1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 #define DEBUG_TYPE "legalizer" 30 31 using namespace llvm; 32 using namespace LegalizeActions; 33 using namespace MIPatternMatch; 34 35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 36 /// 37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 38 /// with any leftover piece as type \p LeftoverTy 39 /// 40 /// Returns -1 in the first element of the pair if the breakdown is not 41 /// satisfiable. 42 static std::pair<int, int> 43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 44 assert(!LeftoverTy.isValid() && "this is an out argument"); 45 46 unsigned Size = OrigTy.getSizeInBits(); 47 unsigned NarrowSize = NarrowTy.getSizeInBits(); 48 unsigned NumParts = Size / NarrowSize; 49 unsigned LeftoverSize = Size - NumParts * NarrowSize; 50 assert(Size > NarrowSize); 51 52 if (LeftoverSize == 0) 53 return {NumParts, 0}; 54 55 if (NarrowTy.isVector()) { 56 unsigned EltSize = OrigTy.getScalarSizeInBits(); 57 if (LeftoverSize % EltSize != 0) 58 return {-1, -1}; 59 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 60 } else { 61 LeftoverTy = LLT::scalar(LeftoverSize); 62 } 63 64 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 65 return std::make_pair(NumParts, NumLeftover); 66 } 67 68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 69 70 if (!Ty.isScalar()) 71 return nullptr; 72 73 switch (Ty.getSizeInBits()) { 74 case 16: 75 return Type::getHalfTy(Ctx); 76 case 32: 77 return Type::getFloatTy(Ctx); 78 case 64: 79 return Type::getDoubleTy(Ctx); 80 case 80: 81 return Type::getX86_FP80Ty(Ctx); 82 case 128: 83 return Type::getFP128Ty(Ctx); 84 default: 85 return nullptr; 86 } 87 } 88 89 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 90 GISelChangeObserver &Observer, 91 MachineIRBuilder &Builder) 92 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 93 LI(*MF.getSubtarget().getLegalizerInfo()), 94 TLI(*MF.getSubtarget().getTargetLowering()) { } 95 96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 97 GISelChangeObserver &Observer, 98 MachineIRBuilder &B) 99 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 100 TLI(*MF.getSubtarget().getTargetLowering()) { } 101 102 LegalizerHelper::LegalizeResult 103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 104 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 105 106 MIRBuilder.setInstrAndDebugLoc(MI); 107 108 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 109 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 110 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 111 auto Step = LI.getAction(MI, MRI); 112 switch (Step.Action) { 113 case Legal: 114 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 115 return AlreadyLegal; 116 case Libcall: 117 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 118 return libcall(MI); 119 case NarrowScalar: 120 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 121 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 122 case WidenScalar: 123 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 124 return widenScalar(MI, Step.TypeIdx, Step.NewType); 125 case Bitcast: 126 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 127 return bitcast(MI, Step.TypeIdx, Step.NewType); 128 case Lower: 129 LLVM_DEBUG(dbgs() << ".. Lower\n"); 130 return lower(MI, Step.TypeIdx, Step.NewType); 131 case FewerElements: 132 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 133 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 134 case MoreElements: 135 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 136 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 137 case Custom: 138 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 139 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 140 default: 141 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 142 return UnableToLegalize; 143 } 144 } 145 146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 147 SmallVectorImpl<Register> &VRegs) { 148 for (int i = 0; i < NumParts; ++i) 149 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 150 MIRBuilder.buildUnmerge(VRegs, Reg); 151 } 152 153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 154 LLT MainTy, LLT &LeftoverTy, 155 SmallVectorImpl<Register> &VRegs, 156 SmallVectorImpl<Register> &LeftoverRegs) { 157 assert(!LeftoverTy.isValid() && "this is an out argument"); 158 159 unsigned RegSize = RegTy.getSizeInBits(); 160 unsigned MainSize = MainTy.getSizeInBits(); 161 unsigned NumParts = RegSize / MainSize; 162 unsigned LeftoverSize = RegSize - NumParts * MainSize; 163 164 // Use an unmerge when possible. 165 if (LeftoverSize == 0) { 166 for (unsigned I = 0; I < NumParts; ++I) 167 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 168 MIRBuilder.buildUnmerge(VRegs, Reg); 169 return true; 170 } 171 172 if (MainTy.isVector()) { 173 unsigned EltSize = MainTy.getScalarSizeInBits(); 174 if (LeftoverSize % EltSize != 0) 175 return false; 176 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 177 } else { 178 LeftoverTy = LLT::scalar(LeftoverSize); 179 } 180 181 // For irregular sizes, extract the individual parts. 182 for (unsigned I = 0; I != NumParts; ++I) { 183 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 184 VRegs.push_back(NewReg); 185 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 186 } 187 188 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 189 Offset += LeftoverSize) { 190 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 191 LeftoverRegs.push_back(NewReg); 192 MIRBuilder.buildExtract(NewReg, Reg, Offset); 193 } 194 195 return true; 196 } 197 198 void LegalizerHelper::insertParts(Register DstReg, 199 LLT ResultTy, LLT PartTy, 200 ArrayRef<Register> PartRegs, 201 LLT LeftoverTy, 202 ArrayRef<Register> LeftoverRegs) { 203 if (!LeftoverTy.isValid()) { 204 assert(LeftoverRegs.empty()); 205 206 if (!ResultTy.isVector()) { 207 MIRBuilder.buildMerge(DstReg, PartRegs); 208 return; 209 } 210 211 if (PartTy.isVector()) 212 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 213 else 214 MIRBuilder.buildBuildVector(DstReg, PartRegs); 215 return; 216 } 217 218 unsigned PartSize = PartTy.getSizeInBits(); 219 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 220 221 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 222 MIRBuilder.buildUndef(CurResultReg); 223 224 unsigned Offset = 0; 225 for (Register PartReg : PartRegs) { 226 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 227 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 228 CurResultReg = NewResultReg; 229 Offset += PartSize; 230 } 231 232 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 233 // Use the original output register for the final insert to avoid a copy. 234 Register NewResultReg = (I + 1 == E) ? 235 DstReg : MRI.createGenericVirtualRegister(ResultTy); 236 237 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 238 CurResultReg = NewResultReg; 239 Offset += LeftoverPartSize; 240 } 241 } 242 243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 245 const MachineInstr &MI) { 246 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 247 248 const int StartIdx = Regs.size(); 249 const int NumResults = MI.getNumOperands() - 1; 250 Regs.resize(Regs.size() + NumResults); 251 for (int I = 0; I != NumResults; ++I) 252 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 253 } 254 255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 256 LLT GCDTy, Register SrcReg) { 257 LLT SrcTy = MRI.getType(SrcReg); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 } 268 269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 270 LLT NarrowTy, Register SrcReg) { 271 LLT SrcTy = MRI.getType(SrcReg); 272 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 273 extractGCDType(Parts, GCDTy, SrcReg); 274 return GCDTy; 275 } 276 277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 278 SmallVectorImpl<Register> &VRegs, 279 unsigned PadStrategy) { 280 LLT LCMTy = getLCMType(DstTy, NarrowTy); 281 282 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 283 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 284 int NumOrigSrc = VRegs.size(); 285 286 Register PadReg; 287 288 // Get a value we can use to pad the source value if the sources won't evenly 289 // cover the result type. 290 if (NumOrigSrc < NumParts * NumSubParts) { 291 if (PadStrategy == TargetOpcode::G_ZEXT) 292 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 293 else if (PadStrategy == TargetOpcode::G_ANYEXT) 294 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 295 else { 296 assert(PadStrategy == TargetOpcode::G_SEXT); 297 298 // Shift the sign bit of the low register through the high register. 299 auto ShiftAmt = 300 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 301 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 302 } 303 } 304 305 // Registers for the final merge to be produced. 306 SmallVector<Register, 4> Remerge(NumParts); 307 308 // Registers needed for intermediate merges, which will be merged into a 309 // source for Remerge. 310 SmallVector<Register, 4> SubMerge(NumSubParts); 311 312 // Once we've fully read off the end of the original source bits, we can reuse 313 // the same high bits for remaining padding elements. 314 Register AllPadReg; 315 316 // Build merges to the LCM type to cover the original result type. 317 for (int I = 0; I != NumParts; ++I) { 318 bool AllMergePartsArePadding = true; 319 320 // Build the requested merges to the requested type. 321 for (int J = 0; J != NumSubParts; ++J) { 322 int Idx = I * NumSubParts + J; 323 if (Idx >= NumOrigSrc) { 324 SubMerge[J] = PadReg; 325 continue; 326 } 327 328 SubMerge[J] = VRegs[Idx]; 329 330 // There are meaningful bits here we can't reuse later. 331 AllMergePartsArePadding = false; 332 } 333 334 // If we've filled up a complete piece with padding bits, we can directly 335 // emit the natural sized constant if applicable, rather than a merge of 336 // smaller constants. 337 if (AllMergePartsArePadding && !AllPadReg) { 338 if (PadStrategy == TargetOpcode::G_ANYEXT) 339 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 340 else if (PadStrategy == TargetOpcode::G_ZEXT) 341 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 342 343 // If this is a sign extension, we can't materialize a trivial constant 344 // with the right type and have to produce a merge. 345 } 346 347 if (AllPadReg) { 348 // Avoid creating additional instructions if we're just adding additional 349 // copies of padding bits. 350 Remerge[I] = AllPadReg; 351 continue; 352 } 353 354 if (NumSubParts == 1) 355 Remerge[I] = SubMerge[0]; 356 else 357 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 358 359 // In the sign extend padding case, re-use the first all-signbit merge. 360 if (AllMergePartsArePadding && !AllPadReg) 361 AllPadReg = Remerge[I]; 362 } 363 364 VRegs = std::move(Remerge); 365 return LCMTy; 366 } 367 368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 369 ArrayRef<Register> RemergeRegs) { 370 LLT DstTy = MRI.getType(DstReg); 371 372 // Create the merge to the widened source, and extract the relevant bits into 373 // the result. 374 375 if (DstTy == LCMTy) { 376 MIRBuilder.buildMerge(DstReg, RemergeRegs); 377 return; 378 } 379 380 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 381 if (DstTy.isScalar() && LCMTy.isScalar()) { 382 MIRBuilder.buildTrunc(DstReg, Remerge); 383 return; 384 } 385 386 if (LCMTy.isVector()) { 387 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 388 SmallVector<Register, 8> UnmergeDefs(NumDefs); 389 UnmergeDefs[0] = DstReg; 390 for (unsigned I = 1; I != NumDefs; ++I) 391 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 392 393 MIRBuilder.buildUnmerge(UnmergeDefs, 394 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 395 return; 396 } 397 398 llvm_unreachable("unhandled case"); 399 } 400 401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 402 #define RTLIBCASE_INT(LibcallPrefix) \ 403 do { \ 404 switch (Size) { \ 405 case 32: \ 406 return RTLIB::LibcallPrefix##32; \ 407 case 64: \ 408 return RTLIB::LibcallPrefix##64; \ 409 case 128: \ 410 return RTLIB::LibcallPrefix##128; \ 411 default: \ 412 llvm_unreachable("unexpected size"); \ 413 } \ 414 } while (0) 415 416 #define RTLIBCASE(LibcallPrefix) \ 417 do { \ 418 switch (Size) { \ 419 case 32: \ 420 return RTLIB::LibcallPrefix##32; \ 421 case 64: \ 422 return RTLIB::LibcallPrefix##64; \ 423 case 80: \ 424 return RTLIB::LibcallPrefix##80; \ 425 case 128: \ 426 return RTLIB::LibcallPrefix##128; \ 427 default: \ 428 llvm_unreachable("unexpected size"); \ 429 } \ 430 } while (0) 431 432 switch (Opcode) { 433 case TargetOpcode::G_SDIV: 434 RTLIBCASE_INT(SDIV_I); 435 case TargetOpcode::G_UDIV: 436 RTLIBCASE_INT(UDIV_I); 437 case TargetOpcode::G_SREM: 438 RTLIBCASE_INT(SREM_I); 439 case TargetOpcode::G_UREM: 440 RTLIBCASE_INT(UREM_I); 441 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 442 RTLIBCASE_INT(CTLZ_I); 443 case TargetOpcode::G_FADD: 444 RTLIBCASE(ADD_F); 445 case TargetOpcode::G_FSUB: 446 RTLIBCASE(SUB_F); 447 case TargetOpcode::G_FMUL: 448 RTLIBCASE(MUL_F); 449 case TargetOpcode::G_FDIV: 450 RTLIBCASE(DIV_F); 451 case TargetOpcode::G_FEXP: 452 RTLIBCASE(EXP_F); 453 case TargetOpcode::G_FEXP2: 454 RTLIBCASE(EXP2_F); 455 case TargetOpcode::G_FREM: 456 RTLIBCASE(REM_F); 457 case TargetOpcode::G_FPOW: 458 RTLIBCASE(POW_F); 459 case TargetOpcode::G_FMA: 460 RTLIBCASE(FMA_F); 461 case TargetOpcode::G_FSIN: 462 RTLIBCASE(SIN_F); 463 case TargetOpcode::G_FCOS: 464 RTLIBCASE(COS_F); 465 case TargetOpcode::G_FLOG10: 466 RTLIBCASE(LOG10_F); 467 case TargetOpcode::G_FLOG: 468 RTLIBCASE(LOG_F); 469 case TargetOpcode::G_FLOG2: 470 RTLIBCASE(LOG2_F); 471 case TargetOpcode::G_FCEIL: 472 RTLIBCASE(CEIL_F); 473 case TargetOpcode::G_FFLOOR: 474 RTLIBCASE(FLOOR_F); 475 case TargetOpcode::G_FMINNUM: 476 RTLIBCASE(FMIN_F); 477 case TargetOpcode::G_FMAXNUM: 478 RTLIBCASE(FMAX_F); 479 case TargetOpcode::G_FSQRT: 480 RTLIBCASE(SQRT_F); 481 case TargetOpcode::G_FRINT: 482 RTLIBCASE(RINT_F); 483 case TargetOpcode::G_FNEARBYINT: 484 RTLIBCASE(NEARBYINT_F); 485 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 486 RTLIBCASE(ROUNDEVEN_F); 487 } 488 llvm_unreachable("Unknown libcall function"); 489 } 490 491 /// True if an instruction is in tail position in its caller. Intended for 492 /// legalizing libcalls as tail calls when possible. 493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 494 MachineInstr &MI) { 495 MachineBasicBlock &MBB = *MI.getParent(); 496 const Function &F = MBB.getParent()->getFunction(); 497 498 // Conservatively require the attributes of the call to match those of 499 // the return. Ignore NoAlias and NonNull because they don't affect the 500 // call sequence. 501 AttributeList CallerAttrs = F.getAttributes(); 502 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 503 .removeAttribute(Attribute::NoAlias) 504 .removeAttribute(Attribute::NonNull) 505 .hasAttributes()) 506 return false; 507 508 // It's not safe to eliminate the sign / zero extension of the return value. 509 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 510 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 511 return false; 512 513 // Only tail call if the following instruction is a standard return. 514 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 515 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 516 return false; 517 518 return true; 519 } 520 521 LegalizerHelper::LegalizeResult 522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 523 const CallLowering::ArgInfo &Result, 524 ArrayRef<CallLowering::ArgInfo> Args, 525 const CallingConv::ID CC) { 526 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 527 528 CallLowering::CallLoweringInfo Info; 529 Info.CallConv = CC; 530 Info.Callee = MachineOperand::CreateES(Name); 531 Info.OrigRet = Result; 532 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 533 if (!CLI.lowerCall(MIRBuilder, Info)) 534 return LegalizerHelper::UnableToLegalize; 535 536 return LegalizerHelper::Legalized; 537 } 538 539 LegalizerHelper::LegalizeResult 540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 541 const CallLowering::ArgInfo &Result, 542 ArrayRef<CallLowering::ArgInfo> Args) { 543 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 544 const char *Name = TLI.getLibcallName(Libcall); 545 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 546 return createLibcall(MIRBuilder, Name, Result, Args, CC); 547 } 548 549 // Useful for libcalls where all operands have the same type. 550 static LegalizerHelper::LegalizeResult 551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 552 Type *OpType) { 553 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 554 555 SmallVector<CallLowering::ArgInfo, 3> Args; 556 for (unsigned i = 1; i < MI.getNumOperands(); i++) 557 Args.push_back({MI.getOperand(i).getReg(), OpType}); 558 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 559 Args); 560 } 561 562 LegalizerHelper::LegalizeResult 563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 564 MachineInstr &MI) { 565 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 566 567 SmallVector<CallLowering::ArgInfo, 3> Args; 568 // Add all the args, except for the last which is an imm denoting 'tail'. 569 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 570 Register Reg = MI.getOperand(i).getReg(); 571 572 // Need derive an IR type for call lowering. 573 LLT OpLLT = MRI.getType(Reg); 574 Type *OpTy = nullptr; 575 if (OpLLT.isPointer()) 576 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 577 else 578 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 579 Args.push_back({Reg, OpTy}); 580 } 581 582 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 583 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 584 RTLIB::Libcall RTLibcall; 585 switch (MI.getOpcode()) { 586 case TargetOpcode::G_MEMCPY: 587 RTLibcall = RTLIB::MEMCPY; 588 break; 589 case TargetOpcode::G_MEMMOVE: 590 RTLibcall = RTLIB::MEMMOVE; 591 break; 592 case TargetOpcode::G_MEMSET: 593 RTLibcall = RTLIB::MEMSET; 594 break; 595 default: 596 return LegalizerHelper::UnableToLegalize; 597 } 598 const char *Name = TLI.getLibcallName(RTLibcall); 599 600 CallLowering::CallLoweringInfo Info; 601 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 602 Info.Callee = MachineOperand::CreateES(Name); 603 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 604 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 605 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 606 607 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 608 if (!CLI.lowerCall(MIRBuilder, Info)) 609 return LegalizerHelper::UnableToLegalize; 610 611 if (Info.LoweredTailCall) { 612 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 613 // We must have a return following the call (or debug insts) to get past 614 // isLibCallInTailPosition. 615 do { 616 MachineInstr *Next = MI.getNextNode(); 617 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 618 "Expected instr following MI to be return or debug inst?"); 619 // We lowered a tail call, so the call is now the return from the block. 620 // Delete the old return. 621 Next->eraseFromParent(); 622 } while (MI.getNextNode()); 623 } 624 625 return LegalizerHelper::Legalized; 626 } 627 628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 629 Type *FromType) { 630 auto ToMVT = MVT::getVT(ToType); 631 auto FromMVT = MVT::getVT(FromType); 632 633 switch (Opcode) { 634 case TargetOpcode::G_FPEXT: 635 return RTLIB::getFPEXT(FromMVT, ToMVT); 636 case TargetOpcode::G_FPTRUNC: 637 return RTLIB::getFPROUND(FromMVT, ToMVT); 638 case TargetOpcode::G_FPTOSI: 639 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 640 case TargetOpcode::G_FPTOUI: 641 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 642 case TargetOpcode::G_SITOFP: 643 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 644 case TargetOpcode::G_UITOFP: 645 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 646 } 647 llvm_unreachable("Unsupported libcall function"); 648 } 649 650 static LegalizerHelper::LegalizeResult 651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 652 Type *FromType) { 653 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 654 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 655 {{MI.getOperand(1).getReg(), FromType}}); 656 } 657 658 LegalizerHelper::LegalizeResult 659 LegalizerHelper::libcall(MachineInstr &MI) { 660 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 661 unsigned Size = LLTy.getSizeInBits(); 662 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 663 664 switch (MI.getOpcode()) { 665 default: 666 return UnableToLegalize; 667 case TargetOpcode::G_SDIV: 668 case TargetOpcode::G_UDIV: 669 case TargetOpcode::G_SREM: 670 case TargetOpcode::G_UREM: 671 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 672 Type *HLTy = IntegerType::get(Ctx, Size); 673 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 674 if (Status != Legalized) 675 return Status; 676 break; 677 } 678 case TargetOpcode::G_FADD: 679 case TargetOpcode::G_FSUB: 680 case TargetOpcode::G_FMUL: 681 case TargetOpcode::G_FDIV: 682 case TargetOpcode::G_FMA: 683 case TargetOpcode::G_FPOW: 684 case TargetOpcode::G_FREM: 685 case TargetOpcode::G_FCOS: 686 case TargetOpcode::G_FSIN: 687 case TargetOpcode::G_FLOG10: 688 case TargetOpcode::G_FLOG: 689 case TargetOpcode::G_FLOG2: 690 case TargetOpcode::G_FEXP: 691 case TargetOpcode::G_FEXP2: 692 case TargetOpcode::G_FCEIL: 693 case TargetOpcode::G_FFLOOR: 694 case TargetOpcode::G_FMINNUM: 695 case TargetOpcode::G_FMAXNUM: 696 case TargetOpcode::G_FSQRT: 697 case TargetOpcode::G_FRINT: 698 case TargetOpcode::G_FNEARBYINT: 699 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 700 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 701 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 702 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 703 return UnableToLegalize; 704 } 705 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 706 if (Status != Legalized) 707 return Status; 708 break; 709 } 710 case TargetOpcode::G_FPEXT: 711 case TargetOpcode::G_FPTRUNC: { 712 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 713 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 714 if (!FromTy || !ToTy) 715 return UnableToLegalize; 716 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 717 if (Status != Legalized) 718 return Status; 719 break; 720 } 721 case TargetOpcode::G_FPTOSI: 722 case TargetOpcode::G_FPTOUI: { 723 // FIXME: Support other types 724 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 725 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 726 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 727 return UnableToLegalize; 728 LegalizeResult Status = conversionLibcall( 729 MI, MIRBuilder, 730 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 731 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 732 if (Status != Legalized) 733 return Status; 734 break; 735 } 736 case TargetOpcode::G_SITOFP: 737 case TargetOpcode::G_UITOFP: { 738 // FIXME: Support other types 739 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 740 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 741 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 742 return UnableToLegalize; 743 LegalizeResult Status = conversionLibcall( 744 MI, MIRBuilder, 745 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 746 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 747 if (Status != Legalized) 748 return Status; 749 break; 750 } 751 case TargetOpcode::G_MEMCPY: 752 case TargetOpcode::G_MEMMOVE: 753 case TargetOpcode::G_MEMSET: { 754 LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI); 755 MI.eraseFromParent(); 756 return Result; 757 } 758 } 759 760 MI.eraseFromParent(); 761 return Legalized; 762 } 763 764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 765 unsigned TypeIdx, 766 LLT NarrowTy) { 767 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 768 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 769 770 switch (MI.getOpcode()) { 771 default: 772 return UnableToLegalize; 773 case TargetOpcode::G_IMPLICIT_DEF: { 774 Register DstReg = MI.getOperand(0).getReg(); 775 LLT DstTy = MRI.getType(DstReg); 776 777 // If SizeOp0 is not an exact multiple of NarrowSize, emit 778 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 779 // FIXME: Although this would also be legal for the general case, it causes 780 // a lot of regressions in the emitted code (superfluous COPYs, artifact 781 // combines not being hit). This seems to be a problem related to the 782 // artifact combiner. 783 if (SizeOp0 % NarrowSize != 0) { 784 LLT ImplicitTy = NarrowTy; 785 if (DstTy.isVector()) 786 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 787 788 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 789 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 790 791 MI.eraseFromParent(); 792 return Legalized; 793 } 794 795 int NumParts = SizeOp0 / NarrowSize; 796 797 SmallVector<Register, 2> DstRegs; 798 for (int i = 0; i < NumParts; ++i) 799 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 800 801 if (DstTy.isVector()) 802 MIRBuilder.buildBuildVector(DstReg, DstRegs); 803 else 804 MIRBuilder.buildMerge(DstReg, DstRegs); 805 MI.eraseFromParent(); 806 return Legalized; 807 } 808 case TargetOpcode::G_CONSTANT: { 809 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 810 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 811 unsigned TotalSize = Ty.getSizeInBits(); 812 unsigned NarrowSize = NarrowTy.getSizeInBits(); 813 int NumParts = TotalSize / NarrowSize; 814 815 SmallVector<Register, 4> PartRegs; 816 for (int I = 0; I != NumParts; ++I) { 817 unsigned Offset = I * NarrowSize; 818 auto K = MIRBuilder.buildConstant(NarrowTy, 819 Val.lshr(Offset).trunc(NarrowSize)); 820 PartRegs.push_back(K.getReg(0)); 821 } 822 823 LLT LeftoverTy; 824 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 825 SmallVector<Register, 1> LeftoverRegs; 826 if (LeftoverBits != 0) { 827 LeftoverTy = LLT::scalar(LeftoverBits); 828 auto K = MIRBuilder.buildConstant( 829 LeftoverTy, 830 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 831 LeftoverRegs.push_back(K.getReg(0)); 832 } 833 834 insertParts(MI.getOperand(0).getReg(), 835 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 836 837 MI.eraseFromParent(); 838 return Legalized; 839 } 840 case TargetOpcode::G_SEXT: 841 case TargetOpcode::G_ZEXT: 842 case TargetOpcode::G_ANYEXT: 843 return narrowScalarExt(MI, TypeIdx, NarrowTy); 844 case TargetOpcode::G_TRUNC: { 845 if (TypeIdx != 1) 846 return UnableToLegalize; 847 848 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 849 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 850 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 851 return UnableToLegalize; 852 } 853 854 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 855 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 856 MI.eraseFromParent(); 857 return Legalized; 858 } 859 860 case TargetOpcode::G_FREEZE: 861 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 862 863 case TargetOpcode::G_ADD: { 864 // FIXME: add support for when SizeOp0 isn't an exact multiple of 865 // NarrowSize. 