xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp (revision 79ac3c12a714bcd3f2354c52d948aed9575c46d6)
1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()),
94       TLI(*MF.getSubtarget().getTargetLowering()) { }
95 
96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
97                                  GISelChangeObserver &Observer,
98                                  MachineIRBuilder &B)
99   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
100     TLI(*MF.getSubtarget().getTargetLowering()) { }
101 
102 LegalizerHelper::LegalizeResult
103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
104   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
105 
106   MIRBuilder.setInstrAndDebugLoc(MI);
107 
108   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
109       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
110     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
111   auto Step = LI.getAction(MI, MRI);
112   switch (Step.Action) {
113   case Legal:
114     LLVM_DEBUG(dbgs() << ".. Already legal\n");
115     return AlreadyLegal;
116   case Libcall:
117     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
118     return libcall(MI);
119   case NarrowScalar:
120     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
121     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
122   case WidenScalar:
123     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
124     return widenScalar(MI, Step.TypeIdx, Step.NewType);
125   case Bitcast:
126     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
127     return bitcast(MI, Step.TypeIdx, Step.NewType);
128   case Lower:
129     LLVM_DEBUG(dbgs() << ".. Lower\n");
130     return lower(MI, Step.TypeIdx, Step.NewType);
131   case FewerElements:
132     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
133     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
134   case MoreElements:
135     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
136     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
137   case Custom:
138     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
139     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
140   default:
141     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
142     return UnableToLegalize;
143   }
144 }
145 
146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
147                                    SmallVectorImpl<Register> &VRegs) {
148   for (int i = 0; i < NumParts; ++i)
149     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
150   MIRBuilder.buildUnmerge(VRegs, Reg);
151 }
152 
153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
154                                    LLT MainTy, LLT &LeftoverTy,
155                                    SmallVectorImpl<Register> &VRegs,
156                                    SmallVectorImpl<Register> &LeftoverRegs) {
157   assert(!LeftoverTy.isValid() && "this is an out argument");
158 
159   unsigned RegSize = RegTy.getSizeInBits();
160   unsigned MainSize = MainTy.getSizeInBits();
161   unsigned NumParts = RegSize / MainSize;
162   unsigned LeftoverSize = RegSize - NumParts * MainSize;
163 
164   // Use an unmerge when possible.
165   if (LeftoverSize == 0) {
166     for (unsigned I = 0; I < NumParts; ++I)
167       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
168     MIRBuilder.buildUnmerge(VRegs, Reg);
169     return true;
170   }
171 
172   if (MainTy.isVector()) {
173     unsigned EltSize = MainTy.getScalarSizeInBits();
174     if (LeftoverSize % EltSize != 0)
175       return false;
176     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
177   } else {
178     LeftoverTy = LLT::scalar(LeftoverSize);
179   }
180 
181   // For irregular sizes, extract the individual parts.
182   for (unsigned I = 0; I != NumParts; ++I) {
183     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
184     VRegs.push_back(NewReg);
185     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
186   }
187 
188   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
189        Offset += LeftoverSize) {
190     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
191     LeftoverRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, Offset);
193   }
194 
195   return true;
196 }
197 
198 void LegalizerHelper::insertParts(Register DstReg,
199                                   LLT ResultTy, LLT PartTy,
200                                   ArrayRef<Register> PartRegs,
201                                   LLT LeftoverTy,
202                                   ArrayRef<Register> LeftoverRegs) {
203   if (!LeftoverTy.isValid()) {
204     assert(LeftoverRegs.empty());
205 
206     if (!ResultTy.isVector()) {
207       MIRBuilder.buildMerge(DstReg, PartRegs);
208       return;
209     }
210 
211     if (PartTy.isVector())
212       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
213     else
214       MIRBuilder.buildBuildVector(DstReg, PartRegs);
215     return;
216   }
217 
218   unsigned PartSize = PartTy.getSizeInBits();
219   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
220 
221   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
222   MIRBuilder.buildUndef(CurResultReg);
223 
224   unsigned Offset = 0;
225   for (Register PartReg : PartRegs) {
226     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
227     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
228     CurResultReg = NewResultReg;
229     Offset += PartSize;
230   }
231 
232   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
233     // Use the original output register for the final insert to avoid a copy.
234     Register NewResultReg = (I + 1 == E) ?
235       DstReg : MRI.createGenericVirtualRegister(ResultTy);
236 
237     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
238     CurResultReg = NewResultReg;
239     Offset += LeftoverPartSize;
240   }
241 }
242 
243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
245                               const MachineInstr &MI) {
246   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
247 
248   const int StartIdx = Regs.size();
249   const int NumResults = MI.getNumOperands() - 1;
250   Regs.resize(Regs.size() + NumResults);
251   for (int I = 0; I != NumResults; ++I)
252     Regs[StartIdx + I] = MI.getOperand(I).getReg();
253 }
254 
255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
256                                      LLT GCDTy, Register SrcReg) {
257   LLT SrcTy = MRI.getType(SrcReg);
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 }
268 
269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
270                                     LLT NarrowTy, Register SrcReg) {
271   LLT SrcTy = MRI.getType(SrcReg);
272   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
273   extractGCDType(Parts, GCDTy, SrcReg);
274   return GCDTy;
275 }
276 
277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
278                                          SmallVectorImpl<Register> &VRegs,
279                                          unsigned PadStrategy) {
280   LLT LCMTy = getLCMType(DstTy, NarrowTy);
281 
282   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
283   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
284   int NumOrigSrc = VRegs.size();
285 
286   Register PadReg;
287 
288   // Get a value we can use to pad the source value if the sources won't evenly
289   // cover the result type.
290   if (NumOrigSrc < NumParts * NumSubParts) {
291     if (PadStrategy == TargetOpcode::G_ZEXT)
292       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
293     else if (PadStrategy == TargetOpcode::G_ANYEXT)
294       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
295     else {
296       assert(PadStrategy == TargetOpcode::G_SEXT);
297 
298       // Shift the sign bit of the low register through the high register.
299       auto ShiftAmt =
300         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
301       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
302     }
303   }
304 
305   // Registers for the final merge to be produced.
306   SmallVector<Register, 4> Remerge(NumParts);
307 
308   // Registers needed for intermediate merges, which will be merged into a
309   // source for Remerge.
310   SmallVector<Register, 4> SubMerge(NumSubParts);
311 
312   // Once we've fully read off the end of the original source bits, we can reuse
313   // the same high bits for remaining padding elements.
314   Register AllPadReg;
315 
316   // Build merges to the LCM type to cover the original result type.
317   for (int I = 0; I != NumParts; ++I) {
318     bool AllMergePartsArePadding = true;
319 
320     // Build the requested merges to the requested type.
321     for (int J = 0; J != NumSubParts; ++J) {
322       int Idx = I * NumSubParts + J;
323       if (Idx >= NumOrigSrc) {
324         SubMerge[J] = PadReg;
325         continue;
326       }
327 
328       SubMerge[J] = VRegs[Idx];
329 
330       // There are meaningful bits here we can't reuse later.
331       AllMergePartsArePadding = false;
332     }
333 
334     // If we've filled up a complete piece with padding bits, we can directly
335     // emit the natural sized constant if applicable, rather than a merge of
336     // smaller constants.
337     if (AllMergePartsArePadding && !AllPadReg) {
338       if (PadStrategy == TargetOpcode::G_ANYEXT)
339         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
340       else if (PadStrategy == TargetOpcode::G_ZEXT)
341         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
342 
343       // If this is a sign extension, we can't materialize a trivial constant
344       // with the right type and have to produce a merge.
345     }
346 
347     if (AllPadReg) {
348       // Avoid creating additional instructions if we're just adding additional
349       // copies of padding bits.
350       Remerge[I] = AllPadReg;
351       continue;
352     }
353 
354     if (NumSubParts == 1)
355       Remerge[I] = SubMerge[0];
356     else
357       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
358 
359     // In the sign extend padding case, re-use the first all-signbit merge.
360     if (AllMergePartsArePadding && !AllPadReg)
361       AllPadReg = Remerge[I];
362   }
363 
364   VRegs = std::move(Remerge);
365   return LCMTy;
366 }
367 
368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
369                                                ArrayRef<Register> RemergeRegs) {
370   LLT DstTy = MRI.getType(DstReg);
371 
372   // Create the merge to the widened source, and extract the relevant bits into
373   // the result.
374 
375   if (DstTy == LCMTy) {
376     MIRBuilder.buildMerge(DstReg, RemergeRegs);
377     return;
378   }
379 
380   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
381   if (DstTy.isScalar() && LCMTy.isScalar()) {
382     MIRBuilder.buildTrunc(DstReg, Remerge);
383     return;
384   }
385 
386   if (LCMTy.isVector()) {
387     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
388     SmallVector<Register, 8> UnmergeDefs(NumDefs);
389     UnmergeDefs[0] = DstReg;
390     for (unsigned I = 1; I != NumDefs; ++I)
391       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
392 
393     MIRBuilder.buildUnmerge(UnmergeDefs,
394                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
395     return;
396   }
397 
398   llvm_unreachable("unhandled case");
399 }
400 
401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
402 #define RTLIBCASE_INT(LibcallPrefix)                                           \
403   do {                                                                         \
404     switch (Size) {                                                            \
405     case 32:                                                                   \
406       return RTLIB::LibcallPrefix##32;                                         \
407     case 64:                                                                   \
408       return RTLIB::LibcallPrefix##64;                                         \
409     case 128:                                                                  \
410       return RTLIB::LibcallPrefix##128;                                        \
411     default:                                                                   \
412       llvm_unreachable("unexpected size");                                     \
413     }                                                                          \
414   } while (0)
415 
416 #define RTLIBCASE(LibcallPrefix)                                               \
417   do {                                                                         \
418     switch (Size) {                                                            \
419     case 32:                                                                   \
420       return RTLIB::LibcallPrefix##32;                                         \
421     case 64:                                                                   \
422       return RTLIB::LibcallPrefix##64;                                         \
423     case 80:                                                                   \
424       return RTLIB::LibcallPrefix##80;                                         \
425     case 128:                                                                  \
426       return RTLIB::LibcallPrefix##128;                                        \
427     default:                                                                   \
428       llvm_unreachable("unexpected size");                                     \
429     }                                                                          \
430   } while (0)
431 
432   switch (Opcode) {
433   case TargetOpcode::G_SDIV:
434     RTLIBCASE_INT(SDIV_I);
435   case TargetOpcode::G_UDIV:
436     RTLIBCASE_INT(UDIV_I);
437   case TargetOpcode::G_SREM:
438     RTLIBCASE_INT(SREM_I);
439   case TargetOpcode::G_UREM:
440     RTLIBCASE_INT(UREM_I);
441   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
442     RTLIBCASE_INT(CTLZ_I);
443   case TargetOpcode::G_FADD:
444     RTLIBCASE(ADD_F);
445   case TargetOpcode::G_FSUB:
446     RTLIBCASE(SUB_F);
447   case TargetOpcode::G_FMUL:
448     RTLIBCASE(MUL_F);
449   case TargetOpcode::G_FDIV:
450     RTLIBCASE(DIV_F);
451   case TargetOpcode::G_FEXP:
452     RTLIBCASE(EXP_F);
453   case TargetOpcode::G_FEXP2:
454     RTLIBCASE(EXP2_F);
455   case TargetOpcode::G_FREM:
456     RTLIBCASE(REM_F);
457   case TargetOpcode::G_FPOW:
458     RTLIBCASE(POW_F);
459   case TargetOpcode::G_FMA:
460     RTLIBCASE(FMA_F);
461   case TargetOpcode::G_FSIN:
462     RTLIBCASE(SIN_F);
463   case TargetOpcode::G_FCOS:
464     RTLIBCASE(COS_F);
465   case TargetOpcode::G_FLOG10:
466     RTLIBCASE(LOG10_F);
467   case TargetOpcode::G_FLOG:
468     RTLIBCASE(LOG_F);
469   case TargetOpcode::G_FLOG2:
470     RTLIBCASE(LOG2_F);
471   case TargetOpcode::G_FCEIL:
472     RTLIBCASE(CEIL_F);
473   case TargetOpcode::G_FFLOOR:
474     RTLIBCASE(FLOOR_F);
475   case TargetOpcode::G_FMINNUM:
476     RTLIBCASE(FMIN_F);
477   case TargetOpcode::G_FMAXNUM:
478     RTLIBCASE(FMAX_F);
479   case TargetOpcode::G_FSQRT:
480     RTLIBCASE(SQRT_F);
481   case TargetOpcode::G_FRINT:
482     RTLIBCASE(RINT_F);
483   case TargetOpcode::G_FNEARBYINT:
484     RTLIBCASE(NEARBYINT_F);
485   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
486     RTLIBCASE(ROUNDEVEN_F);
487   }
488   llvm_unreachable("Unknown libcall function");
489 }
490 
491 /// True if an instruction is in tail position in its caller. Intended for
492 /// legalizing libcalls as tail calls when possible.
493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
494                                     MachineInstr &MI) {
495   MachineBasicBlock &MBB = *MI.getParent();
496   const Function &F = MBB.getParent()->getFunction();
497 
498   // Conservatively require the attributes of the call to match those of
499   // the return. Ignore NoAlias and NonNull because they don't affect the
500   // call sequence.
501   AttributeList CallerAttrs = F.getAttributes();
502   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
503           .removeAttribute(Attribute::NoAlias)
504           .removeAttribute(Attribute::NonNull)
505           .hasAttributes())
506     return false;
507 
508   // It's not safe to eliminate the sign / zero extension of the return value.
509   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
510       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
511     return false;
512 
513   // Only tail call if the following instruction is a standard return.
514   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
515   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
516     return false;
517 
518   return true;
519 }
520 
521 LegalizerHelper::LegalizeResult
522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
523                     const CallLowering::ArgInfo &Result,
524                     ArrayRef<CallLowering::ArgInfo> Args,
525                     const CallingConv::ID CC) {
526   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
527 
528   CallLowering::CallLoweringInfo Info;
529   Info.CallConv = CC;
530   Info.Callee = MachineOperand::CreateES(Name);
531   Info.OrigRet = Result;
532   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
533   if (!CLI.lowerCall(MIRBuilder, Info))
534     return LegalizerHelper::UnableToLegalize;
535 
536   return LegalizerHelper::Legalized;
537 }
538 
539 LegalizerHelper::LegalizeResult
540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
541                     const CallLowering::ArgInfo &Result,
542                     ArrayRef<CallLowering::ArgInfo> Args) {
543   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
544   const char *Name = TLI.getLibcallName(Libcall);
545   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
546   return createLibcall(MIRBuilder, Name, Result, Args, CC);
547 }
548 
549 // Useful for libcalls where all operands have the same type.
550 static LegalizerHelper::LegalizeResult
551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
552               Type *OpType) {
553   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
554 
555   SmallVector<CallLowering::ArgInfo, 3> Args;
556   for (unsigned i = 1; i < MI.getNumOperands(); i++)
557     Args.push_back({MI.getOperand(i).getReg(), OpType});
558   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
559                        Args);
560 }
561 
562 LegalizerHelper::LegalizeResult
563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
564                        MachineInstr &MI) {
565   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
566 
567   SmallVector<CallLowering::ArgInfo, 3> Args;
568   // Add all the args, except for the last which is an imm denoting 'tail'.
569   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
570     Register Reg = MI.getOperand(i).getReg();
571 
572     // Need derive an IR type for call lowering.
573     LLT OpLLT = MRI.getType(Reg);
574     Type *OpTy = nullptr;
575     if (OpLLT.isPointer())
576       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
577     else
578       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
579     Args.push_back({Reg, OpTy});
580   }
581 
582   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
583   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
584   RTLIB::Libcall RTLibcall;
585   switch (MI.getOpcode()) {
586   case TargetOpcode::G_MEMCPY:
587     RTLibcall = RTLIB::MEMCPY;
588     break;
589   case TargetOpcode::G_MEMMOVE:
590     RTLibcall = RTLIB::MEMMOVE;
591     break;
592   case TargetOpcode::G_MEMSET:
593     RTLibcall = RTLIB::MEMSET;
594     break;
595   default:
596     return LegalizerHelper::UnableToLegalize;
597   }
598   const char *Name = TLI.getLibcallName(RTLibcall);
599 
600   CallLowering::CallLoweringInfo Info;
601   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
602   Info.Callee = MachineOperand::CreateES(Name);
603   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
604   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
605                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
606 
607   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
608   if (!CLI.lowerCall(MIRBuilder, Info))
609     return LegalizerHelper::UnableToLegalize;
610 
611   if (Info.LoweredTailCall) {
612     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
613     // We must have a return following the call (or debug insts) to get past
614     // isLibCallInTailPosition.
615     do {
616       MachineInstr *Next = MI.getNextNode();
617       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
618              "Expected instr following MI to be return or debug inst?");
619       // We lowered a tail call, so the call is now the return from the block.
620       // Delete the old return.
621       Next->eraseFromParent();
622     } while (MI.getNextNode());
623   }
624 
625   return LegalizerHelper::Legalized;
626 }
627 
628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
629                                        Type *FromType) {
630   auto ToMVT = MVT::getVT(ToType);
631   auto FromMVT = MVT::getVT(FromType);
632 
633   switch (Opcode) {
634   case TargetOpcode::G_FPEXT:
635     return RTLIB::getFPEXT(FromMVT, ToMVT);
636   case TargetOpcode::G_FPTRUNC:
637     return RTLIB::getFPROUND(FromMVT, ToMVT);
638   case TargetOpcode::G_FPTOSI:
639     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
640   case TargetOpcode::G_FPTOUI:
641     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
642   case TargetOpcode::G_SITOFP:
643     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
644   case TargetOpcode::G_UITOFP:
645     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
646   }
647   llvm_unreachable("Unsupported libcall function");
648 }
649 
650 static LegalizerHelper::LegalizeResult
651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
652                   Type *FromType) {
653   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
654   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
655                        {{MI.getOperand(1).getReg(), FromType}});
656 }
657 
658 LegalizerHelper::LegalizeResult
659 LegalizerHelper::libcall(MachineInstr &MI) {
660   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
661   unsigned Size = LLTy.getSizeInBits();
662   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
663 
664   switch (MI.getOpcode()) {
665   default:
666     return UnableToLegalize;
667   case TargetOpcode::G_SDIV:
668   case TargetOpcode::G_UDIV:
669   case TargetOpcode::G_SREM:
670   case TargetOpcode::G_UREM:
671   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
672     Type *HLTy = IntegerType::get(Ctx, Size);
673     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
674     if (Status != Legalized)
675       return Status;
676     break;
677   }
678   case TargetOpcode::G_FADD:
679   case TargetOpcode::G_FSUB:
680   case TargetOpcode::G_FMUL:
681   case TargetOpcode::G_FDIV:
682   case TargetOpcode::G_FMA:
683   case TargetOpcode::G_FPOW:
684   case TargetOpcode::G_FREM:
685   case TargetOpcode::G_FCOS:
686   case TargetOpcode::G_FSIN:
687   case TargetOpcode::G_FLOG10:
688   case TargetOpcode::G_FLOG:
689   case TargetOpcode::G_FLOG2:
690   case TargetOpcode::G_FEXP:
691   case TargetOpcode::G_FEXP2:
692   case TargetOpcode::G_FCEIL:
693   case TargetOpcode::G_FFLOOR:
694   case TargetOpcode::G_FMINNUM:
695   case TargetOpcode::G_FMAXNUM:
696   case TargetOpcode::G_FSQRT:
697   case TargetOpcode::G_FRINT:
698   case TargetOpcode::G_FNEARBYINT:
699   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
700     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
701     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
702       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
703       return UnableToLegalize;
704     }
705     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
706     if (Status != Legalized)
707       return Status;
708     break;
709   }
710   case TargetOpcode::G_FPEXT:
711   case TargetOpcode::G_FPTRUNC: {
712     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
713     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
714     if (!FromTy || !ToTy)
715       return UnableToLegalize;
716     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
717     if (Status != Legalized)
718       return Status;
719     break;
720   }
721   case TargetOpcode::G_FPTOSI:
722   case TargetOpcode::G_FPTOUI: {
723     // FIXME: Support other types
724     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
725     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
726     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
727       return UnableToLegalize;
728     LegalizeResult Status = conversionLibcall(
729         MI, MIRBuilder,
730         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
731         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
732     if (Status != Legalized)
733       return Status;
734     break;
735   }
736   case TargetOpcode::G_SITOFP:
737   case TargetOpcode::G_UITOFP: {
738     // FIXME: Support other types
739     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
740     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
741     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
742       return UnableToLegalize;
743     LegalizeResult Status = conversionLibcall(
744         MI, MIRBuilder,
745         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
746         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
747     if (Status != Legalized)
748       return Status;
749     break;
750   }
751   case TargetOpcode::G_MEMCPY:
752   case TargetOpcode::G_MEMMOVE:
753   case TargetOpcode::G_MEMSET: {
754     LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
755     MI.eraseFromParent();
756     return Result;
757   }
758   }
759 
760   MI.eraseFromParent();
761   return Legalized;
762 }
763 
764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
765                                                               unsigned TypeIdx,
766                                                               LLT NarrowTy) {
767   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
768   uint64_t NarrowSize = NarrowTy.getSizeInBits();
769 
770   switch (MI.getOpcode()) {
771   default:
772     return UnableToLegalize;
773   case TargetOpcode::G_IMPLICIT_DEF: {
774     Register DstReg = MI.getOperand(0).getReg();
775     LLT DstTy = MRI.getType(DstReg);
776 
777     // If SizeOp0 is not an exact multiple of NarrowSize, emit
778     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
779     // FIXME: Although this would also be legal for the general case, it causes
780     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
781     //  combines not being hit). This seems to be a problem related to the
782     //  artifact combiner.
783     if (SizeOp0 % NarrowSize != 0) {
784       LLT ImplicitTy = NarrowTy;
785       if (DstTy.isVector())
786         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
787 
788       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
789       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
790 
791       MI.eraseFromParent();
792       return Legalized;
793     }
794 
795     int NumParts = SizeOp0 / NarrowSize;
796 
797     SmallVector<Register, 2> DstRegs;
798     for (int i = 0; i < NumParts; ++i)
799       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
800 
801     if (DstTy.isVector())
802       MIRBuilder.buildBuildVector(DstReg, DstRegs);
803     else
804       MIRBuilder.buildMerge(DstReg, DstRegs);
805     MI.eraseFromParent();
806     return Legalized;
807   }
808   case TargetOpcode::G_CONSTANT: {
809     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
810     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
811     unsigned TotalSize = Ty.getSizeInBits();
812     unsigned NarrowSize = NarrowTy.getSizeInBits();
813     int NumParts = TotalSize / NarrowSize;
814 
815     SmallVector<Register, 4> PartRegs;
816     for (int I = 0; I != NumParts; ++I) {
817       unsigned Offset = I * NarrowSize;
818       auto K = MIRBuilder.buildConstant(NarrowTy,
819                                         Val.lshr(Offset).trunc(NarrowSize));
820       PartRegs.push_back(K.getReg(0));
821     }
822 
823     LLT LeftoverTy;
824     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
825     SmallVector<Register, 1> LeftoverRegs;
826     if (LeftoverBits != 0) {
827       LeftoverTy = LLT::scalar(LeftoverBits);
828       auto K = MIRBuilder.buildConstant(
829         LeftoverTy,
830         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
831       LeftoverRegs.push_back(K.getReg(0));
832     }
833 
834     insertParts(MI.getOperand(0).getReg(),
835                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
836 
837     MI.eraseFromParent();
838     return Legalized;
839   }
840   case TargetOpcode::G_SEXT:
841   case TargetOpcode::G_ZEXT:
842   case TargetOpcode::G_ANYEXT:
843     return narrowScalarExt(MI, TypeIdx, NarrowTy);
844   case TargetOpcode::G_TRUNC: {
845     if (TypeIdx != 1)
846       return UnableToLegalize;
847 
848     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
849     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
850       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
851       return UnableToLegalize;
852     }
853 
854     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
855     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
856     MI.eraseFromParent();
857     return Legalized;
858   }
859 
860   case TargetOpcode::G_FREEZE:
861     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
862 
863   case TargetOpcode::G_ADD: {
864     // FIXME: add support for when SizeOp0 isn't an exact multiple of
865     // NarrowSize.
