1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 67 68 if (!Ty.isScalar()) 69 return nullptr; 70 71 switch (Ty.getSizeInBits()) { 72 case 16: 73 return Type::getHalfTy(Ctx); 74 case 32: 75 return Type::getFloatTy(Ctx); 76 case 64: 77 return Type::getDoubleTy(Ctx); 78 case 128: 79 return Type::getFP128Ty(Ctx); 80 default: 81 return nullptr; 82 } 83 } 84 85 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 86 GISelChangeObserver &Observer, 87 MachineIRBuilder &Builder) 88 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 89 LI(*MF.getSubtarget().getLegalizerInfo()) { 90 MIRBuilder.setChangeObserver(Observer); 91 } 92 93 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 94 GISelChangeObserver &Observer, 95 MachineIRBuilder &B) 96 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI) { 97 MIRBuilder.setChangeObserver(Observer); 98 } 99 LegalizerHelper::LegalizeResult 100 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 101 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 102 103 MIRBuilder.setInstrAndDebugLoc(MI); 104 105 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 106 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 107 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 108 auto Step = LI.getAction(MI, MRI); 109 switch (Step.Action) { 110 case Legal: 111 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 112 return AlreadyLegal; 113 case Libcall: 114 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 115 return libcall(MI); 116 case NarrowScalar: 117 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 118 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 119 case WidenScalar: 120 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 121 return widenScalar(MI, Step.TypeIdx, Step.NewType); 122 case Bitcast: 123 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 124 return bitcast(MI, Step.TypeIdx, Step.NewType); 125 case Lower: 126 LLVM_DEBUG(dbgs() << ".. Lower\n"); 127 return lower(MI, Step.TypeIdx, Step.NewType); 128 case FewerElements: 129 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 130 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 131 case MoreElements: 132 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 133 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 134 case Custom: 135 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 136 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 137 default: 138 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 139 return UnableToLegalize; 140 } 141 } 142 143 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 144 SmallVectorImpl<Register> &VRegs) { 145 for (int i = 0; i < NumParts; ++i) 146 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 147 MIRBuilder.buildUnmerge(VRegs, Reg); 148 } 149 150 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 151 LLT MainTy, LLT &LeftoverTy, 152 SmallVectorImpl<Register> &VRegs, 153 SmallVectorImpl<Register> &LeftoverRegs) { 154 assert(!LeftoverTy.isValid() && "this is an out argument"); 155 156 unsigned RegSize = RegTy.getSizeInBits(); 157 unsigned MainSize = MainTy.getSizeInBits(); 158 unsigned NumParts = RegSize / MainSize; 159 unsigned LeftoverSize = RegSize - NumParts * MainSize; 160 161 // Use an unmerge when possible. 162 if (LeftoverSize == 0) { 163 for (unsigned I = 0; I < NumParts; ++I) 164 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 165 MIRBuilder.buildUnmerge(VRegs, Reg); 166 return true; 167 } 168 169 if (MainTy.isVector()) { 170 unsigned EltSize = MainTy.getScalarSizeInBits(); 171 if (LeftoverSize % EltSize != 0) 172 return false; 173 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 174 } else { 175 LeftoverTy = LLT::scalar(LeftoverSize); 176 } 177 178 // For irregular sizes, extract the individual parts. 179 for (unsigned I = 0; I != NumParts; ++I) { 180 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 181 VRegs.push_back(NewReg); 182 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 183 } 184 185 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 186 Offset += LeftoverSize) { 187 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 188 LeftoverRegs.push_back(NewReg); 189 MIRBuilder.buildExtract(NewReg, Reg, Offset); 190 } 191 192 return true; 193 } 194 195 void LegalizerHelper::insertParts(Register DstReg, 196 LLT ResultTy, LLT PartTy, 197 ArrayRef<Register> PartRegs, 198 LLT LeftoverTy, 199 ArrayRef<Register> LeftoverRegs) { 200 if (!LeftoverTy.isValid()) { 201 assert(LeftoverRegs.empty()); 202 203 if (!ResultTy.isVector()) { 204 MIRBuilder.buildMerge(DstReg, PartRegs); 205 return; 206 } 207 208 if (PartTy.isVector()) 209 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 210 else 211 MIRBuilder.buildBuildVector(DstReg, PartRegs); 212 return; 213 } 214 215 unsigned PartSize = PartTy.getSizeInBits(); 216 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 217 218 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 219 MIRBuilder.buildUndef(CurResultReg); 220 221 unsigned Offset = 0; 222 for (Register PartReg : PartRegs) { 223 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 224 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 225 CurResultReg = NewResultReg; 226 Offset += PartSize; 227 } 228 229 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 230 // Use the original output register for the final insert to avoid a copy. 231 Register NewResultReg = (I + 1 == E) ? 232 DstReg : MRI.createGenericVirtualRegister(ResultTy); 233 234 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 235 CurResultReg = NewResultReg; 236 Offset += LeftoverPartSize; 237 } 238 } 239 240 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 241 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 242 const MachineInstr &MI) { 243 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 244 245 const int NumResults = MI.getNumOperands() - 1; 246 Regs.resize(NumResults); 247 for (int I = 0; I != NumResults; ++I) 248 Regs[I] = MI.getOperand(I).getReg(); 249 } 250 251 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 252 LLT NarrowTy, Register SrcReg) { 253 LLT SrcTy = MRI.getType(SrcReg); 254 255 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 256 if (SrcTy == GCDTy) { 257 // If the source already evenly divides the result type, we don't need to do 258 // anything. 259 Parts.push_back(SrcReg); 260 } else { 261 // Need to split into common type sized pieces. 262 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 263 getUnmergeResults(Parts, *Unmerge); 264 } 265 266 return GCDTy; 267 } 268 269 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 270 SmallVectorImpl<Register> &VRegs, 271 unsigned PadStrategy) { 272 LLT LCMTy = getLCMType(DstTy, NarrowTy); 273 274 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 275 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 276 int NumOrigSrc = VRegs.size(); 277 278 Register PadReg; 279 280 // Get a value we can use to pad the source value if the sources won't evenly 281 // cover the result type. 282 if (NumOrigSrc < NumParts * NumSubParts) { 283 if (PadStrategy == TargetOpcode::G_ZEXT) 284 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 285 else if (PadStrategy == TargetOpcode::G_ANYEXT) 286 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 287 else { 288 assert(PadStrategy == TargetOpcode::G_SEXT); 289 290 // Shift the sign bit of the low register through the high register. 291 auto ShiftAmt = 292 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 293 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 294 } 295 } 296 297 // Registers for the final merge to be produced. 298 SmallVector<Register, 4> Remerge(NumParts); 299 300 // Registers needed for intermediate merges, which will be merged into a 301 // source for Remerge. 302 SmallVector<Register, 4> SubMerge(NumSubParts); 303 304 // Once we've fully read off the end of the original source bits, we can reuse 305 // the same high bits for remaining padding elements. 306 Register AllPadReg; 307 308 // Build merges to the LCM type to cover the original result type. 309 for (int I = 0; I != NumParts; ++I) { 310 bool AllMergePartsArePadding = true; 311 312 // Build the requested merges to the requested type. 313 for (int J = 0; J != NumSubParts; ++J) { 314 int Idx = I * NumSubParts + J; 315 if (Idx >= NumOrigSrc) { 316 SubMerge[J] = PadReg; 317 continue; 318 } 319 320 SubMerge[J] = VRegs[Idx]; 321 322 // There are meaningful bits here we can't reuse later. 323 AllMergePartsArePadding = false; 324 } 325 326 // If we've filled up a complete piece with padding bits, we can directly 327 // emit the natural sized constant if applicable, rather than a merge of 328 // smaller constants. 329 if (AllMergePartsArePadding && !AllPadReg) { 330 if (PadStrategy == TargetOpcode::G_ANYEXT) 331 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 332 else if (PadStrategy == TargetOpcode::G_ZEXT) 333 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 334 335 // If this is a sign extension, we can't materialize a trivial constant 336 // with the right type and have to produce a merge. 337 } 338 339 if (AllPadReg) { 340 // Avoid creating additional instructions if we're just adding additional 341 // copies of padding bits. 342 Remerge[I] = AllPadReg; 343 continue; 344 } 345 346 if (NumSubParts == 1) 347 Remerge[I] = SubMerge[0]; 348 else 349 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 350 351 // In the sign extend padding case, re-use the first all-signbit merge. 352 if (AllMergePartsArePadding && !AllPadReg) 353 AllPadReg = Remerge[I]; 354 } 355 356 VRegs = std::move(Remerge); 357 return LCMTy; 358 } 359 360 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 361 ArrayRef<Register> RemergeRegs) { 362 LLT DstTy = MRI.getType(DstReg); 363 364 // Create the merge to the widened source, and extract the relevant bits into 365 // the result. 366 367 if (DstTy == LCMTy) { 368 MIRBuilder.buildMerge(DstReg, RemergeRegs); 369 return; 370 } 371 372 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 373 if (DstTy.isScalar() && LCMTy.isScalar()) { 374 MIRBuilder.buildTrunc(DstReg, Remerge); 375 return; 376 } 377 378 if (LCMTy.isVector()) { 379 MIRBuilder.buildExtract(DstReg, Remerge, 0); 380 return; 381 } 382 383 llvm_unreachable("unhandled case"); 384 } 385 386 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 387 #define RTLIBCASE(LibcallPrefix) \ 388 do { \ 389 switch (Size) { \ 390 case 32: \ 391 return RTLIB::LibcallPrefix##32; \ 392 case 64: \ 393 return RTLIB::LibcallPrefix##64; \ 394 case 128: \ 395 return RTLIB::LibcallPrefix##128; \ 396 default: \ 397 llvm_unreachable("unexpected size"); \ 398 } \ 399 } while (0) 400 401 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 402 403 switch (Opcode) { 404 case TargetOpcode::G_SDIV: 405 RTLIBCASE(SDIV_I); 406 case TargetOpcode::G_UDIV: 407 RTLIBCASE(UDIV_I); 408 case TargetOpcode::G_SREM: 409 RTLIBCASE(SREM_I); 410 case TargetOpcode::G_UREM: 411 RTLIBCASE(UREM_I); 412 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 413 RTLIBCASE(CTLZ_I); 414 case TargetOpcode::G_FADD: 415 RTLIBCASE(ADD_F); 416 case TargetOpcode::G_FSUB: 417 RTLIBCASE(SUB_F); 418 case TargetOpcode::G_FMUL: 419 RTLIBCASE(MUL_F); 420 case TargetOpcode::G_FDIV: 421 RTLIBCASE(DIV_F); 422 case TargetOpcode::G_FEXP: 423 RTLIBCASE(EXP_F); 424 case TargetOpcode::G_FEXP2: 425 RTLIBCASE(EXP2_F); 426 case TargetOpcode::G_FREM: 427 RTLIBCASE(REM_F); 428 case TargetOpcode::G_FPOW: 429 RTLIBCASE(POW_F); 430 case TargetOpcode::G_FMA: 431 RTLIBCASE(FMA_F); 432 case TargetOpcode::G_FSIN: 433 RTLIBCASE(SIN_F); 434 case TargetOpcode::G_FCOS: 435 RTLIBCASE(COS_F); 436 case TargetOpcode::G_FLOG10: 437 RTLIBCASE(LOG10_F); 438 case TargetOpcode::G_FLOG: 439 RTLIBCASE(LOG_F); 440 case TargetOpcode::G_FLOG2: 441 RTLIBCASE(LOG2_F); 442 case TargetOpcode::G_FCEIL: 443 RTLIBCASE(CEIL_F); 444 case TargetOpcode::G_FFLOOR: 445 RTLIBCASE(FLOOR_F); 446 case TargetOpcode::G_FMINNUM: 447 RTLIBCASE(FMIN_F); 448 case TargetOpcode::G_FMAXNUM: 449 RTLIBCASE(FMAX_F); 450 case TargetOpcode::G_FSQRT: 451 RTLIBCASE(SQRT_F); 452 case TargetOpcode::G_FRINT: 453 RTLIBCASE(RINT_F); 454 case TargetOpcode::G_FNEARBYINT: 455 RTLIBCASE(NEARBYINT_F); 456 } 457 llvm_unreachable("Unknown libcall function"); 458 } 459 460 /// True if an instruction is in tail position in its caller. Intended for 461 /// legalizing libcalls as tail calls when possible. 462 static bool isLibCallInTailPosition(MachineInstr &MI) { 463 MachineBasicBlock &MBB = *MI.getParent(); 464 const Function &F = MBB.getParent()->getFunction(); 465 466 // Conservatively require the attributes of the call to match those of 467 // the return. Ignore NoAlias and NonNull because they don't affect the 468 // call sequence. 469 AttributeList CallerAttrs = F.getAttributes(); 470 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 471 .removeAttribute(Attribute::NoAlias) 472 .removeAttribute(Attribute::NonNull) 473 .hasAttributes()) 474 return false; 475 476 // It's not safe to eliminate the sign / zero extension of the return value. 477 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 478 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 479 return false; 480 481 // Only tail call if the following instruction is a standard return. 482 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 483 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 484 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 485 return false; 486 487 return true; 488 } 489 490 LegalizerHelper::LegalizeResult 491 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 492 const CallLowering::ArgInfo &Result, 493 ArrayRef<CallLowering::ArgInfo> Args, 494 const CallingConv::ID CC) { 495 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 496 497 CallLowering::CallLoweringInfo Info; 498 Info.CallConv = CC; 499 Info.Callee = MachineOperand::CreateES(Name); 500 Info.OrigRet = Result; 501 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 502 if (!CLI.lowerCall(MIRBuilder, Info)) 503 return LegalizerHelper::UnableToLegalize; 504 505 return LegalizerHelper::Legalized; 506 } 507 508 LegalizerHelper::LegalizeResult 509 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 510 const CallLowering::ArgInfo &Result, 511 ArrayRef<CallLowering::ArgInfo> Args) { 512 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 513 const char *Name = TLI.getLibcallName(Libcall); 514 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 515 return createLibcall(MIRBuilder, Name, Result, Args, CC); 516 } 517 518 // Useful for libcalls where all operands have the same type. 519 static LegalizerHelper::LegalizeResult 520 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 521 Type *OpType) { 522 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 523 524 SmallVector<CallLowering::ArgInfo, 3> Args; 525 for (unsigned i = 1; i < MI.getNumOperands(); i++) 526 Args.push_back({MI.getOperand(i).getReg(), OpType}); 527 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 528 Args); 529 } 530 531 LegalizerHelper::LegalizeResult 532 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 533 MachineInstr &MI) { 534 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 535 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 536 537 SmallVector<CallLowering::ArgInfo, 3> Args; 538 // Add all the args, except for the last which is an imm denoting 'tail'. 539 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 540 Register Reg = MI.getOperand(i).getReg(); 541 542 // Need derive an IR type for call lowering. 543 LLT OpLLT = MRI.getType(Reg); 544 Type *OpTy = nullptr; 545 if (OpLLT.isPointer()) 546 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 547 else 548 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 549 Args.push_back({Reg, OpTy}); 550 } 551 552 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 553 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 554 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 555 RTLIB::Libcall RTLibcall; 556 switch (ID) { 557 case Intrinsic::memcpy: 558 RTLibcall = RTLIB::MEMCPY; 559 break; 560 case Intrinsic::memset: 561 RTLibcall = RTLIB::MEMSET; 562 break; 563 case Intrinsic::memmove: 564 RTLibcall = RTLIB::MEMMOVE; 565 break; 566 default: 567 return LegalizerHelper::UnableToLegalize; 568 } 569 const char *Name = TLI.getLibcallName(RTLibcall); 570 571 MIRBuilder.setInstrAndDebugLoc(MI); 572 573 CallLowering::CallLoweringInfo Info; 574 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 575 Info.Callee = MachineOperand::CreateES(Name); 576 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 577 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 578 isLibCallInTailPosition(MI); 579 580 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 581 if (!CLI.lowerCall(MIRBuilder, Info)) 582 return LegalizerHelper::UnableToLegalize; 583 584 if (Info.LoweredTailCall) { 585 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 586 // We must have a return following the call (or debug insts) to get past 587 // isLibCallInTailPosition. 588 do { 589 MachineInstr *Next = MI.getNextNode(); 590 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 591 "Expected instr following MI to be return or debug inst?"); 592 // We lowered a tail call, so the call is now the return from the block. 593 // Delete the old return. 594 Next->eraseFromParent(); 595 } while (MI.getNextNode()); 596 } 597 598 return LegalizerHelper::Legalized; 599 } 600 601 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 602 Type *FromType) { 603 auto ToMVT = MVT::getVT(ToType); 604 auto FromMVT = MVT::getVT(FromType); 605 606 switch (Opcode) { 607 case TargetOpcode::G_FPEXT: 608 return RTLIB::getFPEXT(FromMVT, ToMVT); 609 case TargetOpcode::G_FPTRUNC: 610 return RTLIB::getFPROUND(FromMVT, ToMVT); 611 case TargetOpcode::G_FPTOSI: 612 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 613 case TargetOpcode::G_FPTOUI: 614 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 615 case TargetOpcode::G_SITOFP: 616 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 617 case TargetOpcode::G_UITOFP: 618 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 619 } 620 llvm_unreachable("Unsupported libcall function"); 621 } 622 623 static LegalizerHelper::LegalizeResult 624 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 625 Type *FromType) { 626 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 627 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 628 {{MI.getOperand(1).getReg(), FromType}}); 629 } 630 631 LegalizerHelper::LegalizeResult 632 LegalizerHelper::libcall(MachineInstr &MI) { 633 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 634 unsigned Size = LLTy.getSizeInBits(); 635 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 636 637 switch (MI.getOpcode()) { 638 default: 639 return UnableToLegalize; 640 case TargetOpcode::G_SDIV: 641 case TargetOpcode::G_UDIV: 642 case TargetOpcode::G_SREM: 643 case TargetOpcode::G_UREM: 644 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 645 Type *HLTy = IntegerType::get(Ctx, Size); 646 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 647 if (Status != Legalized) 648 return Status; 649 break; 650 } 651 case TargetOpcode::G_FADD: 652 case TargetOpcode::G_FSUB: 653 case TargetOpcode::G_FMUL: 654 case TargetOpcode::G_FDIV: 655 case TargetOpcode::G_FMA: 656 case TargetOpcode::G_FPOW: 657 case TargetOpcode::G_FREM: 658 case TargetOpcode::G_FCOS: 659 case TargetOpcode::G_FSIN: 660 case TargetOpcode::G_FLOG10: 661 case TargetOpcode::G_FLOG: 662 case TargetOpcode::G_FLOG2: 663 case TargetOpcode::G_FEXP: 664 case TargetOpcode::G_FEXP2: 665 case TargetOpcode::G_FCEIL: 666 case TargetOpcode::G_FFLOOR: 667 case TargetOpcode::G_FMINNUM: 668 case TargetOpcode::G_FMAXNUM: 669 case TargetOpcode::G_FSQRT: 670 case TargetOpcode::G_FRINT: 671 case TargetOpcode::G_FNEARBYINT: { 672 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 673 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 674 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 675 return UnableToLegalize; 676 } 677 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 678 if (Status != Legalized) 679 return Status; 680 break; 681 } 682 case TargetOpcode::G_FPEXT: 683 case TargetOpcode::G_FPTRUNC: { 684 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 685 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 686 if (!FromTy || !ToTy) 687 return UnableToLegalize; 688 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 689 if (Status != Legalized) 690 return Status; 691 break; 692 } 693 case TargetOpcode::G_FPTOSI: 694 case TargetOpcode::G_FPTOUI: { 695 // FIXME: Support other types 696 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 697 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 698 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 699 return UnableToLegalize; 700 LegalizeResult Status = conversionLibcall( 701 MI, MIRBuilder, 702 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 703 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 704 if (Status != Legalized) 705 return Status; 706 break; 707 } 708 case TargetOpcode::G_SITOFP: 709 case TargetOpcode::G_UITOFP: { 710 // FIXME: Support other types 711 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 712 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 713 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 714 return UnableToLegalize; 715 LegalizeResult Status = conversionLibcall( 716 MI, MIRBuilder, 717 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 718 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 719 if (Status != Legalized) 720 return Status; 721 break; 722 } 723 } 724 725 MI.eraseFromParent(); 726 return Legalized; 727 } 728 729 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 730 unsigned TypeIdx, 731 LLT NarrowTy) { 732 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 733 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 734 735 switch (MI.getOpcode()) { 736 default: 737 return UnableToLegalize; 738 case TargetOpcode::G_IMPLICIT_DEF: { 739 Register DstReg = MI.getOperand(0).getReg(); 740 LLT DstTy = MRI.getType(DstReg); 741 742 // If SizeOp0 is not an exact multiple of NarrowSize, emit 743 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 744 // FIXME: Although this would also be legal for the general case, it causes 745 // a lot of regressions in the emitted code (superfluous COPYs, artifact 746 // combines not being hit). This seems to be a problem related to the 747 // artifact combiner. 