866 if (SizeOp0 % NarrowSize != 0) 867 return UnableToLegalize; 868 // Expand in terms of carry-setting/consuming G_ADDE instructions. 869 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 870 871 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 872 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 873 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 874 875 Register CarryIn; 876 for (int i = 0; i < NumParts; ++i) { 877 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 878 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 879 880 if (i == 0) 881 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 882 else { 883 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 884 Src2Regs[i], CarryIn); 885 } 886 887 DstRegs.push_back(DstReg); 888 CarryIn = CarryOut; 889 } 890 Register DstReg = MI.getOperand(0).getReg(); 891 if(MRI.getType(DstReg).isVector()) 892 MIRBuilder.buildBuildVector(DstReg, DstRegs); 893 else 894 MIRBuilder.buildMerge(DstReg, DstRegs); 895 MI.eraseFromParent(); 896 return Legalized; 897 } 898 case TargetOpcode::G_SUB: { 899 // FIXME: add support for when SizeOp0 isn't an exact multiple of 900 // NarrowSize. 901 if (SizeOp0 % NarrowSize != 0) 902 return UnableToLegalize; 903 904 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 905 906 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 907 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 908 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 909 910 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 911 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 912 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 913 {Src1Regs[0], Src2Regs[0]}); 914 DstRegs.push_back(DstReg); 915 Register BorrowIn = BorrowOut; 916 for (int i = 1; i < NumParts; ++i) { 917 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 918 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 919 920 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 921 {Src1Regs[i], Src2Regs[i], BorrowIn}); 922 923 DstRegs.push_back(DstReg); 924 BorrowIn = BorrowOut; 925 } 926 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 927 MI.eraseFromParent(); 928 return Legalized; 929 } 930 case TargetOpcode::G_MUL: 931 case TargetOpcode::G_UMULH: 932 return narrowScalarMul(MI, NarrowTy); 933 case TargetOpcode::G_EXTRACT: 934 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 935 case TargetOpcode::G_INSERT: 936 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 937 case TargetOpcode::G_LOAD: { 938 auto &MMO = **MI.memoperands_begin(); 939 Register DstReg = MI.getOperand(0).getReg(); 940 LLT DstTy = MRI.getType(DstReg); 941 if (DstTy.isVector()) 942 return UnableToLegalize; 943 944 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 945 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 946 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 947 MIRBuilder.buildAnyExt(DstReg, TmpReg); 948 MI.eraseFromParent(); 949 return Legalized; 950 } 951 952 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 953 } 954 case TargetOpcode::G_ZEXTLOAD: 955 case TargetOpcode::G_SEXTLOAD: { 956 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 957 Register DstReg = MI.getOperand(0).getReg(); 958 Register PtrReg = MI.getOperand(1).getReg(); 959 960 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 961 auto &MMO = **MI.memoperands_begin(); 962 unsigned MemSize = MMO.getSizeInBits(); 963 964 if (MemSize == NarrowSize) { 965 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 966 } else if (MemSize < NarrowSize) { 967 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 968 } else if (MemSize > NarrowSize) { 969 // FIXME: Need to split the load. 970 return UnableToLegalize; 971 } 972 973 if (ZExt) 974 MIRBuilder.buildZExt(DstReg, TmpReg); 975 else 976 MIRBuilder.buildSExt(DstReg, TmpReg); 977 978 MI.eraseFromParent(); 979 return Legalized; 980 } 981 case TargetOpcode::G_STORE: { 982 const auto &MMO = **MI.memoperands_begin(); 983 984 Register SrcReg = MI.getOperand(0).getReg(); 985 LLT SrcTy = MRI.getType(SrcReg); 986 if (SrcTy.isVector()) 987 return UnableToLegalize; 988 989 int NumParts = SizeOp0 / NarrowSize; 990 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 991 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 992 if (SrcTy.isVector() && LeftoverBits != 0) 993 return UnableToLegalize; 994 995 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 996 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 997 auto &MMO = **MI.memoperands_begin(); 998 MIRBuilder.buildTrunc(TmpReg, SrcReg); 999 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 1000 MI.eraseFromParent(); 1001 return Legalized; 1002 } 1003 1004 return reduceLoadStoreWidth(MI, 0, NarrowTy); 1005 } 1006 case TargetOpcode::G_SELECT: 1007 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1008 case TargetOpcode::G_AND: 1009 case TargetOpcode::G_OR: 1010 case TargetOpcode::G_XOR: { 1011 // Legalize bitwise operation: 1012 // A = BinOp<Ty> B, C 1013 // into: 1014 // B1, ..., BN = G_UNMERGE_VALUES B 1015 // C1, ..., CN = G_UNMERGE_VALUES C 1016 // A1 = BinOp<Ty/N> B1, C2 1017 // ... 1018 // AN = BinOp<Ty/N> BN, CN 1019 // A = G_MERGE_VALUES A1, ..., AN 1020 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1021 } 1022 case TargetOpcode::G_SHL: 1023 case TargetOpcode::G_LSHR: 1024 case TargetOpcode::G_ASHR: 1025 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1026 case TargetOpcode::G_CTLZ: 1027 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1028 case TargetOpcode::G_CTTZ: 1029 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1030 case TargetOpcode::G_CTPOP: 1031 if (TypeIdx == 1) 1032 switch (MI.getOpcode()) { 1033 case TargetOpcode::G_CTLZ: 1034 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1035 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1036 case TargetOpcode::G_CTTZ: 1037 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1038 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1039 case TargetOpcode::G_CTPOP: 1040 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1041 default: 1042 return UnableToLegalize; 1043 } 1044 1045 Observer.changingInstr(MI); 1046 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1047 Observer.changedInstr(MI); 1048 return Legalized; 1049 case TargetOpcode::G_INTTOPTR: 1050 if (TypeIdx != 1) 1051 return UnableToLegalize; 1052 1053 Observer.changingInstr(MI); 1054 narrowScalarSrc(MI, NarrowTy, 1); 1055 Observer.changedInstr(MI); 1056 return Legalized; 1057 case TargetOpcode::G_PTRTOINT: 1058 if (TypeIdx != 0) 1059 return UnableToLegalize; 1060 1061 Observer.changingInstr(MI); 1062 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1063 Observer.changedInstr(MI); 1064 return Legalized; 1065 case TargetOpcode::G_PHI: { 1066 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1067 // NarrowSize. 1068 if (SizeOp0 % NarrowSize != 0) 1069 return UnableToLegalize; 1070 1071 unsigned NumParts = SizeOp0 / NarrowSize; 1072 SmallVector<Register, 2> DstRegs(NumParts); 1073 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1074 Observer.changingInstr(MI); 1075 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1076 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1077 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1078 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1079 SrcRegs[i / 2]); 1080 } 1081 MachineBasicBlock &MBB = *MI.getParent(); 1082 MIRBuilder.setInsertPt(MBB, MI); 1083 for (unsigned i = 0; i < NumParts; ++i) { 1084 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1085 MachineInstrBuilder MIB = 1086 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1087 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1088 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1089 } 1090 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1091 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1092 Observer.changedInstr(MI); 1093 MI.eraseFromParent(); 1094 return Legalized; 1095 } 1096 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1097 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1098 if (TypeIdx != 2) 1099 return UnableToLegalize; 1100 1101 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1102 Observer.changingInstr(MI); 1103 narrowScalarSrc(MI, NarrowTy, OpIdx); 1104 Observer.changedInstr(MI); 1105 return Legalized; 1106 } 1107 case TargetOpcode::G_ICMP: { 1108 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1109 if (NarrowSize * 2 != SrcSize) 1110 return UnableToLegalize; 1111 1112 Observer.changingInstr(MI); 1113 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1114 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1115 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1116 1117 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1118 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1119 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1120 1121 CmpInst::Predicate Pred = 1122 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1123 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1124 1125 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1126 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1127 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1128 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1129 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1130 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1131 } else { 1132 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1133 MachineInstrBuilder CmpHEQ = 1134 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1135 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1136 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1137 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1138 } 1139 Observer.changedInstr(MI); 1140 MI.eraseFromParent(); 1141 return Legalized; 1142 } 1143 case TargetOpcode::G_SEXT_INREG: { 1144 if (TypeIdx != 0) 1145 return UnableToLegalize; 1146 1147 int64_t SizeInBits = MI.getOperand(2).getImm(); 1148 1149 // So long as the new type has more bits than the bits we're extending we 1150 // don't need to break it apart. 1151 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1152 Observer.changingInstr(MI); 1153 // We don't lose any non-extension bits by truncating the src and 1154 // sign-extending the dst. 1155 MachineOperand &MO1 = MI.getOperand(1); 1156 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1157 MO1.setReg(TruncMIB.getReg(0)); 1158 1159 MachineOperand &MO2 = MI.getOperand(0); 1160 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1161 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1162 MIRBuilder.buildSExt(MO2, DstExt); 1163 MO2.setReg(DstExt); 1164 Observer.changedInstr(MI); 1165 return Legalized; 1166 } 1167 1168 // Break it apart. Components below the extension point are unmodified. The 1169 // component containing the extension point becomes a narrower SEXT_INREG. 1170 // Components above it are ashr'd from the component containing the 1171 // extension point. 1172 if (SizeOp0 % NarrowSize != 0) 1173 return UnableToLegalize; 1174 int NumParts = SizeOp0 / NarrowSize; 1175 1176 // List the registers where the destination will be scattered. 1177 SmallVector<Register, 2> DstRegs; 1178 // List the registers where the source will be split. 1179 SmallVector<Register, 2> SrcRegs; 1180 1181 // Create all the temporary registers. 1182 for (int i = 0; i < NumParts; ++i) { 1183 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1184 1185 SrcRegs.push_back(SrcReg); 1186 } 1187 1188 // Explode the big arguments into smaller chunks. 1189 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1190 1191 Register AshrCstReg = 1192 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1193 .getReg(0); 1194 Register FullExtensionReg = 0; 1195 Register PartialExtensionReg = 0; 1196 1197 // Do the operation on each small part. 1198 for (int i = 0; i < NumParts; ++i) { 1199 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1200 DstRegs.push_back(SrcRegs[i]); 1201 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1202 assert(PartialExtensionReg && 1203 "Expected to visit partial extension before full"); 1204 if (FullExtensionReg) { 1205 DstRegs.push_back(FullExtensionReg); 1206 continue; 1207 } 1208 DstRegs.push_back( 1209 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1210 .getReg(0)); 1211 FullExtensionReg = DstRegs.back(); 1212 } else { 1213 DstRegs.push_back( 1214 MIRBuilder 1215 .buildInstr( 1216 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1217 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1218 .getReg(0)); 1219 PartialExtensionReg = DstRegs.back(); 1220 } 1221 } 1222 1223 // Gather the destination registers into the final destination. 1224 Register DstReg = MI.getOperand(0).getReg(); 1225 MIRBuilder.buildMerge(DstReg, DstRegs); 1226 MI.eraseFromParent(); 1227 return Legalized; 1228 } 1229 case TargetOpcode::G_BSWAP: 1230 case TargetOpcode::G_BITREVERSE: { 1231 if (SizeOp0 % NarrowSize != 0) 1232 return UnableToLegalize; 1233 1234 Observer.changingInstr(MI); 1235 SmallVector<Register, 2> SrcRegs, DstRegs; 1236 unsigned NumParts = SizeOp0 / NarrowSize; 1237 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1238 1239 for (unsigned i = 0; i < NumParts; ++i) { 1240 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1241 {SrcRegs[NumParts - 1 - i]}); 1242 DstRegs.push_back(DstPart.getReg(0)); 1243 } 1244 1245 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1246 1247 Observer.changedInstr(MI); 1248 MI.eraseFromParent(); 1249 return Legalized; 1250 } 1251 case TargetOpcode::G_PTR_ADD: 1252 case TargetOpcode::G_PTRMASK: { 1253 if (TypeIdx != 1) 1254 return UnableToLegalize; 1255 Observer.changingInstr(MI); 1256 narrowScalarSrc(MI, NarrowTy, 2); 1257 Observer.changedInstr(MI); 1258 return Legalized; 1259 } 1260 case TargetOpcode::G_FPTOUI: 1261 case TargetOpcode::G_FPTOSI: 1262 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1263 case TargetOpcode::G_FPEXT: 1264 if (TypeIdx != 0) 1265 return UnableToLegalize; 1266 Observer.changingInstr(MI); 1267 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1268 Observer.changedInstr(MI); 1269 return Legalized; 1270 } 1271 } 1272 1273 Register LegalizerHelper::coerceToScalar(Register Val) { 1274 LLT Ty = MRI.getType(Val); 1275 if (Ty.isScalar()) 1276 return Val; 1277 1278 const DataLayout &DL = MIRBuilder.getDataLayout(); 1279 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1280 if (Ty.isPointer()) { 1281 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1282 return Register(); 1283 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1284 } 1285 1286 Register NewVal = Val; 1287 1288 assert(Ty.isVector()); 1289 LLT EltTy = Ty.getElementType(); 1290 if (EltTy.isPointer()) 1291 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1292 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1293 } 1294 1295 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1296 unsigned OpIdx, unsigned ExtOpcode) { 1297 MachineOperand &MO = MI.getOperand(OpIdx); 1298 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1299 MO.setReg(ExtB.getReg(0)); 1300 } 1301 1302 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1303 unsigned OpIdx) { 1304 MachineOperand &MO = MI.getOperand(OpIdx); 1305 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1306 MO.setReg(ExtB.getReg(0)); 1307 } 1308 1309 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1310 unsigned OpIdx, unsigned TruncOpcode) { 1311 MachineOperand &MO = MI.getOperand(OpIdx); 1312 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1313 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1314 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1315 MO.setReg(DstExt); 1316 } 1317 1318 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1319 unsigned OpIdx, unsigned ExtOpcode) { 1320 MachineOperand &MO = MI.getOperand(OpIdx); 1321 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1322 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1323 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1324 MO.setReg(DstTrunc); 1325 } 1326 1327 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1328 unsigned OpIdx) { 1329 MachineOperand &MO = MI.getOperand(OpIdx); 1330 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1331 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1332 } 1333 1334 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1335 unsigned OpIdx) { 1336 MachineOperand &MO = MI.getOperand(OpIdx); 1337 1338 LLT OldTy = MRI.getType(MO.getReg()); 1339 unsigned OldElts = OldTy.getNumElements(); 1340 unsigned NewElts = MoreTy.getNumElements(); 1341 1342 unsigned NumParts = NewElts / OldElts; 1343 1344 // Use concat_vectors if the result is a multiple of the number of elements. 1345 if (NumParts * OldElts == NewElts) { 1346 SmallVector<Register, 8> Parts; 1347 Parts.push_back(MO.getReg()); 1348 1349 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1350 for (unsigned I = 1; I != NumParts; ++I) 1351 Parts.push_back(ImpDef); 1352 1353 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1354 MO.setReg(Concat.getReg(0)); 1355 return; 1356 } 1357 1358 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1359 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1360 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1361 MO.setReg(MoreReg); 1362 } 1363 1364 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1365 MachineOperand &Op = MI.getOperand(OpIdx); 1366 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1367 } 1368 1369 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1370 MachineOperand &MO = MI.getOperand(OpIdx); 1371 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1372 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1373 MIRBuilder.buildBitcast(MO, CastDst); 1374 MO.setReg(CastDst); 1375 } 1376 1377 LegalizerHelper::LegalizeResult 1378 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1379 LLT WideTy) { 1380 if (TypeIdx != 1) 1381 return UnableToLegalize; 1382 1383 Register DstReg = MI.getOperand(0).getReg(); 1384 LLT DstTy = MRI.getType(DstReg); 1385 if (DstTy.isVector()) 1386 return UnableToLegalize; 1387 1388 Register Src1 = MI.getOperand(1).getReg(); 1389 LLT SrcTy = MRI.getType(Src1); 1390 const int DstSize = DstTy.getSizeInBits(); 1391 const int SrcSize = SrcTy.getSizeInBits(); 1392 const int WideSize = WideTy.getSizeInBits(); 1393 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1394 1395 unsigned NumOps = MI.getNumOperands(); 1396 unsigned NumSrc = MI.getNumOperands() - 1; 1397 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1398 1399 if (WideSize >= DstSize) { 1400 // Directly pack the bits in the target type. 1401 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1402 1403 for (unsigned I = 2; I != NumOps; ++I) { 1404 const unsigned Offset = (I - 1) * PartSize; 1405 1406 Register SrcReg = MI.getOperand(I).getReg(); 1407 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1408 1409 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1410 1411 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1412 MRI.createGenericVirtualRegister(WideTy); 1413 1414 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1415 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1416 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1417 ResultReg = NextResult; 1418 } 1419 1420 if (WideSize > DstSize) 1421 MIRBuilder.buildTrunc(DstReg, ResultReg); 1422 else if (DstTy.isPointer()) 1423 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1424 1425 MI.eraseFromParent(); 1426 return Legalized; 1427 } 1428 1429 // Unmerge the original values to the GCD type, and recombine to the next 1430 // multiple greater than the original type. 1431 // 1432 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1433 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1434 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1435 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1436 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1437 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1438 // %12:_(s12) = G_MERGE_VALUES %10, %11 1439 // 1440 // Padding with undef if necessary: 1441 // 1442 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1443 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1444 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1445 // %7:_(s2) = G_IMPLICIT_DEF 1446 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1447 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1448 // %10:_(s12) = G_MERGE_VALUES %8, %9 1449 1450 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1451 LLT GCDTy = LLT::scalar(GCD); 1452 1453 SmallVector<Register, 8> Parts; 1454 SmallVector<Register, 8> NewMergeRegs; 1455 SmallVector<Register, 8> Unmerges; 1456 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1457 1458 // Decompose the original operands if they don't evenly divide. 1459 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1460 Register SrcReg = MI.getOperand(I).getReg(); 1461 if (GCD == SrcSize) { 1462 Unmerges.push_back(SrcReg); 1463 } else { 1464 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1465 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1466 Unmerges.push_back(Unmerge.getReg(J)); 1467 } 1468 } 1469 1470 // Pad with undef to the next size that is a multiple of the requested size. 1471 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1472 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1473 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1474 Unmerges.push_back(UndefReg); 1475 } 1476 1477 const int PartsPerGCD = WideSize / GCD; 1478 1479 // Build merges of each piece. 1480 ArrayRef<Register> Slicer(Unmerges); 1481 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1482 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1483 NewMergeRegs.push_back(Merge.getReg(0)); 1484 } 1485 1486 // A truncate may be necessary if the requested type doesn't evenly divide the 1487 // original result type. 1488 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1489 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1490 } else { 1491 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1492 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1493 } 1494 1495 MI.eraseFromParent(); 1496 return Legalized; 1497 } 1498 1499 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1500 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1501 LLT OrigTy = MRI.getType(OrigReg); 1502 LLT LCMTy = getLCMType(WideTy, OrigTy); 1503 1504 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1505 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1506 1507 Register UnmergeSrc = WideReg; 1508 1509 // Create a merge to the LCM type, padding with undef 1510 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1511 // => 1512 // %1:_(<4 x s32>) = G_FOO 1513 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1514 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1515 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1516 if (NumMergeParts > 1) { 1517 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1518 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1519 MergeParts[0] = WideReg; 1520 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1521 } 1522 1523 // Unmerge to the original register and pad with dead defs. 1524 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1525 UnmergeResults[0] = OrigReg; 1526 for (int I = 1; I != NumUnmergeParts; ++I) 1527 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1528 1529 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1530 return WideReg; 1531 } 1532 1533 LegalizerHelper::LegalizeResult 1534 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1535 LLT WideTy) { 1536 if (TypeIdx != 0) 1537 return UnableToLegalize; 1538 1539 int NumDst = MI.getNumOperands() - 1; 1540 Register SrcReg = MI.getOperand(NumDst).getReg(); 1541 LLT SrcTy = MRI.getType(SrcReg); 1542 if (SrcTy.isVector()) 1543 return UnableToLegalize; 1544 1545 Register Dst0Reg = MI.getOperand(0).getReg(); 1546 LLT DstTy = MRI.getType(Dst0Reg); 1547 if (!DstTy.isScalar()) 1548 return UnableToLegalize; 1549 1550 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1551 if (SrcTy.isPointer()) { 1552 const DataLayout &DL = MIRBuilder.getDataLayout(); 1553 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1554 LLVM_DEBUG( 1555 dbgs() << "Not casting non-integral address space integer\n"); 1556 return UnableToLegalize; 1557 } 1558 1559 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1560 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1561 } 1562 1563 // Widen SrcTy to WideTy. This does not affect the result, but since the 1564 // user requested this size, it is probably better handled than SrcTy and 1565 // should reduce the total number of legalization artifacts 1566 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1567 SrcTy = WideTy; 1568 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1569 } 1570 1571 // Theres no unmerge type to target. Directly extract the bits from the 1572 // source type 1573 unsigned DstSize = DstTy.getSizeInBits(); 1574 1575 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1576 for (int I = 1; I != NumDst; ++I) { 1577 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1578 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1579 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1580 } 1581 1582 MI.eraseFromParent(); 1583 return Legalized; 1584 } 1585 1586 // Extend the source to a wider type. 1587 LLT LCMTy = getLCMType(SrcTy, WideTy); 1588 1589 Register WideSrc = SrcReg; 1590 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1591 // TODO: If this is an integral address space, cast to integer and anyext. 1592 if (SrcTy.isPointer()) { 1593 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1594 return UnableToLegalize; 1595 } 1596 1597 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1598 } 1599 1600 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1601 1602 // Create a sequence of unmerges and merges to the original results. Since we 1603 // may have widened the source, we will need to pad the results with dead defs 1604 // to cover the source register. 1605 // e.g. widen s48 to s64: 1606 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1607 // 1608 // => 1609 // %4:_(s192) = G_ANYEXT %0:_(s96) 1610 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1611 // ; unpack to GCD type, with extra dead defs 1612 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1613 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1614 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1615 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1616 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1617 const LLT GCDTy = getGCDType(WideTy, DstTy); 1618 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1619 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1620 1621 // Directly unmerge to the destination without going through a GCD type 1622 // if possible 1623 if (PartsPerRemerge == 1) { 1624 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1625 1626 for (int I = 0; I != NumUnmerge; ++I) { 1627 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1628 1629 for (int J = 0; J != PartsPerUnmerge; ++J) { 1630 int Idx = I * PartsPerUnmerge + J; 1631 if (Idx < NumDst) 1632 MIB.addDef(MI.getOperand(Idx).getReg()); 1633 else { 1634 // Create dead def for excess components. 