866     if (SizeOp0 % NarrowSize != 0)
867       return UnableToLegalize;
868     // Expand in terms of carry-setting/consuming G_ADDE instructions.
869     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
870 
871     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
872     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
873     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
874 
875     Register CarryIn;
876     for (int i = 0; i < NumParts; ++i) {
877       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
878       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
879 
880       if (i == 0)
881         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
882       else {
883         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
884                               Src2Regs[i], CarryIn);
885       }
886 
887       DstRegs.push_back(DstReg);
888       CarryIn = CarryOut;
889     }
890     Register DstReg = MI.getOperand(0).getReg();
891     if(MRI.getType(DstReg).isVector())
892       MIRBuilder.buildBuildVector(DstReg, DstRegs);
893     else
894       MIRBuilder.buildMerge(DstReg, DstRegs);
895     MI.eraseFromParent();
896     return Legalized;
897   }
898   case TargetOpcode::G_SUB: {
899     // FIXME: add support for when SizeOp0 isn't an exact multiple of
900     // NarrowSize.
901     if (SizeOp0 % NarrowSize != 0)
902       return UnableToLegalize;
903 
904     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
905 
906     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
907     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
908     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
909 
910     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
911     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
912     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
913                           {Src1Regs[0], Src2Regs[0]});
914     DstRegs.push_back(DstReg);
915     Register BorrowIn = BorrowOut;
916     for (int i = 1; i < NumParts; ++i) {
917       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
918       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
919 
920       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
921                             {Src1Regs[i], Src2Regs[i], BorrowIn});
922 
923       DstRegs.push_back(DstReg);
924       BorrowIn = BorrowOut;
925     }
926     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
927     MI.eraseFromParent();
928     return Legalized;
929   }
930   case TargetOpcode::G_MUL:
931   case TargetOpcode::G_UMULH:
932     return narrowScalarMul(MI, NarrowTy);
933   case TargetOpcode::G_EXTRACT:
934     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
935   case TargetOpcode::G_INSERT:
936     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
937   case TargetOpcode::G_LOAD: {
938     auto &MMO = **MI.memoperands_begin();
939     Register DstReg = MI.getOperand(0).getReg();
940     LLT DstTy = MRI.getType(DstReg);
941     if (DstTy.isVector())
942       return UnableToLegalize;
943 
944     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
945       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
946       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
947       MIRBuilder.buildAnyExt(DstReg, TmpReg);
948       MI.eraseFromParent();
949       return Legalized;
950     }
951 
952     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
953   }
954   case TargetOpcode::G_ZEXTLOAD:
955   case TargetOpcode::G_SEXTLOAD: {
956     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
957     Register DstReg = MI.getOperand(0).getReg();
958     Register PtrReg = MI.getOperand(1).getReg();
959 
960     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
961     auto &MMO = **MI.memoperands_begin();
962     unsigned MemSize = MMO.getSizeInBits();
963 
964     if (MemSize == NarrowSize) {
965       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
966     } else if (MemSize < NarrowSize) {
967       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
968     } else if (MemSize > NarrowSize) {
969       // FIXME: Need to split the load.
970       return UnableToLegalize;
971     }
972 
973     if (ZExt)
974       MIRBuilder.buildZExt(DstReg, TmpReg);
975     else
976       MIRBuilder.buildSExt(DstReg, TmpReg);
977 
978     MI.eraseFromParent();
979     return Legalized;
980   }
981   case TargetOpcode::G_STORE: {
982     const auto &MMO = **MI.memoperands_begin();
983 
984     Register SrcReg = MI.getOperand(0).getReg();
985     LLT SrcTy = MRI.getType(SrcReg);
986     if (SrcTy.isVector())
987       return UnableToLegalize;
988 
989     int NumParts = SizeOp0 / NarrowSize;
990     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
991     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
992     if (SrcTy.isVector() && LeftoverBits != 0)
993       return UnableToLegalize;
994 
995     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
996       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
997       auto &MMO = **MI.memoperands_begin();
998       MIRBuilder.buildTrunc(TmpReg, SrcReg);
999       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
1000       MI.eraseFromParent();
1001       return Legalized;
1002     }
1003 
1004     return reduceLoadStoreWidth(MI, 0, NarrowTy);
1005   }
1006   case TargetOpcode::G_SELECT:
1007     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1008   case TargetOpcode::G_AND:
1009   case TargetOpcode::G_OR:
1010   case TargetOpcode::G_XOR: {
1011     // Legalize bitwise operation:
1012     // A = BinOp<Ty> B, C
1013     // into:
1014     // B1, ..., BN = G_UNMERGE_VALUES B
1015     // C1, ..., CN = G_UNMERGE_VALUES C
1016     // A1 = BinOp<Ty/N> B1, C2
1017     // ...
1018     // AN = BinOp<Ty/N> BN, CN
1019     // A = G_MERGE_VALUES A1, ..., AN
1020     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1021   }
1022   case TargetOpcode::G_SHL:
1023   case TargetOpcode::G_LSHR:
1024   case TargetOpcode::G_ASHR:
1025     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1026   case TargetOpcode::G_CTLZ:
1027   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1028   case TargetOpcode::G_CTTZ:
1029   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1030   case TargetOpcode::G_CTPOP:
1031     if (TypeIdx == 1)
1032       switch (MI.getOpcode()) {
1033       case TargetOpcode::G_CTLZ:
1034       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1035         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1036       case TargetOpcode::G_CTTZ:
1037       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1038         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1039       case TargetOpcode::G_CTPOP:
1040         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1041       default:
1042         return UnableToLegalize;
1043       }
1044 
1045     Observer.changingInstr(MI);
1046     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1047     Observer.changedInstr(MI);
1048     return Legalized;
1049   case TargetOpcode::G_INTTOPTR:
1050     if (TypeIdx != 1)
1051       return UnableToLegalize;
1052 
1053     Observer.changingInstr(MI);
1054     narrowScalarSrc(MI, NarrowTy, 1);
1055     Observer.changedInstr(MI);
1056     return Legalized;
1057   case TargetOpcode::G_PTRTOINT:
1058     if (TypeIdx != 0)
1059       return UnableToLegalize;
1060 
1061     Observer.changingInstr(MI);
1062     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1063     Observer.changedInstr(MI);
1064     return Legalized;
1065   case TargetOpcode::G_PHI: {
1066     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1067     // NarrowSize.
1068     if (SizeOp0 % NarrowSize != 0)
1069       return UnableToLegalize;
1070 
1071     unsigned NumParts = SizeOp0 / NarrowSize;
1072     SmallVector<Register, 2> DstRegs(NumParts);
1073     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1074     Observer.changingInstr(MI);
1075     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1076       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1077       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1078       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1079                    SrcRegs[i / 2]);
1080     }
1081     MachineBasicBlock &MBB = *MI.getParent();
1082     MIRBuilder.setInsertPt(MBB, MI);
1083     for (unsigned i = 0; i < NumParts; ++i) {
1084       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1085       MachineInstrBuilder MIB =
1086           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1087       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1088         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1089     }
1090     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1091     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1092     Observer.changedInstr(MI);
1093     MI.eraseFromParent();
1094     return Legalized;
1095   }
1096   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1097   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1098     if (TypeIdx != 2)
1099       return UnableToLegalize;
1100 
1101     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1102     Observer.changingInstr(MI);
1103     narrowScalarSrc(MI, NarrowTy, OpIdx);
1104     Observer.changedInstr(MI);
1105     return Legalized;
1106   }
1107   case TargetOpcode::G_ICMP: {
1108     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1109     if (NarrowSize * 2 != SrcSize)
1110       return UnableToLegalize;
1111 
1112     Observer.changingInstr(MI);
1113     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1114     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1115     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1116 
1117     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1118     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1119     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1120 
1121     CmpInst::Predicate Pred =
1122         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1123     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1124 
1125     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1126       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1127       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1128       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1129       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1130       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1131     } else {
1132       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1133       MachineInstrBuilder CmpHEQ =
1134           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1135       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1136           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1137       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1138     }
1139     Observer.changedInstr(MI);
1140     MI.eraseFromParent();
1141     return Legalized;
1142   }
1143   case TargetOpcode::G_SEXT_INREG: {
1144     if (TypeIdx != 0)
1145       return UnableToLegalize;
1146 
1147     int64_t SizeInBits = MI.getOperand(2).getImm();
1148 
1149     // So long as the new type has more bits than the bits we're extending we
1150     // don't need to break it apart.
1151     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1152       Observer.changingInstr(MI);
1153       // We don't lose any non-extension bits by truncating the src and
1154       // sign-extending the dst.
1155       MachineOperand &MO1 = MI.getOperand(1);
1156       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1157       MO1.setReg(TruncMIB.getReg(0));
1158 
1159       MachineOperand &MO2 = MI.getOperand(0);
1160       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1161       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1162       MIRBuilder.buildSExt(MO2, DstExt);
1163       MO2.setReg(DstExt);
1164       Observer.changedInstr(MI);
1165       return Legalized;
1166     }
1167 
1168     // Break it apart. Components below the extension point are unmodified. The
1169     // component containing the extension point becomes a narrower SEXT_INREG.
1170     // Components above it are ashr'd from the component containing the
1171     // extension point.
1172     if (SizeOp0 % NarrowSize != 0)
1173       return UnableToLegalize;
1174     int NumParts = SizeOp0 / NarrowSize;
1175 
1176     // List the registers where the destination will be scattered.
1177     SmallVector<Register, 2> DstRegs;
1178     // List the registers where the source will be split.
1179     SmallVector<Register, 2> SrcRegs;
1180 
1181     // Create all the temporary registers.
1182     for (int i = 0; i < NumParts; ++i) {
1183       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1184 
1185       SrcRegs.push_back(SrcReg);
1186     }
1187 
1188     // Explode the big arguments into smaller chunks.
1189     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1190 
1191     Register AshrCstReg =
1192         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1193             .getReg(0);
1194     Register FullExtensionReg = 0;
1195     Register PartialExtensionReg = 0;
1196 
1197     // Do the operation on each small part.
1198     for (int i = 0; i < NumParts; ++i) {
1199       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1200         DstRegs.push_back(SrcRegs[i]);
1201       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1202         assert(PartialExtensionReg &&
1203                "Expected to visit partial extension before full");
1204         if (FullExtensionReg) {
1205           DstRegs.push_back(FullExtensionReg);
1206           continue;
1207         }
1208         DstRegs.push_back(
1209             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1210                 .getReg(0));
1211         FullExtensionReg = DstRegs.back();
1212       } else {
1213         DstRegs.push_back(
1214             MIRBuilder
1215                 .buildInstr(
1216                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1217                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1218                 .getReg(0));
1219         PartialExtensionReg = DstRegs.back();
1220       }
1221     }
1222 
1223     // Gather the destination registers into the final destination.
1224     Register DstReg = MI.getOperand(0).getReg();
1225     MIRBuilder.buildMerge(DstReg, DstRegs);
1226     MI.eraseFromParent();
1227     return Legalized;
1228   }
1229   case TargetOpcode::G_BSWAP:
1230   case TargetOpcode::G_BITREVERSE: {
1231     if (SizeOp0 % NarrowSize != 0)
1232       return UnableToLegalize;
1233 
1234     Observer.changingInstr(MI);
1235     SmallVector<Register, 2> SrcRegs, DstRegs;
1236     unsigned NumParts = SizeOp0 / NarrowSize;
1237     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1238 
1239     for (unsigned i = 0; i < NumParts; ++i) {
1240       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1241                                            {SrcRegs[NumParts - 1 - i]});
1242       DstRegs.push_back(DstPart.getReg(0));
1243     }
1244 
1245     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1246 
1247     Observer.changedInstr(MI);
1248     MI.eraseFromParent();
1249     return Legalized;
1250   }
1251   case TargetOpcode::G_PTR_ADD:
1252   case TargetOpcode::G_PTRMASK: {
1253     if (TypeIdx != 1)
1254       return UnableToLegalize;
1255     Observer.changingInstr(MI);
1256     narrowScalarSrc(MI, NarrowTy, 2);
1257     Observer.changedInstr(MI);
1258     return Legalized;
1259   }
1260   case TargetOpcode::G_FPTOUI: {
1261     if (TypeIdx != 0)
1262       return UnableToLegalize;
1263     Observer.changingInstr(MI);
1264     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1265     Observer.changedInstr(MI);
1266     return Legalized;
1267   }
1268   case TargetOpcode::G_FPTOSI: {
1269     if (TypeIdx != 0)
1270       return UnableToLegalize;
1271     Observer.changingInstr(MI);
1272     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1273     Observer.changedInstr(MI);
1274     return Legalized;
1275   }
1276   case TargetOpcode::G_FPEXT:
1277     if (TypeIdx != 0)
1278       return UnableToLegalize;
1279     Observer.changingInstr(MI);
1280     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1281     Observer.changedInstr(MI);
1282     return Legalized;
1283   }
1284 }
1285 
1286 Register LegalizerHelper::coerceToScalar(Register Val) {
1287   LLT Ty = MRI.getType(Val);
1288   if (Ty.isScalar())
1289     return Val;
1290 
1291   const DataLayout &DL = MIRBuilder.getDataLayout();
1292   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1293   if (Ty.isPointer()) {
1294     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1295       return Register();
1296     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1297   }
1298 
1299   Register NewVal = Val;
1300 
1301   assert(Ty.isVector());
1302   LLT EltTy = Ty.getElementType();
1303   if (EltTy.isPointer())
1304     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1305   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1306 }
1307 
1308 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1309                                      unsigned OpIdx, unsigned ExtOpcode) {
1310   MachineOperand &MO = MI.getOperand(OpIdx);
1311   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1312   MO.setReg(ExtB.getReg(0));
1313 }
1314 
1315 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1316                                       unsigned OpIdx) {
1317   MachineOperand &MO = MI.getOperand(OpIdx);
1318   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1319   MO.setReg(ExtB.getReg(0));
1320 }
1321 
1322 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1323                                      unsigned OpIdx, unsigned TruncOpcode) {
1324   MachineOperand &MO = MI.getOperand(OpIdx);
1325   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1326   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1327   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1328   MO.setReg(DstExt);
1329 }
1330 
1331 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1332                                       unsigned OpIdx, unsigned ExtOpcode) {
1333   MachineOperand &MO = MI.getOperand(OpIdx);
1334   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1335   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1336   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1337   MO.setReg(DstTrunc);
1338 }
1339 
1340 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1341                                             unsigned OpIdx) {
1342   MachineOperand &MO = MI.getOperand(OpIdx);
1343   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1344   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1345 }
1346 
1347 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1348                                             unsigned OpIdx) {
1349   MachineOperand &MO = MI.getOperand(OpIdx);
1350 
1351   LLT OldTy = MRI.getType(MO.getReg());
1352   unsigned OldElts = OldTy.getNumElements();
1353   unsigned NewElts = MoreTy.getNumElements();
1354 
1355   unsigned NumParts = NewElts / OldElts;
1356 
1357   // Use concat_vectors if the result is a multiple of the number of elements.
1358   if (NumParts * OldElts == NewElts) {
1359     SmallVector<Register, 8> Parts;
1360     Parts.push_back(MO.getReg());
1361 
1362     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1363     for (unsigned I = 1; I != NumParts; ++I)
1364       Parts.push_back(ImpDef);
1365 
1366     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1367     MO.setReg(Concat.getReg(0));
1368     return;
1369   }
1370 
1371   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1372   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1373   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1374   MO.setReg(MoreReg);
1375 }
1376 
1377 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1378   MachineOperand &Op = MI.getOperand(OpIdx);
1379   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1380 }
1381 
1382 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1383   MachineOperand &MO = MI.getOperand(OpIdx);
1384   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1385   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1386   MIRBuilder.buildBitcast(MO, CastDst);
1387   MO.setReg(CastDst);
1388 }
1389 
1390 LegalizerHelper::LegalizeResult
1391 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1392                                         LLT WideTy) {
1393   if (TypeIdx != 1)
1394     return UnableToLegalize;
1395 
1396   Register DstReg = MI.getOperand(0).getReg();
1397   LLT DstTy = MRI.getType(DstReg);
1398   if (DstTy.isVector())
1399     return UnableToLegalize;
1400 
1401   Register Src1 = MI.getOperand(1).getReg();
1402   LLT SrcTy = MRI.getType(Src1);
1403   const int DstSize = DstTy.getSizeInBits();
1404   const int SrcSize = SrcTy.getSizeInBits();
1405   const int WideSize = WideTy.getSizeInBits();
1406   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1407 
1408   unsigned NumOps = MI.getNumOperands();
1409   unsigned NumSrc = MI.getNumOperands() - 1;
1410   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1411 
1412   if (WideSize >= DstSize) {
1413     // Directly pack the bits in the target type.
1414     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1415 
1416     for (unsigned I = 2; I != NumOps; ++I) {
1417       const unsigned Offset = (I - 1) * PartSize;
1418 
1419       Register SrcReg = MI.getOperand(I).getReg();
1420       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1421 
1422       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1423 
1424       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1425         MRI.createGenericVirtualRegister(WideTy);
1426 
1427       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1428       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1429       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1430       ResultReg = NextResult;
1431     }
1432 
1433     if (WideSize > DstSize)
1434       MIRBuilder.buildTrunc(DstReg, ResultReg);
1435     else if (DstTy.isPointer())
1436       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1437 
1438     MI.eraseFromParent();
1439     return Legalized;
1440   }
1441 
1442   // Unmerge the original values to the GCD type, and recombine to the next
1443   // multiple greater than the original type.
1444   //
1445   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1446   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1447   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1448   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1449   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1450   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1451   // %12:_(s12) = G_MERGE_VALUES %10, %11
1452   //
1453   // Padding with undef if necessary:
1454   //
1455   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1456   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1457   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1458   // %7:_(s2) = G_IMPLICIT_DEF
1459   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1460   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1461   // %10:_(s12) = G_MERGE_VALUES %8, %9
1462 
1463   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1464   LLT GCDTy = LLT::scalar(GCD);
1465 
1466   SmallVector<Register, 8> Parts;
1467   SmallVector<Register, 8> NewMergeRegs;
1468   SmallVector<Register, 8> Unmerges;
1469   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1470 
1471   // Decompose the original operands if they don't evenly divide.
1472   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1473     Register SrcReg = MI.getOperand(I).getReg();
1474     if (GCD == SrcSize) {
1475       Unmerges.push_back(SrcReg);
1476     } else {
1477       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1478       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1479         Unmerges.push_back(Unmerge.getReg(J));
1480     }
1481   }
1482 
1483   // Pad with undef to the next size that is a multiple of the requested size.
1484   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1485     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1486     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1487       Unmerges.push_back(UndefReg);
1488   }
1489 
1490   const int PartsPerGCD = WideSize / GCD;
1491 
1492   // Build merges of each piece.
1493   ArrayRef<Register> Slicer(Unmerges);
1494   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1495     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1496     NewMergeRegs.push_back(Merge.getReg(0));
1497   }
1498 
1499   // A truncate may be necessary if the requested type doesn't evenly divide the
1500   // original result type.
1501   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1502     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1503   } else {
1504     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1505     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1506   }
1507 
1508   MI.eraseFromParent();
1509   return Legalized;
1510 }
1511 
1512 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1513   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1514   LLT OrigTy = MRI.getType(OrigReg);
1515   LLT LCMTy = getLCMType(WideTy, OrigTy);
1516 
1517   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1518   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1519 
1520   Register UnmergeSrc = WideReg;
1521 
1522   // Create a merge to the LCM type, padding with undef
1523   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1524   // =>
1525   // %1:_(<4 x s32>) = G_FOO
1526   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1527   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1528   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1529   if (NumMergeParts > 1) {
1530     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1531     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1532     MergeParts[0] = WideReg;
1533     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1534   }
1535 
1536   // Unmerge to the original register and pad with dead defs.
1537   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1538   UnmergeResults[0] = OrigReg;
1539   for (int I = 1; I != NumUnmergeParts; ++I)
1540     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1541 
1542   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1543   return WideReg;
1544 }
1545 
1546 LegalizerHelper::LegalizeResult
1547 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1548                                           LLT WideTy) {
1549   if (TypeIdx != 0)
1550     return UnableToLegalize;
1551 
1552   int NumDst = MI.getNumOperands() - 1;
1553   Register SrcReg = MI.getOperand(NumDst).getReg();
1554   LLT SrcTy = MRI.getType(SrcReg);
1555   if (SrcTy.isVector())
1556     return UnableToLegalize;
1557 
1558   Register Dst0Reg = MI.getOperand(0).getReg();
1559   LLT DstTy = MRI.getType(Dst0Reg);
1560   if (!DstTy.isScalar())
1561     return UnableToLegalize;
1562 
1563   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1564     if (SrcTy.isPointer()) {
1565       const DataLayout &DL = MIRBuilder.getDataLayout();
1566       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1567         LLVM_DEBUG(
1568             dbgs() << "Not casting non-integral address space integer\n");
1569         return UnableToLegalize;
1570       }
1571 
1572       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1573       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1574     }
1575 
1576     // Widen SrcTy to WideTy. This does not affect the result, but since the
1577     // user requested this size, it is probably better handled than SrcTy and
1578     // should reduce the total number of legalization artifacts
1579     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1580       SrcTy = WideTy;
1581       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1582     }
1583 
1584     // Theres no unmerge type to target. Directly extract the bits from the
1585     // source type
1586     unsigned DstSize = DstTy.getSizeInBits();
1587 
1588     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1589     for (int I = 1; I != NumDst; ++I) {
1590       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1591       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1592       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1593     }
1594 
1595     MI.eraseFromParent();
1596     return Legalized;
1597   }
1598 
1599   // Extend the source to a wider type.
1600   LLT LCMTy = getLCMType(SrcTy, WideTy);
1601 
1602   Register WideSrc = SrcReg;
1603   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1604     // TODO: If this is an integral address space, cast to integer and anyext.
1605     if (SrcTy.isPointer()) {
1606       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1607       return UnableToLegalize;
1608     }
1609 
1610     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1611   }
1612 
1613   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1614 
1615   // Create a sequence of unmerges and merges to the original results. Since we
1616   // may have widened the source, we will need to pad the results with dead defs
1617   // to cover the source register.