748 if (SizeOp0 % NarrowSize != 0) { 749 LLT ImplicitTy = NarrowTy; 750 if (DstTy.isVector()) 751 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 752 753 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 754 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 755 756 MI.eraseFromParent(); 757 return Legalized; 758 } 759 760 int NumParts = SizeOp0 / NarrowSize; 761 762 SmallVector<Register, 2> DstRegs; 763 for (int i = 0; i < NumParts; ++i) 764 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 765 766 if (DstTy.isVector()) 767 MIRBuilder.buildBuildVector(DstReg, DstRegs); 768 else 769 MIRBuilder.buildMerge(DstReg, DstRegs); 770 MI.eraseFromParent(); 771 return Legalized; 772 } 773 case TargetOpcode::G_CONSTANT: { 774 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 775 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 776 unsigned TotalSize = Ty.getSizeInBits(); 777 unsigned NarrowSize = NarrowTy.getSizeInBits(); 778 int NumParts = TotalSize / NarrowSize; 779 780 SmallVector<Register, 4> PartRegs; 781 for (int I = 0; I != NumParts; ++I) { 782 unsigned Offset = I * NarrowSize; 783 auto K = MIRBuilder.buildConstant(NarrowTy, 784 Val.lshr(Offset).trunc(NarrowSize)); 785 PartRegs.push_back(K.getReg(0)); 786 } 787 788 LLT LeftoverTy; 789 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 790 SmallVector<Register, 1> LeftoverRegs; 791 if (LeftoverBits != 0) { 792 LeftoverTy = LLT::scalar(LeftoverBits); 793 auto K = MIRBuilder.buildConstant( 794 LeftoverTy, 795 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 796 LeftoverRegs.push_back(K.getReg(0)); 797 } 798 799 insertParts(MI.getOperand(0).getReg(), 800 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 801 802 MI.eraseFromParent(); 803 return Legalized; 804 } 805 case TargetOpcode::G_SEXT: 806 case TargetOpcode::G_ZEXT: 807 case TargetOpcode::G_ANYEXT: 808 return narrowScalarExt(MI, TypeIdx, NarrowTy); 809 case TargetOpcode::G_TRUNC: { 810 if (TypeIdx != 1) 811 return UnableToLegalize; 812 813 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 814 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 815 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 816 return UnableToLegalize; 817 } 818 819 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 820 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 821 MI.eraseFromParent(); 822 return Legalized; 823 } 824 825 case TargetOpcode::G_FREEZE: 826 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 827 828 case TargetOpcode::G_ADD: { 829 // FIXME: add support for when SizeOp0 isn't an exact multiple of 830 // NarrowSize. 831 if (SizeOp0 % NarrowSize != 0) 832 return UnableToLegalize; 833 // Expand in terms of carry-setting/consuming G_ADDE instructions. 834 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 835 836 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 837 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 838 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 839 840 Register CarryIn; 841 for (int i = 0; i < NumParts; ++i) { 842 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 843 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 844 845 if (i == 0) 846 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 847 else { 848 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 849 Src2Regs[i], CarryIn); 850 } 851 852 DstRegs.push_back(DstReg); 853 CarryIn = CarryOut; 854 } 855 Register DstReg = MI.getOperand(0).getReg(); 856 if(MRI.getType(DstReg).isVector()) 857 MIRBuilder.buildBuildVector(DstReg, DstRegs); 858 else 859 MIRBuilder.buildMerge(DstReg, DstRegs); 860 MI.eraseFromParent(); 861 return Legalized; 862 } 863 case TargetOpcode::G_SUB: { 864 // FIXME: add support for when SizeOp0 isn't an exact multiple of 865 // NarrowSize. 866 if (SizeOp0 % NarrowSize != 0) 867 return UnableToLegalize; 868 869 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 870 871 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 872 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 873 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 874 875 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 876 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 877 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 878 {Src1Regs[0], Src2Regs[0]}); 879 DstRegs.push_back(DstReg); 880 Register BorrowIn = BorrowOut; 881 for (int i = 1; i < NumParts; ++i) { 882 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 883 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 884 885 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 886 {Src1Regs[i], Src2Regs[i], BorrowIn}); 887 888 DstRegs.push_back(DstReg); 889 BorrowIn = BorrowOut; 890 } 891 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 892 MI.eraseFromParent(); 893 return Legalized; 894 } 895 case TargetOpcode::G_MUL: 896 case TargetOpcode::G_UMULH: 897 return narrowScalarMul(MI, NarrowTy); 898 case TargetOpcode::G_EXTRACT: 899 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 900 case TargetOpcode::G_INSERT: 901 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 902 case TargetOpcode::G_LOAD: { 903 const auto &MMO = **MI.memoperands_begin(); 904 Register DstReg = MI.getOperand(0).getReg(); 905 LLT DstTy = MRI.getType(DstReg); 906 if (DstTy.isVector()) 907 return UnableToLegalize; 908 909 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 910 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 911 auto &MMO = **MI.memoperands_begin(); 912 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 913 MIRBuilder.buildAnyExt(DstReg, TmpReg); 914 MI.eraseFromParent(); 915 return Legalized; 916 } 917 918 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 919 } 920 case TargetOpcode::G_ZEXTLOAD: 921 case TargetOpcode::G_SEXTLOAD: { 922 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 923 Register DstReg = MI.getOperand(0).getReg(); 924 Register PtrReg = MI.getOperand(1).getReg(); 925 926 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 927 auto &MMO = **MI.memoperands_begin(); 928 if (MMO.getSizeInBits() == NarrowSize) { 929 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 930 } else { 931 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 932 } 933 934 if (ZExt) 935 MIRBuilder.buildZExt(DstReg, TmpReg); 936 else 937 MIRBuilder.buildSExt(DstReg, TmpReg); 938 939 MI.eraseFromParent(); 940 return Legalized; 941 } 942 case TargetOpcode::G_STORE: { 943 const auto &MMO = **MI.memoperands_begin(); 944 945 Register SrcReg = MI.getOperand(0).getReg(); 946 LLT SrcTy = MRI.getType(SrcReg); 947 if (SrcTy.isVector()) 948 return UnableToLegalize; 949 950 int NumParts = SizeOp0 / NarrowSize; 951 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 952 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 953 if (SrcTy.isVector() && LeftoverBits != 0) 954 return UnableToLegalize; 955 956 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 957 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 958 auto &MMO = **MI.memoperands_begin(); 959 MIRBuilder.buildTrunc(TmpReg, SrcReg); 960 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 961 MI.eraseFromParent(); 962 return Legalized; 963 } 964 965 return reduceLoadStoreWidth(MI, 0, NarrowTy); 966 } 967 case TargetOpcode::G_SELECT: 968 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 969 case TargetOpcode::G_AND: 970 case TargetOpcode::G_OR: 971 case TargetOpcode::G_XOR: { 972 // Legalize bitwise operation: 973 // A = BinOp<Ty> B, C 974 // into: 975 // B1, ..., BN = G_UNMERGE_VALUES B 976 // C1, ..., CN = G_UNMERGE_VALUES C 977 // A1 = BinOp<Ty/N> B1, C2 978 // ... 979 // AN = BinOp<Ty/N> BN, CN 980 // A = G_MERGE_VALUES A1, ..., AN 981 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 982 } 983 case TargetOpcode::G_SHL: 984 case TargetOpcode::G_LSHR: 985 case TargetOpcode::G_ASHR: 986 return narrowScalarShift(MI, TypeIdx, NarrowTy); 987 case TargetOpcode::G_CTLZ: 988 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 989 case TargetOpcode::G_CTTZ: 990 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 991 case TargetOpcode::G_CTPOP: 992 if (TypeIdx == 1) 993 switch (MI.getOpcode()) { 994 case TargetOpcode::G_CTLZ: 995 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 996 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 997 case TargetOpcode::G_CTTZ: 998 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 999 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1000 case TargetOpcode::G_CTPOP: 1001 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1002 default: 1003 return UnableToLegalize; 1004 } 1005 1006 Observer.changingInstr(MI); 1007 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1008 Observer.changedInstr(MI); 1009 return Legalized; 1010 case TargetOpcode::G_INTTOPTR: 1011 if (TypeIdx != 1) 1012 return UnableToLegalize; 1013 1014 Observer.changingInstr(MI); 1015 narrowScalarSrc(MI, NarrowTy, 1); 1016 Observer.changedInstr(MI); 1017 return Legalized; 1018 case TargetOpcode::G_PTRTOINT: 1019 if (TypeIdx != 0) 1020 return UnableToLegalize; 1021 1022 Observer.changingInstr(MI); 1023 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1024 Observer.changedInstr(MI); 1025 return Legalized; 1026 case TargetOpcode::G_PHI: { 1027 unsigned NumParts = SizeOp0 / NarrowSize; 1028 SmallVector<Register, 2> DstRegs(NumParts); 1029 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1030 Observer.changingInstr(MI); 1031 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1032 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1033 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1034 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1035 SrcRegs[i / 2]); 1036 } 1037 MachineBasicBlock &MBB = *MI.getParent(); 1038 MIRBuilder.setInsertPt(MBB, MI); 1039 for (unsigned i = 0; i < NumParts; ++i) { 1040 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1041 MachineInstrBuilder MIB = 1042 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1043 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1044 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1045 } 1046 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1047 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1048 Observer.changedInstr(MI); 1049 MI.eraseFromParent(); 1050 return Legalized; 1051 } 1052 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1053 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1054 if (TypeIdx != 2) 1055 return UnableToLegalize; 1056 1057 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1058 Observer.changingInstr(MI); 1059 narrowScalarSrc(MI, NarrowTy, OpIdx); 1060 Observer.changedInstr(MI); 1061 return Legalized; 1062 } 1063 case TargetOpcode::G_ICMP: { 1064 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1065 if (NarrowSize * 2 != SrcSize) 1066 return UnableToLegalize; 1067 1068 Observer.changingInstr(MI); 1069 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1070 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1071 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1072 1073 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1074 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1075 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1076 1077 CmpInst::Predicate Pred = 1078 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1079 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1080 1081 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1082 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1083 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1084 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1085 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1086 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1087 } else { 1088 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1089 MachineInstrBuilder CmpHEQ = 1090 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1091 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1092 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1093 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1094 } 1095 Observer.changedInstr(MI); 1096 MI.eraseFromParent(); 1097 return Legalized; 1098 } 1099 case TargetOpcode::G_SEXT_INREG: { 1100 if (TypeIdx != 0) 1101 return UnableToLegalize; 1102 1103 int64_t SizeInBits = MI.getOperand(2).getImm(); 1104 1105 // So long as the new type has more bits than the bits we're extending we 1106 // don't need to break it apart. 1107 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1108 Observer.changingInstr(MI); 1109 // We don't lose any non-extension bits by truncating the src and 1110 // sign-extending the dst. 1111 MachineOperand &MO1 = MI.getOperand(1); 1112 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1113 MO1.setReg(TruncMIB.getReg(0)); 1114 1115 MachineOperand &MO2 = MI.getOperand(0); 1116 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1117 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1118 MIRBuilder.buildSExt(MO2, DstExt); 1119 MO2.setReg(DstExt); 1120 Observer.changedInstr(MI); 1121 return Legalized; 1122 } 1123 1124 // Break it apart. Components below the extension point are unmodified. The 1125 // component containing the extension point becomes a narrower SEXT_INREG. 1126 // Components above it are ashr'd from the component containing the 1127 // extension point. 1128 if (SizeOp0 % NarrowSize != 0) 1129 return UnableToLegalize; 1130 int NumParts = SizeOp0 / NarrowSize; 1131 1132 // List the registers where the destination will be scattered. 1133 SmallVector<Register, 2> DstRegs; 1134 // List the registers where the source will be split. 1135 SmallVector<Register, 2> SrcRegs; 1136 1137 // Create all the temporary registers. 1138 for (int i = 0; i < NumParts; ++i) { 1139 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1140 1141 SrcRegs.push_back(SrcReg); 1142 } 1143 1144 // Explode the big arguments into smaller chunks. 1145 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1146 1147 Register AshrCstReg = 1148 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1149 .getReg(0); 1150 Register FullExtensionReg = 0; 1151 Register PartialExtensionReg = 0; 1152 1153 // Do the operation on each small part. 1154 for (int i = 0; i < NumParts; ++i) { 1155 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1156 DstRegs.push_back(SrcRegs[i]); 1157 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1158 assert(PartialExtensionReg && 1159 "Expected to visit partial extension before full"); 1160 if (FullExtensionReg) { 1161 DstRegs.push_back(FullExtensionReg); 1162 continue; 1163 } 1164 DstRegs.push_back( 1165 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1166 .getReg(0)); 1167 FullExtensionReg = DstRegs.back(); 1168 } else { 1169 DstRegs.push_back( 1170 MIRBuilder 1171 .buildInstr( 1172 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1173 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1174 .getReg(0)); 1175 PartialExtensionReg = DstRegs.back(); 1176 } 1177 } 1178 1179 // Gather the destination registers into the final destination. 1180 Register DstReg = MI.getOperand(0).getReg(); 1181 MIRBuilder.buildMerge(DstReg, DstRegs); 1182 MI.eraseFromParent(); 1183 return Legalized; 1184 } 1185 case TargetOpcode::G_BSWAP: 1186 case TargetOpcode::G_BITREVERSE: { 1187 if (SizeOp0 % NarrowSize != 0) 1188 return UnableToLegalize; 1189 1190 Observer.changingInstr(MI); 1191 SmallVector<Register, 2> SrcRegs, DstRegs; 1192 unsigned NumParts = SizeOp0 / NarrowSize; 1193 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1194 1195 for (unsigned i = 0; i < NumParts; ++i) { 1196 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1197 {SrcRegs[NumParts - 1 - i]}); 1198 DstRegs.push_back(DstPart.getReg(0)); 1199 } 1200 1201 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1202 1203 Observer.changedInstr(MI); 1204 MI.eraseFromParent(); 1205 return Legalized; 1206 } 1207 case TargetOpcode::G_PTRMASK: { 1208 if (TypeIdx != 1) 1209 return UnableToLegalize; 1210 Observer.changingInstr(MI); 1211 narrowScalarSrc(MI, NarrowTy, 2); 1212 Observer.changedInstr(MI); 1213 return Legalized; 1214 } 1215 } 1216 } 1217 1218 Register LegalizerHelper::coerceToScalar(Register Val) { 1219 LLT Ty = MRI.getType(Val); 1220 if (Ty.isScalar()) 1221 return Val; 1222 1223 const DataLayout &DL = MIRBuilder.getDataLayout(); 1224 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1225 if (Ty.isPointer()) { 1226 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1227 return Register(); 1228 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1229 } 1230 1231 Register NewVal = Val; 1232 1233 assert(Ty.isVector()); 1234 LLT EltTy = Ty.getElementType(); 1235 if (EltTy.isPointer()) 1236 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1237 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1238 } 1239 1240 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1241 unsigned OpIdx, unsigned ExtOpcode) { 1242 MachineOperand &MO = MI.getOperand(OpIdx); 1243 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1244 MO.setReg(ExtB.getReg(0)); 1245 } 1246 1247 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1248 unsigned OpIdx) { 1249 MachineOperand &MO = MI.getOperand(OpIdx); 1250 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1251 MO.setReg(ExtB.getReg(0)); 1252 } 1253 1254 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1255 unsigned OpIdx, unsigned TruncOpcode) { 1256 MachineOperand &MO = MI.getOperand(OpIdx); 1257 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1258 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1259 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1260 MO.setReg(DstExt); 1261 } 1262 1263 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1264 unsigned OpIdx, unsigned ExtOpcode) { 1265 MachineOperand &MO = MI.getOperand(OpIdx); 1266 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1267 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1268 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1269 MO.setReg(DstTrunc); 1270 } 1271 1272 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1273 unsigned OpIdx) { 1274 MachineOperand &MO = MI.getOperand(OpIdx); 1275 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1276 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1277 MIRBuilder.buildExtract(MO, DstExt, 0); 1278 MO.setReg(DstExt); 1279 } 1280 1281 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1282 unsigned OpIdx) { 1283 MachineOperand &MO = MI.getOperand(OpIdx); 1284 1285 LLT OldTy = MRI.getType(MO.getReg()); 1286 unsigned OldElts = OldTy.getNumElements(); 1287 unsigned NewElts = MoreTy.getNumElements(); 1288 1289 unsigned NumParts = NewElts / OldElts; 1290 1291 // Use concat_vectors if the result is a multiple of the number of elements. 1292 if (NumParts * OldElts == NewElts) { 1293 SmallVector<Register, 8> Parts; 1294 Parts.push_back(MO.getReg()); 1295 1296 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1297 for (unsigned I = 1; I != NumParts; ++I) 1298 Parts.push_back(ImpDef); 1299 1300 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1301 MO.setReg(Concat.getReg(0)); 1302 return; 1303 } 1304 1305 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1306 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1307 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1308 MO.setReg(MoreReg); 1309 } 1310 1311 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1312 MachineOperand &Op = MI.getOperand(OpIdx); 1313 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1314 } 1315 1316 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1317 MachineOperand &MO = MI.getOperand(OpIdx); 1318 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1319 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1320 MIRBuilder.buildBitcast(MO, CastDst); 1321 MO.setReg(CastDst); 1322 } 1323 1324 LegalizerHelper::LegalizeResult 1325 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1326 LLT WideTy) { 1327 if (TypeIdx != 1) 1328 return UnableToLegalize; 1329 1330 Register DstReg = MI.getOperand(0).getReg(); 1331 LLT DstTy = MRI.getType(DstReg); 1332 if (DstTy.isVector()) 1333 return UnableToLegalize; 1334 1335 Register Src1 = MI.getOperand(1).getReg(); 1336 LLT SrcTy = MRI.getType(Src1); 1337 const int DstSize = DstTy.getSizeInBits(); 1338 const int SrcSize = SrcTy.getSizeInBits(); 1339 const int WideSize = WideTy.getSizeInBits(); 1340 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1341 1342 unsigned NumOps = MI.getNumOperands(); 1343 unsigned NumSrc = MI.getNumOperands() - 1; 1344 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1345 1346 if (WideSize >= DstSize) { 1347 // Directly pack the bits in the target type. 1348 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1349 1350 for (unsigned I = 2; I != NumOps; ++I) { 1351 const unsigned Offset = (I - 1) * PartSize; 1352 1353 Register SrcReg = MI.getOperand(I).getReg(); 1354 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1355 1356 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1357 1358 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1359 MRI.createGenericVirtualRegister(WideTy); 1360 1361 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1362 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1363 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1364 ResultReg = NextResult; 1365 } 1366 1367 if (WideSize > DstSize) 1368 MIRBuilder.buildTrunc(DstReg, ResultReg); 1369 else if (DstTy.isPointer()) 1370 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1371 1372 MI.eraseFromParent(); 1373 return Legalized; 1374 } 1375 1376 // Unmerge the original values to the GCD type, and recombine to the next 1377 // multiple greater than the original type. 1378 // 1379 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1380 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1381 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1382 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1383 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1384 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1385 // %12:_(s12) = G_MERGE_VALUES %10, %11 1386 // 1387 // Padding with undef if necessary: 1388 // 1389 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1390 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1391 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1392 // %7:_(s2) = G_IMPLICIT_DEF 1393 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1394 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1395 // %10:_(s12) = G_MERGE_VALUES %8, %9 1396 1397 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1398 LLT GCDTy = LLT::scalar(GCD); 1399 1400 SmallVector<Register, 8> Parts; 1401 SmallVector<Register, 8> NewMergeRegs; 1402 SmallVector<Register, 8> Unmerges; 1403 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1404 1405 // Decompose the original operands if they don't evenly divide. 1406 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1407 Register SrcReg = MI.getOperand(I).getReg(); 1408 if (GCD == SrcSize) { 1409 Unmerges.push_back(SrcReg); 1410 } else { 1411 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1412 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1413 Unmerges.push_back(Unmerge.getReg(J)); 1414 } 1415 } 1416 1417 // Pad with undef to the next size that is a multiple of the requested size. 1418 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1419 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1420 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1421 Unmerges.push_back(UndefReg); 1422 } 1423 1424 const int PartsPerGCD = WideSize / GCD; 1425 1426 // Build merges of each piece. 