1635 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1636 } 1637 } 1638 1639 MIB.addUse(Unmerge.getReg(I)); 1640 } 1641 } else { 1642 SmallVector<Register, 16> Parts; 1643 for (int J = 0; J != NumUnmerge; ++J) 1644 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1645 1646 SmallVector<Register, 8> RemergeParts; 1647 for (int I = 0; I != NumDst; ++I) { 1648 for (int J = 0; J < PartsPerRemerge; ++J) { 1649 const int Idx = I * PartsPerRemerge + J; 1650 RemergeParts.emplace_back(Parts[Idx]); 1651 } 1652 1653 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1654 RemergeParts.clear(); 1655 } 1656 } 1657 1658 MI.eraseFromParent(); 1659 return Legalized; 1660 } 1661 1662 LegalizerHelper::LegalizeResult 1663 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1664 LLT WideTy) { 1665 Register DstReg = MI.getOperand(0).getReg(); 1666 Register SrcReg = MI.getOperand(1).getReg(); 1667 LLT SrcTy = MRI.getType(SrcReg); 1668 1669 LLT DstTy = MRI.getType(DstReg); 1670 unsigned Offset = MI.getOperand(2).getImm(); 1671 1672 if (TypeIdx == 0) { 1673 if (SrcTy.isVector() || DstTy.isVector()) 1674 return UnableToLegalize; 1675 1676 SrcOp Src(SrcReg); 1677 if (SrcTy.isPointer()) { 1678 // Extracts from pointers can be handled only if they are really just 1679 // simple integers. 1680 const DataLayout &DL = MIRBuilder.getDataLayout(); 1681 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1682 return UnableToLegalize; 1683 1684 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1685 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1686 SrcTy = SrcAsIntTy; 1687 } 1688 1689 if (DstTy.isPointer()) 1690 return UnableToLegalize; 1691 1692 if (Offset == 0) { 1693 // Avoid a shift in the degenerate case. 1694 MIRBuilder.buildTrunc(DstReg, 1695 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1696 MI.eraseFromParent(); 1697 return Legalized; 1698 } 1699 1700 // Do a shift in the source type. 1701 LLT ShiftTy = SrcTy; 1702 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1703 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1704 ShiftTy = WideTy; 1705 } 1706 1707 auto LShr = MIRBuilder.buildLShr( 1708 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1709 MIRBuilder.buildTrunc(DstReg, LShr); 1710 MI.eraseFromParent(); 1711 return Legalized; 1712 } 1713 1714 if (SrcTy.isScalar()) { 1715 Observer.changingInstr(MI); 1716 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1717 Observer.changedInstr(MI); 1718 return Legalized; 1719 } 1720 1721 if (!SrcTy.isVector()) 1722 return UnableToLegalize; 1723 1724 if (DstTy != SrcTy.getElementType()) 1725 return UnableToLegalize; 1726 1727 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1728 return UnableToLegalize; 1729 1730 Observer.changingInstr(MI); 1731 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1732 1733 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1734 Offset); 1735 widenScalarDst(MI, WideTy.getScalarType(), 0); 1736 Observer.changedInstr(MI); 1737 return Legalized; 1738 } 1739 1740 LegalizerHelper::LegalizeResult 1741 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1742 LLT WideTy) { 1743 if (TypeIdx != 0 || WideTy.isVector()) 1744 return UnableToLegalize; 1745 Observer.changingInstr(MI); 1746 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1747 widenScalarDst(MI, WideTy); 1748 Observer.changedInstr(MI); 1749 return Legalized; 1750 } 1751 1752 LegalizerHelper::LegalizeResult 1753 LegalizerHelper::widenScalarAddoSubo(MachineInstr &MI, unsigned TypeIdx, 1754 LLT WideTy) { 1755 if (TypeIdx == 1) 1756 return UnableToLegalize; // TODO 1757 unsigned Op = MI.getOpcode(); 1758 unsigned Opcode = Op == TargetOpcode::G_UADDO || Op == TargetOpcode::G_SADDO 1759 ? TargetOpcode::G_ADD 1760 : TargetOpcode::G_SUB; 1761 unsigned ExtOpcode = 1762 Op == TargetOpcode::G_UADDO || Op == TargetOpcode::G_USUBO 1763 ? TargetOpcode::G_ZEXT 1764 : TargetOpcode::G_SEXT; 1765 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1766 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1767 // Do the arithmetic in the larger type. 1768 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}); 1769 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1770 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1771 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1772 // There is no overflow if the ExtOp is the same as NewOp. 1773 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1774 // Now trunc the NewOp to the original result. 1775 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1776 MI.eraseFromParent(); 1777 return Legalized; 1778 } 1779 1780 LegalizerHelper::LegalizeResult 1781 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1782 LLT WideTy) { 1783 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1784 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1785 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1786 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1787 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1788 // We can convert this to: 1789 // 1. Any extend iN to iM 1790 // 2. SHL by M-N 1791 // 3. [US][ADD|SUB|SHL]SAT 1792 // 4. L/ASHR by M-N 1793 // 1794 // It may be more efficient to lower this to a min and a max operation in 1795 // the higher precision arithmetic if the promoted operation isn't legal, 1796 // but this decision is up to the target's lowering request. 1797 Register DstReg = MI.getOperand(0).getReg(); 1798 1799 unsigned NewBits = WideTy.getScalarSizeInBits(); 1800 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1801 1802 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1803 // must not left shift the RHS to preserve the shift amount. 1804 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1805 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1806 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1807 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1808 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1809 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1810 1811 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1812 {ShiftL, ShiftR}, MI.getFlags()); 1813 1814 // Use a shift that will preserve the number of sign bits when the trunc is 1815 // folded away. 1816 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1817 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1818 1819 MIRBuilder.buildTrunc(DstReg, Result); 1820 MI.eraseFromParent(); 1821 return Legalized; 1822 } 1823 1824 LegalizerHelper::LegalizeResult 1825 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1826 switch (MI.getOpcode()) { 1827 default: 1828 return UnableToLegalize; 1829 case TargetOpcode::G_EXTRACT: 1830 return widenScalarExtract(MI, TypeIdx, WideTy); 1831 case TargetOpcode::G_INSERT: 1832 return widenScalarInsert(MI, TypeIdx, WideTy); 1833 case TargetOpcode::G_MERGE_VALUES: 1834 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1835 case TargetOpcode::G_UNMERGE_VALUES: 1836 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1837 case TargetOpcode::G_SADDO: 1838 case TargetOpcode::G_SSUBO: 1839 case TargetOpcode::G_UADDO: 1840 case TargetOpcode::G_USUBO: 1841 return widenScalarAddoSubo(MI, TypeIdx, WideTy); 1842 case TargetOpcode::G_SADDSAT: 1843 case TargetOpcode::G_SSUBSAT: 1844 case TargetOpcode::G_SSHLSAT: 1845 case TargetOpcode::G_UADDSAT: 1846 case TargetOpcode::G_USUBSAT: 1847 case TargetOpcode::G_USHLSAT: 1848 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1849 case TargetOpcode::G_CTTZ: 1850 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1851 case TargetOpcode::G_CTLZ: 1852 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1853 case TargetOpcode::G_CTPOP: { 1854 if (TypeIdx == 0) { 1855 Observer.changingInstr(MI); 1856 widenScalarDst(MI, WideTy, 0); 1857 Observer.changedInstr(MI); 1858 return Legalized; 1859 } 1860 1861 Register SrcReg = MI.getOperand(1).getReg(); 1862 1863 // First ZEXT the input. 1864 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1865 LLT CurTy = MRI.getType(SrcReg); 1866 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1867 // The count is the same in the larger type except if the original 1868 // value was zero. This can be handled by setting the bit just off 1869 // the top of the original type. 1870 auto TopBit = 1871 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1872 MIBSrc = MIRBuilder.buildOr( 1873 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1874 } 1875 1876 // Perform the operation at the larger size. 1877 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1878 // This is already the correct result for CTPOP and CTTZs 1879 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1880 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1881 // The correct result is NewOp - (Difference in widety and current ty). 1882 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1883 MIBNewOp = MIRBuilder.buildSub( 1884 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1885 } 1886 1887 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1888 MI.eraseFromParent(); 1889 return Legalized; 1890 } 1891 case TargetOpcode::G_BSWAP: { 1892 Observer.changingInstr(MI); 1893 Register DstReg = MI.getOperand(0).getReg(); 1894 1895 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1896 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1897 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1898 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1899 1900 MI.getOperand(0).setReg(DstExt); 1901 1902 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1903 1904 LLT Ty = MRI.getType(DstReg); 1905 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1906 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1907 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1908 1909 MIRBuilder.buildTrunc(DstReg, ShrReg); 1910 Observer.changedInstr(MI); 1911 return Legalized; 1912 } 1913 case TargetOpcode::G_BITREVERSE: { 1914 Observer.changingInstr(MI); 1915 1916 Register DstReg = MI.getOperand(0).getReg(); 1917 LLT Ty = MRI.getType(DstReg); 1918 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1919 1920 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1921 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1922 MI.getOperand(0).setReg(DstExt); 1923 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1924 1925 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1926 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1927 MIRBuilder.buildTrunc(DstReg, Shift); 1928 Observer.changedInstr(MI); 1929 return Legalized; 1930 } 1931 case TargetOpcode::G_FREEZE: 1932 Observer.changingInstr(MI); 1933 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1934 widenScalarDst(MI, WideTy); 1935 Observer.changedInstr(MI); 1936 return Legalized; 1937 1938 case TargetOpcode::G_ADD: 1939 case TargetOpcode::G_AND: 1940 case TargetOpcode::G_MUL: 1941 case TargetOpcode::G_OR: 1942 case TargetOpcode::G_XOR: 1943 case TargetOpcode::G_SUB: 1944 // Perform operation at larger width (any extension is fines here, high bits 1945 // don't affect the result) and then truncate the result back to the 1946 // original type. 1947 Observer.changingInstr(MI); 1948 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1949 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1950 widenScalarDst(MI, WideTy); 1951 Observer.changedInstr(MI); 1952 return Legalized; 1953 1954 case TargetOpcode::G_SHL: 1955 Observer.changingInstr(MI); 1956 1957 if (TypeIdx == 0) { 1958 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1959 widenScalarDst(MI, WideTy); 1960 } else { 1961 assert(TypeIdx == 1); 1962 // The "number of bits to shift" operand must preserve its value as an 1963 // unsigned integer: 1964 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1965 } 1966 1967 Observer.changedInstr(MI); 1968 return Legalized; 1969 1970 case TargetOpcode::G_SDIV: 1971 case TargetOpcode::G_SREM: 1972 case TargetOpcode::G_SMIN: 1973 case TargetOpcode::G_SMAX: 1974 Observer.changingInstr(MI); 1975 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1976 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1977 widenScalarDst(MI, WideTy); 1978 Observer.changedInstr(MI); 1979 return Legalized; 1980 1981 case TargetOpcode::G_ASHR: 1982 case TargetOpcode::G_LSHR: 1983 Observer.changingInstr(MI); 1984 1985 if (TypeIdx == 0) { 1986 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1987 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1988 1989 widenScalarSrc(MI, WideTy, 1, CvtOp); 1990 widenScalarDst(MI, WideTy); 1991 } else { 1992 assert(TypeIdx == 1); 1993 // The "number of bits to shift" operand must preserve its value as an 1994 // unsigned integer: 1995 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1996 } 1997 1998 Observer.changedInstr(MI); 1999 return Legalized; 2000 case TargetOpcode::G_UDIV: 2001 case TargetOpcode::G_UREM: 2002 case TargetOpcode::G_UMIN: 2003 case TargetOpcode::G_UMAX: 2004 Observer.changingInstr(MI); 2005 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2006 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2007 widenScalarDst(MI, WideTy); 2008 Observer.changedInstr(MI); 2009 return Legalized; 2010 2011 case TargetOpcode::G_SELECT: 2012 Observer.changingInstr(MI); 2013 if (TypeIdx == 0) { 2014 // Perform operation at larger width (any extension is fine here, high 2015 // bits don't affect the result) and then truncate the result back to the 2016 // original type. 2017 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2018 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2019 widenScalarDst(MI, WideTy); 2020 } else { 2021 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2022 // Explicit extension is required here since high bits affect the result. 2023 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2024 } 2025 Observer.changedInstr(MI); 2026 return Legalized; 2027 2028 case TargetOpcode::G_FPTOSI: 2029 case TargetOpcode::G_FPTOUI: 2030 Observer.changingInstr(MI); 2031 2032 if (TypeIdx == 0) 2033 widenScalarDst(MI, WideTy); 2034 else 2035 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2036 2037 Observer.changedInstr(MI); 2038 return Legalized; 2039 case TargetOpcode::G_SITOFP: 2040 Observer.changingInstr(MI); 2041 2042 if (TypeIdx == 0) 2043 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2044 else 2045 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2046 2047 Observer.changedInstr(MI); 2048 return Legalized; 2049 case TargetOpcode::G_UITOFP: 2050 Observer.changingInstr(MI); 2051 2052 if (TypeIdx == 0) 2053 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2054 else 2055 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2056 2057 Observer.changedInstr(MI); 2058 return Legalized; 2059 case TargetOpcode::G_LOAD: 2060 case TargetOpcode::G_SEXTLOAD: 2061 case TargetOpcode::G_ZEXTLOAD: 2062 Observer.changingInstr(MI); 2063 widenScalarDst(MI, WideTy); 2064 Observer.changedInstr(MI); 2065 return Legalized; 2066 2067 case TargetOpcode::G_STORE: { 2068 if (TypeIdx != 0) 2069 return UnableToLegalize; 2070 2071 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2072 if (!Ty.isScalar()) 2073 return UnableToLegalize; 2074 2075 Observer.changingInstr(MI); 2076 2077 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2078 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2079 widenScalarSrc(MI, WideTy, 0, ExtType); 2080 2081 Observer.changedInstr(MI); 2082 return Legalized; 2083 } 2084 case TargetOpcode::G_CONSTANT: { 2085 MachineOperand &SrcMO = MI.getOperand(1); 2086 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2087 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2088 MRI.getType(MI.getOperand(0).getReg())); 2089 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2090 ExtOpc == TargetOpcode::G_ANYEXT) && 2091 "Illegal Extend"); 2092 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2093 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2094 ? SrcVal.sext(WideTy.getSizeInBits()) 2095 : SrcVal.zext(WideTy.getSizeInBits()); 2096 Observer.changingInstr(MI); 2097 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2098 2099 widenScalarDst(MI, WideTy); 2100 Observer.changedInstr(MI); 2101 return Legalized; 2102 } 2103 case TargetOpcode::G_FCONSTANT: { 2104 MachineOperand &SrcMO = MI.getOperand(1); 2105 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2106 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2107 bool LosesInfo; 2108 switch (WideTy.getSizeInBits()) { 2109 case 32: 2110 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2111 &LosesInfo); 2112 break; 2113 case 64: 2114 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2115 &LosesInfo); 2116 break; 2117 default: 2118 return UnableToLegalize; 2119 } 2120 2121 assert(!LosesInfo && "extend should always be lossless"); 2122 2123 Observer.changingInstr(MI); 2124 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2125 2126 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2127 Observer.changedInstr(MI); 2128 return Legalized; 2129 } 2130 case TargetOpcode::G_IMPLICIT_DEF: { 2131 Observer.changingInstr(MI); 2132 widenScalarDst(MI, WideTy); 2133 Observer.changedInstr(MI); 2134 return Legalized; 2135 } 2136 case TargetOpcode::G_BRCOND: 2137 Observer.changingInstr(MI); 2138 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2139 Observer.changedInstr(MI); 2140 return Legalized; 2141 2142 case TargetOpcode::G_FCMP: 2143 Observer.changingInstr(MI); 2144 if (TypeIdx == 0) 2145 widenScalarDst(MI, WideTy); 2146 else { 2147 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2148 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2149 } 2150 Observer.changedInstr(MI); 2151 return Legalized; 2152 2153 case TargetOpcode::G_ICMP: 2154 Observer.changingInstr(MI); 2155 if (TypeIdx == 0) 2156 widenScalarDst(MI, WideTy); 2157 else { 2158 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2159 MI.getOperand(1).getPredicate())) 2160 ? TargetOpcode::G_SEXT 2161 : TargetOpcode::G_ZEXT; 2162 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2163 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2164 } 2165 Observer.changedInstr(MI); 2166 return Legalized; 2167 2168 case TargetOpcode::G_PTR_ADD: 2169 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2170 Observer.changingInstr(MI); 2171 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2172 Observer.changedInstr(MI); 2173 return Legalized; 2174 2175 case TargetOpcode::G_PHI: { 2176 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2177 2178 Observer.changingInstr(MI); 2179 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2180 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2181 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2182 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2183 } 2184 2185 MachineBasicBlock &MBB = *MI.getParent(); 2186 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2187 widenScalarDst(MI, WideTy); 2188 Observer.changedInstr(MI); 2189 return Legalized; 2190 } 2191 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2192 if (TypeIdx == 0) { 2193 Register VecReg = MI.getOperand(1).getReg(); 2194 LLT VecTy = MRI.getType(VecReg); 2195 Observer.changingInstr(MI); 2196 2197 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2198 WideTy.getSizeInBits()), 2199 1, TargetOpcode::G_SEXT); 2200 2201 widenScalarDst(MI, WideTy, 0); 2202 Observer.changedInstr(MI); 2203 return Legalized; 2204 } 2205 2206 if (TypeIdx != 2) 2207 return UnableToLegalize; 2208 Observer.changingInstr(MI); 2209 // TODO: Probably should be zext 2210 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2211 Observer.changedInstr(MI); 2212 return Legalized; 2213 } 2214 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2215 if (TypeIdx == 1) { 2216 Observer.changingInstr(MI); 2217 2218 Register VecReg = MI.getOperand(1).getReg(); 2219 LLT VecTy = MRI.getType(VecReg); 2220 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2221 2222 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2223 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2224 widenScalarDst(MI, WideVecTy, 0); 2225 Observer.changedInstr(MI); 2226 return Legalized; 2227 } 2228 2229 if (TypeIdx == 2) { 2230 Observer.changingInstr(MI); 2231 // TODO: Probably should be zext 2232 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2233 Observer.changedInstr(MI); 2234 return Legalized; 2235 } 2236 2237 return UnableToLegalize; 2238 } 2239 case TargetOpcode::G_FADD: 2240 case TargetOpcode::G_FMUL: 2241 case TargetOpcode::G_FSUB: 2242 case TargetOpcode::G_FMA: 2243 case TargetOpcode::G_FMAD: 2244 case TargetOpcode::G_FNEG: 2245 case TargetOpcode::G_FABS: 2246 case TargetOpcode::G_FCANONICALIZE: 2247 case TargetOpcode::G_FMINNUM: 2248 case TargetOpcode::G_FMAXNUM: 2249 case TargetOpcode::G_FMINNUM_IEEE: 2250 case TargetOpcode::G_FMAXNUM_IEEE: 2251 case TargetOpcode::G_FMINIMUM: 2252 case TargetOpcode::G_FMAXIMUM: 2253 case TargetOpcode::G_FDIV: 2254 case TargetOpcode::G_FREM: 2255 case TargetOpcode::G_FCEIL: 2256 case TargetOpcode::G_FFLOOR: 2257 case TargetOpcode::G_FCOS: 2258 case TargetOpcode::G_FSIN: 2259 case TargetOpcode::G_FLOG10: 2260 case TargetOpcode::G_FLOG: 2261 case TargetOpcode::G_FLOG2: 2262 case TargetOpcode::G_FRINT: 2263 case TargetOpcode::G_FNEARBYINT: 2264 case TargetOpcode::G_FSQRT: 2265 case TargetOpcode::G_FEXP: 2266 case TargetOpcode::G_FEXP2: 2267 case TargetOpcode::G_FPOW: 2268 case TargetOpcode::G_INTRINSIC_TRUNC: 2269 case TargetOpcode::G_INTRINSIC_ROUND: 2270 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2271 assert(TypeIdx == 0); 2272 Observer.changingInstr(MI); 2273 2274 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2275 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2276 2277 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2278 Observer.changedInstr(MI); 2279 return Legalized; 2280 case TargetOpcode::G_FPOWI: { 2281 if (TypeIdx != 0) 2282 return UnableToLegalize; 2283 Observer.changingInstr(MI); 2284 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2285 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2286 Observer.changedInstr(MI); 2287 return Legalized; 2288 } 2289 case TargetOpcode::G_INTTOPTR: 2290 if (TypeIdx != 1) 2291 return UnableToLegalize; 2292 2293 Observer.changingInstr(MI); 2294 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2295 Observer.changedInstr(MI); 2296 return Legalized; 2297 case TargetOpcode::G_PTRTOINT: 2298 if (TypeIdx != 0) 2299 return UnableToLegalize; 2300 2301 Observer.changingInstr(MI); 2302 widenScalarDst(MI, WideTy, 0); 2303 Observer.changedInstr(MI); 2304 return Legalized; 2305 case TargetOpcode::G_BUILD_VECTOR: { 2306 Observer.changingInstr(MI); 2307 2308 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2309 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2310 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2311 2312 // Avoid changing the result vector type if the source element type was 2313 // requested. 2314 if (TypeIdx == 1) { 2315 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2316 } else { 2317 widenScalarDst(MI, WideTy, 0); 2318 } 2319 2320 Observer.changedInstr(MI); 2321 return Legalized; 2322 } 2323 case TargetOpcode::G_SEXT_INREG: 2324 if (TypeIdx != 0) 2325 return UnableToLegalize; 2326 2327 Observer.changingInstr(MI); 2328 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2329 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2330 Observer.changedInstr(MI); 2331 return Legalized; 2332 case TargetOpcode::G_PTRMASK: { 2333 if (TypeIdx != 1) 2334 return UnableToLegalize; 2335 Observer.changingInstr(MI); 2336 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2337 Observer.changedInstr(MI); 2338 return Legalized; 2339 } 2340 } 2341 } 2342 2343 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2344 MachineIRBuilder &B, Register Src, LLT Ty) { 2345 auto Unmerge = B.buildUnmerge(Ty, Src); 2346 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2347 Pieces.push_back(Unmerge.getReg(I)); 2348 } 2349 2350 LegalizerHelper::LegalizeResult 2351 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2352 Register Dst = MI.getOperand(0).getReg(); 2353 Register Src = MI.getOperand(1).getReg(); 2354 LLT DstTy = MRI.getType(Dst); 2355 LLT SrcTy = MRI.getType(Src); 2356 2357 if (SrcTy.isVector()) { 2358 LLT SrcEltTy = SrcTy.getElementType(); 2359 SmallVector<Register, 8> SrcRegs; 2360 2361 if (DstTy.isVector()) { 2362 int NumDstElt = DstTy.getNumElements(); 2363 int NumSrcElt = SrcTy.getNumElements(); 2364 2365 LLT DstEltTy = DstTy.getElementType(); 2366 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2367 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2368 2369 // If there's an element size mismatch, insert intermediate casts to match 2370 // the result element type. 2371 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2372 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2373 // 2374 // => 2375 // 2376 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2377 // %3:_(<2 x s8>) = G_BITCAST %2 2378 // %4:_(<2 x s8>) = G_BITCAST %3 2379 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2380 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2381 SrcPartTy = SrcEltTy; 2382 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2383 // 2384 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2385 // 2386 // => 2387 // 2388 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2389 // %3:_(s16) = G_BITCAST %2 2390 // %4:_(s16) = G_BITCAST %3 2391 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2392 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2393 DstCastTy = DstEltTy; 2394 } 2395 2396 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2397 for (Register &SrcReg : SrcRegs) 2398 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2399 } else 2400 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2401 2402 MIRBuilder.buildMerge(Dst, SrcRegs); 2403 MI.eraseFromParent(); 2404 return Legalized; 2405 } 2406 2407 if (DstTy.isVector()) { 2408 SmallVector<Register, 8> SrcRegs; 2409 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2410 MIRBuilder.buildMerge(Dst, SrcRegs); 2411 MI.eraseFromParent(); 2412 return Legalized; 2413 } 2414 2415 return UnableToLegalize; 2416 } 2417 2418 /// Figure out the bit offset into a register when coercing a vector index for 2419 /// the wide element type. This is only for the case when promoting vector to 2420 /// one with larger elements. 