1618   // e.g. widen s48 to s64:
1619   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1620   //
1621   // =>
1622   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1623   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1624   //  ; unpack to GCD type, with extra dead defs
1625   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1626   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1627   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1628   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1629   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1630   const LLT GCDTy = getGCDType(WideTy, DstTy);
1631   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1632   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1633 
1634   // Directly unmerge to the destination without going through a GCD type
1635   // if possible
1636   if (PartsPerRemerge == 1) {
1637     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1638 
1639     for (int I = 0; I != NumUnmerge; ++I) {
1640       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1641 
1642       for (int J = 0; J != PartsPerUnmerge; ++J) {
1643         int Idx = I * PartsPerUnmerge + J;
1644         if (Idx < NumDst)
1645           MIB.addDef(MI.getOperand(Idx).getReg());
1646         else {
1647           // Create dead def for excess components.
1648           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1649         }
1650       }
1651 
1652       MIB.addUse(Unmerge.getReg(I));
1653     }
1654   } else {
1655     SmallVector<Register, 16> Parts;
1656     for (int J = 0; J != NumUnmerge; ++J)
1657       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1658 
1659     SmallVector<Register, 8> RemergeParts;
1660     for (int I = 0; I != NumDst; ++I) {
1661       for (int J = 0; J < PartsPerRemerge; ++J) {
1662         const int Idx = I * PartsPerRemerge + J;
1663         RemergeParts.emplace_back(Parts[Idx]);
1664       }
1665 
1666       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1667       RemergeParts.clear();
1668     }
1669   }
1670 
1671   MI.eraseFromParent();
1672   return Legalized;
1673 }
1674 
1675 LegalizerHelper::LegalizeResult
1676 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1677                                     LLT WideTy) {
1678   Register DstReg = MI.getOperand(0).getReg();
1679   Register SrcReg = MI.getOperand(1).getReg();
1680   LLT SrcTy = MRI.getType(SrcReg);
1681 
1682   LLT DstTy = MRI.getType(DstReg);
1683   unsigned Offset = MI.getOperand(2).getImm();
1684 
1685   if (TypeIdx == 0) {
1686     if (SrcTy.isVector() || DstTy.isVector())
1687       return UnableToLegalize;
1688 
1689     SrcOp Src(SrcReg);
1690     if (SrcTy.isPointer()) {
1691       // Extracts from pointers can be handled only if they are really just
1692       // simple integers.
1693       const DataLayout &DL = MIRBuilder.getDataLayout();
1694       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1695         return UnableToLegalize;
1696 
1697       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1698       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1699       SrcTy = SrcAsIntTy;
1700     }
1701 
1702     if (DstTy.isPointer())
1703       return UnableToLegalize;
1704 
1705     if (Offset == 0) {
1706       // Avoid a shift in the degenerate case.
1707       MIRBuilder.buildTrunc(DstReg,
1708                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1709       MI.eraseFromParent();
1710       return Legalized;
1711     }
1712 
1713     // Do a shift in the source type.
1714     LLT ShiftTy = SrcTy;
1715     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1716       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1717       ShiftTy = WideTy;
1718     }
1719 
1720     auto LShr = MIRBuilder.buildLShr(
1721       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1722     MIRBuilder.buildTrunc(DstReg, LShr);
1723     MI.eraseFromParent();
1724     return Legalized;
1725   }
1726 
1727   if (SrcTy.isScalar()) {
1728     Observer.changingInstr(MI);
1729     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1730     Observer.changedInstr(MI);
1731     return Legalized;
1732   }
1733 
1734   if (!SrcTy.isVector())
1735     return UnableToLegalize;
1736 
1737   if (DstTy != SrcTy.getElementType())
1738     return UnableToLegalize;
1739 
1740   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1741     return UnableToLegalize;
1742 
1743   Observer.changingInstr(MI);
1744   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1745 
1746   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1747                           Offset);
1748   widenScalarDst(MI, WideTy.getScalarType(), 0);
1749   Observer.changedInstr(MI);
1750   return Legalized;
1751 }
1752 
1753 LegalizerHelper::LegalizeResult
1754 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1755                                    LLT WideTy) {
1756   if (TypeIdx != 0 || WideTy.isVector())
1757     return UnableToLegalize;
1758   Observer.changingInstr(MI);
1759   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1760   widenScalarDst(MI, WideTy);
1761   Observer.changedInstr(MI);
1762   return Legalized;
1763 }
1764 
1765 LegalizerHelper::LegalizeResult
1766 LegalizerHelper::widenScalarAddoSubo(MachineInstr &MI, unsigned TypeIdx,
1767                                      LLT WideTy) {
1768   if (TypeIdx == 1)
1769     return UnableToLegalize; // TODO
1770   unsigned Op = MI.getOpcode();
1771   unsigned Opcode = Op == TargetOpcode::G_UADDO || Op == TargetOpcode::G_SADDO
1772                         ? TargetOpcode::G_ADD
1773                         : TargetOpcode::G_SUB;
1774   unsigned ExtOpcode =
1775       Op == TargetOpcode::G_UADDO || Op == TargetOpcode::G_USUBO
1776           ? TargetOpcode::G_ZEXT
1777           : TargetOpcode::G_SEXT;
1778   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1779   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1780   // Do the arithmetic in the larger type.
1781   auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt});
1782   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1783   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1784   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1785   // There is no overflow if the ExtOp is the same as NewOp.
1786   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1787   // Now trunc the NewOp to the original result.
1788   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1789   MI.eraseFromParent();
1790   return Legalized;
1791 }
1792 
1793 LegalizerHelper::LegalizeResult
1794 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1795                                          LLT WideTy) {
1796   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1797                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1798                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1799   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1800                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1801   // We can convert this to:
1802   //   1. Any extend iN to iM
1803   //   2. SHL by M-N
1804   //   3. [US][ADD|SUB|SHL]SAT
1805   //   4. L/ASHR by M-N
1806   //
1807   // It may be more efficient to lower this to a min and a max operation in
1808   // the higher precision arithmetic if the promoted operation isn't legal,
1809   // but this decision is up to the target's lowering request.
1810   Register DstReg = MI.getOperand(0).getReg();
1811 
1812   unsigned NewBits = WideTy.getScalarSizeInBits();
1813   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1814 
1815   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1816   // must not left shift the RHS to preserve the shift amount.
1817   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1818   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1819                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1820   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1821   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1822   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1823 
1824   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1825                                         {ShiftL, ShiftR}, MI.getFlags());
1826 
1827   // Use a shift that will preserve the number of sign bits when the trunc is
1828   // folded away.
1829   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1830                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1831 
1832   MIRBuilder.buildTrunc(DstReg, Result);
1833   MI.eraseFromParent();
1834   return Legalized;
1835 }
1836 
1837 LegalizerHelper::LegalizeResult
1838 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1839   switch (MI.getOpcode()) {
1840   default:
1841     return UnableToLegalize;
1842   case TargetOpcode::G_EXTRACT:
1843     return widenScalarExtract(MI, TypeIdx, WideTy);
1844   case TargetOpcode::G_INSERT:
1845     return widenScalarInsert(MI, TypeIdx, WideTy);
1846   case TargetOpcode::G_MERGE_VALUES:
1847     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1848   case TargetOpcode::G_UNMERGE_VALUES:
1849     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1850   case TargetOpcode::G_SADDO:
1851   case TargetOpcode::G_SSUBO:
1852   case TargetOpcode::G_UADDO:
1853   case TargetOpcode::G_USUBO:
1854     return widenScalarAddoSubo(MI, TypeIdx, WideTy);
1855   case TargetOpcode::G_SADDSAT:
1856   case TargetOpcode::G_SSUBSAT:
1857   case TargetOpcode::G_SSHLSAT:
1858   case TargetOpcode::G_UADDSAT:
1859   case TargetOpcode::G_USUBSAT:
1860   case TargetOpcode::G_USHLSAT:
1861     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1862   case TargetOpcode::G_CTTZ:
1863   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1864   case TargetOpcode::G_CTLZ:
1865   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1866   case TargetOpcode::G_CTPOP: {
1867     if (TypeIdx == 0) {
1868       Observer.changingInstr(MI);
1869       widenScalarDst(MI, WideTy, 0);
1870       Observer.changedInstr(MI);
1871       return Legalized;
1872     }
1873 
1874     Register SrcReg = MI.getOperand(1).getReg();
1875 
1876     // First ZEXT the input.
1877     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1878     LLT CurTy = MRI.getType(SrcReg);
1879     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1880       // The count is the same in the larger type except if the original
1881       // value was zero.  This can be handled by setting the bit just off
1882       // the top of the original type.
1883       auto TopBit =
1884           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1885       MIBSrc = MIRBuilder.buildOr(
1886         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1887     }
1888 
1889     // Perform the operation at the larger size.
1890     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1891     // This is already the correct result for CTPOP and CTTZs
1892     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1893         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1894       // The correct result is NewOp - (Difference in widety and current ty).
1895       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1896       MIBNewOp = MIRBuilder.buildSub(
1897           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1898     }
1899 
1900     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1901     MI.eraseFromParent();
1902     return Legalized;
1903   }
1904   case TargetOpcode::G_BSWAP: {
1905     Observer.changingInstr(MI);
1906     Register DstReg = MI.getOperand(0).getReg();
1907 
1908     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1909     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1910     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1911     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1912 
1913     MI.getOperand(0).setReg(DstExt);
1914 
1915     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1916 
1917     LLT Ty = MRI.getType(DstReg);
1918     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1919     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1920     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1921 
1922     MIRBuilder.buildTrunc(DstReg, ShrReg);
1923     Observer.changedInstr(MI);
1924     return Legalized;
1925   }
1926   case TargetOpcode::G_BITREVERSE: {
1927     Observer.changingInstr(MI);
1928 
1929     Register DstReg = MI.getOperand(0).getReg();
1930     LLT Ty = MRI.getType(DstReg);
1931     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1932 
1933     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1934     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1935     MI.getOperand(0).setReg(DstExt);
1936     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1937 
1938     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1939     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1940     MIRBuilder.buildTrunc(DstReg, Shift);
1941     Observer.changedInstr(MI);
1942     return Legalized;
1943   }
1944   case TargetOpcode::G_FREEZE:
1945     Observer.changingInstr(MI);
1946     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1947     widenScalarDst(MI, WideTy);
1948     Observer.changedInstr(MI);
1949     return Legalized;
1950 
1951   case TargetOpcode::G_ADD:
1952   case TargetOpcode::G_AND:
1953   case TargetOpcode::G_MUL:
1954   case TargetOpcode::G_OR:
1955   case TargetOpcode::G_XOR:
1956   case TargetOpcode::G_SUB:
1957     // Perform operation at larger width (any extension is fines here, high bits
1958     // don't affect the result) and then truncate the result back to the
1959     // original type.
1960     Observer.changingInstr(MI);
1961     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1962     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1963     widenScalarDst(MI, WideTy);
1964     Observer.changedInstr(MI);
1965     return Legalized;
1966 
1967   case TargetOpcode::G_SHL:
1968     Observer.changingInstr(MI);
1969 
1970     if (TypeIdx == 0) {
1971       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1972       widenScalarDst(MI, WideTy);
1973     } else {
1974       assert(TypeIdx == 1);
1975       // The "number of bits to shift" operand must preserve its value as an
1976       // unsigned integer:
1977       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1978     }
1979 
1980     Observer.changedInstr(MI);
1981     return Legalized;
1982 
1983   case TargetOpcode::G_SDIV:
1984   case TargetOpcode::G_SREM:
1985   case TargetOpcode::G_SMIN:
1986   case TargetOpcode::G_SMAX:
1987     Observer.changingInstr(MI);
1988     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1989     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1990     widenScalarDst(MI, WideTy);
1991     Observer.changedInstr(MI);
1992     return Legalized;
1993 
1994   case TargetOpcode::G_ASHR:
1995   case TargetOpcode::G_LSHR:
1996     Observer.changingInstr(MI);
1997 
1998     if (TypeIdx == 0) {
1999       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2000         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2001 
2002       widenScalarSrc(MI, WideTy, 1, CvtOp);
2003       widenScalarDst(MI, WideTy);
2004     } else {
2005       assert(TypeIdx == 1);
2006       // The "number of bits to shift" operand must preserve its value as an
2007       // unsigned integer:
2008       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2009     }
2010 
2011     Observer.changedInstr(MI);
2012     return Legalized;
2013   case TargetOpcode::G_UDIV:
2014   case TargetOpcode::G_UREM:
2015   case TargetOpcode::G_UMIN:
2016   case TargetOpcode::G_UMAX:
2017     Observer.changingInstr(MI);
2018     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2019     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2020     widenScalarDst(MI, WideTy);
2021     Observer.changedInstr(MI);
2022     return Legalized;
2023 
2024   case TargetOpcode::G_SELECT:
2025     Observer.changingInstr(MI);
2026     if (TypeIdx == 0) {
2027       // Perform operation at larger width (any extension is fine here, high
2028       // bits don't affect the result) and then truncate the result back to the
2029       // original type.
2030       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2031       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2032       widenScalarDst(MI, WideTy);
2033     } else {
2034       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2035       // Explicit extension is required here since high bits affect the result.
2036       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2037     }
2038     Observer.changedInstr(MI);
2039     return Legalized;
2040 
2041   case TargetOpcode::G_FPTOSI:
2042   case TargetOpcode::G_FPTOUI:
2043     Observer.changingInstr(MI);
2044 
2045     if (TypeIdx == 0)
2046       widenScalarDst(MI, WideTy);
2047     else
2048       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2049 
2050     Observer.changedInstr(MI);
2051     return Legalized;
2052   case TargetOpcode::G_SITOFP:
2053     Observer.changingInstr(MI);
2054 
2055     if (TypeIdx == 0)
2056       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2057     else
2058       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2059 
2060     Observer.changedInstr(MI);
2061     return Legalized;
2062   case TargetOpcode::G_UITOFP:
2063     Observer.changingInstr(MI);
2064 
2065     if (TypeIdx == 0)
2066       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2067     else
2068       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2069 
2070     Observer.changedInstr(MI);
2071     return Legalized;
2072   case TargetOpcode::G_LOAD:
2073   case TargetOpcode::G_SEXTLOAD:
2074   case TargetOpcode::G_ZEXTLOAD:
2075     Observer.changingInstr(MI);
2076     widenScalarDst(MI, WideTy);
2077     Observer.changedInstr(MI);
2078     return Legalized;
2079 
2080   case TargetOpcode::G_STORE: {
2081     if (TypeIdx != 0)
2082       return UnableToLegalize;
2083 
2084     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2085     if (!Ty.isScalar())
2086       return UnableToLegalize;
2087 
2088     Observer.changingInstr(MI);
2089 
2090     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2091       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2092     widenScalarSrc(MI, WideTy, 0, ExtType);
2093 
2094     Observer.changedInstr(MI);
2095     return Legalized;
2096   }
2097   case TargetOpcode::G_CONSTANT: {
2098     MachineOperand &SrcMO = MI.getOperand(1);
2099     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2100     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2101         MRI.getType(MI.getOperand(0).getReg()));
2102     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2103             ExtOpc == TargetOpcode::G_ANYEXT) &&
2104            "Illegal Extend");
2105     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2106     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2107                            ? SrcVal.sext(WideTy.getSizeInBits())
2108                            : SrcVal.zext(WideTy.getSizeInBits());
2109     Observer.changingInstr(MI);
2110     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2111 
2112     widenScalarDst(MI, WideTy);
2113     Observer.changedInstr(MI);
2114     return Legalized;
2115   }
2116   case TargetOpcode::G_FCONSTANT: {
2117     MachineOperand &SrcMO = MI.getOperand(1);
2118     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2119     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2120     bool LosesInfo;
2121     switch (WideTy.getSizeInBits()) {
2122     case 32:
2123       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2124                   &LosesInfo);
2125       break;
2126     case 64:
2127       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2128                   &LosesInfo);
2129       break;
2130     default:
2131       return UnableToLegalize;
2132     }
2133 
2134     assert(!LosesInfo && "extend should always be lossless");
2135 
2136     Observer.changingInstr(MI);
2137     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2138 
2139     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2140     Observer.changedInstr(MI);
2141     return Legalized;
2142   }
2143   case TargetOpcode::G_IMPLICIT_DEF: {
2144     Observer.changingInstr(MI);
2145     widenScalarDst(MI, WideTy);
2146     Observer.changedInstr(MI);
2147     return Legalized;
2148   }
2149   case TargetOpcode::G_BRCOND:
2150     Observer.changingInstr(MI);
2151     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2152     Observer.changedInstr(MI);
2153     return Legalized;
2154 
2155   case TargetOpcode::G_FCMP:
2156     Observer.changingInstr(MI);
2157     if (TypeIdx == 0)
2158       widenScalarDst(MI, WideTy);
2159     else {
2160       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2161       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2162     }
2163     Observer.changedInstr(MI);
2164     return Legalized;
2165 
2166   case TargetOpcode::G_ICMP:
2167     Observer.changingInstr(MI);
2168     if (TypeIdx == 0)
2169       widenScalarDst(MI, WideTy);
2170     else {
2171       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2172                                MI.getOperand(1).getPredicate()))
2173                                ? TargetOpcode::G_SEXT
2174                                : TargetOpcode::G_ZEXT;
2175       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2176       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2177     }
2178     Observer.changedInstr(MI);
2179     return Legalized;
2180 
2181   case TargetOpcode::G_PTR_ADD:
2182     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2183     Observer.changingInstr(MI);
2184     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2185     Observer.changedInstr(MI);
2186     return Legalized;
2187 
2188   case TargetOpcode::G_PHI: {
2189     assert(TypeIdx == 0 && "Expecting only Idx 0");
2190 
2191     Observer.changingInstr(MI);
2192     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2193       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2194       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2195       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2196     }
2197 
2198     MachineBasicBlock &MBB = *MI.getParent();
2199     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2200     widenScalarDst(MI, WideTy);
2201     Observer.changedInstr(MI);
2202     return Legalized;
2203   }
2204   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2205     if (TypeIdx == 0) {
2206       Register VecReg = MI.getOperand(1).getReg();
2207       LLT VecTy = MRI.getType(VecReg);
2208       Observer.changingInstr(MI);
2209 
2210       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2211                                      WideTy.getSizeInBits()),
2212                      1, TargetOpcode::G_SEXT);
2213 
2214       widenScalarDst(MI, WideTy, 0);
2215       Observer.changedInstr(MI);
2216       return Legalized;
2217     }
2218 
2219     if (TypeIdx != 2)
2220       return UnableToLegalize;
2221     Observer.changingInstr(MI);
2222     // TODO: Probably should be zext
2223     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2224     Observer.changedInstr(MI);
2225     return Legalized;
2226   }
2227   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2228     if (TypeIdx == 1) {
2229       Observer.changingInstr(MI);
2230 
2231       Register VecReg = MI.getOperand(1).getReg();
2232       LLT VecTy = MRI.getType(VecReg);
2233       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2234 
2235       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2236       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2237       widenScalarDst(MI, WideVecTy, 0);
2238       Observer.changedInstr(MI);
2239       return Legalized;
2240     }
2241 
2242     if (TypeIdx == 2) {
2243       Observer.changingInstr(MI);
2244       // TODO: Probably should be zext
2245       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2246       Observer.changedInstr(MI);
2247       return Legalized;
2248     }
2249 
2250     return UnableToLegalize;
2251   }
2252   case TargetOpcode::G_FADD:
2253   case TargetOpcode::G_FMUL:
2254   case TargetOpcode::G_FSUB:
2255   case TargetOpcode::G_FMA:
2256   case TargetOpcode::G_FMAD:
2257   case TargetOpcode::G_FNEG:
2258   case TargetOpcode::G_FABS:
2259   case TargetOpcode::G_FCANONICALIZE:
2260   case TargetOpcode::G_FMINNUM:
2261   case TargetOpcode::G_FMAXNUM:
2262   case TargetOpcode::G_FMINNUM_IEEE:
2263   case TargetOpcode::G_FMAXNUM_IEEE:
2264   case TargetOpcode::G_FMINIMUM:
2265   case TargetOpcode::G_FMAXIMUM:
2266   case TargetOpcode::G_FDIV:
2267   case TargetOpcode::G_FREM:
2268   case TargetOpcode::G_FCEIL:
2269   case TargetOpcode::G_FFLOOR:
2270   case TargetOpcode::G_FCOS:
2271   case TargetOpcode::G_FSIN:
2272   case TargetOpcode::G_FLOG10:
2273   case TargetOpcode::G_FLOG:
2274   case TargetOpcode::G_FLOG2:
2275   case TargetOpcode::G_FRINT:
2276   case TargetOpcode::G_FNEARBYINT:
2277   case TargetOpcode::G_FSQRT:
2278   case TargetOpcode::G_FEXP:
2279   case TargetOpcode::G_FEXP2:
2280   case TargetOpcode::G_FPOW:
2281   case TargetOpcode::G_INTRINSIC_TRUNC:
2282   case TargetOpcode::G_INTRINSIC_ROUND:
2283   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2284     assert(TypeIdx == 0);
2285     Observer.changingInstr(MI);
2286 
2287     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2288       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2289 
2290     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2291     Observer.changedInstr(MI);
2292     return Legalized;
2293   case TargetOpcode::G_FPOWI: {
2294     if (TypeIdx != 0)
2295       return UnableToLegalize;
2296     Observer.changingInstr(MI);
2297     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2298     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2299     Observer.changedInstr(MI);
2300     return Legalized;
2301   }
2302   case TargetOpcode::G_INTTOPTR:
2303     if (TypeIdx != 1)
2304       return UnableToLegalize;
2305 
2306     Observer.changingInstr(MI);
2307     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2308     Observer.changedInstr(MI);
2309     return Legalized;
2310   case TargetOpcode::G_PTRTOINT:
2311     if (TypeIdx != 0)
2312       return UnableToLegalize;
2313 
2314     Observer.changingInstr(MI);
2315     widenScalarDst(MI, WideTy, 0);
2316     Observer.changedInstr(MI);
2317     return Legalized;
2318   case TargetOpcode::G_BUILD_VECTOR: {
2319     Observer.changingInstr(MI);
2320 
2321     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2322     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2323       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2324 
2325     // Avoid changing the result vector type if the source element type was
2326     // requested.
