1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 19 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 20 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 21 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 22 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/CodeGen/GlobalISel/Utils.h" 25 #include "llvm/CodeGen/MachineConstantPool.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/RuntimeLibcalls.h" 29 #include "llvm/CodeGen/TargetFrameLowering.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetOpcodes.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include <numeric> 40 #include <optional> 41 42 #define DEBUG_TYPE "legalizer" 43 44 using namespace llvm; 45 using namespace LegalizeActions; 46 using namespace MIPatternMatch; 47 48 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 49 /// 50 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 51 /// with any leftover piece as type \p LeftoverTy 52 /// 53 /// Returns -1 in the first element of the pair if the breakdown is not 54 /// satisfiable. 55 static std::pair<int, int> 56 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 57 assert(!LeftoverTy.isValid() && "this is an out argument"); 58 59 unsigned Size = OrigTy.getSizeInBits(); 60 unsigned NarrowSize = NarrowTy.getSizeInBits(); 61 unsigned NumParts = Size / NarrowSize; 62 unsigned LeftoverSize = Size - NumParts * NarrowSize; 63 assert(Size > NarrowSize); 64 65 if (LeftoverSize == 0) 66 return {NumParts, 0}; 67 68 if (NarrowTy.isVector()) { 69 unsigned EltSize = OrigTy.getScalarSizeInBits(); 70 if (LeftoverSize % EltSize != 0) 71 return {-1, -1}; 72 LeftoverTy = LLT::scalarOrVector( 73 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 74 } else { 75 LeftoverTy = LLT::scalar(LeftoverSize); 76 } 77 78 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 79 return std::make_pair(NumParts, NumLeftover); 80 } 81 82 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 83 84 if (!Ty.isScalar()) 85 return nullptr; 86 87 switch (Ty.getSizeInBits()) { 88 case 16: 89 return Type::getHalfTy(Ctx); 90 case 32: 91 return Type::getFloatTy(Ctx); 92 case 64: 93 return Type::getDoubleTy(Ctx); 94 case 80: 95 return Type::getX86_FP80Ty(Ctx); 96 case 128: 97 return Type::getFP128Ty(Ctx); 98 default: 99 return nullptr; 100 } 101 } 102 103 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 104 GISelChangeObserver &Observer, 105 MachineIRBuilder &Builder) 106 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 107 LI(*MF.getSubtarget().getLegalizerInfo()), 108 TLI(*MF.getSubtarget().getTargetLowering()), KB(nullptr) {} 109 110 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 111 GISelChangeObserver &Observer, 112 MachineIRBuilder &B, GISelKnownBits *KB) 113 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 114 TLI(*MF.getSubtarget().getTargetLowering()), KB(KB) {} 115 116 LegalizerHelper::LegalizeResult 117 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 118 LostDebugLocObserver &LocObserver) { 119 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 120 121 MIRBuilder.setInstrAndDebugLoc(MI); 122 123 if (isa<GIntrinsic>(MI)) 124 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 125 auto Step = LI.getAction(MI, MRI); 126 switch (Step.Action) { 127 case Legal: 128 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 129 return AlreadyLegal; 130 case Libcall: 131 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 132 return libcall(MI, LocObserver); 133 case NarrowScalar: 134 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 135 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 136 case WidenScalar: 137 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 138 return widenScalar(MI, Step.TypeIdx, Step.NewType); 139 case Bitcast: 140 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 141 return bitcast(MI, Step.TypeIdx, Step.NewType); 142 case Lower: 143 LLVM_DEBUG(dbgs() << ".. Lower\n"); 144 return lower(MI, Step.TypeIdx, Step.NewType); 145 case FewerElements: 146 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 147 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 148 case MoreElements: 149 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 150 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 151 case Custom: 152 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 153 return LI.legalizeCustom(*this, MI, LocObserver) ? Legalized 