1427 ArrayRef<Register> Slicer(Unmerges); 1428 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1429 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1430 NewMergeRegs.push_back(Merge.getReg(0)); 1431 } 1432 1433 // A truncate may be necessary if the requested type doesn't evenly divide the 1434 // original result type. 1435 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1436 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1437 } else { 1438 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1439 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1440 } 1441 1442 MI.eraseFromParent(); 1443 return Legalized; 1444 } 1445 1446 LegalizerHelper::LegalizeResult 1447 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1448 LLT WideTy) { 1449 if (TypeIdx != 0) 1450 return UnableToLegalize; 1451 1452 int NumDst = MI.getNumOperands() - 1; 1453 Register SrcReg = MI.getOperand(NumDst).getReg(); 1454 LLT SrcTy = MRI.getType(SrcReg); 1455 if (SrcTy.isVector()) 1456 return UnableToLegalize; 1457 1458 Register Dst0Reg = MI.getOperand(0).getReg(); 1459 LLT DstTy = MRI.getType(Dst0Reg); 1460 if (!DstTy.isScalar()) 1461 return UnableToLegalize; 1462 1463 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1464 if (SrcTy.isPointer()) { 1465 const DataLayout &DL = MIRBuilder.getDataLayout(); 1466 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1467 LLVM_DEBUG( 1468 dbgs() << "Not casting non-integral address space integer\n"); 1469 return UnableToLegalize; 1470 } 1471 1472 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1473 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1474 } 1475 1476 // Widen SrcTy to WideTy. This does not affect the result, but since the 1477 // user requested this size, it is probably better handled than SrcTy and 1478 // should reduce the total number of legalization artifacts 1479 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1480 SrcTy = WideTy; 1481 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1482 } 1483 1484 // Theres no unmerge type to target. Directly extract the bits from the 1485 // source type 1486 unsigned DstSize = DstTy.getSizeInBits(); 1487 1488 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1489 for (int I = 1; I != NumDst; ++I) { 1490 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1491 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1492 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1493 } 1494 1495 MI.eraseFromParent(); 1496 return Legalized; 1497 } 1498 1499 // Extend the source to a wider type. 1500 LLT LCMTy = getLCMType(SrcTy, WideTy); 1501 1502 Register WideSrc = SrcReg; 1503 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1504 // TODO: If this is an integral address space, cast to integer and anyext. 1505 if (SrcTy.isPointer()) { 1506 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1507 return UnableToLegalize; 1508 } 1509 1510 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1511 } 1512 1513 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1514 1515 // Create a sequence of unmerges to the original results. since we may have 1516 // widened the source, we will need to pad the results with dead defs to cover 1517 // the source register. 1518 // e.g. widen s16 to s32: 1519 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1520 // 1521 // => 1522 // %4:_(s64) = G_ANYEXT %0:_(s48) 1523 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1524 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1525 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1526 1527 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1528 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1529 1530 for (int I = 0; I != NumUnmerge; ++I) { 1531 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1532 1533 for (int J = 0; J != PartsPerUnmerge; ++J) { 1534 int Idx = I * PartsPerUnmerge + J; 1535 if (Idx < NumDst) 1536 MIB.addDef(MI.getOperand(Idx).getReg()); 1537 else { 1538 // Create dead def for excess components. 1539 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1540 } 1541 } 1542 1543 MIB.addUse(Unmerge.getReg(I)); 1544 } 1545 1546 MI.eraseFromParent(); 1547 return Legalized; 1548 } 1549 1550 LegalizerHelper::LegalizeResult 1551 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1552 LLT WideTy) { 1553 Register DstReg = MI.getOperand(0).getReg(); 1554 Register SrcReg = MI.getOperand(1).getReg(); 1555 LLT SrcTy = MRI.getType(SrcReg); 1556 1557 LLT DstTy = MRI.getType(DstReg); 1558 unsigned Offset = MI.getOperand(2).getImm(); 1559 1560 if (TypeIdx == 0) { 1561 if (SrcTy.isVector() || DstTy.isVector()) 1562 return UnableToLegalize; 1563 1564 SrcOp Src(SrcReg); 1565 if (SrcTy.isPointer()) { 1566 // Extracts from pointers can be handled only if they are really just 1567 // simple integers. 1568 const DataLayout &DL = MIRBuilder.getDataLayout(); 1569 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1570 return UnableToLegalize; 1571 1572 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1573 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1574 SrcTy = SrcAsIntTy; 1575 } 1576 1577 if (DstTy.isPointer()) 1578 return UnableToLegalize; 1579 1580 if (Offset == 0) { 1581 // Avoid a shift in the degenerate case. 1582 MIRBuilder.buildTrunc(DstReg, 1583 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1584 MI.eraseFromParent(); 1585 return Legalized; 1586 } 1587 1588 // Do a shift in the source type. 1589 LLT ShiftTy = SrcTy; 1590 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1591 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1592 ShiftTy = WideTy; 1593 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1594 return UnableToLegalize; 1595 1596 auto LShr = MIRBuilder.buildLShr( 1597 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1598 MIRBuilder.buildTrunc(DstReg, LShr); 1599 MI.eraseFromParent(); 1600 return Legalized; 1601 } 1602 1603 if (SrcTy.isScalar()) { 1604 Observer.changingInstr(MI); 1605 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1606 Observer.changedInstr(MI); 1607 return Legalized; 1608 } 1609 1610 if (!SrcTy.isVector()) 1611 return UnableToLegalize; 1612 1613 if (DstTy != SrcTy.getElementType()) 1614 return UnableToLegalize; 1615 1616 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1617 return UnableToLegalize; 1618 1619 Observer.changingInstr(MI); 1620 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1621 1622 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1623 Offset); 1624 widenScalarDst(MI, WideTy.getScalarType(), 0); 1625 Observer.changedInstr(MI); 1626 return Legalized; 1627 } 1628 1629 LegalizerHelper::LegalizeResult 1630 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1631 LLT WideTy) { 1632 if (TypeIdx != 0) 1633 return UnableToLegalize; 1634 Observer.changingInstr(MI); 1635 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1636 widenScalarDst(MI, WideTy); 1637 Observer.changedInstr(MI); 1638 return Legalized; 1639 } 1640 1641 LegalizerHelper::LegalizeResult 1642 LegalizerHelper::widenScalarAddSubSat(MachineInstr &MI, unsigned TypeIdx, 1643 LLT WideTy) { 1644 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1645 MI.getOpcode() == TargetOpcode::G_SSUBSAT; 1646 // We can convert this to: 1647 // 1. Any extend iN to iM 1648 // 2. SHL by M-N 1649 // 3. [US][ADD|SUB]SAT 1650 // 4. L/ASHR by M-N 1651 // 1652 // It may be more efficient to lower this to a min and a max operation in 1653 // the higher precision arithmetic if the promoted operation isn't legal, 1654 // but this decision is up to the target's lowering request. 1655 Register DstReg = MI.getOperand(0).getReg(); 1656 1657 unsigned NewBits = WideTy.getScalarSizeInBits(); 1658 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1659 1660 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1661 auto RHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1662 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1663 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1664 auto ShiftR = MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1665 1666 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1667 {ShiftL, ShiftR}, MI.getFlags()); 1668 1669 // Use a shift that will preserve the number of sign bits when the trunc is 1670 // folded away. 1671 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1672 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1673 1674 MIRBuilder.buildTrunc(DstReg, Result); 1675 MI.eraseFromParent(); 1676 return Legalized; 1677 } 1678 1679 LegalizerHelper::LegalizeResult 1680 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1681 switch (MI.getOpcode()) { 1682 default: 1683 return UnableToLegalize; 1684 case TargetOpcode::G_EXTRACT: 1685 return widenScalarExtract(MI, TypeIdx, WideTy); 1686 case TargetOpcode::G_INSERT: 1687 return widenScalarInsert(MI, TypeIdx, WideTy); 1688 case TargetOpcode::G_MERGE_VALUES: 1689 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1690 case TargetOpcode::G_UNMERGE_VALUES: 1691 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1692 case TargetOpcode::G_UADDO: 1693 case TargetOpcode::G_USUBO: { 1694 if (TypeIdx == 1) 1695 return UnableToLegalize; // TODO 1696 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1697 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1698 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1699 ? TargetOpcode::G_ADD 1700 : TargetOpcode::G_SUB; 1701 // Do the arithmetic in the larger type. 1702 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1703 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1704 APInt Mask = 1705 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1706 auto AndOp = MIRBuilder.buildAnd( 1707 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1708 // There is no overflow if the AndOp is the same as NewOp. 1709 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1710 // Now trunc the NewOp to the original result. 1711 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1712 MI.eraseFromParent(); 1713 return Legalized; 1714 } 1715 case TargetOpcode::G_SADDSAT: 1716 case TargetOpcode::G_SSUBSAT: 1717 case TargetOpcode::G_UADDSAT: 1718 case TargetOpcode::G_USUBSAT: 1719 return widenScalarAddSubSat(MI, TypeIdx, WideTy); 1720 case TargetOpcode::G_CTTZ: 1721 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1722 case TargetOpcode::G_CTLZ: 1723 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1724 case TargetOpcode::G_CTPOP: { 1725 if (TypeIdx == 0) { 1726 Observer.changingInstr(MI); 1727 widenScalarDst(MI, WideTy, 0); 1728 Observer.changedInstr(MI); 1729 return Legalized; 1730 } 1731 1732 Register SrcReg = MI.getOperand(1).getReg(); 1733 1734 // First ZEXT the input. 1735 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1736 LLT CurTy = MRI.getType(SrcReg); 1737 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1738 // The count is the same in the larger type except if the original 1739 // value was zero. This can be handled by setting the bit just off 1740 // the top of the original type. 1741 auto TopBit = 1742 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1743 MIBSrc = MIRBuilder.buildOr( 1744 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1745 } 1746 1747 // Perform the operation at the larger size. 1748 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1749 // This is already the correct result for CTPOP and CTTZs 1750 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1751 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1752 // The correct result is NewOp - (Difference in widety and current ty). 1753 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1754 MIBNewOp = MIRBuilder.buildSub( 1755 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1756 } 1757 1758 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1759 MI.eraseFromParent(); 1760 return Legalized; 1761 } 1762 case TargetOpcode::G_BSWAP: { 1763 Observer.changingInstr(MI); 1764 Register DstReg = MI.getOperand(0).getReg(); 1765 1766 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1767 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1768 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1769 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1770 1771 MI.getOperand(0).setReg(DstExt); 1772 1773 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1774 1775 LLT Ty = MRI.getType(DstReg); 1776 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1777 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1778 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1779 1780 MIRBuilder.buildTrunc(DstReg, ShrReg); 1781 Observer.changedInstr(MI); 1782 return Legalized; 1783 } 1784 case TargetOpcode::G_BITREVERSE: { 1785 Observer.changingInstr(MI); 1786 1787 Register DstReg = MI.getOperand(0).getReg(); 1788 LLT Ty = MRI.getType(DstReg); 1789 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1790 1791 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1792 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1793 MI.getOperand(0).setReg(DstExt); 1794 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1795 1796 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1797 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1798 MIRBuilder.buildTrunc(DstReg, Shift); 1799 Observer.changedInstr(MI); 1800 return Legalized; 1801 } 1802 case TargetOpcode::G_FREEZE: 1803 Observer.changingInstr(MI); 1804 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1805 widenScalarDst(MI, WideTy); 1806 Observer.changedInstr(MI); 1807 return Legalized; 1808 1809 case TargetOpcode::G_ADD: 1810 case TargetOpcode::G_AND: 1811 case TargetOpcode::G_MUL: 1812 case TargetOpcode::G_OR: 1813 case TargetOpcode::G_XOR: 1814 case TargetOpcode::G_SUB: 1815 // Perform operation at larger width (any extension is fines here, high bits 1816 // don't affect the result) and then truncate the result back to the 1817 // original type. 1818 Observer.changingInstr(MI); 1819 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1820 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1821 widenScalarDst(MI, WideTy); 1822 Observer.changedInstr(MI); 1823 return Legalized; 1824 1825 case TargetOpcode::G_SHL: 1826 Observer.changingInstr(MI); 1827 1828 if (TypeIdx == 0) { 1829 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1830 widenScalarDst(MI, WideTy); 1831 } else { 1832 assert(TypeIdx == 1); 1833 // The "number of bits to shift" operand must preserve its value as an 1834 // unsigned integer: 1835 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1836 } 1837 1838 Observer.changedInstr(MI); 1839 return Legalized; 1840 1841 case TargetOpcode::G_SDIV: 1842 case TargetOpcode::G_SREM: 1843 case TargetOpcode::G_SMIN: 1844 case TargetOpcode::G_SMAX: 1845 Observer.changingInstr(MI); 1846 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1847 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1848 widenScalarDst(MI, WideTy); 1849 Observer.changedInstr(MI); 1850 return Legalized; 1851 1852 case TargetOpcode::G_ASHR: 1853 case TargetOpcode::G_LSHR: 1854 Observer.changingInstr(MI); 1855 1856 if (TypeIdx == 0) { 1857 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1858 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1859 1860 widenScalarSrc(MI, WideTy, 1, CvtOp); 1861 widenScalarDst(MI, WideTy); 1862 } else { 1863 assert(TypeIdx == 1); 1864 // The "number of bits to shift" operand must preserve its value as an 1865 // unsigned integer: 1866 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1867 } 1868 1869 Observer.changedInstr(MI); 1870 return Legalized; 1871 case TargetOpcode::G_UDIV: 1872 case TargetOpcode::G_UREM: 1873 case TargetOpcode::G_UMIN: 1874 case TargetOpcode::G_UMAX: 1875 Observer.changingInstr(MI); 1876 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1877 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1878 widenScalarDst(MI, WideTy); 1879 Observer.changedInstr(MI); 1880 return Legalized; 1881 1882 case TargetOpcode::G_SELECT: 1883 Observer.changingInstr(MI); 1884 if (TypeIdx == 0) { 1885 // Perform operation at larger width (any extension is fine here, high 1886 // bits don't affect the result) and then truncate the result back to the 1887 // original type. 1888 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1889 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1890 widenScalarDst(MI, WideTy); 1891 } else { 1892 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1893 // Explicit extension is required here since high bits affect the result. 1894 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1895 } 1896 Observer.changedInstr(MI); 1897 return Legalized; 1898 1899 case TargetOpcode::G_FPTOSI: 1900 case TargetOpcode::G_FPTOUI: 1901 Observer.changingInstr(MI); 1902 1903 if (TypeIdx == 0) 1904 widenScalarDst(MI, WideTy); 1905 else 1906 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1907 1908 Observer.changedInstr(MI); 1909 return Legalized; 1910 case TargetOpcode::G_SITOFP: 1911 if (TypeIdx != 1) 1912 return UnableToLegalize; 1913 Observer.changingInstr(MI); 1914 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1915 Observer.changedInstr(MI); 1916 return Legalized; 1917 1918 case TargetOpcode::G_UITOFP: 1919 if (TypeIdx != 1) 1920 return UnableToLegalize; 1921 Observer.changingInstr(MI); 1922 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1923 Observer.changedInstr(MI); 1924 return Legalized; 1925 1926 case TargetOpcode::G_LOAD: 1927 case TargetOpcode::G_SEXTLOAD: 1928 case TargetOpcode::G_ZEXTLOAD: 1929 Observer.changingInstr(MI); 1930 widenScalarDst(MI, WideTy); 1931 Observer.changedInstr(MI); 1932 return Legalized; 1933 1934 case TargetOpcode::G_STORE: { 1935 if (TypeIdx != 0) 1936 return UnableToLegalize; 1937 1938 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1939 if (!isPowerOf2_32(Ty.getSizeInBits())) 1940 return UnableToLegalize; 1941 1942 Observer.changingInstr(MI); 1943 1944 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1945 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1946 widenScalarSrc(MI, WideTy, 0, ExtType); 1947 1948 Observer.changedInstr(MI); 1949 return Legalized; 1950 } 1951 case TargetOpcode::G_CONSTANT: { 1952 MachineOperand &SrcMO = MI.getOperand(1); 1953 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1954 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1955 MRI.getType(MI.getOperand(0).getReg())); 1956 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1957 ExtOpc == TargetOpcode::G_ANYEXT) && 1958 "Illegal Extend"); 1959 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1960 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1961 ? SrcVal.sext(WideTy.getSizeInBits()) 1962 : SrcVal.zext(WideTy.getSizeInBits()); 1963 Observer.changingInstr(MI); 1964 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1965 1966 widenScalarDst(MI, WideTy); 1967 Observer.changedInstr(MI); 1968 return Legalized; 1969 } 1970 case TargetOpcode::G_FCONSTANT: { 1971 MachineOperand &SrcMO = MI.getOperand(1); 1972 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1973 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1974 bool LosesInfo; 1975 switch (WideTy.getSizeInBits()) { 1976 case 32: 1977 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1978 &LosesInfo); 1979 break; 1980 case 64: 1981 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1982 &LosesInfo); 1983 break; 1984 default: 1985 return UnableToLegalize; 1986 } 1987 1988 assert(!LosesInfo && "extend should always be lossless"); 1989 1990 Observer.changingInstr(MI); 1991 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1992 1993 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1994 Observer.changedInstr(MI); 1995 return Legalized; 1996 } 1997 case TargetOpcode::G_IMPLICIT_DEF: { 1998 Observer.changingInstr(MI); 1999 widenScalarDst(MI, WideTy); 2000 Observer.changedInstr(MI); 2001 return Legalized; 2002 } 2003 case TargetOpcode::G_BRCOND: 2004 Observer.changingInstr(MI); 2005 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2006 Observer.changedInstr(MI); 2007 return Legalized; 2008 2009 case TargetOpcode::G_FCMP: 2010 Observer.changingInstr(MI); 2011 if (TypeIdx == 0) 2012 widenScalarDst(MI, WideTy); 2013 else { 2014 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2015 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2016 } 2017 Observer.changedInstr(MI); 2018 return Legalized; 2019 2020 case TargetOpcode::G_ICMP: 2021 Observer.changingInstr(MI); 2022 if (TypeIdx == 0) 2023 widenScalarDst(MI, WideTy); 2024 else { 2025 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2026 MI.getOperand(1).getPredicate())) 2027 ? TargetOpcode::G_SEXT 2028 : TargetOpcode::G_ZEXT; 2029 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2030 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2031 } 2032 Observer.changedInstr(MI); 2033 return Legalized; 2034 2035 case TargetOpcode::G_PTR_ADD: 2036 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2037 Observer.changingInstr(MI); 2038 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2039 Observer.changedInstr(MI); 2040 return Legalized; 2041 2042 case TargetOpcode::G_PHI: { 2043 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2044 2045 Observer.changingInstr(MI); 2046 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2047 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2048 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2049 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2050 } 2051 2052 MachineBasicBlock &MBB = *MI.getParent(); 2053 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2054 widenScalarDst(MI, WideTy); 2055 Observer.changedInstr(MI); 2056 return Legalized; 2057 } 2058 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2059 if (TypeIdx == 0) { 2060 Register VecReg = MI.getOperand(1).getReg(); 2061 LLT VecTy = MRI.getType(VecReg); 2062 Observer.changingInstr(MI); 2063 2064 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2065 WideTy.getSizeInBits()), 2066 1, TargetOpcode::G_SEXT); 2067 2068 widenScalarDst(MI, WideTy, 0); 2069 Observer.changedInstr(MI); 2070 return Legalized; 2071 } 2072 2073 if (TypeIdx != 2) 2074 return UnableToLegalize; 2075 Observer.changingInstr(MI); 2076 // TODO: Probably should be zext 2077 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2078 Observer.changedInstr(MI); 2079 return Legalized; 2080 } 2081 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2082 if (TypeIdx == 1) { 2083 Observer.changingInstr(MI); 2084 2085 Register VecReg = MI.getOperand(1).getReg(); 2086 LLT VecTy = MRI.getType(VecReg); 2087 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2088 2089 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2090 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2091 widenScalarDst(MI, WideVecTy, 0); 2092 Observer.changedInstr(MI); 2093 return Legalized; 2094 } 2095 2096 if (TypeIdx == 2) { 2097 Observer.changingInstr(MI); 2098 // TODO: Probably should be zext 2099 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2100 Observer.changedInstr(MI); 2101 return Legalized; 2102 } 2103 2104 return UnableToLegalize; 2105 } 2106 case TargetOpcode::G_FADD: 2107 case TargetOpcode::G_FMUL: 2108 case TargetOpcode::G_FSUB: 2109 case TargetOpcode::G_FMA: 2110 case TargetOpcode::G_FMAD: 2111 case TargetOpcode::G_FNEG: 2112 case TargetOpcode::G_FABS: 2113 case TargetOpcode::G_FCANONICALIZE: 2114 case TargetOpcode::G_FMINNUM: 2115 case TargetOpcode::G_FMAXNUM: 2116 case TargetOpcode::G_FMINNUM_IEEE: 2117 case TargetOpcode::G_FMAXNUM_IEEE: 2118 case TargetOpcode::G_FMINIMUM: 2119 case TargetOpcode::G_FMAXIMUM: 2120 case TargetOpcode::G_FDIV: 2121 case TargetOpcode::G_FREM: 2122 case TargetOpcode::G_FCEIL: 2123 case TargetOpcode::G_FFLOOR: 2124 case TargetOpcode::G_FCOS: 2125 case TargetOpcode::G_FSIN: 2126 case TargetOpcode::G_FLOG10: 2127 case TargetOpcode::G_FLOG: 2128 case TargetOpcode::G_FLOG2: 2129 case TargetOpcode::G_FRINT: 2130 case TargetOpcode::G_FNEARBYINT: 2131 case TargetOpcode::G_FSQRT: 2132 case TargetOpcode::G_FEXP: 2133 case TargetOpcode::G_FEXP2: 2134 case TargetOpcode::G_FPOW: 2135 case TargetOpcode::G_INTRINSIC_TRUNC: 2136 case TargetOpcode::G_INTRINSIC_ROUND: 2137 assert(TypeIdx == 0); 2138 Observer.changingInstr(MI); 2139 2140 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2141 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2142 2143 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2144 Observer.changedInstr(MI); 2145 return Legalized; 2146 case TargetOpcode::G_INTTOPTR: 2147 if (TypeIdx != 1) 2148 return UnableToLegalize; 2149 2150 Observer.changingInstr(MI); 2151 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2152 Observer.changedInstr(MI); 2153 return Legalized; 2154 case TargetOpcode::G_PTRTOINT: 2155 if (TypeIdx != 0) 2156 return UnableToLegalize; 2157 2158 Observer.changingInstr(MI); 2159 widenScalarDst(MI, WideTy, 0); 2160 Observer.changedInstr(MI); 2161 return Legalized; 2162 case TargetOpcode::G_BUILD_VECTOR: { 2163 Observer.changingInstr(MI); 2164 2165 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2166 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2167 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2168 2169 // Avoid changing the result vector type if the source element type was 2170 // requested. 