leftover = PartRegs[PartRegs.size() - 1]; 302 if (MRI.getType(Leftover).isScalar()) 303 AllElts.push_back(Leftover); 304 else 305 appendVectorElts(AllElts, Leftover); 306 307 MIRBuilder.buildMerge(DstReg, AllElts); 308 } 309 310 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 311 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 312 const MachineInstr &MI) { 313 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 314 315 const int StartIdx = Regs.size(); 316 const int NumResults = MI.getNumOperands() - 1; 317 Regs.resize(Regs.size() + NumResults); 318 for (int I = 0; I != NumResults; ++I) 319 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 320 } 321 322 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 323 LLT GCDTy, Register SrcReg) { 324 LLT SrcTy = MRI.getType(SrcReg); 325 if (SrcTy == GCDTy) { 326 // If the source already evenly divides the result type, we don't need to do 327 // anything. 328 Parts.push_back(SrcReg); 329 } else { 330 // Need to split into common type sized pieces. 331 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 332 getUnmergeResults(Parts, *Unmerge); 333 } 334 } 335 336 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 337 LLT NarrowTy, Register SrcReg) { 338 LLT SrcTy = MRI.getType(SrcReg); 339 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 340 extractGCDType(Parts, GCDTy, SrcReg); 341 return GCDTy; 342 } 343 344 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 345 SmallVectorImpl<Register> &VRegs, 346 unsigned PadStrategy) { 347 LLT LCMTy = getLCMType(DstTy, NarrowTy); 348 349 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 350 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 351 int NumOrigSrc = VRegs.size(); 352 353 Register PadReg; 354 355 // Get a value we can use to pad the source value if the sources won't evenly 356 // cover the result type. 357 if (NumOrigSrc < NumParts * NumSubParts) { 358 if (PadStrategy == TargetOpcode::G_ZEXT) 359 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 360 else if (PadStrategy == TargetOpcode::G_ANYEXT) 361 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 362 else { 363 assert(PadStrategy == TargetOpcode::G_SEXT); 364 365 // Shift the sign bit of the low register through the high register. 366 auto ShiftAmt = 367 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 368 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 369 } 370 } 371 372 // Registers for the final merge to be produced. 373 SmallVector<Register, 4> Remerge(NumParts); 374 375 // Registers needed for intermediate merges, which will be merged into a 376 // source for Remerge. 377 SmallVector<Register, 4> SubMerge(NumSubParts); 378 379 // Once we've fully read off the end of the original source bits, we can reuse 380 // the same high bits for remaining padding elements. 381 Register AllPadReg; 382 383 // Build merges to the LCM type to cover the original result type. 384 for (int I = 0; I != NumParts; ++I) { 385 bool AllMergePartsArePadding = true; 386 387 // Build the requested merges to the requested type. 388 for (int J = 0; J != NumSubParts; ++J) { 389 int Idx = I * NumSubParts + J; 390 if (Idx >= NumOrigSrc) { 391 SubMerge[J] = PadReg; 392 continue; 393 } 394 395 SubMerge[J] = VRegs[Idx]; 396 397 // There are meaningful bits here we can't reuse later. 398 AllMergePartsArePadding = false; 399 } 400 401 // If we've filled up a complete piece with padding bits, we can directly 402 // emit the natural sized constant if applicable, rather than a merge of 403 // smaller constants. 404 if (AllMergePartsArePadding && !AllPadReg) { 405 if (PadStrategy == TargetOpcode::G_ANYEXT) 406 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 407 else if (PadStrategy == TargetOpcode::G_ZEXT) 408 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 409 410 // If this is a sign extension, we can't materialize a trivial constant 411 // with the right type and have to produce a merge. 412 } 413 414 if (AllPadReg) { 415 // Avoid creating additional instructions if we're just adding additional 416 // copies of padding bits. 417 Remerge[I] = AllPadReg; 418 continue; 419 } 420 421 if (NumSubParts == 1) 422 Remerge[I] = SubMerge[0]; 423 else 424 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 425 426 // In the sign extend padding case, re-use the first all-signbit merge. 427 if (AllMergePartsArePadding && !AllPadReg) 428 AllPadReg = Remerge[I]; 429 } 430 431 VRegs = std::move(Remerge); 432 return LCMTy; 433 } 434 435 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 436 ArrayRef<Register> RemergeRegs) { 437 LLT DstTy = MRI.getType(DstReg); 438 439 // Create the merge to the widened source, and extract the relevant bits into 440 // the result. 441 442 if (DstTy == LCMTy) { 443 MIRBuilder.buildMerge(DstReg, RemergeRegs); 444 return; 445 } 446 447 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 448 if (DstTy.isScalar() && LCMTy.isScalar()) { 449 MIRBuilder.buildTrunc(DstReg, Remerge); 450 return; 451 } 452 453 if (LCMTy.isVector()) { 454 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 455 SmallVector<Register, 8> UnmergeDefs(NumDefs); 456 UnmergeDefs[0] = DstReg; 457 for (unsigned I = 1; I != NumDefs; ++I) 458 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 459 460 MIRBuilder.buildUnmerge(UnmergeDefs, 461 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 462 return; 463 } 464 465 llvm_unreachable("unhandled case"); 466 } 467 468 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 469 #define RTLIBCASE_INT(LibcallPrefix) \ 470 do { \ 471 switch (Size) { \ 472 case 32: \ 473 return RTLIB::LibcallPrefix##32; \ 474 case 64: \ 475 return RTLIB::LibcallPrefix##64; \ 476 case 128: \ 477 return RTLIB::LibcallPrefix##128; \ 478 default: \ 479 llvm_unreachable("unexpected size"); \ 480 } \ 481 } while (0) 482 483 #define RTLIBCASE(LibcallPrefix) \ 484 do { \ 485 switch (Size) { \ 486 case 32: \ 487 return RTLIB::LibcallPrefix##32; \ 488 case 64: \ 489 return RTLIB::LibcallPrefix##64; \ 490 case 80: \ 491 return RTLIB::LibcallPrefix##80; \ 492 case 128: \ 493 return RTLIB::LibcallPrefix##128; \ 494 default: \ 495 llvm_unreachable("unexpected size"); \ 496 } \ 497 } while (0) 498 499 switch (Opcode) { 500 case TargetOpcode::G_SDIV: 501 RTLIBCASE_INT(SDIV_I); 502 case TargetOpcode::G_UDIV: 503 RTLIBCASE_INT(UDIV_I); 504 case TargetOpcode::G_SREM: 505 RTLIBCASE_INT(SREM_I); 506 case TargetOpcode::G_UREM: 507 RTLIBCASE_INT(UREM_I); 508 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 509 RTLIBCASE_INT(CTLZ_I); 510 case TargetOpcode::G_FADD: 511 RTLIBCASE(ADD_F); 512 case TargetOpcode::G_FSUB: 513 RTLIBCASE(SUB_F); 514 case TargetOpcode::G_FMUL: 515 RTLIBCASE(MUL_F); 516 case TargetOpcode::G_FDIV: 517 RTLIBCASE(DIV_F); 518 case TargetOpcode::G_FEXP: 519 RTLIBCASE(EXP_F); 520 case TargetOpcode::G_FEXP2: 521 RTLIBCASE(EXP2_F); 522 case TargetOpcode::G_FREM: 523 RTLIBCASE(REM_F); 524 case TargetOpcode::G_FPOW: 525 RTLIBCASE(POW_F); 526 case TargetOpcode::G_FMA: 527 RTLIBCASE(FMA_F); 528 case TargetOpcode::G_FSIN: 529 RTLIBCASE(SIN_F); 530 case TargetOpcode::G_FCOS: 531 RTLIBCASE(COS_F); 532 case TargetOpcode::G_FLOG10: 533 RTLIBCASE(LOG10_F); 534 case TargetOpcode::G_FLOG: 535 RTLIBCASE(LOG_F); 536 case TargetOpcode::G_FLOG2: 537 RTLIBCASE(LOG2_F); 538 case TargetOpcode::G_FCEIL: 539 RTLIBCASE(CEIL_F); 540 case TargetOpcode::G_FFLOOR: 541 RTLIBCASE(FLOOR_F); 542 case TargetOpcode::G_FMINNUM: 543 RTLIBCASE(FMIN_F); 544 case TargetOpcode::G_FMAXNUM: 545 RTLIBCASE(FMAX_F); 546 case TargetOpcode::G_FSQRT: 547 RTLIBCASE(SQRT_F); 548 case TargetOpcode::G_FRINT: 549 RTLIBCASE(RINT_F); 550 case TargetOpcode::G_FNEARBYINT: 551 RTLIBCASE(NEARBYINT_F); 552 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 553 RTLIBCASE(ROUNDEVEN_F); 554 } 555 llvm_unreachable("Unknown libcall function"); 556 } 557 558 /// True if an instruction is in tail position in its caller. Intended for 559 /// legalizing libcalls as tail calls when possible. 560 static bool isLibCallInTailPosition(MachineInstr &MI, 561 const TargetInstrInfo &TII, 562 MachineRegisterInfo &MRI) { 563 MachineBasicBlock &MBB = *MI.getParent(); 564 const Function &F = MBB.getParent()->getFunction(); 565 566 // Conservatively require the attributes of the call to match those of 567 // the return. Ignore NoAlias and NonNull because they don't affect the 568 // call sequence. 569 AttributeList CallerAttrs = F.getAttributes(); 570 if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs()) 571 .removeAttribute(Attribute::NoAlias) 572 .removeAttribute(Attribute::NonNull) 573 .hasAttributes()) 574 return false; 575 576 // It's not safe to eliminate the sign / zero extension of the return value. 577 if (CallerAttrs.hasRetAttr(Attribute::ZExt) || 578 CallerAttrs.hasRetAttr(Attribute::SExt)) 579 return false; 580 581 // Only tail call if the following instruction is a standard return or if we 582 // have a `thisreturn` callee, and a sequence like: 583 // 584 // G_MEMCPY %0, %1, %2 585 // $x0 = COPY %0 586 // RET_ReallyLR implicit $x0 587 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 588 if (Next != MBB.instr_end() && Next->isCopy()) { 589 switch (MI.getOpcode()) { 590 default: 591 llvm_unreachable("unsupported opcode"); 592 case TargetOpcode::G_BZERO: 593 return false; 594 case TargetOpcode::G_MEMCPY: 595 case TargetOpcode::G_MEMMOVE: 596 case TargetOpcode::G_MEMSET: 597 break; 598 } 599 600 Register VReg = MI.getOperand(0).getReg(); 601 if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg()) 602 return false; 603 604 Register PReg = Next->getOperand(0).getReg(); 605 if (!PReg.isPhysical()) 606 return false; 607 608 auto Ret = next_nodbg(Next, MBB.instr_end()); 609 if (Ret == MBB.instr_end() || !Ret->isReturn()) 610 return false; 611 612 if (Ret->getNumImplicitOperands() != 1) 613 return false; 614 615 if (PReg != Ret->getOperand(0).getReg()) 616 return false; 617 618 // Skip over the COPY that we just validated. 619 Next = Ret; 620 } 621 622 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 623 return false; 624 625 return true; 626 } 627 628 LegalizerHelper::LegalizeResult 629 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 630 const CallLowering::ArgInfo &Result, 631 ArrayRef<CallLowering::ArgInfo> Args, 632 const CallingConv::ID CC) { 633 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 634 635 CallLowering::CallLoweringInfo Info; 636 Info.CallConv = CC; 637 Info.Callee = MachineOperand::CreateES(Name); 638 Info.OrigRet = Result; 639 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 640 if (!CLI.lowerCall(MIRBuilder, Info)) 641 return LegalizerHelper::UnableToLegalize; 642 643 return LegalizerHelper::Legalized; 644 } 645 646 LegalizerHelper::LegalizeResult 647 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 648 const CallLowering::ArgInfo &Result, 649 ArrayRef<CallLowering::ArgInfo> Args) { 650 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 651 const char *Name = TLI.getLibcallName(Libcall); 652 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 653 return createLibcall(MIRBuilder, Name, Result, Args, CC); 654 } 655 656 // Useful for libcalls where all operands have the same type. 657 static LegalizerHelper::LegalizeResult 658 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 659 Type *OpType) { 660 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 661 662 // FIXME: What does the original arg index mean here? 663 SmallVector<CallLowering::ArgInfo, 3> Args; 664 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 665 Args.push_back({MO.getReg(), OpType, 0}); 666 return createLibcall(MIRBuilder, Libcall, 667 {MI.getOperand(0).getReg(), OpType, 0}, Args); 668 } 669 670 LegalizerHelper::LegalizeResult 671 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 672 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 673 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 674 675 SmallVector<CallLowering::ArgInfo, 3> Args; 676 // Add all the args, except for the last which is an imm denoting 'tail'. 677 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 678 Register Reg = MI.getOperand(i).getReg(); 679 680 // Need derive an IR type for call lowering. 681 LLT OpLLT = MRI.getType(Reg); 682 Type *OpTy = nullptr; 683 if (OpLLT.isPointer()) 684 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 685 else 686 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 687 Args.push_back({Reg, OpTy, 0}); 688 } 689 690 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 691 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 692 RTLIB::Libcall RTLibcall; 693 unsigned Opc = MI.getOpcode(); 694 switch (Opc) { 695 case TargetOpcode::G_BZERO: 696 RTLibcall = RTLIB::BZERO; 697 break; 698 case TargetOpcode::G_MEMCPY: 699 RTLibcall = RTLIB::MEMCPY; 700 Args[0].Flags[0].setReturned(); 701 break; 702 case TargetOpcode::G_MEMMOVE: 703 RTLibcall = RTLIB::MEMMOVE; 704 Args[0].Flags[0].setReturned(); 705 break; 706 case TargetOpcode::G_MEMSET: 707 RTLibcall = RTLIB::MEMSET; 708 Args[0].Flags[0].setReturned(); 709 break; 710 default: 711 llvm_unreachable("unsupported opcode"); 712 } 713 const char *Name = TLI.getLibcallName(RTLibcall); 714 715 // Unsupported libcall on the target. 716 if (!Name) { 717 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 718 << MIRBuilder.getTII().getName(Opc) << "\n"); 719 return LegalizerHelper::UnableToLegalize; 720 } 721 722 CallLowering::CallLoweringInfo Info; 723 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 724 Info.Callee = MachineOperand::CreateES(Name); 725 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0); 726 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 727 isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI); 728 729 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 730 if (!CLI.lowerCall(MIRBuilder, Info)) 731 return LegalizerHelper::UnableToLegalize; 732 733 if (Info.LoweredTailCall) { 734 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 735 736 // Check debug locations before removing the return. 737 LocObserver.checkpoint(true); 738 739 // We must have a return following the call (or debug insts) to get past 740 // isLibCallInTailPosition. 741 do { 742 MachineInstr *Next = MI.getNextNode(); 743 assert(Next && 744 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && 745 "Expected instr following MI to be return or debug inst?"); 746 // We lowered a tail call, so the call is now the return from the block. 747 // Delete the old return. 748 Next->eraseFromParent(); 749 } while (MI.getNextNode()); 750 751 // We expect to lose the debug location from the return. 752 LocObserver.checkpoint(false); 753 } 754 755 return LegalizerHelper::Legalized; 756 } 757 758 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 759 Type *FromType) { 760 auto ToMVT = MVT::getVT(ToType); 761 auto FromMVT = MVT::getVT(FromType); 762 763 switch (Opcode) { 764 case TargetOpcode::G_FPEXT: 765 return RTLIB::getFPEXT(FromMVT, ToMVT); 766 case TargetOpcode::G_FPTRUNC: 767 return RTLIB::getFPROUND(FromMVT, ToMVT); 768 case TargetOpcode::G_FPTOSI: 769 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 770 case TargetOpcode::G_FPTOUI: 771 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 772 case TargetOpcode::G_SITOFP: 773 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 774 case TargetOpcode::G_UITOFP: 775 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 776 } 777 llvm_unreachable("Unsupported libcall function"); 778 } 779 780 static LegalizerHelper::LegalizeResult 781 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 782 Type *FromType) { 783 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 784 return createLibcall(MIRBuilder, Libcall, 785 {MI.getOperand(0).getReg(), ToType, 0}, 786 {{MI.getOperand(1).getReg(), FromType, 0}}); 787 } 788 789 LegalizerHelper::LegalizeResult 790 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 791 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 792 unsigned Size = LLTy.getSizeInBits(); 793 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 794 795 switch (MI.getOpcode()) { 796 default: 797 return UnableToLegalize; 798 case TargetOpcode::G_SDIV: 799 case TargetOpcode::G_UDIV: 800 case TargetOpcode::G_SREM: 801 case TargetOpcode::G_UREM: 802 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 803 Type *HLTy = IntegerType::get(Ctx, Size); 804 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 805 if (Status != Legalized) 806 return Status; 807 break; 808 } 809 case TargetOpcode::G_FADD: 810 case TargetOpcode::G_FSUB: 811 case TargetOpcode::G_FMUL: 812 case TargetOpcode::G_FDIV: 813 case TargetOpcode::G_FMA: 814 case TargetOpcode::G_FPOW: 815 case TargetOpcode::G_FREM: 816 case TargetOpcode::G_FCOS: 817 case TargetOpcode::G_FSIN: 818 case TargetOpcode::G_FLOG10: 819 case TargetOpcode::G_FLOG: 820 case TargetOpcode::G_FLOG2: 821 case TargetOpcode::G_FEXP: 822 case TargetOpcode::G_FEXP2: 823 case TargetOpcode::G_FCEIL: 824 case TargetOpcode::G_FFLOOR: 825 case TargetOpcode::G_FMINNUM: 826 case TargetOpcode::G_FMAXNUM: 827 case TargetOpcode::G_FSQRT: 828 case TargetOpcode::G_FRINT: 829 case TargetOpcode::G_FNEARBYINT: 830 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 831 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 832 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 833 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 834 return UnableToLegalize; 835 } 836 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 837 if (Status != Legalized) 838 return Status; 839 break; 840 } 841 case TargetOpcode::G_FPEXT: 842 case TargetOpcode::G_FPTRUNC: { 843 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 844 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 845 if (!FromTy || !ToTy) 846 return UnableToLegalize; 847 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 848 if (Status != Legalized) 849 return Status; 850 break; 851 } 852 case TargetOpcode::G_FPTOSI: 853 case TargetOpcode::G_FPTOUI: { 854 // FIXME: Support other types 855 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 856 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 857 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 858 return UnableToLegalize; 859 LegalizeResult Status = conversionLibcall( 860 MI, MIRBuilder, 861 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 862 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 863 if (Status != Legalized) 864 return Status; 865 break; 866 } 867 case TargetOpcode::G_SITOFP: 868 case TargetOpcode::G_UITOFP: { 869 // FIXME: Support other types 870 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 871 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 872 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 873 return UnableToLegalize; 874 LegalizeResult Status = conversionLibcall( 875 MI, MIRBuilder, 876 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 877 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 878 if (Status != Legalized) 879 return Status; 880 break; 881 } 882 case TargetOpcode::G_BZERO: 883 case TargetOpcode::G_MEMCPY: 884 case TargetOpcode::G_MEMMOVE: 885 case TargetOpcode::G_MEMSET: { 886 LegalizeResult Result = 887 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 888 if (Result != Legalized) 889 return Result; 890 MI.eraseFromParent(); 891 return Result; 892 } 893 } 894 895 MI.eraseFromParent(); 896 return Legalized; 897 } 898 899 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 900 unsigned TypeIdx, 901 LLT NarrowTy) { 902 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 903 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 904 905 switch (MI.getOpcode()) { 906 default: 907 return UnableToLegalize; 908 case TargetOpcode::G_IMPLICIT_DEF: { 909 Register DstReg = MI.getOperand(0).getReg(); 910 LLT DstTy = MRI.getType(DstReg); 911 912 // If SizeOp0 is not an exact multiple of NarrowSize, emit 913 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 914 // FIXME: Although this would also be legal for the general case, it causes 915 // a lot of regressions in the emitted code (superfluous COPYs, artifact 916 // combines not being hit). This seems to be a problem related to the 917 // artifact combiner. 918 if (SizeOp0 % NarrowSize != 0) { 919 LLT ImplicitTy = NarrowTy; 920 if (DstTy.isVector()) 921 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); 922 923 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 924 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 925 926 MI.eraseFromParent(); 927 return Legalized; 928 } 929 930 int NumParts = SizeOp0 / NarrowSize; 931 932 SmallVector<Register, 2> DstRegs; 933 for (int i = 0; i < NumParts; ++i) 934 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 935 936 if (DstTy.isVector()) 937 MIRBuilder.buildBuildVector(DstReg, DstRegs); 938 else 939 MIRBuilder.buildMerge(DstReg, DstRegs); 940 MI.eraseFromParent(); 941 return Legalized; 942 } 943 case TargetOpcode::G_CONSTANT: { 944 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 945 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 946 unsigned TotalSize = Ty.getSizeInBits(); 947 unsigned NarrowSize = NarrowTy.getSizeInBits(); 948 int NumParts = TotalSize / NarrowSize; 949 950 SmallVector<Register, 4> PartRegs; 951 for (int I = 0; I != NumParts; ++I) { 952 unsigned Offset = I * NarrowSize; 953 auto K = MIRBuilder.buildConstant(NarrowTy, 954 Val.lshr(Offset).trunc(NarrowSize)); 955 PartRegs.push_back(K.getReg(0)); 956 } 957 958 LLT LeftoverTy; 959 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 960 SmallVector<Register, 1> LeftoverRegs; 961 if (LeftoverBits != 0) { 962 LeftoverTy = LLT::scalar(LeftoverBits); 963 auto K = MIRBuilder.buildConstant( 964 LeftoverTy, 965 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 966 LeftoverRegs.push_back(K.getReg(0)); 967 } 968 969 insertParts(MI.getOperand(0).getReg(), 970 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 971 972 MI.eraseFromParent(); 973 return Legalized; 974 } 975 case TargetOpcode::G_SEXT: 976 case TargetOpcode::G_ZEXT: 977 case TargetOpcode::G_ANYEXT: 978 return narrowScalarExt(MI, TypeIdx, NarrowTy); 979 case TargetOpcode::G_TRUNC: { 980 if (TypeIdx != 1) 981 return UnableToLegalize; 982 983 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 984 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 985 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 986 return UnableToLegalize; 987 } 988 989 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 990 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 991 MI.eraseFromParent(); 992 return Legalized; 993 } 994 995 case TargetOpcode::G_FREEZE: { 996 if (TypeIdx != 0) 997 return UnableToLegalize; 998 999 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1000 // Should widen scalar first 1001 if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0) 1002 return UnableToLegalize; 1003 1004 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); 1005 SmallVector<Register, 8> Parts; 1006 for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) { 1007 Parts.push_back( 1008 MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0)); 1009 } 1010 1011 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Parts); 1012 MI.eraseFromParent(); 1013 return Legalized; 1014 } 1015 case TargetOpcode::G_ADD: 1016 case TargetOpcode::G_SUB: 1017 case TargetOpcode::G_SADDO: 1018 case TargetOpcode::G_SSUBO: 1019 case TargetOpcode::G_SADDE: 1020 case TargetOpcode::G_SSUBE: 1021 case TargetOpcode::G_UADDO: 1022 case TargetOpcode::G_USUBO: 1023 case TargetOpcode::G_UADDE: 1024 case TargetOpcode::G_USUBE: 1025 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 1026 case TargetOpcode::G_MUL: 1027 case TargetOpcode::G_UMULH: 1028 return narrowScalarMul(MI, NarrowTy); 1029 case TargetOpcode::G_EXTRACT: 1030 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 1031 case TargetOpcode::G_INSERT: 1032 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 1033 case TargetOpcode::G_LOAD: { 1034 auto &LoadMI = cast<GLoad>(MI); 1035 Register DstReg = LoadMI.getDstReg(); 1036 LLT DstTy = MRI.getType(DstReg); 1037 if (DstTy.isVector()) 1038 return UnableToLegalize; 1039 1040 if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) { 1041 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1042 MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO()); 1043 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1044 LoadMI.eraseFromParent(); 1045 return Legalized; 1046 } 1047 1048 return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy); 1049 } 1050 case TargetOpcode::G_ZEXTLOAD: 1051 case TargetOpcode::G_SEXTLOAD: { 1052 auto &LoadMI = cast<GExtLoad>(MI); 1053 Register DstReg = LoadMI.getDstReg(); 1054 Register PtrReg = LoadMI.getPointerReg(); 1055 1056 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1057 auto &MMO = LoadMI.getMMO(); 1058 unsigned MemSize = MMO.getSizeInBits(); 1059 1060 if (MemSize == NarrowSize) { 1061 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1062 } else if (MemSize < NarrowSize) { 1063 MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO); 1064 } else if (MemSize > NarrowSize) { 1065 // FIXME: Need to split the load. 1066 return UnableToLegalize; 1067 } 1068 1069 if (isa<GZExtLoad>(LoadMI)) 1070 MIRBuilder.buildZExt(DstReg, TmpReg); 1071 else 1072 MIRBuilder.buildSExt(DstReg, TmpReg); 1073 1074 LoadMI.eraseFromParent(); 1075 return Legalized; 1076 } 1077 case TargetOpcode::G_STORE: { 1078 auto &StoreMI = cast<GStore>(MI); 1079 1080 Register SrcReg = StoreMI.getValueReg(); 1081 LLT SrcTy = MRI.getType(SrcReg); 1082 if (SrcTy.isVector()) 1083 return UnableToLegalize; 1084 1085 int NumParts = SizeOp0 / NarrowSize; 1086 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 1087 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 1088 if (SrcTy.isVector() && LeftoverBits != 0) 1089 return UnableToLegalize; 1090 1091 if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) { 1092 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1093 MIRBuilder.buildTrunc(TmpReg, SrcReg); 1094 MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO()); 1095 StoreMI.eraseFromParent(); 1096 return Legalized; 1097 } 1098 1099 return reduceLoadStoreWidth(StoreMI, 0, NarrowTy); 1100 } 1101 case TargetOpcode::G_SELECT: 1102 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1103 case TargetOpcode::G_AND: 1104 case TargetOpcode::G_OR: 1105 case TargetOpcode::G_XOR: { 1106 // Legalize bitwise operation: 1107 // A = BinOp<Ty> B, C 1108 // into: 1109 // B1, ..., BN = G_UNMERGE_VALUES B 1110 // C1, ..., CN = G_UNMERGE_VALUES C 1111 // A1 = BinOp<Ty/N> B1, C2 1112 // ... 1113 // AN = BinOp<Ty/N> BN, CN 1114 // A = G_MERGE_VALUES A1, ..., AN 1115 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1116 } 1117 case TargetOpcode::G_SHL: 1118 case TargetOpcode::G_LSHR: 1119 case TargetOpcode::G_ASHR: 1120 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1121 case TargetOpcode::G_CTLZ: 1122 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1123 case TargetOpcode::G_CTTZ: 1124 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1125 case TargetOpcode::G_CTPOP: 1126 if (TypeIdx == 1) 1127 switch (MI.getOpcode()) { 1128 case TargetOpcode::G_CTLZ: 1129 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1130 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1131 case TargetOpcode::G_CTTZ: 1132 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1133 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1134 case TargetOpcode::G_CTPOP: 1135 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1136 default: 1137 return UnableToLegalize; 1138 } 1139 1140 Observer.changingInstr(MI); 1141 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1142 Observer.changedInstr(MI); 1143 return Legalized; 1144 case TargetOpcode::G_INTTOPTR: 1145 if (TypeIdx != 1) 1146 return UnableToLegalize; 1147 1148 Observer.changingInstr(MI); 1149 narrowScalarSrc(MI, NarrowTy, 1); 1150 Observer.changedInstr(MI); 1151 return Legalized; 1152 case TargetOpcode::G_PTRTOINT: 1153 if (TypeIdx != 0) 1154 return UnableToLegalize; 1155 1156 Observer.changingInstr(MI); 1157 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1158 Observer.changedInstr(MI); 1159 return Legalized; 1160 case TargetOpcode::G_PHI: { 1161 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1162 // NarrowSize. 1163 if (SizeOp0 % NarrowSize != 0) 1164 return UnableToLegalize; 1165 1166 unsigned NumParts = SizeOp0 / NarrowSize; 1167 SmallVector<Register, 2> DstRegs(NumParts); 1168 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1169 Observer.changingInstr(MI); 1170 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1171 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1172 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1173 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1174 SrcRegs[i / 2]); 1175 } 1176 MachineBasicBlock &MBB = *MI.getParent(); 1177 MIRBuilder.setInsertPt(MBB, MI); 1178 for (unsigned i = 0; i < NumParts; ++i) { 1179 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1180 MachineInstrBuilder MIB = 1181 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1182 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1183 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1184 } 1185 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1186 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1187 Observer.changedInstr(MI); 1188 MI.eraseFromParent(); 1189 return Legalized; 1190 } 1191 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1192 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1193 if (TypeIdx != 2) 1194 return UnableToLegalize; 1195 1196 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1197 Observer.changingInstr(MI); 1198 narrowScalarSrc(MI, NarrowTy, OpIdx); 1199 Observer.changedInstr(MI); 1200 return Legalized; 1201 } 1202 case TargetOpcode::G_ICMP: { 1203 Register LHS = MI.getOperand(2).getReg(); 1204 LLT SrcTy = MRI.getType(LHS); 1205 uint64_t SrcSize = SrcTy.getSizeInBits(); 1206 CmpInst::Predicate Pred = 1207 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1208 1209 // TODO: Handle the non-equality case for weird sizes. 1210 if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred)) 1211 return UnableToLegalize; 1212 1213 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover) 1214 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs; 1215 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs, 1216 LHSLeftoverRegs)) 1217 return UnableToLegalize; 1218 1219 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type. 1220 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs; 1221 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused, 1222 RHSPartRegs, RHSLeftoverRegs)) 1223 return UnableToLegalize; 1224 1225 // We now have the LHS and RHS of the compare split into narrow-type 1226 // registers, plus potentially some leftover type. 1227 Register Dst = MI.getOperand(0).getReg(); 1228 LLT ResTy = MRI.getType(Dst); 1229 if (ICmpInst::isEquality(Pred)) { 1230 // For each part on the LHS and RHS, keep track of the result of XOR-ing 1231 // them together. For each equal part, the result should be all 0s. For 1232 // each non-equal part, we'll get at least one 1. 1233 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1234 SmallVector<Register, 4> Xors; 1235 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) { 1236 auto LHS = std::get<0>(LHSAndRHS); 1237 auto RHS = std::get<1>(LHSAndRHS); 1238 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0); 1239 Xors.push_back(Xor); 1240 } 1241 1242 // Build a G_XOR for each leftover register. Each G_XOR must be widened 1243 // to the desired narrow type so that we can OR them together later. 1244 SmallVector<Register, 4> WidenedXors; 1245 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) { 1246 auto LHS = std::get<0>(LHSAndRHS); 1247 auto RHS = std::get<1>(LHSAndRHS); 1248 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0); 1249 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor); 1250 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors, 1251 /* PadStrategy = */ TargetOpcode::G_ZEXT); 1252 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end()); 1253 } 1254 1255 // Now, for each part we broke up, we know if they are equal/not equal 1256 // based off the G_XOR. We can OR these all together and compare against 1257 // 0 to get the result. 1258 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?"); 1259 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]); 1260 for (unsigned I = 2, E = Xors.size(); I < E; ++I) 1261 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]); 1262 MIRBuilder.buildICmp(Pred, Dst, Or, Zero); 1263 } else { 1264 // TODO: Handle non-power-of-two types. 1265 assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?"); 1266 assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?"); 1267 Register LHSL = LHSPartRegs[0]; 1268 Register LHSH = LHSPartRegs[1]; 1269 Register RHSL = RHSPartRegs[0]; 1270 Register RHSH = RHSPartRegs[1]; 1271 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1272 MachineInstrBuilder CmpHEQ = 1273 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1274 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1275 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1276 MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH); 1277 } 1278 MI.eraseFromParent(); 1279 return Legalized; 1280 } 1281 case TargetOpcode::G_SEXT_INREG: { 1282 if (TypeIdx != 0) 1283 return UnableToLegalize; 1284 1285 int64_t SizeInBits = MI.getOperand(2).getImm(); 1286 1287 // So long as the new type has more bits than the bits we're extending we 1288 // don't need to break it apart. 