2421 // 2422 /// 2423 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2424 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2425 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2426 Register Idx, 2427 unsigned NewEltSize, 2428 unsigned OldEltSize) { 2429 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2430 LLT IdxTy = B.getMRI()->getType(Idx); 2431 2432 // Now figure out the amount we need to shift to get the target bits. 2433 auto OffsetMask = B.buildConstant( 2434 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2435 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2436 return B.buildShl(IdxTy, OffsetIdx, 2437 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2438 } 2439 2440 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2441 /// is casting to a vector with a smaller element size, perform multiple element 2442 /// extracts and merge the results. If this is coercing to a vector with larger 2443 /// elements, index the bitcasted vector and extract the target element with bit 2444 /// operations. This is intended to force the indexing in the native register 2445 /// size for architectures that can dynamically index the register file. 2446 LegalizerHelper::LegalizeResult 2447 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2448 LLT CastTy) { 2449 if (TypeIdx != 1) 2450 return UnableToLegalize; 2451 2452 Register Dst = MI.getOperand(0).getReg(); 2453 Register SrcVec = MI.getOperand(1).getReg(); 2454 Register Idx = MI.getOperand(2).getReg(); 2455 LLT SrcVecTy = MRI.getType(SrcVec); 2456 LLT IdxTy = MRI.getType(Idx); 2457 2458 LLT SrcEltTy = SrcVecTy.getElementType(); 2459 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2460 unsigned OldNumElts = SrcVecTy.getNumElements(); 2461 2462 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2463 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2464 2465 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2466 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2467 if (NewNumElts > OldNumElts) { 2468 // Decreasing the vector element size 2469 // 2470 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2471 // => 2472 // v4i32:castx = bitcast x:v2i64 2473 // 2474 // i64 = bitcast 2475 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2476 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2477 // 2478 if (NewNumElts % OldNumElts != 0) 2479 return UnableToLegalize; 2480 2481 // Type of the intermediate result vector. 2482 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2483 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2484 2485 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2486 2487 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2488 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2489 2490 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2491 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2492 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2493 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2494 NewOps[I] = Elt.getReg(0); 2495 } 2496 2497 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2498 MIRBuilder.buildBitcast(Dst, NewVec); 2499 MI.eraseFromParent(); 2500 return Legalized; 2501 } 2502 2503 if (NewNumElts < OldNumElts) { 2504 if (NewEltSize % OldEltSize != 0) 2505 return UnableToLegalize; 2506 2507 // This only depends on powers of 2 because we use bit tricks to figure out 2508 // the bit offset we need to shift to get the target element. A general 2509 // expansion could emit division/multiply. 2510 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2511 return UnableToLegalize; 2512 2513 // Increasing the vector element size. 2514 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2515 // 2516 // => 2517 // 2518 // %cast = G_BITCAST %vec 2519 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2520 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2521 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2522 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2523 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2524 // %elt = G_TRUNC %elt_bits 2525 2526 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2527 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2528 2529 // Divide to get the index in the wider element type. 2530 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2531 2532 Register WideElt = CastVec; 2533 if (CastTy.isVector()) { 2534 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2535 ScaledIdx).getReg(0); 2536 } 2537 2538 // Compute the bit offset into the register of the target element. 2539 Register OffsetBits = getBitcastWiderVectorElementOffset( 2540 MIRBuilder, Idx, NewEltSize, OldEltSize); 2541 2542 // Shift the wide element to get the target element. 2543 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2544 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2545 MI.eraseFromParent(); 2546 return Legalized; 2547 } 2548 2549 return UnableToLegalize; 2550 } 2551 2552 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2553 /// TargetReg, while preserving other bits in \p TargetReg. 2554 /// 2555 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2556 static Register buildBitFieldInsert(MachineIRBuilder &B, 2557 Register TargetReg, Register InsertReg, 2558 Register OffsetBits) { 2559 LLT TargetTy = B.getMRI()->getType(TargetReg); 2560 LLT InsertTy = B.getMRI()->getType(InsertReg); 2561 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2562 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2563 2564 // Produce a bitmask of the value to insert 2565 auto EltMask = B.buildConstant( 2566 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2567 InsertTy.getSizeInBits())); 2568 // Shift it into position 2569 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2570 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2571 2572 // Clear out the bits in the wide element 2573 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2574 2575 // The value to insert has all zeros already, so stick it into the masked 2576 // wide element. 2577 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2578 } 2579 2580 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2581 /// is increasing the element size, perform the indexing in the target element 2582 /// type, and use bit operations to insert at the element position. This is 2583 /// intended for architectures that can dynamically index the register file and 2584 /// want to force indexing in the native register size. 2585 LegalizerHelper::LegalizeResult 2586 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2587 LLT CastTy) { 2588 if (TypeIdx != 0) 2589 return UnableToLegalize; 2590 2591 Register Dst = MI.getOperand(0).getReg(); 2592 Register SrcVec = MI.getOperand(1).getReg(); 2593 Register Val = MI.getOperand(2).getReg(); 2594 Register Idx = MI.getOperand(3).getReg(); 2595 2596 LLT VecTy = MRI.getType(Dst); 2597 LLT IdxTy = MRI.getType(Idx); 2598 2599 LLT VecEltTy = VecTy.getElementType(); 2600 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2601 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2602 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2603 2604 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2605 unsigned OldNumElts = VecTy.getNumElements(); 2606 2607 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2608 if (NewNumElts < OldNumElts) { 2609 if (NewEltSize % OldEltSize != 0) 2610 return UnableToLegalize; 2611 2612 // This only depends on powers of 2 because we use bit tricks to figure out 2613 // the bit offset we need to shift to get the target element. A general 2614 // expansion could emit division/multiply. 2615 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2616 return UnableToLegalize; 2617 2618 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2619 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2620 2621 // Divide to get the index in the wider element type. 2622 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2623 2624 Register ExtractedElt = CastVec; 2625 if (CastTy.isVector()) { 2626 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2627 ScaledIdx).getReg(0); 2628 } 2629 2630 // Compute the bit offset into the register of the target element. 2631 Register OffsetBits = getBitcastWiderVectorElementOffset( 2632 MIRBuilder, Idx, NewEltSize, OldEltSize); 2633 2634 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2635 Val, OffsetBits); 2636 if (CastTy.isVector()) { 2637 InsertedElt = MIRBuilder.buildInsertVectorElement( 2638 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2639 } 2640 2641 MIRBuilder.buildBitcast(Dst, InsertedElt); 2642 MI.eraseFromParent(); 2643 return Legalized; 2644 } 2645 2646 return UnableToLegalize; 2647 } 2648 2649 LegalizerHelper::LegalizeResult 2650 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2651 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2652 Register DstReg = MI.getOperand(0).getReg(); 2653 Register PtrReg = MI.getOperand(1).getReg(); 2654 LLT DstTy = MRI.getType(DstReg); 2655 auto &MMO = **MI.memoperands_begin(); 2656 2657 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2658 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2659 // This load needs splitting into power of 2 sized loads. 2660 if (DstTy.isVector()) 2661 return UnableToLegalize; 2662 if (isPowerOf2_32(DstTy.getSizeInBits())) 2663 return UnableToLegalize; // Don't know what we're being asked to do. 2664 2665 // Our strategy here is to generate anyextending loads for the smaller 2666 // types up to next power-2 result type, and then combine the two larger 2667 // result values together, before truncating back down to the non-pow-2 2668 // type. 2669 // E.g. v1 = i24 load => 2670 // v2 = i32 zextload (2 byte) 2671 // v3 = i32 load (1 byte) 2672 // v4 = i32 shl v3, 16 2673 // v5 = i32 or v4, v2 2674 // v1 = i24 trunc v5 2675 // By doing this we generate the correct truncate which should get 2676 // combined away as an artifact with a matching extend. 2677 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2678 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2679 2680 MachineFunction &MF = MIRBuilder.getMF(); 2681 MachineMemOperand *LargeMMO = 2682 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2683 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2684 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2685 2686 LLT PtrTy = MRI.getType(PtrReg); 2687 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2688 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2689 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2690 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2691 auto LargeLoad = MIRBuilder.buildLoadInstr( 2692 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2693 2694 auto OffsetCst = MIRBuilder.buildConstant( 2695 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2696 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2697 auto SmallPtr = 2698 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2699 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2700 *SmallMMO); 2701 2702 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2703 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2704 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2705 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2706 MI.eraseFromParent(); 2707 return Legalized; 2708 } 2709 2710 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2711 MI.eraseFromParent(); 2712 return Legalized; 2713 } 2714 2715 if (DstTy.isScalar()) { 2716 Register TmpReg = 2717 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2718 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2719 switch (MI.getOpcode()) { 2720 default: 2721 llvm_unreachable("Unexpected opcode"); 2722 case TargetOpcode::G_LOAD: 2723 MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg); 2724 break; 2725 case TargetOpcode::G_SEXTLOAD: 2726 MIRBuilder.buildSExt(DstReg, TmpReg); 2727 break; 2728 case TargetOpcode::G_ZEXTLOAD: 2729 MIRBuilder.buildZExt(DstReg, TmpReg); 2730 break; 2731 } 2732 2733 MI.eraseFromParent(); 2734 return Legalized; 2735 } 2736 2737 return UnableToLegalize; 2738 } 2739 2740 LegalizerHelper::LegalizeResult 2741 LegalizerHelper::lowerStore(MachineInstr &MI) { 2742 // Lower a non-power of 2 store into multiple pow-2 stores. 2743 // E.g. split an i24 store into an i16 store + i8 store. 2744 // We do this by first extending the stored value to the next largest power 2745 // of 2 type, and then using truncating stores to store the components. 2746 // By doing this, likewise with G_LOAD, generate an extend that can be 2747 // artifact-combined away instead of leaving behind extracts. 2748 Register SrcReg = MI.getOperand(0).getReg(); 2749 Register PtrReg = MI.getOperand(1).getReg(); 2750 LLT SrcTy = MRI.getType(SrcReg); 2751 MachineMemOperand &MMO = **MI.memoperands_begin(); 2752 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2753 return UnableToLegalize; 2754 if (SrcTy.isVector()) 2755 return UnableToLegalize; 2756 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2757 return UnableToLegalize; // Don't know what we're being asked to do. 2758 2759 // Extend to the next pow-2. 2760 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2761 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2762 2763 // Obtain the smaller value by shifting away the larger value. 2764 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2765 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2766 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2767 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2768 2769 // Generate the PtrAdd and truncating stores. 2770 LLT PtrTy = MRI.getType(PtrReg); 2771 auto OffsetCst = MIRBuilder.buildConstant( 2772 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2773 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2774 auto SmallPtr = 2775 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2776 2777 MachineFunction &MF = MIRBuilder.getMF(); 2778 MachineMemOperand *LargeMMO = 2779 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2780 MachineMemOperand *SmallMMO = 2781 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2782 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2783 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2784 MI.eraseFromParent(); 2785 return Legalized; 2786 } 2787 2788 LegalizerHelper::LegalizeResult 2789 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2790 switch (MI.getOpcode()) { 2791 case TargetOpcode::G_LOAD: { 2792 if (TypeIdx != 0) 2793 return UnableToLegalize; 2794 2795 Observer.changingInstr(MI); 2796 bitcastDst(MI, CastTy, 0); 2797 Observer.changedInstr(MI); 2798 return Legalized; 2799 } 2800 case TargetOpcode::G_STORE: { 2801 if (TypeIdx != 0) 2802 return UnableToLegalize; 2803 2804 Observer.changingInstr(MI); 2805 bitcastSrc(MI, CastTy, 0); 2806 Observer.changedInstr(MI); 2807 return Legalized; 2808 } 2809 case TargetOpcode::G_SELECT: { 2810 if (TypeIdx != 0) 2811 return UnableToLegalize; 2812 2813 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2814 LLVM_DEBUG( 2815 dbgs() << "bitcast action not implemented for vector select\n"); 2816 return UnableToLegalize; 2817 } 2818 2819 Observer.changingInstr(MI); 2820 bitcastSrc(MI, CastTy, 2); 2821 bitcastSrc(MI, CastTy, 3); 2822 bitcastDst(MI, CastTy, 0); 2823 Observer.changedInstr(MI); 2824 return Legalized; 2825 } 2826 case TargetOpcode::G_AND: 2827 case TargetOpcode::G_OR: 2828 case TargetOpcode::G_XOR: { 2829 Observer.changingInstr(MI); 2830 bitcastSrc(MI, CastTy, 1); 2831 bitcastSrc(MI, CastTy, 2); 2832 bitcastDst(MI, CastTy, 0); 2833 Observer.changedInstr(MI); 2834 return Legalized; 2835 } 2836 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2837 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2838 case TargetOpcode::G_INSERT_VECTOR_ELT: 2839 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2840 default: 2841 return UnableToLegalize; 2842 } 2843 } 2844 2845 // Legalize an instruction by changing the opcode in place. 2846 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2847 Observer.changingInstr(MI); 2848 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2849 Observer.changedInstr(MI); 2850 } 2851 2852 LegalizerHelper::LegalizeResult 2853 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 2854 using namespace TargetOpcode; 2855 2856 switch(MI.getOpcode()) { 2857 default: 2858 return UnableToLegalize; 2859 case TargetOpcode::G_BITCAST: 2860 return lowerBitcast(MI); 2861 case TargetOpcode::G_SREM: 2862 case TargetOpcode::G_UREM: { 2863 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2864 auto Quot = 2865 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2866 {MI.getOperand(1), MI.getOperand(2)}); 2867 2868 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2869 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2870 MI.eraseFromParent(); 2871 return Legalized; 2872 } 2873 case TargetOpcode::G_SADDO: 2874 case TargetOpcode::G_SSUBO: 2875 return lowerSADDO_SSUBO(MI); 2876 case TargetOpcode::G_UMULH: 2877 case TargetOpcode::G_SMULH: 2878 return lowerSMULH_UMULH(MI); 2879 case TargetOpcode::G_SMULO: 2880 case TargetOpcode::G_UMULO: { 2881 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2882 // result. 2883 Register Res = MI.getOperand(0).getReg(); 2884 Register Overflow = MI.getOperand(1).getReg(); 2885 Register LHS = MI.getOperand(2).getReg(); 2886 Register RHS = MI.getOperand(3).getReg(); 2887 LLT Ty = MRI.getType(Res); 2888 2889 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2890 ? TargetOpcode::G_SMULH 2891 : TargetOpcode::G_UMULH; 2892 2893 Observer.changingInstr(MI); 2894 const auto &TII = MIRBuilder.getTII(); 2895 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2896 MI.RemoveOperand(1); 2897 Observer.changedInstr(MI); 2898 2899 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2900 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2901 2902 // Move insert point forward so we can use the Res register if needed. 2903 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2904 2905 // For *signed* multiply, overflow is detected by checking: 2906 // (hi != (lo >> bitwidth-1)) 2907 if (Opcode == TargetOpcode::G_SMULH) { 2908 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2909 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2910 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2911 } else { 2912 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2913 } 2914 return Legalized; 2915 } 2916 case TargetOpcode::G_FNEG: { 2917 Register Res = MI.getOperand(0).getReg(); 2918 LLT Ty = MRI.getType(Res); 2919 2920 // TODO: Handle vector types once we are able to 2921 // represent them. 2922 if (Ty.isVector()) 2923 return UnableToLegalize; 2924 auto SignMask = 2925 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 2926 Register SubByReg = MI.getOperand(1).getReg(); 2927 MIRBuilder.buildXor(Res, SubByReg, SignMask); 2928 MI.eraseFromParent(); 2929 return Legalized; 2930 } 2931 case TargetOpcode::G_FSUB: { 2932 Register Res = MI.getOperand(0).getReg(); 2933 LLT Ty = MRI.getType(Res); 2934 2935 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2936 // First, check if G_FNEG is marked as Lower. If so, we may 2937 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2938 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2939 return UnableToLegalize; 2940 Register LHS = MI.getOperand(1).getReg(); 2941 Register RHS = MI.getOperand(2).getReg(); 2942 Register Neg = MRI.createGenericVirtualRegister(Ty); 2943 MIRBuilder.buildFNeg(Neg, RHS); 2944 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2945 MI.eraseFromParent(); 2946 return Legalized; 2947 } 2948 case TargetOpcode::G_FMAD: 2949 return lowerFMad(MI); 2950 case TargetOpcode::G_FFLOOR: 2951 return lowerFFloor(MI); 2952 case TargetOpcode::G_INTRINSIC_ROUND: 2953 return lowerIntrinsicRound(MI); 2954 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 2955 // Since round even is the assumed rounding mode for unconstrained FP 2956 // operations, rint and roundeven are the same operation. 2957 changeOpcode(MI, TargetOpcode::G_FRINT); 2958 return Legalized; 2959 } 2960 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2961 Register OldValRes = MI.getOperand(0).getReg(); 2962 Register SuccessRes = MI.getOperand(1).getReg(); 2963 Register Addr = MI.getOperand(2).getReg(); 2964 Register CmpVal = MI.getOperand(3).getReg(); 2965 Register NewVal = MI.getOperand(4).getReg(); 2966 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2967 **MI.memoperands_begin()); 2968 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2969 MI.eraseFromParent(); 2970 return Legalized; 2971 } 2972 case TargetOpcode::G_LOAD: 2973 case TargetOpcode::G_SEXTLOAD: 2974 case TargetOpcode::G_ZEXTLOAD: 2975 return lowerLoad(MI); 2976 case TargetOpcode::G_STORE: 2977 return lowerStore(MI); 2978 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2979 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2980 case TargetOpcode::G_CTLZ: 2981 case TargetOpcode::G_CTTZ: 2982 case TargetOpcode::G_CTPOP: 2983 return lowerBitCount(MI); 2984 case G_UADDO: { 2985 Register Res = MI.getOperand(0).getReg(); 2986 Register CarryOut = MI.getOperand(1).getReg(); 2987 Register LHS = MI.getOperand(2).getReg(); 2988 Register RHS = MI.getOperand(3).getReg(); 2989 2990 MIRBuilder.buildAdd(Res, LHS, RHS); 2991 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2992 2993 MI.eraseFromParent(); 2994 return Legalized; 2995 } 2996 case G_UADDE: { 2997 Register Res = MI.getOperand(0).getReg(); 2998 Register CarryOut = MI.getOperand(1).getReg(); 2999 Register LHS = MI.getOperand(2).getReg(); 3000 Register RHS = MI.getOperand(3).getReg(); 3001 Register CarryIn = MI.getOperand(4).getReg(); 3002 LLT Ty = MRI.getType(Res); 3003 3004 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3005 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3006 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3007 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3008 3009 MI.eraseFromParent(); 3010 return Legalized; 3011 } 3012 case G_USUBO: { 3013 Register Res = MI.getOperand(0).getReg(); 3014 Register BorrowOut = MI.getOperand(1).getReg(); 3015 Register LHS = MI.getOperand(2).getReg(); 3016 Register RHS = MI.getOperand(3).getReg(); 3017 3018 MIRBuilder.buildSub(Res, LHS, RHS); 3019 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3020 3021 MI.eraseFromParent(); 3022 return Legalized; 3023 } 3024 case G_USUBE: { 3025 Register Res = MI.getOperand(0).getReg(); 3026 Register BorrowOut = MI.getOperand(1).getReg(); 3027 Register LHS = MI.getOperand(2).getReg(); 3028 Register RHS = MI.getOperand(3).getReg(); 3029 Register BorrowIn = MI.getOperand(4).getReg(); 3030 const LLT CondTy = MRI.getType(BorrowOut); 3031 const LLT Ty = MRI.getType(Res); 3032 3033 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3034 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3035 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3036 3037 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3038 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3039 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3040 3041 MI.eraseFromParent(); 3042 return Legalized; 3043 } 3044 case G_UITOFP: 3045 return lowerUITOFP(MI); 3046 case G_SITOFP: 3047 return lowerSITOFP(MI); 3048 case G_FPTOUI: 3049 return lowerFPTOUI(MI); 3050 case G_FPTOSI: 3051 return lowerFPTOSI(MI); 3052 case G_FPTRUNC: 3053 return lowerFPTRUNC(MI); 3054 case G_FPOWI: 3055 return lowerFPOWI(MI); 3056 case G_SMIN: 3057 case G_SMAX: 3058 case G_UMIN: 3059 case G_UMAX: 3060 return lowerMinMax(MI); 3061 case G_FCOPYSIGN: 3062 return lowerFCopySign(MI); 3063 case G_FMINNUM: 3064 case G_FMAXNUM: 3065 return lowerFMinNumMaxNum(MI); 3066 case G_MERGE_VALUES: 3067 return lowerMergeValues(MI); 3068 case G_UNMERGE_VALUES: 3069 return lowerUnmergeValues(MI); 3070 case TargetOpcode::G_SEXT_INREG: { 3071 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3072 int64_t SizeInBits = MI.getOperand(2).getImm(); 3073 3074 Register DstReg = MI.getOperand(0).getReg(); 3075 Register SrcReg = MI.getOperand(1).getReg(); 3076 LLT DstTy = MRI.getType(DstReg); 3077 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3078 3079 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3080 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3081 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3082 MI.eraseFromParent(); 3083 return Legalized; 3084 } 3085 case G_EXTRACT_VECTOR_ELT: 3086 case G_INSERT_VECTOR_ELT: 3087 return lowerExtractInsertVectorElt(MI); 3088 case G_SHUFFLE_VECTOR: 3089 return lowerShuffleVector(MI); 3090 case G_DYN_STACKALLOC: 3091 return lowerDynStackAlloc(MI); 3092 case G_EXTRACT: 3093 return lowerExtract(MI); 3094 case G_INSERT: 3095 return lowerInsert(MI); 3096 case G_BSWAP: 3097 return lowerBswap(MI); 3098 case G_BITREVERSE: 3099 return lowerBitreverse(MI); 3100 case G_READ_REGISTER: 3101 case G_WRITE_REGISTER: 3102 return lowerReadWriteRegister(MI); 3103 case G_UADDSAT: 3104 case G_USUBSAT: { 3105 // Try to make a reasonable guess about which lowering strategy to use. The 3106 // target can override this with custom lowering and calling the 3107 // implementation functions. 3108 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3109 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3110 return lowerAddSubSatToMinMax(MI); 3111 return lowerAddSubSatToAddoSubo(MI); 3112 } 3113 case G_SADDSAT: 3114 case G_SSUBSAT: { 3115 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3116 3117 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3118 // since it's a shorter expansion. However, we would need to figure out the 3119 // preferred boolean type for the carry out for the query. 3120 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3121 return lowerAddSubSatToMinMax(MI); 3122 return lowerAddSubSatToAddoSubo(MI); 3123 } 3124 case G_SSHLSAT: 3125 case G_USHLSAT: 3126 return lowerShlSat(MI); 3127 case G_ABS: { 3128 // Expand %res = G_ABS %a into: 3129 // %v1 = G_ASHR %a, scalar_size-1 3130 // %v2 = G_ADD %a, %v1 3131 // %res = G_XOR %v2, %v1 3132 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3133 Register OpReg = MI.getOperand(1).getReg(); 3134 auto ShiftAmt = 3135 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 3136 auto Shift = 3137 MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 3138 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 3139 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 3140 MI.eraseFromParent(); 3141 return Legalized; 3142 } 3143 case G_SELECT: 3144 return lowerSelect(MI); 3145 } 3146 } 3147 3148 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3149 Align MinAlign) const { 3150 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3151 // datalayout for the preferred alignment. Also there should be a target hook 3152 // for this to allow targets to reduce the alignment and ignore the 3153 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3154 // the type. 3155 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3156 } 3157 3158 MachineInstrBuilder 3159 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3160 MachinePointerInfo &PtrInfo) { 3161 MachineFunction &MF = MIRBuilder.getMF(); 3162 const DataLayout &DL = MIRBuilder.getDataLayout(); 3163 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3164 3165 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3166 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3167 3168 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3169 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3170 } 3171 3172 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3173 LLT VecTy) { 3174 int64_t IdxVal; 3175 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3176 return IdxReg; 3177 3178 LLT IdxTy = B.getMRI()->getType(IdxReg); 3179 unsigned NElts = VecTy.getNumElements(); 3180 if (isPowerOf2_32(NElts)) { 3181 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3182 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3183 } 3184 3185 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3186 .getReg(0); 3187 } 3188 3189 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3190 Register Index) { 3191 LLT EltTy = VecTy.getElementType(); 3192 3193 // Calculate the element offset and add it to the pointer. 