2327     if (TypeIdx == 1) {
2328       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2329     } else {
2330       widenScalarDst(MI, WideTy, 0);
2331     }
2332 
2333     Observer.changedInstr(MI);
2334     return Legalized;
2335   }
2336   case TargetOpcode::G_SEXT_INREG:
2337     if (TypeIdx != 0)
2338       return UnableToLegalize;
2339 
2340     Observer.changingInstr(MI);
2341     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2342     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2343     Observer.changedInstr(MI);
2344     return Legalized;
2345   case TargetOpcode::G_PTRMASK: {
2346     if (TypeIdx != 1)
2347       return UnableToLegalize;
2348     Observer.changingInstr(MI);
2349     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2350     Observer.changedInstr(MI);
2351     return Legalized;
2352   }
2353   }
2354 }
2355 
2356 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2357                              MachineIRBuilder &B, Register Src, LLT Ty) {
2358   auto Unmerge = B.buildUnmerge(Ty, Src);
2359   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2360     Pieces.push_back(Unmerge.getReg(I));
2361 }
2362 
2363 LegalizerHelper::LegalizeResult
2364 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2365   Register Dst = MI.getOperand(0).getReg();
2366   Register Src = MI.getOperand(1).getReg();
2367   LLT DstTy = MRI.getType(Dst);
2368   LLT SrcTy = MRI.getType(Src);
2369 
2370   if (SrcTy.isVector()) {
2371     LLT SrcEltTy = SrcTy.getElementType();
2372     SmallVector<Register, 8> SrcRegs;
2373 
2374     if (DstTy.isVector()) {
2375       int NumDstElt = DstTy.getNumElements();
2376       int NumSrcElt = SrcTy.getNumElements();
2377 
2378       LLT DstEltTy = DstTy.getElementType();
2379       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2380       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2381 
2382       // If there's an element size mismatch, insert intermediate casts to match
2383       // the result element type.
2384       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2385         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2386         //
2387         // =>
2388         //
2389         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2390         // %3:_(<2 x s8>) = G_BITCAST %2
2391         // %4:_(<2 x s8>) = G_BITCAST %3
2392         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2393         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2394         SrcPartTy = SrcEltTy;
2395       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2396         //
2397         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2398         //
2399         // =>
2400         //
2401         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2402         // %3:_(s16) = G_BITCAST %2
2403         // %4:_(s16) = G_BITCAST %3
2404         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2405         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2406         DstCastTy = DstEltTy;
2407       }
2408 
2409       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2410       for (Register &SrcReg : SrcRegs)
2411         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2412     } else
2413       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2414 
2415     MIRBuilder.buildMerge(Dst, SrcRegs);
2416     MI.eraseFromParent();
2417     return Legalized;
2418   }
2419 
2420   if (DstTy.isVector()) {
2421     SmallVector<Register, 8> SrcRegs;
2422     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2423     MIRBuilder.buildMerge(Dst, SrcRegs);
2424     MI.eraseFromParent();
2425     return Legalized;
2426   }
2427 
2428   return UnableToLegalize;
2429 }
2430 
2431 /// Figure out the bit offset into a register when coercing a vector index for
2432 /// the wide element type. This is only for the case when promoting vector to
2433 /// one with larger elements.
2434 //
2435 ///
2436 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2437 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2438 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2439                                                    Register Idx,
2440                                                    unsigned NewEltSize,
2441                                                    unsigned OldEltSize) {
2442   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2443   LLT IdxTy = B.getMRI()->getType(Idx);
2444 
2445   // Now figure out the amount we need to shift to get the target bits.
2446   auto OffsetMask = B.buildConstant(
2447     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2448   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2449   return B.buildShl(IdxTy, OffsetIdx,
2450                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2451 }
2452 
2453 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2454 /// is casting to a vector with a smaller element size, perform multiple element
2455 /// extracts and merge the results. If this is coercing to a vector with larger
2456 /// elements, index the bitcasted vector and extract the target element with bit
2457 /// operations. This is intended to force the indexing in the native register
2458 /// size for architectures that can dynamically index the register file.
2459 LegalizerHelper::LegalizeResult
2460 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2461                                          LLT CastTy) {
2462   if (TypeIdx != 1)
2463     return UnableToLegalize;
2464 
2465   Register Dst = MI.getOperand(0).getReg();
2466   Register SrcVec = MI.getOperand(1).getReg();
2467   Register Idx = MI.getOperand(2).getReg();
2468   LLT SrcVecTy = MRI.getType(SrcVec);
2469   LLT IdxTy = MRI.getType(Idx);
2470 
2471   LLT SrcEltTy = SrcVecTy.getElementType();
2472   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2473   unsigned OldNumElts = SrcVecTy.getNumElements();
2474 
2475   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2476   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2477 
2478   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2479   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2480   if (NewNumElts > OldNumElts) {
2481     // Decreasing the vector element size
2482     //
2483     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2484     //  =>
2485     //  v4i32:castx = bitcast x:v2i64
2486     //
2487     // i64 = bitcast
2488     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2489     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2490     //
2491     if (NewNumElts % OldNumElts != 0)
2492       return UnableToLegalize;
2493 
2494     // Type of the intermediate result vector.
2495     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2496     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2497 
2498     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2499 
2500     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2501     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2502 
2503     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2504       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2505       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2506       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2507       NewOps[I] = Elt.getReg(0);
2508     }
2509 
2510     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2511     MIRBuilder.buildBitcast(Dst, NewVec);
2512     MI.eraseFromParent();
2513     return Legalized;
2514   }
2515 
2516   if (NewNumElts < OldNumElts) {
2517     if (NewEltSize % OldEltSize != 0)
2518       return UnableToLegalize;
2519 
2520     // This only depends on powers of 2 because we use bit tricks to figure out
2521     // the bit offset we need to shift to get the target element. A general
2522     // expansion could emit division/multiply.
2523     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2524       return UnableToLegalize;
2525 
2526     // Increasing the vector element size.
2527     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2528     //
2529     //   =>
2530     //
2531     // %cast = G_BITCAST %vec
2532     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2533     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2534     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2535     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2536     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2537     // %elt = G_TRUNC %elt_bits
2538 
2539     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2540     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2541 
2542     // Divide to get the index in the wider element type.
2543     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2544 
2545     Register WideElt = CastVec;
2546     if (CastTy.isVector()) {
2547       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2548                                                      ScaledIdx).getReg(0);
2549     }
2550 
2551     // Compute the bit offset into the register of the target element.
2552     Register OffsetBits = getBitcastWiderVectorElementOffset(
2553       MIRBuilder, Idx, NewEltSize, OldEltSize);
2554 
2555     // Shift the wide element to get the target element.
2556     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2557     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2558     MI.eraseFromParent();
2559     return Legalized;
2560   }
2561 
2562   return UnableToLegalize;
2563 }
2564 
2565 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2566 /// TargetReg, while preserving other bits in \p TargetReg.
2567 ///
2568 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2569 static Register buildBitFieldInsert(MachineIRBuilder &B,
2570                                     Register TargetReg, Register InsertReg,
2571                                     Register OffsetBits) {
2572   LLT TargetTy = B.getMRI()->getType(TargetReg);
2573   LLT InsertTy = B.getMRI()->getType(InsertReg);
2574   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2575   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2576 
2577   // Produce a bitmask of the value to insert
2578   auto EltMask = B.buildConstant(
2579     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2580                                    InsertTy.getSizeInBits()));
2581   // Shift it into position
2582   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2583   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2584 
2585   // Clear out the bits in the wide element
2586   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2587 
2588   // The value to insert has all zeros already, so stick it into the masked
2589   // wide element.
2590   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2591 }
2592 
2593 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2594 /// is increasing the element size, perform the indexing in the target element
2595 /// type, and use bit operations to insert at the element position. This is
2596 /// intended for architectures that can dynamically index the register file and
2597 /// want to force indexing in the native register size.
2598 LegalizerHelper::LegalizeResult
2599 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2600                                         LLT CastTy) {
2601   if (TypeIdx != 0)
2602     return UnableToLegalize;
2603 
2604   Register Dst = MI.getOperand(0).getReg();
2605   Register SrcVec = MI.getOperand(1).getReg();
2606   Register Val = MI.getOperand(2).getReg();
2607   Register Idx = MI.getOperand(3).getReg();
2608 
2609   LLT VecTy = MRI.getType(Dst);
2610   LLT IdxTy = MRI.getType(Idx);
2611 
2612   LLT VecEltTy = VecTy.getElementType();
2613   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2614   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2615   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2616 
2617   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2618   unsigned OldNumElts = VecTy.getNumElements();
2619 
2620   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2621   if (NewNumElts < OldNumElts) {
2622     if (NewEltSize % OldEltSize != 0)
2623       return UnableToLegalize;
2624 
2625     // This only depends on powers of 2 because we use bit tricks to figure out
2626     // the bit offset we need to shift to get the target element. A general
2627     // expansion could emit division/multiply.
2628     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2629       return UnableToLegalize;
2630 
2631     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2632     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2633 
2634     // Divide to get the index in the wider element type.
2635     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2636 
2637     Register ExtractedElt = CastVec;
2638     if (CastTy.isVector()) {
2639       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2640                                                           ScaledIdx).getReg(0);
2641     }
2642 
2643     // Compute the bit offset into the register of the target element.
2644     Register OffsetBits = getBitcastWiderVectorElementOffset(
2645       MIRBuilder, Idx, NewEltSize, OldEltSize);
2646 
2647     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2648                                                Val, OffsetBits);
2649     if (CastTy.isVector()) {
2650       InsertedElt = MIRBuilder.buildInsertVectorElement(
2651         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2652     }
2653 
2654     MIRBuilder.buildBitcast(Dst, InsertedElt);
2655     MI.eraseFromParent();
2656     return Legalized;
2657   }
2658 
2659   return UnableToLegalize;
2660 }
2661 
2662 LegalizerHelper::LegalizeResult
2663 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2664   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2665   Register DstReg = MI.getOperand(0).getReg();
2666   Register PtrReg = MI.getOperand(1).getReg();
2667   LLT DstTy = MRI.getType(DstReg);
2668   auto &MMO = **MI.memoperands_begin();
2669 
2670   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2671     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2672       // This load needs splitting into power of 2 sized loads.
2673       if (DstTy.isVector())
2674         return UnableToLegalize;
2675       if (isPowerOf2_32(DstTy.getSizeInBits()))
2676         return UnableToLegalize; // Don't know what we're being asked to do.
2677 
2678       // Our strategy here is to generate anyextending loads for the smaller
2679       // types up to next power-2 result type, and then combine the two larger
2680       // result values together, before truncating back down to the non-pow-2
2681       // type.
2682       // E.g. v1 = i24 load =>
2683       // v2 = i32 zextload (2 byte)
2684       // v3 = i32 load (1 byte)
2685       // v4 = i32 shl v3, 16
2686       // v5 = i32 or v4, v2
2687       // v1 = i24 trunc v5
2688       // By doing this we generate the correct truncate which should get
2689       // combined away as an artifact with a matching extend.
2690       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2691       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2692 
2693       MachineFunction &MF = MIRBuilder.getMF();
2694       MachineMemOperand *LargeMMO =
2695         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2696       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2697         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2698 
2699       LLT PtrTy = MRI.getType(PtrReg);
2700       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2701       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2702       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2703       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2704       auto LargeLoad = MIRBuilder.buildLoadInstr(
2705         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2706 
2707       auto OffsetCst = MIRBuilder.buildConstant(
2708         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2709       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2710       auto SmallPtr =
2711         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2712       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2713                                             *SmallMMO);
2714 
2715       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2716       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2717       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2718       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2719       MI.eraseFromParent();
2720       return Legalized;
2721     }
2722 
2723     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2724     MI.eraseFromParent();
2725     return Legalized;
2726   }
2727 
2728   if (DstTy.isScalar()) {
2729     Register TmpReg =
2730       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2731     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2732     switch (MI.getOpcode()) {
2733     default:
2734       llvm_unreachable("Unexpected opcode");
2735     case TargetOpcode::G_LOAD:
2736       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2737       break;
2738     case TargetOpcode::G_SEXTLOAD:
2739       MIRBuilder.buildSExt(DstReg, TmpReg);
2740       break;
2741     case TargetOpcode::G_ZEXTLOAD:
2742       MIRBuilder.buildZExt(DstReg, TmpReg);
2743       break;
2744     }
2745 
2746     MI.eraseFromParent();
2747     return Legalized;
2748   }
2749 
2750   return UnableToLegalize;
2751 }
2752 
2753 LegalizerHelper::LegalizeResult
2754 LegalizerHelper::lowerStore(MachineInstr &MI) {
2755   // Lower a non-power of 2 store into multiple pow-2 stores.
2756   // E.g. split an i24 store into an i16 store + i8 store.
2757   // We do this by first extending the stored value to the next largest power
2758   // of 2 type, and then using truncating stores to store the components.
2759   // By doing this, likewise with G_LOAD, generate an extend that can be
2760   // artifact-combined away instead of leaving behind extracts.
2761   Register SrcReg = MI.getOperand(0).getReg();
2762   Register PtrReg = MI.getOperand(1).getReg();
2763   LLT SrcTy = MRI.getType(SrcReg);
2764   MachineMemOperand &MMO = **MI.memoperands_begin();
2765   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2766     return UnableToLegalize;
2767   if (SrcTy.isVector())
2768     return UnableToLegalize;
2769   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2770     return UnableToLegalize; // Don't know what we're being asked to do.
2771 
2772   // Extend to the next pow-2.
2773   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2774   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2775 
2776   // Obtain the smaller value by shifting away the larger value.
2777   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2778   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2779   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2780   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2781 
2782   // Generate the PtrAdd and truncating stores.
2783   LLT PtrTy = MRI.getType(PtrReg);
2784   auto OffsetCst = MIRBuilder.buildConstant(
2785     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2786   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2787   auto SmallPtr =
2788     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2789 
2790   MachineFunction &MF = MIRBuilder.getMF();
2791   MachineMemOperand *LargeMMO =
2792     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2793   MachineMemOperand *SmallMMO =
2794     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2795   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2796   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2797   MI.eraseFromParent();
2798   return Legalized;
2799 }
2800 
2801 LegalizerHelper::LegalizeResult
2802 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2803   switch (MI.getOpcode()) {
2804   case TargetOpcode::G_LOAD: {
2805     if (TypeIdx != 0)
2806       return UnableToLegalize;
2807 
2808     Observer.changingInstr(MI);
2809     bitcastDst(MI, CastTy, 0);
2810     Observer.changedInstr(MI);
2811     return Legalized;
2812   }
2813   case TargetOpcode::G_STORE: {
2814     if (TypeIdx != 0)
2815       return UnableToLegalize;
2816 
2817     Observer.changingInstr(MI);
2818     bitcastSrc(MI, CastTy, 0);
2819     Observer.changedInstr(MI);
2820     return Legalized;
2821   }
2822   case TargetOpcode::G_SELECT: {
2823     if (TypeIdx != 0)
2824       return UnableToLegalize;
2825 
2826     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2827       LLVM_DEBUG(
2828           dbgs() << "bitcast action not implemented for vector select\n");
2829       return UnableToLegalize;
2830     }
2831 
2832     Observer.changingInstr(MI);
2833     bitcastSrc(MI, CastTy, 2);
2834     bitcastSrc(MI, CastTy, 3);
2835     bitcastDst(MI, CastTy, 0);
2836     Observer.changedInstr(MI);
2837     return Legalized;
2838   }
2839   case TargetOpcode::G_AND:
2840   case TargetOpcode::G_OR:
2841   case TargetOpcode::G_XOR: {
2842     Observer.changingInstr(MI);
2843     bitcastSrc(MI, CastTy, 1);
2844     bitcastSrc(MI, CastTy, 2);
2845     bitcastDst(MI, CastTy, 0);
2846     Observer.changedInstr(MI);
2847     return Legalized;
2848   }
2849   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2850     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2851   case TargetOpcode::G_INSERT_VECTOR_ELT:
2852     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2853   default:
2854     return UnableToLegalize;
2855   }
2856 }
2857 
2858 // Legalize an instruction by changing the opcode in place.
2859 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2860     Observer.changingInstr(MI);
2861     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2862     Observer.changedInstr(MI);
2863 }
2864 
2865 LegalizerHelper::LegalizeResult
2866 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2867   using namespace TargetOpcode;
2868 
2869   switch(MI.getOpcode()) {
2870   default:
2871     return UnableToLegalize;
2872   case TargetOpcode::G_BITCAST:
2873     return lowerBitcast(MI);
2874   case TargetOpcode::G_SREM:
2875   case TargetOpcode::G_UREM: {
2876     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2877     auto Quot =
2878         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2879                               {MI.getOperand(1), MI.getOperand(2)});
2880 
2881     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2882     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2883     MI.eraseFromParent();
2884     return Legalized;
2885   }
2886   case TargetOpcode::G_SADDO:
2887   case TargetOpcode::G_SSUBO:
2888     return lowerSADDO_SSUBO(MI);
2889   case TargetOpcode::G_UMULH:
2890   case TargetOpcode::G_SMULH:
2891     return lowerSMULH_UMULH(MI);
2892   case TargetOpcode::G_SMULO:
2893   case TargetOpcode::G_UMULO: {
2894     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2895     // result.
2896     Register Res = MI.getOperand(0).getReg();
2897     Register Overflow = MI.getOperand(1).getReg();
2898     Register LHS = MI.getOperand(2).getReg();
2899     Register RHS = MI.getOperand(3).getReg();
2900     LLT Ty = MRI.getType(Res);
2901 
2902     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2903                           ? TargetOpcode::G_SMULH
2904                           : TargetOpcode::G_UMULH;
2905 
2906     Observer.changingInstr(MI);
2907     const auto &TII = MIRBuilder.getTII();
2908     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2909     MI.RemoveOperand(1);
2910     Observer.changedInstr(MI);
2911 
2912     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2913     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2914 
2915     // Move insert point forward so we can use the Res register if needed.
2916     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2917 
2918     // For *signed* multiply, overflow is detected by checking:
2919     // (hi != (lo >> bitwidth-1))
2920     if (Opcode == TargetOpcode::G_SMULH) {
2921       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2922       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2923       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2924     } else {
2925       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2926     }
2927     return Legalized;
2928   }
2929   case TargetOpcode::G_FNEG: {
2930     Register Res = MI.getOperand(0).getReg();
2931     LLT Ty = MRI.getType(Res);
2932 
2933     // TODO: Handle vector types once we are able to
2934     // represent them.
2935     if (Ty.isVector())
2936       return UnableToLegalize;
2937     auto SignMask =
2938         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
2939     Register SubByReg = MI.getOperand(1).getReg();
2940     MIRBuilder.buildXor(Res, SubByReg, SignMask);
2941     MI.eraseFromParent();
2942     return Legalized;
2943   }
2944   case TargetOpcode::G_FSUB: {
2945     Register Res = MI.getOperand(0).getReg();
2946     LLT Ty = MRI.getType(Res);
2947 
2948     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2949     // First, check if G_FNEG is marked as Lower. If so, we may
2950     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2951     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2952       return UnableToLegalize;
2953     Register LHS = MI.getOperand(1).getReg();
2954     Register RHS = MI.getOperand(2).getReg();
2955     Register Neg = MRI.createGenericVirtualRegister(Ty);
2956     MIRBuilder.buildFNeg(Neg, RHS);
2957     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2958     MI.eraseFromParent();
2959     return Legalized;
2960   }
2961   case TargetOpcode::G_FMAD:
2962     return lowerFMad(MI);
2963   case TargetOpcode::G_FFLOOR:
2964     return lowerFFloor(MI);
2965   case TargetOpcode::G_INTRINSIC_ROUND:
2966     return lowerIntrinsicRound(MI);
2967   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2968     // Since round even is the assumed rounding mode for unconstrained FP
2969     // operations, rint and roundeven are the same operation.
2970     changeOpcode(MI, TargetOpcode::G_FRINT);
2971     return Legalized;
2972   }
2973   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2974     Register OldValRes = MI.getOperand(0).getReg();
2975     Register SuccessRes = MI.getOperand(1).getReg();
2976     Register Addr = MI.getOperand(2).getReg();
2977     Register CmpVal = MI.getOperand(3).getReg();
2978     Register NewVal = MI.getOperand(4).getReg();
2979     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2980                                   **MI.memoperands_begin());
2981     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2982     MI.eraseFromParent();
2983     return Legalized;
2984   }
2985   case TargetOpcode::G_LOAD:
2986   case TargetOpcode::G_SEXTLOAD:
2987   case TargetOpcode::G_ZEXTLOAD:
2988     return lowerLoad(MI);
2989   case TargetOpcode::G_STORE:
2990     return lowerStore(MI);
2991   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2992   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2993   case TargetOpcode::G_CTLZ:
2994   case TargetOpcode::G_CTTZ:
2995   case TargetOpcode::G_CTPOP:
2996     return lowerBitCount(MI);
2997   case G_UADDO: {
2998     Register Res = MI.getOperand(0).getReg();
2999     Register CarryOut = MI.getOperand(1).getReg();
3000     Register LHS = MI.getOperand(2).getReg();
3001     Register RHS = MI.getOperand(3).getReg();
3002 
3003     MIRBuilder.buildAdd(Res, LHS, RHS);
3004     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3005 
3006     MI.eraseFromParent();
3007     return Legalized;
3008   }
3009   case G_UADDE: {
3010     Register Res = MI.getOperand(0).getReg();
3011     Register CarryOut = MI.getOperand(1).getReg();
3012     Register LHS = MI.getOperand(2).getReg();
3013     Register RHS = MI.getOperand(3).getReg();
3014     Register CarryIn = MI.getOperand(4).getReg();
3015     LLT Ty = MRI.getType(Res);
3016 
3017     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3018     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3019     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3020     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3021 
3022     MI.eraseFromParent();
3023     return Legalized;
3024   }
3025   case G_USUBO: {
3026     Register Res = MI.getOperand(0).getReg();
3027     Register BorrowOut = MI.getOperand(1).getReg();
3028     Register LHS = MI.getOperand(2).getReg();
3029     Register RHS = MI.getOperand(3).getReg();
3030 
3031     MIRBuilder.buildSub(Res, LHS, RHS);
3032     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3033 
3034     MI.eraseFromParent();
3035     return Legalized;
3036   }
3037   case G_USUBE: {
3038     Register Res = MI.getOperand(0).getReg();
3039     Register BorrowOut = MI.getOperand(1).getReg();
3040     Register LHS = MI.getOperand(2).getReg();
3041     Register RHS = MI.getOperand(3).getReg();
3042     Register BorrowIn = MI.getOperand(4).getReg();
3043     const LLT CondTy = MRI.getType(BorrowOut);
3044     const LLT Ty = MRI.getType(Res);
3045 
3046     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3047     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3048     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3049 
3050     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3051     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3052     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3053 
3054     MI.eraseFromParent();
3055     return Legalized;
3056   }
3057   case G_UITOFP:
3058     return lowerUITOFP(MI);
3059   case G_SITOFP:
3060     return lowerSITOFP(MI);
3061   case G_FPTOUI:
3062     return lowerFPTOUI(MI);
3063   case G_FPTOSI:
3064     return lowerFPTOSI(MI);
3065   case G_FPTRUNC:
3066     return lowerFPTRUNC(MI);
3067   case G_FPOWI:
3068     return lowerFPOWI(MI);
3069   case G_SMIN:
3070   case G_SMAX:
3071   case G_UMIN:
3072   case G_UMAX:
3073     return lowerMinMax(MI);
3074   case G_FCOPYSIGN:
3075     return lowerFCopySign(MI);
3076   case G_FMINNUM:
3077   case G_FMAXNUM:
3078     return lowerFMinNumMaxNum(MI);
3079   case G_MERGE_VALUES:
3080     return lowerMergeValues(MI);
3081   case G_UNMERGE_VALUES:
3082     return lowerUnmergeValues(MI);
3083   case TargetOpcode::G_SEXT_INREG: {
3084     assert(MI.getOperand(2).isImm() && "Expected immediate");
3085     int64_t SizeInBits = MI.getOperand(2).getImm();
3086 
3087     Register DstReg = MI.getOperand(0).getReg();
3088     Register SrcReg = MI.getOperand(1).getReg();
3089     LLT DstTy = MRI.getType(DstReg);
3090     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3091 
3092     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3093     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3094     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3095     MI.eraseFromParent();
3096     return Legalized;
3097   }
3098   case G_EXTRACT_VECTOR_ELT:
3099   case G_INSERT_VECTOR_ELT:
3100     return lowerExtractInsertVectorElt(MI);
3101   case G_SHUFFLE_VECTOR:
3102     return lowerShuffleVector(MI);
3103   case G_DYN_STACKALLOC:
3104     return lowerDynStackAlloc(MI);
3105   case G_EXTRACT:
3106     return lowerExtract(MI);
3107   case G_INSERT:
3108     return lowerInsert(MI);
3109   case G_BSWAP:
3110     return lowerBswap(MI);
3111   case G_BITREVERSE:
3112     return lowerBitreverse(MI);
3113   case G_READ_REGISTER:
3114   case G_WRITE_REGISTER:
3115     return lowerReadWriteRegister(MI);
3116   case G_UADDSAT:
3117   case G_USUBSAT: {
3118     // Try to make a reasonable guess about which lowering strategy to use. The
3119     // target can override this with custom lowering and calling the
3120     // implementation functions.