1289 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1290 Observer.changingInstr(MI); 1291 // We don't lose any non-extension bits by truncating the src and 1292 // sign-extending the dst. 1293 MachineOperand &MO1 = MI.getOperand(1); 1294 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1295 MO1.setReg(TruncMIB.getReg(0)); 1296 1297 MachineOperand &MO2 = MI.getOperand(0); 1298 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1299 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1300 MIRBuilder.buildSExt(MO2, DstExt); 1301 MO2.setReg(DstExt); 1302 Observer.changedInstr(MI); 1303 return Legalized; 1304 } 1305 1306 // Break it apart. Components below the extension point are unmodified. The 1307 // component containing the extension point becomes a narrower SEXT_INREG. 1308 // Components above it are ashr'd from the component containing the 1309 // extension point. 1310 if (SizeOp0 % NarrowSize != 0) 1311 return UnableToLegalize; 1312 int NumParts = SizeOp0 / NarrowSize; 1313 1314 // List the registers where the destination will be scattered. 1315 SmallVector<Register, 2> DstRegs; 1316 // List the registers where the source will be split. 1317 SmallVector<Register, 2> SrcRegs; 1318 1319 // Create all the temporary registers. 1320 for (int i = 0; i < NumParts; ++i) { 1321 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1322 1323 SrcRegs.push_back(SrcReg); 1324 } 1325 1326 // Explode the big arguments into smaller chunks. 1327 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1328 1329 Register AshrCstReg = 1330 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1331 .getReg(0); 1332 Register FullExtensionReg = 0; 1333 Register PartialExtensionReg = 0; 1334 1335 // Do the operation on each small part. 1336 for (int i = 0; i < NumParts; ++i) { 1337 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1338 DstRegs.push_back(SrcRegs[i]); 1339 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1340 assert(PartialExtensionReg && 1341 "Expected to visit partial extension before full"); 1342 if (FullExtensionReg) { 1343 DstRegs.push_back(FullExtensionReg); 1344 continue; 1345 } 1346 DstRegs.push_back( 1347 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1348 .getReg(0)); 1349 FullExtensionReg = DstRegs.back(); 1350 } else { 1351 DstRegs.push_back( 1352 MIRBuilder 1353 .buildInstr( 1354 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1355 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1356 .getReg(0)); 1357 PartialExtensionReg = DstRegs.back(); 1358 } 1359 } 1360 1361 // Gather the destination registers into the final destination. 1362 Register DstReg = MI.getOperand(0).getReg(); 1363 MIRBuilder.buildMerge(DstReg, DstRegs); 1364 MI.eraseFromParent(); 1365 return Legalized; 1366 } 1367 case TargetOpcode::G_BSWAP: 1368 case TargetOpcode::G_BITREVERSE: { 1369 if (SizeOp0 % NarrowSize != 0) 1370 return UnableToLegalize; 1371 1372 Observer.changingInstr(MI); 1373 SmallVector<Register, 2> SrcRegs, DstRegs; 1374 unsigned NumParts = SizeOp0 / NarrowSize; 1375 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1376 1377 for (unsigned i = 0; i < NumParts; ++i) { 1378 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1379 {SrcRegs[NumParts - 1 - i]}); 1380 DstRegs.push_back(DstPart.getReg(0)); 1381 } 1382 1383 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1384 1385 Observer.changedInstr(MI); 1386 MI.eraseFromParent(); 1387 return Legalized; 1388 } 1389 case TargetOpcode::G_PTR_ADD: 1390 case TargetOpcode::G_PTRMASK: { 1391 if (TypeIdx != 1) 1392 return UnableToLegalize; 1393 Observer.changingInstr(MI); 1394 narrowScalarSrc(MI, NarrowTy, 2); 1395 Observer.changedInstr(MI); 1396 return Legalized; 1397 } 1398 case TargetOpcode::G_FPTOUI: 1399 case TargetOpcode::G_FPTOSI: 1400 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1401 case TargetOpcode::G_FPEXT: 1402 if (TypeIdx != 0) 1403 return UnableToLegalize; 1404 Observer.changingInstr(MI); 1405 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1406 Observer.changedInstr(MI); 1407 return Legalized; 1408 } 1409 } 1410 1411 Register LegalizerHelper::coerceToScalar(Register Val) { 1412 LLT Ty = MRI.getType(Val); 1413 if (Ty.isScalar()) 1414 return Val; 1415 1416 const DataLayout &DL = MIRBuilder.getDataLayout(); 1417 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1418 if (Ty.isPointer()) { 1419 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1420 return Register(); 1421 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1422 } 1423 1424 Register NewVal = Val; 1425 1426 assert(Ty.isVector()); 1427 LLT EltTy = Ty.getElementType(); 1428 if (EltTy.isPointer()) 1429 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1430 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1431 } 1432 1433 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1434 unsigned OpIdx, unsigned ExtOpcode) { 1435 MachineOperand &MO = MI.getOperand(OpIdx); 1436 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1437 MO.setReg(ExtB.getReg(0)); 1438 } 1439 1440 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1441 unsigned OpIdx) { 1442 MachineOperand &MO = MI.getOperand(OpIdx); 1443 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1444 MO.setReg(ExtB.getReg(0)); 1445 } 1446 1447 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1448 unsigned OpIdx, unsigned TruncOpcode) { 1449 MachineOperand &MO = MI.getOperand(OpIdx); 1450 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1451 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1452 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1453 MO.setReg(DstExt); 1454 } 1455 1456 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1457 unsigned OpIdx, unsigned ExtOpcode) { 1458 MachineOperand &MO = MI.getOperand(OpIdx); 1459 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1460 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1461 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1462 MO.setReg(DstTrunc); 1463 } 1464 1465 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1466 unsigned OpIdx) { 1467 MachineOperand &MO = MI.getOperand(OpIdx); 1468 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1469 Register Dst = MO.getReg(); 1470 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1471 MO.setReg(DstExt); 1472 MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt); 1473 } 1474 1475 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1476 unsigned OpIdx) { 1477 MachineOperand &MO = MI.getOperand(OpIdx); 1478 SmallVector<Register, 8> Regs; 1479 MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0)); 1480 } 1481 1482 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1483 MachineOperand &Op = MI.getOperand(OpIdx); 1484 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1485 } 1486 1487 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1488 MachineOperand &MO = MI.getOperand(OpIdx); 1489 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1490 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1491 MIRBuilder.buildBitcast(MO, CastDst); 1492 MO.setReg(CastDst); 1493 } 1494 1495 LegalizerHelper::LegalizeResult 1496 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1497 LLT WideTy) { 1498 if (TypeIdx != 1) 1499 return UnableToLegalize; 1500 1501 Register DstReg = MI.getOperand(0).getReg(); 1502 LLT DstTy = MRI.getType(DstReg); 1503 if (DstTy.isVector()) 1504 return UnableToLegalize; 1505 1506 Register Src1 = MI.getOperand(1).getReg(); 1507 LLT SrcTy = MRI.getType(Src1); 1508 const int DstSize = DstTy.getSizeInBits(); 1509 const int SrcSize = SrcTy.getSizeInBits(); 1510 const int WideSize = WideTy.getSizeInBits(); 1511 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1512 1513 unsigned NumOps = MI.getNumOperands(); 1514 unsigned NumSrc = MI.getNumOperands() - 1; 1515 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1516 1517 if (WideSize >= DstSize) { 1518 // Directly pack the bits in the target type. 1519 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1520 1521 for (unsigned I = 2; I != NumOps; ++I) { 1522 const unsigned Offset = (I - 1) * PartSize; 1523 1524 Register SrcReg = MI.getOperand(I).getReg(); 1525 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1526 1527 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1528 1529 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1530 MRI.createGenericVirtualRegister(WideTy); 1531 1532 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1533 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1534 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1535 ResultReg = NextResult; 1536 } 1537 1538 if (WideSize > DstSize) 1539 MIRBuilder.buildTrunc(DstReg, ResultReg); 1540 else if (DstTy.isPointer()) 1541 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1542 1543 MI.eraseFromParent(); 1544 return Legalized; 1545 } 1546 1547 // Unmerge the original values to the GCD type, and recombine to the next 1548 // multiple greater than the original type. 1549 // 1550 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1551 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1552 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1553 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1554 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1555 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1556 // %12:_(s12) = G_MERGE_VALUES %10, %11 1557 // 1558 // Padding with undef if necessary: 1559 // 1560 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1561 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1562 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1563 // %7:_(s2) = G_IMPLICIT_DEF 1564 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1565 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1566 // %10:_(s12) = G_MERGE_VALUES %8, %9 1567 1568 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1569 LLT GCDTy = LLT::scalar(GCD); 1570 1571 SmallVector<Register, 8> Parts; 1572 SmallVector<Register, 8> NewMergeRegs; 1573 SmallVector<Register, 8> Unmerges; 1574 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1575 1576 // Decompose the original operands if they don't evenly divide. 1577 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 1578 Register SrcReg = MO.getReg(); 1579 if (GCD == SrcSize) { 1580 Unmerges.push_back(SrcReg); 1581 } else { 1582 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1583 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1584 Unmerges.push_back(Unmerge.getReg(J)); 1585 } 1586 } 1587 1588 // Pad with undef to the next size that is a multiple of the requested size. 1589 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1590 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1591 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1592 Unmerges.push_back(UndefReg); 1593 } 1594 1595 const int PartsPerGCD = WideSize / GCD; 1596 1597 // Build merges of each piece. 1598 ArrayRef<Register> Slicer(Unmerges); 1599 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1600 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1601 NewMergeRegs.push_back(Merge.getReg(0)); 1602 } 1603 1604 // A truncate may be necessary if the requested type doesn't evenly divide the 1605 // original result type. 1606 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1607 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1608 } else { 1609 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1610 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1611 } 1612 1613 MI.eraseFromParent(); 1614 return Legalized; 1615 } 1616 1617 LegalizerHelper::LegalizeResult 1618 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1619 LLT WideTy) { 1620 if (TypeIdx != 0) 1621 return UnableToLegalize; 1622 1623 int NumDst = MI.getNumOperands() - 1; 1624 Register SrcReg = MI.getOperand(NumDst).getReg(); 1625 LLT SrcTy = MRI.getType(SrcReg); 1626 if (SrcTy.isVector()) 1627 return UnableToLegalize; 1628 1629 Register Dst0Reg = MI.getOperand(0).getReg(); 1630 LLT DstTy = MRI.getType(Dst0Reg); 1631 if (!DstTy.isScalar()) 1632 return UnableToLegalize; 1633 1634 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1635 if (SrcTy.isPointer()) { 1636 const DataLayout &DL = MIRBuilder.getDataLayout(); 1637 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1638 LLVM_DEBUG( 1639 dbgs() << "Not casting non-integral address space integer\n"); 1640 return UnableToLegalize; 1641 } 1642 1643 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1644 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1645 } 1646 1647 // Widen SrcTy to WideTy. This does not affect the result, but since the 1648 // user requested this size, it is probably better handled than SrcTy and 1649 // should reduce the total number of legalization artifacts. 1650 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1651 SrcTy = WideTy; 1652 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1653 } 1654 1655 // Theres no unmerge type to target. Directly extract the bits from the 1656 // source type 1657 unsigned DstSize = DstTy.getSizeInBits(); 1658 1659 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1660 for (int I = 1; I != NumDst; ++I) { 1661 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1662 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1663 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1664 } 1665 1666 MI.eraseFromParent(); 1667 return Legalized; 1668 } 1669 1670 // Extend the source to a wider type. 1671 LLT LCMTy = getLCMType(SrcTy, WideTy); 1672 1673 Register WideSrc = SrcReg; 1674 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1675 // TODO: If this is an integral address space, cast to integer and anyext. 1676 if (SrcTy.isPointer()) { 1677 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1678 return UnableToLegalize; 1679 } 1680 1681 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1682 } 1683 1684 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1685 1686 // Create a sequence of unmerges and merges to the original results. Since we 1687 // may have widened the source, we will need to pad the results with dead defs 1688 // to cover the source register. 1689 // e.g. widen s48 to s64: 1690 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1691 // 1692 // => 1693 // %4:_(s192) = G_ANYEXT %0:_(s96) 1694 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1695 // ; unpack to GCD type, with extra dead defs 1696 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1697 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1698 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1699 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1700 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1701 const LLT GCDTy = getGCDType(WideTy, DstTy); 1702 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1703 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1704 1705 // Directly unmerge to the destination without going through a GCD type 1706 // if possible 1707 if (PartsPerRemerge == 1) { 1708 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1709 1710 for (int I = 0; I != NumUnmerge; ++I) { 1711 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1712 1713 for (int J = 0; J != PartsPerUnmerge; ++J) { 1714 int Idx = I * PartsPerUnmerge + J; 1715 if (Idx < NumDst) 1716 MIB.addDef(MI.getOperand(Idx).getReg()); 1717 else { 1718 // Create dead def for excess components. 1719 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1720 } 1721 } 1722 1723 MIB.addUse(Unmerge.getReg(I)); 1724 } 1725 } else { 1726 SmallVector<Register, 16> Parts; 1727 for (int J = 0; J != NumUnmerge; ++J) 1728 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1729 1730 SmallVector<Register, 8> RemergeParts; 1731 for (int I = 0; I != NumDst; ++I) { 1732 for (int J = 0; J < PartsPerRemerge; ++J) { 1733 const int Idx = I * PartsPerRemerge + J; 1734 RemergeParts.emplace_back(Parts[Idx]); 1735 } 1736 1737 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1738 RemergeParts.clear(); 1739 } 1740 } 1741 1742 MI.eraseFromParent(); 1743 return Legalized; 1744 } 1745 1746 LegalizerHelper::LegalizeResult 1747 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1748 LLT WideTy) { 1749 Register DstReg = MI.getOperand(0).getReg(); 1750 Register SrcReg = MI.getOperand(1).getReg(); 1751 LLT SrcTy = MRI.getType(SrcReg); 1752 1753 LLT DstTy = MRI.getType(DstReg); 1754 unsigned Offset = MI.getOperand(2).getImm(); 1755 1756 if (TypeIdx == 0) { 1757 if (SrcTy.isVector() || DstTy.isVector()) 1758 return UnableToLegalize; 1759 1760 SrcOp Src(SrcReg); 1761 if (SrcTy.isPointer()) { 1762 // Extracts from pointers can be handled only if they are really just 1763 // simple integers. 1764 const DataLayout &DL = MIRBuilder.getDataLayout(); 1765 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1766 return UnableToLegalize; 1767 1768 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1769 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1770 SrcTy = SrcAsIntTy; 1771 } 1772 1773 if (DstTy.isPointer()) 1774 return UnableToLegalize; 1775 1776 if (Offset == 0) { 1777 // Avoid a shift in the degenerate case. 1778 MIRBuilder.buildTrunc(DstReg, 1779 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1780 MI.eraseFromParent(); 1781 return Legalized; 1782 } 1783 1784 // Do a shift in the source type. 1785 LLT ShiftTy = SrcTy; 1786 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1787 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1788 ShiftTy = WideTy; 1789 } 1790 1791 auto LShr = MIRBuilder.buildLShr( 1792 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1793 MIRBuilder.buildTrunc(DstReg, LShr); 1794 MI.eraseFromParent(); 1795 return Legalized; 1796 } 1797 1798 if (SrcTy.isScalar()) { 1799 Observer.changingInstr(MI); 1800 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1801 Observer.changedInstr(MI); 1802 return Legalized; 1803 } 1804 1805 if (!SrcTy.isVector()) 1806 return UnableToLegalize; 1807 1808 if (DstTy != SrcTy.getElementType()) 1809 return UnableToLegalize; 1810 1811 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1812 return UnableToLegalize; 1813 1814 Observer.changingInstr(MI); 1815 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1816 1817 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1818 Offset); 1819 widenScalarDst(MI, WideTy.getScalarType(), 0); 1820 Observer.changedInstr(MI); 1821 return Legalized; 1822 } 1823 1824 LegalizerHelper::LegalizeResult 1825 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1826 LLT WideTy) { 1827 if (TypeIdx != 0 || WideTy.isVector()) 1828 return UnableToLegalize; 1829 Observer.changingInstr(MI); 1830 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1831 widenScalarDst(MI, WideTy); 1832 Observer.changedInstr(MI); 1833 return Legalized; 1834 } 1835 1836 LegalizerHelper::LegalizeResult 1837 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1838 LLT WideTy) { 1839 unsigned Opcode; 1840 unsigned ExtOpcode; 1841 Optional<Register> CarryIn = None; 1842 switch (MI.getOpcode()) { 1843 default: 1844 llvm_unreachable("Unexpected opcode!"); 1845 case TargetOpcode::G_SADDO: 1846 Opcode = TargetOpcode::G_ADD; 1847 ExtOpcode = TargetOpcode::G_SEXT; 1848 break; 1849 case TargetOpcode::G_SSUBO: 1850 Opcode = TargetOpcode::G_SUB; 1851 ExtOpcode = TargetOpcode::G_SEXT; 1852 break; 1853 case TargetOpcode::G_UADDO: 1854 Opcode = TargetOpcode::G_ADD; 1855 ExtOpcode = TargetOpcode::G_ZEXT; 1856 break; 1857 case TargetOpcode::G_USUBO: 1858 Opcode = TargetOpcode::G_SUB; 1859 ExtOpcode = TargetOpcode::G_ZEXT; 1860 break; 1861 case TargetOpcode::G_SADDE: 1862 Opcode = TargetOpcode::G_UADDE; 1863 ExtOpcode = TargetOpcode::G_SEXT; 1864 CarryIn = MI.getOperand(4).getReg(); 1865 break; 1866 case TargetOpcode::G_SSUBE: 1867 Opcode = TargetOpcode::G_USUBE; 1868 ExtOpcode = TargetOpcode::G_SEXT; 1869 CarryIn = MI.getOperand(4).getReg(); 1870 break; 1871 case TargetOpcode::G_UADDE: 1872 Opcode = TargetOpcode::G_UADDE; 1873 ExtOpcode = TargetOpcode::G_ZEXT; 1874 CarryIn = MI.getOperand(4).getReg(); 1875 break; 1876 case TargetOpcode::G_USUBE: 1877 Opcode = TargetOpcode::G_USUBE; 1878 ExtOpcode = TargetOpcode::G_ZEXT; 1879 CarryIn = MI.getOperand(4).getReg(); 1880 break; 1881 } 1882 1883 if (TypeIdx == 1) { 1884 unsigned BoolExtOp = MIRBuilder.getBoolExtOp(WideTy.isVector(), false); 1885 1886 Observer.changingInstr(MI); 1887 widenScalarDst(MI, WideTy, 1); 1888 if (CarryIn) 1889 widenScalarSrc(MI, WideTy, 4, BoolExtOp); 1890 1891 Observer.changedInstr(MI); 1892 return Legalized; 1893 } 1894 1895 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1896 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1897 // Do the arithmetic in the larger type. 1898 Register NewOp; 1899 if (CarryIn) { 1900 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1901 NewOp = MIRBuilder 1902 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1903 {LHSExt, RHSExt, *CarryIn}) 1904 .getReg(0); 1905 } else { 1906 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1907 } 1908 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1909 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1910 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1911 // There is no overflow if the ExtOp is the same as NewOp. 1912 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1913 // Now trunc the NewOp to the original result. 1914 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1915 MI.eraseFromParent(); 1916 return Legalized; 1917 } 1918 1919 LegalizerHelper::LegalizeResult 1920 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1921 LLT WideTy) { 1922 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1923 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1924 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1925 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1926 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1927 // We can convert this to: 1928 // 1. Any extend iN to iM 1929 // 2. SHL by M-N 1930 // 3. [US][ADD|SUB|SHL]SAT 1931 // 4. L/ASHR by M-N 1932 // 1933 // It may be more efficient to lower this to a min and a max operation in 1934 // the higher precision arithmetic if the promoted operation isn't legal, 1935 // but this decision is up to the target's lowering request. 1936 Register DstReg = MI.getOperand(0).getReg(); 1937 1938 unsigned NewBits = WideTy.getScalarSizeInBits(); 1939 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1940 1941 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1942 // must not left shift the RHS to preserve the shift amount. 1943 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1944 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1945 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1946 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1947 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1948 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1949 1950 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1951 {ShiftL, ShiftR}, MI.getFlags()); 1952 1953 // Use a shift that will preserve the number of sign bits when the trunc is 1954 // folded away. 1955 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1956 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1957 1958 MIRBuilder.buildTrunc(DstReg, Result); 1959 MI.eraseFromParent(); 1960 return Legalized; 1961 } 1962 1963 LegalizerHelper::LegalizeResult 1964 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 1965 LLT WideTy) { 1966 if (TypeIdx == 1) { 1967 Observer.changingInstr(MI); 1968 widenScalarDst(MI, WideTy, 1); 1969 Observer.changedInstr(MI); 1970 return Legalized; 1971 } 1972 1973 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 1974 Register Result = MI.getOperand(0).getReg(); 1975 Register OriginalOverflow = MI.getOperand(1).getReg(); 1976 Register LHS = MI.getOperand(2).getReg(); 1977 Register RHS = MI.getOperand(3).getReg(); 1978 LLT SrcTy = MRI.getType(LHS); 1979 LLT OverflowTy = MRI.getType(OriginalOverflow); 1980 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 1981 1982 // To determine if the result overflowed in the larger type, we extend the 1983 // input to the larger type, do the multiply (checking if it overflows), 1984 // then also check the high bits of the result to see if overflow happened 1985 // there. 1986 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1987 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 1988 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 1989 1990 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, 1991 {LeftOperand, RightOperand}); 1992 auto Mul = Mulo->getOperand(0); 1993 MIRBuilder.buildTrunc(Result, Mul); 1994 1995 MachineInstrBuilder ExtResult; 1996 // Overflow occurred if it occurred in the larger type, or if the high part 1997 // of the result does not zero/sign-extend the low part. Check this second 1998 // possibility first. 1999 if (IsSigned) { 2000 // For signed, overflow occurred when the high part does not sign-extend 2001 // the low part. 2002 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 2003 } else { 2004 // Unsigned overflow occurred when the high part does not zero-extend the 2005 // low part. 2006 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 2007 } 2008 2009 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 2010 // so we don't need to check the overflow result of larger type Mulo. 2011 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { 2012 auto Overflow = 2013 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 2014 // Finally check if the multiplication in the larger type itself overflowed. 2015 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 2016 } else { 2017 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 2018 } 2019 MI.eraseFromParent(); 2020 return Legalized; 2021 } 2022 2023 LegalizerHelper::LegalizeResult 2024 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 2025 switch (MI.getOpcode()) { 2026 default: 2027 return UnableToLegalize; 2028 case TargetOpcode::G_ATOMICRMW_XCHG: 2029 case TargetOpcode::G_ATOMICRMW_ADD: 2030 case TargetOpcode::G_ATOMICRMW_SUB: 2031 case TargetOpcode::G_ATOMICRMW_AND: 2032 case TargetOpcode::G_ATOMICRMW_OR: 2033 case TargetOpcode::G_ATOMICRMW_XOR: 2034 case TargetOpcode::G_ATOMICRMW_MIN: 2035 case TargetOpcode::G_ATOMICRMW_MAX: 2036 case TargetOpcode::G_ATOMICRMW_UMIN: 2037 case TargetOpcode::G_ATOMICRMW_UMAX: 2038 assert(TypeIdx == 0 && "atomicrmw with second scalar type"); 2039 Observer.changingInstr(MI); 2040 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2041 widenScalarDst(MI, WideTy, 0); 2042 Observer.changedInstr(MI); 2043 return Legalized; 2044 case TargetOpcode::G_ATOMIC_CMPXCHG: 2045 assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type"); 2046 Observer.changingInstr(MI); 2047 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2048 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2049 widenScalarDst(MI, WideTy, 0); 2050 Observer.changedInstr(MI); 2051 return Legalized; 2052 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: 2053 if (TypeIdx == 0) { 2054 Observer.changingInstr(MI); 2055 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2056 widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT); 2057 widenScalarDst(MI, WideTy, 0); 2058 Observer.changedInstr(MI); 2059 return Legalized; 2060 } 2061 assert(TypeIdx == 1 && 2062 "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"); 2063 Observer.changingInstr(MI); 2064 widenScalarDst(MI, WideTy, 1); 2065 Observer.changedInstr(MI); 2066 return Legalized; 2067 case TargetOpcode::G_EXTRACT: 2068 return widenScalarExtract(MI, TypeIdx, WideTy); 2069 case TargetOpcode::G_INSERT: 2070 return widenScalarInsert(MI, TypeIdx, WideTy); 2071 case TargetOpcode::G_MERGE_VALUES: 2072 return widenScalarMergeValues(MI, TypeIdx, WideTy); 2073 case TargetOpcode::G_UNMERGE_VALUES: 2074 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 2075 case TargetOpcode::G_SADDO: 2076 case TargetOpcode::G_SSUBO: 2077 case TargetOpcode::G_UADDO: 2078 case TargetOpcode::G_USUBO: 2079 case TargetOpcode::G_SADDE: 2080 case TargetOpcode::G_SSUBE: 2081 case TargetOpcode::G_UADDE: 2082 case TargetOpcode::G_USUBE: 2083 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 2084 case TargetOpcode::G_UMULO: 2085 case TargetOpcode::G_SMULO: 2086 return widenScalarMulo(MI, TypeIdx, WideTy); 2087 case TargetOpcode::G_SADDSAT: 2088 case TargetOpcode::G_SSUBSAT: 2089 case TargetOpcode::G_SSHLSAT: 2090 case TargetOpcode::G_UADDSAT: 2091 case TargetOpcode::G_USUBSAT: 2092 case TargetOpcode::G_USHLSAT: 2093 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 2094 case TargetOpcode::G_CTTZ: 2095 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2096 case TargetOpcode::G_CTLZ: 2097 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2098 case TargetOpcode::G_CTPOP: { 2099 if (TypeIdx == 0) { 2100 Observer.changingInstr(MI); 2101 widenScalarDst(MI, WideTy, 0); 2102 Observer.changedInstr(MI); 2103 return Legalized; 2104 } 2105 2106 Register SrcReg = MI.getOperand(1).getReg(); 2107 2108 // First extend the input. 2109 unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ || 2110 MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF 2111 ? TargetOpcode::G_ANYEXT 2112 : TargetOpcode::G_ZEXT; 2113 auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg}); 2114 LLT CurTy = MRI.getType(SrcReg); 2115 unsigned NewOpc = MI.getOpcode(); 2116 if (NewOpc == TargetOpcode::G_CTTZ) { 2117 // The count is the same in the larger type except if the original 2118 // value was zero. This can be handled by setting the bit just off 2119 // the top of the original type. 2120 auto TopBit = 2121 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 2122 MIBSrc = MIRBuilder.buildOr( 2123 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 2124 // Now we know the operand is non-zero, use the more relaxed opcode. 2125 NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF; 2126 } 2127 2128 // Perform the operation at the larger size. 2129 auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc}); 2130 // This is already the correct result for CTPOP and CTTZs 2131 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 2132 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 2133 // The correct result is NewOp - (Difference in widety and current ty). 2134 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 2135 MIBNewOp = MIRBuilder.buildSub( 2136 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 2137 } 2138 2139 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 2140 MI.eraseFromParent(); 2141 return Legalized; 2142 } 2143 case TargetOpcode::G_BSWAP: { 2144 Observer.changingInstr(MI); 2145 Register DstReg = MI.getOperand(0).getReg(); 2146 2147 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 2148 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2149 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 2150 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2151 2152 MI.getOperand(0).setReg(DstExt); 2153 2154 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2155 2156 LLT Ty = MRI.getType(DstReg); 2157 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2158 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 2159 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 2160 2161 MIRBuilder.buildTrunc(DstReg, ShrReg); 2162 Observer.changedInstr(MI); 2163 return Legalized; 2164 } 2165 case TargetOpcode::G_BITREVERSE: { 2166 Observer.changingInstr(MI); 2167 2168 Register DstReg = MI.getOperand(0).getReg(); 2169 LLT Ty = MRI.getType(DstReg); 2170 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2171 2172 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2173 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2174 MI.getOperand(0).setReg(DstExt); 2175 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2176 2177 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 2178 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 2179 MIRBuilder.buildTrunc(DstReg, Shift); 2180 Observer.changedInstr(MI); 2181 return Legalized; 2182 } 2183 case TargetOpcode::G_FREEZE: 2184 Observer.changingInstr(MI); 2185 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2186 widenScalarDst(MI, WideTy); 2187 Observer.changedInstr(MI); 2188 return Legalized; 2189 2190 case TargetOpcode::G_ABS: 2191 Observer.changingInstr(MI); 2192 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2193 widenScalarDst(MI, WideTy); 2194 Observer.changedInstr(MI); 2195 return Legalized; 2196 2197 case TargetOpcode::G_ADD: 2198 case TargetOpcode::G_AND: 2199 case TargetOpcode::G_MUL: 2200 case TargetOpcode::G_OR: 2201 case TargetOpcode::G_XOR: 2202 case TargetOpcode::G_SUB: 2203 // Perform operation at larger width (any extension is fines here, high bits 2204 // don't affect the result) and then truncate the result back to the 2205 // original type. 2206 Observer.changingInstr(MI); 2207 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2208 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2209 widenScalarDst(MI, WideTy); 2210 Observer.changedInstr(MI); 2211 return Legalized; 2212 2213 case TargetOpcode::G_SBFX: 2214 case TargetOpcode::G_UBFX: 2215 Observer.changingInstr(MI); 2216 2217 if (TypeIdx == 0) { 2218 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2219 widenScalarDst(MI, WideTy); 2220 } else { 2221 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2222 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2223 } 2224 2225 Observer.changedInstr(MI); 2226 return Legalized; 2227 2228 case TargetOpcode::G_SHL: 2229 Observer.changingInstr(MI); 2230 2231 if (TypeIdx == 0) { 2232 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2233 widenScalarDst(MI, WideTy); 2234 } else { 2235 assert(TypeIdx == 1); 2236 // The "number of bits to shift" operand must preserve its value as an 2237 // unsigned integer: 2238 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2239 } 2240 2241 Observer.changedInstr(MI); 2242 return Legalized; 2243 2244 case TargetOpcode::G_SDIV: 2245 case TargetOpcode::G_SREM: 2246 case TargetOpcode::G_SMIN: 2247 case TargetOpcode::G_SMAX: 2248 Observer.changingInstr(MI); 2249 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2250 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2251 widenScalarDst(MI, WideTy); 2252 Observer.changedInstr(MI); 2253 return Legalized; 2254 2255 case TargetOpcode::G_SDIVREM: 2256 Observer.changingInstr(MI); 2257 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2258 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2259 widenScalarDst(MI, WideTy); 2260 widenScalarDst(MI, WideTy, 1); 2261 Observer.changedInstr(MI); 2262 return Legalized; 2263 2264 case TargetOpcode::G_ASHR: 2265 case TargetOpcode::G_LSHR: 2266 Observer.changingInstr(MI); 2267 2268 if (TypeIdx == 0) { 2269 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2270 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2271 2272 widenScalarSrc(MI, WideTy, 1, CvtOp); 2273 widenScalarDst(MI, WideTy); 2274 } else { 2275 assert(TypeIdx == 1); 2276 // The "number of bits to shift" operand must preserve its value as an 2277 // unsigned integer: 2278 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2279 } 2280 2281 Observer.changedInstr(MI); 2282 return Legalized; 2283 case TargetOpcode::G_UDIV: 2284 case TargetOpcode::G_UREM: 2285 case TargetOpcode::G_UMIN: 2286 case TargetOpcode::G_UMAX: 2287 Observer.changingInstr(MI); 2288 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2289 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2290 widenScalarDst(MI, WideTy); 2291 Observer.changedInstr(MI); 2292 return Legalized; 2293 2294 case TargetOpcode::G_UDIVREM: 2295 Observer.changingInstr(MI); 2296 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2297 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2298 widenScalarDst(MI, WideTy); 2299 widenScalarDst(MI, WideTy, 1); 2300 Observer.changedInstr(MI); 2301 return Legalized; 2302 2303 case TargetOpcode::G_SELECT: 2304 Observer.changingInstr(MI); 2305 if (TypeIdx == 0) { 2306 // Perform operation at larger width (any extension is fine here, high 2307 // bits don't affect the result) and then truncate the result back to the 2308 // original type. 2309 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2310 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2311 widenScalarDst(MI, WideTy); 2312 } else { 2313 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2314 // Explicit extension is required here since high bits affect the result. 