3194 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3195 assert(EltSize * 8 == EltTy.getSizeInBits() && 3196 "Converting bits to bytes lost precision"); 3197 3198 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3199 3200 LLT IdxTy = MRI.getType(Index); 3201 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3202 MIRBuilder.buildConstant(IdxTy, EltSize)); 3203 3204 LLT PtrTy = MRI.getType(VecPtr); 3205 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3206 } 3207 3208 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3209 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3210 Register DstReg = MI.getOperand(0).getReg(); 3211 LLT DstTy = MRI.getType(DstReg); 3212 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3213 3214 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3215 3216 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3217 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3218 3219 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3220 MI.eraseFromParent(); 3221 return Legalized; 3222 } 3223 3224 // Handle splitting vector operations which need to have the same number of 3225 // elements in each type index, but each type index may have a different element 3226 // type. 3227 // 3228 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3229 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3230 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3231 // 3232 // Also handles some irregular breakdown cases, e.g. 3233 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3234 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3235 // s64 = G_SHL s64, s32 3236 LegalizerHelper::LegalizeResult 3237 LegalizerHelper::fewerElementsVectorMultiEltType( 3238 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3239 if (TypeIdx != 0) 3240 return UnableToLegalize; 3241 3242 const LLT NarrowTy0 = NarrowTyArg; 3243 const unsigned NewNumElts = 3244 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3245 3246 const Register DstReg = MI.getOperand(0).getReg(); 3247 LLT DstTy = MRI.getType(DstReg); 3248 LLT LeftoverTy0; 3249 3250 // All of the operands need to have the same number of elements, so if we can 3251 // determine a type breakdown for the result type, we can for all of the 3252 // source types. 3253 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3254 if (NumParts < 0) 3255 return UnableToLegalize; 3256 3257 SmallVector<MachineInstrBuilder, 4> NewInsts; 3258 3259 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3260 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3261 3262 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3263 Register SrcReg = MI.getOperand(I).getReg(); 3264 LLT SrcTyI = MRI.getType(SrcReg); 3265 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3266 LLT LeftoverTyI; 3267 3268 // Split this operand into the requested typed registers, and any leftover 3269 // required to reproduce the original type. 3270 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3271 LeftoverRegs)) 3272 return UnableToLegalize; 3273 3274 if (I == 1) { 3275 // For the first operand, create an instruction for each part and setup 3276 // the result. 3277 for (Register PartReg : PartRegs) { 3278 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3279 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3280 .addDef(PartDstReg) 3281 .addUse(PartReg)); 3282 DstRegs.push_back(PartDstReg); 3283 } 3284 3285 for (Register LeftoverReg : LeftoverRegs) { 3286 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3287 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3288 .addDef(PartDstReg) 3289 .addUse(LeftoverReg)); 3290 LeftoverDstRegs.push_back(PartDstReg); 3291 } 3292 } else { 3293 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3294 3295 // Add the newly created operand splits to the existing instructions. The 3296 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3297 // pieces. 3298 unsigned InstCount = 0; 3299 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3300 NewInsts[InstCount++].addUse(PartRegs[J]); 3301 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3302 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3303 } 3304 3305 PartRegs.clear(); 3306 LeftoverRegs.clear(); 3307 } 3308 3309 // Insert the newly built operations and rebuild the result register. 3310 for (auto &MIB : NewInsts) 3311 MIRBuilder.insertInstr(MIB); 3312 3313 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3314 3315 MI.eraseFromParent(); 3316 return Legalized; 3317 } 3318 3319 LegalizerHelper::LegalizeResult 3320 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3321 LLT NarrowTy) { 3322 if (TypeIdx != 0) 3323 return UnableToLegalize; 3324 3325 Register DstReg = MI.getOperand(0).getReg(); 3326 Register SrcReg = MI.getOperand(1).getReg(); 3327 LLT DstTy = MRI.getType(DstReg); 3328 LLT SrcTy = MRI.getType(SrcReg); 3329 3330 LLT NarrowTy0 = NarrowTy; 3331 LLT NarrowTy1; 3332 unsigned NumParts; 3333 3334 if (NarrowTy.isVector()) { 3335 // Uneven breakdown not handled. 3336 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3337 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3338 return UnableToLegalize; 3339 3340 NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType()); 3341 } else { 3342 NumParts = DstTy.getNumElements(); 3343 NarrowTy1 = SrcTy.getElementType(); 3344 } 3345 3346 SmallVector<Register, 4> SrcRegs, DstRegs; 3347 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3348 3349 for (unsigned I = 0; I < NumParts; ++I) { 3350 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3351 MachineInstr *NewInst = 3352 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3353 3354 NewInst->setFlags(MI.getFlags()); 3355 DstRegs.push_back(DstReg); 3356 } 3357 3358 if (NarrowTy.isVector()) 3359 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3360 else 3361 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3362 3363 MI.eraseFromParent(); 3364 return Legalized; 3365 } 3366 3367 LegalizerHelper::LegalizeResult 3368 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3369 LLT NarrowTy) { 3370 Register DstReg = MI.getOperand(0).getReg(); 3371 Register Src0Reg = MI.getOperand(2).getReg(); 3372 LLT DstTy = MRI.getType(DstReg); 3373 LLT SrcTy = MRI.getType(Src0Reg); 3374 3375 unsigned NumParts; 3376 LLT NarrowTy0, NarrowTy1; 3377 3378 if (TypeIdx == 0) { 3379 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3380 unsigned OldElts = DstTy.getNumElements(); 3381 3382 NarrowTy0 = NarrowTy; 3383 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3384 NarrowTy1 = NarrowTy.isVector() ? 3385 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3386 SrcTy.getElementType(); 3387 3388 } else { 3389 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3390 unsigned OldElts = SrcTy.getNumElements(); 3391 3392 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3393 NarrowTy.getNumElements(); 3394 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3395 DstTy.getScalarSizeInBits()); 3396 NarrowTy1 = NarrowTy; 3397 } 3398 3399 // FIXME: Don't know how to handle the situation where the small vectors 3400 // aren't all the same size yet. 3401 if (NarrowTy1.isVector() && 3402 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3403 return UnableToLegalize; 3404 3405 CmpInst::Predicate Pred 3406 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3407 3408 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3409 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3410 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3411 3412 for (unsigned I = 0; I < NumParts; ++I) { 3413 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3414 DstRegs.push_back(DstReg); 3415 3416 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3417 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3418 else { 3419 MachineInstr *NewCmp 3420 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3421 NewCmp->setFlags(MI.getFlags()); 3422 } 3423 } 3424 3425 if (NarrowTy1.isVector()) 3426 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3427 else 3428 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3429 3430 MI.eraseFromParent(); 3431 return Legalized; 3432 } 3433 3434 LegalizerHelper::LegalizeResult 3435 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3436 LLT NarrowTy) { 3437 Register DstReg = MI.getOperand(0).getReg(); 3438 Register CondReg = MI.getOperand(1).getReg(); 3439 3440 unsigned NumParts = 0; 3441 LLT NarrowTy0, NarrowTy1; 3442 3443 LLT DstTy = MRI.getType(DstReg); 3444 LLT CondTy = MRI.getType(CondReg); 3445 unsigned Size = DstTy.getSizeInBits(); 3446 3447 assert(TypeIdx == 0 || CondTy.isVector()); 3448 3449 if (TypeIdx == 0) { 3450 NarrowTy0 = NarrowTy; 3451 NarrowTy1 = CondTy; 3452 3453 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3454 // FIXME: Don't know how to handle the situation where the small vectors 3455 // aren't all the same size yet. 3456 if (Size % NarrowSize != 0) 3457 return UnableToLegalize; 3458 3459 NumParts = Size / NarrowSize; 3460 3461 // Need to break down the condition type 3462 if (CondTy.isVector()) { 3463 if (CondTy.getNumElements() == NumParts) 3464 NarrowTy1 = CondTy.getElementType(); 3465 else 3466 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3467 CondTy.getScalarSizeInBits()); 3468 } 3469 } else { 3470 NumParts = CondTy.getNumElements(); 3471 if (NarrowTy.isVector()) { 3472 // TODO: Handle uneven breakdown. 3473 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3474 return UnableToLegalize; 3475 3476 return UnableToLegalize; 3477 } else { 3478 NarrowTy0 = DstTy.getElementType(); 3479 NarrowTy1 = NarrowTy; 3480 } 3481 } 3482 3483 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3484 if (CondTy.isVector()) 3485 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3486 3487 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3488 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3489 3490 for (unsigned i = 0; i < NumParts; ++i) { 3491 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3492 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3493 Src1Regs[i], Src2Regs[i]); 3494 DstRegs.push_back(DstReg); 3495 } 3496 3497 if (NarrowTy0.isVector()) 3498 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3499 else 3500 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3501 3502 MI.eraseFromParent(); 3503 return Legalized; 3504 } 3505 3506 LegalizerHelper::LegalizeResult 3507 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3508 LLT NarrowTy) { 3509 const Register DstReg = MI.getOperand(0).getReg(); 3510 LLT PhiTy = MRI.getType(DstReg); 3511 LLT LeftoverTy; 3512 3513 // All of the operands need to have the same number of elements, so if we can 3514 // determine a type breakdown for the result type, we can for all of the 3515 // source types. 3516 int NumParts, NumLeftover; 3517 std::tie(NumParts, NumLeftover) 3518 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3519 if (NumParts < 0) 3520 return UnableToLegalize; 3521 3522 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3523 SmallVector<MachineInstrBuilder, 4> NewInsts; 3524 3525 const int TotalNumParts = NumParts + NumLeftover; 3526 3527 // Insert the new phis in the result block first. 3528 for (int I = 0; I != TotalNumParts; ++I) { 3529 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3530 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3531 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3532 .addDef(PartDstReg)); 3533 if (I < NumParts) 3534 DstRegs.push_back(PartDstReg); 3535 else 3536 LeftoverDstRegs.push_back(PartDstReg); 3537 } 3538 3539 MachineBasicBlock *MBB = MI.getParent(); 3540 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3541 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3542 3543 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3544 3545 // Insert code to extract the incoming values in each predecessor block. 3546 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3547 PartRegs.clear(); 3548 LeftoverRegs.clear(); 3549 3550 Register SrcReg = MI.getOperand(I).getReg(); 3551 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3552 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3553 3554 LLT Unused; 3555 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3556 LeftoverRegs)) 3557 return UnableToLegalize; 3558 3559 // Add the newly created operand splits to the existing instructions. The 3560 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3561 // pieces. 3562 for (int J = 0; J != TotalNumParts; ++J) { 3563 MachineInstrBuilder MIB = NewInsts[J]; 3564 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3565 MIB.addMBB(&OpMBB); 3566 } 3567 } 3568 3569 MI.eraseFromParent(); 3570 return Legalized; 3571 } 3572 3573 LegalizerHelper::LegalizeResult 3574 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3575 unsigned TypeIdx, 3576 LLT NarrowTy) { 3577 if (TypeIdx != 1) 3578 return UnableToLegalize; 3579 3580 const int NumDst = MI.getNumOperands() - 1; 3581 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3582 LLT SrcTy = MRI.getType(SrcReg); 3583 3584 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3585 3586 // TODO: Create sequence of extracts. 3587 if (DstTy == NarrowTy) 3588 return UnableToLegalize; 3589 3590 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3591 if (DstTy == GCDTy) { 3592 // This would just be a copy of the same unmerge. 3593 // TODO: Create extracts, pad with undef and create intermediate merges. 3594 return UnableToLegalize; 3595 } 3596 3597 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3598 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3599 const int PartsPerUnmerge = NumDst / NumUnmerge; 3600 3601 for (int I = 0; I != NumUnmerge; ++I) { 3602 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3603 3604 for (int J = 0; J != PartsPerUnmerge; ++J) 3605 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3606 MIB.addUse(Unmerge.getReg(I)); 3607 } 3608 3609 MI.eraseFromParent(); 3610 return Legalized; 3611 } 3612 3613 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3614 // a vector 3615 // 3616 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3617 // undef as necessary. 3618 // 3619 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3620 // -> <2 x s16> 3621 // 3622 // %4:_(s16) = G_IMPLICIT_DEF 3623 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3624 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3625 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3626 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3627 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3628 LegalizerHelper::LegalizeResult 3629 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3630 LLT NarrowTy) { 3631 Register DstReg = MI.getOperand(0).getReg(); 3632 LLT DstTy = MRI.getType(DstReg); 3633 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3634 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3635 3636 // Break into a common type 3637 SmallVector<Register, 16> Parts; 3638 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3639 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3640 3641 // Build the requested new merge, padding with undef. 3642 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3643 TargetOpcode::G_ANYEXT); 3644 3645 // Pack into the original result register. 3646 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3647 3648 MI.eraseFromParent(); 3649 return Legalized; 3650 } 3651 3652 LegalizerHelper::LegalizeResult 3653 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3654 unsigned TypeIdx, 3655 LLT NarrowVecTy) { 3656 Register DstReg = MI.getOperand(0).getReg(); 3657 Register SrcVec = MI.getOperand(1).getReg(); 3658 Register InsertVal; 3659 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3660 3661 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3662 if (IsInsert) 3663 InsertVal = MI.getOperand(2).getReg(); 3664 3665 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3666 3667 // TODO: Handle total scalarization case. 3668 if (!NarrowVecTy.isVector()) 3669 return UnableToLegalize; 3670 3671 LLT VecTy = MRI.getType(SrcVec); 3672 3673 // If the index is a constant, we can really break this down as you would 3674 // expect, and index into the target size pieces. 3675 int64_t IdxVal; 3676 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 3677 // Avoid out of bounds indexing the pieces. 3678 if (IdxVal >= VecTy.getNumElements()) { 3679 MIRBuilder.buildUndef(DstReg); 3680 MI.eraseFromParent(); 3681 return Legalized; 3682 } 3683 3684 SmallVector<Register, 8> VecParts; 3685 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3686 3687 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3688 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3689 TargetOpcode::G_ANYEXT); 3690 3691 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3692 3693 LLT IdxTy = MRI.getType(Idx); 3694 int64_t PartIdx = IdxVal / NewNumElts; 3695 auto NewIdx = 3696 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3697 3698 if (IsInsert) { 3699 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3700 3701 // Use the adjusted index to insert into one of the subvectors. 3702 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3703 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3704 VecParts[PartIdx] = InsertPart.getReg(0); 3705 3706 // Recombine the inserted subvector with the others to reform the result 3707 // vector. 3708 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3709 } else { 3710 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3711 } 3712 3713 MI.eraseFromParent(); 3714 return Legalized; 3715 } 3716 3717 // With a variable index, we can't perform the operation in a smaller type, so 3718 // we're forced to expand this. 3719 // 3720 // TODO: We could emit a chain of compare/select to figure out which piece to 3721 // index. 3722 return lowerExtractInsertVectorElt(MI); 3723 } 3724 3725 LegalizerHelper::LegalizeResult 3726 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3727 LLT NarrowTy) { 3728 // FIXME: Don't know how to handle secondary types yet. 3729 if (TypeIdx != 0) 3730 return UnableToLegalize; 3731 3732 MachineMemOperand *MMO = *MI.memoperands_begin(); 3733 3734 // This implementation doesn't work for atomics. Give up instead of doing 3735 // something invalid. 3736 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3737 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3738 return UnableToLegalize; 3739 3740 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3741 Register ValReg = MI.getOperand(0).getReg(); 3742 Register AddrReg = MI.getOperand(1).getReg(); 3743 LLT ValTy = MRI.getType(ValReg); 3744 3745 // FIXME: Do we need a distinct NarrowMemory legalize action? 3746 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3747 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3748 return UnableToLegalize; 3749 } 3750 3751 int NumParts = -1; 3752 int NumLeftover = -1; 3753 LLT LeftoverTy; 3754 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3755 if (IsLoad) { 3756 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3757 } else { 3758 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3759 NarrowLeftoverRegs)) { 3760 NumParts = NarrowRegs.size(); 3761 NumLeftover = NarrowLeftoverRegs.size(); 3762 } 3763 } 3764 3765 if (NumParts == -1) 3766 return UnableToLegalize; 3767 3768 LLT PtrTy = MRI.getType(AddrReg); 3769 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3770 3771 unsigned TotalSize = ValTy.getSizeInBits(); 3772 3773 // Split the load/store into PartTy sized pieces starting at Offset. If this 3774 // is a load, return the new registers in ValRegs. For a store, each elements 3775 // of ValRegs should be PartTy. Returns the next offset that needs to be 3776 // handled. 3777 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3778 unsigned Offset) -> unsigned { 3779 MachineFunction &MF = MIRBuilder.getMF(); 3780 unsigned PartSize = PartTy.getSizeInBits(); 3781 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3782 Offset += PartSize, ++Idx) { 3783 unsigned ByteSize = PartSize / 8; 3784 unsigned ByteOffset = Offset / 8; 3785 Register NewAddrReg; 3786 3787 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3788 3789 MachineMemOperand *NewMMO = 3790 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3791 3792 if (IsLoad) { 3793 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3794 ValRegs.push_back(Dst); 3795 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3796 } else { 3797 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3798 } 3799 } 3800 3801 return Offset; 3802 }; 3803 3804 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3805 3806 // Handle the rest of the register if this isn't an even type breakdown. 3807 if (LeftoverTy.isValid()) 3808 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3809 3810 if (IsLoad) { 3811 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3812 LeftoverTy, NarrowLeftoverRegs); 3813 } 3814 3815 MI.eraseFromParent(); 3816 return Legalized; 3817 } 3818 3819 LegalizerHelper::LegalizeResult 3820 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3821 LLT NarrowTy) { 3822 assert(TypeIdx == 0 && "only one type index expected"); 3823 3824 const unsigned Opc = MI.getOpcode(); 3825 const int NumOps = MI.getNumOperands() - 1; 3826 const Register DstReg = MI.getOperand(0).getReg(); 3827 const unsigned Flags = MI.getFlags(); 3828 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3829 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3830 3831 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3832 3833 // First of all check whether we are narrowing (changing the element type) 3834 // or reducing the vector elements 3835 const LLT DstTy = MRI.getType(DstReg); 3836 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3837 3838 SmallVector<Register, 8> ExtractedRegs[3]; 3839 SmallVector<Register, 8> Parts; 3840 3841 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3842 3843 // Break down all the sources into NarrowTy pieces we can operate on. This may 3844 // involve creating merges to a wider type, padded with undef. 3845 for (int I = 0; I != NumOps; ++I) { 3846 Register SrcReg = MI.getOperand(I + 1).getReg(); 3847 LLT SrcTy = MRI.getType(SrcReg); 3848 3849 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3850 // For fewerElements, this is a smaller vector with the same element type. 3851 LLT OpNarrowTy; 3852 if (IsNarrow) { 3853 OpNarrowTy = NarrowScalarTy; 3854 3855 // In case of narrowing, we need to cast vectors to scalars for this to 3856 // work properly 3857 // FIXME: Can we do without the bitcast here if we're narrowing? 3858 if (SrcTy.isVector()) { 3859 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3860 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3861 } 3862 } else { 3863 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3864 } 3865 3866 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3867 3868 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3869 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3870 TargetOpcode::G_ANYEXT); 3871 } 3872 3873 SmallVector<Register, 8> ResultRegs; 3874 3875 // Input operands for each sub-instruction. 3876 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3877 3878 int NumParts = ExtractedRegs[0].size(); 3879 const unsigned DstSize = DstTy.getSizeInBits(); 3880 const LLT DstScalarTy = LLT::scalar(DstSize); 3881 3882 // Narrowing needs to use scalar types 3883 LLT DstLCMTy, NarrowDstTy; 3884 if (IsNarrow) { 3885 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3886 NarrowDstTy = NarrowScalarTy; 3887 } else { 3888 DstLCMTy = getLCMType(DstTy, NarrowTy); 3889 NarrowDstTy = NarrowTy; 3890 } 3891 3892 // We widened the source registers to satisfy merge/unmerge size 3893 // constraints. We'll have some extra fully undef parts. 3894 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3895 3896 for (int I = 0; I != NumRealParts; ++I) { 3897 // Emit this instruction on each of the split pieces. 3898 for (int J = 0; J != NumOps; ++J) 3899 InputRegs[J] = ExtractedRegs[J][I]; 3900 3901 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3902 ResultRegs.push_back(Inst.getReg(0)); 3903 } 3904 3905 // Fill out the widened result with undef instead of creating instructions 3906 // with undef inputs. 3907 int NumUndefParts = NumParts - NumRealParts; 3908 if (NumUndefParts != 0) 3909 ResultRegs.append(NumUndefParts, 3910 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3911 3912 // Extract the possibly padded result. Use a scratch register if we need to do 3913 // a final bitcast, otherwise use the original result register. 