2171 if (TypeIdx == 1) { 2172 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2173 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2174 } else { 2175 widenScalarDst(MI, WideTy, 0); 2176 } 2177 2178 Observer.changedInstr(MI); 2179 return Legalized; 2180 } 2181 case TargetOpcode::G_SEXT_INREG: 2182 if (TypeIdx != 0) 2183 return UnableToLegalize; 2184 2185 Observer.changingInstr(MI); 2186 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2187 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2188 Observer.changedInstr(MI); 2189 return Legalized; 2190 case TargetOpcode::G_PTRMASK: { 2191 if (TypeIdx != 1) 2192 return UnableToLegalize; 2193 Observer.changingInstr(MI); 2194 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2195 Observer.changedInstr(MI); 2196 return Legalized; 2197 } 2198 } 2199 } 2200 2201 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2202 MachineIRBuilder &B, Register Src, LLT Ty) { 2203 auto Unmerge = B.buildUnmerge(Ty, Src); 2204 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2205 Pieces.push_back(Unmerge.getReg(I)); 2206 } 2207 2208 LegalizerHelper::LegalizeResult 2209 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2210 Register Dst = MI.getOperand(0).getReg(); 2211 Register Src = MI.getOperand(1).getReg(); 2212 LLT DstTy = MRI.getType(Dst); 2213 LLT SrcTy = MRI.getType(Src); 2214 2215 if (SrcTy.isVector()) { 2216 LLT SrcEltTy = SrcTy.getElementType(); 2217 SmallVector<Register, 8> SrcRegs; 2218 2219 if (DstTy.isVector()) { 2220 int NumDstElt = DstTy.getNumElements(); 2221 int NumSrcElt = SrcTy.getNumElements(); 2222 2223 LLT DstEltTy = DstTy.getElementType(); 2224 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2225 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2226 2227 // If there's an element size mismatch, insert intermediate casts to match 2228 // the result element type. 2229 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2230 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2231 // 2232 // => 2233 // 2234 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2235 // %3:_(<2 x s8>) = G_BITCAST %2 2236 // %4:_(<2 x s8>) = G_BITCAST %3 2237 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2238 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2239 SrcPartTy = SrcEltTy; 2240 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2241 // 2242 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2243 // 2244 // => 2245 // 2246 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2247 // %3:_(s16) = G_BITCAST %2 2248 // %4:_(s16) = G_BITCAST %3 2249 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2250 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2251 DstCastTy = DstEltTy; 2252 } 2253 2254 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2255 for (Register &SrcReg : SrcRegs) 2256 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2257 } else 2258 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2259 2260 MIRBuilder.buildMerge(Dst, SrcRegs); 2261 MI.eraseFromParent(); 2262 return Legalized; 2263 } 2264 2265 if (DstTy.isVector()) { 2266 SmallVector<Register, 8> SrcRegs; 2267 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2268 MIRBuilder.buildMerge(Dst, SrcRegs); 2269 MI.eraseFromParent(); 2270 return Legalized; 2271 } 2272 2273 return UnableToLegalize; 2274 } 2275 2276 LegalizerHelper::LegalizeResult 2277 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2278 switch (MI.getOpcode()) { 2279 case TargetOpcode::G_LOAD: { 2280 if (TypeIdx != 0) 2281 return UnableToLegalize; 2282 2283 Observer.changingInstr(MI); 2284 bitcastDst(MI, CastTy, 0); 2285 Observer.changedInstr(MI); 2286 return Legalized; 2287 } 2288 case TargetOpcode::G_STORE: { 2289 if (TypeIdx != 0) 2290 return UnableToLegalize; 2291 2292 Observer.changingInstr(MI); 2293 bitcastSrc(MI, CastTy, 0); 2294 Observer.changedInstr(MI); 2295 return Legalized; 2296 } 2297 case TargetOpcode::G_SELECT: { 2298 if (TypeIdx != 0) 2299 return UnableToLegalize; 2300 2301 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2302 LLVM_DEBUG( 2303 dbgs() << "bitcast action not implemented for vector select\n"); 2304 return UnableToLegalize; 2305 } 2306 2307 Observer.changingInstr(MI); 2308 bitcastSrc(MI, CastTy, 2); 2309 bitcastSrc(MI, CastTy, 3); 2310 bitcastDst(MI, CastTy, 0); 2311 Observer.changedInstr(MI); 2312 return Legalized; 2313 } 2314 case TargetOpcode::G_AND: 2315 case TargetOpcode::G_OR: 2316 case TargetOpcode::G_XOR: { 2317 Observer.changingInstr(MI); 2318 bitcastSrc(MI, CastTy, 1); 2319 bitcastSrc(MI, CastTy, 2); 2320 bitcastDst(MI, CastTy, 0); 2321 Observer.changedInstr(MI); 2322 return Legalized; 2323 } 2324 default: 2325 return UnableToLegalize; 2326 } 2327 } 2328 2329 LegalizerHelper::LegalizeResult 2330 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2331 using namespace TargetOpcode; 2332 2333 switch(MI.getOpcode()) { 2334 default: 2335 return UnableToLegalize; 2336 case TargetOpcode::G_BITCAST: 2337 return lowerBitcast(MI); 2338 case TargetOpcode::G_SREM: 2339 case TargetOpcode::G_UREM: { 2340 auto Quot = 2341 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2342 {MI.getOperand(1), MI.getOperand(2)}); 2343 2344 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2345 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2346 MI.eraseFromParent(); 2347 return Legalized; 2348 } 2349 case TargetOpcode::G_SADDO: 2350 case TargetOpcode::G_SSUBO: 2351 return lowerSADDO_SSUBO(MI); 2352 case TargetOpcode::G_SMULO: 2353 case TargetOpcode::G_UMULO: { 2354 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2355 // result. 2356 Register Res = MI.getOperand(0).getReg(); 2357 Register Overflow = MI.getOperand(1).getReg(); 2358 Register LHS = MI.getOperand(2).getReg(); 2359 Register RHS = MI.getOperand(3).getReg(); 2360 2361 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2362 ? TargetOpcode::G_SMULH 2363 : TargetOpcode::G_UMULH; 2364 2365 Observer.changingInstr(MI); 2366 const auto &TII = MIRBuilder.getTII(); 2367 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2368 MI.RemoveOperand(1); 2369 Observer.changedInstr(MI); 2370 2371 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2372 2373 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2374 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2375 2376 // For *signed* multiply, overflow is detected by checking: 2377 // (hi != (lo >> bitwidth-1)) 2378 if (Opcode == TargetOpcode::G_SMULH) { 2379 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2380 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2381 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2382 } else { 2383 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2384 } 2385 return Legalized; 2386 } 2387 case TargetOpcode::G_FNEG: { 2388 // TODO: Handle vector types once we are able to 2389 // represent them. 2390 if (Ty.isVector()) 2391 return UnableToLegalize; 2392 Register Res = MI.getOperand(0).getReg(); 2393 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2394 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2395 if (!ZeroTy) 2396 return UnableToLegalize; 2397 ConstantFP &ZeroForNegation = 2398 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2399 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2400 Register SubByReg = MI.getOperand(1).getReg(); 2401 Register ZeroReg = Zero.getReg(0); 2402 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2403 MI.eraseFromParent(); 2404 return Legalized; 2405 } 2406 case TargetOpcode::G_FSUB: { 2407 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2408 // First, check if G_FNEG is marked as Lower. If so, we may 2409 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2410 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2411 return UnableToLegalize; 2412 Register Res = MI.getOperand(0).getReg(); 2413 Register LHS = MI.getOperand(1).getReg(); 2414 Register RHS = MI.getOperand(2).getReg(); 2415 Register Neg = MRI.createGenericVirtualRegister(Ty); 2416 MIRBuilder.buildFNeg(Neg, RHS); 2417 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2418 MI.eraseFromParent(); 2419 return Legalized; 2420 } 2421 case TargetOpcode::G_FMAD: 2422 return lowerFMad(MI); 2423 case TargetOpcode::G_FFLOOR: 2424 return lowerFFloor(MI); 2425 case TargetOpcode::G_INTRINSIC_ROUND: 2426 return lowerIntrinsicRound(MI); 2427 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2428 Register OldValRes = MI.getOperand(0).getReg(); 2429 Register SuccessRes = MI.getOperand(1).getReg(); 2430 Register Addr = MI.getOperand(2).getReg(); 2431 Register CmpVal = MI.getOperand(3).getReg(); 2432 Register NewVal = MI.getOperand(4).getReg(); 2433 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2434 **MI.memoperands_begin()); 2435 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2436 MI.eraseFromParent(); 2437 return Legalized; 2438 } 2439 case TargetOpcode::G_LOAD: 2440 case TargetOpcode::G_SEXTLOAD: 2441 case TargetOpcode::G_ZEXTLOAD: { 2442 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2443 Register DstReg = MI.getOperand(0).getReg(); 2444 Register PtrReg = MI.getOperand(1).getReg(); 2445 LLT DstTy = MRI.getType(DstReg); 2446 auto &MMO = **MI.memoperands_begin(); 2447 2448 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2449 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2450 // This load needs splitting into power of 2 sized loads. 2451 if (DstTy.isVector()) 2452 return UnableToLegalize; 2453 if (isPowerOf2_32(DstTy.getSizeInBits())) 2454 return UnableToLegalize; // Don't know what we're being asked to do. 2455 2456 // Our strategy here is to generate anyextending loads for the smaller 2457 // types up to next power-2 result type, and then combine the two larger 2458 // result values together, before truncating back down to the non-pow-2 2459 // type. 2460 // E.g. v1 = i24 load => 2461 // v2 = i32 zextload (2 byte) 2462 // v3 = i32 load (1 byte) 2463 // v4 = i32 shl v3, 16 2464 // v5 = i32 or v4, v2 2465 // v1 = i24 trunc v5 2466 // By doing this we generate the correct truncate which should get 2467 // combined away as an artifact with a matching extend. 2468 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2469 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2470 2471 MachineFunction &MF = MIRBuilder.getMF(); 2472 MachineMemOperand *LargeMMO = 2473 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2474 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2475 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2476 2477 LLT PtrTy = MRI.getType(PtrReg); 2478 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2479 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2480 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2481 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2482 auto LargeLoad = MIRBuilder.buildLoadInstr( 2483 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2484 2485 auto OffsetCst = MIRBuilder.buildConstant( 2486 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2487 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2488 auto SmallPtr = 2489 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2490 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2491 *SmallMMO); 2492 2493 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2494 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2495 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2496 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2497 MI.eraseFromParent(); 2498 return Legalized; 2499 } 2500 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2501 MI.eraseFromParent(); 2502 return Legalized; 2503 } 2504 2505 if (DstTy.isScalar()) { 2506 Register TmpReg = 2507 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2508 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2509 switch (MI.getOpcode()) { 2510 default: 2511 llvm_unreachable("Unexpected opcode"); 2512 case TargetOpcode::G_LOAD: 2513 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2514 break; 2515 case TargetOpcode::G_SEXTLOAD: 2516 MIRBuilder.buildSExt(DstReg, TmpReg); 2517 break; 2518 case TargetOpcode::G_ZEXTLOAD: 2519 MIRBuilder.buildZExt(DstReg, TmpReg); 2520 break; 2521 } 2522 MI.eraseFromParent(); 2523 return Legalized; 2524 } 2525 2526 return UnableToLegalize; 2527 } 2528 case TargetOpcode::G_STORE: { 2529 // Lower a non-power of 2 store into multiple pow-2 stores. 2530 // E.g. split an i24 store into an i16 store + i8 store. 2531 // We do this by first extending the stored value to the next largest power 2532 // of 2 type, and then using truncating stores to store the components. 2533 // By doing this, likewise with G_LOAD, generate an extend that can be 2534 // artifact-combined away instead of leaving behind extracts. 2535 Register SrcReg = MI.getOperand(0).getReg(); 2536 Register PtrReg = MI.getOperand(1).getReg(); 2537 LLT SrcTy = MRI.getType(SrcReg); 2538 MachineMemOperand &MMO = **MI.memoperands_begin(); 2539 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2540 return UnableToLegalize; 2541 if (SrcTy.isVector()) 2542 return UnableToLegalize; 2543 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2544 return UnableToLegalize; // Don't know what we're being asked to do. 2545 2546 // Extend to the next pow-2. 2547 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2548 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2549 2550 // Obtain the smaller value by shifting away the larger value. 2551 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2552 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2553 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2554 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2555 2556 // Generate the PtrAdd and truncating stores. 2557 LLT PtrTy = MRI.getType(PtrReg); 2558 auto OffsetCst = MIRBuilder.buildConstant( 2559 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2560 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2561 auto SmallPtr = 2562 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2563 2564 MachineFunction &MF = MIRBuilder.getMF(); 2565 MachineMemOperand *LargeMMO = 2566 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2567 MachineMemOperand *SmallMMO = 2568 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2569 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2570 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2571 MI.eraseFromParent(); 2572 return Legalized; 2573 } 2574 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2575 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2576 case TargetOpcode::G_CTLZ: 2577 case TargetOpcode::G_CTTZ: 2578 case TargetOpcode::G_CTPOP: 2579 return lowerBitCount(MI, TypeIdx, Ty); 2580 case G_UADDO: { 2581 Register Res = MI.getOperand(0).getReg(); 2582 Register CarryOut = MI.getOperand(1).getReg(); 2583 Register LHS = MI.getOperand(2).getReg(); 2584 Register RHS = MI.getOperand(3).getReg(); 2585 2586 MIRBuilder.buildAdd(Res, LHS, RHS); 2587 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2588 2589 MI.eraseFromParent(); 2590 return Legalized; 2591 } 2592 case G_UADDE: { 2593 Register Res = MI.getOperand(0).getReg(); 2594 Register CarryOut = MI.getOperand(1).getReg(); 2595 Register LHS = MI.getOperand(2).getReg(); 2596 Register RHS = MI.getOperand(3).getReg(); 2597 Register CarryIn = MI.getOperand(4).getReg(); 2598 LLT Ty = MRI.getType(Res); 2599 2600 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2601 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2602 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2603 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2604 2605 MI.eraseFromParent(); 2606 return Legalized; 2607 } 2608 case G_USUBO: { 2609 Register Res = MI.getOperand(0).getReg(); 2610 Register BorrowOut = MI.getOperand(1).getReg(); 2611 Register LHS = MI.getOperand(2).getReg(); 2612 Register RHS = MI.getOperand(3).getReg(); 2613 2614 MIRBuilder.buildSub(Res, LHS, RHS); 2615 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2616 2617 MI.eraseFromParent(); 2618 return Legalized; 2619 } 2620 case G_USUBE: { 2621 Register Res = MI.getOperand(0).getReg(); 2622 Register BorrowOut = MI.getOperand(1).getReg(); 2623 Register LHS = MI.getOperand(2).getReg(); 2624 Register RHS = MI.getOperand(3).getReg(); 2625 Register BorrowIn = MI.getOperand(4).getReg(); 2626 const LLT CondTy = MRI.getType(BorrowOut); 2627 const LLT Ty = MRI.getType(Res); 2628 2629 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2630 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2631 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2632 2633 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2634 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2635 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2636 2637 MI.eraseFromParent(); 2638 return Legalized; 2639 } 2640 case G_UITOFP: 2641 return lowerUITOFP(MI, TypeIdx, Ty); 2642 case G_SITOFP: 2643 return lowerSITOFP(MI, TypeIdx, Ty); 2644 case G_FPTOUI: 2645 return lowerFPTOUI(MI, TypeIdx, Ty); 2646 case G_FPTOSI: 2647 return lowerFPTOSI(MI); 2648 case G_FPTRUNC: 2649 return lowerFPTRUNC(MI, TypeIdx, Ty); 2650 case G_SMIN: 2651 case G_SMAX: 2652 case G_UMIN: 2653 case G_UMAX: 2654 return lowerMinMax(MI, TypeIdx, Ty); 2655 case G_FCOPYSIGN: 2656 return lowerFCopySign(MI, TypeIdx, Ty); 2657 case G_FMINNUM: 2658 case G_FMAXNUM: 2659 return lowerFMinNumMaxNum(MI); 2660 case G_MERGE_VALUES: 2661 return lowerMergeValues(MI); 2662 case G_UNMERGE_VALUES: 2663 return lowerUnmergeValues(MI); 2664 case TargetOpcode::G_SEXT_INREG: { 2665 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2666 int64_t SizeInBits = MI.getOperand(2).getImm(); 2667 2668 Register DstReg = MI.getOperand(0).getReg(); 2669 Register SrcReg = MI.getOperand(1).getReg(); 2670 LLT DstTy = MRI.getType(DstReg); 2671 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2672 2673 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2674 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2675 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2676 MI.eraseFromParent(); 2677 return Legalized; 2678 } 2679 case G_SHUFFLE_VECTOR: 2680 return lowerShuffleVector(MI); 2681 case G_DYN_STACKALLOC: 2682 return lowerDynStackAlloc(MI); 2683 case G_EXTRACT: 2684 return lowerExtract(MI); 2685 case G_INSERT: 2686 return lowerInsert(MI); 2687 case G_BSWAP: 2688 return lowerBswap(MI); 2689 case G_BITREVERSE: 2690 return lowerBitreverse(MI); 2691 case G_READ_REGISTER: 2692 case G_WRITE_REGISTER: 2693 return lowerReadWriteRegister(MI); 2694 } 2695 } 2696 2697 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2698 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2699 SmallVector<Register, 2> DstRegs; 2700 2701 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2702 Register DstReg = MI.getOperand(0).getReg(); 2703 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2704 int NumParts = Size / NarrowSize; 2705 // FIXME: Don't know how to handle the situation where the small vectors 2706 // aren't all the same size yet. 2707 if (Size % NarrowSize != 0) 2708 return UnableToLegalize; 2709 2710 for (int i = 0; i < NumParts; ++i) { 2711 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2712 MIRBuilder.buildUndef(TmpReg); 2713 DstRegs.push_back(TmpReg); 2714 } 2715 2716 if (NarrowTy.isVector()) 2717 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2718 else 2719 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2720 2721 MI.eraseFromParent(); 2722 return Legalized; 2723 } 2724 2725 // Handle splitting vector operations which need to have the same number of 2726 // elements in each type index, but each type index may have a different element 2727 // type. 2728 // 2729 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2730 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2731 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2732 // 2733 // Also handles some irregular breakdown cases, e.g. 2734 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2735 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2736 // s64 = G_SHL s64, s32 2737 LegalizerHelper::LegalizeResult 2738 LegalizerHelper::fewerElementsVectorMultiEltType( 2739 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2740 if (TypeIdx != 0) 2741 return UnableToLegalize; 2742 2743 const LLT NarrowTy0 = NarrowTyArg; 2744 const unsigned NewNumElts = 2745 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2746 2747 const Register DstReg = MI.getOperand(0).getReg(); 2748 LLT DstTy = MRI.getType(DstReg); 2749 LLT LeftoverTy0; 2750 2751 // All of the operands need to have the same number of elements, so if we can 2752 // determine a type breakdown for the result type, we can for all of the 2753 // source types. 