2315 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2316 } 2317 Observer.changedInstr(MI); 2318 return Legalized; 2319 2320 case TargetOpcode::G_FPTOSI: 2321 case TargetOpcode::G_FPTOUI: 2322 Observer.changingInstr(MI); 2323 2324 if (TypeIdx == 0) 2325 widenScalarDst(MI, WideTy); 2326 else 2327 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2328 2329 Observer.changedInstr(MI); 2330 return Legalized; 2331 case TargetOpcode::G_SITOFP: 2332 Observer.changingInstr(MI); 2333 2334 if (TypeIdx == 0) 2335 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2336 else 2337 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2338 2339 Observer.changedInstr(MI); 2340 return Legalized; 2341 case TargetOpcode::G_UITOFP: 2342 Observer.changingInstr(MI); 2343 2344 if (TypeIdx == 0) 2345 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2346 else 2347 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2348 2349 Observer.changedInstr(MI); 2350 return Legalized; 2351 case TargetOpcode::G_LOAD: 2352 case TargetOpcode::G_SEXTLOAD: 2353 case TargetOpcode::G_ZEXTLOAD: 2354 Observer.changingInstr(MI); 2355 widenScalarDst(MI, WideTy); 2356 Observer.changedInstr(MI); 2357 return Legalized; 2358 2359 case TargetOpcode::G_STORE: { 2360 if (TypeIdx != 0) 2361 return UnableToLegalize; 2362 2363 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2364 if (!Ty.isScalar()) 2365 return UnableToLegalize; 2366 2367 Observer.changingInstr(MI); 2368 2369 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2370 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2371 widenScalarSrc(MI, WideTy, 0, ExtType); 2372 2373 Observer.changedInstr(MI); 2374 return Legalized; 2375 } 2376 case TargetOpcode::G_CONSTANT: { 2377 MachineOperand &SrcMO = MI.getOperand(1); 2378 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2379 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2380 MRI.getType(MI.getOperand(0).getReg())); 2381 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2382 ExtOpc == TargetOpcode::G_ANYEXT) && 2383 "Illegal Extend"); 2384 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2385 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2386 ? SrcVal.sext(WideTy.getSizeInBits()) 2387 : SrcVal.zext(WideTy.getSizeInBits()); 2388 Observer.changingInstr(MI); 2389 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2390 2391 widenScalarDst(MI, WideTy); 2392 Observer.changedInstr(MI); 2393 return Legalized; 2394 } 2395 case TargetOpcode::G_FCONSTANT: { 2396 // To avoid changing the bits of the constant due to extension to a larger 2397 // type and then using G_FPTRUNC, we simply convert to a G_CONSTANT. 2398 MachineOperand &SrcMO = MI.getOperand(1); 2399 APInt Val = SrcMO.getFPImm()->getValueAPF().bitcastToAPInt(); 2400 MIRBuilder.setInstrAndDebugLoc(MI); 2401 auto IntCst = MIRBuilder.buildConstant(MI.getOperand(0).getReg(), Val); 2402 widenScalarDst(*IntCst, WideTy, 0, TargetOpcode::G_TRUNC); 2403 MI.eraseFromParent(); 2404 return Legalized; 2405 } 2406 case TargetOpcode::G_IMPLICIT_DEF: { 2407 Observer.changingInstr(MI); 2408 widenScalarDst(MI, WideTy); 2409 Observer.changedInstr(MI); 2410 return Legalized; 2411 } 2412 case TargetOpcode::G_BRCOND: 2413 Observer.changingInstr(MI); 2414 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2415 Observer.changedInstr(MI); 2416 return Legalized; 2417 2418 case TargetOpcode::G_FCMP: 2419 Observer.changingInstr(MI); 2420 if (TypeIdx == 0) 2421 widenScalarDst(MI, WideTy); 2422 else { 2423 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2424 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2425 } 2426 Observer.changedInstr(MI); 2427 return Legalized; 2428 2429 case TargetOpcode::G_ICMP: 2430 Observer.changingInstr(MI); 2431 if (TypeIdx == 0) 2432 widenScalarDst(MI, WideTy); 2433 else { 2434 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2435 MI.getOperand(1).getPredicate())) 2436 ? TargetOpcode::G_SEXT 2437 : TargetOpcode::G_ZEXT; 2438 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2439 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2440 } 2441 Observer.changedInstr(MI); 2442 return Legalized; 2443 2444 case TargetOpcode::G_PTR_ADD: 2445 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2446 Observer.changingInstr(MI); 2447 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2448 Observer.changedInstr(MI); 2449 return Legalized; 2450 2451 case TargetOpcode::G_PHI: { 2452 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2453 2454 Observer.changingInstr(MI); 2455 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2456 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2457 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2458 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2459 } 2460 2461 MachineBasicBlock &MBB = *MI.getParent(); 2462 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2463 widenScalarDst(MI, WideTy); 2464 Observer.changedInstr(MI); 2465 return Legalized; 2466 } 2467 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2468 if (TypeIdx == 0) { 2469 Register VecReg = MI.getOperand(1).getReg(); 2470 LLT VecTy = MRI.getType(VecReg); 2471 Observer.changingInstr(MI); 2472 2473 widenScalarSrc( 2474 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, 2475 TargetOpcode::G_ANYEXT); 2476 2477 widenScalarDst(MI, WideTy, 0); 2478 Observer.changedInstr(MI); 2479 return Legalized; 2480 } 2481 2482 if (TypeIdx != 2) 2483 return UnableToLegalize; 2484 Observer.changingInstr(MI); 2485 // TODO: Probably should be zext 2486 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2487 Observer.changedInstr(MI); 2488 return Legalized; 2489 } 2490 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2491 if (TypeIdx == 1) { 2492 Observer.changingInstr(MI); 2493 2494 Register VecReg = MI.getOperand(1).getReg(); 2495 LLT VecTy = MRI.getType(VecReg); 2496 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); 2497 2498 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2499 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2500 widenScalarDst(MI, WideVecTy, 0); 2501 Observer.changedInstr(MI); 2502 return Legalized; 2503 } 2504 2505 if (TypeIdx == 2) { 2506 Observer.changingInstr(MI); 2507 // TODO: Probably should be zext 2508 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2509 Observer.changedInstr(MI); 2510 return Legalized; 2511 } 2512 2513 return UnableToLegalize; 2514 } 2515 case TargetOpcode::G_FADD: 2516 case TargetOpcode::G_FMUL: 2517 case TargetOpcode::G_FSUB: 2518 case TargetOpcode::G_FMA: 2519 case TargetOpcode::G_FMAD: 2520 case TargetOpcode::G_FNEG: 2521 case TargetOpcode::G_FABS: 2522 case TargetOpcode::G_FCANONICALIZE: 2523 case TargetOpcode::G_FMINNUM: 2524 case TargetOpcode::G_FMAXNUM: 2525 case TargetOpcode::G_FMINNUM_IEEE: 2526 case TargetOpcode::G_FMAXNUM_IEEE: 2527 case TargetOpcode::G_FMINIMUM: 2528 case TargetOpcode::G_FMAXIMUM: 2529 case TargetOpcode::G_FDIV: 2530 case TargetOpcode::G_FREM: 2531 case TargetOpcode::G_FCEIL: 2532 case TargetOpcode::G_FFLOOR: 2533 case TargetOpcode::G_FCOS: 2534 case TargetOpcode::G_FSIN: 2535 case TargetOpcode::G_FLOG10: 2536 case TargetOpcode::G_FLOG: 2537 case TargetOpcode::G_FLOG2: 2538 case TargetOpcode::G_FRINT: 2539 case TargetOpcode::G_FNEARBYINT: 2540 case TargetOpcode::G_FSQRT: 2541 case TargetOpcode::G_FEXP: 2542 case TargetOpcode::G_FEXP2: 2543 case TargetOpcode::G_FPOW: 2544 case TargetOpcode::G_INTRINSIC_TRUNC: 2545 case TargetOpcode::G_INTRINSIC_ROUND: 2546 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2547 assert(TypeIdx == 0); 2548 Observer.changingInstr(MI); 2549 2550 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2551 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2552 2553 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2554 Observer.changedInstr(MI); 2555 return Legalized; 2556 case TargetOpcode::G_FPOWI: { 2557 if (TypeIdx != 0) 2558 return UnableToLegalize; 2559 Observer.changingInstr(MI); 2560 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2561 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2562 Observer.changedInstr(MI); 2563 return Legalized; 2564 } 2565 case TargetOpcode::G_INTTOPTR: 2566 if (TypeIdx != 1) 2567 return UnableToLegalize; 2568 2569 Observer.changingInstr(MI); 2570 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2571 Observer.changedInstr(MI); 2572 return Legalized; 2573 case TargetOpcode::G_PTRTOINT: 2574 if (TypeIdx != 0) 2575 return UnableToLegalize; 2576 2577 Observer.changingInstr(MI); 2578 widenScalarDst(MI, WideTy, 0); 2579 Observer.changedInstr(MI); 2580 return Legalized; 2581 case TargetOpcode::G_BUILD_VECTOR: { 2582 Observer.changingInstr(MI); 2583 2584 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2585 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2586 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2587 2588 // Avoid changing the result vector type if the source element type was 2589 // requested. 2590 if (TypeIdx == 1) { 2591 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2592 } else { 2593 widenScalarDst(MI, WideTy, 0); 2594 } 2595 2596 Observer.changedInstr(MI); 2597 return Legalized; 2598 } 2599 case TargetOpcode::G_SEXT_INREG: 2600 if (TypeIdx != 0) 2601 return UnableToLegalize; 2602 2603 Observer.changingInstr(MI); 2604 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2605 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2606 Observer.changedInstr(MI); 2607 return Legalized; 2608 case TargetOpcode::G_PTRMASK: { 2609 if (TypeIdx != 1) 2610 return UnableToLegalize; 2611 Observer.changingInstr(MI); 2612 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2613 Observer.changedInstr(MI); 2614 return Legalized; 2615 } 2616 } 2617 } 2618 2619 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2620 MachineIRBuilder &B, Register Src, LLT Ty) { 2621 auto Unmerge = B.buildUnmerge(Ty, Src); 2622 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2623 Pieces.push_back(Unmerge.getReg(I)); 2624 } 2625 2626 LegalizerHelper::LegalizeResult 2627 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2628 Register Dst = MI.getOperand(0).getReg(); 2629 Register Src = MI.getOperand(1).getReg(); 2630 LLT DstTy = MRI.getType(Dst); 2631 LLT SrcTy = MRI.getType(Src); 2632 2633 if (SrcTy.isVector()) { 2634 LLT SrcEltTy = SrcTy.getElementType(); 2635 SmallVector<Register, 8> SrcRegs; 2636 2637 if (DstTy.isVector()) { 2638 int NumDstElt = DstTy.getNumElements(); 2639 int NumSrcElt = SrcTy.getNumElements(); 2640 2641 LLT DstEltTy = DstTy.getElementType(); 2642 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2643 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2644 2645 // If there's an element size mismatch, insert intermediate casts to match 2646 // the result element type. 2647 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2648 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2649 // 2650 // => 2651 // 2652 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2653 // %3:_(<2 x s8>) = G_BITCAST %2 2654 // %4:_(<2 x s8>) = G_BITCAST %3 2655 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2656 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); 2657 SrcPartTy = SrcEltTy; 2658 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2659 // 2660 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2661 // 2662 // => 2663 // 2664 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2665 // %3:_(s16) = G_BITCAST %2 2666 // %4:_(s16) = G_BITCAST %3 2667 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2668 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); 2669 DstCastTy = DstEltTy; 2670 } 2671 2672 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2673 for (Register &SrcReg : SrcRegs) 2674 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2675 } else 2676 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2677 2678 MIRBuilder.buildMerge(Dst, SrcRegs); 2679 MI.eraseFromParent(); 2680 return Legalized; 2681 } 2682 2683 if (DstTy.isVector()) { 2684 SmallVector<Register, 8> SrcRegs; 2685 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2686 MIRBuilder.buildMerge(Dst, SrcRegs); 2687 MI.eraseFromParent(); 2688 return Legalized; 2689 } 2690 2691 return UnableToLegalize; 2692 } 2693 2694 /// Figure out the bit offset into a register when coercing a vector index for 2695 /// the wide element type. This is only for the case when promoting vector to 2696 /// one with larger elements. 2697 // 2698 /// 2699 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2700 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2701 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2702 Register Idx, 2703 unsigned NewEltSize, 2704 unsigned OldEltSize) { 2705 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2706 LLT IdxTy = B.getMRI()->getType(Idx); 2707 2708 // Now figure out the amount we need to shift to get the target bits. 2709 auto OffsetMask = B.buildConstant( 2710 IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio)); 2711 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2712 return B.buildShl(IdxTy, OffsetIdx, 2713 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2714 } 2715 2716 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2717 /// is casting to a vector with a smaller element size, perform multiple element 2718 /// extracts and merge the results. If this is coercing to a vector with larger 2719 /// elements, index the bitcasted vector and extract the target element with bit 2720 /// operations. This is intended to force the indexing in the native register 2721 /// size for architectures that can dynamically index the register file. 2722 LegalizerHelper::LegalizeResult 2723 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2724 LLT CastTy) { 2725 if (TypeIdx != 1) 2726 return UnableToLegalize; 2727 2728 Register Dst = MI.getOperand(0).getReg(); 2729 Register SrcVec = MI.getOperand(1).getReg(); 2730 Register Idx = MI.getOperand(2).getReg(); 2731 LLT SrcVecTy = MRI.getType(SrcVec); 2732 LLT IdxTy = MRI.getType(Idx); 2733 2734 LLT SrcEltTy = SrcVecTy.getElementType(); 2735 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2736 unsigned OldNumElts = SrcVecTy.getNumElements(); 2737 2738 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2739 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2740 2741 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2742 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2743 if (NewNumElts > OldNumElts) { 2744 // Decreasing the vector element size 2745 // 2746 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2747 // => 2748 // v4i32:castx = bitcast x:v2i64 2749 // 2750 // i64 = bitcast 2751 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2752 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2753 // 2754 if (NewNumElts % OldNumElts != 0) 2755 return UnableToLegalize; 2756 2757 // Type of the intermediate result vector. 2758 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2759 LLT MidTy = 2760 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); 2761 2762 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2763 2764 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2765 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2766 2767 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2768 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2769 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2770 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2771 NewOps[I] = Elt.getReg(0); 2772 } 2773 2774 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2775 MIRBuilder.buildBitcast(Dst, NewVec); 2776 MI.eraseFromParent(); 2777 return Legalized; 2778 } 2779 2780 if (NewNumElts < OldNumElts) { 2781 if (NewEltSize % OldEltSize != 0) 2782 return UnableToLegalize; 2783 2784 // This only depends on powers of 2 because we use bit tricks to figure out 2785 // the bit offset we need to shift to get the target element. A general 2786 // expansion could emit division/multiply. 2787 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2788 return UnableToLegalize; 2789 2790 // Increasing the vector element size. 2791 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2792 // 2793 // => 2794 // 2795 // %cast = G_BITCAST %vec 2796 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2797 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2798 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2799 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2800 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2801 // %elt = G_TRUNC %elt_bits 2802 2803 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2804 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2805 2806 // Divide to get the index in the wider element type. 2807 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2808 2809 Register WideElt = CastVec; 2810 if (CastTy.isVector()) { 2811 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2812 ScaledIdx).getReg(0); 2813 } 2814 2815 // Compute the bit offset into the register of the target element. 2816 Register OffsetBits = getBitcastWiderVectorElementOffset( 2817 MIRBuilder, Idx, NewEltSize, OldEltSize); 2818 2819 // Shift the wide element to get the target element. 2820 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2821 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2822 MI.eraseFromParent(); 2823 return Legalized; 2824 } 2825 2826 return UnableToLegalize; 2827 } 2828 2829 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2830 /// TargetReg, while preserving other bits in \p TargetReg. 2831 /// 2832 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2833 static Register buildBitFieldInsert(MachineIRBuilder &B, 2834 Register TargetReg, Register InsertReg, 2835 Register OffsetBits) { 2836 LLT TargetTy = B.getMRI()->getType(TargetReg); 2837 LLT InsertTy = B.getMRI()->getType(InsertReg); 2838 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2839 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2840 2841 // Produce a bitmask of the value to insert 2842 auto EltMask = B.buildConstant( 2843 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2844 InsertTy.getSizeInBits())); 2845 // Shift it into position 2846 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2847 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2848 2849 // Clear out the bits in the wide element 2850 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2851 2852 // The value to insert has all zeros already, so stick it into the masked 2853 // wide element. 2854 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2855 } 2856 2857 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2858 /// is increasing the element size, perform the indexing in the target element 2859 /// type, and use bit operations to insert at the element position. This is 2860 /// intended for architectures that can dynamically index the register file and 2861 /// want to force indexing in the native register size. 2862 LegalizerHelper::LegalizeResult 2863 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2864 LLT CastTy) { 2865 if (TypeIdx != 0) 2866 return UnableToLegalize; 2867 2868 Register Dst = MI.getOperand(0).getReg(); 2869 Register SrcVec = MI.getOperand(1).getReg(); 2870 Register Val = MI.getOperand(2).getReg(); 2871 Register Idx = MI.getOperand(3).getReg(); 2872 2873 LLT VecTy = MRI.getType(Dst); 2874 LLT IdxTy = MRI.getType(Idx); 2875 2876 LLT VecEltTy = VecTy.getElementType(); 2877 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2878 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2879 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2880 2881 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2882 unsigned OldNumElts = VecTy.getNumElements(); 2883 2884 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2885 if (NewNumElts < OldNumElts) { 2886 if (NewEltSize % OldEltSize != 0) 2887 return UnableToLegalize; 2888 2889 // This only depends on powers of 2 because we use bit tricks to figure out 2890 // the bit offset we need to shift to get the target element. A general 2891 // expansion could emit division/multiply. 2892 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2893 return UnableToLegalize; 2894 2895 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2896 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2897 2898 // Divide to get the index in the wider element type. 2899 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2900 2901 Register ExtractedElt = CastVec; 2902 if (CastTy.isVector()) { 2903 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2904 ScaledIdx).getReg(0); 2905 } 2906 2907 // Compute the bit offset into the register of the target element. 2908 Register OffsetBits = getBitcastWiderVectorElementOffset( 2909 MIRBuilder, Idx, NewEltSize, OldEltSize); 2910 2911 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2912 Val, OffsetBits); 2913 if (CastTy.isVector()) { 2914 InsertedElt = MIRBuilder.buildInsertVectorElement( 2915 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2916 } 2917 2918 MIRBuilder.buildBitcast(Dst, InsertedElt); 2919 MI.eraseFromParent(); 2920 return Legalized; 2921 } 2922 2923 return UnableToLegalize; 2924 } 2925 2926 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) { 2927 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2928 Register DstReg = LoadMI.getDstReg(); 2929 Register PtrReg = LoadMI.getPointerReg(); 2930 LLT DstTy = MRI.getType(DstReg); 2931 MachineMemOperand &MMO = LoadMI.getMMO(); 2932 LLT MemTy = MMO.getMemoryType(); 2933 MachineFunction &MF = MIRBuilder.getMF(); 2934 2935 unsigned MemSizeInBits = MemTy.getSizeInBits(); 2936 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); 2937 2938 if (MemSizeInBits != MemStoreSizeInBits) { 2939 if (MemTy.isVector()) 2940 return UnableToLegalize; 2941 2942 // Promote to a byte-sized load if not loading an integral number of 2943 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 2944 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); 2945 MachineMemOperand *NewMMO = 2946 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); 2947 2948 Register LoadReg = DstReg; 2949 LLT LoadTy = DstTy; 2950 2951 // If this wasn't already an extending load, we need to widen the result 2952 // register to avoid creating a load with a narrower result than the source. 2953 if (MemStoreSizeInBits > DstTy.getSizeInBits()) { 2954 LoadTy = WideMemTy; 2955 LoadReg = MRI.createGenericVirtualRegister(WideMemTy); 2956 } 2957 2958 if (isa<GSExtLoad>(LoadMI)) { 2959 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2960 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); 2961 } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == LoadTy) { 2962 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2963 // The extra bits are guaranteed to be zero, since we stored them that 2964 // way. A zext load from Wide thus automatically gives zext from MemVT. 2965 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); 2966 } else { 2967 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); 2968 } 2969 2970 if (DstTy != LoadTy) 2971 MIRBuilder.buildTrunc(DstReg, LoadReg); 2972 2973 LoadMI.eraseFromParent(); 2974 return Legalized; 2975 } 2976 2977 // Big endian lowering not implemented. 2978 if (MIRBuilder.getDataLayout().isBigEndian()) 2979 return UnableToLegalize; 2980 2981 // This load needs splitting into power of 2 sized loads. 2982 // 2983 // Our strategy here is to generate anyextending loads for the smaller 2984 // types up to next power-2 result type, and then combine the two larger 2985 // result values together, before truncating back down to the non-pow-2 2986 // type. 2987 // E.g. v1 = i24 load => 2988 // v2 = i32 zextload (2 byte) 2989 // v3 = i32 load (1 byte) 2990 // v4 = i32 shl v3, 16 2991 // v5 = i32 or v4, v2 2992 // v1 = i24 trunc v5 2993 // By doing this we generate the correct truncate which should get 2994 // combined away as an artifact with a matching extend. 2995 2996 uint64_t LargeSplitSize, SmallSplitSize; 2997 2998 if (!isPowerOf2_32(MemSizeInBits)) { 2999 // This load needs splitting into power of 2 sized loads. 3000 LargeSplitSize = PowerOf2Floor(MemSizeInBits); 3001 SmallSplitSize = MemSizeInBits - LargeSplitSize; 3002 } else { 3003 // This is already a power of 2, but we still need to split this in half. 3004 // 3005 // Assume we're being asked to decompose an unaligned load. 3006 // TODO: If this requires multiple splits, handle them all at once. 3007 auto &Ctx = MF.getFunction().getContext(); 3008 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3009 return UnableToLegalize; 3010 3011 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3012 } 3013 3014 if (MemTy.isVector()) { 3015 // TODO: Handle vector extloads 3016 if (MemTy != DstTy) 3017 return UnableToLegalize; 3018 3019 // TODO: We can do better than scalarizing the vector and at least split it 3020 // in half. 3021 return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType()); 3022 } 3023 3024 MachineMemOperand *LargeMMO = 3025 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3026 MachineMemOperand *SmallMMO = 3027 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3028 3029 LLT PtrTy = MRI.getType(PtrReg); 3030 unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits()); 3031 LLT AnyExtTy = LLT::scalar(AnyExtSize); 3032 auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy, 3033 PtrReg, *LargeMMO); 3034 3035 auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), 3036 LargeSplitSize / 8); 3037 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 3038 auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 3039 auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy, 3040 SmallPtr, *SmallMMO); 3041 3042 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 3043 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 3044 3045 if (AnyExtTy == DstTy) 3046 MIRBuilder.buildOr(DstReg, Shift, LargeLoad); 3047 else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) { 3048 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3049 MIRBuilder.buildTrunc(DstReg, {Or}); 3050 } else { 3051 assert(DstTy.isPointer() && "expected pointer"); 3052 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3053 3054 // FIXME: We currently consider this to be illegal for non-integral address 3055 // spaces, but we need still need a way to reinterpret the bits. 3056 MIRBuilder.buildIntToPtr(DstReg, Or); 3057 } 3058 3059 LoadMI.eraseFromParent(); 3060 return Legalized; 3061 } 3062 3063 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) { 3064 // Lower a non-power of 2 store into multiple pow-2 stores. 3065 // E.g. split an i24 store into an i16 store + i8 store. 3066 // We do this by first extending the stored value to the next largest power 3067 // of 2 type, and then using truncating stores to store the components. 3068 // By doing this, likewise with G_LOAD, generate an extend that can be 3069 // artifact-combined away instead of leaving behind extracts. 3070 Register SrcReg = StoreMI.getValueReg(); 3071 Register PtrReg = StoreMI.getPointerReg(); 3072 LLT SrcTy = MRI.getType(SrcReg); 3073 MachineFunction &MF = MIRBuilder.getMF(); 3074 MachineMemOperand &MMO = **StoreMI.memoperands_begin(); 3075 LLT MemTy = MMO.getMemoryType(); 3076 3077 unsigned StoreWidth = MemTy.getSizeInBits(); 3078 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); 3079 3080 if (StoreWidth != StoreSizeInBits) { 3081 if (SrcTy.isVector()) 3082 return UnableToLegalize; 3083 3084 // Promote to a byte-sized store with upper bits zero if not 3085 // storing an integral number of bytes. For example, promote 3086 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 3087 LLT WideTy = LLT::scalar(StoreSizeInBits); 3088 3089 if (StoreSizeInBits > SrcTy.getSizeInBits()) { 3090 // Avoid creating a store with a narrower source than result. 3091 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 3092 SrcTy = WideTy; 3093 } 3094 3095 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); 3096 3097 MachineMemOperand *NewMMO = 3098 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); 3099 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); 3100 StoreMI.eraseFromParent(); 3101 return Legalized; 3102 } 3103 3104 if (MemTy.isVector()) { 3105 // TODO: Handle vector trunc stores 3106 if (MemTy != SrcTy) 3107 return UnableToLegalize; 3108 3109 // TODO: We can do better than scalarizing the vector and at least split it 3110 // in half. 3111 return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType()); 3112 } 3113 3114 unsigned MemSizeInBits = MemTy.getSizeInBits(); 3115 uint64_t LargeSplitSize, SmallSplitSize; 3116 3117 if (!isPowerOf2_32(MemSizeInBits)) { 3118 LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits()); 3119 SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize; 3120 } else { 3121 auto &Ctx = MF.getFunction().getContext(); 3122 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3123 return UnableToLegalize; // Don't know what we're being asked to do. 3124 3125 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3126 } 3127 3128 // Extend to the next pow-2. If this store was itself the result of lowering, 3129 // e.g. an s56 store being broken into s32 + s24, we might have a stored type 3130 // that's wider than the stored size. 3131 unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits()); 3132 const LLT NewSrcTy = LLT::scalar(AnyExtSize); 3133 3134 if (SrcTy.isPointer()) { 3135 const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits()); 3136 SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0); 3137 } 3138 3139 auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg); 3140 3141 // Obtain the smaller value by shifting away the larger value. 3142 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize); 3143 auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt); 3144 3145 // Generate the PtrAdd and truncating stores. 3146 LLT PtrTy = MRI.getType(PtrReg); 3147 auto OffsetCst = MIRBuilder.buildConstant( 3148 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 3149 auto SmallPtr = 3150 MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst); 3151 3152 MachineMemOperand *LargeMMO = 3153 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3154 MachineMemOperand *SmallMMO = 3155 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3156 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); 3157 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); 3158 StoreMI.eraseFromParent(); 3159 return Legalized; 3160 } 3161 3162 LegalizerHelper::LegalizeResult 3163 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 3164 switch (MI.getOpcode()) { 3165 case TargetOpcode::G_LOAD: { 3166 if (TypeIdx != 0) 3167 return UnableToLegalize; 3168 MachineMemOperand &MMO = **MI.memoperands_begin(); 3169 3170 // Not sure how to interpret a bitcast of an extending load. 3171 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3172 return UnableToLegalize; 3173 3174 Observer.changingInstr(MI); 3175 bitcastDst(MI, CastTy, 0); 3176 MMO.setType(CastTy); 3177 Observer.changedInstr(MI); 3178 return Legalized; 3179 } 3180 case TargetOpcode::G_STORE: { 3181 if (TypeIdx != 0) 3182 return UnableToLegalize; 3183 3184 MachineMemOperand &MMO = **MI.memoperands_begin(); 3185 3186 // Not sure how to interpret a bitcast of a truncating store. 