154 : UnableToLegalize; 155 default: 156 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 157 return UnableToLegalize; 158 } 159 } 160 161 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 162 SmallVectorImpl<Register> &VRegs) { 163 for (int i = 0; i < NumParts; ++i) 164 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 165 MIRBuilder.buildUnmerge(VRegs, Reg); 166 } 167 168 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 169 LLT MainTy, LLT &LeftoverTy, 170 SmallVectorImpl<Register> &VRegs, 171 SmallVectorImpl<Register> &LeftoverRegs) { 172 assert(!LeftoverTy.isValid() && "this is an out argument"); 173 174 unsigned RegSize = RegTy.getSizeInBits(); 175 unsigned MainSize = MainTy.getSizeInBits(); 176 unsigned NumParts = RegSize / MainSize; 177 unsigned LeftoverSize = RegSize - NumParts * MainSize; 178 179 // Use an unmerge when possible. 180 if (LeftoverSize == 0) { 181 for (unsigned I = 0; I < NumParts; ++I) 182 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 183 MIRBuilder.buildUnmerge(VRegs, Reg); 184 return true; 185 } 186 187 // Perform irregular split. Leftover is last element of RegPieces. 188 if (MainTy.isVector()) { 189 SmallVector<Register, 8> RegPieces; 190 extractVectorParts(Reg, MainTy.getNumElements(), RegPieces); 191 for (unsigned i = 0; i < RegPieces.size() - 1; ++i) 192 VRegs.push_back(RegPieces[i]); 193 LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]); 194 LeftoverTy = MRI.getType(LeftoverRegs[0]); 195 return true; 196 } 197 198 LeftoverTy = LLT::scalar(LeftoverSize); 199 // For irregular sizes, extract the individual parts. 200 for (unsigned I = 0; I != NumParts; ++I) { 201 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 202 VRegs.push_back(NewReg); 203 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 204 } 205 206 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 207 Offset += LeftoverSize) { 208 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 209 LeftoverRegs.push_back(NewReg); 210 MIRBuilder.buildExtract(NewReg, Reg, Offset); 211 } 212 213 return true; 214 } 215 216 void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts, 217 SmallVectorImpl<Register> &VRegs) { 218 LLT RegTy = MRI.getType(Reg); 219 assert(RegTy.isVector() && "Expected a vector type"); 220 221 LLT EltTy = RegTy.getElementType(); 222 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 223 unsigned RegNumElts = RegTy.getNumElements(); 224 unsigned LeftoverNumElts = RegNumElts % NumElts; 225 unsigned NumNarrowTyPieces = RegNumElts / NumElts; 226 227 // Perfect split without leftover 228 if (LeftoverNumElts == 0) 229 return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs); 230 231 // Irregular split. Provide direct access to all elements for artifact 232 // combiner using unmerge to elements. Then build vectors with NumElts 233 // elements. Remaining element(s) will be (used to build vector) Leftover. 234 SmallVector<Register, 8> Elts; 235 extractParts(Reg, EltTy, RegNumElts, Elts); 236 237 unsigned Offset = 0; 238 // Requested sub-vectors of NarrowTy. 239 for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) { 240 ArrayRef<Register> Pieces(&Elts[Offset], NumElts); 241 VRegs.push_back(MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0)); 242 } 243 244 // Leftover element(s). 245 if (LeftoverNumElts == 1) { 246 VRegs.push_back(Elts[Offset]); 247 } else { 248 LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy); 249 ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts); 250 VRegs.push_back( 251 MIRBuilder.buildMergeLikeInstr(LeftoverTy, Pieces).getReg(0)); 252 } 253 } 254 255 void LegalizerHelper::insertParts(Register DstReg, 256 LLT ResultTy, LLT PartTy, 257 ArrayRef<Register> PartRegs, 258 LLT LeftoverTy, 259 ArrayRef<Register> LeftoverRegs) { 260 if (!LeftoverTy.isValid()) { 261 assert(LeftoverRegs.empty()); 262 263 if (!ResultTy.isVector()) { 264 MIRBuilder.buildMergeLikeInstr(DstReg, PartRegs); 265 return; 266 } 267 268 if (PartTy.isVector()) 269 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 270 else 271 MIRBuilder.buildBuildVector(DstReg, PartRegs); 272 return; 273 } 274 275 // Merge sub-vectors with different number of elements and insert into DstReg. 