3914 Register MergeDstReg; 3915 if (IsNarrow && DstTy.isVector()) 3916 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3917 else 3918 MergeDstReg = DstReg; 3919 3920 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3921 3922 // Recast to vector if we narrowed a vector 3923 if (IsNarrow && DstTy.isVector()) 3924 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3925 3926 MI.eraseFromParent(); 3927 return Legalized; 3928 } 3929 3930 LegalizerHelper::LegalizeResult 3931 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3932 LLT NarrowTy) { 3933 Register DstReg = MI.getOperand(0).getReg(); 3934 Register SrcReg = MI.getOperand(1).getReg(); 3935 int64_t Imm = MI.getOperand(2).getImm(); 3936 3937 LLT DstTy = MRI.getType(DstReg); 3938 3939 SmallVector<Register, 8> Parts; 3940 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3941 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3942 3943 for (Register &R : Parts) 3944 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3945 3946 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3947 3948 MI.eraseFromParent(); 3949 return Legalized; 3950 } 3951 3952 LegalizerHelper::LegalizeResult 3953 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3954 LLT NarrowTy) { 3955 using namespace TargetOpcode; 3956 3957 switch (MI.getOpcode()) { 3958 case G_IMPLICIT_DEF: 3959 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3960 case G_TRUNC: 3961 case G_AND: 3962 case G_OR: 3963 case G_XOR: 3964 case G_ADD: 3965 case G_SUB: 3966 case G_MUL: 3967 case G_PTR_ADD: 3968 case G_SMULH: 3969 case G_UMULH: 3970 case G_FADD: 3971 case G_FMUL: 3972 case G_FSUB: 3973 case G_FNEG: 3974 case G_FABS: 3975 case G_FCANONICALIZE: 3976 case G_FDIV: 3977 case G_FREM: 3978 case G_FMA: 3979 case G_FMAD: 3980 case G_FPOW: 3981 case G_FEXP: 3982 case G_FEXP2: 3983 case G_FLOG: 3984 case G_FLOG2: 3985 case G_FLOG10: 3986 case G_FNEARBYINT: 3987 case G_FCEIL: 3988 case G_FFLOOR: 3989 case G_FRINT: 3990 case G_INTRINSIC_ROUND: 3991 case G_INTRINSIC_ROUNDEVEN: 3992 case G_INTRINSIC_TRUNC: 3993 case G_FCOS: 3994 case G_FSIN: 3995 case G_FSQRT: 3996 case G_BSWAP: 3997 case G_BITREVERSE: 3998 case G_SDIV: 3999 case G_UDIV: 4000 case G_SREM: 4001 case G_UREM: 4002 case G_SMIN: 4003 case G_SMAX: 4004 case G_UMIN: 4005 case G_UMAX: 4006 case G_FMINNUM: 4007 case G_FMAXNUM: 4008 case G_FMINNUM_IEEE: 4009 case G_FMAXNUM_IEEE: 4010 case G_FMINIMUM: 4011 case G_FMAXIMUM: 4012 case G_FSHL: 4013 case G_FSHR: 4014 case G_FREEZE: 4015 case G_SADDSAT: 4016 case G_SSUBSAT: 4017 case G_UADDSAT: 4018 case G_USUBSAT: 4019 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4020 case G_SHL: 4021 case G_LSHR: 4022 case G_ASHR: 4023 case G_SSHLSAT: 4024 case G_USHLSAT: 4025 case G_CTLZ: 4026 case G_CTLZ_ZERO_UNDEF: 4027 case G_CTTZ: 4028 case G_CTTZ_ZERO_UNDEF: 4029 case G_CTPOP: 4030 case G_FCOPYSIGN: 4031 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4032 case G_ZEXT: 4033 case G_SEXT: 4034 case G_ANYEXT: 4035 case G_FPEXT: 4036 case G_FPTRUNC: 4037 case G_SITOFP: 4038 case G_UITOFP: 4039 case G_FPTOSI: 4040 case G_FPTOUI: 4041 case G_INTTOPTR: 4042 case G_PTRTOINT: 4043 case G_ADDRSPACE_CAST: 4044 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4045 case G_ICMP: 4046 case G_FCMP: 4047 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4048 case G_SELECT: 4049 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4050 case G_PHI: 4051 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4052 case G_UNMERGE_VALUES: 4053 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4054 case G_BUILD_VECTOR: 4055 assert(TypeIdx == 0 && "not a vector type index"); 4056 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4057 case G_CONCAT_VECTORS: 4058 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4059 return UnableToLegalize; 4060 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4061 case G_EXTRACT_VECTOR_ELT: 4062 case G_INSERT_VECTOR_ELT: 4063 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4064 case G_LOAD: 4065 case G_STORE: 4066 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4067 case G_SEXT_INREG: 4068 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4069 default: 4070 return UnableToLegalize; 4071 } 4072 } 4073 4074 LegalizerHelper::LegalizeResult 4075 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4076 const LLT HalfTy, const LLT AmtTy) { 4077 4078 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4079 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4080 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4081 4082 if (Amt.isNullValue()) { 4083 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4084 MI.eraseFromParent(); 4085 return Legalized; 4086 } 4087 4088 LLT NVT = HalfTy; 4089 unsigned NVTBits = HalfTy.getSizeInBits(); 4090 unsigned VTBits = 2 * NVTBits; 4091 4092 SrcOp Lo(Register(0)), Hi(Register(0)); 4093 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4094 if (Amt.ugt(VTBits)) { 4095 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4096 } else if (Amt.ugt(NVTBits)) { 4097 Lo = MIRBuilder.buildConstant(NVT, 0); 4098 Hi = MIRBuilder.buildShl(NVT, InL, 4099 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4100 } else if (Amt == NVTBits) { 4101 Lo = MIRBuilder.buildConstant(NVT, 0); 4102 Hi = InL; 4103 } else { 4104 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4105 auto OrLHS = 4106 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4107 auto OrRHS = MIRBuilder.buildLShr( 4108 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4109 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4110 } 4111 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4112 if (Amt.ugt(VTBits)) { 4113 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4114 } else if (Amt.ugt(NVTBits)) { 4115 Lo = MIRBuilder.buildLShr(NVT, InH, 4116 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4117 Hi = MIRBuilder.buildConstant(NVT, 0); 4118 } else if (Amt == NVTBits) { 4119 Lo = InH; 4120 Hi = MIRBuilder.buildConstant(NVT, 0); 4121 } else { 4122 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4123 4124 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4125 auto OrRHS = MIRBuilder.buildShl( 4126 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4127 4128 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4129 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4130 } 4131 } else { 4132 if (Amt.ugt(VTBits)) { 4133 Hi = Lo = MIRBuilder.buildAShr( 4134 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4135 } else if (Amt.ugt(NVTBits)) { 4136 Lo = MIRBuilder.buildAShr(NVT, InH, 4137 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4138 Hi = MIRBuilder.buildAShr(NVT, InH, 4139 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4140 } else if (Amt == NVTBits) { 4141 Lo = InH; 4142 Hi = MIRBuilder.buildAShr(NVT, InH, 4143 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4144 } else { 4145 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4146 4147 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4148 auto OrRHS = MIRBuilder.buildShl( 4149 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4150 4151 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4152 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4153 } 4154 } 4155 4156 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4157 MI.eraseFromParent(); 4158 4159 return Legalized; 4160 } 4161 4162 // TODO: Optimize if constant shift amount. 4163 LegalizerHelper::LegalizeResult 4164 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4165 LLT RequestedTy) { 4166 if (TypeIdx == 1) { 4167 Observer.changingInstr(MI); 4168 narrowScalarSrc(MI, RequestedTy, 2); 4169 Observer.changedInstr(MI); 4170 return Legalized; 4171 } 4172 4173 Register DstReg = MI.getOperand(0).getReg(); 4174 LLT DstTy = MRI.getType(DstReg); 4175 if (DstTy.isVector()) 4176 return UnableToLegalize; 4177 4178 Register Amt = MI.getOperand(2).getReg(); 4179 LLT ShiftAmtTy = MRI.getType(Amt); 4180 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4181 if (DstEltSize % 2 != 0) 4182 return UnableToLegalize; 4183 4184 // Ignore the input type. We can only go to exactly half the size of the 4185 // input. If that isn't small enough, the resulting pieces will be further 4186 // legalized. 4187 const unsigned NewBitSize = DstEltSize / 2; 4188 const LLT HalfTy = LLT::scalar(NewBitSize); 4189 const LLT CondTy = LLT::scalar(1); 4190 4191 if (const MachineInstr *KShiftAmt = 4192 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4193 return narrowScalarShiftByConstant( 4194 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4195 } 4196 4197 // TODO: Expand with known bits. 4198 4199 // Handle the fully general expansion by an unknown amount. 4200 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4201 4202 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4203 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4204 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4205 4206 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4207 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4208 4209 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4210 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4211 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4212 4213 Register ResultRegs[2]; 4214 switch (MI.getOpcode()) { 4215 case TargetOpcode::G_SHL: { 4216 // Short: ShAmt < NewBitSize 4217 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4218 4219 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4220 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4221 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4222 4223 // Long: ShAmt >= NewBitSize 4224 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4225 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4226 4227 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4228 auto Hi = MIRBuilder.buildSelect( 4229 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4230 4231 ResultRegs[0] = Lo.getReg(0); 4232 ResultRegs[1] = Hi.getReg(0); 4233 break; 4234 } 4235 case TargetOpcode::G_LSHR: 4236 case TargetOpcode::G_ASHR: { 4237 // Short: ShAmt < NewBitSize 4238 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4239 4240 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4241 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4242 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4243 4244 // Long: ShAmt >= NewBitSize 4245 MachineInstrBuilder HiL; 4246 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4247 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4248 } else { 4249 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4250 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4251 } 4252 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4253 {InH, AmtExcess}); // Lo from Hi part. 4254 4255 auto Lo = MIRBuilder.buildSelect( 4256 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4257 4258 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4259 4260 ResultRegs[0] = Lo.getReg(0); 4261 ResultRegs[1] = Hi.getReg(0); 4262 break; 4263 } 4264 default: 4265 llvm_unreachable("not a shift"); 4266 } 4267 4268 MIRBuilder.buildMerge(DstReg, ResultRegs); 4269 MI.eraseFromParent(); 4270 return Legalized; 4271 } 4272 4273 LegalizerHelper::LegalizeResult 4274 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4275 LLT MoreTy) { 4276 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4277 4278 Observer.changingInstr(MI); 4279 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4280 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4281 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4282 moreElementsVectorSrc(MI, MoreTy, I); 4283 } 4284 4285 MachineBasicBlock &MBB = *MI.getParent(); 4286 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4287 moreElementsVectorDst(MI, MoreTy, 0); 4288 Observer.changedInstr(MI); 4289 return Legalized; 4290 } 4291 4292 LegalizerHelper::LegalizeResult 4293 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4294 LLT MoreTy) { 4295 unsigned Opc = MI.getOpcode(); 4296 switch (Opc) { 4297 case TargetOpcode::G_IMPLICIT_DEF: 4298 case TargetOpcode::G_LOAD: { 4299 if (TypeIdx != 0) 4300 return UnableToLegalize; 4301 Observer.changingInstr(MI); 4302 moreElementsVectorDst(MI, MoreTy, 0); 4303 Observer.changedInstr(MI); 4304 return Legalized; 4305 } 4306 case TargetOpcode::G_STORE: 4307 if (TypeIdx != 0) 4308 return UnableToLegalize; 4309 Observer.changingInstr(MI); 4310 moreElementsVectorSrc(MI, MoreTy, 0); 4311 Observer.changedInstr(MI); 4312 return Legalized; 4313 case TargetOpcode::G_AND: 4314 case TargetOpcode::G_OR: 4315 case TargetOpcode::G_XOR: 4316 case TargetOpcode::G_SMIN: 4317 case TargetOpcode::G_SMAX: 4318 case TargetOpcode::G_UMIN: 4319 case TargetOpcode::G_UMAX: 4320 case TargetOpcode::G_FMINNUM: 4321 case TargetOpcode::G_FMAXNUM: 4322 case TargetOpcode::G_FMINNUM_IEEE: 4323 case TargetOpcode::G_FMAXNUM_IEEE: 4324 case TargetOpcode::G_FMINIMUM: 4325 case TargetOpcode::G_FMAXIMUM: { 4326 Observer.changingInstr(MI); 4327 moreElementsVectorSrc(MI, MoreTy, 1); 4328 moreElementsVectorSrc(MI, MoreTy, 2); 4329 moreElementsVectorDst(MI, MoreTy, 0); 4330 Observer.changedInstr(MI); 4331 return Legalized; 4332 } 4333 case TargetOpcode::G_EXTRACT: 4334 if (TypeIdx != 1) 4335 return UnableToLegalize; 4336 Observer.changingInstr(MI); 4337 moreElementsVectorSrc(MI, MoreTy, 1); 4338 Observer.changedInstr(MI); 4339 return Legalized; 4340 case TargetOpcode::G_INSERT: 4341 case TargetOpcode::G_FREEZE: 4342 if (TypeIdx != 0) 4343 return UnableToLegalize; 4344 Observer.changingInstr(MI); 4345 moreElementsVectorSrc(MI, MoreTy, 1); 4346 moreElementsVectorDst(MI, MoreTy, 0); 4347 Observer.changedInstr(MI); 4348 return Legalized; 4349 case TargetOpcode::G_SELECT: 4350 if (TypeIdx != 0) 4351 return UnableToLegalize; 4352 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4353 return UnableToLegalize; 4354 4355 Observer.changingInstr(MI); 4356 moreElementsVectorSrc(MI, MoreTy, 2); 4357 moreElementsVectorSrc(MI, MoreTy, 3); 4358 moreElementsVectorDst(MI, MoreTy, 0); 4359 Observer.changedInstr(MI); 4360 return Legalized; 4361 case TargetOpcode::G_UNMERGE_VALUES: { 4362 if (TypeIdx != 1) 4363 return UnableToLegalize; 4364 4365 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4366 int NumDst = MI.getNumOperands() - 1; 4367 moreElementsVectorSrc(MI, MoreTy, NumDst); 4368 4369 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4370 for (int I = 0; I != NumDst; ++I) 4371 MIB.addDef(MI.getOperand(I).getReg()); 4372 4373 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4374 for (int I = NumDst; I != NewNumDst; ++I) 4375 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4376 4377 MIB.addUse(MI.getOperand(NumDst).getReg()); 4378 MI.eraseFromParent(); 4379 return Legalized; 4380 } 4381 case TargetOpcode::G_PHI: 4382 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4383 default: 4384 return UnableToLegalize; 4385 } 4386 } 4387 4388 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4389 ArrayRef<Register> Src1Regs, 4390 ArrayRef<Register> Src2Regs, 4391 LLT NarrowTy) { 4392 MachineIRBuilder &B = MIRBuilder; 4393 unsigned SrcParts = Src1Regs.size(); 4394 unsigned DstParts = DstRegs.size(); 4395 4396 unsigned DstIdx = 0; // Low bits of the result. 4397 Register FactorSum = 4398 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4399 DstRegs[DstIdx] = FactorSum; 4400 4401 unsigned CarrySumPrevDstIdx; 4402 SmallVector<Register, 4> Factors; 4403 4404 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4405 // Collect low parts of muls for DstIdx. 4406 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4407 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4408 MachineInstrBuilder Mul = 4409 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4410 Factors.push_back(Mul.getReg(0)); 4411 } 4412 // Collect high parts of muls from previous DstIdx. 4413 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4414 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4415 MachineInstrBuilder Umulh = 4416 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4417 Factors.push_back(Umulh.getReg(0)); 4418 } 4419 // Add CarrySum from additions calculated for previous DstIdx. 4420 if (DstIdx != 1) { 4421 Factors.push_back(CarrySumPrevDstIdx); 4422 } 4423 4424 Register CarrySum; 4425 // Add all factors and accumulate all carries into CarrySum. 4426 if (DstIdx != DstParts - 1) { 4427 MachineInstrBuilder Uaddo = 4428 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4429 FactorSum = Uaddo.getReg(0); 4430 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4431 for (unsigned i = 2; i < Factors.size(); ++i) { 4432 MachineInstrBuilder Uaddo = 4433 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4434 FactorSum = Uaddo.getReg(0); 4435 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4436 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4437 } 4438 } else { 4439 // Since value for the next index is not calculated, neither is CarrySum. 4440 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4441 for (unsigned i = 2; i < Factors.size(); ++i) 4442 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4443 } 4444 4445 CarrySumPrevDstIdx = CarrySum; 4446 DstRegs[DstIdx] = FactorSum; 4447 Factors.clear(); 4448 } 4449 } 4450 4451 LegalizerHelper::LegalizeResult 4452 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4453 Register DstReg = MI.getOperand(0).getReg(); 4454 Register Src1 = MI.getOperand(1).getReg(); 4455 Register Src2 = MI.getOperand(2).getReg(); 4456 4457 LLT Ty = MRI.getType(DstReg); 4458 if (Ty.isVector()) 4459 return UnableToLegalize; 4460 4461 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4462 unsigned DstSize = Ty.getSizeInBits(); 4463 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4464 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4465 return UnableToLegalize; 4466 4467 unsigned NumDstParts = DstSize / NarrowSize; 4468 unsigned NumSrcParts = SrcSize / NarrowSize; 4469 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4470 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4471 4472 SmallVector<Register, 2> Src1Parts, Src2Parts; 4473 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4474 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4475 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4476 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4477 4478 // Take only high half of registers if this is high mul. 4479 ArrayRef<Register> DstRegs( 4480 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4481 MIRBuilder.buildMerge(DstReg, DstRegs); 4482 MI.eraseFromParent(); 4483 return Legalized; 4484 } 4485 4486 LegalizerHelper::LegalizeResult 4487 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 4488 LLT NarrowTy) { 4489 if (TypeIdx != 0) 4490 return UnableToLegalize; 4491 4492 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 4493 4494 Register Src = MI.getOperand(1).getReg(); 4495 LLT SrcTy = MRI.getType(Src); 4496 4497 // If all finite floats fit into the narrowed integer type, we can just swap 4498 // out the result type. This is practically only useful for conversions from 4499 // half to at least 16-bits, so just handle the one case. 4500 if (SrcTy.getScalarType() != LLT::scalar(16) || 4501 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17 : 16)) 4502 return UnableToLegalize; 4503 4504 Observer.changingInstr(MI); 4505 narrowScalarDst(MI, NarrowTy, 0, 4506 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 4507 Observer.changedInstr(MI); 4508 return Legalized; 4509 } 4510 4511 LegalizerHelper::LegalizeResult 4512 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4513 LLT NarrowTy) { 4514 if (TypeIdx != 1) 4515 return UnableToLegalize; 4516 4517 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4518 4519 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4520 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4521 // NarrowSize. 4522 if (SizeOp1 % NarrowSize != 0) 4523 return UnableToLegalize; 4524 int NumParts = SizeOp1 / NarrowSize; 4525 4526 SmallVector<Register, 2> SrcRegs, DstRegs; 4527 SmallVector<uint64_t, 2> Indexes; 4528 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4529 4530 Register OpReg = MI.getOperand(0).getReg(); 4531 uint64_t OpStart = MI.getOperand(2).getImm(); 4532 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4533 for (int i = 0; i < NumParts; ++i) { 4534 unsigned SrcStart = i * NarrowSize; 4535 4536 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4537 // No part of the extract uses this subregister, ignore it. 4538 continue; 4539 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4540 // The entire subregister is extracted, forward the value. 4541 DstRegs.push_back(SrcRegs[i]); 4542 continue; 4543 } 4544 4545 // OpSegStart is where this destination segment would start in OpReg if it 4546 // extended infinitely in both directions. 4547 int64_t ExtractOffset; 4548 uint64_t SegSize; 4549 if (OpStart < SrcStart) { 4550 ExtractOffset = 0; 4551 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4552 } else { 4553 ExtractOffset = OpStart - SrcStart; 4554 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4555 } 4556 4557 Register SegReg = SrcRegs[i]; 4558 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4559 // A genuine extract is needed. 4560 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4561 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4562 } 4563 4564 DstRegs.push_back(SegReg); 4565 } 4566 4567 Register DstReg = MI.getOperand(0).getReg(); 4568 if (MRI.getType(DstReg).isVector()) 4569 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4570 else if (DstRegs.size() > 1) 4571 MIRBuilder.buildMerge(DstReg, DstRegs); 4572 else 4573 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4574 MI.eraseFromParent(); 4575 return Legalized; 4576 } 4577 4578 LegalizerHelper::LegalizeResult 4579 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4580 LLT NarrowTy) { 4581 // FIXME: Don't know how to handle secondary types yet. 4582 if (TypeIdx != 0) 4583 return UnableToLegalize; 4584 4585 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4586 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4587 4588 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4589 // NarrowSize. 4590 if (SizeOp0 % NarrowSize != 0) 4591 return UnableToLegalize; 4592 4593 int NumParts = SizeOp0 / NarrowSize; 4594 4595 SmallVector<Register, 2> SrcRegs, DstRegs; 4596 SmallVector<uint64_t, 2> Indexes; 4597 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4598 4599 Register OpReg = MI.getOperand(2).getReg(); 4600 uint64_t OpStart = MI.getOperand(3).getImm(); 4601 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4602 for (int i = 0; i < NumParts; ++i) { 4603 unsigned DstStart = i * NarrowSize; 4604 4605 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4606 // No part of the insert affects this subregister, forward the original. 4607 DstRegs.push_back(SrcRegs[i]); 4608 continue; 4609 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4610 // The entire subregister is defined by this insert, forward the new 4611 // value. 4612 DstRegs.push_back(OpReg); 4613 continue; 4614 } 4615 4616 // OpSegStart is where this destination segment would start in OpReg if it 4617 // extended infinitely in both directions. 4618 int64_t ExtractOffset, InsertOffset; 4619 uint64_t SegSize; 4620 if (OpStart < DstStart) { 4621 InsertOffset = 0; 4622 ExtractOffset = DstStart - OpStart; 4623 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4624 } else { 4625 InsertOffset = OpStart - DstStart; 4626 ExtractOffset = 0; 4627 SegSize = 4628 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4629 } 4630 4631 Register SegReg = OpReg; 4632 if (ExtractOffset != 0 || SegSize != OpSize) { 4633 // A genuine extract is needed. 4634 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4635 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4636 } 4637 4638 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4639 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4640 DstRegs.push_back(DstReg); 4641 } 4642 4643 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4644 Register DstReg = MI.getOperand(0).getReg(); 4645 if(MRI.getType(DstReg).isVector()) 4646 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4647 else 4648 MIRBuilder.buildMerge(DstReg, DstRegs); 4649 MI.eraseFromParent(); 4650 return Legalized; 4651 } 4652 4653 LegalizerHelper::LegalizeResult 4654 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4655 LLT NarrowTy) { 4656 Register DstReg = MI.getOperand(0).getReg(); 4657 LLT DstTy = MRI.getType(DstReg); 4658 4659 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4660 4661 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4662 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4663 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4664 LLT LeftoverTy; 4665 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4666 Src0Regs, Src0LeftoverRegs)) 4667 return UnableToLegalize; 4668 4669 LLT Unused; 4670 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4671 Src1Regs, Src1LeftoverRegs)) 4672 llvm_unreachable("inconsistent extractParts result"); 4673 4674 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4675 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4676 {Src0Regs[I], Src1Regs[I]}); 4677 DstRegs.push_back(Inst.getReg(0)); 4678 } 4679 4680 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4681 auto Inst = MIRBuilder.buildInstr( 4682 MI.getOpcode(), 4683 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4684 DstLeftoverRegs.push_back(Inst.getReg(0)); 4685 } 4686 4687 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4688 LeftoverTy, DstLeftoverRegs); 4689 4690 MI.eraseFromParent(); 4691 return Legalized; 4692 } 4693 4694 LegalizerHelper::LegalizeResult 4695 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4696 LLT NarrowTy) { 4697 if (TypeIdx != 0) 4698 return UnableToLegalize; 4699 4700 Register DstReg = MI.getOperand(0).getReg(); 4701 Register SrcReg = MI.getOperand(1).getReg(); 4702 4703 LLT DstTy = MRI.getType(DstReg); 4704 if (DstTy.isVector()) 4705 return UnableToLegalize; 4706 4707 SmallVector<Register, 8> Parts; 4708 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4709 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4710 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4711 4712 MI.eraseFromParent(); 4713 return Legalized; 4714 } 4715 4716 LegalizerHelper::LegalizeResult 4717 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4718 LLT NarrowTy) { 4719 if (TypeIdx != 0) 4720 return UnableToLegalize; 4721 4722 Register CondReg = MI.getOperand(1).getReg(); 4723 LLT CondTy = MRI.getType(CondReg); 4724 if (CondTy.isVector()) // TODO: Handle vselect 4725 return UnableToLegalize; 4726 4727 Register DstReg = MI.getOperand(0).getReg(); 4728 LLT DstTy = MRI.getType(DstReg); 4729 4730 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4731 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4732 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4733 LLT LeftoverTy; 4734 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4735 Src1Regs, Src1LeftoverRegs)) 4736 return UnableToLegalize; 4737 4738 LLT Unused; 4739 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4740 Src2Regs, Src2LeftoverRegs)) 4741 llvm_unreachable("inconsistent extractParts result"); 4742 4743 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4744 auto Select = MIRBuilder.buildSelect(NarrowTy, 4745 CondReg, Src1Regs[I], Src2Regs[I]); 4746 DstRegs.push_back(Select.getReg(0)); 4747 } 4748 4749 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4750 auto Select = MIRBuilder.buildSelect( 4751 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4752 DstLeftoverRegs.push_back(Select.getReg(0)); 4753 } 4754 4755 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4756 LeftoverTy, DstLeftoverRegs); 4757 4758 MI.eraseFromParent(); 4759 return Legalized; 4760 } 4761 4762 LegalizerHelper::LegalizeResult 4763 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4764 LLT NarrowTy) { 4765 if (TypeIdx != 1) 4766 return UnableToLegalize; 4767 4768 Register DstReg = MI.getOperand(0).getReg(); 4769 Register SrcReg = MI.getOperand(1).getReg(); 4770 LLT DstTy = MRI.getType(DstReg); 4771 LLT SrcTy = MRI.getType(SrcReg); 4772 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4773 4774 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4775 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4776 4777 MachineIRBuilder &B = MIRBuilder; 4778 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4779 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4780 auto C_0 = B.buildConstant(NarrowTy, 0); 4781 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4782 UnmergeSrc.getReg(1), C_0); 4783 auto LoCTLZ = IsUndef ? 