3187 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3188 return UnableToLegalize; 3189 3190 Observer.changingInstr(MI); 3191 bitcastSrc(MI, CastTy, 0); 3192 MMO.setType(CastTy); 3193 Observer.changedInstr(MI); 3194 return Legalized; 3195 } 3196 case TargetOpcode::G_SELECT: { 3197 if (TypeIdx != 0) 3198 return UnableToLegalize; 3199 3200 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 3201 LLVM_DEBUG( 3202 dbgs() << "bitcast action not implemented for vector select\n"); 3203 return UnableToLegalize; 3204 } 3205 3206 Observer.changingInstr(MI); 3207 bitcastSrc(MI, CastTy, 2); 3208 bitcastSrc(MI, CastTy, 3); 3209 bitcastDst(MI, CastTy, 0); 3210 Observer.changedInstr(MI); 3211 return Legalized; 3212 } 3213 case TargetOpcode::G_AND: 3214 case TargetOpcode::G_OR: 3215 case TargetOpcode::G_XOR: { 3216 Observer.changingInstr(MI); 3217 bitcastSrc(MI, CastTy, 1); 3218 bitcastSrc(MI, CastTy, 2); 3219 bitcastDst(MI, CastTy, 0); 3220 Observer.changedInstr(MI); 3221 return Legalized; 3222 } 3223 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 3224 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 3225 case TargetOpcode::G_INSERT_VECTOR_ELT: 3226 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 3227 default: 3228 return UnableToLegalize; 3229 } 3230 } 3231 3232 // Legalize an instruction by changing the opcode in place. 3233 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 3234 Observer.changingInstr(MI); 3235 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 3236 Observer.changedInstr(MI); 3237 } 3238 3239 LegalizerHelper::LegalizeResult 3240 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 3241 using namespace TargetOpcode; 3242 3243 switch(MI.getOpcode()) { 3244 default: 3245 return UnableToLegalize; 3246 case TargetOpcode::G_BITCAST: 3247 return lowerBitcast(MI); 3248 case TargetOpcode::G_SREM: 3249 case TargetOpcode::G_UREM: { 3250 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3251 auto Quot = 3252 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 3253 {MI.getOperand(1), MI.getOperand(2)}); 3254 3255 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 3256 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 3257 MI.eraseFromParent(); 3258 return Legalized; 3259 } 3260 case TargetOpcode::G_SADDO: 3261 case TargetOpcode::G_SSUBO: 3262 return lowerSADDO_SSUBO(MI); 3263 case TargetOpcode::G_UMULH: 3264 case TargetOpcode::G_SMULH: 3265 return lowerSMULH_UMULH(MI); 3266 case TargetOpcode::G_SMULO: 3267 case TargetOpcode::G_UMULO: { 3268 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 3269 // result. 3270 Register Res = MI.getOperand(0).getReg(); 3271 Register Overflow = MI.getOperand(1).getReg(); 3272 Register LHS = MI.getOperand(2).getReg(); 3273 Register RHS = MI.getOperand(3).getReg(); 3274 LLT Ty = MRI.getType(Res); 3275 3276 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 3277 ? TargetOpcode::G_SMULH 3278 : TargetOpcode::G_UMULH; 3279 3280 Observer.changingInstr(MI); 3281 const auto &TII = MIRBuilder.getTII(); 3282 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 3283 MI.removeOperand(1); 3284 Observer.changedInstr(MI); 3285 3286 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 3287 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3288 3289 // Move insert point forward so we can use the Res register if needed. 3290 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 3291 3292 // For *signed* multiply, overflow is detected by checking: 3293 // (hi != (lo >> bitwidth-1)) 3294 if (Opcode == TargetOpcode::G_SMULH) { 3295 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 3296 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 3297 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 3298 } else { 3299 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 3300 } 3301 return Legalized; 3302 } 3303 case TargetOpcode::G_FNEG: { 3304 Register Res = MI.getOperand(0).getReg(); 3305 LLT Ty = MRI.getType(Res); 3306 3307 // TODO: Handle vector types once we are able to 3308 // represent them. 3309 if (Ty.isVector()) 3310 return UnableToLegalize; 3311 auto SignMask = 3312 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3313 Register SubByReg = MI.getOperand(1).getReg(); 3314 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3315 MI.eraseFromParent(); 3316 return Legalized; 3317 } 3318 case TargetOpcode::G_FSUB: { 3319 Register Res = MI.getOperand(0).getReg(); 3320 LLT Ty = MRI.getType(Res); 3321 3322 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3323 // First, check if G_FNEG is marked as Lower. If so, we may 3324 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 3325 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 3326 return UnableToLegalize; 3327 Register LHS = MI.getOperand(1).getReg(); 3328 Register RHS = MI.getOperand(2).getReg(); 3329 Register Neg = MRI.createGenericVirtualRegister(Ty); 3330 MIRBuilder.buildFNeg(Neg, RHS); 3331 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3332 MI.eraseFromParent(); 3333 return Legalized; 3334 } 3335 case TargetOpcode::G_FMAD: 3336 return lowerFMad(MI); 3337 case TargetOpcode::G_FFLOOR: 3338 return lowerFFloor(MI); 3339 case TargetOpcode::G_INTRINSIC_ROUND: 3340 return lowerIntrinsicRound(MI); 3341 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 3342 // Since round even is the assumed rounding mode for unconstrained FP 3343 // operations, rint and roundeven are the same operation. 3344 changeOpcode(MI, TargetOpcode::G_FRINT); 3345 return Legalized; 3346 } 3347 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3348 Register OldValRes = MI.getOperand(0).getReg(); 3349 Register SuccessRes = MI.getOperand(1).getReg(); 3350 Register Addr = MI.getOperand(2).getReg(); 3351 Register CmpVal = MI.getOperand(3).getReg(); 3352 Register NewVal = MI.getOperand(4).getReg(); 3353 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3354 **MI.memoperands_begin()); 3355 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3356 MI.eraseFromParent(); 3357 return Legalized; 3358 } 3359 case TargetOpcode::G_LOAD: 3360 case TargetOpcode::G_SEXTLOAD: 3361 case TargetOpcode::G_ZEXTLOAD: 3362 return lowerLoad(cast<GAnyLoad>(MI)); 3363 case TargetOpcode::G_STORE: 3364 return lowerStore(cast<GStore>(MI)); 3365 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3366 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3367 case TargetOpcode::G_CTLZ: 3368 case TargetOpcode::G_CTTZ: 3369 case TargetOpcode::G_CTPOP: 3370 return lowerBitCount(MI); 3371 case G_UADDO: { 3372 Register Res = MI.getOperand(0).getReg(); 3373 Register CarryOut = MI.getOperand(1).getReg(); 3374 Register LHS = MI.getOperand(2).getReg(); 3375 Register RHS = MI.getOperand(3).getReg(); 3376 3377 MIRBuilder.buildAdd(Res, LHS, RHS); 3378 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3379 3380 MI.eraseFromParent(); 3381 return Legalized; 3382 } 3383 case G_UADDE: { 3384 Register Res = MI.getOperand(0).getReg(); 3385 Register CarryOut = MI.getOperand(1).getReg(); 3386 Register LHS = MI.getOperand(2).getReg(); 3387 Register RHS = MI.getOperand(3).getReg(); 3388 Register CarryIn = MI.getOperand(4).getReg(); 3389 LLT Ty = MRI.getType(Res); 3390 3391 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3392 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3393 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3394 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3395 3396 MI.eraseFromParent(); 3397 return Legalized; 3398 } 3399 case G_USUBO: { 3400 Register Res = MI.getOperand(0).getReg(); 3401 Register BorrowOut = MI.getOperand(1).getReg(); 3402 Register LHS = MI.getOperand(2).getReg(); 3403 Register RHS = MI.getOperand(3).getReg(); 3404 3405 MIRBuilder.buildSub(Res, LHS, RHS); 3406 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3407 3408 MI.eraseFromParent(); 3409 return Legalized; 3410 } 3411 case G_USUBE: { 3412 Register Res = MI.getOperand(0).getReg(); 3413 Register BorrowOut = MI.getOperand(1).getReg(); 3414 Register LHS = MI.getOperand(2).getReg(); 3415 Register RHS = MI.getOperand(3).getReg(); 3416 Register BorrowIn = MI.getOperand(4).getReg(); 3417 const LLT CondTy = MRI.getType(BorrowOut); 3418 const LLT Ty = MRI.getType(Res); 3419 3420 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3421 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3422 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3423 3424 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3425 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3426 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3427 3428 MI.eraseFromParent(); 3429 return Legalized; 3430 } 3431 case G_UITOFP: 3432 return lowerUITOFP(MI); 3433 case G_SITOFP: 3434 return lowerSITOFP(MI); 3435 case G_FPTOUI: 3436 return lowerFPTOUI(MI); 3437 case G_FPTOSI: 3438 return lowerFPTOSI(MI); 3439 case G_FPTRUNC: 3440 return lowerFPTRUNC(MI); 3441 case G_FPOWI: 3442 return lowerFPOWI(MI); 3443 case G_SMIN: 3444 case G_SMAX: 3445 case G_UMIN: 3446 case G_UMAX: 3447 return lowerMinMax(MI); 3448 case G_FCOPYSIGN: 3449 return lowerFCopySign(MI); 3450 case G_FMINNUM: 3451 case G_FMAXNUM: 3452 return lowerFMinNumMaxNum(MI); 3453 case G_MERGE_VALUES: 3454 return lowerMergeValues(MI); 3455 case G_UNMERGE_VALUES: 3456 return lowerUnmergeValues(MI); 3457 case TargetOpcode::G_SEXT_INREG: { 3458 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3459 int64_t SizeInBits = MI.getOperand(2).getImm(); 3460 3461 Register DstReg = MI.getOperand(0).getReg(); 3462 Register SrcReg = MI.getOperand(1).getReg(); 3463 LLT DstTy = MRI.getType(DstReg); 3464 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3465 3466 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3467 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3468 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3469 MI.eraseFromParent(); 3470 return Legalized; 3471 } 3472 case G_EXTRACT_VECTOR_ELT: 3473 case G_INSERT_VECTOR_ELT: 3474 return lowerExtractInsertVectorElt(MI); 3475 case G_SHUFFLE_VECTOR: 3476 return lowerShuffleVector(MI); 3477 case G_DYN_STACKALLOC: 3478 return lowerDynStackAlloc(MI); 3479 case G_EXTRACT: 3480 return lowerExtract(MI); 3481 case G_INSERT: 3482 return lowerInsert(MI); 3483 case G_BSWAP: 3484 return lowerBswap(MI); 3485 case G_BITREVERSE: 3486 return lowerBitreverse(MI); 3487 case G_READ_REGISTER: 3488 case G_WRITE_REGISTER: 3489 return lowerReadWriteRegister(MI); 3490 case G_UADDSAT: 3491 case G_USUBSAT: { 3492 // Try to make a reasonable guess about which lowering strategy to use. The 3493 // target can override this with custom lowering and calling the 3494 // implementation functions. 3495 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3496 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3497 return lowerAddSubSatToMinMax(MI); 3498 return lowerAddSubSatToAddoSubo(MI); 3499 } 3500 case G_SADDSAT: 3501 case G_SSUBSAT: { 3502 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3503 3504 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3505 // since it's a shorter expansion. However, we would need to figure out the 3506 // preferred boolean type for the carry out for the query. 3507 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3508 return lowerAddSubSatToMinMax(MI); 3509 return lowerAddSubSatToAddoSubo(MI); 3510 } 3511 case G_SSHLSAT: 3512 case G_USHLSAT: 3513 return lowerShlSat(MI); 3514 case G_ABS: 3515 return lowerAbsToAddXor(MI); 3516 case G_SELECT: 3517 return lowerSelect(MI); 3518 case G_SDIVREM: 3519 case G_UDIVREM: 3520 return lowerDIVREM(MI); 3521 case G_FSHL: 3522 case G_FSHR: 3523 return lowerFunnelShift(MI); 3524 case G_ROTL: 3525 case G_ROTR: 3526 return lowerRotate(MI); 3527 case G_MEMSET: 3528 case G_MEMCPY: 3529 case G_MEMMOVE: 3530 return lowerMemCpyFamily(MI); 3531 case G_MEMCPY_INLINE: 3532 return lowerMemcpyInline(MI); 3533 GISEL_VECREDUCE_CASES_NONSEQ 3534 return lowerVectorReduction(MI); 3535 } 3536 } 3537 3538 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3539 Align MinAlign) const { 3540 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3541 // datalayout for the preferred alignment. Also there should be a target hook 3542 // for this to allow targets to reduce the alignment and ignore the 3543 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3544 // the type. 3545 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3546 } 3547 3548 MachineInstrBuilder 3549 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3550 MachinePointerInfo &PtrInfo) { 3551 MachineFunction &MF = MIRBuilder.getMF(); 3552 const DataLayout &DL = MIRBuilder.getDataLayout(); 3553 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3554 3555 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3556 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3557 3558 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3559 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3560 } 3561 3562 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3563 LLT VecTy) { 3564 int64_t IdxVal; 3565 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3566 return IdxReg; 3567 3568 LLT IdxTy = B.getMRI()->getType(IdxReg); 3569 unsigned NElts = VecTy.getNumElements(); 3570 if (isPowerOf2_32(NElts)) { 3571 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3572 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3573 } 3574 3575 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3576 .getReg(0); 3577 } 3578 3579 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3580 Register Index) { 3581 LLT EltTy = VecTy.getElementType(); 3582 3583 // Calculate the element offset and add it to the pointer. 3584 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3585 assert(EltSize * 8 == EltTy.getSizeInBits() && 3586 "Converting bits to bytes lost precision"); 3587 3588 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3589 3590 LLT IdxTy = MRI.getType(Index); 3591 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3592 MIRBuilder.buildConstant(IdxTy, EltSize)); 3593 3594 LLT PtrTy = MRI.getType(VecPtr); 3595 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3596 } 3597 3598 #ifndef NDEBUG 3599 /// Check that all vector operands have same number of elements. Other operands 3600 /// should be listed in NonVecOp. 3601 static bool hasSameNumEltsOnAllVectorOperands( 3602 GenericMachineInstr &MI, MachineRegisterInfo &MRI, 3603 std::initializer_list<unsigned> NonVecOpIndices) { 3604 if (MI.getNumMemOperands() != 0) 3605 return false; 3606 3607 LLT VecTy = MRI.getType(MI.getReg(0)); 3608 if (!VecTy.isVector()) 3609 return false; 3610 unsigned NumElts = VecTy.getNumElements(); 3611 3612 for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) { 3613 MachineOperand &Op = MI.getOperand(OpIdx); 3614 if (!Op.isReg()) { 3615 if (!is_contained(NonVecOpIndices, OpIdx)) 3616 return false; 3617 continue; 3618 } 3619 3620 LLT Ty = MRI.getType(Op.getReg()); 3621 if (!Ty.isVector()) { 3622 if (!is_contained(NonVecOpIndices, OpIdx)) 3623 return false; 3624 continue; 3625 } 3626 3627 if (Ty.getNumElements() != NumElts) 3628 return false; 3629 } 3630 3631 return true; 3632 } 3633 #endif 3634 3635 /// Fill \p DstOps with DstOps that have same number of elements combined as 3636 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are 3637 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple 3638 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements. 3639 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty, 3640 unsigned NumElts) { 3641 LLT LeftoverTy; 3642 assert(Ty.isVector() && "Expected vector type"); 3643 LLT EltTy = Ty.getElementType(); 3644 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 3645 int NumParts, NumLeftover; 3646 std::tie(NumParts, NumLeftover) = 3647 getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy); 3648 3649 assert(NumParts > 0 && "Error in getNarrowTypeBreakDown"); 3650 for (int i = 0; i < NumParts; ++i) { 3651 DstOps.push_back(NarrowTy); 3652 } 3653 3654 if (LeftoverTy.isValid()) { 3655 assert(NumLeftover == 1 && "expected exactly one leftover"); 3656 DstOps.push_back(LeftoverTy); 3657 } 3658 } 3659 3660 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps 3661 /// made from \p Op depending on operand type. 3662 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N, 3663 MachineOperand &Op) { 3664 for (unsigned i = 0; i < N; ++i) { 3665 if (Op.isReg()) 3666 Ops.push_back(Op.getReg()); 3667 else if (Op.isImm()) 3668 Ops.push_back(Op.getImm()); 3669 else if (Op.isPredicate()) 3670 Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate())); 3671 else 3672 llvm_unreachable("Unsupported type"); 3673 } 3674 } 3675 3676 // Handle splitting vector operations which need to have the same number of 3677 // elements in each type index, but each type index may have a different element 3678 // type. 3679 // 3680 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3681 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3682 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3683 // 3684 // Also handles some irregular breakdown cases, e.g. 3685 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3686 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3687 // s64 = G_SHL s64, s32 3688 LegalizerHelper::LegalizeResult 3689 LegalizerHelper::fewerElementsVectorMultiEltType( 3690 GenericMachineInstr &MI, unsigned NumElts, 3691 std::initializer_list<unsigned> NonVecOpIndices) { 3692 assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) && 3693 "Non-compatible opcode or not specified non-vector operands"); 3694 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 3695 3696 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 3697 unsigned NumDefs = MI.getNumDefs(); 3698 3699 // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output. 3700 // Build instructions with DstOps to use instruction found by CSE directly. 3701 // CSE copies found instruction into given vreg when building with vreg dest. 3702 SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs); 3703 // Output registers will be taken from created instructions. 3704 SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs); 3705 for (unsigned i = 0; i < NumDefs; ++i) { 3706 makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts); 3707 } 3708 3709 // Split vector input operands into sub-vectors with NumElts elts + Leftover. 3710 // Operands listed in NonVecOpIndices will be used as is without splitting; 3711 // examples: compare predicate in icmp and fcmp (op 1), vector select with i1 3712 // scalar condition (op 1), immediate in sext_inreg (op 2). 3713 SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs); 3714 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 3715 ++UseIdx, ++UseNo) { 3716 if (is_contained(NonVecOpIndices, UseIdx)) { 3717 broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(), 3718 MI.getOperand(UseIdx)); 3719 } else { 3720 SmallVector<Register, 8> SplitPieces; 3721 extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces); 3722 for (auto Reg : SplitPieces) 3723 InputOpsPieces[UseNo].push_back(Reg); 3724 } 3725 } 3726 3727 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 3728 3729 // Take i-th piece of each input operand split and build sub-vector/scalar 3730 // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s). 3731 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 3732 SmallVector<DstOp, 2> Defs; 3733 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 3734 Defs.push_back(OutputOpsPieces[DstNo][i]); 3735 3736 SmallVector<SrcOp, 3> Uses; 3737 for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo) 3738 Uses.push_back(InputOpsPieces[InputNo][i]); 3739 3740 auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags()); 3741 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 3742 OutputRegs[DstNo].push_back(I.getReg(DstNo)); 3743 } 3744 3745 // Merge small outputs into MI's output for each def operand. 3746 if (NumLeftovers) { 3747 for (unsigned i = 0; i < NumDefs; ++i) 3748 mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]); 3749 } else { 3750 for (unsigned i = 0; i < NumDefs; ++i) 3751 MIRBuilder.buildMerge(MI.getReg(i), OutputRegs[i]); 3752 } 3753 3754 MI.eraseFromParent(); 3755 return Legalized; 3756 } 3757 3758 LegalizerHelper::LegalizeResult 3759 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI, 3760 unsigned NumElts) { 3761 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 3762 3763 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 3764 unsigned NumDefs = MI.getNumDefs(); 3765 3766 SmallVector<DstOp, 8> OutputOpsPieces; 3767 SmallVector<Register, 8> OutputRegs; 3768 makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts); 3769 3770 // Instructions that perform register split will be inserted in basic block 3771 // where register is defined (basic block is in the next operand). 3772 SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2); 3773 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 3774 UseIdx += 2, ++UseNo) { 3775 MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB(); 3776 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3777 extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]); 3778 } 3779 3780 // Build PHIs with fewer elements. 3781 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 3782 MIRBuilder.setInsertPt(*MI.getParent(), MI); 3783 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 3784 auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI); 3785 Phi.addDef( 3786 MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI))); 3787 OutputRegs.push_back(Phi.getReg(0)); 3788 3789 for (unsigned j = 0; j < NumInputs / 2; ++j) { 3790 Phi.addUse(InputOpsPieces[j][i]); 3791 Phi.add(MI.getOperand(1 + j * 2 + 1)); 3792 } 3793 } 3794 3795 // Merge small outputs into MI's def. 3796 if (NumLeftovers) { 3797 mergeMixedSubvectors(MI.getReg(0), OutputRegs); 3798 } else { 3799 MIRBuilder.buildMerge(MI.getReg(0), OutputRegs); 3800 } 3801 3802 MI.eraseFromParent(); 3803 return Legalized; 3804 } 3805 3806 LegalizerHelper::LegalizeResult 3807 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3808 unsigned TypeIdx, 3809 LLT NarrowTy) { 3810 const int NumDst = MI.getNumOperands() - 1; 3811 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3812 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3813 LLT SrcTy = MRI.getType(SrcReg); 3814 3815 if (TypeIdx != 1 || NarrowTy == DstTy) 3816 return UnableToLegalize; 3817 3818 // Requires compatible types. Otherwise SrcReg should have been defined by 3819 // merge-like instruction that would get artifact combined. Most likely 3820 // instruction that defines SrcReg has to perform more/fewer elements 3821 // legalization compatible with NarrowTy. 3822 assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 3823 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3824 3825 if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 3826 (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0)) 3827 return UnableToLegalize; 3828 3829 // This is most likely DstTy (smaller then register size) packed in SrcTy 3830 // (larger then register size) and since unmerge was not combined it will be 3831 // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy 3832 // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy. 3833 3834 // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy) 3835 // 3836 // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence 3837 // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg 3838 // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy) 3839 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg); 3840 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3841 const int PartsPerUnmerge = NumDst / NumUnmerge; 3842 3843 for (int I = 0; I != NumUnmerge; ++I) { 3844 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3845 3846 for (int J = 0; J != PartsPerUnmerge; ++J) 3847 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3848 MIB.addUse(Unmerge.getReg(I)); 3849 } 3850 3851 MI.eraseFromParent(); 3852 return Legalized; 3853 } 3854 3855 LegalizerHelper::LegalizeResult 3856 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3857 LLT NarrowTy) { 3858 Register DstReg = MI.getOperand(0).getReg(); 3859 LLT DstTy = MRI.getType(DstReg); 3860 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3861 // Requires compatible types. Otherwise user of DstReg did not perform unmerge 3862 // that should have been artifact combined. Most likely instruction that uses 3863 // DstReg has to do more/fewer elements legalization compatible with NarrowTy. 3864 assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 3865 assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3866 if (NarrowTy == SrcTy) 3867 return UnableToLegalize; 3868 3869 // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use 3870 // is for old mir tests. Since the changes to more/fewer elements it should no 3871 // longer be possible to generate MIR like this when starting from llvm-ir 3872 // because LCMTy approach was replaced with merge/unmerge to vector elements. 3873 if (TypeIdx == 1) { 3874 assert(SrcTy.isVector() && "Expected vector types"); 3875 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3876 if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 3877 (NarrowTy.getNumElements() >= SrcTy.getNumElements())) 3878 return UnableToLegalize; 3879 // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy) 3880 // 3881 // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy) 3882 // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy) 3883 // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4 3884 // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6 3885 // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8 3886 // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11 3887 3888 SmallVector<Register, 8> Elts; 3889 LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType(); 3890 for (unsigned i = 1; i < MI.getNumOperands(); ++i) { 3891 auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg()); 3892 for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j) 3893 Elts.push_back(Unmerge.getReg(j)); 3894 } 3895 3896 SmallVector<Register, 8> NarrowTyElts; 3897 unsigned NumNarrowTyElts = NarrowTy.getNumElements(); 3898 unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts; 3899 for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces; 3900 ++i, Offset += NumNarrowTyElts) { 3901 ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts); 3902 NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0)); 3903 } 3904 3905 MIRBuilder.buildMerge(DstReg, NarrowTyElts); 3906 MI.eraseFromParent(); 3907 return Legalized; 3908 } 3909 3910 assert(TypeIdx == 0 && "Bad type index"); 3911 if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) || 3912 (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0)) 3913 return UnableToLegalize; 3914 3915 // This is most likely SrcTy (smaller then register size) packed in DstTy 3916 // (larger then register size) and since merge was not combined it will be 3917 // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy 3918 // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy. 3919 3920 // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4 3921 // 3922 // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg 3923 // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4 3924 // %0:_(DstTy) = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence 3925 SmallVector<Register, 8> NarrowTyElts; 3926 unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3927 unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1; 3928 unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts; 3929 for (unsigned i = 0; i < NumParts; ++i) { 3930 SmallVector<Register, 8> Sources; 3931 for (unsigned j = 0; j < NumElts; ++j) 3932 Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg()); 3933 NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Sources).getReg(0)); 3934 } 3935 3936 MIRBuilder.buildMerge(DstReg, NarrowTyElts); 3937 MI.eraseFromParent(); 3938 return Legalized; 3939 } 3940 3941 LegalizerHelper::LegalizeResult 3942 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3943 unsigned TypeIdx, 3944 LLT NarrowVecTy) { 3945 Register DstReg = MI.getOperand(0).getReg(); 3946 Register SrcVec = MI.getOperand(1).getReg(); 3947 Register InsertVal; 3948 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3949 3950 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3951 if (IsInsert) 3952 InsertVal = MI.getOperand(2).getReg(); 3953 3954 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3955 3956 // TODO: Handle total scalarization case. 3957 if (!NarrowVecTy.isVector()) 3958 return UnableToLegalize; 3959 3960 LLT VecTy = MRI.getType(SrcVec); 3961 3962 // If the index is a constant, we can really break this down as you would 3963 // expect, and index into the target size pieces. 3964 int64_t IdxVal; 3965 auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI); 3966 if (MaybeCst) { 3967 IdxVal = MaybeCst->Value.getSExtValue(); 3968 // Avoid out of bounds indexing the pieces. 3969 if (IdxVal >= VecTy.getNumElements()) { 3970 MIRBuilder.buildUndef(DstReg); 3971 MI.eraseFromParent(); 3972 return Legalized; 3973 } 3974 3975 SmallVector<Register, 8> VecParts; 3976 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3977 3978 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3979 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3980 TargetOpcode::G_ANYEXT); 3981 3982 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3983 3984 LLT IdxTy = MRI.getType(Idx); 3985 int64_t PartIdx = IdxVal / NewNumElts; 3986 auto NewIdx = 3987 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3988 3989 if (IsInsert) { 3990 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3991 3992 // Use the adjusted index to insert into one of the subvectors. 3993 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3994 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3995 VecParts[PartIdx] = InsertPart.getReg(0); 3996 3997 // Recombine the inserted subvector with the others to reform the result 3998 // vector. 3999 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 4000 } else { 4001 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 4002 } 4003 4004 MI.eraseFromParent(); 4005 return Legalized; 4006 } 4007 4008 // With a variable index, we can't perform the operation in a smaller type, so 4009 // we're forced to expand this. 4010 // 4011 // TODO: We could emit a chain of compare/select to figure out which piece to 4012 // index. 4013 return lowerExtractInsertVectorElt(MI); 4014 } 4015 4016 LegalizerHelper::LegalizeResult 4017 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx, 4018 LLT NarrowTy) { 4019 // FIXME: Don't know how to handle secondary types yet. 4020 if (TypeIdx != 0) 4021 return UnableToLegalize; 4022 4023 // This implementation doesn't work for atomics. Give up instead of doing 4024 // something invalid. 4025 if (LdStMI.isAtomic()) 4026 return UnableToLegalize; 4027 4028 bool IsLoad = isa<GLoad>(LdStMI); 4029 Register ValReg = LdStMI.getReg(0); 4030 Register AddrReg = LdStMI.getPointerReg(); 4031 LLT ValTy = MRI.getType(ValReg); 4032 4033 // FIXME: Do we need a distinct NarrowMemory legalize action? 4034 if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) { 4035 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 4036 return UnableToLegalize; 4037 } 4038 4039 int NumParts = -1; 4040 int NumLeftover = -1; 4041 LLT LeftoverTy; 4042 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 4043 if (IsLoad) { 4044 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 4045 } else { 4046 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 4047 NarrowLeftoverRegs)) { 4048 NumParts = NarrowRegs.size(); 4049 NumLeftover = NarrowLeftoverRegs.size(); 4050 } 4051 } 4052 4053 if (NumParts == -1) 4054 return UnableToLegalize; 4055 4056 LLT PtrTy = MRI.getType(AddrReg); 4057 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 4058 4059 unsigned TotalSize = ValTy.getSizeInBits(); 4060 4061 // Split the load/store into PartTy sized pieces starting at Offset. If this 4062 // is a load, return the new registers in ValRegs. For a store, each elements 4063 // of ValRegs should be PartTy. Returns the next offset that needs to be 4064 // handled. 4065 bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian(); 4066 auto MMO = LdStMI.getMMO(); 4067 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 4068 unsigned NumParts, unsigned Offset) -> unsigned { 4069 MachineFunction &MF = MIRBuilder.getMF(); 4070 unsigned PartSize = PartTy.getSizeInBits(); 4071 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 4072 ++Idx) { 4073 unsigned ByteOffset = Offset / 8; 4074 Register NewAddrReg; 4075 4076 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 4077 4078 MachineMemOperand *NewMMO = 4079 MF.getMachineMemOperand(&MMO, ByteOffset, PartTy); 4080 4081 if (IsLoad) { 4082 Register Dst = MRI.createGenericVirtualRegister(PartTy); 4083 ValRegs.push_back(Dst); 4084 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 4085 } else { 4086 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 4087 } 4088 Offset = isBigEndian ? Offset - PartSize : Offset + PartSize; 4089 } 4090 4091 return Offset; 4092 }; 4093 4094 unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0; 4095 unsigned HandledOffset = 4096 splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset); 4097 4098 // Handle the rest of the register if this isn't an even type breakdown. 