2754 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2755 if (NumParts < 0) 2756 return UnableToLegalize; 2757 2758 SmallVector<MachineInstrBuilder, 4> NewInsts; 2759 2760 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2761 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2762 2763 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2764 Register SrcReg = MI.getOperand(I).getReg(); 2765 LLT SrcTyI = MRI.getType(SrcReg); 2766 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2767 LLT LeftoverTyI; 2768 2769 // Split this operand into the requested typed registers, and any leftover 2770 // required to reproduce the original type. 2771 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2772 LeftoverRegs)) 2773 return UnableToLegalize; 2774 2775 if (I == 1) { 2776 // For the first operand, create an instruction for each part and setup 2777 // the result. 2778 for (Register PartReg : PartRegs) { 2779 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2780 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2781 .addDef(PartDstReg) 2782 .addUse(PartReg)); 2783 DstRegs.push_back(PartDstReg); 2784 } 2785 2786 for (Register LeftoverReg : LeftoverRegs) { 2787 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2788 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2789 .addDef(PartDstReg) 2790 .addUse(LeftoverReg)); 2791 LeftoverDstRegs.push_back(PartDstReg); 2792 } 2793 } else { 2794 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2795 2796 // Add the newly created operand splits to the existing instructions. The 2797 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2798 // pieces. 2799 unsigned InstCount = 0; 2800 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2801 NewInsts[InstCount++].addUse(PartRegs[J]); 2802 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2803 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2804 } 2805 2806 PartRegs.clear(); 2807 LeftoverRegs.clear(); 2808 } 2809 2810 // Insert the newly built operations and rebuild the result register. 2811 for (auto &MIB : NewInsts) 2812 MIRBuilder.insertInstr(MIB); 2813 2814 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2815 2816 MI.eraseFromParent(); 2817 return Legalized; 2818 } 2819 2820 LegalizerHelper::LegalizeResult 2821 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2822 LLT NarrowTy) { 2823 if (TypeIdx != 0) 2824 return UnableToLegalize; 2825 2826 Register DstReg = MI.getOperand(0).getReg(); 2827 Register SrcReg = MI.getOperand(1).getReg(); 2828 LLT DstTy = MRI.getType(DstReg); 2829 LLT SrcTy = MRI.getType(SrcReg); 2830 2831 LLT NarrowTy0 = NarrowTy; 2832 LLT NarrowTy1; 2833 unsigned NumParts; 2834 2835 if (NarrowTy.isVector()) { 2836 // Uneven breakdown not handled. 2837 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2838 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2839 return UnableToLegalize; 2840 2841 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2842 } else { 2843 NumParts = DstTy.getNumElements(); 2844 NarrowTy1 = SrcTy.getElementType(); 2845 } 2846 2847 SmallVector<Register, 4> SrcRegs, DstRegs; 2848 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2849 2850 for (unsigned I = 0; I < NumParts; ++I) { 2851 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2852 MachineInstr *NewInst = 2853 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2854 2855 NewInst->setFlags(MI.getFlags()); 2856 DstRegs.push_back(DstReg); 2857 } 2858 2859 if (NarrowTy.isVector()) 2860 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2861 else 2862 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2863 2864 MI.eraseFromParent(); 2865 return Legalized; 2866 } 2867 2868 LegalizerHelper::LegalizeResult 2869 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2870 LLT NarrowTy) { 2871 Register DstReg = MI.getOperand(0).getReg(); 2872 Register Src0Reg = MI.getOperand(2).getReg(); 2873 LLT DstTy = MRI.getType(DstReg); 2874 LLT SrcTy = MRI.getType(Src0Reg); 2875 2876 unsigned NumParts; 2877 LLT NarrowTy0, NarrowTy1; 2878 2879 if (TypeIdx == 0) { 2880 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2881 unsigned OldElts = DstTy.getNumElements(); 2882 2883 NarrowTy0 = NarrowTy; 2884 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2885 NarrowTy1 = NarrowTy.isVector() ? 2886 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2887 SrcTy.getElementType(); 2888 2889 } else { 2890 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2891 unsigned OldElts = SrcTy.getNumElements(); 2892 2893 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2894 NarrowTy.getNumElements(); 2895 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2896 DstTy.getScalarSizeInBits()); 2897 NarrowTy1 = NarrowTy; 2898 } 2899 2900 // FIXME: Don't know how to handle the situation where the small vectors 2901 // aren't all the same size yet. 2902 if (NarrowTy1.isVector() && 2903 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2904 return UnableToLegalize; 2905 2906 CmpInst::Predicate Pred 2907 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2908 2909 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2910 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2911 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2912 2913 for (unsigned I = 0; I < NumParts; ++I) { 2914 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2915 DstRegs.push_back(DstReg); 2916 2917 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2918 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2919 else { 2920 MachineInstr *NewCmp 2921 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2922 NewCmp->setFlags(MI.getFlags()); 2923 } 2924 } 2925 2926 if (NarrowTy1.isVector()) 2927 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2928 else 2929 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2930 2931 MI.eraseFromParent(); 2932 return Legalized; 2933 } 2934 2935 LegalizerHelper::LegalizeResult 2936 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2937 LLT NarrowTy) { 2938 Register DstReg = MI.getOperand(0).getReg(); 2939 Register CondReg = MI.getOperand(1).getReg(); 2940 2941 unsigned NumParts = 0; 2942 LLT NarrowTy0, NarrowTy1; 2943 2944 LLT DstTy = MRI.getType(DstReg); 2945 LLT CondTy = MRI.getType(CondReg); 2946 unsigned Size = DstTy.getSizeInBits(); 2947 2948 assert(TypeIdx == 0 || CondTy.isVector()); 2949 2950 if (TypeIdx == 0) { 2951 NarrowTy0 = NarrowTy; 2952 NarrowTy1 = CondTy; 2953 2954 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2955 // FIXME: Don't know how to handle the situation where the small vectors 2956 // aren't all the same size yet. 2957 if (Size % NarrowSize != 0) 2958 return UnableToLegalize; 2959 2960 NumParts = Size / NarrowSize; 2961 2962 // Need to break down the condition type 2963 if (CondTy.isVector()) { 2964 if (CondTy.getNumElements() == NumParts) 2965 NarrowTy1 = CondTy.getElementType(); 2966 else 2967 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2968 CondTy.getScalarSizeInBits()); 2969 } 2970 } else { 2971 NumParts = CondTy.getNumElements(); 2972 if (NarrowTy.isVector()) { 2973 // TODO: Handle uneven breakdown. 2974 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2975 return UnableToLegalize; 2976 2977 return UnableToLegalize; 2978 } else { 2979 NarrowTy0 = DstTy.getElementType(); 2980 NarrowTy1 = NarrowTy; 2981 } 2982 } 2983 2984 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2985 if (CondTy.isVector()) 2986 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2987 2988 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2989 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2990 2991 for (unsigned i = 0; i < NumParts; ++i) { 2992 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2993 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2994 Src1Regs[i], Src2Regs[i]); 2995 DstRegs.push_back(DstReg); 2996 } 2997 2998 if (NarrowTy0.isVector()) 2999 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3000 else 3001 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3002 3003 MI.eraseFromParent(); 3004 return Legalized; 3005 } 3006 3007 LegalizerHelper::LegalizeResult 3008 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3009 LLT NarrowTy) { 3010 const Register DstReg = MI.getOperand(0).getReg(); 3011 LLT PhiTy = MRI.getType(DstReg); 3012 LLT LeftoverTy; 3013 3014 // All of the operands need to have the same number of elements, so if we can 3015 // determine a type breakdown for the result type, we can for all of the 3016 // source types. 3017 int NumParts, NumLeftover; 3018 std::tie(NumParts, NumLeftover) 3019 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3020 if (NumParts < 0) 3021 return UnableToLegalize; 3022 3023 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3024 SmallVector<MachineInstrBuilder, 4> NewInsts; 3025 3026 const int TotalNumParts = NumParts + NumLeftover; 3027 3028 // Insert the new phis in the result block first. 3029 for (int I = 0; I != TotalNumParts; ++I) { 3030 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3031 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3032 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3033 .addDef(PartDstReg)); 3034 if (I < NumParts) 3035 DstRegs.push_back(PartDstReg); 3036 else 3037 LeftoverDstRegs.push_back(PartDstReg); 3038 } 3039 3040 MachineBasicBlock *MBB = MI.getParent(); 3041 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3042 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3043 3044 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3045 3046 // Insert code to extract the incoming values in each predecessor block. 3047 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3048 PartRegs.clear(); 3049 LeftoverRegs.clear(); 3050 3051 Register SrcReg = MI.getOperand(I).getReg(); 3052 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3053 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3054 3055 LLT Unused; 3056 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3057 LeftoverRegs)) 3058 return UnableToLegalize; 3059 3060 // Add the newly created operand splits to the existing instructions. The 3061 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3062 // pieces. 3063 for (int J = 0; J != TotalNumParts; ++J) { 3064 MachineInstrBuilder MIB = NewInsts[J]; 3065 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3066 MIB.addMBB(&OpMBB); 3067 } 3068 } 3069 3070 MI.eraseFromParent(); 3071 return Legalized; 3072 } 3073 3074 LegalizerHelper::LegalizeResult 3075 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3076 unsigned TypeIdx, 3077 LLT NarrowTy) { 3078 if (TypeIdx != 1) 3079 return UnableToLegalize; 3080 3081 const int NumDst = MI.getNumOperands() - 1; 3082 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3083 LLT SrcTy = MRI.getType(SrcReg); 3084 3085 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3086 3087 // TODO: Create sequence of extracts. 3088 if (DstTy == NarrowTy) 3089 return UnableToLegalize; 3090 3091 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3092 if (DstTy == GCDTy) { 3093 // This would just be a copy of the same unmerge. 3094 // TODO: Create extracts, pad with undef and create intermediate merges. 3095 return UnableToLegalize; 3096 } 3097 3098 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3099 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3100 const int PartsPerUnmerge = NumDst / NumUnmerge; 3101 3102 for (int I = 0; I != NumUnmerge; ++I) { 3103 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3104 3105 for (int J = 0; J != PartsPerUnmerge; ++J) 3106 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3107 MIB.addUse(Unmerge.getReg(I)); 3108 } 3109 3110 MI.eraseFromParent(); 3111 return Legalized; 3112 } 3113 3114 LegalizerHelper::LegalizeResult 3115 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3116 unsigned TypeIdx, 3117 LLT NarrowTy) { 3118 assert(TypeIdx == 0 && "not a vector type index"); 3119 Register DstReg = MI.getOperand(0).getReg(); 3120 LLT DstTy = MRI.getType(DstReg); 3121 LLT SrcTy = DstTy.getElementType(); 3122 3123 int DstNumElts = DstTy.getNumElements(); 3124 int NarrowNumElts = NarrowTy.getNumElements(); 3125 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3126 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3127 3128 SmallVector<Register, 8> ConcatOps; 3129 SmallVector<Register, 8> SubBuildVector; 3130 3131 Register UndefReg; 3132 if (WidenedDstTy != DstTy) 3133 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3134 3135 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3136 // necessary. 3137 // 3138 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3139 // -> <2 x s16> 3140 // 3141 // %4:_(s16) = G_IMPLICIT_DEF 3142 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3143 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3144 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3145 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3146 for (int I = 0; I != NumConcat; ++I) { 3147 for (int J = 0; J != NarrowNumElts; ++J) { 3148 int SrcIdx = NarrowNumElts * I + J; 3149 3150 if (SrcIdx < DstNumElts) { 3151 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3152 SubBuildVector.push_back(SrcReg); 3153 } else 3154 SubBuildVector.push_back(UndefReg); 3155 } 3156 3157 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3158 ConcatOps.push_back(BuildVec.getReg(0)); 3159 SubBuildVector.clear(); 3160 } 3161 3162 if (DstTy == WidenedDstTy) 3163 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3164 else { 3165 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3166 MIRBuilder.buildExtract(DstReg, Concat, 0); 3167 } 3168 3169 MI.eraseFromParent(); 3170 return Legalized; 3171 } 3172 3173 LegalizerHelper::LegalizeResult 3174 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3175 LLT NarrowTy) { 3176 // FIXME: Don't know how to handle secondary types yet. 3177 if (TypeIdx != 0) 3178 return UnableToLegalize; 3179 3180 MachineMemOperand *MMO = *MI.memoperands_begin(); 3181 3182 // This implementation doesn't work for atomics. Give up instead of doing 3183 // something invalid. 3184 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3185 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3186 return UnableToLegalize; 3187 3188 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3189 Register ValReg = MI.getOperand(0).getReg(); 3190 Register AddrReg = MI.getOperand(1).getReg(); 3191 LLT ValTy = MRI.getType(ValReg); 3192 3193 // FIXME: Do we need a distinct NarrowMemory legalize action? 3194 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3195 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3196 return UnableToLegalize; 3197 } 3198 3199 int NumParts = -1; 3200 int NumLeftover = -1; 3201 LLT LeftoverTy; 3202 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3203 if (IsLoad) { 3204 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3205 } else { 3206 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3207 NarrowLeftoverRegs)) { 3208 NumParts = NarrowRegs.size(); 3209 NumLeftover = NarrowLeftoverRegs.size(); 3210 } 3211 } 3212 3213 if (NumParts == -1) 3214 return UnableToLegalize; 3215 3216 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3217 3218 unsigned TotalSize = ValTy.getSizeInBits(); 3219 3220 // Split the load/store into PartTy sized pieces starting at Offset. If this 3221 // is a load, return the new registers in ValRegs. For a store, each elements 3222 // of ValRegs should be PartTy. Returns the next offset that needs to be 3223 // handled. 3224 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3225 unsigned Offset) -> unsigned { 3226 MachineFunction &MF = MIRBuilder.getMF(); 3227 unsigned PartSize = PartTy.getSizeInBits(); 3228 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3229 Offset += PartSize, ++Idx) { 3230 unsigned ByteSize = PartSize / 8; 3231 unsigned ByteOffset = Offset / 8; 3232 Register NewAddrReg; 3233 3234 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3235 3236 MachineMemOperand *NewMMO = 3237 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3238 3239 if (IsLoad) { 3240 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3241 ValRegs.push_back(Dst); 3242 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3243 } else { 3244 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3245 } 3246 } 3247 3248 return Offset; 3249 }; 3250 3251 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3252 3253 // Handle the rest of the register if this isn't an even type breakdown. 3254 if (LeftoverTy.isValid()) 3255 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3256 3257 if (IsLoad) { 3258 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3259 LeftoverTy, NarrowLeftoverRegs); 3260 } 3261 3262 MI.eraseFromParent(); 3263 return Legalized; 3264 } 3265 3266 LegalizerHelper::LegalizeResult 3267 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3268 LLT NarrowTy) { 3269 assert(TypeIdx == 0 && "only one type index expected"); 3270 3271 const unsigned Opc = MI.getOpcode(); 3272 const int NumOps = MI.getNumOperands() - 1; 3273 const Register DstReg = MI.getOperand(0).getReg(); 3274 const unsigned Flags = MI.getFlags(); 3275 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3276 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3277 3278 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3279 3280 // First of all check whether we are narrowing (changing the element type) 3281 // or reducing the vector elements 3282 const LLT DstTy = MRI.getType(DstReg); 3283 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3284 3285 SmallVector<Register, 8> ExtractedRegs[3]; 3286 SmallVector<Register, 8> Parts; 3287 3288 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3289 3290 // Break down all the sources into NarrowTy pieces we can operate on. This may 3291 // involve creating merges to a wider type, padded with undef. 3292 for (int I = 0; I != NumOps; ++I) { 3293 Register SrcReg = MI.getOperand(I + 1).getReg(); 3294 LLT SrcTy = MRI.getType(SrcReg); 3295 3296 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3297 // For fewerElements, this is a smaller vector with the same element type. 3298 LLT OpNarrowTy; 3299 if (IsNarrow) { 3300 OpNarrowTy = NarrowScalarTy; 3301 3302 // In case of narrowing, we need to cast vectors to scalars for this to 3303 // work properly 3304 // FIXME: Can we do without the bitcast here if we're narrowing? 3305 if (SrcTy.isVector()) { 3306 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3307 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3308 } 3309 } else { 3310 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3311 } 3312 3313 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3314 3315 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3316 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3317 TargetOpcode::G_ANYEXT); 3318 } 3319 3320 SmallVector<Register, 8> ResultRegs; 3321 3322 // Input operands for each sub-instruction. 3323 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3324 3325 int NumParts = ExtractedRegs[0].size(); 3326 const unsigned DstSize = DstTy.getSizeInBits(); 3327 const LLT DstScalarTy = LLT::scalar(DstSize); 3328 3329 // Narrowing needs to use scalar types 3330 LLT DstLCMTy, NarrowDstTy; 3331 if (IsNarrow) { 3332 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3333 NarrowDstTy = NarrowScalarTy; 3334 } else { 3335 DstLCMTy = getLCMType(DstTy, NarrowTy); 3336 NarrowDstTy = NarrowTy; 3337 } 3338 3339 // We widened the source registers to satisfy merge/unmerge size 3340 // constraints. We'll have some extra fully undef parts. 3341 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3342 3343 for (int I = 0; I != NumRealParts; ++I) { 3344 // Emit this instruction on each of the split pieces. 3345 for (int J = 0; J != NumOps; ++J) 3346 InputRegs[J] = ExtractedRegs[J][I]; 3347 3348 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3349 ResultRegs.push_back(Inst.getReg(0)); 3350 } 3351 3352 // Fill out the widened result with undef instead of creating instructions 3353 // with undef inputs. 3354 int NumUndefParts = NumParts - NumRealParts; 3355 if (NumUndefParts != 0) 3356 ResultRegs.append(NumUndefParts, 3357 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3358 3359 // Extract the possibly padded result. Use a scratch register if we need to do 3360 // a final bitcast, otherwise use the original result register. 