4784 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4785 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4786 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4787 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4788 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4789 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4790 4791 MI.eraseFromParent(); 4792 return Legalized; 4793 } 4794 4795 return UnableToLegalize; 4796 } 4797 4798 LegalizerHelper::LegalizeResult 4799 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4800 LLT NarrowTy) { 4801 if (TypeIdx != 1) 4802 return UnableToLegalize; 4803 4804 Register DstReg = MI.getOperand(0).getReg(); 4805 Register SrcReg = MI.getOperand(1).getReg(); 4806 LLT DstTy = MRI.getType(DstReg); 4807 LLT SrcTy = MRI.getType(SrcReg); 4808 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4809 4810 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4811 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4812 4813 MachineIRBuilder &B = MIRBuilder; 4814 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4815 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4816 auto C_0 = B.buildConstant(NarrowTy, 0); 4817 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4818 UnmergeSrc.getReg(0), C_0); 4819 auto HiCTTZ = IsUndef ? 4820 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4821 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4822 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4823 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4824 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4825 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4826 4827 MI.eraseFromParent(); 4828 return Legalized; 4829 } 4830 4831 return UnableToLegalize; 4832 } 4833 4834 LegalizerHelper::LegalizeResult 4835 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4836 LLT NarrowTy) { 4837 if (TypeIdx != 1) 4838 return UnableToLegalize; 4839 4840 Register DstReg = MI.getOperand(0).getReg(); 4841 LLT DstTy = MRI.getType(DstReg); 4842 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4843 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4844 4845 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4846 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4847 4848 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4849 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4850 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4851 4852 MI.eraseFromParent(); 4853 return Legalized; 4854 } 4855 4856 return UnableToLegalize; 4857 } 4858 4859 LegalizerHelper::LegalizeResult 4860 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 4861 unsigned Opc = MI.getOpcode(); 4862 const auto &TII = MIRBuilder.getTII(); 4863 auto isSupported = [this](const LegalityQuery &Q) { 4864 auto QAction = LI.getAction(Q).Action; 4865 return QAction == Legal || QAction == Libcall || QAction == Custom; 4866 }; 4867 switch (Opc) { 4868 default: 4869 return UnableToLegalize; 4870 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4871 // This trivially expands to CTLZ. 4872 Observer.changingInstr(MI); 4873 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4874 Observer.changedInstr(MI); 4875 return Legalized; 4876 } 4877 case TargetOpcode::G_CTLZ: { 4878 Register DstReg = MI.getOperand(0).getReg(); 4879 Register SrcReg = MI.getOperand(1).getReg(); 4880 LLT DstTy = MRI.getType(DstReg); 4881 LLT SrcTy = MRI.getType(SrcReg); 4882 unsigned Len = SrcTy.getSizeInBits(); 4883 4884 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4885 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4886 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4887 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4888 auto ICmp = MIRBuilder.buildICmp( 4889 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4890 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4891 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4892 MI.eraseFromParent(); 4893 return Legalized; 4894 } 4895 // for now, we do this: 4896 // NewLen = NextPowerOf2(Len); 4897 // x = x | (x >> 1); 4898 // x = x | (x >> 2); 4899 // ... 4900 // x = x | (x >>16); 4901 // x = x | (x >>32); // for 64-bit input 4902 // Upto NewLen/2 4903 // return Len - popcount(x); 4904 // 4905 // Ref: "Hacker's Delight" by Henry Warren 4906 Register Op = SrcReg; 4907 unsigned NewLen = PowerOf2Ceil(Len); 4908 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4909 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4910 auto MIBOp = MIRBuilder.buildOr( 4911 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4912 Op = MIBOp.getReg(0); 4913 } 4914 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4915 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4916 MIBPop); 4917 MI.eraseFromParent(); 4918 return Legalized; 4919 } 4920 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4921 // This trivially expands to CTTZ. 4922 Observer.changingInstr(MI); 4923 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4924 Observer.changedInstr(MI); 4925 return Legalized; 4926 } 4927 case TargetOpcode::G_CTTZ: { 4928 Register DstReg = MI.getOperand(0).getReg(); 4929 Register SrcReg = MI.getOperand(1).getReg(); 4930 LLT DstTy = MRI.getType(DstReg); 4931 LLT SrcTy = MRI.getType(SrcReg); 4932 4933 unsigned Len = SrcTy.getSizeInBits(); 4934 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4935 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4936 // zero. 4937 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4938 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4939 auto ICmp = MIRBuilder.buildICmp( 4940 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4941 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4942 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4943 MI.eraseFromParent(); 4944 return Legalized; 4945 } 4946 // for now, we use: { return popcount(~x & (x - 1)); } 4947 // unless the target has ctlz but not ctpop, in which case we use: 4948 // { return 32 - nlz(~x & (x-1)); } 4949 // Ref: "Hacker's Delight" by Henry Warren 4950 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 4951 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 4952 auto MIBTmp = MIRBuilder.buildAnd( 4953 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 4954 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 4955 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 4956 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 4957 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4958 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 4959 MI.eraseFromParent(); 4960 return Legalized; 4961 } 4962 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4963 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4964 return Legalized; 4965 } 4966 case TargetOpcode::G_CTPOP: { 4967 Register SrcReg = MI.getOperand(1).getReg(); 4968 LLT Ty = MRI.getType(SrcReg); 4969 unsigned Size = Ty.getSizeInBits(); 4970 MachineIRBuilder &B = MIRBuilder; 4971 4972 // Count set bits in blocks of 2 bits. Default approach would be 4973 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4974 // We use following formula instead: 4975 // B2Count = val - { (val >> 1) & 0x55555555 } 4976 // since it gives same result in blocks of 2 with one instruction less. 4977 auto C_1 = B.buildConstant(Ty, 1); 4978 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 4979 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4980 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4981 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4982 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 4983 4984 // In order to get count in blocks of 4 add values from adjacent block of 2. 4985 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4986 auto C_2 = B.buildConstant(Ty, 2); 4987 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4988 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4989 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4990 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4991 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4992 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4993 4994 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4995 // addition since count value sits in range {0,...,8} and 4 bits are enough 4996 // to hold such binary values. After addition high 4 bits still hold count 4997 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4998 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4999 auto C_4 = B.buildConstant(Ty, 4); 5000 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5001 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5002 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5003 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5004 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5005 5006 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5007 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5008 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5009 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5010 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5011 5012 // Shift count result from 8 high bits to low bits. 5013 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5014 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5015 5016 MI.eraseFromParent(); 5017 return Legalized; 5018 } 5019 } 5020 } 5021 5022 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5023 // representation. 5024 LegalizerHelper::LegalizeResult 5025 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5026 Register Dst = MI.getOperand(0).getReg(); 5027 Register Src = MI.getOperand(1).getReg(); 5028 const LLT S64 = LLT::scalar(64); 5029 const LLT S32 = LLT::scalar(32); 5030 const LLT S1 = LLT::scalar(1); 5031 5032 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5033 5034 // unsigned cul2f(ulong u) { 5035 // uint lz = clz(u); 5036 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5037 // u = (u << lz) & 0x7fffffffffffffffUL; 5038 // ulong t = u & 0xffffffffffUL; 5039 // uint v = (e << 23) | (uint)(u >> 40); 5040 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5041 // return as_float(v + r); 5042 // } 5043 5044 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5045 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5046 5047 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5048 5049 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5050 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5051 5052 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5053 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5054 5055 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5056 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5057 5058 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5059 5060 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5061 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5062 5063 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5064 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5065 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5066 5067 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5068 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5069 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5070 auto One = MIRBuilder.buildConstant(S32, 1); 5071 5072 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5073 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5074 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5075 MIRBuilder.buildAdd(Dst, V, R); 5076 5077 MI.eraseFromParent(); 5078 return Legalized; 5079 } 5080 5081 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5082 Register Dst = MI.getOperand(0).getReg(); 5083 Register Src = MI.getOperand(1).getReg(); 5084 LLT DstTy = MRI.getType(Dst); 5085 LLT SrcTy = MRI.getType(Src); 5086 5087 if (SrcTy == LLT::scalar(1)) { 5088 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5089 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5090 MIRBuilder.buildSelect(Dst, Src, True, False); 5091 MI.eraseFromParent(); 5092 return Legalized; 5093 } 5094 5095 if (SrcTy != LLT::scalar(64)) 5096 return UnableToLegalize; 5097 5098 if (DstTy == LLT::scalar(32)) { 5099 // TODO: SelectionDAG has several alternative expansions to port which may 5100 // be more reasonble depending on the available instructions. If a target 5101 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5102 // intermediate type, this is probably worse. 5103 return lowerU64ToF32BitOps(MI); 5104 } 5105 5106 return UnableToLegalize; 5107 } 5108 5109 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5110 Register Dst = MI.getOperand(0).getReg(); 5111 Register Src = MI.getOperand(1).getReg(); 5112 LLT DstTy = MRI.getType(Dst); 5113 LLT SrcTy = MRI.getType(Src); 5114 5115 const LLT S64 = LLT::scalar(64); 5116 const LLT S32 = LLT::scalar(32); 5117 const LLT S1 = LLT::scalar(1); 5118 5119 if (SrcTy == S1) { 5120 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5121 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5122 MIRBuilder.buildSelect(Dst, Src, True, False); 5123 MI.eraseFromParent(); 5124 return Legalized; 5125 } 5126 5127 if (SrcTy != S64) 5128 return UnableToLegalize; 5129 5130 if (DstTy == S32) { 5131 // signed cl2f(long l) { 5132 // long s = l >> 63; 5133 // float r = cul2f((l + s) ^ s); 5134 // return s ? -r : r; 5135 // } 5136 Register L = Src; 5137 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5138 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5139 5140 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5141 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5142 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5143 5144 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5145 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5146 MIRBuilder.buildConstant(S64, 0)); 5147 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5148 MI.eraseFromParent(); 5149 return Legalized; 5150 } 5151 5152 return UnableToLegalize; 5153 } 5154 5155 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5156 Register Dst = MI.getOperand(0).getReg(); 5157 Register Src = MI.getOperand(1).getReg(); 5158 LLT DstTy = MRI.getType(Dst); 5159 LLT SrcTy = MRI.getType(Src); 5160 const LLT S64 = LLT::scalar(64); 5161 const LLT S32 = LLT::scalar(32); 5162 5163 if (SrcTy != S64 && SrcTy != S32) 5164 return UnableToLegalize; 5165 if (DstTy != S32 && DstTy != S64) 5166 return UnableToLegalize; 5167 5168 // FPTOSI gives same result as FPTOUI for positive signed integers. 5169 // FPTOUI needs to deal with fp values that convert to unsigned integers 5170 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5171 5172 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5173 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5174 : APFloat::IEEEdouble(), 5175 APInt::getNullValue(SrcTy.getSizeInBits())); 5176 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5177 5178 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5179 5180 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5181 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5182 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5183 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5184 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5185 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5186 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5187 5188 const LLT S1 = LLT::scalar(1); 5189 5190 MachineInstrBuilder FCMP = 5191 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5192 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5193 5194 MI.eraseFromParent(); 5195 return Legalized; 5196 } 5197 5198 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5199 Register Dst = MI.getOperand(0).getReg(); 5200 Register Src = MI.getOperand(1).getReg(); 5201 LLT DstTy = MRI.getType(Dst); 5202 LLT SrcTy = MRI.getType(Src); 5203 const LLT S64 = LLT::scalar(64); 5204 const LLT S32 = LLT::scalar(32); 5205 5206 // FIXME: Only f32 to i64 conversions are supported. 5207 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5208 return UnableToLegalize; 5209 5210 // Expand f32 -> i64 conversion 5211 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5212 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 5213 5214 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5215 5216 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5217 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5218 5219 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5220 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5221 5222 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5223 APInt::getSignMask(SrcEltBits)); 5224 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5225 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5226 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5227 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5228 5229 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5230 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5231 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5232 5233 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5234 R = MIRBuilder.buildZExt(DstTy, R); 5235 5236 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5237 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5238 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5239 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5240 5241 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5242 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5243 5244 const LLT S1 = LLT::scalar(1); 5245 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5246 S1, Exponent, ExponentLoBit); 5247 5248 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5249 5250 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5251 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5252 5253 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5254 5255 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5256 S1, Exponent, ZeroSrcTy); 5257 5258 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5259 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5260 5261 MI.eraseFromParent(); 5262 return Legalized; 5263 } 5264 5265 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5266 LegalizerHelper::LegalizeResult 5267 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5268 Register Dst = MI.getOperand(0).getReg(); 5269 Register Src = MI.getOperand(1).getReg(); 5270 5271 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5272 return UnableToLegalize; 5273 5274 const unsigned ExpMask = 0x7ff; 5275 const unsigned ExpBiasf64 = 1023; 5276 const unsigned ExpBiasf16 = 15; 5277 const LLT S32 = LLT::scalar(32); 5278 const LLT S1 = LLT::scalar(1); 5279 5280 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 5281 Register U = Unmerge.getReg(0); 5282 Register UH = Unmerge.getReg(1); 5283 5284 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 5285 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 5286 5287 // Subtract the fp64 exponent bias (1023) to get the real exponent and 5288 // add the f16 bias (15) to get the biased exponent for the f16 format. 5289 E = MIRBuilder.buildAdd( 5290 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 5291 5292 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 5293 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 5294 5295 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 5296 MIRBuilder.buildConstant(S32, 0x1ff)); 5297 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 5298 5299 auto Zero = MIRBuilder.buildConstant(S32, 0); 5300 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 5301 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 5302 M = MIRBuilder.buildOr(S32, M, Lo40Set); 5303 5304 // (M != 0 ? 0x0200 : 0) | 0x7c00; 5305 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 5306 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 5307 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 5308 5309 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 5310 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 5311 5312 // N = M | (E << 12); 5313 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 5314 auto N = MIRBuilder.buildOr(S32, M, EShl12); 5315 5316 // B = clamp(1-E, 0, 13); 5317 auto One = MIRBuilder.buildConstant(S32, 1); 5318 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 5319 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 5320 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 5321 5322 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 5323 MIRBuilder.buildConstant(S32, 0x1000)); 5324 5325 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 5326 auto D0 = MIRBuilder.buildShl(S32, D, B); 5327 5328 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 5329 D0, SigSetHigh); 5330 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 5331 D = MIRBuilder.buildOr(S32, D, D1); 5332 5333 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 5334 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 5335 5336 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 5337 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 5338 5339 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 5340 MIRBuilder.buildConstant(S32, 3)); 5341 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 5342 5343 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 5344 MIRBuilder.buildConstant(S32, 5)); 5345 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 5346 5347 V1 = MIRBuilder.buildOr(S32, V0, V1); 5348 V = MIRBuilder.buildAdd(S32, V, V1); 5349 5350 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 5351 E, MIRBuilder.buildConstant(S32, 30)); 5352 V = MIRBuilder.buildSelect(S32, CmpEGt30, 5353 MIRBuilder.buildConstant(S32, 0x7c00), V); 5354 5355 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 5356 E, MIRBuilder.buildConstant(S32, 1039)); 5357 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 5358 5359 // Extract the sign bit. 5360 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 5361 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 5362 5363 // Insert the sign bit 5364 V = MIRBuilder.buildOr(S32, Sign, V); 5365 5366 MIRBuilder.buildTrunc(Dst, V); 5367 MI.eraseFromParent(); 5368 return Legalized; 5369 } 5370 5371 LegalizerHelper::LegalizeResult 5372 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 5373 Register Dst = MI.getOperand(0).getReg(); 5374 Register Src = MI.getOperand(1).getReg(); 5375 5376 LLT DstTy = MRI.getType(Dst); 5377 LLT SrcTy = MRI.getType(Src); 5378 const LLT S64 = LLT::scalar(64); 5379 const LLT S16 = LLT::scalar(16); 5380 5381 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 5382 return lowerFPTRUNC_F64_TO_F16(MI); 5383 5384 return UnableToLegalize; 5385 } 5386 5387 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 5388 // multiplication tree. 5389 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 5390 Register Dst = MI.getOperand(0).getReg(); 5391 Register Src0 = MI.getOperand(1).getReg(); 5392 Register Src1 = MI.getOperand(2).getReg(); 5393 LLT Ty = MRI.getType(Dst); 5394 5395 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 5396 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 5397 MI.eraseFromParent(); 5398 return Legalized; 5399 } 5400 5401 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 5402 switch (Opc) { 5403 case TargetOpcode::G_SMIN: 5404 return CmpInst::ICMP_SLT; 5405 case TargetOpcode::G_SMAX: 5406 return CmpInst::ICMP_SGT; 5407 case TargetOpcode::G_UMIN: 5408 return CmpInst::ICMP_ULT; 5409 case TargetOpcode::G_UMAX: 5410 return CmpInst::ICMP_UGT; 5411 default: 5412 llvm_unreachable("not in integer min/max"); 5413 } 5414 } 5415 5416 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 5417 Register Dst = MI.getOperand(0).getReg(); 5418 Register Src0 = MI.getOperand(1).getReg(); 5419 Register Src1 = MI.getOperand(2).getReg(); 5420 5421 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 5422 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 5423 5424 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 5425 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 5426 5427 MI.eraseFromParent(); 5428 return Legalized; 5429 } 5430 5431 LegalizerHelper::LegalizeResult 5432 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 5433 Register Dst = MI.getOperand(0).getReg(); 5434 Register Src0 = MI.getOperand(1).getReg(); 5435 Register Src1 = MI.getOperand(2).getReg(); 5436 5437 const LLT Src0Ty = MRI.getType(Src0); 5438 const LLT Src1Ty = MRI.getType(Src1); 5439 5440 const int Src0Size = Src0Ty.getScalarSizeInBits(); 5441 const int Src1Size = Src1Ty.getScalarSizeInBits(); 5442 5443 auto SignBitMask = MIRBuilder.buildConstant( 5444 Src0Ty, APInt::getSignMask(Src0Size)); 5445 5446 auto NotSignBitMask = MIRBuilder.buildConstant( 5447 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 5448 5449 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 5450 MachineInstr *Or; 5451 5452 if (Src0Ty == Src1Ty) { 5453 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 5454 Or = MIRBuilder.buildOr(Dst, And0, And1); 5455 } else if (Src0Size > Src1Size) { 5456 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 5457 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 5458 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 5459 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 5460 Or = MIRBuilder.buildOr(Dst, And0, And1); 5461 } else { 5462 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 5463 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 5464 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 5465 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 5466 Or = MIRBuilder.buildOr(Dst, And0, And1); 5467 } 5468 5469 // Be careful about setting nsz/nnan/ninf on every instruction, since the 5470 // constants are a nan and -0.0, but the final result should preserve 5471 // everything. 5472 if (unsigned Flags = MI.getFlags()) 5473 Or->setFlags(Flags); 5474 5475 MI.eraseFromParent(); 5476 return Legalized; 5477 } 5478 5479 LegalizerHelper::LegalizeResult 5480 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 5481 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 5482 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 5483 5484 Register Dst = MI.getOperand(0).getReg(); 5485 Register Src0 = MI.getOperand(1).getReg(); 5486 Register Src1 = MI.getOperand(2).getReg(); 5487 LLT Ty = MRI.getType(Dst); 5488 5489 if (!MI.getFlag(MachineInstr::FmNoNans)) { 5490 // Insert canonicalizes if it's possible we need to quiet to get correct 5491 // sNaN behavior. 5492 5493 // Note this must be done here, and not as an optimization combine in the 5494 // absence of a dedicate quiet-snan instruction as we're using an 5495 // omni-purpose G_FCANONICALIZE. 5496 if (!isKnownNeverSNaN(Src0, MRI)) 5497 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 5498 5499 if (!isKnownNeverSNaN(Src1, MRI)) 5500 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 5501 } 5502 5503 // If there are no nans, it's safe to simply replace this with the non-IEEE 5504 // version. 