4099 if (LeftoverTy.isValid()) 4100 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset); 4101 4102 if (IsLoad) { 4103 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 4104 LeftoverTy, NarrowLeftoverRegs); 4105 } 4106 4107 LdStMI.eraseFromParent(); 4108 return Legalized; 4109 } 4110 4111 LegalizerHelper::LegalizeResult 4112 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4113 LLT NarrowTy) { 4114 using namespace TargetOpcode; 4115 GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI); 4116 unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 4117 4118 switch (MI.getOpcode()) { 4119 case G_IMPLICIT_DEF: 4120 case G_TRUNC: 4121 case G_AND: 4122 case G_OR: 4123 case G_XOR: 4124 case G_ADD: 4125 case G_SUB: 4126 case G_MUL: 4127 case G_PTR_ADD: 4128 case G_SMULH: 4129 case G_UMULH: 4130 case G_FADD: 4131 case G_FMUL: 4132 case G_FSUB: 4133 case G_FNEG: 4134 case G_FABS: 4135 case G_FCANONICALIZE: 4136 case G_FDIV: 4137 case G_FREM: 4138 case G_FMA: 4139 case G_FMAD: 4140 case G_FPOW: 4141 case G_FEXP: 4142 case G_FEXP2: 4143 case G_FLOG: 4144 case G_FLOG2: 4145 case G_FLOG10: 4146 case G_FNEARBYINT: 4147 case G_FCEIL: 4148 case G_FFLOOR: 4149 case G_FRINT: 4150 case G_INTRINSIC_ROUND: 4151 case G_INTRINSIC_ROUNDEVEN: 4152 case G_INTRINSIC_TRUNC: 4153 case G_FCOS: 4154 case G_FSIN: 4155 case G_FSQRT: 4156 case G_BSWAP: 4157 case G_BITREVERSE: 4158 case G_SDIV: 4159 case G_UDIV: 4160 case G_SREM: 4161 case G_UREM: 4162 case G_SDIVREM: 4163 case G_UDIVREM: 4164 case G_SMIN: 4165 case G_SMAX: 4166 case G_UMIN: 4167 case G_UMAX: 4168 case G_ABS: 4169 case G_FMINNUM: 4170 case G_FMAXNUM: 4171 case G_FMINNUM_IEEE: 4172 case G_FMAXNUM_IEEE: 4173 case G_FMINIMUM: 4174 case G_FMAXIMUM: 4175 case G_FSHL: 4176 case G_FSHR: 4177 case G_ROTL: 4178 case G_ROTR: 4179 case G_FREEZE: 4180 case G_SADDSAT: 4181 case G_SSUBSAT: 4182 case G_UADDSAT: 4183 case G_USUBSAT: 4184 case G_UMULO: 4185 case G_SMULO: 4186 case G_SHL: 4187 case G_LSHR: 4188 case G_ASHR: 4189 case G_SSHLSAT: 4190 case G_USHLSAT: 4191 case G_CTLZ: 4192 case G_CTLZ_ZERO_UNDEF: 4193 case G_CTTZ: 4194 case G_CTTZ_ZERO_UNDEF: 4195 case G_CTPOP: 4196 case G_FCOPYSIGN: 4197 case G_ZEXT: 4198 case G_SEXT: 4199 case G_ANYEXT: 4200 case G_FPEXT: 4201 case G_FPTRUNC: 4202 case G_SITOFP: 4203 case G_UITOFP: 4204 case G_FPTOSI: 4205 case G_FPTOUI: 4206 case G_INTTOPTR: 4207 case G_PTRTOINT: 4208 case G_ADDRSPACE_CAST: 4209 case G_UADDO: 4210 case G_USUBO: 4211 case G_UADDE: 4212 case G_USUBE: 4213 case G_SADDO: 4214 case G_SSUBO: 4215 case G_SADDE: 4216 case G_SSUBE: 4217 return fewerElementsVectorMultiEltType(GMI, NumElts); 4218 case G_ICMP: 4219 case G_FCMP: 4220 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/}); 4221 case G_SELECT: 4222 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4223 return fewerElementsVectorMultiEltType(GMI, NumElts); 4224 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/}); 4225 case G_PHI: 4226 return fewerElementsVectorPhi(GMI, NumElts); 4227 case G_UNMERGE_VALUES: 4228 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4229 case G_BUILD_VECTOR: 4230 assert(TypeIdx == 0 && "not a vector type index"); 4231 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4232 case G_CONCAT_VECTORS: 4233 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4234 return UnableToLegalize; 4235 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4236 case G_EXTRACT_VECTOR_ELT: 4237 case G_INSERT_VECTOR_ELT: 4238 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4239 case G_LOAD: 4240 case G_STORE: 4241 return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy); 4242 case G_SEXT_INREG: 4243 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/}); 4244 GISEL_VECREDUCE_CASES_NONSEQ 4245 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4246 case G_SHUFFLE_VECTOR: 4247 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 4248 default: 4249 return UnableToLegalize; 4250 } 4251 } 4252 4253 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 4254 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4255 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 4256 if (TypeIdx != 0) 4257 return UnableToLegalize; 4258 4259 Register DstReg = MI.getOperand(0).getReg(); 4260 Register Src1Reg = MI.getOperand(1).getReg(); 4261 Register Src2Reg = MI.getOperand(2).getReg(); 4262 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4263 LLT DstTy = MRI.getType(DstReg); 4264 LLT Src1Ty = MRI.getType(Src1Reg); 4265 LLT Src2Ty = MRI.getType(Src2Reg); 4266 // The shuffle should be canonicalized by now. 4267 if (DstTy != Src1Ty) 4268 return UnableToLegalize; 4269 if (DstTy != Src2Ty) 4270 return UnableToLegalize; 4271 4272 if (!isPowerOf2_32(DstTy.getNumElements())) 4273 return UnableToLegalize; 4274 4275 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 4276 // Further legalization attempts will be needed to do split further. 4277 NarrowTy = 4278 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); 4279 unsigned NewElts = NarrowTy.getNumElements(); 4280 4281 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 4282 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); 4283 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); 4284 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 4285 SplitSrc2Regs[1]}; 4286 4287 Register Hi, Lo; 4288 4289 // If Lo or Hi uses elements from at most two of the four input vectors, then 4290 // express it as a vector shuffle of those two inputs. Otherwise extract the 4291 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 4292 SmallVector<int, 16> Ops; 4293 for (unsigned High = 0; High < 2; ++High) { 4294 Register &Output = High ? Hi : Lo; 4295 4296 // Build a shuffle mask for the output, discovering on the fly which 4297 // input vectors to use as shuffle operands (recorded in InputUsed). 4298 // If building a suitable shuffle vector proves too hard, then bail 4299 // out with useBuildVector set. 4300 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 4301 unsigned FirstMaskIdx = High * NewElts; 4302 bool UseBuildVector = false; 4303 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4304 // The mask element. This indexes into the input. 4305 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4306 4307 // The input vector this mask element indexes into. 4308 unsigned Input = (unsigned)Idx / NewElts; 4309 4310 if (Input >= array_lengthof(Inputs)) { 4311 // The mask element does not index into any input vector. 4312 Ops.push_back(-1); 4313 continue; 4314 } 4315 4316 // Turn the index into an offset from the start of the input vector. 4317 Idx -= Input * NewElts; 4318 4319 // Find or create a shuffle vector operand to hold this input. 4320 unsigned OpNo; 4321 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { 4322 if (InputUsed[OpNo] == Input) { 4323 // This input vector is already an operand. 4324 break; 4325 } else if (InputUsed[OpNo] == -1U) { 4326 // Create a new operand for this input vector. 4327 InputUsed[OpNo] = Input; 4328 break; 4329 } 4330 } 4331 4332 if (OpNo >= array_lengthof(InputUsed)) { 4333 // More than two input vectors used! Give up on trying to create a 4334 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 4335 UseBuildVector = true; 4336 break; 4337 } 4338 4339 // Add the mask index for the new shuffle vector. 4340 Ops.push_back(Idx + OpNo * NewElts); 4341 } 4342 4343 if (UseBuildVector) { 4344 LLT EltTy = NarrowTy.getElementType(); 4345 SmallVector<Register, 16> SVOps; 4346 4347 // Extract the input elements by hand. 4348 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4349 // The mask element. This indexes into the input. 4350 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4351 4352 // The input vector this mask element indexes into. 4353 unsigned Input = (unsigned)Idx / NewElts; 4354 4355 if (Input >= array_lengthof(Inputs)) { 4356 // The mask element is "undef" or indexes off the end of the input. 4357 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 4358 continue; 4359 } 4360 4361 // Turn the index into an offset from the start of the input vector. 4362 Idx -= Input * NewElts; 4363 4364 // Extract the vector element by hand. 4365 SVOps.push_back(MIRBuilder 4366 .buildExtractVectorElement( 4367 EltTy, Inputs[Input], 4368 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 4369 .getReg(0)); 4370 } 4371 4372 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 4373 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 4374 } else if (InputUsed[0] == -1U) { 4375 // No input vectors were used! The result is undefined. 4376 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 4377 } else { 4378 Register Op0 = Inputs[InputUsed[0]]; 4379 // If only one input was used, use an undefined vector for the other. 4380 Register Op1 = InputUsed[1] == -1U 4381 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 4382 : Inputs[InputUsed[1]]; 4383 // At least one input vector was used. Create a new shuffle vector. 4384 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 4385 } 4386 4387 Ops.clear(); 4388 } 4389 4390 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); 4391 MI.eraseFromParent(); 4392 return Legalized; 4393 } 4394 4395 static unsigned getScalarOpcForReduction(unsigned Opc) { 4396 unsigned ScalarOpc; 4397 switch (Opc) { 4398 case TargetOpcode::G_VECREDUCE_FADD: 4399 ScalarOpc = TargetOpcode::G_FADD; 4400 break; 4401 case TargetOpcode::G_VECREDUCE_FMUL: 4402 ScalarOpc = TargetOpcode::G_FMUL; 4403 break; 4404 case TargetOpcode::G_VECREDUCE_FMAX: 4405 ScalarOpc = TargetOpcode::G_FMAXNUM; 4406 break; 4407 case TargetOpcode::G_VECREDUCE_FMIN: 4408 ScalarOpc = TargetOpcode::G_FMINNUM; 4409 break; 4410 case TargetOpcode::G_VECREDUCE_ADD: 4411 ScalarOpc = TargetOpcode::G_ADD; 4412 break; 4413 case TargetOpcode::G_VECREDUCE_MUL: 4414 ScalarOpc = TargetOpcode::G_MUL; 4415 break; 4416 case TargetOpcode::G_VECREDUCE_AND: 4417 ScalarOpc = TargetOpcode::G_AND; 4418 break; 4419 case TargetOpcode::G_VECREDUCE_OR: 4420 ScalarOpc = TargetOpcode::G_OR; 4421 break; 4422 case TargetOpcode::G_VECREDUCE_XOR: 4423 ScalarOpc = TargetOpcode::G_XOR; 4424 break; 4425 case TargetOpcode::G_VECREDUCE_SMAX: 4426 ScalarOpc = TargetOpcode::G_SMAX; 4427 break; 4428 case TargetOpcode::G_VECREDUCE_SMIN: 4429 ScalarOpc = TargetOpcode::G_SMIN; 4430 break; 4431 case TargetOpcode::G_VECREDUCE_UMAX: 4432 ScalarOpc = TargetOpcode::G_UMAX; 4433 break; 4434 case TargetOpcode::G_VECREDUCE_UMIN: 4435 ScalarOpc = TargetOpcode::G_UMIN; 4436 break; 4437 default: 4438 llvm_unreachable("Unhandled reduction"); 4439 } 4440 return ScalarOpc; 4441 } 4442 4443 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4444 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4445 unsigned Opc = MI.getOpcode(); 4446 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && 4447 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && 4448 "Sequential reductions not expected"); 4449 4450 if (TypeIdx != 1) 4451 return UnableToLegalize; 4452 4453 // The semantics of the normal non-sequential reductions allow us to freely 4454 // re-associate the operation. 4455 Register SrcReg = MI.getOperand(1).getReg(); 4456 LLT SrcTy = MRI.getType(SrcReg); 4457 Register DstReg = MI.getOperand(0).getReg(); 4458 LLT DstTy = MRI.getType(DstReg); 4459 4460 if (NarrowTy.isVector() && 4461 (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)) 4462 return UnableToLegalize; 4463 4464 unsigned ScalarOpc = getScalarOpcForReduction(Opc); 4465 SmallVector<Register> SplitSrcs; 4466 // If NarrowTy is a scalar then we're being asked to scalarize. 4467 const unsigned NumParts = 4468 NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements() 4469 : SrcTy.getNumElements(); 4470 4471 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4472 if (NarrowTy.isScalar()) { 4473 if (DstTy != NarrowTy) 4474 return UnableToLegalize; // FIXME: handle implicit extensions. 4475 4476 if (isPowerOf2_32(NumParts)) { 4477 // Generate a tree of scalar operations to reduce the critical path. 4478 SmallVector<Register> PartialResults; 4479 unsigned NumPartsLeft = NumParts; 4480 while (NumPartsLeft > 1) { 4481 for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) { 4482 PartialResults.emplace_back( 4483 MIRBuilder 4484 .buildInstr(ScalarOpc, {NarrowTy}, 4485 {SplitSrcs[Idx], SplitSrcs[Idx + 1]}) 4486 .getReg(0)); 4487 } 4488 SplitSrcs = PartialResults; 4489 PartialResults.clear(); 4490 NumPartsLeft = SplitSrcs.size(); 4491 } 4492 assert(SplitSrcs.size() == 1); 4493 MIRBuilder.buildCopy(DstReg, SplitSrcs[0]); 4494 MI.eraseFromParent(); 4495 return Legalized; 4496 } 4497 // If we can't generate a tree, then just do sequential operations. 4498 Register Acc = SplitSrcs[0]; 4499 for (unsigned Idx = 1; Idx < NumParts; ++Idx) 4500 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]}) 4501 .getReg(0); 4502 MIRBuilder.buildCopy(DstReg, Acc); 4503 MI.eraseFromParent(); 4504 return Legalized; 4505 } 4506 SmallVector<Register> PartialReductions; 4507 for (unsigned Part = 0; Part < NumParts; ++Part) { 4508 PartialReductions.push_back( 4509 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); 4510 } 4511 4512 4513 // If the types involved are powers of 2, we can generate intermediate vector 4514 // ops, before generating a final reduction operation. 4515 if (isPowerOf2_32(SrcTy.getNumElements()) && 4516 isPowerOf2_32(NarrowTy.getNumElements())) { 4517 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4518 } 4519 4520 Register Acc = PartialReductions[0]; 4521 for (unsigned Part = 1; Part < NumParts; ++Part) { 4522 if (Part == NumParts - 1) { 4523 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4524 {Acc, PartialReductions[Part]}); 4525 } else { 4526 Acc = MIRBuilder 4527 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4528 .getReg(0); 4529 } 4530 } 4531 MI.eraseFromParent(); 4532 return Legalized; 4533 } 4534 4535 LegalizerHelper::LegalizeResult 4536 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4537 LLT SrcTy, LLT NarrowTy, 4538 unsigned ScalarOpc) { 4539 SmallVector<Register> SplitSrcs; 4540 // Split the sources into NarrowTy size pieces. 4541 extractParts(SrcReg, NarrowTy, 4542 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4543 // We're going to do a tree reduction using vector operations until we have 4544 // one NarrowTy size value left. 4545 while (SplitSrcs.size() > 1) { 4546 SmallVector<Register> PartialRdxs; 4547 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 4548 Register LHS = SplitSrcs[Idx]; 4549 Register RHS = SplitSrcs[Idx + 1]; 4550 // Create the intermediate vector op. 4551 Register Res = 4552 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 4553 PartialRdxs.push_back(Res); 4554 } 4555 SplitSrcs = std::move(PartialRdxs); 4556 } 4557 // Finally generate the requested NarrowTy based reduction. 4558 Observer.changingInstr(MI); 4559 MI.getOperand(1).setReg(SplitSrcs[0]); 4560 Observer.changedInstr(MI); 4561 return Legalized; 4562 } 4563 4564 LegalizerHelper::LegalizeResult 4565 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4566 const LLT HalfTy, const LLT AmtTy) { 4567 4568 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4569 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4570 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4571 4572 if (Amt.isZero()) { 4573 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4574 MI.eraseFromParent(); 4575 return Legalized; 4576 } 4577 4578 LLT NVT = HalfTy; 4579 unsigned NVTBits = HalfTy.getSizeInBits(); 4580 unsigned VTBits = 2 * NVTBits; 4581 4582 SrcOp Lo(Register(0)), Hi(Register(0)); 4583 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4584 if (Amt.ugt(VTBits)) { 4585 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4586 } else if (Amt.ugt(NVTBits)) { 4587 Lo = MIRBuilder.buildConstant(NVT, 0); 4588 Hi = MIRBuilder.buildShl(NVT, InL, 4589 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4590 } else if (Amt == NVTBits) { 4591 Lo = MIRBuilder.buildConstant(NVT, 0); 4592 Hi = InL; 4593 } else { 4594 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4595 auto OrLHS = 4596 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4597 auto OrRHS = MIRBuilder.buildLShr( 4598 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4599 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4600 } 4601 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4602 if (Amt.ugt(VTBits)) { 4603 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4604 } else if (Amt.ugt(NVTBits)) { 4605 Lo = MIRBuilder.buildLShr(NVT, InH, 4606 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4607 Hi = MIRBuilder.buildConstant(NVT, 0); 4608 } else if (Amt == NVTBits) { 4609 Lo = InH; 4610 Hi = MIRBuilder.buildConstant(NVT, 0); 4611 } else { 4612 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4613 4614 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4615 auto OrRHS = MIRBuilder.buildShl( 4616 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4617 4618 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4619 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4620 } 4621 } else { 4622 if (Amt.ugt(VTBits)) { 4623 Hi = Lo = MIRBuilder.buildAShr( 4624 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4625 } else if (Amt.ugt(NVTBits)) { 4626 Lo = MIRBuilder.buildAShr(NVT, InH, 4627 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4628 Hi = MIRBuilder.buildAShr(NVT, InH, 4629 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4630 } else if (Amt == NVTBits) { 4631 Lo = InH; 4632 Hi = MIRBuilder.buildAShr(NVT, InH, 4633 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4634 } else { 4635 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4636 4637 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4638 auto OrRHS = MIRBuilder.buildShl( 4639 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4640 4641 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4642 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4643 } 4644 } 4645 4646 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4647 MI.eraseFromParent(); 4648 4649 return Legalized; 4650 } 4651 4652 // TODO: Optimize if constant shift amount. 4653 LegalizerHelper::LegalizeResult 4654 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4655 LLT RequestedTy) { 4656 if (TypeIdx == 1) { 4657 Observer.changingInstr(MI); 4658 narrowScalarSrc(MI, RequestedTy, 2); 4659 Observer.changedInstr(MI); 4660 return Legalized; 4661 } 4662 4663 Register DstReg = MI.getOperand(0).getReg(); 4664 LLT DstTy = MRI.getType(DstReg); 4665 if (DstTy.isVector()) 4666 return UnableToLegalize; 4667 4668 Register Amt = MI.getOperand(2).getReg(); 4669 LLT ShiftAmtTy = MRI.getType(Amt); 4670 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4671 if (DstEltSize % 2 != 0) 4672 return UnableToLegalize; 4673 4674 // Ignore the input type. We can only go to exactly half the size of the 4675 // input. If that isn't small enough, the resulting pieces will be further 4676 // legalized. 4677 const unsigned NewBitSize = DstEltSize / 2; 4678 const LLT HalfTy = LLT::scalar(NewBitSize); 4679 const LLT CondTy = LLT::scalar(1); 4680 4681 if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) { 4682 return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy, 4683 ShiftAmtTy); 4684 } 4685 4686 // TODO: Expand with known bits. 4687 4688 // Handle the fully general expansion by an unknown amount. 4689 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4690 4691 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4692 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4693 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4694 4695 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4696 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4697 4698 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4699 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4700 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4701 4702 Register ResultRegs[2]; 4703 switch (MI.getOpcode()) { 4704 case TargetOpcode::G_SHL: { 4705 // Short: ShAmt < NewBitSize 4706 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4707 4708 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4709 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4710 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4711 4712 // Long: ShAmt >= NewBitSize 4713 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4714 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4715 4716 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4717 auto Hi = MIRBuilder.buildSelect( 4718 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4719 4720 ResultRegs[0] = Lo.getReg(0); 4721 ResultRegs[1] = Hi.getReg(0); 4722 break; 4723 } 4724 case TargetOpcode::G_LSHR: 4725 case TargetOpcode::G_ASHR: { 4726 // Short: ShAmt < NewBitSize 4727 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4728 4729 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4730 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4731 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4732 4733 // Long: ShAmt >= NewBitSize 4734 MachineInstrBuilder HiL; 4735 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4736 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4737 } else { 4738 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4739 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4740 } 4741 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4742 {InH, AmtExcess}); // Lo from Hi part. 4743 4744 auto Lo = MIRBuilder.buildSelect( 4745 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4746 4747 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4748 4749 ResultRegs[0] = Lo.getReg(0); 4750 ResultRegs[1] = Hi.getReg(0); 4751 break; 4752 } 4753 default: 4754 llvm_unreachable("not a shift"); 4755 } 4756 4757 MIRBuilder.buildMerge(DstReg, ResultRegs); 4758 MI.eraseFromParent(); 4759 return Legalized; 4760 } 4761 4762 LegalizerHelper::LegalizeResult 4763 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4764 LLT MoreTy) { 4765 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4766 4767 Observer.changingInstr(MI); 4768 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4769 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4770 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4771 moreElementsVectorSrc(MI, MoreTy, I); 4772 } 4773 4774 MachineBasicBlock &MBB = *MI.getParent(); 4775 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4776 moreElementsVectorDst(MI, MoreTy, 0); 4777 Observer.changedInstr(MI); 4778 return Legalized; 4779 } 4780 4781 LegalizerHelper::LegalizeResult 4782 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4783 LLT MoreTy) { 4784 unsigned Opc = MI.getOpcode(); 4785 switch (Opc) { 4786 case TargetOpcode::G_IMPLICIT_DEF: 4787 case TargetOpcode::G_LOAD: { 4788 if (TypeIdx != 0) 4789 return UnableToLegalize; 4790 Observer.changingInstr(MI); 4791 moreElementsVectorDst(MI, MoreTy, 0); 4792 Observer.changedInstr(MI); 4793 return Legalized; 4794 } 4795 case TargetOpcode::G_STORE: 4796 if (TypeIdx != 0) 4797 return UnableToLegalize; 4798 Observer.changingInstr(MI); 4799 moreElementsVectorSrc(MI, MoreTy, 0); 4800 Observer.changedInstr(MI); 4801 return Legalized; 4802 case TargetOpcode::G_AND: 4803 case TargetOpcode::G_OR: 4804 case TargetOpcode::G_XOR: 4805 case TargetOpcode::G_ADD: 4806 case TargetOpcode::G_SUB: 4807 case TargetOpcode::G_MUL: 4808 case TargetOpcode::G_FADD: 4809 case TargetOpcode::G_FMUL: 4810 case TargetOpcode::G_UADDSAT: 4811 case TargetOpcode::G_USUBSAT: 4812 case TargetOpcode::G_SADDSAT: 4813 case TargetOpcode::G_SSUBSAT: 4814 case TargetOpcode::G_SMIN: 4815 case TargetOpcode::G_SMAX: 4816 case TargetOpcode::G_UMIN: 4817 case TargetOpcode::G_UMAX: 4818 case TargetOpcode::G_FMINNUM: 4819 case TargetOpcode::G_FMAXNUM: 4820 case TargetOpcode::G_FMINNUM_IEEE: 4821 case TargetOpcode::G_FMAXNUM_IEEE: 4822 case TargetOpcode::G_FMINIMUM: 4823 case TargetOpcode::G_FMAXIMUM: { 4824 Observer.changingInstr(MI); 4825 moreElementsVectorSrc(MI, MoreTy, 1); 4826 moreElementsVectorSrc(MI, MoreTy, 2); 4827 moreElementsVectorDst(MI, MoreTy, 0); 4828 Observer.changedInstr(MI); 4829 return Legalized; 4830 } 4831 case TargetOpcode::G_FMA: 4832 case TargetOpcode::G_FSHR: 4833 case TargetOpcode::G_FSHL: { 4834 Observer.changingInstr(MI); 4835 moreElementsVectorSrc(MI, MoreTy, 1); 4836 moreElementsVectorSrc(MI, MoreTy, 2); 4837 moreElementsVectorSrc(MI, MoreTy, 3); 4838 moreElementsVectorDst(MI, MoreTy, 0); 4839 Observer.changedInstr(MI); 4840 return Legalized; 4841 } 4842 case TargetOpcode::G_EXTRACT: 4843 if (TypeIdx != 1) 4844 return UnableToLegalize; 4845 Observer.changingInstr(MI); 4846 moreElementsVectorSrc(MI, MoreTy, 1); 4847 Observer.changedInstr(MI); 4848 return Legalized; 4849 case TargetOpcode::G_INSERT: 4850 case TargetOpcode::G_FREEZE: 4851 case TargetOpcode::G_FNEG: 4852 case TargetOpcode::G_FABS: 4853 case TargetOpcode::G_BSWAP: 4854 case TargetOpcode::G_FCANONICALIZE: 4855 case TargetOpcode::G_SEXT_INREG: 4856 if (TypeIdx != 0) 4857 return UnableToLegalize; 4858 Observer.changingInstr(MI); 4859 moreElementsVectorSrc(MI, MoreTy, 1); 4860 moreElementsVectorDst(MI, MoreTy, 0); 4861 Observer.changedInstr(MI); 4862 return Legalized; 4863 case TargetOpcode::G_SELECT: { 4864 Register DstReg = MI.getOperand(0).getReg(); 4865 Register CondReg = MI.getOperand(1).getReg(); 4866 LLT DstTy = MRI.getType(DstReg); 4867 LLT CondTy = MRI.getType(CondReg); 4868 if (TypeIdx == 1) { 4869 if (!CondTy.isScalar() || 4870 DstTy.getElementCount() != MoreTy.getElementCount()) 4871 return UnableToLegalize; 4872 4873 // This is turning a scalar select of vectors into a vector 4874 // select. Broadcast the select condition. 4875 auto ShufSplat = MIRBuilder.buildShuffleSplat(MoreTy, CondReg); 4876 Observer.changingInstr(MI); 4877 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 4878 Observer.changedInstr(MI); 4879 return Legalized; 4880 } 4881 4882 if (CondTy.isVector()) 4883 return UnableToLegalize; 4884 4885 Observer.changingInstr(MI); 4886 moreElementsVectorSrc(MI, MoreTy, 2); 4887 moreElementsVectorSrc(MI, MoreTy, 3); 4888 moreElementsVectorDst(MI, MoreTy, 0); 4889 Observer.changedInstr(MI); 4890 return Legalized; 4891 } 4892 case TargetOpcode::G_UNMERGE_VALUES: 4893 return UnableToLegalize; 4894 case TargetOpcode::G_PHI: 4895 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4896 case TargetOpcode::G_SHUFFLE_VECTOR: 4897 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy); 4898 case TargetOpcode::G_BUILD_VECTOR: { 4899 SmallVector<SrcOp, 8> Elts; 4900 for (auto Op : MI.uses()) { 4901 Elts.push_back(Op.getReg()); 4902 } 4903 4904 for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) { 4905 Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType())); 4906 } 4907 4908 MIRBuilder.buildDeleteTrailingVectorElements( 4909 MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts)); 4910 MI.eraseFromParent(); 4911 return Legalized; 4912 } 4913 case TargetOpcode::G_TRUNC: { 4914 Observer.changingInstr(MI); 4915 moreElementsVectorSrc(MI, MoreTy, 1); 4916 moreElementsVectorDst(MI, MoreTy, 0); 4917 Observer.changedInstr(MI); 4918 return Legalized; 4919 } 4920 default: 4921 return UnableToLegalize; 4922 } 4923 } 4924 4925 LegalizerHelper::LegalizeResult 4926 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI, 4927 unsigned int TypeIdx, LLT MoreTy) { 4928 if (TypeIdx != 0) 4929 return UnableToLegalize; 4930 4931 Register DstReg = MI.getOperand(0).getReg(); 4932 Register Src1Reg = MI.getOperand(1).getReg(); 4933 Register Src2Reg = MI.getOperand(2).getReg(); 4934 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4935 LLT DstTy = MRI.getType(DstReg); 4936 LLT Src1Ty = MRI.getType(Src1Reg); 4937 LLT Src2Ty = MRI.getType(Src2Reg); 4938 unsigned NumElts = DstTy.getNumElements(); 4939 unsigned WidenNumElts = MoreTy.getNumElements(); 4940 4941 // Expect a canonicalized shuffle. 4942 if (DstTy != Src1Ty || DstTy != Src2Ty) 4943 return UnableToLegalize; 4944 4945 moreElementsVectorSrc(MI, MoreTy, 1); 4946 moreElementsVectorSrc(MI, MoreTy, 2); 4947 4948 // Adjust mask based on new input vector length. 4949 SmallVector<int, 16> NewMask; 4950 for (unsigned I = 0; I != NumElts; ++I) { 4951 int Idx = Mask[I]; 4952 if (Idx < static_cast<int>(NumElts)) 4953 NewMask.push_back(Idx); 4954 else 4955 NewMask.push_back(Idx - NumElts + WidenNumElts); 4956 } 4957 for (unsigned I = NumElts; I != WidenNumElts; ++I) 4958 NewMask.push_back(-1); 4959 moreElementsVectorDst(MI, MoreTy, 0); 4960 MIRBuilder.setInstrAndDebugLoc(MI); 4961 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), 4962 MI.getOperand(1).getReg(), 4963 MI.getOperand(2).getReg(), NewMask); 4964 MI.eraseFromParent(); 4965 return Legalized; 4966 } 4967 4968 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4969 ArrayRef<Register> Src1Regs, 4970 ArrayRef<Register> Src2Regs, 4971 LLT NarrowTy) { 4972 MachineIRBuilder &B = MIRBuilder; 4973 unsigned SrcParts = Src1Regs.size(); 4974 unsigned DstParts = DstRegs.size(); 4975 4976 unsigned DstIdx = 0; // Low bits of the result. 4977 Register FactorSum = 4978 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4979 DstRegs[DstIdx] = FactorSum; 4980 4981 unsigned CarrySumPrevDstIdx; 4982 SmallVector<Register, 4> Factors; 4983 4984 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4985 // Collect low parts of muls for DstIdx. 4986 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4987 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4988 MachineInstrBuilder Mul = 4989 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4990 Factors.push_back(Mul.getReg(0)); 4991 } 4992 // Collect high parts of muls from previous DstIdx. 4993 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4994 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4995 MachineInstrBuilder Umulh = 4996 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4997 Factors.push_back(Umulh.getReg(0)); 4998 } 4999 // Add CarrySum from additions calculated for previous DstIdx. 5000 if (DstIdx != 1) { 5001 Factors.push_back(CarrySumPrevDstIdx); 5002 } 5003 5004 Register CarrySum; 5005 // Add all factors and accumulate all carries into CarrySum. 5006 if (DstIdx != DstParts - 1) { 5007 MachineInstrBuilder Uaddo = 5008 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 5009 FactorSum = Uaddo.getReg(0); 5010 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 5011 for (unsigned i = 2; i < Factors.size(); ++i) { 5012 MachineInstrBuilder Uaddo = 5013 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 5014 FactorSum = Uaddo.getReg(0); 5015 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 5016 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 5017 } 5018 } else { 5019 // Since value for the next index is not calculated, neither is CarrySum. 