3121     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3122     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3123       return lowerAddSubSatToMinMax(MI);
3124     return lowerAddSubSatToAddoSubo(MI);
3125   }
3126   case G_SADDSAT:
3127   case G_SSUBSAT: {
3128     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3129 
3130     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3131     // since it's a shorter expansion. However, we would need to figure out the
3132     // preferred boolean type for the carry out for the query.
3133     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3134       return lowerAddSubSatToMinMax(MI);
3135     return lowerAddSubSatToAddoSubo(MI);
3136   }
3137   case G_SSHLSAT:
3138   case G_USHLSAT:
3139     return lowerShlSat(MI);
3140   case G_ABS: {
3141     // Expand %res = G_ABS %a into:
3142     // %v1 = G_ASHR %a, scalar_size-1
3143     // %v2 = G_ADD %a, %v1
3144     // %res = G_XOR %v2, %v1
3145     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3146     Register OpReg = MI.getOperand(1).getReg();
3147     auto ShiftAmt =
3148         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3149     auto Shift =
3150         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3151     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3152     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3153     MI.eraseFromParent();
3154     return Legalized;
3155   }
3156   case G_SELECT:
3157     return lowerSelect(MI);
3158   }
3159 }
3160 
3161 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3162                                                   Align MinAlign) const {
3163   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3164   // datalayout for the preferred alignment. Also there should be a target hook
3165   // for this to allow targets to reduce the alignment and ignore the
3166   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3167   // the type.
3168   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3169 }
3170 
3171 MachineInstrBuilder
3172 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3173                                       MachinePointerInfo &PtrInfo) {
3174   MachineFunction &MF = MIRBuilder.getMF();
3175   const DataLayout &DL = MIRBuilder.getDataLayout();
3176   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3177 
3178   unsigned AddrSpace = DL.getAllocaAddrSpace();
3179   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3180 
3181   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3182   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3183 }
3184 
3185 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3186                                         LLT VecTy) {
3187   int64_t IdxVal;
3188   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3189     return IdxReg;
3190 
3191   LLT IdxTy = B.getMRI()->getType(IdxReg);
3192   unsigned NElts = VecTy.getNumElements();
3193   if (isPowerOf2_32(NElts)) {
3194     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3195     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3196   }
3197 
3198   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3199       .getReg(0);
3200 }
3201 
3202 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3203                                                   Register Index) {
3204   LLT EltTy = VecTy.getElementType();
3205 
3206   // Calculate the element offset and add it to the pointer.
3207   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3208   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3209          "Converting bits to bytes lost precision");
3210 
3211   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3212 
3213   LLT IdxTy = MRI.getType(Index);
3214   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3215                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3216 
3217   LLT PtrTy = MRI.getType(VecPtr);
3218   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3219 }
3220 
3221 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3222     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3223   Register DstReg = MI.getOperand(0).getReg();
3224   LLT DstTy = MRI.getType(DstReg);
3225   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3226 
3227   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3228 
3229   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3230   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3231 
3232   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3233   MI.eraseFromParent();
3234   return Legalized;
3235 }
3236 
3237 // Handle splitting vector operations which need to have the same number of
3238 // elements in each type index, but each type index may have a different element
3239 // type.
3240 //
3241 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3242 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3243 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3244 //
3245 // Also handles some irregular breakdown cases, e.g.
3246 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3247 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3248 //             s64 = G_SHL s64, s32
3249 LegalizerHelper::LegalizeResult
3250 LegalizerHelper::fewerElementsVectorMultiEltType(
3251   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3252   if (TypeIdx != 0)
3253     return UnableToLegalize;
3254 
3255   const LLT NarrowTy0 = NarrowTyArg;
3256   const unsigned NewNumElts =
3257       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3258 
3259   const Register DstReg = MI.getOperand(0).getReg();
3260   LLT DstTy = MRI.getType(DstReg);
3261   LLT LeftoverTy0;
3262 
3263   // All of the operands need to have the same number of elements, so if we can
3264   // determine a type breakdown for the result type, we can for all of the
3265   // source types.
3266   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3267   if (NumParts < 0)
3268     return UnableToLegalize;
3269 
3270   SmallVector<MachineInstrBuilder, 4> NewInsts;
3271 
3272   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3273   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3274 
3275   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3276     Register SrcReg = MI.getOperand(I).getReg();
3277     LLT SrcTyI = MRI.getType(SrcReg);
3278     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3279     LLT LeftoverTyI;
3280 
3281     // Split this operand into the requested typed registers, and any leftover
3282     // required to reproduce the original type.
3283     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3284                       LeftoverRegs))
3285       return UnableToLegalize;
3286 
3287     if (I == 1) {
3288       // For the first operand, create an instruction for each part and setup
3289       // the result.
3290       for (Register PartReg : PartRegs) {
3291         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3292         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3293                                .addDef(PartDstReg)
3294                                .addUse(PartReg));
3295         DstRegs.push_back(PartDstReg);
3296       }
3297 
3298       for (Register LeftoverReg : LeftoverRegs) {
3299         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3300         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3301                                .addDef(PartDstReg)
3302                                .addUse(LeftoverReg));
3303         LeftoverDstRegs.push_back(PartDstReg);
3304       }
3305     } else {
3306       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3307 
3308       // Add the newly created operand splits to the existing instructions. The
3309       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3310       // pieces.
3311       unsigned InstCount = 0;
3312       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3313         NewInsts[InstCount++].addUse(PartRegs[J]);
3314       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3315         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3316     }
3317 
3318     PartRegs.clear();
3319     LeftoverRegs.clear();
3320   }
3321 
3322   // Insert the newly built operations and rebuild the result register.
3323   for (auto &MIB : NewInsts)
3324     MIRBuilder.insertInstr(MIB);
3325 
3326   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3327 
3328   MI.eraseFromParent();
3329   return Legalized;
3330 }
3331 
3332 LegalizerHelper::LegalizeResult
3333 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3334                                           LLT NarrowTy) {
3335   if (TypeIdx != 0)
3336     return UnableToLegalize;
3337 
3338   Register DstReg = MI.getOperand(0).getReg();
3339   Register SrcReg = MI.getOperand(1).getReg();
3340   LLT DstTy = MRI.getType(DstReg);
3341   LLT SrcTy = MRI.getType(SrcReg);
3342 
3343   LLT NarrowTy0 = NarrowTy;
3344   LLT NarrowTy1;
3345   unsigned NumParts;
3346 
3347   if (NarrowTy.isVector()) {
3348     // Uneven breakdown not handled.
3349     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3350     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3351       return UnableToLegalize;
3352 
3353     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3354   } else {
3355     NumParts = DstTy.getNumElements();
3356     NarrowTy1 = SrcTy.getElementType();
3357   }
3358 
3359   SmallVector<Register, 4> SrcRegs, DstRegs;
3360   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3361 
3362   for (unsigned I = 0; I < NumParts; ++I) {
3363     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3364     MachineInstr *NewInst =
3365         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3366 
3367     NewInst->setFlags(MI.getFlags());
3368     DstRegs.push_back(DstReg);
3369   }
3370 
3371   if (NarrowTy.isVector())
3372     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3373   else
3374     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3375 
3376   MI.eraseFromParent();
3377   return Legalized;
3378 }
3379 
3380 LegalizerHelper::LegalizeResult
3381 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3382                                         LLT NarrowTy) {
3383   Register DstReg = MI.getOperand(0).getReg();
3384   Register Src0Reg = MI.getOperand(2).getReg();
3385   LLT DstTy = MRI.getType(DstReg);
3386   LLT SrcTy = MRI.getType(Src0Reg);
3387 
3388   unsigned NumParts;
3389   LLT NarrowTy0, NarrowTy1;
3390 
3391   if (TypeIdx == 0) {
3392     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3393     unsigned OldElts = DstTy.getNumElements();
3394 
3395     NarrowTy0 = NarrowTy;
3396     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3397     NarrowTy1 = NarrowTy.isVector() ?
3398       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3399       SrcTy.getElementType();
3400 
3401   } else {
3402     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3403     unsigned OldElts = SrcTy.getNumElements();
3404 
3405     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3406       NarrowTy.getNumElements();
3407     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3408                             DstTy.getScalarSizeInBits());
3409     NarrowTy1 = NarrowTy;
3410   }
3411 
3412   // FIXME: Don't know how to handle the situation where the small vectors
3413   // aren't all the same size yet.
3414   if (NarrowTy1.isVector() &&
3415       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3416     return UnableToLegalize;
3417 
3418   CmpInst::Predicate Pred
3419     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3420 
3421   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3422   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3423   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3424 
3425   for (unsigned I = 0; I < NumParts; ++I) {
3426     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3427     DstRegs.push_back(DstReg);
3428 
3429     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3430       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3431     else {
3432       MachineInstr *NewCmp
3433         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3434       NewCmp->setFlags(MI.getFlags());
3435     }
3436   }
3437 
3438   if (NarrowTy1.isVector())
3439     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3440   else
3441     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3442 
3443   MI.eraseFromParent();
3444   return Legalized;
3445 }
3446 
3447 LegalizerHelper::LegalizeResult
3448 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3449                                            LLT NarrowTy) {
3450   Register DstReg = MI.getOperand(0).getReg();
3451   Register CondReg = MI.getOperand(1).getReg();
3452 
3453   unsigned NumParts = 0;
3454   LLT NarrowTy0, NarrowTy1;
3455 
3456   LLT DstTy = MRI.getType(DstReg);
3457   LLT CondTy = MRI.getType(CondReg);
3458   unsigned Size = DstTy.getSizeInBits();
3459 
3460   assert(TypeIdx == 0 || CondTy.isVector());
3461 
3462   if (TypeIdx == 0) {
3463     NarrowTy0 = NarrowTy;
3464     NarrowTy1 = CondTy;
3465 
3466     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3467     // FIXME: Don't know how to handle the situation where the small vectors
3468     // aren't all the same size yet.
3469     if (Size % NarrowSize != 0)
3470       return UnableToLegalize;
3471 
3472     NumParts = Size / NarrowSize;
3473 
3474     // Need to break down the condition type
3475     if (CondTy.isVector()) {
3476       if (CondTy.getNumElements() == NumParts)
3477         NarrowTy1 = CondTy.getElementType();
3478       else
3479         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3480                                 CondTy.getScalarSizeInBits());
3481     }
3482   } else {
3483     NumParts = CondTy.getNumElements();
3484     if (NarrowTy.isVector()) {
3485       // TODO: Handle uneven breakdown.
3486       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3487         return UnableToLegalize;
3488 
3489       return UnableToLegalize;
3490     } else {
3491       NarrowTy0 = DstTy.getElementType();
3492       NarrowTy1 = NarrowTy;
3493     }
3494   }
3495 
3496   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3497   if (CondTy.isVector())
3498     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3499 
3500   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3501   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3502 
3503   for (unsigned i = 0; i < NumParts; ++i) {
3504     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3505     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3506                            Src1Regs[i], Src2Regs[i]);
3507     DstRegs.push_back(DstReg);
3508   }
3509 
3510   if (NarrowTy0.isVector())
3511     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3512   else
3513     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3514 
3515   MI.eraseFromParent();
3516   return Legalized;
3517 }
3518 
3519 LegalizerHelper::LegalizeResult
3520 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3521                                         LLT NarrowTy) {
3522   const Register DstReg = MI.getOperand(0).getReg();
3523   LLT PhiTy = MRI.getType(DstReg);
3524   LLT LeftoverTy;
3525 
3526   // All of the operands need to have the same number of elements, so if we can
3527   // determine a type breakdown for the result type, we can for all of the
3528   // source types.
3529   int NumParts, NumLeftover;
3530   std::tie(NumParts, NumLeftover)
3531     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3532   if (NumParts < 0)
3533     return UnableToLegalize;
3534 
3535   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3536   SmallVector<MachineInstrBuilder, 4> NewInsts;
3537 
3538   const int TotalNumParts = NumParts + NumLeftover;
3539 
3540   // Insert the new phis in the result block first.
3541   for (int I = 0; I != TotalNumParts; ++I) {
3542     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3543     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3544     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3545                        .addDef(PartDstReg));
3546     if (I < NumParts)
3547       DstRegs.push_back(PartDstReg);
3548     else
3549       LeftoverDstRegs.push_back(PartDstReg);
3550   }
3551 
3552   MachineBasicBlock *MBB = MI.getParent();
3553   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3554   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3555 
3556   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3557 
3558   // Insert code to extract the incoming values in each predecessor block.
3559   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3560     PartRegs.clear();
3561     LeftoverRegs.clear();
3562 
3563     Register SrcReg = MI.getOperand(I).getReg();
3564     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3565     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3566 
3567     LLT Unused;
3568     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3569                       LeftoverRegs))
3570       return UnableToLegalize;
3571 
3572     // Add the newly created operand splits to the existing instructions. The
3573     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3574     // pieces.
3575     for (int J = 0; J != TotalNumParts; ++J) {
3576       MachineInstrBuilder MIB = NewInsts[J];
3577       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3578       MIB.addMBB(&OpMBB);
3579     }
3580   }
3581 
3582   MI.eraseFromParent();
3583   return Legalized;
3584 }
3585 
3586 LegalizerHelper::LegalizeResult
3587 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3588                                                   unsigned TypeIdx,
3589                                                   LLT NarrowTy) {
3590   if (TypeIdx != 1)
3591     return UnableToLegalize;
3592 
3593   const int NumDst = MI.getNumOperands() - 1;
3594   const Register SrcReg = MI.getOperand(NumDst).getReg();
3595   LLT SrcTy = MRI.getType(SrcReg);
3596 
3597   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3598 
3599   // TODO: Create sequence of extracts.
3600   if (DstTy == NarrowTy)
3601     return UnableToLegalize;
3602 
3603   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3604   if (DstTy == GCDTy) {
3605     // This would just be a copy of the same unmerge.
3606     // TODO: Create extracts, pad with undef and create intermediate merges.
3607     return UnableToLegalize;
3608   }
3609 
3610   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3611   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3612   const int PartsPerUnmerge = NumDst / NumUnmerge;
3613 
3614   for (int I = 0; I != NumUnmerge; ++I) {
3615     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3616 
3617     for (int J = 0; J != PartsPerUnmerge; ++J)
3618       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3619     MIB.addUse(Unmerge.getReg(I));
3620   }
3621 
3622   MI.eraseFromParent();
3623   return Legalized;
3624 }
3625 
3626 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3627 // a vector
3628 //
3629 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3630 // undef as necessary.
3631 //
3632 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3633 //   -> <2 x s16>
3634 //
3635 // %4:_(s16) = G_IMPLICIT_DEF
3636 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3637 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3638 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3639 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3640 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3641 LegalizerHelper::LegalizeResult
3642 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3643                                           LLT NarrowTy) {
3644   Register DstReg = MI.getOperand(0).getReg();
3645   LLT DstTy = MRI.getType(DstReg);
3646   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3647   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3648 
3649   // Break into a common type
3650   SmallVector<Register, 16> Parts;
3651   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3652     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3653 
3654   // Build the requested new merge, padding with undef.
3655   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3656                                   TargetOpcode::G_ANYEXT);
3657 
3658   // Pack into the original result register.
3659   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3660 
3661   MI.eraseFromParent();
3662   return Legalized;
3663 }
3664 
3665 LegalizerHelper::LegalizeResult
3666 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3667                                                            unsigned TypeIdx,
3668                                                            LLT NarrowVecTy) {
3669   Register DstReg = MI.getOperand(0).getReg();
3670   Register SrcVec = MI.getOperand(1).getReg();
3671   Register InsertVal;
3672   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3673 
3674   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3675   if (IsInsert)
3676     InsertVal = MI.getOperand(2).getReg();
3677 
3678   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3679 
3680   // TODO: Handle total scalarization case.
3681   if (!NarrowVecTy.isVector())
3682     return UnableToLegalize;
3683 
3684   LLT VecTy = MRI.getType(SrcVec);
3685 
3686   // If the index is a constant, we can really break this down as you would
3687   // expect, and index into the target size pieces.
3688   int64_t IdxVal;
3689   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3690     // Avoid out of bounds indexing the pieces.
3691     if (IdxVal >= VecTy.getNumElements()) {
3692       MIRBuilder.buildUndef(DstReg);
3693       MI.eraseFromParent();
3694       return Legalized;
3695     }
3696 
3697     SmallVector<Register, 8> VecParts;
3698     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3699 
3700     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3701     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3702                                     TargetOpcode::G_ANYEXT);
3703 
3704     unsigned NewNumElts = NarrowVecTy.getNumElements();
3705 
3706     LLT IdxTy = MRI.getType(Idx);
3707     int64_t PartIdx = IdxVal / NewNumElts;
3708     auto NewIdx =
3709         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3710 
3711     if (IsInsert) {
3712       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3713 
3714       // Use the adjusted index to insert into one of the subvectors.
3715       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3716           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3717       VecParts[PartIdx] = InsertPart.getReg(0);
3718 
3719       // Recombine the inserted subvector with the others to reform the result
3720       // vector.
3721       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3722     } else {
3723       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3724     }
3725 
3726     MI.eraseFromParent();
3727     return Legalized;
3728   }
3729 
3730   // With a variable index, we can't perform the operation in a smaller type, so
3731   // we're forced to expand this.
3732   //
3733   // TODO: We could emit a chain of compare/select to figure out which piece to
3734   // index.
3735   return lowerExtractInsertVectorElt(MI);
3736 }
3737 
3738 LegalizerHelper::LegalizeResult
3739 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3740                                       LLT NarrowTy) {
3741   // FIXME: Don't know how to handle secondary types yet.
3742   if (TypeIdx != 0)
3743     return UnableToLegalize;
3744 
3745   MachineMemOperand *MMO = *MI.memoperands_begin();
3746 
3747   // This implementation doesn't work for atomics. Give up instead of doing
3748   // something invalid.
3749   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3750       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3751     return UnableToLegalize;
3752 
3753   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3754   Register ValReg = MI.getOperand(0).getReg();
3755   Register AddrReg = MI.getOperand(1).getReg();
3756   LLT ValTy = MRI.getType(ValReg);
3757 
3758   // FIXME: Do we need a distinct NarrowMemory legalize action?
3759   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3760     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3761     return UnableToLegalize;
3762   }
3763 
3764   int NumParts = -1;
3765   int NumLeftover = -1;
3766   LLT LeftoverTy;
3767   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3768   if (IsLoad) {
3769     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3770   } else {
3771     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3772                      NarrowLeftoverRegs)) {
3773       NumParts = NarrowRegs.size();
3774       NumLeftover = NarrowLeftoverRegs.size();
3775     }
3776   }
3777 
3778   if (NumParts == -1)
3779     return UnableToLegalize;
3780 
3781   LLT PtrTy = MRI.getType(AddrReg);
3782   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3783 
3784   unsigned TotalSize = ValTy.getSizeInBits();
3785 
3786   // Split the load/store into PartTy sized pieces starting at Offset. If this
3787   // is a load, return the new registers in ValRegs. For a store, each elements
3788   // of ValRegs should be PartTy. Returns the next offset that needs to be
3789   // handled.
3790   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3791                              unsigned Offset) -> unsigned {
3792     MachineFunction &MF = MIRBuilder.getMF();
3793     unsigned PartSize = PartTy.getSizeInBits();
3794     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3795          Offset += PartSize, ++Idx) {
3796       unsigned ByteSize = PartSize / 8;
3797       unsigned ByteOffset = Offset / 8;
3798       Register NewAddrReg;
3799 
3800       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3801 
3802       MachineMemOperand *NewMMO =
3803         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3804 
3805       if (IsLoad) {
3806         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3807         ValRegs.push_back(Dst);
3808         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3809       } else {
3810         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3811       }
3812     }
3813 
3814     return Offset;
3815   };
3816 
3817   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3818 
3819   // Handle the rest of the register if this isn't an even type breakdown.
3820   if (LeftoverTy.isValid())
3821     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3822 
3823   if (IsLoad) {
3824     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3825                 LeftoverTy, NarrowLeftoverRegs);
3826   }
3827 
3828   MI.eraseFromParent();
3829   return Legalized;
3830 }
3831 
3832 LegalizerHelper::LegalizeResult
3833 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3834                                       LLT NarrowTy) {
3835   assert(TypeIdx == 0 && "only one type index expected");
3836 
3837   const unsigned Opc = MI.getOpcode();
3838   const int NumOps = MI.getNumOperands() - 1;
3839   const Register DstReg = MI.getOperand(0).getReg();
3840   const unsigned Flags = MI.getFlags();
3841   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3842   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3843 
3844   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3845 
3846   // First of all check whether we are narrowing (changing the element type)
3847   // or reducing the vector elements
3848   const LLT DstTy = MRI.getType(DstReg);
3849   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3850 
3851   SmallVector<Register, 8> ExtractedRegs[3];
3852   SmallVector<Register, 8> Parts;
3853 
3854   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3855 
3856   // Break down all the sources into NarrowTy pieces we can operate on. This may
3857   // involve creating merges to a wider type, padded with undef.
3858   for (int I = 0; I != NumOps; ++I) {
3859     Register SrcReg = MI.getOperand(I + 1).getReg();
3860     LLT SrcTy = MRI.getType(SrcReg);
3861 
3862     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3863     // For fewerElements, this is a smaller vector with the same element type.
3864     LLT OpNarrowTy;
3865     if (IsNarrow) {
3866       OpNarrowTy = NarrowScalarTy;
3867 
3868       // In case of narrowing, we need to cast vectors to scalars for this to
3869       // work properly
3870       // FIXME: Can we do without the bitcast here if we're narrowing?
3871       if (SrcTy.isVector()) {
3872         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3873         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3874       }
3875     } else {
3876       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3877     }
3878 
3879     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3880 
3881     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3882     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3883                         TargetOpcode::G_ANYEXT);
3884   }
3885 
3886   SmallVector<Register, 8> ResultRegs;
3887 
3888   // Input operands for each sub-instruction.