3361 Register MergeDstReg; 3362 if (IsNarrow && DstTy.isVector()) 3363 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3364 else 3365 MergeDstReg = DstReg; 3366 3367 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3368 3369 // Recast to vector if we narrowed a vector 3370 if (IsNarrow && DstTy.isVector()) 3371 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3372 3373 MI.eraseFromParent(); 3374 return Legalized; 3375 } 3376 3377 LegalizerHelper::LegalizeResult 3378 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3379 LLT NarrowTy) { 3380 Register DstReg = MI.getOperand(0).getReg(); 3381 Register SrcReg = MI.getOperand(1).getReg(); 3382 int64_t Imm = MI.getOperand(2).getImm(); 3383 3384 LLT DstTy = MRI.getType(DstReg); 3385 3386 SmallVector<Register, 8> Parts; 3387 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3388 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3389 3390 for (Register &R : Parts) 3391 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3392 3393 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3394 3395 MI.eraseFromParent(); 3396 return Legalized; 3397 } 3398 3399 LegalizerHelper::LegalizeResult 3400 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3401 LLT NarrowTy) { 3402 using namespace TargetOpcode; 3403 3404 switch (MI.getOpcode()) { 3405 case G_IMPLICIT_DEF: 3406 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3407 case G_TRUNC: 3408 case G_AND: 3409 case G_OR: 3410 case G_XOR: 3411 case G_ADD: 3412 case G_SUB: 3413 case G_MUL: 3414 case G_SMULH: 3415 case G_UMULH: 3416 case G_FADD: 3417 case G_FMUL: 3418 case G_FSUB: 3419 case G_FNEG: 3420 case G_FABS: 3421 case G_FCANONICALIZE: 3422 case G_FDIV: 3423 case G_FREM: 3424 case G_FMA: 3425 case G_FMAD: 3426 case G_FPOW: 3427 case G_FEXP: 3428 case G_FEXP2: 3429 case G_FLOG: 3430 case G_FLOG2: 3431 case G_FLOG10: 3432 case G_FNEARBYINT: 3433 case G_FCEIL: 3434 case G_FFLOOR: 3435 case G_FRINT: 3436 case G_INTRINSIC_ROUND: 3437 case G_INTRINSIC_TRUNC: 3438 case G_FCOS: 3439 case G_FSIN: 3440 case G_FSQRT: 3441 case G_BSWAP: 3442 case G_BITREVERSE: 3443 case G_SDIV: 3444 case G_UDIV: 3445 case G_SREM: 3446 case G_UREM: 3447 case G_SMIN: 3448 case G_SMAX: 3449 case G_UMIN: 3450 case G_UMAX: 3451 case G_FMINNUM: 3452 case G_FMAXNUM: 3453 case G_FMINNUM_IEEE: 3454 case G_FMAXNUM_IEEE: 3455 case G_FMINIMUM: 3456 case G_FMAXIMUM: 3457 case G_FSHL: 3458 case G_FSHR: 3459 case G_FREEZE: 3460 case G_SADDSAT: 3461 case G_SSUBSAT: 3462 case G_UADDSAT: 3463 case G_USUBSAT: 3464 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 3465 case G_SHL: 3466 case G_LSHR: 3467 case G_ASHR: 3468 case G_CTLZ: 3469 case G_CTLZ_ZERO_UNDEF: 3470 case G_CTTZ: 3471 case G_CTTZ_ZERO_UNDEF: 3472 case G_CTPOP: 3473 case G_FCOPYSIGN: 3474 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3475 case G_ZEXT: 3476 case G_SEXT: 3477 case G_ANYEXT: 3478 case G_FPEXT: 3479 case G_FPTRUNC: 3480 case G_SITOFP: 3481 case G_UITOFP: 3482 case G_FPTOSI: 3483 case G_FPTOUI: 3484 case G_INTTOPTR: 3485 case G_PTRTOINT: 3486 case G_ADDRSPACE_CAST: 3487 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3488 case G_ICMP: 3489 case G_FCMP: 3490 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3491 case G_SELECT: 3492 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3493 case G_PHI: 3494 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3495 case G_UNMERGE_VALUES: 3496 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3497 case G_BUILD_VECTOR: 3498 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3499 case G_LOAD: 3500 case G_STORE: 3501 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3502 case G_SEXT_INREG: 3503 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3504 default: 3505 return UnableToLegalize; 3506 } 3507 } 3508 3509 LegalizerHelper::LegalizeResult 3510 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3511 const LLT HalfTy, const LLT AmtTy) { 3512 3513 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3514 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3515 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3516 3517 if (Amt.isNullValue()) { 3518 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3519 MI.eraseFromParent(); 3520 return Legalized; 3521 } 3522 3523 LLT NVT = HalfTy; 3524 unsigned NVTBits = HalfTy.getSizeInBits(); 3525 unsigned VTBits = 2 * NVTBits; 3526 3527 SrcOp Lo(Register(0)), Hi(Register(0)); 3528 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3529 if (Amt.ugt(VTBits)) { 3530 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3531 } else if (Amt.ugt(NVTBits)) { 3532 Lo = MIRBuilder.buildConstant(NVT, 0); 3533 Hi = MIRBuilder.buildShl(NVT, InL, 3534 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3535 } else if (Amt == NVTBits) { 3536 Lo = MIRBuilder.buildConstant(NVT, 0); 3537 Hi = InL; 3538 } else { 3539 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3540 auto OrLHS = 3541 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3542 auto OrRHS = MIRBuilder.buildLShr( 3543 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3544 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3545 } 3546 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3547 if (Amt.ugt(VTBits)) { 3548 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3549 } else if (Amt.ugt(NVTBits)) { 3550 Lo = MIRBuilder.buildLShr(NVT, InH, 3551 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3552 Hi = MIRBuilder.buildConstant(NVT, 0); 3553 } else if (Amt == NVTBits) { 3554 Lo = InH; 3555 Hi = MIRBuilder.buildConstant(NVT, 0); 3556 } else { 3557 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3558 3559 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3560 auto OrRHS = MIRBuilder.buildShl( 3561 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3562 3563 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3564 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3565 } 3566 } else { 3567 if (Amt.ugt(VTBits)) { 3568 Hi = Lo = MIRBuilder.buildAShr( 3569 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3570 } else if (Amt.ugt(NVTBits)) { 3571 Lo = MIRBuilder.buildAShr(NVT, InH, 3572 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3573 Hi = MIRBuilder.buildAShr(NVT, InH, 3574 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3575 } else if (Amt == NVTBits) { 3576 Lo = InH; 3577 Hi = MIRBuilder.buildAShr(NVT, InH, 3578 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3579 } else { 3580 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3581 3582 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3583 auto OrRHS = MIRBuilder.buildShl( 3584 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3585 3586 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3587 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3588 } 3589 } 3590 3591 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3592 MI.eraseFromParent(); 3593 3594 return Legalized; 3595 } 3596 3597 // TODO: Optimize if constant shift amount. 3598 LegalizerHelper::LegalizeResult 3599 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3600 LLT RequestedTy) { 3601 if (TypeIdx == 1) { 3602 Observer.changingInstr(MI); 3603 narrowScalarSrc(MI, RequestedTy, 2); 3604 Observer.changedInstr(MI); 3605 return Legalized; 3606 } 3607 3608 Register DstReg = MI.getOperand(0).getReg(); 3609 LLT DstTy = MRI.getType(DstReg); 3610 if (DstTy.isVector()) 3611 return UnableToLegalize; 3612 3613 Register Amt = MI.getOperand(2).getReg(); 3614 LLT ShiftAmtTy = MRI.getType(Amt); 3615 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3616 if (DstEltSize % 2 != 0) 3617 return UnableToLegalize; 3618 3619 // Ignore the input type. We can only go to exactly half the size of the 3620 // input. If that isn't small enough, the resulting pieces will be further 3621 // legalized. 3622 const unsigned NewBitSize = DstEltSize / 2; 3623 const LLT HalfTy = LLT::scalar(NewBitSize); 3624 const LLT CondTy = LLT::scalar(1); 3625 3626 if (const MachineInstr *KShiftAmt = 3627 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3628 return narrowScalarShiftByConstant( 3629 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3630 } 3631 3632 // TODO: Expand with known bits. 3633 3634 // Handle the fully general expansion by an unknown amount. 3635 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3636 3637 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3638 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3639 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3640 3641 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3642 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3643 3644 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3645 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3646 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3647 3648 Register ResultRegs[2]; 3649 switch (MI.getOpcode()) { 3650 case TargetOpcode::G_SHL: { 3651 // Short: ShAmt < NewBitSize 3652 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3653 3654 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3655 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3656 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3657 3658 // Long: ShAmt >= NewBitSize 3659 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3660 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3661 3662 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3663 auto Hi = MIRBuilder.buildSelect( 3664 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3665 3666 ResultRegs[0] = Lo.getReg(0); 3667 ResultRegs[1] = Hi.getReg(0); 3668 break; 3669 } 3670 case TargetOpcode::G_LSHR: 3671 case TargetOpcode::G_ASHR: { 3672 // Short: ShAmt < NewBitSize 3673 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3674 3675 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3676 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3677 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3678 3679 // Long: ShAmt >= NewBitSize 3680 MachineInstrBuilder HiL; 3681 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3682 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3683 } else { 3684 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3685 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3686 } 3687 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3688 {InH, AmtExcess}); // Lo from Hi part. 3689 3690 auto Lo = MIRBuilder.buildSelect( 3691 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3692 3693 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3694 3695 ResultRegs[0] = Lo.getReg(0); 3696 ResultRegs[1] = Hi.getReg(0); 3697 break; 3698 } 3699 default: 3700 llvm_unreachable("not a shift"); 3701 } 3702 3703 MIRBuilder.buildMerge(DstReg, ResultRegs); 3704 MI.eraseFromParent(); 3705 return Legalized; 3706 } 3707 3708 LegalizerHelper::LegalizeResult 3709 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3710 LLT MoreTy) { 3711 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3712 3713 Observer.changingInstr(MI); 3714 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3715 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3716 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3717 moreElementsVectorSrc(MI, MoreTy, I); 3718 } 3719 3720 MachineBasicBlock &MBB = *MI.getParent(); 3721 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3722 moreElementsVectorDst(MI, MoreTy, 0); 3723 Observer.changedInstr(MI); 3724 return Legalized; 3725 } 3726 3727 LegalizerHelper::LegalizeResult 3728 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3729 LLT MoreTy) { 3730 unsigned Opc = MI.getOpcode(); 3731 switch (Opc) { 3732 case TargetOpcode::G_IMPLICIT_DEF: 3733 case TargetOpcode::G_LOAD: { 3734 if (TypeIdx != 0) 3735 return UnableToLegalize; 3736 Observer.changingInstr(MI); 3737 moreElementsVectorDst(MI, MoreTy, 0); 3738 Observer.changedInstr(MI); 3739 return Legalized; 3740 } 3741 case TargetOpcode::G_STORE: 3742 if (TypeIdx != 0) 3743 return UnableToLegalize; 3744 Observer.changingInstr(MI); 3745 moreElementsVectorSrc(MI, MoreTy, 0); 3746 Observer.changedInstr(MI); 3747 return Legalized; 3748 case TargetOpcode::G_AND: 3749 case TargetOpcode::G_OR: 3750 case TargetOpcode::G_XOR: 3751 case TargetOpcode::G_SMIN: 3752 case TargetOpcode::G_SMAX: 3753 case TargetOpcode::G_UMIN: 3754 case TargetOpcode::G_UMAX: 3755 case TargetOpcode::G_FMINNUM: 3756 case TargetOpcode::G_FMAXNUM: 3757 case TargetOpcode::G_FMINNUM_IEEE: 3758 case TargetOpcode::G_FMAXNUM_IEEE: 3759 case TargetOpcode::G_FMINIMUM: 3760 case TargetOpcode::G_FMAXIMUM: { 3761 Observer.changingInstr(MI); 3762 moreElementsVectorSrc(MI, MoreTy, 1); 3763 moreElementsVectorSrc(MI, MoreTy, 2); 3764 moreElementsVectorDst(MI, MoreTy, 0); 3765 Observer.changedInstr(MI); 3766 return Legalized; 3767 } 3768 case TargetOpcode::G_EXTRACT: 3769 if (TypeIdx != 1) 3770 return UnableToLegalize; 3771 Observer.changingInstr(MI); 3772 moreElementsVectorSrc(MI, MoreTy, 1); 3773 Observer.changedInstr(MI); 3774 return Legalized; 3775 case TargetOpcode::G_INSERT: 3776 case TargetOpcode::G_FREEZE: 3777 if (TypeIdx != 0) 3778 return UnableToLegalize; 3779 Observer.changingInstr(MI); 3780 moreElementsVectorSrc(MI, MoreTy, 1); 3781 moreElementsVectorDst(MI, MoreTy, 0); 3782 Observer.changedInstr(MI); 3783 return Legalized; 3784 case TargetOpcode::G_SELECT: 3785 if (TypeIdx != 0) 3786 return UnableToLegalize; 3787 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3788 return UnableToLegalize; 3789 3790 Observer.changingInstr(MI); 3791 moreElementsVectorSrc(MI, MoreTy, 2); 3792 moreElementsVectorSrc(MI, MoreTy, 3); 3793 moreElementsVectorDst(MI, MoreTy, 0); 3794 Observer.changedInstr(MI); 3795 return Legalized; 3796 case TargetOpcode::G_UNMERGE_VALUES: { 3797 if (TypeIdx != 1) 3798 return UnableToLegalize; 3799 3800 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3801 int NumDst = MI.getNumOperands() - 1; 3802 moreElementsVectorSrc(MI, MoreTy, NumDst); 3803 3804 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3805 for (int I = 0; I != NumDst; ++I) 3806 MIB.addDef(MI.getOperand(I).getReg()); 3807 3808 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3809 for (int I = NumDst; I != NewNumDst; ++I) 3810 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3811 3812 MIB.addUse(MI.getOperand(NumDst).getReg()); 3813 MI.eraseFromParent(); 3814 return Legalized; 3815 } 3816 case TargetOpcode::G_PHI: 3817 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3818 default: 3819 return UnableToLegalize; 3820 } 3821 } 3822 3823 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3824 ArrayRef<Register> Src1Regs, 3825 ArrayRef<Register> Src2Regs, 3826 LLT NarrowTy) { 3827 MachineIRBuilder &B = MIRBuilder; 3828 unsigned SrcParts = Src1Regs.size(); 3829 unsigned DstParts = DstRegs.size(); 3830 3831 unsigned DstIdx = 0; // Low bits of the result. 3832 Register FactorSum = 3833 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3834 DstRegs[DstIdx] = FactorSum; 3835 3836 unsigned CarrySumPrevDstIdx; 3837 SmallVector<Register, 4> Factors; 3838 3839 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3840 // Collect low parts of muls for DstIdx. 3841 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3842 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3843 MachineInstrBuilder Mul = 3844 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3845 Factors.push_back(Mul.getReg(0)); 3846 } 3847 // Collect high parts of muls from previous DstIdx. 3848 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3849 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3850 MachineInstrBuilder Umulh = 3851 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3852 Factors.push_back(Umulh.getReg(0)); 3853 } 3854 // Add CarrySum from additions calculated for previous DstIdx. 3855 if (DstIdx != 1) { 3856 Factors.push_back(CarrySumPrevDstIdx); 3857 } 3858 3859 Register CarrySum; 3860 // Add all factors and accumulate all carries into CarrySum. 3861 if (DstIdx != DstParts - 1) { 3862 MachineInstrBuilder Uaddo = 3863 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3864 FactorSum = Uaddo.getReg(0); 3865 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3866 for (unsigned i = 2; i < Factors.size(); ++i) { 3867 MachineInstrBuilder Uaddo = 3868 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3869 FactorSum = Uaddo.getReg(0); 3870 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3871 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3872 } 3873 } else { 3874 // Since value for the next index is not calculated, neither is CarrySum. 3875 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3876 for (unsigned i = 2; i < Factors.size(); ++i) 3877 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3878 } 3879 3880 CarrySumPrevDstIdx = CarrySum; 3881 DstRegs[DstIdx] = FactorSum; 3882 Factors.clear(); 3883 } 3884 } 3885 3886 LegalizerHelper::LegalizeResult 3887 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3888 Register DstReg = MI.getOperand(0).getReg(); 3889 Register Src1 = MI.getOperand(1).getReg(); 3890 Register Src2 = MI.getOperand(2).getReg(); 3891 3892 LLT Ty = MRI.getType(DstReg); 3893 if (Ty.isVector()) 3894 return UnableToLegalize; 3895 3896 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3897 unsigned DstSize = Ty.getSizeInBits(); 3898 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3899 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3900 return UnableToLegalize; 3901 3902 unsigned NumDstParts = DstSize / NarrowSize; 3903 unsigned NumSrcParts = SrcSize / NarrowSize; 3904 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3905 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3906 3907 SmallVector<Register, 2> Src1Parts, Src2Parts; 3908 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3909 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3910 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3911 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3912 3913 // Take only high half of registers if this is high mul. 3914 ArrayRef<Register> DstRegs( 3915 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3916 MIRBuilder.buildMerge(DstReg, DstRegs); 3917 MI.eraseFromParent(); 3918 return Legalized; 3919 } 3920 3921 LegalizerHelper::LegalizeResult 3922 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3923 LLT NarrowTy) { 3924 if (TypeIdx != 1) 3925 return UnableToLegalize; 3926 3927 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3928 3929 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3930 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3931 // NarrowSize. 3932 if (SizeOp1 % NarrowSize != 0) 3933 return UnableToLegalize; 3934 int NumParts = SizeOp1 / NarrowSize; 3935 3936 SmallVector<Register, 2> SrcRegs, DstRegs; 3937 SmallVector<uint64_t, 2> Indexes; 3938 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3939 3940 Register OpReg = MI.getOperand(0).getReg(); 3941 uint64_t OpStart = MI.getOperand(2).getImm(); 3942 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3943 for (int i = 0; i < NumParts; ++i) { 3944 unsigned SrcStart = i * NarrowSize; 3945 3946 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3947 // No part of the extract uses this subregister, ignore it. 3948 continue; 3949 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3950 // The entire subregister is extracted, forward the value. 3951 DstRegs.push_back(SrcRegs[i]); 3952 continue; 3953 } 3954 3955 // OpSegStart is where this destination segment would start in OpReg if it 3956 // extended infinitely in both directions. 3957 int64_t ExtractOffset; 3958 uint64_t SegSize; 3959 if (OpStart < SrcStart) { 3960 ExtractOffset = 0; 3961 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3962 } else { 3963 ExtractOffset = OpStart - SrcStart; 3964 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3965 } 3966 3967 Register SegReg = SrcRegs[i]; 3968 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3969 // A genuine extract is needed. 3970 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3971 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3972 } 3973 3974 DstRegs.push_back(SegReg); 3975 } 3976 3977 Register DstReg = MI.getOperand(0).getReg(); 3978 if (MRI.getType(DstReg).isVector()) 3979 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3980 else if (DstRegs.size() > 1) 3981 MIRBuilder.buildMerge(DstReg, DstRegs); 3982 else 3983 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 3984 MI.eraseFromParent(); 3985 return Legalized; 3986 } 3987 3988 LegalizerHelper::LegalizeResult 3989 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3990 LLT NarrowTy) { 3991 // FIXME: Don't know how to handle secondary types yet. 3992 if (TypeIdx != 0) 3993 return UnableToLegalize; 3994 3995 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3996 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3997 3998 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3999 // NarrowSize. 4000 if (SizeOp0 % NarrowSize != 0) 4001 return UnableToLegalize; 4002 4003 int NumParts = SizeOp0 / NarrowSize; 4004 4005 SmallVector<Register, 2> SrcRegs, DstRegs; 4006 SmallVector<uint64_t, 2> Indexes; 4007 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4008 4009 Register OpReg = MI.getOperand(2).getReg(); 4010 uint64_t OpStart = MI.getOperand(3).getImm(); 4011 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4012 for (int i = 0; i < NumParts; ++i) { 4013 unsigned DstStart = i * NarrowSize; 4014 4015 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4016 // No part of the insert affects this subregister, forward the original. 4017 DstRegs.push_back(SrcRegs[i]); 4018 continue; 4019 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4020 // The entire subregister is defined by this insert, forward the new 4021 // value. 4022 DstRegs.push_back(OpReg); 4023 continue; 4024 } 4025 4026 // OpSegStart is where this destination segment would start in OpReg if it 4027 // extended infinitely in both directions. 4028 int64_t ExtractOffset, InsertOffset; 4029 uint64_t SegSize; 4030 if (OpStart < DstStart) { 4031 InsertOffset = 0; 4032 ExtractOffset = DstStart - OpStart; 4033 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4034 } else { 4035 InsertOffset = OpStart - DstStart; 4036 ExtractOffset = 0; 4037 SegSize = 4038 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4039 } 4040 4041 Register SegReg = OpReg; 4042 if (ExtractOffset != 0 || SegSize != OpSize) { 4043 // A genuine extract is needed. 