5020 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 5021 for (unsigned i = 2; i < Factors.size(); ++i) 5022 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 5023 } 5024 5025 CarrySumPrevDstIdx = CarrySum; 5026 DstRegs[DstIdx] = FactorSum; 5027 Factors.clear(); 5028 } 5029 } 5030 5031 LegalizerHelper::LegalizeResult 5032 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 5033 LLT NarrowTy) { 5034 if (TypeIdx != 0) 5035 return UnableToLegalize; 5036 5037 Register DstReg = MI.getOperand(0).getReg(); 5038 LLT DstType = MRI.getType(DstReg); 5039 // FIXME: add support for vector types 5040 if (DstType.isVector()) 5041 return UnableToLegalize; 5042 5043 unsigned Opcode = MI.getOpcode(); 5044 unsigned OpO, OpE, OpF; 5045 switch (Opcode) { 5046 case TargetOpcode::G_SADDO: 5047 case TargetOpcode::G_SADDE: 5048 case TargetOpcode::G_UADDO: 5049 case TargetOpcode::G_UADDE: 5050 case TargetOpcode::G_ADD: 5051 OpO = TargetOpcode::G_UADDO; 5052 OpE = TargetOpcode::G_UADDE; 5053 OpF = TargetOpcode::G_UADDE; 5054 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 5055 OpF = TargetOpcode::G_SADDE; 5056 break; 5057 case TargetOpcode::G_SSUBO: 5058 case TargetOpcode::G_SSUBE: 5059 case TargetOpcode::G_USUBO: 5060 case TargetOpcode::G_USUBE: 5061 case TargetOpcode::G_SUB: 5062 OpO = TargetOpcode::G_USUBO; 5063 OpE = TargetOpcode::G_USUBE; 5064 OpF = TargetOpcode::G_USUBE; 5065 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 5066 OpF = TargetOpcode::G_SSUBE; 5067 break; 5068 default: 5069 llvm_unreachable("Unexpected add/sub opcode!"); 5070 } 5071 5072 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 5073 unsigned NumDefs = MI.getNumExplicitDefs(); 5074 Register Src1 = MI.getOperand(NumDefs).getReg(); 5075 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 5076 Register CarryDst, CarryIn; 5077 if (NumDefs == 2) 5078 CarryDst = MI.getOperand(1).getReg(); 5079 if (MI.getNumOperands() == NumDefs + 3) 5080 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 5081 5082 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5083 LLT LeftoverTy, DummyTy; 5084 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; 5085 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left); 5086 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left); 5087 5088 int NarrowParts = Src1Regs.size(); 5089 for (int I = 0, E = Src1Left.size(); I != E; ++I) { 5090 Src1Regs.push_back(Src1Left[I]); 5091 Src2Regs.push_back(Src2Left[I]); 5092 } 5093 DstRegs.reserve(Src1Regs.size()); 5094 5095 for (int i = 0, e = Src1Regs.size(); i != e; ++i) { 5096 Register DstReg = 5097 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); 5098 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 5099 // Forward the final carry-out to the destination register 5100 if (i == e - 1 && CarryDst) 5101 CarryOut = CarryDst; 5102 5103 if (!CarryIn) { 5104 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 5105 {Src1Regs[i], Src2Regs[i]}); 5106 } else if (i == e - 1) { 5107 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 5108 {Src1Regs[i], Src2Regs[i], CarryIn}); 5109 } else { 5110 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 5111 {Src1Regs[i], Src2Regs[i], CarryIn}); 5112 } 5113 5114 DstRegs.push_back(DstReg); 5115 CarryIn = CarryOut; 5116 } 5117 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, 5118 makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, 5119 makeArrayRef(DstRegs).drop_front(NarrowParts)); 5120 5121 MI.eraseFromParent(); 5122 return Legalized; 5123 } 5124 5125 LegalizerHelper::LegalizeResult 5126 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 5127 Register DstReg = MI.getOperand(0).getReg(); 5128 Register Src1 = MI.getOperand(1).getReg(); 5129 Register Src2 = MI.getOperand(2).getReg(); 5130 5131 LLT Ty = MRI.getType(DstReg); 5132 if (Ty.isVector()) 5133 return UnableToLegalize; 5134 5135 unsigned Size = Ty.getSizeInBits(); 5136 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5137 if (Size % NarrowSize != 0) 5138 return UnableToLegalize; 5139 5140 unsigned NumParts = Size / NarrowSize; 5141 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 5142 unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1); 5143 5144 SmallVector<Register, 2> Src1Parts, Src2Parts; 5145 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 5146 extractParts(Src1, NarrowTy, NumParts, Src1Parts); 5147 extractParts(Src2, NarrowTy, NumParts, Src2Parts); 5148 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 5149 5150 // Take only high half of registers if this is high mul. 5151 ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts); 5152 MIRBuilder.buildMerge(DstReg, DstRegs); 5153 MI.eraseFromParent(); 5154 return Legalized; 5155 } 5156 5157 LegalizerHelper::LegalizeResult 5158 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 5159 LLT NarrowTy) { 5160 if (TypeIdx != 0) 5161 return UnableToLegalize; 5162 5163 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 5164 5165 Register Src = MI.getOperand(1).getReg(); 5166 LLT SrcTy = MRI.getType(Src); 5167 5168 // If all finite floats fit into the narrowed integer type, we can just swap 5169 // out the result type. This is practically only useful for conversions from 5170 // half to at least 16-bits, so just handle the one case. 5171 if (SrcTy.getScalarType() != LLT::scalar(16) || 5172 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 5173 return UnableToLegalize; 5174 5175 Observer.changingInstr(MI); 5176 narrowScalarDst(MI, NarrowTy, 0, 5177 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 5178 Observer.changedInstr(MI); 5179 return Legalized; 5180 } 5181 5182 LegalizerHelper::LegalizeResult 5183 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 5184 LLT NarrowTy) { 5185 if (TypeIdx != 1) 5186 return UnableToLegalize; 5187 5188 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5189 5190 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 5191 // FIXME: add support for when SizeOp1 isn't an exact multiple of 5192 // NarrowSize. 5193 if (SizeOp1 % NarrowSize != 0) 5194 return UnableToLegalize; 5195 int NumParts = SizeOp1 / NarrowSize; 5196 5197 SmallVector<Register, 2> SrcRegs, DstRegs; 5198 SmallVector<uint64_t, 2> Indexes; 5199 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5200 5201 Register OpReg = MI.getOperand(0).getReg(); 5202 uint64_t OpStart = MI.getOperand(2).getImm(); 5203 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5204 for (int i = 0; i < NumParts; ++i) { 5205 unsigned SrcStart = i * NarrowSize; 5206 5207 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 5208 // No part of the extract uses this subregister, ignore it. 5209 continue; 5210 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5211 // The entire subregister is extracted, forward the value. 5212 DstRegs.push_back(SrcRegs[i]); 5213 continue; 5214 } 5215 5216 // OpSegStart is where this destination segment would start in OpReg if it 5217 // extended infinitely in both directions. 5218 int64_t ExtractOffset; 5219 uint64_t SegSize; 5220 if (OpStart < SrcStart) { 5221 ExtractOffset = 0; 5222 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 5223 } else { 5224 ExtractOffset = OpStart - SrcStart; 5225 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 5226 } 5227 5228 Register SegReg = SrcRegs[i]; 5229 if (ExtractOffset != 0 || SegSize != NarrowSize) { 5230 // A genuine extract is needed. 5231 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5232 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 5233 } 5234 5235 DstRegs.push_back(SegReg); 5236 } 5237 5238 Register DstReg = MI.getOperand(0).getReg(); 5239 if (MRI.getType(DstReg).isVector()) 5240 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5241 else if (DstRegs.size() > 1) 5242 MIRBuilder.buildMerge(DstReg, DstRegs); 5243 else 5244 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 5245 MI.eraseFromParent(); 5246 return Legalized; 5247 } 5248 5249 LegalizerHelper::LegalizeResult 5250 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 5251 LLT NarrowTy) { 5252 // FIXME: Don't know how to handle secondary types yet. 5253 if (TypeIdx != 0) 5254 return UnableToLegalize; 5255 5256 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; 5257 SmallVector<uint64_t, 2> Indexes; 5258 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5259 LLT LeftoverTy; 5260 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, 5261 LeftoverRegs); 5262 5263 for (Register Reg : LeftoverRegs) 5264 SrcRegs.push_back(Reg); 5265 5266 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5267 Register OpReg = MI.getOperand(2).getReg(); 5268 uint64_t OpStart = MI.getOperand(3).getImm(); 5269 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5270 for (int I = 0, E = SrcRegs.size(); I != E; ++I) { 5271 unsigned DstStart = I * NarrowSize; 5272 5273 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5274 // The entire subregister is defined by this insert, forward the new 5275 // value. 5276 DstRegs.push_back(OpReg); 5277 continue; 5278 } 5279 5280 Register SrcReg = SrcRegs[I]; 5281 if (MRI.getType(SrcRegs[I]) == LeftoverTy) { 5282 // The leftover reg is smaller than NarrowTy, so we need to extend it. 5283 SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 5284 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); 5285 } 5286 5287 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 5288 // No part of the insert affects this subregister, forward the original. 5289 DstRegs.push_back(SrcReg); 5290 continue; 5291 } 5292 5293 // OpSegStart is where this destination segment would start in OpReg if it 5294 // extended infinitely in both directions. 5295 int64_t ExtractOffset, InsertOffset; 5296 uint64_t SegSize; 5297 if (OpStart < DstStart) { 5298 InsertOffset = 0; 5299 ExtractOffset = DstStart - OpStart; 5300 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 5301 } else { 5302 InsertOffset = OpStart - DstStart; 5303 ExtractOffset = 0; 5304 SegSize = 5305 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 5306 } 5307 5308 Register SegReg = OpReg; 5309 if (ExtractOffset != 0 || SegSize != OpSize) { 5310 // A genuine extract is needed. 5311 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5312 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5313 } 5314 5315 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5316 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); 5317 DstRegs.push_back(DstReg); 5318 } 5319 5320 uint64_t WideSize = DstRegs.size() * NarrowSize; 5321 Register DstReg = MI.getOperand(0).getReg(); 5322 if (WideSize > RegTy.getSizeInBits()) { 5323 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); 5324 MIRBuilder.buildMerge(MergeReg, DstRegs); 5325 MIRBuilder.buildTrunc(DstReg, MergeReg); 5326 } else 5327 MIRBuilder.buildMerge(DstReg, DstRegs); 5328 5329 MI.eraseFromParent(); 5330 return Legalized; 5331 } 5332 5333 LegalizerHelper::LegalizeResult 5334 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5335 LLT NarrowTy) { 5336 Register DstReg = MI.getOperand(0).getReg(); 5337 LLT DstTy = MRI.getType(DstReg); 5338 5339 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5340 5341 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5342 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5343 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5344 LLT LeftoverTy; 5345 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5346 Src0Regs, Src0LeftoverRegs)) 5347 return UnableToLegalize; 5348 5349 LLT Unused; 5350 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5351 Src1Regs, Src1LeftoverRegs)) 5352 llvm_unreachable("inconsistent extractParts result"); 5353 5354 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5355 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5356 {Src0Regs[I], Src1Regs[I]}); 5357 DstRegs.push_back(Inst.getReg(0)); 5358 } 5359 5360 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5361 auto Inst = MIRBuilder.buildInstr( 5362 MI.getOpcode(), 5363 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5364 DstLeftoverRegs.push_back(Inst.getReg(0)); 5365 } 5366 5367 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5368 LeftoverTy, DstLeftoverRegs); 5369 5370 MI.eraseFromParent(); 5371 return Legalized; 5372 } 5373 5374 LegalizerHelper::LegalizeResult 5375 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5376 LLT NarrowTy) { 5377 if (TypeIdx != 0) 5378 return UnableToLegalize; 5379 5380 Register DstReg = MI.getOperand(0).getReg(); 5381 Register SrcReg = MI.getOperand(1).getReg(); 5382 5383 LLT DstTy = MRI.getType(DstReg); 5384 if (DstTy.isVector()) 5385 return UnableToLegalize; 5386 5387 SmallVector<Register, 8> Parts; 5388 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5389 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5390 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5391 5392 MI.eraseFromParent(); 5393 return Legalized; 5394 } 5395 5396 LegalizerHelper::LegalizeResult 5397 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5398 LLT NarrowTy) { 5399 if (TypeIdx != 0) 5400 return UnableToLegalize; 5401 5402 Register CondReg = MI.getOperand(1).getReg(); 5403 LLT CondTy = MRI.getType(CondReg); 5404 if (CondTy.isVector()) // TODO: Handle vselect 5405 return UnableToLegalize; 5406 5407 Register DstReg = MI.getOperand(0).getReg(); 5408 LLT DstTy = MRI.getType(DstReg); 5409 5410 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5411 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5412 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5413 LLT LeftoverTy; 5414 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5415 Src1Regs, Src1LeftoverRegs)) 5416 return UnableToLegalize; 5417 5418 LLT Unused; 5419 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5420 Src2Regs, Src2LeftoverRegs)) 5421 llvm_unreachable("inconsistent extractParts result"); 5422 5423 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5424 auto Select = MIRBuilder.buildSelect(NarrowTy, 5425 CondReg, Src1Regs[I], Src2Regs[I]); 5426 DstRegs.push_back(Select.getReg(0)); 5427 } 5428 5429 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5430 auto Select = MIRBuilder.buildSelect( 5431 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5432 DstLeftoverRegs.push_back(Select.getReg(0)); 5433 } 5434 5435 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5436 LeftoverTy, DstLeftoverRegs); 5437 5438 MI.eraseFromParent(); 5439 return Legalized; 5440 } 5441 5442 LegalizerHelper::LegalizeResult 5443 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5444 LLT NarrowTy) { 5445 if (TypeIdx != 1) 5446 return UnableToLegalize; 5447 5448 Register DstReg = MI.getOperand(0).getReg(); 5449 Register SrcReg = MI.getOperand(1).getReg(); 5450 LLT DstTy = MRI.getType(DstReg); 5451 LLT SrcTy = MRI.getType(SrcReg); 5452 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5453 5454 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5455 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5456 5457 MachineIRBuilder &B = MIRBuilder; 5458 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5459 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 5460 auto C_0 = B.buildConstant(NarrowTy, 0); 5461 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5462 UnmergeSrc.getReg(1), C_0); 5463 auto LoCTLZ = IsUndef ? 5464 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 5465 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 5466 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5467 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 5468 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 5469 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 5470 5471 MI.eraseFromParent(); 5472 return Legalized; 5473 } 5474 5475 return UnableToLegalize; 5476 } 5477 5478 LegalizerHelper::LegalizeResult 5479 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 5480 LLT NarrowTy) { 5481 if (TypeIdx != 1) 5482 return UnableToLegalize; 5483 5484 Register DstReg = MI.getOperand(0).getReg(); 5485 Register SrcReg = MI.getOperand(1).getReg(); 5486 LLT DstTy = MRI.getType(DstReg); 5487 LLT SrcTy = MRI.getType(SrcReg); 5488 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5489 5490 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5491 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 5492 5493 MachineIRBuilder &B = MIRBuilder; 5494 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5495 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 5496 auto C_0 = B.buildConstant(NarrowTy, 0); 5497 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5498 UnmergeSrc.getReg(0), C_0); 5499 auto HiCTTZ = IsUndef ? 5500 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 5501 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 5502 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5503 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 5504 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 5505 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 5506 5507 MI.eraseFromParent(); 5508 return Legalized; 5509 } 5510 5511 return UnableToLegalize; 5512 } 5513 5514 LegalizerHelper::LegalizeResult 5515 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 5516 LLT NarrowTy) { 5517 if (TypeIdx != 1) 5518 return UnableToLegalize; 5519 5520 Register DstReg = MI.getOperand(0).getReg(); 5521 LLT DstTy = MRI.getType(DstReg); 5522 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5523 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5524 5525 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5526 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 5527 5528 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 5529 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 5530 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 5531 5532 MI.eraseFromParent(); 5533 return Legalized; 5534 } 5535 5536 return UnableToLegalize; 5537 } 5538 5539 LegalizerHelper::LegalizeResult 5540 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 5541 unsigned Opc = MI.getOpcode(); 5542 const auto &TII = MIRBuilder.getTII(); 5543 auto isSupported = [this](const LegalityQuery &Q) { 5544 auto QAction = LI.getAction(Q).Action; 5545 return QAction == Legal || QAction == Libcall || QAction == Custom; 5546 }; 5547 switch (Opc) { 5548 default: 5549 return UnableToLegalize; 5550 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 5551 // This trivially expands to CTLZ. 5552 Observer.changingInstr(MI); 5553 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 5554 Observer.changedInstr(MI); 5555 return Legalized; 5556 } 5557 case TargetOpcode::G_CTLZ: { 5558 Register DstReg = MI.getOperand(0).getReg(); 5559 Register SrcReg = MI.getOperand(1).getReg(); 5560 LLT DstTy = MRI.getType(DstReg); 5561 LLT SrcTy = MRI.getType(SrcReg); 5562 unsigned Len = SrcTy.getSizeInBits(); 5563 5564 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5565 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 5566 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 5567 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 5568 auto ICmp = MIRBuilder.buildICmp( 5569 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 5570 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5571 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 5572 MI.eraseFromParent(); 5573 return Legalized; 5574 } 5575 // for now, we do this: 5576 // NewLen = NextPowerOf2(Len); 5577 // x = x | (x >> 1); 5578 // x = x | (x >> 2); 5579 // ... 5580 // x = x | (x >>16); 5581 // x = x | (x >>32); // for 64-bit input 5582 // Upto NewLen/2 5583 // return Len - popcount(x); 5584 // 5585 // Ref: "Hacker's Delight" by Henry Warren 5586 Register Op = SrcReg; 5587 unsigned NewLen = PowerOf2Ceil(Len); 5588 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 5589 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 5590 auto MIBOp = MIRBuilder.buildOr( 5591 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 5592 Op = MIBOp.getReg(0); 5593 } 5594 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 5595 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 5596 MIBPop); 5597 MI.eraseFromParent(); 5598 return Legalized; 5599 } 5600 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 5601 // This trivially expands to CTTZ. 5602 Observer.changingInstr(MI); 5603 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5604 Observer.changedInstr(MI); 5605 return Legalized; 5606 } 5607 case TargetOpcode::G_CTTZ: { 5608 Register DstReg = MI.getOperand(0).getReg(); 5609 Register SrcReg = MI.getOperand(1).getReg(); 5610 LLT DstTy = MRI.getType(DstReg); 5611 LLT SrcTy = MRI.getType(SrcReg); 5612 5613 unsigned Len = SrcTy.getSizeInBits(); 5614 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5615 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5616 // zero. 5617 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5618 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5619 auto ICmp = MIRBuilder.buildICmp( 5620 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5621 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5622 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5623 MI.eraseFromParent(); 5624 return Legalized; 5625 } 5626 // for now, we use: { return popcount(~x & (x - 1)); } 5627 // unless the target has ctlz but not ctpop, in which case we use: 5628 // { return 32 - nlz(~x & (x-1)); } 5629 // Ref: "Hacker's Delight" by Henry Warren 5630 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5631 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5632 auto MIBTmp = MIRBuilder.buildAnd( 5633 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5634 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5635 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5636 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5637 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5638 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5639 MI.eraseFromParent(); 5640 return Legalized; 5641 } 5642 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5643 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5644 return Legalized; 5645 } 5646 case TargetOpcode::G_CTPOP: { 5647 Register SrcReg = MI.getOperand(1).getReg(); 5648 LLT Ty = MRI.getType(SrcReg); 5649 unsigned Size = Ty.getSizeInBits(); 5650 MachineIRBuilder &B = MIRBuilder; 5651 5652 // Count set bits in blocks of 2 bits. Default approach would be 5653 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5654 // We use following formula instead: 5655 // B2Count = val - { (val >> 1) & 0x55555555 } 5656 // since it gives same result in blocks of 2 with one instruction less. 5657 auto C_1 = B.buildConstant(Ty, 1); 5658 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5659 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5660 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5661 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5662 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5663 5664 // In order to get count in blocks of 4 add values from adjacent block of 2. 5665 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5666 auto C_2 = B.buildConstant(Ty, 2); 5667 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5668 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5669 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5670 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5671 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5672 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5673 5674 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5675 // addition since count value sits in range {0,...,8} and 4 bits are enough 5676 // to hold such binary values. After addition high 4 bits still hold count 5677 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5678 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5679 auto C_4 = B.buildConstant(Ty, 4); 5680 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5681 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5682 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5683 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5684 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5685 5686 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5687 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5688 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5689 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5690 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5691 5692 // Shift count result from 8 high bits to low bits. 5693 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5694 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5695 5696 MI.eraseFromParent(); 5697 return Legalized; 5698 } 5699 } 5700 } 5701 5702 // Check that (every element of) Reg is undef or not an exact multiple of BW. 5703 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 5704 Register Reg, unsigned BW) { 5705 return matchUnaryPredicate( 5706 MRI, Reg, 5707 [=](const Constant *C) { 5708 // Null constant here means an undef. 5709 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 5710 return !CI || CI->getValue().urem(BW) != 0; 5711 }, 5712 /*AllowUndefs*/ true); 5713 } 5714 5715 LegalizerHelper::LegalizeResult 5716 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 5717 Register Dst = MI.getOperand(0).getReg(); 5718 Register X = MI.getOperand(1).getReg(); 5719 Register Y = MI.getOperand(2).getReg(); 5720 Register Z = MI.getOperand(3).getReg(); 5721 LLT Ty = MRI.getType(Dst); 5722 LLT ShTy = MRI.getType(Z); 5723 5724 unsigned BW = Ty.getScalarSizeInBits(); 5725 5726 if (!isPowerOf2_32(BW)) 5727 return UnableToLegalize; 5728 5729 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5730 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5731 5732 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5733 // fshl X, Y, Z -> fshr X, Y, -Z 5734 // fshr X, Y, Z -> fshl X, Y, -Z 5735 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 5736 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 5737 } else { 5738 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 5739 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 5740 auto One = MIRBuilder.buildConstant(ShTy, 1); 5741 if (IsFSHL) { 5742 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5743 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 5744 } else { 5745 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5746 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 5747 } 5748 5749 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 5750 } 5751 5752 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 5753 MI.eraseFromParent(); 5754 return Legalized; 5755 } 5756 5757 LegalizerHelper::LegalizeResult 5758 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 5759 Register Dst = MI.getOperand(0).getReg(); 5760 Register X = MI.getOperand(1).getReg(); 5761 Register Y = MI.getOperand(2).getReg(); 5762 Register Z = MI.getOperand(3).getReg(); 5763 LLT Ty = MRI.getType(Dst); 5764 LLT ShTy = MRI.getType(Z); 5765 5766 const unsigned BW = Ty.getScalarSizeInBits(); 5767 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5768 5769 Register ShX, ShY; 5770 Register ShAmt, InvShAmt; 5771 5772 // FIXME: Emit optimized urem by constant instead of letting it expand later. 5773 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5774 // fshl: X << C | Y >> (BW - C) 5775 // fshr: X << (BW - C) | Y >> C 5776 // where C = Z % BW is not zero 5777 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5778 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5779 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 5780 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 5781 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 5782 } else { 5783 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 5784 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 5785 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 5786 if (isPowerOf2_32(BW)) { 5787 // Z % BW -> Z & (BW - 1) 5788 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 5789 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 5790 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 5791 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 5792 } else { 5793 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5794 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5795 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 5796 } 5797 5798 auto One = MIRBuilder.buildConstant(ShTy, 1); 5799 if (IsFSHL) { 5800 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 5801 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 5802 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 5803 } else { 5804 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 5805 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 5806 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 5807 } 5808 } 5809 5810 MIRBuilder.buildOr(Dst, ShX, ShY); 5811 MI.eraseFromParent(); 5812 return Legalized; 5813 } 5814 5815 LegalizerHelper::LegalizeResult 5816 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 5817 // These operations approximately do the following (while avoiding undefined 5818 // shifts by BW): 5819 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5820 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5821 Register Dst = MI.getOperand(0).getReg(); 5822 LLT Ty = MRI.getType(Dst); 5823 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 5824 5825 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5826 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5827 5828 // TODO: Use smarter heuristic that accounts for vector legalization. 5829 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 5830 return lowerFunnelShiftAsShifts(MI); 5831 5832 // This only works for powers of 2, fallback to shifts if it fails. 5833 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 5834 if (Result == UnableToLegalize) 5835 return lowerFunnelShiftAsShifts(MI); 5836 return Result; 5837 } 5838 5839 LegalizerHelper::LegalizeResult 5840 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 5841 Register Dst = MI.getOperand(0).getReg(); 5842 Register Src = MI.getOperand(1).getReg(); 5843 Register Amt = MI.getOperand(2).getReg(); 5844 LLT AmtTy = MRI.getType(Amt); 5845 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5846 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5847 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5848 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5849 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 5850 MI.eraseFromParent(); 5851 return Legalized; 5852 } 5853 5854 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 5855 Register Dst = MI.getOperand(0).getReg(); 5856 Register Src = MI.getOperand(1).getReg(); 5857 Register Amt = MI.getOperand(2).getReg(); 5858 LLT DstTy = MRI.getType(Dst); 5859 LLT SrcTy = MRI.getType(Src); 5860 LLT AmtTy = MRI.getType(Amt); 5861 5862 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 5863 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5864 5865 MIRBuilder.setInstrAndDebugLoc(MI); 5866 5867 // If a rotate in the other direction is supported, use it. 5868 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5869 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 5870 isPowerOf2_32(EltSizeInBits)) 5871 return lowerRotateWithReverseRotate(MI); 5872 5873 // If a funnel shift is supported, use it. 5874 unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 5875 unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 5876 bool IsFShLegal = false; 5877 if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) || 5878 LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) { 5879 auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2, 5880 Register R3) { 5881 MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3}); 5882 MI.eraseFromParent(); 5883 return Legalized; 5884 }; 5885 // If a funnel shift in the other direction is supported, use it. 5886 if (IsFShLegal) { 5887 return buildFunnelShift(FShOpc, Dst, Src, Amt); 5888 } else if (isPowerOf2_32(EltSizeInBits)) { 5889 Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0); 5890 return buildFunnelShift(RevFsh, Dst, Src, Amt); 5891 } 5892 } 5893 5894 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5895 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 5896 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 5897 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 5898 Register ShVal; 5899 Register RevShiftVal; 5900 if (isPowerOf2_32(EltSizeInBits)) { 5901 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 5902 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 5903 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5904 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 5905 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5906 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 5907 RevShiftVal = 5908 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 5909 } else { 5910 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 5911 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 5912 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 5913 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 5914 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5915 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 5916 auto One = MIRBuilder.buildConstant(AmtTy, 1); 5917 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 5918 RevShiftVal = 5919 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 5920 } 5921 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 5922 MI.eraseFromParent(); 5923 return Legalized; 5924 } 5925 5926 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5927 // representation. 5928 LegalizerHelper::LegalizeResult 5929 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5930 Register Dst = MI.getOperand(0).getReg(); 5931 Register Src = MI.getOperand(1).getReg(); 5932 const LLT S64 = LLT::scalar(64); 5933 const LLT S32 = LLT::scalar(32); 5934 const LLT S1 = LLT::scalar(1); 5935 5936 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5937 5938 // unsigned cul2f(ulong u) { 5939 // uint lz = clz(u); 5940 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5941 // u = (u << lz) & 0x7fffffffffffffffUL; 5942 // ulong t = u & 0xffffffffffUL; 5943 // uint v = (e << 23) | (uint)(u >> 40); 5944 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5945 // return as_float(v + r); 5946 // } 5947 5948 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5949 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5950 5951 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5952 5953 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5954 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5955 5956 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5957 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5958 5959 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5960 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5961 5962 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5963 5964 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5965 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5966 5967 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5968 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5969 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5970 5971 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5972 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5973 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5974 auto One = MIRBuilder.buildConstant(S32, 1); 5975 5976 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5977 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5978 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5979 MIRBuilder.buildAdd(Dst, V, R); 5980 5981 MI.eraseFromParent(); 5982 return Legalized; 5983 } 5984 5985 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5986 Register Dst = MI.getOperand(0).getReg(); 5987 Register Src = MI.getOperand(1).getReg(); 5988 LLT DstTy = MRI.getType(Dst); 5989 LLT SrcTy = MRI.getType(Src); 5990 5991 if (SrcTy == LLT::scalar(1)) { 5992 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5993 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5994 MIRBuilder.buildSelect(Dst, Src, True, False); 5995 MI.eraseFromParent(); 5996 return Legalized; 5997 } 5998 5999 if (SrcTy != LLT::scalar(64)) 6000 return UnableToLegalize; 6001 6002 if (DstTy == LLT::scalar(32)) { 6003 // TODO: SelectionDAG has several alternative expansions to port which may 6004 // be more reasonble depending on the available instructions. If a target 6005 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 6006 // intermediate type, this is probably worse. 