3889   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3890 
3891   int NumParts = ExtractedRegs[0].size();
3892   const unsigned DstSize = DstTy.getSizeInBits();
3893   const LLT DstScalarTy = LLT::scalar(DstSize);
3894 
3895   // Narrowing needs to use scalar types
3896   LLT DstLCMTy, NarrowDstTy;
3897   if (IsNarrow) {
3898     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3899     NarrowDstTy = NarrowScalarTy;
3900   } else {
3901     DstLCMTy = getLCMType(DstTy, NarrowTy);
3902     NarrowDstTy = NarrowTy;
3903   }
3904 
3905   // We widened the source registers to satisfy merge/unmerge size
3906   // constraints. We'll have some extra fully undef parts.
3907   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3908 
3909   for (int I = 0; I != NumRealParts; ++I) {
3910     // Emit this instruction on each of the split pieces.
3911     for (int J = 0; J != NumOps; ++J)
3912       InputRegs[J] = ExtractedRegs[J][I];
3913 
3914     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3915     ResultRegs.push_back(Inst.getReg(0));
3916   }
3917 
3918   // Fill out the widened result with undef instead of creating instructions
3919   // with undef inputs.
3920   int NumUndefParts = NumParts - NumRealParts;
3921   if (NumUndefParts != 0)
3922     ResultRegs.append(NumUndefParts,
3923                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3924 
3925   // Extract the possibly padded result. Use a scratch register if we need to do
3926   // a final bitcast, otherwise use the original result register.
3927   Register MergeDstReg;
3928   if (IsNarrow && DstTy.isVector())
3929     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3930   else
3931     MergeDstReg = DstReg;
3932 
3933   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3934 
3935   // Recast to vector if we narrowed a vector
3936   if (IsNarrow && DstTy.isVector())
3937     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3938 
3939   MI.eraseFromParent();
3940   return Legalized;
3941 }
3942 
3943 LegalizerHelper::LegalizeResult
3944 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3945                                               LLT NarrowTy) {
3946   Register DstReg = MI.getOperand(0).getReg();
3947   Register SrcReg = MI.getOperand(1).getReg();
3948   int64_t Imm = MI.getOperand(2).getImm();
3949 
3950   LLT DstTy = MRI.getType(DstReg);
3951 
3952   SmallVector<Register, 8> Parts;
3953   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3954   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3955 
3956   for (Register &R : Parts)
3957     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3958 
3959   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3960 
3961   MI.eraseFromParent();
3962   return Legalized;
3963 }
3964 
3965 LegalizerHelper::LegalizeResult
3966 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3967                                      LLT NarrowTy) {
3968   using namespace TargetOpcode;
3969 
3970   switch (MI.getOpcode()) {
3971   case G_IMPLICIT_DEF:
3972     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3973   case G_TRUNC:
3974   case G_AND:
3975   case G_OR:
3976   case G_XOR:
3977   case G_ADD:
3978   case G_SUB:
3979   case G_MUL:
3980   case G_PTR_ADD:
3981   case G_SMULH:
3982   case G_UMULH:
3983   case G_FADD:
3984   case G_FMUL:
3985   case G_FSUB:
3986   case G_FNEG:
3987   case G_FABS:
3988   case G_FCANONICALIZE:
3989   case G_FDIV:
3990   case G_FREM:
3991   case G_FMA:
3992   case G_FMAD:
3993   case G_FPOW:
3994   case G_FEXP:
3995   case G_FEXP2:
3996   case G_FLOG:
3997   case G_FLOG2:
3998   case G_FLOG10:
3999   case G_FNEARBYINT:
4000   case G_FCEIL:
4001   case G_FFLOOR:
4002   case G_FRINT:
4003   case G_INTRINSIC_ROUND:
4004   case G_INTRINSIC_ROUNDEVEN:
4005   case G_INTRINSIC_TRUNC:
4006   case G_FCOS:
4007   case G_FSIN:
4008   case G_FSQRT:
4009   case G_BSWAP:
4010   case G_BITREVERSE:
4011   case G_SDIV:
4012   case G_UDIV:
4013   case G_SREM:
4014   case G_UREM:
4015   case G_SMIN:
4016   case G_SMAX:
4017   case G_UMIN:
4018   case G_UMAX:
4019   case G_FMINNUM:
4020   case G_FMAXNUM:
4021   case G_FMINNUM_IEEE:
4022   case G_FMAXNUM_IEEE:
4023   case G_FMINIMUM:
4024   case G_FMAXIMUM:
4025   case G_FSHL:
4026   case G_FSHR:
4027   case G_FREEZE:
4028   case G_SADDSAT:
4029   case G_SSUBSAT:
4030   case G_UADDSAT:
4031   case G_USUBSAT:
4032     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4033   case G_SHL:
4034   case G_LSHR:
4035   case G_ASHR:
4036   case G_SSHLSAT:
4037   case G_USHLSAT:
4038   case G_CTLZ:
4039   case G_CTLZ_ZERO_UNDEF:
4040   case G_CTTZ:
4041   case G_CTTZ_ZERO_UNDEF:
4042   case G_CTPOP:
4043   case G_FCOPYSIGN:
4044     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4045   case G_ZEXT:
4046   case G_SEXT:
4047   case G_ANYEXT:
4048   case G_FPEXT:
4049   case G_FPTRUNC:
4050   case G_SITOFP:
4051   case G_UITOFP:
4052   case G_FPTOSI:
4053   case G_FPTOUI:
4054   case G_INTTOPTR:
4055   case G_PTRTOINT:
4056   case G_ADDRSPACE_CAST:
4057     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4058   case G_ICMP:
4059   case G_FCMP:
4060     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4061   case G_SELECT:
4062     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4063   case G_PHI:
4064     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4065   case G_UNMERGE_VALUES:
4066     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4067   case G_BUILD_VECTOR:
4068     assert(TypeIdx == 0 && "not a vector type index");
4069     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4070   case G_CONCAT_VECTORS:
4071     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4072       return UnableToLegalize;
4073     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4074   case G_EXTRACT_VECTOR_ELT:
4075   case G_INSERT_VECTOR_ELT:
4076     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4077   case G_LOAD:
4078   case G_STORE:
4079     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4080   case G_SEXT_INREG:
4081     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4082   default:
4083     return UnableToLegalize;
4084   }
4085 }
4086 
4087 LegalizerHelper::LegalizeResult
4088 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4089                                              const LLT HalfTy, const LLT AmtTy) {
4090 
4091   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4092   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4093   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4094 
4095   if (Amt.isNullValue()) {
4096     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4097     MI.eraseFromParent();
4098     return Legalized;
4099   }
4100 
4101   LLT NVT = HalfTy;
4102   unsigned NVTBits = HalfTy.getSizeInBits();
4103   unsigned VTBits = 2 * NVTBits;
4104 
4105   SrcOp Lo(Register(0)), Hi(Register(0));
4106   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4107     if (Amt.ugt(VTBits)) {
4108       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4109     } else if (Amt.ugt(NVTBits)) {
4110       Lo = MIRBuilder.buildConstant(NVT, 0);
4111       Hi = MIRBuilder.buildShl(NVT, InL,
4112                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4113     } else if (Amt == NVTBits) {
4114       Lo = MIRBuilder.buildConstant(NVT, 0);
4115       Hi = InL;
4116     } else {
4117       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4118       auto OrLHS =
4119           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4120       auto OrRHS = MIRBuilder.buildLShr(
4121           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4122       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4123     }
4124   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4125     if (Amt.ugt(VTBits)) {
4126       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4127     } else if (Amt.ugt(NVTBits)) {
4128       Lo = MIRBuilder.buildLShr(NVT, InH,
4129                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4130       Hi = MIRBuilder.buildConstant(NVT, 0);
4131     } else if (Amt == NVTBits) {
4132       Lo = InH;
4133       Hi = MIRBuilder.buildConstant(NVT, 0);
4134     } else {
4135       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4136 
4137       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4138       auto OrRHS = MIRBuilder.buildShl(
4139           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4140 
4141       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4142       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4143     }
4144   } else {
4145     if (Amt.ugt(VTBits)) {
4146       Hi = Lo = MIRBuilder.buildAShr(
4147           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4148     } else if (Amt.ugt(NVTBits)) {
4149       Lo = MIRBuilder.buildAShr(NVT, InH,
4150                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4151       Hi = MIRBuilder.buildAShr(NVT, InH,
4152                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4153     } else if (Amt == NVTBits) {
4154       Lo = InH;
4155       Hi = MIRBuilder.buildAShr(NVT, InH,
4156                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4157     } else {
4158       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4159 
4160       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4161       auto OrRHS = MIRBuilder.buildShl(
4162           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4163 
4164       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4165       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4166     }
4167   }
4168 
4169   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4170   MI.eraseFromParent();
4171 
4172   return Legalized;
4173 }
4174 
4175 // TODO: Optimize if constant shift amount.
4176 LegalizerHelper::LegalizeResult
4177 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4178                                    LLT RequestedTy) {
4179   if (TypeIdx == 1) {
4180     Observer.changingInstr(MI);
4181     narrowScalarSrc(MI, RequestedTy, 2);
4182     Observer.changedInstr(MI);
4183     return Legalized;
4184   }
4185 
4186   Register DstReg = MI.getOperand(0).getReg();
4187   LLT DstTy = MRI.getType(DstReg);
4188   if (DstTy.isVector())
4189     return UnableToLegalize;
4190 
4191   Register Amt = MI.getOperand(2).getReg();
4192   LLT ShiftAmtTy = MRI.getType(Amt);
4193   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4194   if (DstEltSize % 2 != 0)
4195     return UnableToLegalize;
4196 
4197   // Ignore the input type. We can only go to exactly half the size of the
4198   // input. If that isn't small enough, the resulting pieces will be further
4199   // legalized.
4200   const unsigned NewBitSize = DstEltSize / 2;
4201   const LLT HalfTy = LLT::scalar(NewBitSize);
4202   const LLT CondTy = LLT::scalar(1);
4203 
4204   if (const MachineInstr *KShiftAmt =
4205           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4206     return narrowScalarShiftByConstant(
4207         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4208   }
4209 
4210   // TODO: Expand with known bits.
4211 
4212   // Handle the fully general expansion by an unknown amount.
4213   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4214 
4215   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4216   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4217   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4218 
4219   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4220   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4221 
4222   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4223   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4224   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4225 
4226   Register ResultRegs[2];
4227   switch (MI.getOpcode()) {
4228   case TargetOpcode::G_SHL: {
4229     // Short: ShAmt < NewBitSize
4230     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4231 
4232     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4233     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4234     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4235 
4236     // Long: ShAmt >= NewBitSize
4237     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4238     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4239 
4240     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4241     auto Hi = MIRBuilder.buildSelect(
4242         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4243 
4244     ResultRegs[0] = Lo.getReg(0);
4245     ResultRegs[1] = Hi.getReg(0);
4246     break;
4247   }
4248   case TargetOpcode::G_LSHR:
4249   case TargetOpcode::G_ASHR: {
4250     // Short: ShAmt < NewBitSize
4251     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4252 
4253     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4254     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4255     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4256 
4257     // Long: ShAmt >= NewBitSize
4258     MachineInstrBuilder HiL;
4259     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4260       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4261     } else {
4262       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4263       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4264     }
4265     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4266                                      {InH, AmtExcess});     // Lo from Hi part.
4267 
4268     auto Lo = MIRBuilder.buildSelect(
4269         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4270 
4271     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4272 
4273     ResultRegs[0] = Lo.getReg(0);
4274     ResultRegs[1] = Hi.getReg(0);
4275     break;
4276   }
4277   default:
4278     llvm_unreachable("not a shift");
4279   }
4280 
4281   MIRBuilder.buildMerge(DstReg, ResultRegs);
4282   MI.eraseFromParent();
4283   return Legalized;
4284 }
4285 
4286 LegalizerHelper::LegalizeResult
4287 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4288                                        LLT MoreTy) {
4289   assert(TypeIdx == 0 && "Expecting only Idx 0");
4290 
4291   Observer.changingInstr(MI);
4292   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4293     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4294     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4295     moreElementsVectorSrc(MI, MoreTy, I);
4296   }
4297 
4298   MachineBasicBlock &MBB = *MI.getParent();
4299   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4300   moreElementsVectorDst(MI, MoreTy, 0);
4301   Observer.changedInstr(MI);
4302   return Legalized;
4303 }
4304 
4305 LegalizerHelper::LegalizeResult
4306 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4307                                     LLT MoreTy) {
4308   unsigned Opc = MI.getOpcode();
4309   switch (Opc) {
4310   case TargetOpcode::G_IMPLICIT_DEF:
4311   case TargetOpcode::G_LOAD: {
4312     if (TypeIdx != 0)
4313       return UnableToLegalize;
4314     Observer.changingInstr(MI);
4315     moreElementsVectorDst(MI, MoreTy, 0);
4316     Observer.changedInstr(MI);
4317     return Legalized;
4318   }
4319   case TargetOpcode::G_STORE:
4320     if (TypeIdx != 0)
4321       return UnableToLegalize;
4322     Observer.changingInstr(MI);
4323     moreElementsVectorSrc(MI, MoreTy, 0);
4324     Observer.changedInstr(MI);
4325     return Legalized;
4326   case TargetOpcode::G_AND:
4327   case TargetOpcode::G_OR:
4328   case TargetOpcode::G_XOR:
4329   case TargetOpcode::G_SMIN:
4330   case TargetOpcode::G_SMAX:
4331   case TargetOpcode::G_UMIN:
4332   case TargetOpcode::G_UMAX:
4333   case TargetOpcode::G_FMINNUM:
4334   case TargetOpcode::G_FMAXNUM:
4335   case TargetOpcode::G_FMINNUM_IEEE:
4336   case TargetOpcode::G_FMAXNUM_IEEE:
4337   case TargetOpcode::G_FMINIMUM:
4338   case TargetOpcode::G_FMAXIMUM: {
4339     Observer.changingInstr(MI);
4340     moreElementsVectorSrc(MI, MoreTy, 1);
4341     moreElementsVectorSrc(MI, MoreTy, 2);
4342     moreElementsVectorDst(MI, MoreTy, 0);
4343     Observer.changedInstr(MI);
4344     return Legalized;
4345   }
4346   case TargetOpcode::G_EXTRACT:
4347     if (TypeIdx != 1)
4348       return UnableToLegalize;
4349     Observer.changingInstr(MI);
4350     moreElementsVectorSrc(MI, MoreTy, 1);
4351     Observer.changedInstr(MI);
4352     return Legalized;
4353   case TargetOpcode::G_INSERT:
4354   case TargetOpcode::G_FREEZE:
4355     if (TypeIdx != 0)
4356       return UnableToLegalize;
4357     Observer.changingInstr(MI);
4358     moreElementsVectorSrc(MI, MoreTy, 1);
4359     moreElementsVectorDst(MI, MoreTy, 0);
4360     Observer.changedInstr(MI);
4361     return Legalized;
4362   case TargetOpcode::G_SELECT:
4363     if (TypeIdx != 0)
4364       return UnableToLegalize;
4365     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4366       return UnableToLegalize;
4367 
4368     Observer.changingInstr(MI);
4369     moreElementsVectorSrc(MI, MoreTy, 2);
4370     moreElementsVectorSrc(MI, MoreTy, 3);
4371     moreElementsVectorDst(MI, MoreTy, 0);
4372     Observer.changedInstr(MI);
4373     return Legalized;
4374   case TargetOpcode::G_UNMERGE_VALUES: {
4375     if (TypeIdx != 1)
4376       return UnableToLegalize;
4377 
4378     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4379     int NumDst = MI.getNumOperands() - 1;
4380     moreElementsVectorSrc(MI, MoreTy, NumDst);
4381 
4382     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4383     for (int I = 0; I != NumDst; ++I)
4384       MIB.addDef(MI.getOperand(I).getReg());
4385 
4386     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4387     for (int I = NumDst; I != NewNumDst; ++I)
4388       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4389 
4390     MIB.addUse(MI.getOperand(NumDst).getReg());
4391     MI.eraseFromParent();
4392     return Legalized;
4393   }
4394   case TargetOpcode::G_PHI:
4395     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4396   default:
4397     return UnableToLegalize;
4398   }
4399 }
4400 
4401 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4402                                         ArrayRef<Register> Src1Regs,
4403                                         ArrayRef<Register> Src2Regs,
4404                                         LLT NarrowTy) {
4405   MachineIRBuilder &B = MIRBuilder;
4406   unsigned SrcParts = Src1Regs.size();
4407   unsigned DstParts = DstRegs.size();
4408 
4409   unsigned DstIdx = 0; // Low bits of the result.
4410   Register FactorSum =
4411       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4412   DstRegs[DstIdx] = FactorSum;
4413 
4414   unsigned CarrySumPrevDstIdx;
4415   SmallVector<Register, 4> Factors;
4416 
4417   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4418     // Collect low parts of muls for DstIdx.
4419     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4420          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4421       MachineInstrBuilder Mul =
4422           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4423       Factors.push_back(Mul.getReg(0));
4424     }
4425     // Collect high parts of muls from previous DstIdx.
4426     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4427          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4428       MachineInstrBuilder Umulh =
4429           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4430       Factors.push_back(Umulh.getReg(0));
4431     }
4432     // Add CarrySum from additions calculated for previous DstIdx.
4433     if (DstIdx != 1) {
4434       Factors.push_back(CarrySumPrevDstIdx);
4435     }
4436 
4437     Register CarrySum;
4438     // Add all factors and accumulate all carries into CarrySum.
4439     if (DstIdx != DstParts - 1) {
4440       MachineInstrBuilder Uaddo =
4441           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4442       FactorSum = Uaddo.getReg(0);
4443       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4444       for (unsigned i = 2; i < Factors.size(); ++i) {
4445         MachineInstrBuilder Uaddo =
4446             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4447         FactorSum = Uaddo.getReg(0);
4448         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4449         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4450       }
4451     } else {
4452       // Since value for the next index is not calculated, neither is CarrySum.
4453       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4454       for (unsigned i = 2; i < Factors.size(); ++i)
4455         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4456     }
4457 
4458     CarrySumPrevDstIdx = CarrySum;
4459     DstRegs[DstIdx] = FactorSum;
4460     Factors.clear();
4461   }
4462 }
4463 
4464 LegalizerHelper::LegalizeResult
4465 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4466   Register DstReg = MI.getOperand(0).getReg();
4467   Register Src1 = MI.getOperand(1).getReg();
4468   Register Src2 = MI.getOperand(2).getReg();
4469 
4470   LLT Ty = MRI.getType(DstReg);
4471   if (Ty.isVector())
4472     return UnableToLegalize;
4473 
4474   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4475   unsigned DstSize = Ty.getSizeInBits();
4476   unsigned NarrowSize = NarrowTy.getSizeInBits();
4477   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4478     return UnableToLegalize;
4479 
4480   unsigned NumDstParts = DstSize / NarrowSize;
4481   unsigned NumSrcParts = SrcSize / NarrowSize;
4482   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4483   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4484 
4485   SmallVector<Register, 2> Src1Parts, Src2Parts;
4486   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4487   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4488   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4489   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4490 
4491   // Take only high half of registers if this is high mul.
4492   ArrayRef<Register> DstRegs(
4493       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4494   MIRBuilder.buildMerge(DstReg, DstRegs);
4495   MI.eraseFromParent();
4496   return Legalized;
4497 }
4498 
4499 LegalizerHelper::LegalizeResult
4500 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4501                                      LLT NarrowTy) {
4502   if (TypeIdx != 1)
4503     return UnableToLegalize;
4504 
4505   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4506 
4507   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4508   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4509   // NarrowSize.
4510   if (SizeOp1 % NarrowSize != 0)
4511     return UnableToLegalize;
4512   int NumParts = SizeOp1 / NarrowSize;
4513 
4514   SmallVector<Register, 2> SrcRegs, DstRegs;
4515   SmallVector<uint64_t, 2> Indexes;
4516   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4517 
4518   Register OpReg = MI.getOperand(0).getReg();
4519   uint64_t OpStart = MI.getOperand(2).getImm();
4520   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4521   for (int i = 0; i < NumParts; ++i) {
4522     unsigned SrcStart = i * NarrowSize;
4523 
4524     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4525       // No part of the extract uses this subregister, ignore it.
4526       continue;
4527     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4528       // The entire subregister is extracted, forward the value.
4529       DstRegs.push_back(SrcRegs[i]);
4530       continue;
4531     }
4532 
4533     // OpSegStart is where this destination segment would start in OpReg if it
4534     // extended infinitely in both directions.
4535     int64_t ExtractOffset;
4536     uint64_t SegSize;
4537     if (OpStart < SrcStart) {
4538       ExtractOffset = 0;
4539       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4540     } else {
4541       ExtractOffset = OpStart - SrcStart;
4542       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4543     }
4544 
4545     Register SegReg = SrcRegs[i];
4546     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4547       // A genuine extract is needed.
4548       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4549       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4550     }
4551 
4552     DstRegs.push_back(SegReg);
4553   }
4554 
4555   Register DstReg = MI.getOperand(0).getReg();
4556   if (MRI.getType(DstReg).isVector())
4557     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4558   else if (DstRegs.size() > 1)
4559     MIRBuilder.buildMerge(DstReg, DstRegs);
4560   else
4561     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4562   MI.eraseFromParent();
4563   return Legalized;
4564 }
4565 
4566 LegalizerHelper::LegalizeResult
4567 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4568                                     LLT NarrowTy) {
4569   // FIXME: Don't know how to handle secondary types yet.
4570   if (TypeIdx != 0)
4571     return UnableToLegalize;
4572 
4573   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4574   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4575 
4576   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4577   // NarrowSize.
4578   if (SizeOp0 % NarrowSize != 0)
4579     return UnableToLegalize;
4580 
4581   int NumParts = SizeOp0 / NarrowSize;
4582 
4583   SmallVector<Register, 2> SrcRegs, DstRegs;
4584   SmallVector<uint64_t, 2> Indexes;
4585   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4586 
4587   Register OpReg = MI.getOperand(2).getReg();
4588   uint64_t OpStart = MI.getOperand(3).getImm();
4589   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4590   for (int i = 0; i < NumParts; ++i) {
4591     unsigned DstStart = i * NarrowSize;
4592 
4593     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4594       // No part of the insert affects this subregister, forward the original.
4595       DstRegs.push_back(SrcRegs[i]);
4596       continue;
4597     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4598       // The entire subregister is defined by this insert, forward the new
4599       // value.
4600       DstRegs.push_back(OpReg);
4601       continue;
4602     }
4603 
4604     // OpSegStart is where this destination segment would start in OpReg if it
4605     // extended infinitely in both directions.
4606     int64_t ExtractOffset, InsertOffset;
4607     uint64_t SegSize;
4608     if (OpStart < DstStart) {
4609       InsertOffset = 0;
4610       ExtractOffset = DstStart - OpStart;
4611       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4612     } else {
4613       InsertOffset = OpStart - DstStart;
4614       ExtractOffset = 0;
4615       SegSize =
4616         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4617     }
4618 
4619     Register SegReg = OpReg;
4620     if (ExtractOffset != 0 || SegSize != OpSize) {
4621       // A genuine extract is needed.