4044 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4045 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4046 } 4047 4048 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4049 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4050 DstRegs.push_back(DstReg); 4051 } 4052 4053 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4054 Register DstReg = MI.getOperand(0).getReg(); 4055 if(MRI.getType(DstReg).isVector()) 4056 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4057 else 4058 MIRBuilder.buildMerge(DstReg, DstRegs); 4059 MI.eraseFromParent(); 4060 return Legalized; 4061 } 4062 4063 LegalizerHelper::LegalizeResult 4064 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4065 LLT NarrowTy) { 4066 Register DstReg = MI.getOperand(0).getReg(); 4067 LLT DstTy = MRI.getType(DstReg); 4068 4069 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4070 4071 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4072 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4073 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4074 LLT LeftoverTy; 4075 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4076 Src0Regs, Src0LeftoverRegs)) 4077 return UnableToLegalize; 4078 4079 LLT Unused; 4080 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4081 Src1Regs, Src1LeftoverRegs)) 4082 llvm_unreachable("inconsistent extractParts result"); 4083 4084 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4085 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4086 {Src0Regs[I], Src1Regs[I]}); 4087 DstRegs.push_back(Inst.getReg(0)); 4088 } 4089 4090 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4091 auto Inst = MIRBuilder.buildInstr( 4092 MI.getOpcode(), 4093 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4094 DstLeftoverRegs.push_back(Inst.getReg(0)); 4095 } 4096 4097 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4098 LeftoverTy, DstLeftoverRegs); 4099 4100 MI.eraseFromParent(); 4101 return Legalized; 4102 } 4103 4104 LegalizerHelper::LegalizeResult 4105 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4106 LLT NarrowTy) { 4107 if (TypeIdx != 0) 4108 return UnableToLegalize; 4109 4110 Register DstReg = MI.getOperand(0).getReg(); 4111 Register SrcReg = MI.getOperand(1).getReg(); 4112 4113 LLT DstTy = MRI.getType(DstReg); 4114 if (DstTy.isVector()) 4115 return UnableToLegalize; 4116 4117 SmallVector<Register, 8> Parts; 4118 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4119 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4120 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4121 4122 MI.eraseFromParent(); 4123 return Legalized; 4124 } 4125 4126 LegalizerHelper::LegalizeResult 4127 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4128 LLT NarrowTy) { 4129 if (TypeIdx != 0) 4130 return UnableToLegalize; 4131 4132 Register CondReg = MI.getOperand(1).getReg(); 4133 LLT CondTy = MRI.getType(CondReg); 4134 if (CondTy.isVector()) // TODO: Handle vselect 4135 return UnableToLegalize; 4136 4137 Register DstReg = MI.getOperand(0).getReg(); 4138 LLT DstTy = MRI.getType(DstReg); 4139 4140 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4141 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4142 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4143 LLT LeftoverTy; 4144 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4145 Src1Regs, Src1LeftoverRegs)) 4146 return UnableToLegalize; 4147 4148 LLT Unused; 4149 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4150 Src2Regs, Src2LeftoverRegs)) 4151 llvm_unreachable("inconsistent extractParts result"); 4152 4153 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4154 auto Select = MIRBuilder.buildSelect(NarrowTy, 4155 CondReg, Src1Regs[I], Src2Regs[I]); 4156 DstRegs.push_back(Select.getReg(0)); 4157 } 4158 4159 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4160 auto Select = MIRBuilder.buildSelect( 4161 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4162 DstLeftoverRegs.push_back(Select.getReg(0)); 4163 } 4164 4165 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4166 LeftoverTy, DstLeftoverRegs); 4167 4168 MI.eraseFromParent(); 4169 return Legalized; 4170 } 4171 4172 LegalizerHelper::LegalizeResult 4173 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4174 LLT NarrowTy) { 4175 if (TypeIdx != 1) 4176 return UnableToLegalize; 4177 4178 Register DstReg = MI.getOperand(0).getReg(); 4179 Register SrcReg = MI.getOperand(1).getReg(); 4180 LLT DstTy = MRI.getType(DstReg); 4181 LLT SrcTy = MRI.getType(SrcReg); 4182 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4183 4184 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4185 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4186 4187 MachineIRBuilder &B = MIRBuilder; 4188 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4189 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4190 auto C_0 = B.buildConstant(NarrowTy, 0); 4191 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4192 UnmergeSrc.getReg(1), C_0); 4193 auto LoCTLZ = IsUndef ? 4194 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4195 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4196 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4197 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4198 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4199 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4200 4201 MI.eraseFromParent(); 4202 return Legalized; 4203 } 4204 4205 return UnableToLegalize; 4206 } 4207 4208 LegalizerHelper::LegalizeResult 4209 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4210 LLT NarrowTy) { 4211 if (TypeIdx != 1) 4212 return UnableToLegalize; 4213 4214 Register DstReg = MI.getOperand(0).getReg(); 4215 Register SrcReg = MI.getOperand(1).getReg(); 4216 LLT DstTy = MRI.getType(DstReg); 4217 LLT SrcTy = MRI.getType(SrcReg); 4218 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4219 4220 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4221 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4222 4223 MachineIRBuilder &B = MIRBuilder; 4224 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4225 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4226 auto C_0 = B.buildConstant(NarrowTy, 0); 4227 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4228 UnmergeSrc.getReg(0), C_0); 4229 auto HiCTTZ = IsUndef ? 4230 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4231 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4232 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4233 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4234 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4235 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4236 4237 MI.eraseFromParent(); 4238 return Legalized; 4239 } 4240 4241 return UnableToLegalize; 4242 } 4243 4244 LegalizerHelper::LegalizeResult 4245 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4246 LLT NarrowTy) { 4247 if (TypeIdx != 1) 4248 return UnableToLegalize; 4249 4250 Register DstReg = MI.getOperand(0).getReg(); 4251 LLT DstTy = MRI.getType(DstReg); 4252 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4253 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4254 4255 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4256 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4257 4258 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4259 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4260 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4261 4262 MI.eraseFromParent(); 4263 return Legalized; 4264 } 4265 4266 return UnableToLegalize; 4267 } 4268 4269 LegalizerHelper::LegalizeResult 4270 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4271 unsigned Opc = MI.getOpcode(); 4272 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4273 auto isSupported = [this](const LegalityQuery &Q) { 4274 auto QAction = LI.getAction(Q).Action; 4275 return QAction == Legal || QAction == Libcall || QAction == Custom; 4276 }; 4277 switch (Opc) { 4278 default: 4279 return UnableToLegalize; 4280 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4281 // This trivially expands to CTLZ. 4282 Observer.changingInstr(MI); 4283 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4284 Observer.changedInstr(MI); 4285 return Legalized; 4286 } 4287 case TargetOpcode::G_CTLZ: { 4288 Register DstReg = MI.getOperand(0).getReg(); 4289 Register SrcReg = MI.getOperand(1).getReg(); 4290 LLT DstTy = MRI.getType(DstReg); 4291 LLT SrcTy = MRI.getType(SrcReg); 4292 unsigned Len = SrcTy.getSizeInBits(); 4293 4294 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4295 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4296 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4297 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4298 auto ICmp = MIRBuilder.buildICmp( 4299 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4300 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4301 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4302 MI.eraseFromParent(); 4303 return Legalized; 4304 } 4305 // for now, we do this: 4306 // NewLen = NextPowerOf2(Len); 4307 // x = x | (x >> 1); 4308 // x = x | (x >> 2); 4309 // ... 4310 // x = x | (x >>16); 4311 // x = x | (x >>32); // for 64-bit input 4312 // Upto NewLen/2 4313 // return Len - popcount(x); 4314 // 4315 // Ref: "Hacker's Delight" by Henry Warren 4316 Register Op = SrcReg; 4317 unsigned NewLen = PowerOf2Ceil(Len); 4318 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4319 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4320 auto MIBOp = MIRBuilder.buildOr( 4321 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4322 Op = MIBOp.getReg(0); 4323 } 4324 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4325 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4326 MIBPop); 4327 MI.eraseFromParent(); 4328 return Legalized; 4329 } 4330 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4331 // This trivially expands to CTTZ. 4332 Observer.changingInstr(MI); 4333 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4334 Observer.changedInstr(MI); 4335 return Legalized; 4336 } 4337 case TargetOpcode::G_CTTZ: { 4338 Register DstReg = MI.getOperand(0).getReg(); 4339 Register SrcReg = MI.getOperand(1).getReg(); 4340 LLT DstTy = MRI.getType(DstReg); 4341 LLT SrcTy = MRI.getType(SrcReg); 4342 4343 unsigned Len = SrcTy.getSizeInBits(); 4344 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4345 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4346 // zero. 4347 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4348 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4349 auto ICmp = MIRBuilder.buildICmp( 4350 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4351 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4352 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4353 MI.eraseFromParent(); 4354 return Legalized; 4355 } 4356 // for now, we use: { return popcount(~x & (x - 1)); } 4357 // unless the target has ctlz but not ctpop, in which case we use: 4358 // { return 32 - nlz(~x & (x-1)); } 4359 // Ref: "Hacker's Delight" by Henry Warren 4360 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4361 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4362 auto MIBTmp = MIRBuilder.buildAnd( 4363 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4364 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4365 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4366 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4367 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4368 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4369 MI.eraseFromParent(); 4370 return Legalized; 4371 } 4372 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4373 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4374 return Legalized; 4375 } 4376 case TargetOpcode::G_CTPOP: { 4377 unsigned Size = Ty.getSizeInBits(); 4378 MachineIRBuilder &B = MIRBuilder; 4379 4380 // Count set bits in blocks of 2 bits. Default approach would be 4381 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4382 // We use following formula instead: 4383 // B2Count = val - { (val >> 1) & 0x55555555 } 4384 // since it gives same result in blocks of 2 with one instruction less. 4385 auto C_1 = B.buildConstant(Ty, 1); 4386 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4387 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4388 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4389 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4390 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4391 4392 // In order to get count in blocks of 4 add values from adjacent block of 2. 4393 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4394 auto C_2 = B.buildConstant(Ty, 2); 4395 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4396 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4397 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4398 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4399 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4400 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4401 4402 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4403 // addition since count value sits in range {0,...,8} and 4 bits are enough 4404 // to hold such binary values. After addition high 4 bits still hold count 4405 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4406 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4407 auto C_4 = B.buildConstant(Ty, 4); 4408 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4409 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4410 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4411 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4412 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4413 4414 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4415 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4416 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4417 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4418 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4419 4420 // Shift count result from 8 high bits to low bits. 4421 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4422 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4423 4424 MI.eraseFromParent(); 4425 return Legalized; 4426 } 4427 } 4428 } 4429 4430 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4431 // representation. 4432 LegalizerHelper::LegalizeResult 4433 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4434 Register Dst = MI.getOperand(0).getReg(); 4435 Register Src = MI.getOperand(1).getReg(); 4436 const LLT S64 = LLT::scalar(64); 4437 const LLT S32 = LLT::scalar(32); 4438 const LLT S1 = LLT::scalar(1); 4439 4440 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4441 4442 // unsigned cul2f(ulong u) { 4443 // uint lz = clz(u); 4444 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4445 // u = (u << lz) & 0x7fffffffffffffffUL; 4446 // ulong t = u & 0xffffffffffUL; 4447 // uint v = (e << 23) | (uint)(u >> 40); 4448 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4449 // return as_float(v + r); 4450 // } 4451 4452 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4453 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4454 4455 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4456 4457 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4458 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4459 4460 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4461 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4462 4463 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4464 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4465 4466 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4467 4468 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4469 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4470 4471 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4472 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4473 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4474 4475 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4476 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4477 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4478 auto One = MIRBuilder.buildConstant(S32, 1); 4479 4480 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4481 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4482 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4483 MIRBuilder.buildAdd(Dst, V, R); 4484 4485 MI.eraseFromParent(); 4486 return Legalized; 4487 } 4488 4489 LegalizerHelper::LegalizeResult 4490 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4491 Register Dst = MI.getOperand(0).getReg(); 4492 Register Src = MI.getOperand(1).getReg(); 4493 LLT DstTy = MRI.getType(Dst); 4494 LLT SrcTy = MRI.getType(Src); 4495 4496 if (SrcTy == LLT::scalar(1)) { 4497 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4498 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4499 MIRBuilder.buildSelect(Dst, Src, True, False); 4500 MI.eraseFromParent(); 4501 return Legalized; 4502 } 4503 4504 if (SrcTy != LLT::scalar(64)) 4505 return UnableToLegalize; 4506 4507 if (DstTy == LLT::scalar(32)) { 4508 // TODO: SelectionDAG has several alternative expansions to port which may 4509 // be more reasonble depending on the available instructions. If a target 4510 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4511 // intermediate type, this is probably worse. 4512 return lowerU64ToF32BitOps(MI); 4513 } 4514 4515 return UnableToLegalize; 4516 } 4517 4518 LegalizerHelper::LegalizeResult 4519 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4520 Register Dst = MI.getOperand(0).getReg(); 4521 Register Src = MI.getOperand(1).getReg(); 4522 LLT DstTy = MRI.getType(Dst); 4523 LLT SrcTy = MRI.getType(Src); 4524 4525 const LLT S64 = LLT::scalar(64); 4526 const LLT S32 = LLT::scalar(32); 4527 const LLT S1 = LLT::scalar(1); 4528 4529 if (SrcTy == S1) { 4530 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4531 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4532 MIRBuilder.buildSelect(Dst, Src, True, False); 4533 MI.eraseFromParent(); 4534 return Legalized; 4535 } 4536 4537 if (SrcTy != S64) 4538 return UnableToLegalize; 4539 4540 if (DstTy == S32) { 4541 // signed cl2f(long l) { 4542 // long s = l >> 63; 4543 // float r = cul2f((l + s) ^ s); 4544 // return s ? -r : r; 4545 // } 4546 Register L = Src; 4547 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4548 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4549 4550 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4551 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4552 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4553 4554 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4555 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4556 MIRBuilder.buildConstant(S64, 0)); 4557 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4558 MI.eraseFromParent(); 4559 return Legalized; 4560 } 4561 4562 return UnableToLegalize; 4563 } 4564 4565 LegalizerHelper::LegalizeResult 4566 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4567 Register Dst = MI.getOperand(0).getReg(); 4568 Register Src = MI.getOperand(1).getReg(); 4569 LLT DstTy = MRI.getType(Dst); 4570 LLT SrcTy = MRI.getType(Src); 4571 const LLT S64 = LLT::scalar(64); 4572 const LLT S32 = LLT::scalar(32); 4573 4574 if (SrcTy != S64 && SrcTy != S32) 4575 return UnableToLegalize; 4576 if (DstTy != S32 && DstTy != S64) 4577 return UnableToLegalize; 4578 4579 // FPTOSI gives same result as FPTOUI for positive signed integers. 4580 // FPTOUI needs to deal with fp values that convert to unsigned integers 4581 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4582 4583 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4584 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4585 : APFloat::IEEEdouble(), 4586 APInt::getNullValue(SrcTy.getSizeInBits())); 4587 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4588 4589 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4590 4591 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4592 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4593 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4594 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4595 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4596 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4597 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4598 4599 const LLT S1 = LLT::scalar(1); 4600 4601 MachineInstrBuilder FCMP = 4602 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4603 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4604 4605 MI.eraseFromParent(); 4606 return Legalized; 4607 } 4608 4609 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4610 Register Dst = MI.getOperand(0).getReg(); 4611 Register Src = MI.getOperand(1).getReg(); 4612 LLT DstTy = MRI.getType(Dst); 4613 LLT SrcTy = MRI.getType(Src); 4614 const LLT S64 = LLT::scalar(64); 4615 const LLT S32 = LLT::scalar(32); 4616 4617 // FIXME: Only f32 to i64 conversions are supported. 4618 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4619 return UnableToLegalize; 4620 4621 // Expand f32 -> i64 conversion 4622 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4623 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4624 4625 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4626 4627 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4628 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4629 4630 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4631 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4632 4633 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4634 APInt::getSignMask(SrcEltBits)); 4635 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4636 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4637 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4638 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4639 4640 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4641 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4642 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4643 4644 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4645 R = MIRBuilder.buildZExt(DstTy, R); 4646 4647 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4648 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4649 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4650 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4651 4652 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4653 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4654 4655 const LLT S1 = LLT::scalar(1); 4656 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4657 S1, Exponent, ExponentLoBit); 4658 4659 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4660 4661 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4662 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4663 4664 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4665 4666 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4667 S1, Exponent, ZeroSrcTy); 4668 4669 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4670 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4671 4672 MI.eraseFromParent(); 4673 return Legalized; 4674 } 4675 4676 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4677 LegalizerHelper::LegalizeResult 4678 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4679 Register Dst = MI.getOperand(0).getReg(); 4680 Register Src = MI.getOperand(1).getReg(); 4681 4682 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4683 return UnableToLegalize; 4684 4685 const unsigned ExpMask = 0x7ff; 4686 const unsigned ExpBiasf64 = 1023; 4687 const unsigned ExpBiasf16 = 15; 4688 const LLT S32 = LLT::scalar(32); 4689 const LLT S1 = LLT::scalar(1); 4690 4691 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4692 Register U = Unmerge.getReg(0); 4693 Register UH = Unmerge.getReg(1); 4694 4695 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4696 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4697 4698 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4699 // add the f16 bias (15) to get the biased exponent for the f16 format. 