6007 return lowerU64ToF32BitOps(MI); 6008 } 6009 6010 return UnableToLegalize; 6011 } 6012 6013 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 6014 Register Dst = MI.getOperand(0).getReg(); 6015 Register Src = MI.getOperand(1).getReg(); 6016 LLT DstTy = MRI.getType(Dst); 6017 LLT SrcTy = MRI.getType(Src); 6018 6019 const LLT S64 = LLT::scalar(64); 6020 const LLT S32 = LLT::scalar(32); 6021 const LLT S1 = LLT::scalar(1); 6022 6023 if (SrcTy == S1) { 6024 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 6025 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6026 MIRBuilder.buildSelect(Dst, Src, True, False); 6027 MI.eraseFromParent(); 6028 return Legalized; 6029 } 6030 6031 if (SrcTy != S64) 6032 return UnableToLegalize; 6033 6034 if (DstTy == S32) { 6035 // signed cl2f(long l) { 6036 // long s = l >> 63; 6037 // float r = cul2f((l + s) ^ s); 6038 // return s ? -r : r; 6039 // } 6040 Register L = Src; 6041 auto SignBit = MIRBuilder.buildConstant(S64, 63); 6042 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 6043 6044 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 6045 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 6046 auto R = MIRBuilder.buildUITOFP(S32, Xor); 6047 6048 auto RNeg = MIRBuilder.buildFNeg(S32, R); 6049 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 6050 MIRBuilder.buildConstant(S64, 0)); 6051 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 6052 MI.eraseFromParent(); 6053 return Legalized; 6054 } 6055 6056 return UnableToLegalize; 6057 } 6058 6059 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 6060 Register Dst = MI.getOperand(0).getReg(); 6061 Register Src = MI.getOperand(1).getReg(); 6062 LLT DstTy = MRI.getType(Dst); 6063 LLT SrcTy = MRI.getType(Src); 6064 const LLT S64 = LLT::scalar(64); 6065 const LLT S32 = LLT::scalar(32); 6066 6067 if (SrcTy != S64 && SrcTy != S32) 6068 return UnableToLegalize; 6069 if (DstTy != S32 && DstTy != S64) 6070 return UnableToLegalize; 6071 6072 // FPTOSI gives same result as FPTOUI for positive signed integers. 6073 // FPTOUI needs to deal with fp values that convert to unsigned integers 6074 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 6075 6076 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 6077 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 6078 : APFloat::IEEEdouble(), 6079 APInt::getZero(SrcTy.getSizeInBits())); 6080 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 6081 6082 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 6083 6084 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 6085 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 6086 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 6087 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 6088 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 6089 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 6090 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 6091 6092 const LLT S1 = LLT::scalar(1); 6093 6094 MachineInstrBuilder FCMP = 6095 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 6096 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 6097 6098 MI.eraseFromParent(); 6099 return Legalized; 6100 } 6101 6102 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 6103 Register Dst = MI.getOperand(0).getReg(); 6104 Register Src = MI.getOperand(1).getReg(); 6105 LLT DstTy = MRI.getType(Dst); 6106 LLT SrcTy = MRI.getType(Src); 6107 const LLT S64 = LLT::scalar(64); 6108 const LLT S32 = LLT::scalar(32); 6109 6110 // FIXME: Only f32 to i64 conversions are supported. 6111 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 6112 return UnableToLegalize; 6113 6114 // Expand f32 -> i64 conversion 6115 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6116 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6117 6118 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 6119 6120 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 6121 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 6122 6123 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 6124 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 6125 6126 auto SignMask = MIRBuilder.buildConstant(SrcTy, 6127 APInt::getSignMask(SrcEltBits)); 6128 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 6129 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 6130 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 6131 Sign = MIRBuilder.buildSExt(DstTy, Sign); 6132 6133 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 6134 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 6135 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 6136 6137 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 6138 R = MIRBuilder.buildZExt(DstTy, R); 6139 6140 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 6141 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 6142 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 6143 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 6144 6145 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 6146 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 6147 6148 const LLT S1 = LLT::scalar(1); 6149 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 6150 S1, Exponent, ExponentLoBit); 6151 6152 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 6153 6154 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 6155 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 6156 6157 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 6158 6159 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 6160 S1, Exponent, ZeroSrcTy); 6161 6162 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 6163 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 6164 6165 MI.eraseFromParent(); 6166 return Legalized; 6167 } 6168 6169 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 6170 LegalizerHelper::LegalizeResult 6171 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 6172 Register Dst = MI.getOperand(0).getReg(); 6173 Register Src = MI.getOperand(1).getReg(); 6174 6175 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 6176 return UnableToLegalize; 6177 6178 const unsigned ExpMask = 0x7ff; 6179 const unsigned ExpBiasf64 = 1023; 6180 const unsigned ExpBiasf16 = 15; 6181 const LLT S32 = LLT::scalar(32); 6182 const LLT S1 = LLT::scalar(1); 6183 6184 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 6185 Register U = Unmerge.getReg(0); 6186 Register UH = Unmerge.getReg(1); 6187 6188 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 6189 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 6190 6191 // Subtract the fp64 exponent bias (1023) to get the real exponent and 6192 // add the f16 bias (15) to get the biased exponent for the f16 format. 6193 E = MIRBuilder.buildAdd( 6194 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 6195 6196 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 6197 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 6198 6199 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 6200 MIRBuilder.buildConstant(S32, 0x1ff)); 6201 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 6202 6203 auto Zero = MIRBuilder.buildConstant(S32, 0); 6204 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 6205 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 6206 M = MIRBuilder.buildOr(S32, M, Lo40Set); 6207 6208 // (M != 0 ? 0x0200 : 0) | 0x7c00; 6209 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 6210 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 6211 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 6212 6213 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 6214 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 6215 6216 // N = M | (E << 12); 6217 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 6218 auto N = MIRBuilder.buildOr(S32, M, EShl12); 6219 6220 // B = clamp(1-E, 0, 13); 6221 auto One = MIRBuilder.buildConstant(S32, 1); 6222 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 6223 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 6224 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 6225 6226 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 6227 MIRBuilder.buildConstant(S32, 0x1000)); 6228 6229 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 6230 auto D0 = MIRBuilder.buildShl(S32, D, B); 6231 6232 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 6233 D0, SigSetHigh); 6234 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 6235 D = MIRBuilder.buildOr(S32, D, D1); 6236 6237 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 6238 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 6239 6240 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 6241 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 6242 6243 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 6244 MIRBuilder.buildConstant(S32, 3)); 6245 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 6246 6247 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 6248 MIRBuilder.buildConstant(S32, 5)); 6249 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 6250 6251 V1 = MIRBuilder.buildOr(S32, V0, V1); 6252 V = MIRBuilder.buildAdd(S32, V, V1); 6253 6254 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 6255 E, MIRBuilder.buildConstant(S32, 30)); 6256 V = MIRBuilder.buildSelect(S32, CmpEGt30, 6257 MIRBuilder.buildConstant(S32, 0x7c00), V); 6258 6259 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 6260 E, MIRBuilder.buildConstant(S32, 1039)); 6261 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 6262 6263 // Extract the sign bit. 6264 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 6265 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 6266 6267 // Insert the sign bit 6268 V = MIRBuilder.buildOr(S32, Sign, V); 6269 6270 MIRBuilder.buildTrunc(Dst, V); 6271 MI.eraseFromParent(); 6272 return Legalized; 6273 } 6274 6275 LegalizerHelper::LegalizeResult 6276 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 6277 Register Dst = MI.getOperand(0).getReg(); 6278 Register Src = MI.getOperand(1).getReg(); 6279 6280 LLT DstTy = MRI.getType(Dst); 6281 LLT SrcTy = MRI.getType(Src); 6282 const LLT S64 = LLT::scalar(64); 6283 const LLT S16 = LLT::scalar(16); 6284 6285 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 6286 return lowerFPTRUNC_F64_TO_F16(MI); 6287 6288 return UnableToLegalize; 6289 } 6290 6291 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 6292 // multiplication tree. 6293 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 6294 Register Dst = MI.getOperand(0).getReg(); 6295 Register Src0 = MI.getOperand(1).getReg(); 6296 Register Src1 = MI.getOperand(2).getReg(); 6297 LLT Ty = MRI.getType(Dst); 6298 6299 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 6300 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 6301 MI.eraseFromParent(); 6302 return Legalized; 6303 } 6304 6305 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 6306 switch (Opc) { 6307 case TargetOpcode::G_SMIN: 6308 return CmpInst::ICMP_SLT; 6309 case TargetOpcode::G_SMAX: 6310 return CmpInst::ICMP_SGT; 6311 case TargetOpcode::G_UMIN: 6312 return CmpInst::ICMP_ULT; 6313 case TargetOpcode::G_UMAX: 6314 return CmpInst::ICMP_UGT; 6315 default: 6316 llvm_unreachable("not in integer min/max"); 6317 } 6318 } 6319 6320 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 6321 Register Dst = MI.getOperand(0).getReg(); 6322 Register Src0 = MI.getOperand(1).getReg(); 6323 Register Src1 = MI.getOperand(2).getReg(); 6324 6325 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 6326 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 6327 6328 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 6329 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 6330 6331 MI.eraseFromParent(); 6332 return Legalized; 6333 } 6334 6335 LegalizerHelper::LegalizeResult 6336 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6337 Register Dst = MI.getOperand(0).getReg(); 6338 Register Src0 = MI.getOperand(1).getReg(); 6339 Register Src1 = MI.getOperand(2).getReg(); 6340 6341 const LLT Src0Ty = MRI.getType(Src0); 6342 const LLT Src1Ty = MRI.getType(Src1); 6343 6344 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6345 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6346 6347 auto SignBitMask = MIRBuilder.buildConstant( 6348 Src0Ty, APInt::getSignMask(Src0Size)); 6349 6350 auto NotSignBitMask = MIRBuilder.buildConstant( 6351 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6352 6353 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6354 Register And1; 6355 if (Src0Ty == Src1Ty) { 6356 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6357 } else if (Src0Size > Src1Size) { 6358 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6359 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6360 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6361 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6362 } else { 6363 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6364 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6365 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6366 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6367 } 6368 6369 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6370 // constants are a nan and -0.0, but the final result should preserve 6371 // everything. 6372 unsigned Flags = MI.getFlags(); 6373 MIRBuilder.buildOr(Dst, And0, And1, Flags); 6374 6375 MI.eraseFromParent(); 6376 return Legalized; 6377 } 6378 6379 LegalizerHelper::LegalizeResult 6380 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 6381 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 6382 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 6383 6384 Register Dst = MI.getOperand(0).getReg(); 6385 Register Src0 = MI.getOperand(1).getReg(); 6386 Register Src1 = MI.getOperand(2).getReg(); 6387 LLT Ty = MRI.getType(Dst); 6388 6389 if (!MI.getFlag(MachineInstr::FmNoNans)) { 6390 // Insert canonicalizes if it's possible we need to quiet to get correct 6391 // sNaN behavior. 6392 6393 // Note this must be done here, and not as an optimization combine in the 6394 // absence of a dedicate quiet-snan instruction as we're using an 6395 // omni-purpose G_FCANONICALIZE. 6396 if (!isKnownNeverSNaN(Src0, MRI)) 6397 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 6398 6399 if (!isKnownNeverSNaN(Src1, MRI)) 6400 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 6401 } 6402 6403 // If there are no nans, it's safe to simply replace this with the non-IEEE 6404 // version. 6405 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 6406 MI.eraseFromParent(); 6407 return Legalized; 6408 } 6409 6410 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 6411 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 6412 Register DstReg = MI.getOperand(0).getReg(); 6413 LLT Ty = MRI.getType(DstReg); 6414 unsigned Flags = MI.getFlags(); 6415 6416 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 6417 Flags); 6418 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 6419 MI.eraseFromParent(); 6420 return Legalized; 6421 } 6422 6423 LegalizerHelper::LegalizeResult 6424 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 6425 Register DstReg = MI.getOperand(0).getReg(); 6426 Register X = MI.getOperand(1).getReg(); 6427 const unsigned Flags = MI.getFlags(); 6428 const LLT Ty = MRI.getType(DstReg); 6429 const LLT CondTy = Ty.changeElementSize(1); 6430 6431 // round(x) => 6432 // t = trunc(x); 6433 // d = fabs(x - t); 6434 // o = copysign(1.0f, x); 6435 // return t + (d >= 0.5 ? o : 0.0); 6436 6437 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 6438 6439 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 6440 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 6441 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6442 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 6443 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 6444 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 6445 6446 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 6447 Flags); 6448 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 6449 6450 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 6451 6452 MI.eraseFromParent(); 6453 return Legalized; 6454 } 6455 6456 LegalizerHelper::LegalizeResult 6457 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 6458 Register DstReg = MI.getOperand(0).getReg(); 6459 Register SrcReg = MI.getOperand(1).getReg(); 6460 unsigned Flags = MI.getFlags(); 6461 LLT Ty = MRI.getType(DstReg); 6462 const LLT CondTy = Ty.changeElementSize(1); 6463 6464 // result = trunc(src); 6465 // if (src < 0.0 && src != result) 6466 // result += -1.0. 6467 6468 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 6469 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6470 6471 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 6472 SrcReg, Zero, Flags); 6473 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 6474 SrcReg, Trunc, Flags); 6475 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 6476 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 6477 6478 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 6479 MI.eraseFromParent(); 6480 return Legalized; 6481 } 6482 6483 LegalizerHelper::LegalizeResult 6484 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 6485 const unsigned NumOps = MI.getNumOperands(); 6486 Register DstReg = MI.getOperand(0).getReg(); 6487 Register Src0Reg = MI.getOperand(1).getReg(); 6488 LLT DstTy = MRI.getType(DstReg); 6489 LLT SrcTy = MRI.getType(Src0Reg); 6490 unsigned PartSize = SrcTy.getSizeInBits(); 6491 6492 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 6493 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 6494 6495 for (unsigned I = 2; I != NumOps; ++I) { 6496 const unsigned Offset = (I - 1) * PartSize; 6497 6498 Register SrcReg = MI.getOperand(I).getReg(); 6499 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 6500 6501 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 6502 MRI.createGenericVirtualRegister(WideTy); 6503 6504 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 6505 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 6506 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 6507 ResultReg = NextResult; 6508 } 6509 6510 if (DstTy.isPointer()) { 6511 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 6512 DstTy.getAddressSpace())) { 6513 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 6514 return UnableToLegalize; 6515 } 6516 6517 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 6518 } 6519 6520 MI.eraseFromParent(); 6521 return Legalized; 6522 } 6523 6524 LegalizerHelper::LegalizeResult 6525 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 6526 const unsigned NumDst = MI.getNumOperands() - 1; 6527 Register SrcReg = MI.getOperand(NumDst).getReg(); 6528 Register Dst0Reg = MI.getOperand(0).getReg(); 6529 LLT DstTy = MRI.getType(Dst0Reg); 6530 if (DstTy.isPointer()) 6531 return UnableToLegalize; // TODO 6532 6533 SrcReg = coerceToScalar(SrcReg); 6534 if (!SrcReg) 6535 return UnableToLegalize; 6536 6537 // Expand scalarizing unmerge as bitcast to integer and shift. 6538 LLT IntTy = MRI.getType(SrcReg); 6539 6540 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 6541 6542 const unsigned DstSize = DstTy.getSizeInBits(); 6543 unsigned Offset = DstSize; 6544 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 6545 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 6546 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 6547 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 6548 } 6549 6550 MI.eraseFromParent(); 6551 return Legalized; 6552 } 6553 6554 /// Lower a vector extract or insert by writing the vector to a stack temporary 6555 /// and reloading the element or vector. 6556 /// 6557 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 6558 /// => 6559 /// %stack_temp = G_FRAME_INDEX 6560 /// G_STORE %vec, %stack_temp 6561 /// %idx = clamp(%idx, %vec.getNumElements()) 6562 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 6563 /// %dst = G_LOAD %element_ptr 6564 LegalizerHelper::LegalizeResult 6565 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 6566 Register DstReg = MI.getOperand(0).getReg(); 6567 Register SrcVec = MI.getOperand(1).getReg(); 6568 Register InsertVal; 6569 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 6570 InsertVal = MI.getOperand(2).getReg(); 6571 6572 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 6573 6574 LLT VecTy = MRI.getType(SrcVec); 6575 LLT EltTy = VecTy.getElementType(); 6576 unsigned NumElts = VecTy.getNumElements(); 6577 6578 int64_t IdxVal; 6579 if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) { 6580 SmallVector<Register, 8> SrcRegs; 6581 extractParts(SrcVec, EltTy, NumElts, SrcRegs); 6582 6583 if (InsertVal) { 6584 SrcRegs[IdxVal] = MI.getOperand(2).getReg(); 6585 MIRBuilder.buildMerge(DstReg, SrcRegs); 6586 } else { 6587 MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]); 6588 } 6589 6590 MI.eraseFromParent(); 6591 return Legalized; 6592 } 6593 6594 if (!EltTy.isByteSized()) { // Not implemented. 6595 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 6596 return UnableToLegalize; 6597 } 6598 6599 unsigned EltBytes = EltTy.getSizeInBytes(); 6600 Align VecAlign = getStackTemporaryAlignment(VecTy); 6601 Align EltAlign; 6602 6603 MachinePointerInfo PtrInfo; 6604 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 6605 VecAlign, PtrInfo); 6606 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 6607 6608 // Get the pointer to the element, and be sure not to hit undefined behavior 6609 // if the index is out of bounds. 6610 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 6611 6612 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 6613 int64_t Offset = IdxVal * EltBytes; 6614 PtrInfo = PtrInfo.getWithOffset(Offset); 6615 EltAlign = commonAlignment(VecAlign, Offset); 6616 } else { 6617 // We lose information with a variable offset. 6618 EltAlign = getStackTemporaryAlignment(EltTy); 6619 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 6620 } 6621 6622 if (InsertVal) { 6623 // Write the inserted element 6624 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 6625 6626 // Reload the whole vector. 6627 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 6628 } else { 6629 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 6630 } 6631 6632 MI.eraseFromParent(); 6633 return Legalized; 6634 } 6635 6636 LegalizerHelper::LegalizeResult 6637 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 6638 Register DstReg = MI.getOperand(0).getReg(); 6639 Register Src0Reg = MI.getOperand(1).getReg(); 6640 Register Src1Reg = MI.getOperand(2).getReg(); 6641 LLT Src0Ty = MRI.getType(Src0Reg); 6642 LLT DstTy = MRI.getType(DstReg); 6643 LLT IdxTy = LLT::scalar(32); 6644 6645 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6646 6647 if (DstTy.isScalar()) { 6648 if (Src0Ty.isVector()) 6649 return UnableToLegalize; 6650 6651 // This is just a SELECT. 6652 assert(Mask.size() == 1 && "Expected a single mask element"); 6653 Register Val; 6654 if (Mask[0] < 0 || Mask[0] > 1) 6655 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 6656 else 6657 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 6658 MIRBuilder.buildCopy(DstReg, Val); 6659 MI.eraseFromParent(); 6660 return Legalized; 6661 } 6662 6663 Register Undef; 6664 SmallVector<Register, 32> BuildVec; 6665 LLT EltTy = DstTy.getElementType(); 6666 6667 for (int Idx : Mask) { 6668 if (Idx < 0) { 6669 if (!Undef.isValid()) 6670 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 6671 BuildVec.push_back(Undef); 6672 continue; 6673 } 6674 6675 if (Src0Ty.isScalar()) { 6676 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 6677 } else { 6678 int NumElts = Src0Ty.getNumElements(); 6679 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 6680 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 6681 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 6682 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 6683 BuildVec.push_back(Extract.getReg(0)); 6684 } 6685 } 6686 6687 MIRBuilder.buildBuildVector(DstReg, BuildVec); 6688 MI.eraseFromParent(); 6689 return Legalized; 6690 } 6691 6692 LegalizerHelper::LegalizeResult 6693 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 6694 const auto &MF = *MI.getMF(); 6695 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 6696 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 6697 return UnableToLegalize; 6698 6699 Register Dst = MI.getOperand(0).getReg(); 6700 Register AllocSize = MI.getOperand(1).getReg(); 6701 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 6702 6703 LLT PtrTy = MRI.getType(Dst); 6704 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 6705 6706 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 6707 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 6708 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 6709 6710 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 6711 // have to generate an extra instruction to negate the alloc and then use 6712 // G_PTR_ADD to add the negative offset. 6713 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 6714 if (Alignment > Align(1)) { 6715 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 6716 AlignMask.negate(); 6717 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 6718 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 6719 } 6720 6721 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 6722 MIRBuilder.buildCopy(SPReg, SPTmp); 6723 MIRBuilder.buildCopy(Dst, SPTmp); 6724 6725 MI.eraseFromParent(); 6726 return Legalized; 6727 } 6728 6729 LegalizerHelper::LegalizeResult 6730 LegalizerHelper::lowerExtract(MachineInstr &MI) { 6731 Register Dst = MI.getOperand(0).getReg(); 6732 Register Src = MI.getOperand(1).getReg(); 6733 unsigned Offset = MI.getOperand(2).getImm(); 6734 6735 LLT DstTy = MRI.getType(Dst); 6736 LLT SrcTy = MRI.getType(Src); 6737 6738 // Extract sub-vector or one element 6739 if (SrcTy.isVector()) { 6740 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits(); 6741 unsigned DstSize = DstTy.getSizeInBits(); 6742 6743 if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) && 6744 (Offset + DstSize <= SrcTy.getSizeInBits())) { 6745 // Unmerge and allow access to each Src element for the artifact combiner. 6746 auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), Src); 6747 6748 // Take element(s) we need to extract and copy it (merge them). 6749 SmallVector<Register, 8> SubVectorElts; 6750 for (unsigned Idx = Offset / SrcEltSize; 6751 Idx < (Offset + DstSize) / SrcEltSize; ++Idx) { 6752 SubVectorElts.push_back(Unmerge.getReg(Idx)); 6753 } 6754 if (SubVectorElts.size() == 1) 6755 MIRBuilder.buildCopy(Dst, SubVectorElts[0]); 6756 else 6757 MIRBuilder.buildMerge(Dst, SubVectorElts); 6758 6759 MI.eraseFromParent(); 6760 return Legalized; 6761 } 6762 } 6763 6764 if (DstTy.isScalar() && 6765 (SrcTy.isScalar() || 6766 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 6767 LLT SrcIntTy = SrcTy; 6768 if (!SrcTy.isScalar()) { 6769 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 6770 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 6771 } 6772 6773 if (Offset == 0) 6774 MIRBuilder.buildTrunc(Dst, Src); 6775 else { 6776 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 6777 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 6778 MIRBuilder.buildTrunc(Dst, Shr); 6779 } 6780 6781 MI.eraseFromParent(); 6782 return Legalized; 6783 } 6784 6785 return UnableToLegalize; 6786 } 6787 6788 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 6789 Register Dst = MI.getOperand(0).getReg(); 6790 Register Src = MI.getOperand(1).getReg(); 6791 Register InsertSrc = MI.getOperand(2).getReg(); 6792 uint64_t Offset = MI.getOperand(3).getImm(); 6793 6794 LLT DstTy = MRI.getType(Src); 6795 LLT InsertTy = MRI.getType(InsertSrc); 6796 6797 // Insert sub-vector or one element 6798 if (DstTy.isVector() && !InsertTy.isPointer()) { 6799 LLT EltTy = DstTy.getElementType(); 6800 unsigned EltSize = EltTy.getSizeInBits(); 6801 unsigned InsertSize = InsertTy.getSizeInBits(); 6802 6803 if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) && 6804 (Offset + InsertSize <= DstTy.getSizeInBits())) { 6805 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src); 6806 SmallVector<Register, 8> DstElts; 6807 unsigned Idx = 0; 6808 // Elements from Src before insert start Offset 6809 for (; Idx < Offset / EltSize; ++Idx) { 6810 DstElts.push_back(UnmergeSrc.getReg(Idx)); 6811 } 6812 6813 // Replace elements in Src with elements from InsertSrc 6814 if (InsertTy.getSizeInBits() > EltSize) { 6815 auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc); 6816 for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize; 6817 ++Idx, ++i) { 6818 DstElts.push_back(UnmergeInsertSrc.getReg(i)); 6819 } 6820 } else { 6821 DstElts.push_back(InsertSrc); 6822 ++Idx; 6823 } 6824 6825 // Remaining elements from Src after insert 6826 for (; Idx < DstTy.getNumElements(); ++Idx) { 6827 DstElts.push_back(UnmergeSrc.getReg(Idx)); 6828 } 6829 6830 MIRBuilder.buildMerge(Dst, DstElts); 6831 MI.eraseFromParent(); 6832 return Legalized; 6833 } 6834 } 6835 6836 if (InsertTy.isVector() || 6837 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 6838 return UnableToLegalize; 6839 6840 const DataLayout &DL = MIRBuilder.getDataLayout(); 6841 if ((DstTy.isPointer() && 6842 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 6843 (InsertTy.isPointer() && 6844 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 6845 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 6846 return UnableToLegalize; 6847 } 6848 6849 LLT IntDstTy = DstTy; 6850 6851 if (!DstTy.isScalar()) { 6852 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 6853 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 6854 } 6855 6856 if (!InsertTy.isScalar()) { 6857 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 6858 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 6859 } 6860 6861 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 6862 if (Offset != 0) { 6863 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 6864 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 6865 } 6866 6867 APInt MaskVal = APInt::getBitsSetWithWrap( 6868 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 6869 6870 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 6871 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 6872 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 6873 6874 MIRBuilder.buildCast(Dst, Or); 6875 MI.eraseFromParent(); 6876 return Legalized; 6877 } 6878 6879 LegalizerHelper::LegalizeResult 6880 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 6881 Register Dst0 = MI.getOperand(0).getReg(); 6882 Register Dst1 = MI.getOperand(1).getReg(); 6883 Register LHS = MI.getOperand(2).getReg(); 6884 Register RHS = MI.getOperand(3).getReg(); 6885 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 6886 6887 LLT Ty = MRI.getType(Dst0); 6888 LLT BoolTy = MRI.getType(Dst1); 6889 6890 if (IsAdd) 6891 MIRBuilder.buildAdd(Dst0, LHS, RHS); 6892 else 6893 MIRBuilder.buildSub(Dst0, LHS, RHS); 6894 6895 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6896 6897 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6898 6899 // For an addition, the result should be less than one of the operands (LHS) 6900 // if and only if the other operand (RHS) is negative, otherwise there will 6901 // be overflow. 6902 // For a subtraction, the result should be less than one of the operands 6903 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 6904 // otherwise there will be overflow. 