4622       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4623       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4624     }
4625 
4626     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4627     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4628     DstRegs.push_back(DstReg);
4629   }
4630 
4631   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4632   Register DstReg = MI.getOperand(0).getReg();
4633   if(MRI.getType(DstReg).isVector())
4634     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4635   else
4636     MIRBuilder.buildMerge(DstReg, DstRegs);
4637   MI.eraseFromParent();
4638   return Legalized;
4639 }
4640 
4641 LegalizerHelper::LegalizeResult
4642 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4643                                    LLT NarrowTy) {
4644   Register DstReg = MI.getOperand(0).getReg();
4645   LLT DstTy = MRI.getType(DstReg);
4646 
4647   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4648 
4649   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4650   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4651   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4652   LLT LeftoverTy;
4653   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4654                     Src0Regs, Src0LeftoverRegs))
4655     return UnableToLegalize;
4656 
4657   LLT Unused;
4658   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4659                     Src1Regs, Src1LeftoverRegs))
4660     llvm_unreachable("inconsistent extractParts result");
4661 
4662   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4663     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4664                                         {Src0Regs[I], Src1Regs[I]});
4665     DstRegs.push_back(Inst.getReg(0));
4666   }
4667 
4668   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4669     auto Inst = MIRBuilder.buildInstr(
4670       MI.getOpcode(),
4671       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4672     DstLeftoverRegs.push_back(Inst.getReg(0));
4673   }
4674 
4675   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4676               LeftoverTy, DstLeftoverRegs);
4677 
4678   MI.eraseFromParent();
4679   return Legalized;
4680 }
4681 
4682 LegalizerHelper::LegalizeResult
4683 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4684                                  LLT NarrowTy) {
4685   if (TypeIdx != 0)
4686     return UnableToLegalize;
4687 
4688   Register DstReg = MI.getOperand(0).getReg();
4689   Register SrcReg = MI.getOperand(1).getReg();
4690 
4691   LLT DstTy = MRI.getType(DstReg);
4692   if (DstTy.isVector())
4693     return UnableToLegalize;
4694 
4695   SmallVector<Register, 8> Parts;
4696   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4697   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4698   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4699 
4700   MI.eraseFromParent();
4701   return Legalized;
4702 }
4703 
4704 LegalizerHelper::LegalizeResult
4705 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4706                                     LLT NarrowTy) {
4707   if (TypeIdx != 0)
4708     return UnableToLegalize;
4709 
4710   Register CondReg = MI.getOperand(1).getReg();
4711   LLT CondTy = MRI.getType(CondReg);
4712   if (CondTy.isVector()) // TODO: Handle vselect
4713     return UnableToLegalize;
4714 
4715   Register DstReg = MI.getOperand(0).getReg();
4716   LLT DstTy = MRI.getType(DstReg);
4717 
4718   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4719   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4720   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4721   LLT LeftoverTy;
4722   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4723                     Src1Regs, Src1LeftoverRegs))
4724     return UnableToLegalize;
4725 
4726   LLT Unused;
4727   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4728                     Src2Regs, Src2LeftoverRegs))
4729     llvm_unreachable("inconsistent extractParts result");
4730 
4731   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4732     auto Select = MIRBuilder.buildSelect(NarrowTy,
4733                                          CondReg, Src1Regs[I], Src2Regs[I]);
4734     DstRegs.push_back(Select.getReg(0));
4735   }
4736 
4737   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4738     auto Select = MIRBuilder.buildSelect(
4739       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4740     DstLeftoverRegs.push_back(Select.getReg(0));
4741   }
4742 
4743   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4744               LeftoverTy, DstLeftoverRegs);
4745 
4746   MI.eraseFromParent();
4747   return Legalized;
4748 }
4749 
4750 LegalizerHelper::LegalizeResult
4751 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4752                                   LLT NarrowTy) {
4753   if (TypeIdx != 1)
4754     return UnableToLegalize;
4755 
4756   Register DstReg = MI.getOperand(0).getReg();
4757   Register SrcReg = MI.getOperand(1).getReg();
4758   LLT DstTy = MRI.getType(DstReg);
4759   LLT SrcTy = MRI.getType(SrcReg);
4760   unsigned NarrowSize = NarrowTy.getSizeInBits();
4761 
4762   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4763     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4764 
4765     MachineIRBuilder &B = MIRBuilder;
4766     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4767     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4768     auto C_0 = B.buildConstant(NarrowTy, 0);
4769     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4770                                 UnmergeSrc.getReg(1), C_0);
4771     auto LoCTLZ = IsUndef ?
4772       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4773       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4774     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4775     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4776     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4777     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4778 
4779     MI.eraseFromParent();
4780     return Legalized;
4781   }
4782 
4783   return UnableToLegalize;
4784 }
4785 
4786 LegalizerHelper::LegalizeResult
4787 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4788                                   LLT NarrowTy) {
4789   if (TypeIdx != 1)
4790     return UnableToLegalize;
4791 
4792   Register DstReg = MI.getOperand(0).getReg();
4793   Register SrcReg = MI.getOperand(1).getReg();
4794   LLT DstTy = MRI.getType(DstReg);
4795   LLT SrcTy = MRI.getType(SrcReg);
4796   unsigned NarrowSize = NarrowTy.getSizeInBits();
4797 
4798   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4799     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4800 
4801     MachineIRBuilder &B = MIRBuilder;
4802     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4803     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4804     auto C_0 = B.buildConstant(NarrowTy, 0);
4805     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4806                                 UnmergeSrc.getReg(0), C_0);
4807     auto HiCTTZ = IsUndef ?
4808       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4809       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4810     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4811     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4812     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4813     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4814 
4815     MI.eraseFromParent();
4816     return Legalized;
4817   }
4818 
4819   return UnableToLegalize;
4820 }
4821 
4822 LegalizerHelper::LegalizeResult
4823 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4824                                    LLT NarrowTy) {
4825   if (TypeIdx != 1)
4826     return UnableToLegalize;
4827 
4828   Register DstReg = MI.getOperand(0).getReg();
4829   LLT DstTy = MRI.getType(DstReg);
4830   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4831   unsigned NarrowSize = NarrowTy.getSizeInBits();
4832 
4833   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4834     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4835 
4836     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4837     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4838     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4839 
4840     MI.eraseFromParent();
4841     return Legalized;
4842   }
4843 
4844   return UnableToLegalize;
4845 }
4846 
4847 LegalizerHelper::LegalizeResult
4848 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
4849   unsigned Opc = MI.getOpcode();
4850   const auto &TII = MIRBuilder.getTII();
4851   auto isSupported = [this](const LegalityQuery &Q) {
4852     auto QAction = LI.getAction(Q).Action;
4853     return QAction == Legal || QAction == Libcall || QAction == Custom;
4854   };
4855   switch (Opc) {
4856   default:
4857     return UnableToLegalize;
4858   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4859     // This trivially expands to CTLZ.
4860     Observer.changingInstr(MI);
4861     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4862     Observer.changedInstr(MI);
4863     return Legalized;
4864   }
4865   case TargetOpcode::G_CTLZ: {
4866     Register DstReg = MI.getOperand(0).getReg();
4867     Register SrcReg = MI.getOperand(1).getReg();
4868     LLT DstTy = MRI.getType(DstReg);
4869     LLT SrcTy = MRI.getType(SrcReg);
4870     unsigned Len = SrcTy.getSizeInBits();
4871 
4872     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4873       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4874       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4875       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4876       auto ICmp = MIRBuilder.buildICmp(
4877           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4878       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4879       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4880       MI.eraseFromParent();
4881       return Legalized;
4882     }
4883     // for now, we do this:
4884     // NewLen = NextPowerOf2(Len);
4885     // x = x | (x >> 1);
4886     // x = x | (x >> 2);
4887     // ...
4888     // x = x | (x >>16);
4889     // x = x | (x >>32); // for 64-bit input
4890     // Upto NewLen/2
4891     // return Len - popcount(x);
4892     //
4893     // Ref: "Hacker's Delight" by Henry Warren
4894     Register Op = SrcReg;
4895     unsigned NewLen = PowerOf2Ceil(Len);
4896     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4897       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4898       auto MIBOp = MIRBuilder.buildOr(
4899           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4900       Op = MIBOp.getReg(0);
4901     }
4902     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4903     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4904                         MIBPop);
4905     MI.eraseFromParent();
4906     return Legalized;
4907   }
4908   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4909     // This trivially expands to CTTZ.
4910     Observer.changingInstr(MI);
4911     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4912     Observer.changedInstr(MI);
4913     return Legalized;
4914   }
4915   case TargetOpcode::G_CTTZ: {
4916     Register DstReg = MI.getOperand(0).getReg();
4917     Register SrcReg = MI.getOperand(1).getReg();
4918     LLT DstTy = MRI.getType(DstReg);
4919     LLT SrcTy = MRI.getType(SrcReg);
4920 
4921     unsigned Len = SrcTy.getSizeInBits();
4922     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4923       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4924       // zero.
4925       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4926       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4927       auto ICmp = MIRBuilder.buildICmp(
4928           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4929       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4930       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4931       MI.eraseFromParent();
4932       return Legalized;
4933     }
4934     // for now, we use: { return popcount(~x & (x - 1)); }
4935     // unless the target has ctlz but not ctpop, in which case we use:
4936     // { return 32 - nlz(~x & (x-1)); }
4937     // Ref: "Hacker's Delight" by Henry Warren
4938     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
4939     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
4940     auto MIBTmp = MIRBuilder.buildAnd(
4941         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
4942     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
4943         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
4944       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
4945       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4946                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
4947       MI.eraseFromParent();
4948       return Legalized;
4949     }
4950     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4951     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4952     return Legalized;
4953   }
4954   case TargetOpcode::G_CTPOP: {
4955     Register SrcReg = MI.getOperand(1).getReg();
4956     LLT Ty = MRI.getType(SrcReg);
4957     unsigned Size = Ty.getSizeInBits();
4958     MachineIRBuilder &B = MIRBuilder;
4959 
4960     // Count set bits in blocks of 2 bits. Default approach would be
4961     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4962     // We use following formula instead:
4963     // B2Count = val - { (val >> 1) & 0x55555555 }
4964     // since it gives same result in blocks of 2 with one instruction less.
4965     auto C_1 = B.buildConstant(Ty, 1);
4966     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
4967     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4968     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4969     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4970     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
4971 
4972     // In order to get count in blocks of 4 add values from adjacent block of 2.
4973     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4974     auto C_2 = B.buildConstant(Ty, 2);
4975     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4976     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4977     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4978     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4979     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4980     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4981 
4982     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4983     // addition since count value sits in range {0,...,8} and 4 bits are enough
4984     // to hold such binary values. After addition high 4 bits still hold count
4985     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4986     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4987     auto C_4 = B.buildConstant(Ty, 4);
4988     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4989     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4990     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4991     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4992     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4993 
4994     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4995     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4996     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4997     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4998     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4999 
5000     // Shift count result from 8 high bits to low bits.
5001     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5002     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5003 
5004     MI.eraseFromParent();
5005     return Legalized;
5006   }
5007   }
5008 }
5009 
5010 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5011 // representation.
5012 LegalizerHelper::LegalizeResult
5013 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5014   Register Dst = MI.getOperand(0).getReg();
5015   Register Src = MI.getOperand(1).getReg();
5016   const LLT S64 = LLT::scalar(64);
5017   const LLT S32 = LLT::scalar(32);
5018   const LLT S1 = LLT::scalar(1);
5019 
5020   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5021 
5022   // unsigned cul2f(ulong u) {
5023   //   uint lz = clz(u);
5024   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5025   //   u = (u << lz) & 0x7fffffffffffffffUL;
5026   //   ulong t = u & 0xffffffffffUL;
5027   //   uint v = (e << 23) | (uint)(u >> 40);
5028   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5029   //   return as_float(v + r);
5030   // }
5031 
5032   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5033   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5034 
5035   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5036 
5037   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5038   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5039 
5040   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5041   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5042 
5043   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5044   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5045 
5046   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5047 
5048   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5049   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5050 
5051   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5052   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5053   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5054 
5055   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5056   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5057   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5058   auto One = MIRBuilder.buildConstant(S32, 1);
5059 
5060   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5061   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5062   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5063   MIRBuilder.buildAdd(Dst, V, R);
5064 
5065   MI.eraseFromParent();
5066   return Legalized;
5067 }
5068 
5069 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5070   Register Dst = MI.getOperand(0).getReg();
5071   Register Src = MI.getOperand(1).getReg();
5072   LLT DstTy = MRI.getType(Dst);
5073   LLT SrcTy = MRI.getType(Src);
5074 
5075   if (SrcTy == LLT::scalar(1)) {
5076     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5077     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5078     MIRBuilder.buildSelect(Dst, Src, True, False);
5079     MI.eraseFromParent();
5080     return Legalized;
5081   }
5082 
5083   if (SrcTy != LLT::scalar(64))
5084     return UnableToLegalize;
5085 
5086   if (DstTy == LLT::scalar(32)) {
5087     // TODO: SelectionDAG has several alternative expansions to port which may
5088     // be more reasonble depending on the available instructions. If a target
5089     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5090     // intermediate type, this is probably worse.
5091     return lowerU64ToF32BitOps(MI);
5092   }
5093 
5094   return UnableToLegalize;
5095 }
5096 
5097 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5098   Register Dst = MI.getOperand(0).getReg();
5099   Register Src = MI.getOperand(1).getReg();
5100   LLT DstTy = MRI.getType(Dst);
5101   LLT SrcTy = MRI.getType(Src);
5102 
5103   const LLT S64 = LLT::scalar(64);
5104   const LLT S32 = LLT::scalar(32);
5105   const LLT S1 = LLT::scalar(1);
5106 
5107   if (SrcTy == S1) {
5108     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5109     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5110     MIRBuilder.buildSelect(Dst, Src, True, False);
5111     MI.eraseFromParent();
5112     return Legalized;
5113   }
5114 
5115   if (SrcTy != S64)
5116     return UnableToLegalize;
5117 
5118   if (DstTy == S32) {
5119     // signed cl2f(long l) {
5120     //   long s = l >> 63;
5121     //   float r = cul2f((l + s) ^ s);
5122     //   return s ? -r : r;
5123     // }
5124     Register L = Src;
5125     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5126     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5127 
5128     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5129     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5130     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5131 
5132     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5133     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5134                                             MIRBuilder.buildConstant(S64, 0));
5135     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5136     MI.eraseFromParent();
5137     return Legalized;
5138   }
5139 
5140   return UnableToLegalize;
5141 }
5142 
5143 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5144   Register Dst = MI.getOperand(0).getReg();
5145   Register Src = MI.getOperand(1).getReg();
5146   LLT DstTy = MRI.getType(Dst);
5147   LLT SrcTy = MRI.getType(Src);
5148   const LLT S64 = LLT::scalar(64);
5149   const LLT S32 = LLT::scalar(32);
5150 
5151   if (SrcTy != S64 && SrcTy != S32)
5152     return UnableToLegalize;
5153   if (DstTy != S32 && DstTy != S64)
5154     return UnableToLegalize;
5155 
5156   // FPTOSI gives same result as FPTOUI for positive signed integers.
5157   // FPTOUI needs to deal with fp values that convert to unsigned integers
5158   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5159 
5160   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5161   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5162                                                 : APFloat::IEEEdouble(),
5163                     APInt::getNullValue(SrcTy.getSizeInBits()));
5164   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5165 
5166   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5167 
5168   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5169   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5170   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5171   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5172   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5173   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5174   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5175 
5176   const LLT S1 = LLT::scalar(1);
5177 
5178   MachineInstrBuilder FCMP =
5179       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5180   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5181 
5182   MI.eraseFromParent();
5183   return Legalized;
5184 }
5185 
5186 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5187   Register Dst = MI.getOperand(0).getReg();
5188   Register Src = MI.getOperand(1).getReg();
5189   LLT DstTy = MRI.getType(Dst);
5190   LLT SrcTy = MRI.getType(Src);
5191   const LLT S64 = LLT::scalar(64);
5192   const LLT S32 = LLT::scalar(32);
5193 
5194   // FIXME: Only f32 to i64 conversions are supported.
5195   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5196     return UnableToLegalize;
5197 
5198   // Expand f32 -> i64 conversion
5199   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5200   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5201 
5202   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5203 
5204   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5205   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5206 
5207   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5208   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5209 
5210   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5211                                            APInt::getSignMask(SrcEltBits));
5212   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5213   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5214   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5215   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5216 
5217   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5218   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5219   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5220 
5221   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5222   R = MIRBuilder.buildZExt(DstTy, R);
5223 
5224   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5225   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5226   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5227   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5228 
5229   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5230   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5231 
5232   const LLT S1 = LLT::scalar(1);
5233   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5234                                     S1, Exponent, ExponentLoBit);
5235 
5236   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5237 
5238   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5239   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5240 
5241   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5242 
5243   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5244                                           S1, Exponent, ZeroSrcTy);
5245 
5246   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5247   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5248 
5249   MI.eraseFromParent();
5250   return Legalized;
5251 }
5252 
5253 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5254 LegalizerHelper::LegalizeResult
5255 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5256   Register Dst = MI.getOperand(0).getReg();
5257   Register Src = MI.getOperand(1).getReg();
5258 
5259   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5260     return UnableToLegalize;
5261 
5262   const unsigned ExpMask = 0x7ff;
5263   const unsigned ExpBiasf64 = 1023;
5264   const unsigned ExpBiasf16 = 15;
5265   const LLT S32 = LLT::scalar(32);
5266   const LLT S1 = LLT::scalar(1);
5267 
5268   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5269   Register U = Unmerge.getReg(0);
5270   Register UH = Unmerge.getReg(1);
5271 
5272   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5273   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5274 
5275   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5276   // add the f16 bias (15) to get the biased exponent for the f16 format.
5277   E = MIRBuilder.buildAdd(
5278     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5279 
5280   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5281   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5282 
5283   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5284                                        MIRBuilder.buildConstant(S32, 0x1ff));
5285   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5286 
5287   auto Zero = MIRBuilder.buildConstant(S32, 0);
5288   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5289   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5290   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5291 
5292   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5293   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5294   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5295   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5296 
5297   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5298   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5299 
5300   // N = M | (E << 12);
5301   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5302   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5303 
5304   // B = clamp(1-E, 0, 13);
5305   auto One = MIRBuilder.buildConstant(S32, 1);
5306   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5307   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5308   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5309 
5310   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5311                                        MIRBuilder.buildConstant(S32, 0x1000));
5312 
5313   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5314   auto D0 = MIRBuilder.buildShl(S32, D, B);
5315 
5316   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5317                                              D0, SigSetHigh);
5318   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5319   D = MIRBuilder.buildOr(S32, D, D1);
5320 
5321   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5322   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5323 
5324   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5325   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5326 
5327   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5328                                        MIRBuilder.buildConstant(S32, 3));
5329   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5330 
5331   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5332                                        MIRBuilder.buildConstant(S32, 5));
5333   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5334 
5335   V1 = MIRBuilder.buildOr(S32, V0, V1);
5336   V = MIRBuilder.buildAdd(S32, V, V1);
5337 
5338   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5339                                        E, MIRBuilder.buildConstant(S32, 30));
5340   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5341                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5342 
5343   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5344                                          E, MIRBuilder.buildConstant(S32, 1039));
5345   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5346 
5347   // Extract the sign bit.
5348   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5349   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5350 
5351   // Insert the sign bit
5352   V = MIRBuilder.buildOr(S32, Sign, V);
5353 
5354   MIRBuilder.buildTrunc(Dst, V);
5355   MI.eraseFromParent();
5356   return Legalized;
5357 }
5358 
5359 LegalizerHelper::LegalizeResult
5360 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5361   Register Dst = MI.getOperand(0).getReg();
5362   Register Src = MI.getOperand(1).getReg();
5363 
5364   LLT DstTy = MRI.getType(Dst);
5365   LLT SrcTy = MRI.getType(Src);
5366   const LLT S64 = LLT::scalar(64);
5367   const LLT S16 = LLT::scalar(16);
5368 
5369   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5370     return lowerFPTRUNC_F64_TO_F16(MI);
5371 
5372   return UnableToLegalize;
5373 }
5374 
5375 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5376 // multiplication tree.
5377 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5378   Register Dst = MI.getOperand(0).getReg();
5379   Register Src0 = MI.getOperand(1).getReg();
5380   Register Src1 = MI.getOperand(2).getReg();
5381   LLT Ty = MRI.getType(Dst);
5382 
5383   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5384   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5385   MI.eraseFromParent();
5386   return Legalized;
5387 }
5388 
5389 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5390   switch (Opc) {
5391   case TargetOpcode::G_SMIN:
5392     return CmpInst::ICMP_SLT;
5393   case TargetOpcode::G_SMAX:
5394     return CmpInst::ICMP_SGT;
5395   case TargetOpcode::G_UMIN:
5396     return CmpInst::ICMP_ULT;
5397   case TargetOpcode::G_UMAX:
5398     return CmpInst::ICMP_UGT;
5399   default:
5400     llvm_unreachable("not in integer min/max");
5401   }
5402 }
5403 
5404 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5405   Register Dst = MI.getOperand(0).getReg();
5406   Register Src0 = MI.getOperand(1).getReg();
5407   Register Src1 = MI.getOperand(2).getReg();
5408 
5409   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5410   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5411 
5412   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5413   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5414 
5415   MI.eraseFromParent();
5416   return Legalized;
5417 }
5418 
5419 LegalizerHelper::LegalizeResult
5420 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5421   Register Dst = MI.getOperand(0).getReg();
5422   Register Src0 = MI.getOperand(1).getReg();
5423   Register Src1 = MI.getOperand(2).getReg();
5424 
5425   const LLT Src0Ty = MRI.getType(Src0);
5426   const LLT Src1Ty = MRI.getType(Src1);
5427 
5428   const int Src0Size = Src0Ty.getScalarSizeInBits();
5429   const int Src1Size = Src1Ty.getScalarSizeInBits();
5430 
5431   auto SignBitMask = MIRBuilder.buildConstant(
5432     Src0Ty, APInt::getSignMask(Src0Size));
5433 
5434   auto NotSignBitMask = MIRBuilder.buildConstant(
5435     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5436 
5437   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
5438   MachineInstr *Or;
5439 
5440   if (Src0Ty == Src1Ty) {
5441     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
5442     Or = MIRBuilder.buildOr(Dst, And0, And1);
5443   } else if (Src0Size > Src1Size) {
5444     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5445     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5446     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5447     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
5448     Or = MIRBuilder.buildOr(Dst, And0, And1);
5449   } else {
5450     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5451     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5452     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5453     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
5454     Or = MIRBuilder.buildOr(Dst, And0, And1);
5455   }
5456 
5457   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5458   // constants are a nan and -0.0, but the final result should preserve
5459   // everything.