276 if (ResultTy.isVector()) { 277 assert(LeftoverRegs.size() == 1 && "Expected one leftover register"); 278 SmallVector<Register, 8> AllRegs; 279 for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs)) 280 AllRegs.push_back(Reg); 281 return mergeMixedSubvectors(DstReg, AllRegs); 282 } 283 284 SmallVector<Register> GCDRegs; 285 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy); 286 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs)) 287 extractGCDType(GCDRegs, GCDTy, PartReg); 288 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); 289 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); 290 } 291 292 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts, 293 Register Reg) { 294 LLT Ty = MRI.getType(Reg); 295 SmallVector<Register, 8> RegElts; 296 extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts); 297 Elts.append(RegElts); 298 } 299 300 /// Merge \p PartRegs with different types into \p DstReg. 301 void LegalizerHelper::mergeMixedSubvectors(Register DstReg, 302 ArrayRef<Register> PartRegs) { 303 SmallVector<Register, 8> AllElts; 304 for (unsigned i = 0; i < PartRegs.size() - 1; ++i) 305 appendVectorElts(AllElts, PartRegs[i]); 306 307 Register Leftover = PartRegs[PartRegs.size() - 1]; 308 if (MRI.getType(Leftover).isScalar()) 309 AllElts.push_back(Leftover); 310 else 311 appendVectorElts(AllElts, Leftover); 312 313 MIRBuilder.buildMergeLikeInstr(DstReg, AllElts); 314 } 315 316 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 317 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 318 const MachineInstr &MI) { 319 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 320 321 const int StartIdx = Regs.size(); 322 const int NumResults = MI.getNumOperands() - 1; 323 Regs.resize(Regs.size() + NumResults); 324 for (int I = 0; I != NumResults; ++I) 325 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 326 } 327 328 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 329 LLT GCDTy, Register SrcReg) { 330 LLT SrcTy = MRI.getType(SrcReg); 331 if (SrcTy == GCDTy) { 332 // If the source already evenly divides the result type, we don't need to do 333 // anything. 334 Parts.push_back(SrcReg); 335 } else { 336 // Need to split into common type sized pieces. 337 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 338 getUnmergeResults(Parts, *Unmerge); 339 } 340 } 341 342 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 343 LLT NarrowTy, Register SrcReg) { 344 LLT SrcTy = MRI.getType(SrcReg); 345 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 346 extractGCDType(Parts, GCDTy, SrcReg); 347 return GCDTy; 348 } 349 350 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 351 SmallVectorImpl<Register> &VRegs, 352 unsigned PadStrategy) { 353 LLT LCMTy = getLCMType(DstTy, NarrowTy); 354 355 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 356 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 357 int NumOrigSrc = VRegs.size(); 358 359 Register PadReg; 360 361 // Get a value we can use to pad the source value if the sources won't evenly 362 // cover the result type. 363 if (NumOrigSrc < NumParts * NumSubParts) { 364 if (PadStrategy == TargetOpcode::G_ZEXT) 365 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 366 else if (PadStrategy == TargetOpcode::G_ANYEXT) 367 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 368 else { 369 assert(PadStrategy == TargetOpcode::G_SEXT); 370 371 // Shift the sign bit of the low register through the high register. 372 auto ShiftAmt = 373 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 374 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 375 } 376 } 377 378 // Registers for the final merge to be produced. 379 SmallVector<Register, 4> Remerge(NumParts); 380 381 // Registers needed for intermediate merges, which will be merged into a 382 // source for Remerge. 383 SmallVector<Register, 4> SubMerge(NumSubParts); 384 385 // Once we've fully read off the end of the original source bits, we can reuse 386 // the same high bits for remaining padding elements. 387 Register AllPadReg; 388 389 // Build merges to the LCM type to cover the original result type. 390 for (int I = 0; I != NumParts; ++I) { 391 bool AllMergePartsArePadding = true; 392 393 // Build the requested merges to the requested type. 394 for (int J = 0; J != NumSubParts; ++J) { 395 int Idx = I * NumSubParts + J; 396 if (Idx >= NumOrigSrc) { 397 SubMerge[J] = PadReg; 398 continue; 399 } 400 401 SubMerge[J] = VRegs[Idx]; 402 403 // There are meaningful bits here we can't reuse later. 