6905 auto ResultLowerThanLHS = 6906 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 6907 auto ConditionRHS = MIRBuilder.buildICmp( 6908 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 6909 6910 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 6911 MI.eraseFromParent(); 6912 return Legalized; 6913 } 6914 6915 LegalizerHelper::LegalizeResult 6916 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6917 Register Res = MI.getOperand(0).getReg(); 6918 Register LHS = MI.getOperand(1).getReg(); 6919 Register RHS = MI.getOperand(2).getReg(); 6920 LLT Ty = MRI.getType(Res); 6921 bool IsSigned; 6922 bool IsAdd; 6923 unsigned BaseOp; 6924 switch (MI.getOpcode()) { 6925 default: 6926 llvm_unreachable("unexpected addsat/subsat opcode"); 6927 case TargetOpcode::G_UADDSAT: 6928 IsSigned = false; 6929 IsAdd = true; 6930 BaseOp = TargetOpcode::G_ADD; 6931 break; 6932 case TargetOpcode::G_SADDSAT: 6933 IsSigned = true; 6934 IsAdd = true; 6935 BaseOp = TargetOpcode::G_ADD; 6936 break; 6937 case TargetOpcode::G_USUBSAT: 6938 IsSigned = false; 6939 IsAdd = false; 6940 BaseOp = TargetOpcode::G_SUB; 6941 break; 6942 case TargetOpcode::G_SSUBSAT: 6943 IsSigned = true; 6944 IsAdd = false; 6945 BaseOp = TargetOpcode::G_SUB; 6946 break; 6947 } 6948 6949 if (IsSigned) { 6950 // sadd.sat(a, b) -> 6951 // hi = 0x7fffffff - smax(a, 0) 6952 // lo = 0x80000000 - smin(a, 0) 6953 // a + smin(smax(lo, b), hi) 6954 // ssub.sat(a, b) -> 6955 // lo = smax(a, -1) - 0x7fffffff 6956 // hi = smin(a, -1) - 0x80000000 6957 // a - smin(smax(lo, b), hi) 6958 // TODO: AMDGPU can use a "median of 3" instruction here: 6959 // a +/- med3(lo, b, hi) 6960 uint64_t NumBits = Ty.getScalarSizeInBits(); 6961 auto MaxVal = 6962 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 6963 auto MinVal = 6964 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6965 MachineInstrBuilder Hi, Lo; 6966 if (IsAdd) { 6967 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6968 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 6969 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 6970 } else { 6971 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 6972 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 6973 MaxVal); 6974 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 6975 MinVal); 6976 } 6977 auto RHSClamped = 6978 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 6979 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 6980 } else { 6981 // uadd.sat(a, b) -> a + umin(~a, b) 6982 // usub.sat(a, b) -> a - umin(a, b) 6983 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 6984 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 6985 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 6986 } 6987 6988 MI.eraseFromParent(); 6989 return Legalized; 6990 } 6991 6992 LegalizerHelper::LegalizeResult 6993 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 6994 Register Res = MI.getOperand(0).getReg(); 6995 Register LHS = MI.getOperand(1).getReg(); 6996 Register RHS = MI.getOperand(2).getReg(); 6997 LLT Ty = MRI.getType(Res); 6998 LLT BoolTy = Ty.changeElementSize(1); 6999 bool IsSigned; 7000 bool IsAdd; 7001 unsigned OverflowOp; 7002 switch (MI.getOpcode()) { 7003 default: 7004 llvm_unreachable("unexpected addsat/subsat opcode"); 7005 case TargetOpcode::G_UADDSAT: 7006 IsSigned = false; 7007 IsAdd = true; 7008 OverflowOp = TargetOpcode::G_UADDO; 7009 break; 7010 case TargetOpcode::G_SADDSAT: 7011 IsSigned = true; 7012 IsAdd = true; 7013 OverflowOp = TargetOpcode::G_SADDO; 7014 break; 7015 case TargetOpcode::G_USUBSAT: 7016 IsSigned = false; 7017 IsAdd = false; 7018 OverflowOp = TargetOpcode::G_USUBO; 7019 break; 7020 case TargetOpcode::G_SSUBSAT: 7021 IsSigned = true; 7022 IsAdd = false; 7023 OverflowOp = TargetOpcode::G_SSUBO; 7024 break; 7025 } 7026 7027 auto OverflowRes = 7028 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 7029 Register Tmp = OverflowRes.getReg(0); 7030 Register Ov = OverflowRes.getReg(1); 7031 MachineInstrBuilder Clamp; 7032 if (IsSigned) { 7033 // sadd.sat(a, b) -> 7034 // {tmp, ov} = saddo(a, b) 7035 // ov ? (tmp >>s 31) + 0x80000000 : r 7036 // ssub.sat(a, b) -> 7037 // {tmp, ov} = ssubo(a, b) 7038 // ov ? (tmp >>s 31) + 0x80000000 : r 7039 uint64_t NumBits = Ty.getScalarSizeInBits(); 7040 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 7041 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 7042 auto MinVal = 7043 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 7044 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 7045 } else { 7046 // uadd.sat(a, b) -> 7047 // {tmp, ov} = uaddo(a, b) 7048 // ov ? 0xffffffff : tmp 7049 // usub.sat(a, b) -> 7050 // {tmp, ov} = usubo(a, b) 7051 // ov ? 0 : tmp 7052 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 7053 } 7054 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 7055 7056 MI.eraseFromParent(); 7057 return Legalized; 7058 } 7059 7060 LegalizerHelper::LegalizeResult 7061 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 7062 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 7063 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 7064 "Expected shlsat opcode!"); 7065 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 7066 Register Res = MI.getOperand(0).getReg(); 7067 Register LHS = MI.getOperand(1).getReg(); 7068 Register RHS = MI.getOperand(2).getReg(); 7069 LLT Ty = MRI.getType(Res); 7070 LLT BoolTy = Ty.changeElementSize(1); 7071 7072 unsigned BW = Ty.getScalarSizeInBits(); 7073 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 7074 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 7075 : MIRBuilder.buildLShr(Ty, Result, RHS); 7076 7077 MachineInstrBuilder SatVal; 7078 if (IsSigned) { 7079 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 7080 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 7081 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 7082 MIRBuilder.buildConstant(Ty, 0)); 7083 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 7084 } else { 7085 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 7086 } 7087 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 7088 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 7089 7090 MI.eraseFromParent(); 7091 return Legalized; 7092 } 7093 7094 LegalizerHelper::LegalizeResult 7095 LegalizerHelper::lowerBswap(MachineInstr &MI) { 7096 Register Dst = MI.getOperand(0).getReg(); 7097 Register Src = MI.getOperand(1).getReg(); 7098 const LLT Ty = MRI.getType(Src); 7099 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 7100 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 7101 7102 // Swap most and least significant byte, set remaining bytes in Res to zero. 7103 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 7104 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 7105 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7106 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 7107 7108 // Set i-th high/low byte in Res to i-th low/high byte from Src. 7109 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 7110 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 7111 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 7112 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 7113 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 7114 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 7115 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 7116 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 7117 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 7118 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 7119 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7120 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 7121 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 7122 } 7123 Res.getInstr()->getOperand(0).setReg(Dst); 7124 7125 MI.eraseFromParent(); 7126 return Legalized; 7127 } 7128 7129 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 7130 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 7131 MachineInstrBuilder Src, APInt Mask) { 7132 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 7133 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 7134 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 7135 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 7136 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 7137 return B.buildOr(Dst, LHS, RHS); 7138 } 7139 7140 LegalizerHelper::LegalizeResult 7141 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 7142 Register Dst = MI.getOperand(0).getReg(); 7143 Register Src = MI.getOperand(1).getReg(); 7144 const LLT Ty = MRI.getType(Src); 7145 unsigned Size = Ty.getSizeInBits(); 7146 7147 MachineInstrBuilder BSWAP = 7148 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 7149 7150 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 7151 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 7152 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 7153 MachineInstrBuilder Swap4 = 7154 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 7155 7156 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 7157 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 7158 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 7159 MachineInstrBuilder Swap2 = 7160 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 7161 7162 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 7163 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 7164 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 7165 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 7166 7167 MI.eraseFromParent(); 7168 return Legalized; 7169 } 7170 7171 LegalizerHelper::LegalizeResult 7172 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 7173 MachineFunction &MF = MIRBuilder.getMF(); 7174 7175 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 7176 int NameOpIdx = IsRead ? 1 : 0; 7177 int ValRegIndex = IsRead ? 0 : 1; 7178 7179 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 7180 const LLT Ty = MRI.getType(ValReg); 7181 const MDString *RegStr = cast<MDString>( 7182 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 7183 7184 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 7185 if (!PhysReg.isValid()) 7186 return UnableToLegalize; 7187 7188 if (IsRead) 7189 MIRBuilder.buildCopy(ValReg, PhysReg); 7190 else 7191 MIRBuilder.buildCopy(PhysReg, ValReg); 7192 7193 MI.eraseFromParent(); 7194 return Legalized; 7195 } 7196 7197 LegalizerHelper::LegalizeResult 7198 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 7199 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 7200 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 7201 Register Result = MI.getOperand(0).getReg(); 7202 LLT OrigTy = MRI.getType(Result); 7203 auto SizeInBits = OrigTy.getScalarSizeInBits(); 7204 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 7205 7206 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 7207 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 7208 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 7209 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 7210 7211 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 7212 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 7213 MIRBuilder.buildTrunc(Result, Shifted); 7214 7215 MI.eraseFromParent(); 7216 return Legalized; 7217 } 7218 7219 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 7220 // Implement vector G_SELECT in terms of XOR, AND, OR. 7221 Register DstReg = MI.getOperand(0).getReg(); 7222 Register MaskReg = MI.getOperand(1).getReg(); 7223 Register Op1Reg = MI.getOperand(2).getReg(); 7224 Register Op2Reg = MI.getOperand(3).getReg(); 7225 LLT DstTy = MRI.getType(DstReg); 7226 LLT MaskTy = MRI.getType(MaskReg); 7227 if (!DstTy.isVector()) 7228 return UnableToLegalize; 7229 7230 if (MaskTy.isScalar()) { 7231 // Turn the scalar condition into a vector condition mask. 7232 7233 Register MaskElt = MaskReg; 7234 7235 // The condition was potentially zero extended before, but we want a sign 7236 // extended boolean. 7237 if (MaskTy.getSizeInBits() <= DstTy.getScalarSizeInBits() && 7238 MaskTy != LLT::scalar(1)) { 7239 MaskElt = MIRBuilder.buildSExtInReg(MaskTy, MaskElt, 1).getReg(0); 7240 } 7241 7242 // Continue the sign extension (or truncate) to match the data type. 7243 MaskElt = MIRBuilder.buildSExtOrTrunc(DstTy.getElementType(), 7244 MaskElt).getReg(0); 7245 7246 // Generate a vector splat idiom. 7247 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 7248 MaskReg = ShufSplat.getReg(0); 7249 MaskTy = DstTy; 7250 } 7251 7252 if (MaskTy.getSizeInBits() != DstTy.getSizeInBits()) { 7253 return UnableToLegalize; 7254 } 7255 7256 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 7257 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 7258 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 7259 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 7260 MI.eraseFromParent(); 7261 return Legalized; 7262 } 7263 7264 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 7265 // Split DIVREM into individual instructions. 7266 unsigned Opcode = MI.getOpcode(); 7267 7268 MIRBuilder.buildInstr( 7269 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 7270 : TargetOpcode::G_UDIV, 7271 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7272 MIRBuilder.buildInstr( 7273 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 7274 : TargetOpcode::G_UREM, 7275 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7276 MI.eraseFromParent(); 7277 return Legalized; 7278 } 7279 7280 LegalizerHelper::LegalizeResult 7281 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { 7282 // Expand %res = G_ABS %a into: 7283 // %v1 = G_ASHR %a, scalar_size-1 7284 // %v2 = G_ADD %a, %v1 7285 // %res = G_XOR %v2, %v1 7286 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 7287 Register OpReg = MI.getOperand(1).getReg(); 7288 auto ShiftAmt = 7289 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 7290 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 7291 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 7292 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 7293 MI.eraseFromParent(); 7294 return Legalized; 7295 } 7296 7297 LegalizerHelper::LegalizeResult 7298 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { 7299 // Expand %res = G_ABS %a into: 7300 // %v1 = G_CONSTANT 0 7301 // %v2 = G_SUB %v1, %a 7302 // %res = G_SMAX %a, %v2 7303 Register SrcReg = MI.getOperand(1).getReg(); 7304 LLT Ty = MRI.getType(SrcReg); 7305 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); 7306 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); 7307 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); 7308 MI.eraseFromParent(); 7309 return Legalized; 7310 } 7311 7312 LegalizerHelper::LegalizeResult 7313 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) { 7314 Register SrcReg = MI.getOperand(1).getReg(); 7315 LLT SrcTy = MRI.getType(SrcReg); 7316 LLT DstTy = MRI.getType(SrcReg); 7317 7318 // The source could be a scalar if the IR type was <1 x sN>. 7319 if (SrcTy.isScalar()) { 7320 if (DstTy.getSizeInBits() > SrcTy.getSizeInBits()) 7321 return UnableToLegalize; // FIXME: handle extension. 7322 // This can be just a plain copy. 7323 Observer.changingInstr(MI); 7324 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY)); 7325 Observer.changedInstr(MI); 7326 return Legalized; 7327 } 7328 return UnableToLegalize;; 7329 } 7330 7331 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 7332 // On Darwin, -Os means optimize for size without hurting performance, so 7333 // only really optimize for size when -Oz (MinSize) is used. 7334 if (MF.getTarget().getTargetTriple().isOSDarwin()) 7335 return MF.getFunction().hasMinSize(); 7336 return MF.getFunction().hasOptSize(); 7337 } 7338 7339 // Returns a list of types to use for memory op lowering in MemOps. A partial 7340 // port of findOptimalMemOpLowering in TargetLowering. 7341 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 7342 unsigned Limit, const MemOp &Op, 7343 unsigned DstAS, unsigned SrcAS, 7344 const AttributeList &FuncAttributes, 7345 const TargetLowering &TLI) { 7346 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 7347 return false; 7348 7349 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 7350 7351 if (Ty == LLT()) { 7352 // Use the largest scalar type whose alignment constraints are satisfied. 7353 // We only need to check DstAlign here as SrcAlign is always greater or 7354 // equal to DstAlign (or zero). 7355 Ty = LLT::scalar(64); 7356 if (Op.isFixedDstAlign()) 7357 while (Op.getDstAlign() < Ty.getSizeInBytes() && 7358 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 7359 Ty = LLT::scalar(Ty.getSizeInBytes()); 7360 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 7361 // FIXME: check for the largest legal type we can load/store to. 7362 } 7363 7364 unsigned NumMemOps = 0; 7365 uint64_t Size = Op.size(); 7366 while (Size) { 7367 unsigned TySize = Ty.getSizeInBytes(); 7368 while (TySize > Size) { 7369 // For now, only use non-vector load / store's for the left-over pieces. 7370 LLT NewTy = Ty; 7371 // FIXME: check for mem op safety and legality of the types. Not all of 7372 // SDAGisms map cleanly to GISel concepts. 7373 if (NewTy.isVector()) 7374 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 7375 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 7376 unsigned NewTySize = NewTy.getSizeInBytes(); 7377 assert(NewTySize > 0 && "Could not find appropriate type"); 7378 7379 // If the new LLT cannot cover all of the remaining bits, then consider 7380 // issuing a (or a pair of) unaligned and overlapping load / store. 7381 bool Fast; 7382 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 7383 MVT VT = getMVTForLLT(Ty); 7384 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 7385 TLI.allowsMisalignedMemoryAccesses( 7386 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 7387 MachineMemOperand::MONone, &Fast) && 7388 Fast) 7389 TySize = Size; 7390 else { 7391 Ty = NewTy; 7392 TySize = NewTySize; 7393 } 7394 } 7395 7396 if (++NumMemOps > Limit) 7397 return false; 7398 7399 MemOps.push_back(Ty); 7400 Size -= TySize; 7401 } 7402 7403 return true; 7404 } 7405 7406 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 7407 if (Ty.isVector()) 7408 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 7409 Ty.getNumElements()); 7410 return IntegerType::get(C, Ty.getSizeInBits()); 7411 } 7412 7413 // Get a vectorized representation of the memset value operand, GISel edition. 7414 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 7415 MachineRegisterInfo &MRI = *MIB.getMRI(); 7416 unsigned NumBits = Ty.getScalarSizeInBits(); 7417 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 7418 if (!Ty.isVector() && ValVRegAndVal) { 7419 APInt Scalar = ValVRegAndVal->Value.trunc(8); 7420 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 7421 return MIB.buildConstant(Ty, SplatVal).getReg(0); 7422 } 7423 7424 // Extend the byte value to the larger type, and then multiply by a magic 7425 // value 0x010101... in order to replicate it across every byte. 7426 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 7427 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 7428 return MIB.buildConstant(Ty, 0).getReg(0); 7429 } 7430 7431 LLT ExtType = Ty.getScalarType(); 7432 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 7433 if (NumBits > 8) { 7434 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 7435 auto MagicMI = MIB.buildConstant(ExtType, Magic); 7436 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 7437 } 7438 7439 // For vector types create a G_BUILD_VECTOR. 7440 if (Ty.isVector()) 7441 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 7442 7443 return Val; 7444 } 7445 7446 LegalizerHelper::LegalizeResult 7447 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val, 7448 uint64_t KnownLen, Align Alignment, 7449 bool IsVolatile) { 7450 auto &MF = *MI.getParent()->getParent(); 7451 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7452 auto &DL = MF.getDataLayout(); 7453 LLVMContext &C = MF.getFunction().getContext(); 7454 7455 assert(KnownLen != 0 && "Have a zero length memset length!"); 7456 7457 bool DstAlignCanChange = false; 7458 MachineFrameInfo &MFI = MF.getFrameInfo(); 7459 bool OptSize = shouldLowerMemFuncForSize(MF); 7460 7461 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7462 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7463 DstAlignCanChange = true; 7464 7465 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 7466 std::vector<LLT> MemOps; 7467 7468 const auto &DstMMO = **MI.memoperands_begin(); 7469 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7470 7471 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 7472 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 7473 7474 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 7475 MemOp::Set(KnownLen, DstAlignCanChange, 7476 Alignment, 7477 /*IsZeroMemset=*/IsZeroVal, 7478 /*IsVolatile=*/IsVolatile), 7479 DstPtrInfo.getAddrSpace(), ~0u, 7480 MF.getFunction().getAttributes(), TLI)) 7481 return UnableToLegalize; 7482 7483 if (DstAlignCanChange) { 7484 // Get an estimate of the type from the LLT. 7485 Type *IRTy = getTypeForLLT(MemOps[0], C); 7486 Align NewAlign = DL.getABITypeAlign(IRTy); 7487 if (NewAlign > Alignment) { 7488 Alignment = NewAlign; 7489 unsigned FI = FIDef->getOperand(1).getIndex(); 7490 // Give the stack frame object a larger alignment if needed. 7491 if (MFI.getObjectAlign(FI) < Alignment) 7492 MFI.setObjectAlignment(FI, Alignment); 7493 } 7494 } 7495 7496 MachineIRBuilder MIB(MI); 7497 // Find the largest store and generate the bit pattern for it. 7498 LLT LargestTy = MemOps[0]; 7499 for (unsigned i = 1; i < MemOps.size(); i++) 7500 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 7501 LargestTy = MemOps[i]; 7502 7503 // The memset stored value is always defined as an s8, so in order to make it 7504 // work with larger store types we need to repeat the bit pattern across the 7505 // wider type. 7506 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 7507 7508 if (!MemSetValue) 7509 return UnableToLegalize; 7510 7511 // Generate the stores. For each store type in the list, we generate the 7512 // matching store of that type to the destination address. 7513 LLT PtrTy = MRI.getType(Dst); 7514 unsigned DstOff = 0; 7515 unsigned Size = KnownLen; 7516 for (unsigned I = 0; I < MemOps.size(); I++) { 7517 LLT Ty = MemOps[I]; 7518 unsigned TySize = Ty.getSizeInBytes(); 7519 if (TySize > Size) { 7520 // Issuing an unaligned load / store pair that overlaps with the previous 7521 // pair. Adjust the offset accordingly. 7522 assert(I == MemOps.size() - 1 && I != 0); 7523 DstOff -= TySize - Size; 7524 } 7525 7526 // If this store is smaller than the largest store see whether we can get 7527 // the smaller value for free with a truncate. 7528 Register Value = MemSetValue; 7529 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 7530 MVT VT = getMVTForLLT(Ty); 7531 MVT LargestVT = getMVTForLLT(LargestTy); 7532 if (!LargestTy.isVector() && !Ty.isVector() && 7533 TLI.isTruncateFree(LargestVT, VT)) 7534 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 7535 else 7536 Value = getMemsetValue(Val, Ty, MIB); 7537 if (!Value) 7538 return UnableToLegalize; 7539 } 7540 7541 auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty); 7542 7543 Register Ptr = Dst; 7544 if (DstOff != 0) { 7545 auto Offset = 7546 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 7547 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 7548 } 7549 7550 MIB.buildStore(Value, Ptr, *StoreMMO); 7551 DstOff += Ty.getSizeInBytes(); 7552 Size -= TySize; 7553 } 7554 7555 MI.eraseFromParent(); 7556 return Legalized; 7557 } 7558 7559 LegalizerHelper::LegalizeResult 7560 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) { 7561 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 7562 7563 Register Dst = MI.getOperand(0).getReg(); 7564 Register Src = MI.getOperand(1).getReg(); 7565 Register Len = MI.getOperand(2).getReg(); 7566 7567 const auto *MMOIt = MI.memoperands_begin(); 7568 const MachineMemOperand *MemOp = *MMOIt; 7569 bool IsVolatile = MemOp->isVolatile(); 7570 7571 // See if this is a constant length copy 7572 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 7573 // FIXME: support dynamically sized G_MEMCPY_INLINE 7574 assert(LenVRegAndVal && 7575 "inline memcpy with dynamic size is not yet supported"); 7576 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 7577 if (KnownLen == 0) { 7578 MI.eraseFromParent(); 7579 return Legalized; 7580 } 7581 7582 const auto &DstMMO = **MI.memoperands_begin(); 7583 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7584 Align DstAlign = DstMMO.getBaseAlign(); 7585 Align SrcAlign = SrcMMO.getBaseAlign(); 7586 7587 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 7588 IsVolatile); 7589 } 7590 7591 LegalizerHelper::LegalizeResult 7592 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src, 7593 uint64_t KnownLen, Align DstAlign, 7594 Align SrcAlign, bool IsVolatile) { 7595 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 7596 return lowerMemcpy(MI, Dst, Src, KnownLen, 7597 std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign, 7598 IsVolatile); 7599 } 7600 7601 LegalizerHelper::LegalizeResult 7602 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src, 7603 uint64_t KnownLen, uint64_t Limit, Align DstAlign, 7604 Align SrcAlign, bool IsVolatile) { 7605 auto &MF = *MI.getParent()->getParent(); 7606 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7607 auto &DL = MF.getDataLayout(); 7608 LLVMContext &C = MF.getFunction().getContext(); 7609 7610 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 7611 7612 bool DstAlignCanChange = false; 7613 MachineFrameInfo &MFI = MF.getFrameInfo(); 7614 Align Alignment = std::min(DstAlign, SrcAlign); 7615 7616 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7617 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7618 DstAlignCanChange = true; 7619 7620 // FIXME: infer better src pointer alignment like SelectionDAG does here. 7621 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 7622 // if the memcpy is in a tail call position. 7623 7624 std::vector<LLT> MemOps; 7625 7626 const auto &DstMMO = **MI.memoperands_begin(); 7627 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7628 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7629 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 7630 7631 if (!findGISelOptimalMemOpLowering( 7632 MemOps, Limit, 7633 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 7634 IsVolatile), 7635 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 7636 MF.getFunction().getAttributes(), TLI)) 7637 return UnableToLegalize; 7638 7639 if (DstAlignCanChange) { 7640 // Get an estimate of the type from the LLT. 7641 Type *IRTy = getTypeForLLT(MemOps[0], C); 7642 Align NewAlign = DL.getABITypeAlign(IRTy); 7643 7644 // Don't promote to an alignment that would require dynamic stack 7645 // realignment. 7646 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7647 if (!TRI->hasStackRealignment(MF)) 7648 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7649 NewAlign = NewAlign.previous(); 7650 7651 if (NewAlign > Alignment) { 7652 Alignment = NewAlign; 7653 unsigned FI = FIDef->getOperand(1).getIndex(); 7654 // Give the stack frame object a larger alignment if needed. 7655 if (MFI.getObjectAlign(FI) < Alignment) 7656 MFI.setObjectAlignment(FI, Alignment); 7657 } 7658 } 7659 7660 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 7661 7662 MachineIRBuilder MIB(MI); 7663 // Now we need to emit a pair of load and stores for each of the types we've 7664 // collected. I.e. for each type, generate a load from the source pointer of 7665 // that type width, and then generate a corresponding store to the dest buffer 7666 // of that value loaded. This can result in a sequence of loads and stores 7667 // mixed types, depending on what the target specifies as good types to use. 7668 unsigned CurrOffset = 0; 7669 unsigned Size = KnownLen; 7670 for (auto CopyTy : MemOps) { 7671 // Issuing an unaligned load / store pair that overlaps with the previous 7672 // pair. Adjust the offset accordingly. 7673 if (CopyTy.getSizeInBytes() > Size) 7674 CurrOffset -= CopyTy.getSizeInBytes() - Size; 7675 7676 // Construct MMOs for the accesses. 7677 auto *LoadMMO = 7678 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 7679 auto *StoreMMO = 7680 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 7681 7682 // Create the load. 7683 Register LoadPtr = Src; 7684 Register Offset; 7685 if (CurrOffset != 0) { 7686 LLT SrcTy = MRI.getType(Src); 7687 Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset) 7688 .getReg(0); 7689 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 7690 } 7691 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 7692 7693 // Create the store. 7694 Register StorePtr = Dst; 7695 if (CurrOffset != 0) { 7696 LLT DstTy = MRI.getType(Dst); 7697 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 7698 } 7699 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 7700 CurrOffset += CopyTy.getSizeInBytes(); 7701 Size -= CopyTy.getSizeInBytes(); 7702 } 7703 7704 MI.eraseFromParent(); 7705 return Legalized; 7706 } 7707 7708 LegalizerHelper::LegalizeResult 7709 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src, 7710 uint64_t KnownLen, Align DstAlign, Align SrcAlign, 7711 bool IsVolatile) { 7712 auto &MF = *MI.getParent()->getParent(); 7713 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7714 auto &DL = MF.getDataLayout(); 7715 LLVMContext &C = MF.getFunction().getContext(); 7716 7717 assert(KnownLen != 0 && "Have a zero length memmove length!"); 7718 7719 bool DstAlignCanChange = false; 7720 MachineFrameInfo &MFI = MF.getFrameInfo(); 7721 bool OptSize = shouldLowerMemFuncForSize(MF); 7722 Align Alignment = std::min(DstAlign, SrcAlign); 7723 7724 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7725 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7726 DstAlignCanChange = true; 7727 7728 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 7729 std::vector<LLT> MemOps; 7730 7731 const auto &DstMMO = **MI.memoperands_begin(); 7732 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7733 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7734 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 7735 7736 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 7737 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 7738 // same thing here. 7739 if (!findGISelOptimalMemOpLowering( 7740 MemOps, Limit, 7741 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 7742 /*IsVolatile*/ true), 7743 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 7744 MF.getFunction().getAttributes(), TLI)) 7745 return UnableToLegalize; 7746 7747 if (DstAlignCanChange) { 7748 // Get an estimate of the type from the LLT. 7749 Type *IRTy = getTypeForLLT(MemOps[0], C); 7750 Align NewAlign = DL.getABITypeAlign(IRTy); 7751 7752 // Don't promote to an alignment that would require dynamic stack 7753 // realignment. 7754 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7755 if (!TRI->hasStackRealignment(MF)) 7756 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7757 NewAlign = NewAlign.previous(); 7758 7759 if (NewAlign > Alignment) { 7760 Alignment = NewAlign; 7761 unsigned FI = FIDef->getOperand(1).getIndex(); 7762 // Give the stack frame object a larger alignment if needed. 7763 if (MFI.getObjectAlign(FI) < Alignment) 7764 MFI.setObjectAlignment(FI, Alignment); 7765 } 7766 } 7767 7768 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 7769 7770 MachineIRBuilder MIB(MI); 7771 // Memmove requires that we perform the loads first before issuing the stores. 7772 // Apart from that, this loop is pretty much doing the same thing as the 7773 // memcpy codegen function. 7774 unsigned CurrOffset = 0; 7775 SmallVector<Register, 16> LoadVals; 7776 for (auto CopyTy : MemOps) { 7777 // Construct MMO for the load. 7778 auto *LoadMMO = 7779 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 7780 7781 // Create the load. 7782 Register LoadPtr = Src; 7783 if (CurrOffset != 0) { 7784 LLT SrcTy = MRI.getType(Src); 7785 auto Offset = 7786 MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset); 7787 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 7788 } 7789 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 7790 CurrOffset += CopyTy.getSizeInBytes(); 7791 } 7792 7793 CurrOffset = 0; 7794 for (unsigned I = 0; I < MemOps.size(); ++I) { 7795 LLT CopyTy = MemOps[I]; 7796 // Now store the values loaded. 7797 auto *StoreMMO = 7798 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 7799 7800 Register StorePtr = Dst; 7801 if (CurrOffset != 0) { 7802 LLT DstTy = MRI.getType(Dst); 7803 auto Offset = 7804 MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset); 7805 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 7806 } 7807 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 7808 CurrOffset += CopyTy.getSizeInBytes(); 7809 } 7810 MI.eraseFromParent(); 7811 return Legalized; 7812 } 7813 7814 LegalizerHelper::LegalizeResult 7815 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 7816 const unsigned Opc = MI.getOpcode(); 7817 // This combine is fairly complex so it's not written with a separate 7818 // matcher function. 7819 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 7820 Opc == TargetOpcode::G_MEMSET) && 7821 "Expected memcpy like instruction"); 7822 7823 auto MMOIt = MI.memoperands_begin(); 7824 const MachineMemOperand *MemOp = *MMOIt; 7825 7826 Align DstAlign = MemOp->getBaseAlign(); 7827 Align SrcAlign; 7828 Register Dst = MI.getOperand(0).getReg(); 7829 Register Src = MI.getOperand(1).getReg(); 7830 Register Len = MI.getOperand(2).getReg(); 7831 7832 if (Opc != TargetOpcode::G_MEMSET) { 7833 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 7834 MemOp = *(++MMOIt); 7835 SrcAlign = MemOp->getBaseAlign(); 7836 } 7837 7838 // See if this is a constant length copy 7839 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 7840 if (!LenVRegAndVal) 7841 return UnableToLegalize; 7842 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 7843 7844 if (KnownLen == 0) { 7845 MI.eraseFromParent(); 7846 return Legalized; 7847 } 7848 7849 bool IsVolatile = MemOp->isVolatile(); 7850 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 7851 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 7852 IsVolatile); 7853 7854 // Don't try to optimize volatile. 7855 if (IsVolatile) 7856 return UnableToLegalize; 7857 7858 if (MaxLen && KnownLen > MaxLen) 7859 return UnableToLegalize; 7860 7861 if (Opc == TargetOpcode::G_MEMCPY) { 7862 auto &MF = *MI.getParent()->getParent(); 7863 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7864 bool OptSize = shouldLowerMemFuncForSize(MF); 7865 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 7866 return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 7867 IsVolatile); 7868 } 7869 if (Opc == TargetOpcode::G_MEMMOVE) 7870 return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 7871 if (Opc == TargetOpcode::G_MEMSET) 7872 return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 7873 return UnableToLegalize; 7874 } 7875