5460   if (unsigned Flags = MI.getFlags())
5461     Or->setFlags(Flags);
5462 
5463   MI.eraseFromParent();
5464   return Legalized;
5465 }
5466 
5467 LegalizerHelper::LegalizeResult
5468 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5469   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5470     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5471 
5472   Register Dst = MI.getOperand(0).getReg();
5473   Register Src0 = MI.getOperand(1).getReg();
5474   Register Src1 = MI.getOperand(2).getReg();
5475   LLT Ty = MRI.getType(Dst);
5476 
5477   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5478     // Insert canonicalizes if it's possible we need to quiet to get correct
5479     // sNaN behavior.
5480 
5481     // Note this must be done here, and not as an optimization combine in the
5482     // absence of a dedicate quiet-snan instruction as we're using an
5483     // omni-purpose G_FCANONICALIZE.
5484     if (!isKnownNeverSNaN(Src0, MRI))
5485       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5486 
5487     if (!isKnownNeverSNaN(Src1, MRI))
5488       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5489   }
5490 
5491   // If there are no nans, it's safe to simply replace this with the non-IEEE
5492   // version.
5493   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5494   MI.eraseFromParent();
5495   return Legalized;
5496 }
5497 
5498 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5499   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5500   Register DstReg = MI.getOperand(0).getReg();
5501   LLT Ty = MRI.getType(DstReg);
5502   unsigned Flags = MI.getFlags();
5503 
5504   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5505                                   Flags);
5506   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5507   MI.eraseFromParent();
5508   return Legalized;
5509 }
5510 
5511 LegalizerHelper::LegalizeResult
5512 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5513   Register DstReg = MI.getOperand(0).getReg();
5514   Register X = MI.getOperand(1).getReg();
5515   const unsigned Flags = MI.getFlags();
5516   const LLT Ty = MRI.getType(DstReg);
5517   const LLT CondTy = Ty.changeElementSize(1);
5518 
5519   // round(x) =>
5520   //  t = trunc(x);
5521   //  d = fabs(x - t);
5522   //  o = copysign(1.0f, x);
5523   //  return t + (d >= 0.5 ? o : 0.0);
5524 
5525   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5526 
5527   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5528   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5529   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5530   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5531   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5532   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5533 
5534   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5535                                   Flags);
5536   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5537 
5538   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5539 
5540   MI.eraseFromParent();
5541   return Legalized;
5542 }
5543 
5544 LegalizerHelper::LegalizeResult
5545 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5546   Register DstReg = MI.getOperand(0).getReg();
5547   Register SrcReg = MI.getOperand(1).getReg();
5548   unsigned Flags = MI.getFlags();
5549   LLT Ty = MRI.getType(DstReg);
5550   const LLT CondTy = Ty.changeElementSize(1);
5551 
5552   // result = trunc(src);
5553   // if (src < 0.0 && src != result)
5554   //   result += -1.0.
5555 
5556   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5557   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5558 
5559   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5560                                   SrcReg, Zero, Flags);
5561   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5562                                       SrcReg, Trunc, Flags);
5563   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5564   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5565 
5566   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5567   MI.eraseFromParent();
5568   return Legalized;
5569 }
5570 
5571 LegalizerHelper::LegalizeResult
5572 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5573   const unsigned NumOps = MI.getNumOperands();
5574   Register DstReg = MI.getOperand(0).getReg();
5575   Register Src0Reg = MI.getOperand(1).getReg();
5576   LLT DstTy = MRI.getType(DstReg);
5577   LLT SrcTy = MRI.getType(Src0Reg);
5578   unsigned PartSize = SrcTy.getSizeInBits();
5579 
5580   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5581   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5582 
5583   for (unsigned I = 2; I != NumOps; ++I) {
5584     const unsigned Offset = (I - 1) * PartSize;
5585 
5586     Register SrcReg = MI.getOperand(I).getReg();
5587     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5588 
5589     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5590       MRI.createGenericVirtualRegister(WideTy);
5591 
5592     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5593     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5594     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5595     ResultReg = NextResult;
5596   }
5597 
5598   if (DstTy.isPointer()) {
5599     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5600           DstTy.getAddressSpace())) {
5601       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5602       return UnableToLegalize;
5603     }
5604 
5605     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5606   }
5607 
5608   MI.eraseFromParent();
5609   return Legalized;
5610 }
5611 
5612 LegalizerHelper::LegalizeResult
5613 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5614   const unsigned NumDst = MI.getNumOperands() - 1;
5615   Register SrcReg = MI.getOperand(NumDst).getReg();
5616   Register Dst0Reg = MI.getOperand(0).getReg();
5617   LLT DstTy = MRI.getType(Dst0Reg);
5618   if (DstTy.isPointer())
5619     return UnableToLegalize; // TODO
5620 
5621   SrcReg = coerceToScalar(SrcReg);
5622   if (!SrcReg)
5623     return UnableToLegalize;
5624 
5625   // Expand scalarizing unmerge as bitcast to integer and shift.
5626   LLT IntTy = MRI.getType(SrcReg);
5627 
5628   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5629 
5630   const unsigned DstSize = DstTy.getSizeInBits();
5631   unsigned Offset = DstSize;
5632   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5633     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5634     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5635     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5636   }
5637 
5638   MI.eraseFromParent();
5639   return Legalized;
5640 }
5641 
5642 /// Lower a vector extract or insert by writing the vector to a stack temporary
5643 /// and reloading the element or vector.
5644 ///
5645 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5646 ///  =>
5647 ///  %stack_temp = G_FRAME_INDEX
5648 ///  G_STORE %vec, %stack_temp
5649 ///  %idx = clamp(%idx, %vec.getNumElements())
5650 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5651 ///  %dst = G_LOAD %element_ptr
5652 LegalizerHelper::LegalizeResult
5653 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5654   Register DstReg = MI.getOperand(0).getReg();
5655   Register SrcVec = MI.getOperand(1).getReg();
5656   Register InsertVal;
5657   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5658     InsertVal = MI.getOperand(2).getReg();
5659 
5660   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5661 
5662   LLT VecTy = MRI.getType(SrcVec);
5663   LLT EltTy = VecTy.getElementType();
5664   if (!EltTy.isByteSized()) { // Not implemented.
5665     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5666     return UnableToLegalize;
5667   }
5668 
5669   unsigned EltBytes = EltTy.getSizeInBytes();
5670   Align VecAlign = getStackTemporaryAlignment(VecTy);
5671   Align EltAlign;
5672 
5673   MachinePointerInfo PtrInfo;
5674   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5675                                         VecAlign, PtrInfo);
5676   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
5677 
5678   // Get the pointer to the element, and be sure not to hit undefined behavior
5679   // if the index is out of bounds.
5680   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5681 
5682   int64_t IdxVal;
5683   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5684     int64_t Offset = IdxVal * EltBytes;
5685     PtrInfo = PtrInfo.getWithOffset(Offset);
5686     EltAlign = commonAlignment(VecAlign, Offset);
5687   } else {
5688     // We lose information with a variable offset.
5689     EltAlign = getStackTemporaryAlignment(EltTy);
5690     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
5691   }
5692 
5693   if (InsertVal) {
5694     // Write the inserted element
5695     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
5696 
5697     // Reload the whole vector.
5698     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
5699   } else {
5700     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
5701   }
5702 
5703   MI.eraseFromParent();
5704   return Legalized;
5705 }
5706 
5707 LegalizerHelper::LegalizeResult
5708 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5709   Register DstReg = MI.getOperand(0).getReg();
5710   Register Src0Reg = MI.getOperand(1).getReg();
5711   Register Src1Reg = MI.getOperand(2).getReg();
5712   LLT Src0Ty = MRI.getType(Src0Reg);
5713   LLT DstTy = MRI.getType(DstReg);
5714   LLT IdxTy = LLT::scalar(32);
5715 
5716   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5717 
5718   if (DstTy.isScalar()) {
5719     if (Src0Ty.isVector())
5720       return UnableToLegalize;
5721 
5722     // This is just a SELECT.
5723     assert(Mask.size() == 1 && "Expected a single mask element");
5724     Register Val;
5725     if (Mask[0] < 0 || Mask[0] > 1)
5726       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5727     else
5728       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5729     MIRBuilder.buildCopy(DstReg, Val);
5730     MI.eraseFromParent();
5731     return Legalized;
5732   }
5733 
5734   Register Undef;
5735   SmallVector<Register, 32> BuildVec;
5736   LLT EltTy = DstTy.getElementType();
5737 
5738   for (int Idx : Mask) {
5739     if (Idx < 0) {
5740       if (!Undef.isValid())
5741         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5742       BuildVec.push_back(Undef);
5743       continue;
5744     }
5745 
5746     if (Src0Ty.isScalar()) {
5747       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5748     } else {
5749       int NumElts = Src0Ty.getNumElements();
5750       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5751       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5752       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5753       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5754       BuildVec.push_back(Extract.getReg(0));
5755     }
5756   }
5757 
5758   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5759   MI.eraseFromParent();
5760   return Legalized;
5761 }
5762 
5763 LegalizerHelper::LegalizeResult
5764 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5765   const auto &MF = *MI.getMF();
5766   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5767   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5768     return UnableToLegalize;
5769 
5770   Register Dst = MI.getOperand(0).getReg();
5771   Register AllocSize = MI.getOperand(1).getReg();
5772   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5773 
5774   LLT PtrTy = MRI.getType(Dst);
5775   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5776 
5777   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5778   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5779   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5780 
5781   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5782   // have to generate an extra instruction to negate the alloc and then use
5783   // G_PTR_ADD to add the negative offset.
5784   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5785   if (Alignment > Align(1)) {
5786     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5787     AlignMask.negate();
5788     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5789     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5790   }
5791 
5792   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5793   MIRBuilder.buildCopy(SPReg, SPTmp);
5794   MIRBuilder.buildCopy(Dst, SPTmp);
5795 
5796   MI.eraseFromParent();
5797   return Legalized;
5798 }
5799 
5800 LegalizerHelper::LegalizeResult
5801 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5802   Register Dst = MI.getOperand(0).getReg();
5803   Register Src = MI.getOperand(1).getReg();
5804   unsigned Offset = MI.getOperand(2).getImm();
5805 
5806   LLT DstTy = MRI.getType(Dst);
5807   LLT SrcTy = MRI.getType(Src);
5808 
5809   if (DstTy.isScalar() &&
5810       (SrcTy.isScalar() ||
5811        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5812     LLT SrcIntTy = SrcTy;
5813     if (!SrcTy.isScalar()) {
5814       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5815       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5816     }
5817 
5818     if (Offset == 0)
5819       MIRBuilder.buildTrunc(Dst, Src);
5820     else {
5821       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5822       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5823       MIRBuilder.buildTrunc(Dst, Shr);
5824     }
5825 
5826     MI.eraseFromParent();
5827     return Legalized;
5828   }
5829 
5830   return UnableToLegalize;
5831 }
5832 
5833 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5834   Register Dst = MI.getOperand(0).getReg();
5835   Register Src = MI.getOperand(1).getReg();
5836   Register InsertSrc = MI.getOperand(2).getReg();
5837   uint64_t Offset = MI.getOperand(3).getImm();
5838 
5839   LLT DstTy = MRI.getType(Src);
5840   LLT InsertTy = MRI.getType(InsertSrc);
5841 
5842   if (InsertTy.isVector() ||
5843       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5844     return UnableToLegalize;
5845 
5846   const DataLayout &DL = MIRBuilder.getDataLayout();
5847   if ((DstTy.isPointer() &&
5848        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5849       (InsertTy.isPointer() &&
5850        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5851     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5852     return UnableToLegalize;
5853   }
5854 
5855   LLT IntDstTy = DstTy;
5856 
5857   if (!DstTy.isScalar()) {
5858     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5859     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5860   }
5861 
5862   if (!InsertTy.isScalar()) {
5863     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5864     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5865   }
5866 
5867   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5868   if (Offset != 0) {
5869     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5870     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5871   }
5872 
5873   APInt MaskVal = APInt::getBitsSetWithWrap(
5874       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5875 
5876   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5877   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5878   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5879 
5880   MIRBuilder.buildCast(Dst, Or);
5881   MI.eraseFromParent();
5882   return Legalized;
5883 }
5884 
5885 LegalizerHelper::LegalizeResult
5886 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5887   Register Dst0 = MI.getOperand(0).getReg();
5888   Register Dst1 = MI.getOperand(1).getReg();
5889   Register LHS = MI.getOperand(2).getReg();
5890   Register RHS = MI.getOperand(3).getReg();
5891   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5892 
5893   LLT Ty = MRI.getType(Dst0);
5894   LLT BoolTy = MRI.getType(Dst1);
5895 
5896   if (IsAdd)
5897     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5898   else
5899     MIRBuilder.buildSub(Dst0, LHS, RHS);
5900 
5901   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5902 
5903   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5904 
5905   // For an addition, the result should be less than one of the operands (LHS)
5906   // if and only if the other operand (RHS) is negative, otherwise there will
5907   // be overflow.
5908   // For a subtraction, the result should be less than one of the operands
5909   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5910   // otherwise there will be overflow.
5911   auto ResultLowerThanLHS =
5912       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5913   auto ConditionRHS = MIRBuilder.buildICmp(
5914       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5915 
5916   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5917   MI.eraseFromParent();
5918   return Legalized;
5919 }
5920 
5921 LegalizerHelper::LegalizeResult
5922 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
5923   Register Res = MI.getOperand(0).getReg();
5924   Register LHS = MI.getOperand(1).getReg();
5925   Register RHS = MI.getOperand(2).getReg();
5926   LLT Ty = MRI.getType(Res);
5927   bool IsSigned;
5928   bool IsAdd;
5929   unsigned BaseOp;
5930   switch (MI.getOpcode()) {
5931   default:
5932     llvm_unreachable("unexpected addsat/subsat opcode");
5933   case TargetOpcode::G_UADDSAT:
5934     IsSigned = false;
5935     IsAdd = true;
5936     BaseOp = TargetOpcode::G_ADD;
5937     break;
5938   case TargetOpcode::G_SADDSAT:
5939     IsSigned = true;
5940     IsAdd = true;
5941     BaseOp = TargetOpcode::G_ADD;
5942     break;
5943   case TargetOpcode::G_USUBSAT:
5944     IsSigned = false;
5945     IsAdd = false;
5946     BaseOp = TargetOpcode::G_SUB;
5947     break;
5948   case TargetOpcode::G_SSUBSAT:
5949     IsSigned = true;
5950     IsAdd = false;
5951     BaseOp = TargetOpcode::G_SUB;
5952     break;
5953   }
5954 
5955   if (IsSigned) {
5956     // sadd.sat(a, b) ->
5957     //   hi = 0x7fffffff - smax(a, 0)
5958     //   lo = 0x80000000 - smin(a, 0)
5959     //   a + smin(smax(lo, b), hi)
5960     // ssub.sat(a, b) ->
5961     //   lo = smax(a, -1) - 0x7fffffff
5962     //   hi = smin(a, -1) - 0x80000000
5963     //   a - smin(smax(lo, b), hi)
5964     // TODO: AMDGPU can use a "median of 3" instruction here:
5965     //   a +/- med3(lo, b, hi)
5966     uint64_t NumBits = Ty.getScalarSizeInBits();
5967     auto MaxVal =
5968         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
5969     auto MinVal =
5970         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5971     MachineInstrBuilder Hi, Lo;
5972     if (IsAdd) {
5973       auto Zero = MIRBuilder.buildConstant(Ty, 0);
5974       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
5975       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
5976     } else {
5977       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
5978       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
5979                                MaxVal);
5980       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
5981                                MinVal);
5982     }
5983     auto RHSClamped =
5984         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
5985     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
5986   } else {
5987     // uadd.sat(a, b) -> a + umin(~a, b)
5988     // usub.sat(a, b) -> a - umin(a, b)
5989     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
5990     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
5991     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
5992   }
5993 
5994   MI.eraseFromParent();
5995   return Legalized;
5996 }
5997 
5998 LegalizerHelper::LegalizeResult
5999 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6000   Register Res = MI.getOperand(0).getReg();
6001   Register LHS = MI.getOperand(1).getReg();
6002   Register RHS = MI.getOperand(2).getReg();
6003   LLT Ty = MRI.getType(Res);
6004   LLT BoolTy = Ty.changeElementSize(1);
6005   bool IsSigned;
6006   bool IsAdd;
6007   unsigned OverflowOp;
6008   switch (MI.getOpcode()) {
6009   default:
6010     llvm_unreachable("unexpected addsat/subsat opcode");
6011   case TargetOpcode::G_UADDSAT:
6012     IsSigned = false;
6013     IsAdd = true;
6014     OverflowOp = TargetOpcode::G_UADDO;
6015     break;
6016   case TargetOpcode::G_SADDSAT:
6017     IsSigned = true;
6018     IsAdd = true;
6019     OverflowOp = TargetOpcode::G_SADDO;
6020     break;
6021   case TargetOpcode::G_USUBSAT:
6022     IsSigned = false;
6023     IsAdd = false;
6024     OverflowOp = TargetOpcode::G_USUBO;
6025     break;
6026   case TargetOpcode::G_SSUBSAT:
6027     IsSigned = true;
6028     IsAdd = false;
6029     OverflowOp = TargetOpcode::G_SSUBO;
6030     break;
6031   }
6032 
6033   auto OverflowRes =
6034       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6035   Register Tmp = OverflowRes.getReg(0);
6036   Register Ov = OverflowRes.getReg(1);
6037   MachineInstrBuilder Clamp;
6038   if (IsSigned) {
6039     // sadd.sat(a, b) ->
6040     //   {tmp, ov} = saddo(a, b)
6041     //   ov ? (tmp >>s 31) + 0x80000000 : r
6042     // ssub.sat(a, b) ->
6043     //   {tmp, ov} = ssubo(a, b)
6044     //   ov ? (tmp >>s 31) + 0x80000000 : r
6045     uint64_t NumBits = Ty.getScalarSizeInBits();
6046     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6047     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6048     auto MinVal =
6049         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6050     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6051   } else {
6052     // uadd.sat(a, b) ->
6053     //   {tmp, ov} = uaddo(a, b)
6054     //   ov ? 0xffffffff : tmp
6055     // usub.sat(a, b) ->
6056     //   {tmp, ov} = usubo(a, b)
6057     //   ov ? 0 : tmp
6058     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6059   }
6060   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6061 
6062   MI.eraseFromParent();
6063   return Legalized;
6064 }
6065 
6066 LegalizerHelper::LegalizeResult
6067 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6068   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6069           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6070          "Expected shlsat opcode!");
6071   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6072   Register Res = MI.getOperand(0).getReg();
6073   Register LHS = MI.getOperand(1).getReg();
6074   Register RHS = MI.getOperand(2).getReg();
6075   LLT Ty = MRI.getType(Res);
6076   LLT BoolTy = Ty.changeElementSize(1);
6077 
6078   unsigned BW = Ty.getScalarSizeInBits();
6079   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6080   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6081                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6082 
6083   MachineInstrBuilder SatVal;
6084   if (IsSigned) {
6085     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6086     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6087     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6088                                     MIRBuilder.buildConstant(Ty, 0));
6089     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6090   } else {
6091     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6092   }
6093   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6094   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6095 
6096   MI.eraseFromParent();
6097   return Legalized;
6098 }
6099 
6100 LegalizerHelper::LegalizeResult
6101 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6102   Register Dst = MI.getOperand(0).getReg();
6103   Register Src = MI.getOperand(1).getReg();
6104   const LLT Ty = MRI.getType(Src);
6105   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6106   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6107 
6108   // Swap most and least significant byte, set remaining bytes in Res to zero.
6109   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6110   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6111   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6112   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6113 
6114   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6115   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6116     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6117     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6118     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6119     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6120     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6121     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6122     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6123     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6124     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6125     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6126     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6127     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6128   }
6129   Res.getInstr()->getOperand(0).setReg(Dst);
6130 
6131   MI.eraseFromParent();
6132   return Legalized;
6133 }
6134 
6135 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6136 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6137                                  MachineInstrBuilder Src, APInt Mask) {
6138   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6139   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6140   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6141   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6142   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6143   return B.buildOr(Dst, LHS, RHS);
6144 }
6145 
6146 LegalizerHelper::LegalizeResult
6147 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6148   Register Dst = MI.getOperand(0).getReg();
6149   Register Src = MI.getOperand(1).getReg();
6150   const LLT Ty = MRI.getType(Src);
6151   unsigned Size = Ty.getSizeInBits();
6152 
6153   MachineInstrBuilder BSWAP =
6154       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6155 
6156   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6157   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6158   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6159   MachineInstrBuilder Swap4 =
6160       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6161 
6162   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6163   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6164   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6165   MachineInstrBuilder Swap2 =
6166       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6167 
6168   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6169   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6170   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6171   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6172 
6173   MI.eraseFromParent();
6174   return Legalized;
6175 }
6176 
6177 LegalizerHelper::LegalizeResult
6178 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6179   MachineFunction &MF = MIRBuilder.getMF();
6180 
6181   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6182   int NameOpIdx = IsRead ? 1 : 0;
6183   int ValRegIndex = IsRead ? 0 : 1;
6184 
6185   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6186   const LLT Ty = MRI.getType(ValReg);
6187   const MDString *RegStr = cast<MDString>(
6188     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6189 
6190   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6191   if (!PhysReg.isValid())
6192     return UnableToLegalize;
6193 
6194   if (IsRead)
6195     MIRBuilder.buildCopy(ValReg, PhysReg);
6196   else
6197     MIRBuilder.buildCopy(PhysReg, ValReg);
6198 
6199   MI.eraseFromParent();
6200   return Legalized;
6201 }
6202 
6203 LegalizerHelper::LegalizeResult
6204 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6205   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6206   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6207   Register Result = MI.getOperand(0).getReg();
6208   LLT OrigTy = MRI.getType(Result);
6209   auto SizeInBits = OrigTy.getScalarSizeInBits();
6210   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6211 
6212   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6213   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6214   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6215   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6216 
6217   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6218   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6219   MIRBuilder.buildTrunc(Result, Shifted);
6220 
6221   MI.eraseFromParent();
6222   return Legalized;
6223 }
6224 
6225 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6226   // Implement vector G_SELECT in terms of XOR, AND, OR.
6227   Register DstReg = MI.getOperand(0).getReg();
6228   Register MaskReg = MI.getOperand(1).getReg();
6229   Register Op1Reg = MI.getOperand(2).getReg();
6230   Register Op2Reg = MI.getOperand(3).getReg();
6231   LLT DstTy = MRI.getType(DstReg);
6232   LLT MaskTy = MRI.getType(MaskReg);
6233   LLT Op1Ty = MRI.getType(Op1Reg);
6234   if (!DstTy.isVector())
6235     return UnableToLegalize;
6236 
6237   // Vector selects can have a scalar predicate. If so, splat into a vector and
6238   // finish for later legalization attempts to try again.
6239   if (MaskTy.isScalar()) {
6240     Register MaskElt = MaskReg;
6241     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6242       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6243     // Generate a vector splat idiom to be pattern matched later.
6244     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6245     Observer.changingInstr(MI);
6246     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6247     Observer.changedInstr(MI);
6248     return Legalized;
6249   }
6250 
6251   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6252     return UnableToLegalize;
6253   }
6254 
6255   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6256   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6257   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6258   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6259   MI.eraseFromParent();
6260   return Legalized;
6261 }
6262