4700 E = MIRBuilder.buildAdd( 4701 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4702 4703 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4704 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4705 4706 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4707 MIRBuilder.buildConstant(S32, 0x1ff)); 4708 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4709 4710 auto Zero = MIRBuilder.buildConstant(S32, 0); 4711 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4712 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4713 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4714 4715 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4716 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4717 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4718 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4719 4720 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4721 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4722 4723 // N = M | (E << 12); 4724 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4725 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4726 4727 // B = clamp(1-E, 0, 13); 4728 auto One = MIRBuilder.buildConstant(S32, 1); 4729 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4730 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4731 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4732 4733 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4734 MIRBuilder.buildConstant(S32, 0x1000)); 4735 4736 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4737 auto D0 = MIRBuilder.buildShl(S32, D, B); 4738 4739 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4740 D0, SigSetHigh); 4741 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4742 D = MIRBuilder.buildOr(S32, D, D1); 4743 4744 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4745 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4746 4747 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4748 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4749 4750 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4751 MIRBuilder.buildConstant(S32, 3)); 4752 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4753 4754 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4755 MIRBuilder.buildConstant(S32, 5)); 4756 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4757 4758 V1 = MIRBuilder.buildOr(S32, V0, V1); 4759 V = MIRBuilder.buildAdd(S32, V, V1); 4760 4761 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4762 E, MIRBuilder.buildConstant(S32, 30)); 4763 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4764 MIRBuilder.buildConstant(S32, 0x7c00), V); 4765 4766 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4767 E, MIRBuilder.buildConstant(S32, 1039)); 4768 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4769 4770 // Extract the sign bit. 4771 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4772 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4773 4774 // Insert the sign bit 4775 V = MIRBuilder.buildOr(S32, Sign, V); 4776 4777 MIRBuilder.buildTrunc(Dst, V); 4778 MI.eraseFromParent(); 4779 return Legalized; 4780 } 4781 4782 LegalizerHelper::LegalizeResult 4783 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4784 Register Dst = MI.getOperand(0).getReg(); 4785 Register Src = MI.getOperand(1).getReg(); 4786 4787 LLT DstTy = MRI.getType(Dst); 4788 LLT SrcTy = MRI.getType(Src); 4789 const LLT S64 = LLT::scalar(64); 4790 const LLT S16 = LLT::scalar(16); 4791 4792 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4793 return lowerFPTRUNC_F64_TO_F16(MI); 4794 4795 return UnableToLegalize; 4796 } 4797 4798 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4799 switch (Opc) { 4800 case TargetOpcode::G_SMIN: 4801 return CmpInst::ICMP_SLT; 4802 case TargetOpcode::G_SMAX: 4803 return CmpInst::ICMP_SGT; 4804 case TargetOpcode::G_UMIN: 4805 return CmpInst::ICMP_ULT; 4806 case TargetOpcode::G_UMAX: 4807 return CmpInst::ICMP_UGT; 4808 default: 4809 llvm_unreachable("not in integer min/max"); 4810 } 4811 } 4812 4813 LegalizerHelper::LegalizeResult 4814 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4815 Register Dst = MI.getOperand(0).getReg(); 4816 Register Src0 = MI.getOperand(1).getReg(); 4817 Register Src1 = MI.getOperand(2).getReg(); 4818 4819 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4820 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4821 4822 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4823 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4824 4825 MI.eraseFromParent(); 4826 return Legalized; 4827 } 4828 4829 LegalizerHelper::LegalizeResult 4830 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4831 Register Dst = MI.getOperand(0).getReg(); 4832 Register Src0 = MI.getOperand(1).getReg(); 4833 Register Src1 = MI.getOperand(2).getReg(); 4834 4835 const LLT Src0Ty = MRI.getType(Src0); 4836 const LLT Src1Ty = MRI.getType(Src1); 4837 4838 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4839 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4840 4841 auto SignBitMask = MIRBuilder.buildConstant( 4842 Src0Ty, APInt::getSignMask(Src0Size)); 4843 4844 auto NotSignBitMask = MIRBuilder.buildConstant( 4845 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4846 4847 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4848 MachineInstr *Or; 4849 4850 if (Src0Ty == Src1Ty) { 4851 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 4852 Or = MIRBuilder.buildOr(Dst, And0, And1); 4853 } else if (Src0Size > Src1Size) { 4854 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4855 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4856 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4857 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4858 Or = MIRBuilder.buildOr(Dst, And0, And1); 4859 } else { 4860 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4861 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4862 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4863 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4864 Or = MIRBuilder.buildOr(Dst, And0, And1); 4865 } 4866 4867 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4868 // constants are a nan and -0.0, but the final result should preserve 4869 // everything. 4870 if (unsigned Flags = MI.getFlags()) 4871 Or->setFlags(Flags); 4872 4873 MI.eraseFromParent(); 4874 return Legalized; 4875 } 4876 4877 LegalizerHelper::LegalizeResult 4878 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4879 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4880 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4881 4882 Register Dst = MI.getOperand(0).getReg(); 4883 Register Src0 = MI.getOperand(1).getReg(); 4884 Register Src1 = MI.getOperand(2).getReg(); 4885 LLT Ty = MRI.getType(Dst); 4886 4887 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4888 // Insert canonicalizes if it's possible we need to quiet to get correct 4889 // sNaN behavior. 4890 4891 // Note this must be done here, and not as an optimization combine in the 4892 // absence of a dedicate quiet-snan instruction as we're using an 4893 // omni-purpose G_FCANONICALIZE. 4894 if (!isKnownNeverSNaN(Src0, MRI)) 4895 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4896 4897 if (!isKnownNeverSNaN(Src1, MRI)) 4898 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4899 } 4900 4901 // If there are no nans, it's safe to simply replace this with the non-IEEE 4902 // version. 4903 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4904 MI.eraseFromParent(); 4905 return Legalized; 4906 } 4907 4908 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4909 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4910 Register DstReg = MI.getOperand(0).getReg(); 4911 LLT Ty = MRI.getType(DstReg); 4912 unsigned Flags = MI.getFlags(); 4913 4914 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4915 Flags); 4916 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4917 MI.eraseFromParent(); 4918 return Legalized; 4919 } 4920 4921 LegalizerHelper::LegalizeResult 4922 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4923 Register DstReg = MI.getOperand(0).getReg(); 4924 Register X = MI.getOperand(1).getReg(); 4925 const unsigned Flags = MI.getFlags(); 4926 const LLT Ty = MRI.getType(DstReg); 4927 const LLT CondTy = Ty.changeElementSize(1); 4928 4929 // round(x) => 4930 // t = trunc(x); 4931 // d = fabs(x - t); 4932 // o = copysign(1.0f, x); 4933 // return t + (d >= 0.5 ? o : 0.0); 4934 4935 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 4936 4937 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 4938 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 4939 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4940 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 4941 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 4942 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 4943 4944 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 4945 Flags); 4946 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 4947 4948 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 4949 4950 MI.eraseFromParent(); 4951 return Legalized; 4952 } 4953 4954 LegalizerHelper::LegalizeResult 4955 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 4956 Register DstReg = MI.getOperand(0).getReg(); 4957 Register SrcReg = MI.getOperand(1).getReg(); 4958 unsigned Flags = MI.getFlags(); 4959 LLT Ty = MRI.getType(DstReg); 4960 const LLT CondTy = Ty.changeElementSize(1); 4961 4962 // result = trunc(src); 4963 // if (src < 0.0 && src != result) 4964 // result += -1.0. 4965 4966 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4967 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4968 4969 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4970 SrcReg, Zero, Flags); 4971 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4972 SrcReg, Trunc, Flags); 4973 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4974 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4975 4976 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 4977 MI.eraseFromParent(); 4978 return Legalized; 4979 } 4980 4981 LegalizerHelper::LegalizeResult 4982 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 4983 const unsigned NumOps = MI.getNumOperands(); 4984 Register DstReg = MI.getOperand(0).getReg(); 4985 Register Src0Reg = MI.getOperand(1).getReg(); 4986 LLT DstTy = MRI.getType(DstReg); 4987 LLT SrcTy = MRI.getType(Src0Reg); 4988 unsigned PartSize = SrcTy.getSizeInBits(); 4989 4990 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 4991 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 4992 4993 for (unsigned I = 2; I != NumOps; ++I) { 4994 const unsigned Offset = (I - 1) * PartSize; 4995 4996 Register SrcReg = MI.getOperand(I).getReg(); 4997 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 4998 4999 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5000 MRI.createGenericVirtualRegister(WideTy); 5001 5002 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5003 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5004 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5005 ResultReg = NextResult; 5006 } 5007 5008 if (DstTy.isPointer()) { 5009 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5010 DstTy.getAddressSpace())) { 5011 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5012 return UnableToLegalize; 5013 } 5014 5015 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5016 } 5017 5018 MI.eraseFromParent(); 5019 return Legalized; 5020 } 5021 5022 LegalizerHelper::LegalizeResult 5023 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5024 const unsigned NumDst = MI.getNumOperands() - 1; 5025 Register SrcReg = MI.getOperand(NumDst).getReg(); 5026 Register Dst0Reg = MI.getOperand(0).getReg(); 5027 LLT DstTy = MRI.getType(Dst0Reg); 5028 if (DstTy.isPointer()) 5029 return UnableToLegalize; // TODO 5030 5031 SrcReg = coerceToScalar(SrcReg); 5032 if (!SrcReg) 5033 return UnableToLegalize; 5034 5035 // Expand scalarizing unmerge as bitcast to integer and shift. 5036 LLT IntTy = MRI.getType(SrcReg); 5037 5038 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5039 5040 const unsigned DstSize = DstTy.getSizeInBits(); 5041 unsigned Offset = DstSize; 5042 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5043 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5044 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5045 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5046 } 5047 5048 MI.eraseFromParent(); 5049 return Legalized; 5050 } 5051 5052 LegalizerHelper::LegalizeResult 5053 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5054 Register DstReg = MI.getOperand(0).getReg(); 5055 Register Src0Reg = MI.getOperand(1).getReg(); 5056 Register Src1Reg = MI.getOperand(2).getReg(); 5057 LLT Src0Ty = MRI.getType(Src0Reg); 5058 LLT DstTy = MRI.getType(DstReg); 5059 LLT IdxTy = LLT::scalar(32); 5060 5061 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5062 5063 if (DstTy.isScalar()) { 5064 if (Src0Ty.isVector()) 5065 return UnableToLegalize; 5066 5067 // This is just a SELECT. 5068 assert(Mask.size() == 1 && "Expected a single mask element"); 5069 Register Val; 5070 if (Mask[0] < 0 || Mask[0] > 1) 5071 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5072 else 5073 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5074 MIRBuilder.buildCopy(DstReg, Val); 5075 MI.eraseFromParent(); 5076 return Legalized; 5077 } 5078 5079 Register Undef; 5080 SmallVector<Register, 32> BuildVec; 5081 LLT EltTy = DstTy.getElementType(); 5082 5083 for (int Idx : Mask) { 5084 if (Idx < 0) { 5085 if (!Undef.isValid()) 5086 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5087 BuildVec.push_back(Undef); 5088 continue; 5089 } 5090 5091 if (Src0Ty.isScalar()) { 5092 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5093 } else { 5094 int NumElts = Src0Ty.getNumElements(); 5095 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5096 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5097 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5098 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5099 BuildVec.push_back(Extract.getReg(0)); 5100 } 5101 } 5102 5103 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5104 MI.eraseFromParent(); 5105 return Legalized; 5106 } 5107 5108 LegalizerHelper::LegalizeResult 5109 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5110 const auto &MF = *MI.getMF(); 5111 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5112 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5113 return UnableToLegalize; 5114 5115 Register Dst = MI.getOperand(0).getReg(); 5116 Register AllocSize = MI.getOperand(1).getReg(); 5117 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5118 5119 LLT PtrTy = MRI.getType(Dst); 5120 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5121 5122 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 5123 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5124 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5125 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5126 5127 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5128 // have to generate an extra instruction to negate the alloc and then use 5129 // G_PTR_ADD to add the negative offset. 5130 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5131 if (Alignment > Align(1)) { 5132 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5133 AlignMask.negate(); 5134 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5135 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5136 } 5137 5138 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5139 MIRBuilder.buildCopy(SPReg, SPTmp); 5140 MIRBuilder.buildCopy(Dst, SPTmp); 5141 5142 MI.eraseFromParent(); 5143 return Legalized; 5144 } 5145 5146 LegalizerHelper::LegalizeResult 5147 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5148 Register Dst = MI.getOperand(0).getReg(); 5149 Register Src = MI.getOperand(1).getReg(); 5150 unsigned Offset = MI.getOperand(2).getImm(); 5151 5152 LLT DstTy = MRI.getType(Dst); 5153 LLT SrcTy = MRI.getType(Src); 5154 5155 if (DstTy.isScalar() && 5156 (SrcTy.isScalar() || 5157 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5158 LLT SrcIntTy = SrcTy; 5159 if (!SrcTy.isScalar()) { 5160 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5161 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5162 } 5163 5164 if (Offset == 0) 5165 MIRBuilder.buildTrunc(Dst, Src); 5166 else { 5167 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5168 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5169 MIRBuilder.buildTrunc(Dst, Shr); 5170 } 5171 5172 MI.eraseFromParent(); 5173 return Legalized; 5174 } 5175 5176 return UnableToLegalize; 5177 } 5178 5179 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5180 Register Dst = MI.getOperand(0).getReg(); 5181 Register Src = MI.getOperand(1).getReg(); 5182 Register InsertSrc = MI.getOperand(2).getReg(); 5183 uint64_t Offset = MI.getOperand(3).getImm(); 5184 5185 LLT DstTy = MRI.getType(Src); 5186 LLT InsertTy = MRI.getType(InsertSrc); 5187 5188 if (InsertTy.isVector() || 5189 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5190 return UnableToLegalize; 5191 5192 const DataLayout &DL = MIRBuilder.getDataLayout(); 5193 if ((DstTy.isPointer() && 5194 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5195 (InsertTy.isPointer() && 5196 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5197 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5198 return UnableToLegalize; 5199 } 5200 5201 LLT IntDstTy = DstTy; 5202 5203 if (!DstTy.isScalar()) { 5204 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5205 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5206 } 5207 5208 if (!InsertTy.isScalar()) { 5209 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5210 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5211 } 5212 5213 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5214 if (Offset != 0) { 5215 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5216 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5217 } 5218 5219 APInt MaskVal = APInt::getBitsSetWithWrap( 5220 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5221 5222 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5223 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5224 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5225 5226 MIRBuilder.buildCast(Dst, Or); 5227 MI.eraseFromParent(); 5228 return Legalized; 5229 } 5230 5231 LegalizerHelper::LegalizeResult 5232 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5233 Register Dst0 = MI.getOperand(0).getReg(); 5234 Register Dst1 = MI.getOperand(1).getReg(); 5235 Register LHS = MI.getOperand(2).getReg(); 5236 Register RHS = MI.getOperand(3).getReg(); 5237 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5238 5239 LLT Ty = MRI.getType(Dst0); 5240 LLT BoolTy = MRI.getType(Dst1); 5241 5242 if (IsAdd) 5243 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5244 else 5245 MIRBuilder.buildSub(Dst0, LHS, RHS); 5246 5247 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5248 5249 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5250 5251 // For an addition, the result should be less than one of the operands (LHS) 5252 // if and only if the other operand (RHS) is negative, otherwise there will 5253 // be overflow. 5254 // For a subtraction, the result should be less than one of the operands 5255 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5256 // otherwise there will be overflow. 5257 auto ResultLowerThanLHS = 5258 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5259 auto ConditionRHS = MIRBuilder.buildICmp( 5260 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5261 5262 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5263 MI.eraseFromParent(); 5264 return Legalized; 5265 } 5266 5267 LegalizerHelper::LegalizeResult 5268 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5269 Register Dst = MI.getOperand(0).getReg(); 5270 Register Src = MI.getOperand(1).getReg(); 5271 const LLT Ty = MRI.getType(Src); 5272 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5273 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5274 5275 // Swap most and least significant byte, set remaining bytes in Res to zero. 5276 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5277 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5278 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5279 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5280 5281 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5282 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5283 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5284 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5285 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5286 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5287 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5288 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5289 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5290 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5291 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5292 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5293 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5294 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5295 } 5296 Res.getInstr()->getOperand(0).setReg(Dst); 5297 5298 MI.eraseFromParent(); 5299 return Legalized; 5300 } 5301 5302 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5303 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5304 MachineInstrBuilder Src, APInt Mask) { 5305 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5306 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5307 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5308 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5309 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5310 return B.buildOr(Dst, LHS, RHS); 5311 } 5312 5313 LegalizerHelper::LegalizeResult 5314 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5315 Register Dst = MI.getOperand(0).getReg(); 5316 Register Src = MI.getOperand(1).getReg(); 5317 const LLT Ty = MRI.getType(Src); 5318 unsigned Size = Ty.getSizeInBits(); 5319 5320 MachineInstrBuilder BSWAP = 5321 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5322 5323 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5324 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5325 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5326 MachineInstrBuilder Swap4 = 5327 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5328 5329 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5330 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5331 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5332 MachineInstrBuilder Swap2 = 5333 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5334 5335 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5336 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5337 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5338 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5339 5340 MI.eraseFromParent(); 5341 return Legalized; 5342 } 5343 5344 LegalizerHelper::LegalizeResult 5345 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5346 MachineFunction &MF = MIRBuilder.getMF(); 5347 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5348 const TargetLowering *TLI = STI.getTargetLowering(); 5349 5350 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5351 int NameOpIdx = IsRead ? 1 : 0; 5352 int ValRegIndex = IsRead ? 0 : 1; 5353 5354 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5355 const LLT Ty = MRI.getType(ValReg); 5356 const MDString *RegStr = cast<MDString>( 5357 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5358 5359 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5360 if (!PhysReg.isValid()) 5361 return UnableToLegalize; 5362 5363 if (IsRead) 5364 MIRBuilder.buildCopy(ValReg, PhysReg); 5365 else 5366 MIRBuilder.buildCopy(PhysReg, ValReg); 5367 5368 MI.eraseFromParent(); 5369 return Legalized; 5370 } 5371