5505 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 5506 MI.eraseFromParent(); 5507 return Legalized; 5508 } 5509 5510 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 5511 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 5512 Register DstReg = MI.getOperand(0).getReg(); 5513 LLT Ty = MRI.getType(DstReg); 5514 unsigned Flags = MI.getFlags(); 5515 5516 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 5517 Flags); 5518 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 5519 MI.eraseFromParent(); 5520 return Legalized; 5521 } 5522 5523 LegalizerHelper::LegalizeResult 5524 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 5525 Register DstReg = MI.getOperand(0).getReg(); 5526 Register X = MI.getOperand(1).getReg(); 5527 const unsigned Flags = MI.getFlags(); 5528 const LLT Ty = MRI.getType(DstReg); 5529 const LLT CondTy = Ty.changeElementSize(1); 5530 5531 // round(x) => 5532 // t = trunc(x); 5533 // d = fabs(x - t); 5534 // o = copysign(1.0f, x); 5535 // return t + (d >= 0.5 ? o : 0.0); 5536 5537 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 5538 5539 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 5540 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 5541 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5542 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 5543 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 5544 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 5545 5546 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 5547 Flags); 5548 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 5549 5550 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 5551 5552 MI.eraseFromParent(); 5553 return Legalized; 5554 } 5555 5556 LegalizerHelper::LegalizeResult 5557 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 5558 Register DstReg = MI.getOperand(0).getReg(); 5559 Register SrcReg = MI.getOperand(1).getReg(); 5560 unsigned Flags = MI.getFlags(); 5561 LLT Ty = MRI.getType(DstReg); 5562 const LLT CondTy = Ty.changeElementSize(1); 5563 5564 // result = trunc(src); 5565 // if (src < 0.0 && src != result) 5566 // result += -1.0. 5567 5568 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 5569 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5570 5571 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 5572 SrcReg, Zero, Flags); 5573 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 5574 SrcReg, Trunc, Flags); 5575 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5576 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5577 5578 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5579 MI.eraseFromParent(); 5580 return Legalized; 5581 } 5582 5583 LegalizerHelper::LegalizeResult 5584 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5585 const unsigned NumOps = MI.getNumOperands(); 5586 Register DstReg = MI.getOperand(0).getReg(); 5587 Register Src0Reg = MI.getOperand(1).getReg(); 5588 LLT DstTy = MRI.getType(DstReg); 5589 LLT SrcTy = MRI.getType(Src0Reg); 5590 unsigned PartSize = SrcTy.getSizeInBits(); 5591 5592 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5593 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5594 5595 for (unsigned I = 2; I != NumOps; ++I) { 5596 const unsigned Offset = (I - 1) * PartSize; 5597 5598 Register SrcReg = MI.getOperand(I).getReg(); 5599 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5600 5601 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5602 MRI.createGenericVirtualRegister(WideTy); 5603 5604 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5605 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5606 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5607 ResultReg = NextResult; 5608 } 5609 5610 if (DstTy.isPointer()) { 5611 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5612 DstTy.getAddressSpace())) { 5613 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5614 return UnableToLegalize; 5615 } 5616 5617 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5618 } 5619 5620 MI.eraseFromParent(); 5621 return Legalized; 5622 } 5623 5624 LegalizerHelper::LegalizeResult 5625 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5626 const unsigned NumDst = MI.getNumOperands() - 1; 5627 Register SrcReg = MI.getOperand(NumDst).getReg(); 5628 Register Dst0Reg = MI.getOperand(0).getReg(); 5629 LLT DstTy = MRI.getType(Dst0Reg); 5630 if (DstTy.isPointer()) 5631 return UnableToLegalize; // TODO 5632 5633 SrcReg = coerceToScalar(SrcReg); 5634 if (!SrcReg) 5635 return UnableToLegalize; 5636 5637 // Expand scalarizing unmerge as bitcast to integer and shift. 5638 LLT IntTy = MRI.getType(SrcReg); 5639 5640 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5641 5642 const unsigned DstSize = DstTy.getSizeInBits(); 5643 unsigned Offset = DstSize; 5644 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5645 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5646 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5647 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5648 } 5649 5650 MI.eraseFromParent(); 5651 return Legalized; 5652 } 5653 5654 /// Lower a vector extract or insert by writing the vector to a stack temporary 5655 /// and reloading the element or vector. 5656 /// 5657 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 5658 /// => 5659 /// %stack_temp = G_FRAME_INDEX 5660 /// G_STORE %vec, %stack_temp 5661 /// %idx = clamp(%idx, %vec.getNumElements()) 5662 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 5663 /// %dst = G_LOAD %element_ptr 5664 LegalizerHelper::LegalizeResult 5665 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 5666 Register DstReg = MI.getOperand(0).getReg(); 5667 Register SrcVec = MI.getOperand(1).getReg(); 5668 Register InsertVal; 5669 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 5670 InsertVal = MI.getOperand(2).getReg(); 5671 5672 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 5673 5674 LLT VecTy = MRI.getType(SrcVec); 5675 LLT EltTy = VecTy.getElementType(); 5676 if (!EltTy.isByteSized()) { // Not implemented. 5677 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 5678 return UnableToLegalize; 5679 } 5680 5681 unsigned EltBytes = EltTy.getSizeInBytes(); 5682 Align VecAlign = getStackTemporaryAlignment(VecTy); 5683 Align EltAlign; 5684 5685 MachinePointerInfo PtrInfo; 5686 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 5687 VecAlign, PtrInfo); 5688 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 5689 5690 // Get the pointer to the element, and be sure not to hit undefined behavior 5691 // if the index is out of bounds. 5692 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 5693 5694 int64_t IdxVal; 5695 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 5696 int64_t Offset = IdxVal * EltBytes; 5697 PtrInfo = PtrInfo.getWithOffset(Offset); 5698 EltAlign = commonAlignment(VecAlign, Offset); 5699 } else { 5700 // We lose information with a variable offset. 5701 EltAlign = getStackTemporaryAlignment(EltTy); 5702 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 5703 } 5704 5705 if (InsertVal) { 5706 // Write the inserted element 5707 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 5708 5709 // Reload the whole vector. 5710 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 5711 } else { 5712 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 5713 } 5714 5715 MI.eraseFromParent(); 5716 return Legalized; 5717 } 5718 5719 LegalizerHelper::LegalizeResult 5720 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5721 Register DstReg = MI.getOperand(0).getReg(); 5722 Register Src0Reg = MI.getOperand(1).getReg(); 5723 Register Src1Reg = MI.getOperand(2).getReg(); 5724 LLT Src0Ty = MRI.getType(Src0Reg); 5725 LLT DstTy = MRI.getType(DstReg); 5726 LLT IdxTy = LLT::scalar(32); 5727 5728 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5729 5730 if (DstTy.isScalar()) { 5731 if (Src0Ty.isVector()) 5732 return UnableToLegalize; 5733 5734 // This is just a SELECT. 5735 assert(Mask.size() == 1 && "Expected a single mask element"); 5736 Register Val; 5737 if (Mask[0] < 0 || Mask[0] > 1) 5738 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5739 else 5740 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5741 MIRBuilder.buildCopy(DstReg, Val); 5742 MI.eraseFromParent(); 5743 return Legalized; 5744 } 5745 5746 Register Undef; 5747 SmallVector<Register, 32> BuildVec; 5748 LLT EltTy = DstTy.getElementType(); 5749 5750 for (int Idx : Mask) { 5751 if (Idx < 0) { 5752 if (!Undef.isValid()) 5753 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5754 BuildVec.push_back(Undef); 5755 continue; 5756 } 5757 5758 if (Src0Ty.isScalar()) { 5759 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5760 } else { 5761 int NumElts = Src0Ty.getNumElements(); 5762 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5763 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5764 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5765 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5766 BuildVec.push_back(Extract.getReg(0)); 5767 } 5768 } 5769 5770 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5771 MI.eraseFromParent(); 5772 return Legalized; 5773 } 5774 5775 LegalizerHelper::LegalizeResult 5776 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5777 const auto &MF = *MI.getMF(); 5778 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5779 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5780 return UnableToLegalize; 5781 5782 Register Dst = MI.getOperand(0).getReg(); 5783 Register AllocSize = MI.getOperand(1).getReg(); 5784 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5785 5786 LLT PtrTy = MRI.getType(Dst); 5787 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5788 5789 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5790 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5791 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5792 5793 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5794 // have to generate an extra instruction to negate the alloc and then use 5795 // G_PTR_ADD to add the negative offset. 5796 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5797 if (Alignment > Align(1)) { 5798 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5799 AlignMask.negate(); 5800 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5801 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5802 } 5803 5804 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5805 MIRBuilder.buildCopy(SPReg, SPTmp); 5806 MIRBuilder.buildCopy(Dst, SPTmp); 5807 5808 MI.eraseFromParent(); 5809 return Legalized; 5810 } 5811 5812 LegalizerHelper::LegalizeResult 5813 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5814 Register Dst = MI.getOperand(0).getReg(); 5815 Register Src = MI.getOperand(1).getReg(); 5816 unsigned Offset = MI.getOperand(2).getImm(); 5817 5818 LLT DstTy = MRI.getType(Dst); 5819 LLT SrcTy = MRI.getType(Src); 5820 5821 if (DstTy.isScalar() && 5822 (SrcTy.isScalar() || 5823 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5824 LLT SrcIntTy = SrcTy; 5825 if (!SrcTy.isScalar()) { 5826 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5827 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5828 } 5829 5830 if (Offset == 0) 5831 MIRBuilder.buildTrunc(Dst, Src); 5832 else { 5833 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5834 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5835 MIRBuilder.buildTrunc(Dst, Shr); 5836 } 5837 5838 MI.eraseFromParent(); 5839 return Legalized; 5840 } 5841 5842 return UnableToLegalize; 5843 } 5844 5845 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5846 Register Dst = MI.getOperand(0).getReg(); 5847 Register Src = MI.getOperand(1).getReg(); 5848 Register InsertSrc = MI.getOperand(2).getReg(); 5849 uint64_t Offset = MI.getOperand(3).getImm(); 5850 5851 LLT DstTy = MRI.getType(Src); 5852 LLT InsertTy = MRI.getType(InsertSrc); 5853 5854 if (InsertTy.isVector() || 5855 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5856 return UnableToLegalize; 5857 5858 const DataLayout &DL = MIRBuilder.getDataLayout(); 5859 if ((DstTy.isPointer() && 5860 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5861 (InsertTy.isPointer() && 5862 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5863 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5864 return UnableToLegalize; 5865 } 5866 5867 LLT IntDstTy = DstTy; 5868 5869 if (!DstTy.isScalar()) { 5870 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5871 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5872 } 5873 5874 if (!InsertTy.isScalar()) { 5875 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5876 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5877 } 5878 5879 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5880 if (Offset != 0) { 5881 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5882 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5883 } 5884 5885 APInt MaskVal = APInt::getBitsSetWithWrap( 5886 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5887 5888 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5889 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5890 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5891 5892 MIRBuilder.buildCast(Dst, Or); 5893 MI.eraseFromParent(); 5894 return Legalized; 5895 } 5896 5897 LegalizerHelper::LegalizeResult 5898 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5899 Register Dst0 = MI.getOperand(0).getReg(); 5900 Register Dst1 = MI.getOperand(1).getReg(); 5901 Register LHS = MI.getOperand(2).getReg(); 5902 Register RHS = MI.getOperand(3).getReg(); 5903 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5904 5905 LLT Ty = MRI.getType(Dst0); 5906 LLT BoolTy = MRI.getType(Dst1); 5907 5908 if (IsAdd) 5909 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5910 else 5911 MIRBuilder.buildSub(Dst0, LHS, RHS); 5912 5913 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5914 5915 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5916 5917 // For an addition, the result should be less than one of the operands (LHS) 5918 // if and only if the other operand (RHS) is negative, otherwise there will 5919 // be overflow. 5920 // For a subtraction, the result should be less than one of the operands 5921 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5922 // otherwise there will be overflow. 5923 auto ResultLowerThanLHS = 5924 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5925 auto ConditionRHS = MIRBuilder.buildICmp( 5926 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5927 5928 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5929 MI.eraseFromParent(); 5930 return Legalized; 5931 } 5932 5933 LegalizerHelper::LegalizeResult 5934 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 5935 Register Res = MI.getOperand(0).getReg(); 5936 Register LHS = MI.getOperand(1).getReg(); 5937 Register RHS = MI.getOperand(2).getReg(); 5938 LLT Ty = MRI.getType(Res); 5939 bool IsSigned; 5940 bool IsAdd; 5941 unsigned BaseOp; 5942 switch (MI.getOpcode()) { 5943 default: 5944 llvm_unreachable("unexpected addsat/subsat opcode"); 5945 case TargetOpcode::G_UADDSAT: 5946 IsSigned = false; 5947 IsAdd = true; 5948 BaseOp = TargetOpcode::G_ADD; 5949 break; 5950 case TargetOpcode::G_SADDSAT: 5951 IsSigned = true; 5952 IsAdd = true; 5953 BaseOp = TargetOpcode::G_ADD; 5954 break; 5955 case TargetOpcode::G_USUBSAT: 5956 IsSigned = false; 5957 IsAdd = false; 5958 BaseOp = TargetOpcode::G_SUB; 5959 break; 5960 case TargetOpcode::G_SSUBSAT: 5961 IsSigned = true; 5962 IsAdd = false; 5963 BaseOp = TargetOpcode::G_SUB; 5964 break; 5965 } 5966 5967 if (IsSigned) { 5968 // sadd.sat(a, b) -> 5969 // hi = 0x7fffffff - smax(a, 0) 5970 // lo = 0x80000000 - smin(a, 0) 5971 // a + smin(smax(lo, b), hi) 5972 // ssub.sat(a, b) -> 5973 // lo = smax(a, -1) - 0x7fffffff 5974 // hi = smin(a, -1) - 0x80000000 5975 // a - smin(smax(lo, b), hi) 5976 // TODO: AMDGPU can use a "median of 3" instruction here: 5977 // a +/- med3(lo, b, hi) 5978 uint64_t NumBits = Ty.getScalarSizeInBits(); 5979 auto MaxVal = 5980 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 5981 auto MinVal = 5982 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5983 MachineInstrBuilder Hi, Lo; 5984 if (IsAdd) { 5985 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5986 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 5987 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 5988 } else { 5989 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 5990 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 5991 MaxVal); 5992 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 5993 MinVal); 5994 } 5995 auto RHSClamped = 5996 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 5997 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 5998 } else { 5999 // uadd.sat(a, b) -> a + umin(~a, b) 6000 // usub.sat(a, b) -> a - umin(a, b) 6001 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 6002 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 6003 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 6004 } 6005 6006 MI.eraseFromParent(); 6007 return Legalized; 6008 } 6009 6010 LegalizerHelper::LegalizeResult 6011 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 6012 Register Res = MI.getOperand(0).getReg(); 6013 Register LHS = MI.getOperand(1).getReg(); 6014 Register RHS = MI.getOperand(2).getReg(); 6015 LLT Ty = MRI.getType(Res); 6016 LLT BoolTy = Ty.changeElementSize(1); 6017 bool IsSigned; 6018 bool IsAdd; 6019 unsigned OverflowOp; 6020 switch (MI.getOpcode()) { 6021 default: 6022 llvm_unreachable("unexpected addsat/subsat opcode"); 6023 case TargetOpcode::G_UADDSAT: 6024 IsSigned = false; 6025 IsAdd = true; 6026 OverflowOp = TargetOpcode::G_UADDO; 6027 break; 6028 case TargetOpcode::G_SADDSAT: 6029 IsSigned = true; 6030 IsAdd = true; 6031 OverflowOp = TargetOpcode::G_SADDO; 6032 break; 6033 case TargetOpcode::G_USUBSAT: 6034 IsSigned = false; 6035 IsAdd = false; 6036 OverflowOp = TargetOpcode::G_USUBO; 6037 break; 6038 case TargetOpcode::G_SSUBSAT: 6039 IsSigned = true; 6040 IsAdd = false; 6041 OverflowOp = TargetOpcode::G_SSUBO; 6042 break; 6043 } 6044 6045 auto OverflowRes = 6046 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 6047 Register Tmp = OverflowRes.getReg(0); 6048 Register Ov = OverflowRes.getReg(1); 6049 MachineInstrBuilder Clamp; 6050 if (IsSigned) { 6051 // sadd.sat(a, b) -> 6052 // {tmp, ov} = saddo(a, b) 6053 // ov ? (tmp >>s 31) + 0x80000000 : r 6054 // ssub.sat(a, b) -> 6055 // {tmp, ov} = ssubo(a, b) 6056 // ov ? (tmp >>s 31) + 0x80000000 : r 6057 uint64_t NumBits = Ty.getScalarSizeInBits(); 6058 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 6059 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 6060 auto MinVal = 6061 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6062 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6063 } else { 6064 // uadd.sat(a, b) -> 6065 // {tmp, ov} = uaddo(a, b) 6066 // ov ? 0xffffffff : tmp 6067 // usub.sat(a, b) -> 6068 // {tmp, ov} = usubo(a, b) 6069 // ov ? 0 : tmp 6070 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6071 } 6072 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6073 6074 MI.eraseFromParent(); 6075 return Legalized; 6076 } 6077 6078 LegalizerHelper::LegalizeResult 6079 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6080 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6081 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6082 "Expected shlsat opcode!"); 6083 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6084 Register Res = MI.getOperand(0).getReg(); 6085 Register LHS = MI.getOperand(1).getReg(); 6086 Register RHS = MI.getOperand(2).getReg(); 6087 LLT Ty = MRI.getType(Res); 6088 LLT BoolTy = Ty.changeElementSize(1); 6089 6090 unsigned BW = Ty.getScalarSizeInBits(); 6091 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6092 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6093 : MIRBuilder.buildLShr(Ty, Result, RHS); 6094 6095 MachineInstrBuilder SatVal; 6096 if (IsSigned) { 6097 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6098 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6099 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6100 MIRBuilder.buildConstant(Ty, 0)); 6101 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6102 } else { 6103 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6104 } 6105 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 6106 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6107 6108 MI.eraseFromParent(); 6109 return Legalized; 6110 } 6111 6112 LegalizerHelper::LegalizeResult 6113 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6114 Register Dst = MI.getOperand(0).getReg(); 6115 Register Src = MI.getOperand(1).getReg(); 6116 const LLT Ty = MRI.getType(Src); 6117 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6118 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6119 6120 // Swap most and least significant byte, set remaining bytes in Res to zero. 6121 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6122 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6123 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6124 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6125 6126 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6127 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6128 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6129 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6130 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6131 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6132 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6133 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6134 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6135 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6136 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6137 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6138 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6139 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6140 } 6141 Res.getInstr()->getOperand(0).setReg(Dst); 6142 6143 MI.eraseFromParent(); 6144 return Legalized; 6145 } 6146 6147 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6148 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6149 MachineInstrBuilder Src, APInt Mask) { 6150 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6151 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6152 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6153 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6154 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6155 return B.buildOr(Dst, LHS, RHS); 6156 } 6157 6158 LegalizerHelper::LegalizeResult 6159 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6160 Register Dst = MI.getOperand(0).getReg(); 6161 Register Src = MI.getOperand(1).getReg(); 6162 const LLT Ty = MRI.getType(Src); 6163 unsigned Size = Ty.getSizeInBits(); 6164 6165 MachineInstrBuilder BSWAP = 6166 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6167 6168 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6169 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6170 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6171 MachineInstrBuilder Swap4 = 6172 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6173 6174 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6175 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6176 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6177 MachineInstrBuilder Swap2 = 6178 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6179 6180 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6181 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6182 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6183 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6184 6185 MI.eraseFromParent(); 6186 return Legalized; 6187 } 6188 6189 LegalizerHelper::LegalizeResult 6190 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6191 MachineFunction &MF = MIRBuilder.getMF(); 6192 6193 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6194 int NameOpIdx = IsRead ? 1 : 0; 6195 int ValRegIndex = IsRead ? 0 : 1; 6196 6197 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6198 const LLT Ty = MRI.getType(ValReg); 6199 const MDString *RegStr = cast<MDString>( 6200 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6201 6202 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6203 if (!PhysReg.isValid()) 6204 return UnableToLegalize; 6205 6206 if (IsRead) 6207 MIRBuilder.buildCopy(ValReg, PhysReg); 6208 else 6209 MIRBuilder.buildCopy(PhysReg, ValReg); 6210 6211 MI.eraseFromParent(); 6212 return Legalized; 6213 } 6214 6215 LegalizerHelper::LegalizeResult 6216 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 6217 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 6218 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 6219 Register Result = MI.getOperand(0).getReg(); 6220 LLT OrigTy = MRI.getType(Result); 6221 auto SizeInBits = OrigTy.getScalarSizeInBits(); 6222 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 6223 6224 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 6225 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 6226 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 6227 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 6228 6229 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 6230 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 6231 MIRBuilder.buildTrunc(Result, Shifted); 6232 6233 MI.eraseFromParent(); 6234 return Legalized; 6235 } 6236 6237 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 6238 // Implement vector G_SELECT in terms of XOR, AND, OR. 6239 Register DstReg = MI.getOperand(0).getReg(); 6240 Register MaskReg = MI.getOperand(1).getReg(); 6241 Register Op1Reg = MI.getOperand(2).getReg(); 6242 Register Op2Reg = MI.getOperand(3).getReg(); 6243 LLT DstTy = MRI.getType(DstReg); 6244 LLT MaskTy = MRI.getType(MaskReg); 6245 LLT Op1Ty = MRI.getType(Op1Reg); 6246 if (!DstTy.isVector()) 6247 return UnableToLegalize; 6248 6249 // Vector selects can have a scalar predicate. If so, splat into a vector and 6250 // finish for later legalization attempts to try again. 6251 if (MaskTy.isScalar()) { 6252 Register MaskElt = MaskReg; 6253 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 6254 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 6255 // Generate a vector splat idiom to be pattern matched later. 6256 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 6257 Observer.changingInstr(MI); 6258 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 6259 Observer.changedInstr(MI); 6260 return Legalized; 6261 } 6262 6263 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 6264 return UnableToLegalize; 6265 } 6266 6267 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 6268 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 6269 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 6270 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 6271 MI.eraseFromParent(); 6272 return Legalized; 6273 } 6274