404 AllMergePartsArePadding = false; 405 } 406 407 // If we've filled up a complete piece with padding bits, we can directly 408 // emit the natural sized constant if applicable, rather than a merge of 409 // smaller constants. 410 if (AllMergePartsArePadding && !AllPadReg) { 411 if (PadStrategy == TargetOpcode::G_ANYEXT) 412 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 413 else if (PadStrategy == TargetOpcode::G_ZEXT) 414 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 415 416 // If this is a sign extension, we can't materialize a trivial constant 417 // with the right type and have to produce a merge. 418 } 419 420 if (AllPadReg) { 421 // Avoid creating additional instructions if we're just adding additional 422 // copies of padding bits. 423 Remerge[I] = AllPadReg; 424 continue; 425 } 426 427 if (NumSubParts == 1) 428 Remerge[I] = SubMerge[0]; 429 else 430 Remerge[I] = MIRBuilder.buildMergeLikeInstr(NarrowTy, SubMerge).getReg(0); 431 432 // In the sign extend padding case, re-use the first all-signbit merge. 433 if (AllMergePartsArePadding && !AllPadReg) 434 AllPadReg = Remerge[I]; 435 } 436 437 VRegs = std::move(Remerge); 438 return LCMTy; 439 } 440 441 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 442 ArrayRef<Register> RemergeRegs) { 443 LLT DstTy = MRI.getType(DstReg); 444 445 // Create the merge to the widened source, and extract the relevant bits into 446 // the result. 447 448 if (DstTy == LCMTy) { 449 MIRBuilder.buildMergeLikeInstr(DstReg, RemergeRegs); 450 return; 451 } 452 453 auto Remerge = MIRBuilder.buildMergeLikeInstr(LCMTy, RemergeRegs); 454 if (DstTy.isScalar() && LCMTy.isScalar()) { 455 MIRBuilder.buildTrunc(DstReg, Remerge); 456 return; 457 } 458 459 if (LCMTy.isVector()) { 460 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 461 SmallVector<Register, 8> UnmergeDefs(NumDefs); 462 UnmergeDefs[0] = DstReg; 463 for (unsigned I = 1; I != NumDefs; ++I) 464 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 465 466 MIRBuilder.buildUnmerge(UnmergeDefs, 467 MIRBuilder.buildMergeLikeInstr(LCMTy, RemergeRegs)); 468 return; 469 } 470 471 llvm_unreachable("unhandled case"); 472 } 473 474 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 475 #define RTLIBCASE_INT(LibcallPrefix) \ 476 do { \ 477 switch (Size) { \ 478 case 32: \ 479 return RTLIB::LibcallPrefix##32; \ 480 case 64: \ 481 return RTLIB::LibcallPrefix##64; \ 482 case 128: \ 483 return RTLIB::LibcallPrefix##128; \ 484 default: \ 485 llvm_unreachable("unexpected size"); \ 486 } \ 487 } while (0) 488 489 #define RTLIBCASE(LibcallPrefix) \ 490 do { \ 491 switch (Size) { \ 492 case 32: \ 493 return RTLIB::LibcallPrefix##32; \ 494 case 64: \ 495 return RTLIB::LibcallPrefix##64; \ 496 case 80: \ 497 return RTLIB::LibcallPrefix##80; \ 498 case 128: \ 499 return RTLIB::LibcallPrefix##128; \ 500 default: \ 501 llvm_unreachable("unexpected size"); \ 502 } \ 503 } while (0) 504 505 switch (Opcode) { 506 case TargetOpcode::G_MUL: 507 RTLIBCASE_INT(MUL_I); 508 case TargetOpcode::G_SDIV: 509 RTLIBCASE_INT(SDIV_I); 510 case TargetOpcode::G_UDIV: 511 RTLIBCASE_INT(UDIV_I); 512 case TargetOpcode::G_SREM: 513 RTLIBCASE_INT(SREM_I); 514 case TargetOpcode::G_UREM: 515 RTLIBCASE_INT(UREM_I); 516 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 517 RTLIBCASE_INT(CTLZ_I); 518 case TargetOpcode::G_FADD: 519 RTLIBCASE(ADD_F); 520 case TargetOpcode::G_FSUB: 521 RTLIBCASE(SUB_F); 522 case TargetOpcode::G_FMUL: 523 RTLIBCASE(MUL_F); 524 case TargetOpcode::G_FDIV: 525 RTLIBCASE(DIV_F); 526 case TargetOpcode::G_FEXP: 527 RTLIBCASE(EXP_F); 528 case TargetOpcode::G_FEXP2: 529 RTLIBCASE(EXP2_F); 530 case TargetOpcode::G_FEXP10: 531 RTLIBCASE(EXP10_F); 532 case TargetOpcode::G_FREM: 533 RTLIBCASE(REM_F); 534 case TargetOpcode::G_FPOW: 535 RTLIBCASE(POW_F); 536 case TargetOpcode::G_FPOWI: 537 RTLIBCASE(POWI_F); 538 case TargetOpcode::G_FMA: 539 RTLIBCASE(FMA_F); 540 case TargetOpcode::G_FSIN: 541 RTLIBCASE(SIN_F); 542 case TargetOpcode::G_FCOS: 543 RTLIBCASE(COS_F); 544 case TargetOpcode::G_FLOG10: 545 RTLIBCASE(LOG10_F); 546 case TargetOpcode::G_FLOG: 547 RTLIBCASE(LOG_F); 548 case TargetOpcode::G_FLOG2: 549 RTLIBCASE(LOG2_F); 550 case TargetOpcode::G_FLDEXP: 551 RTLIBCASE(LDEXP_F); 552 case TargetOpcode::G_FCEIL: 553 RTLIBCASE(CEIL_F); 554 case TargetOpcode::G_FFLOOR: 555 RTLIBCASE(FLOOR_F); 556 case TargetOpcode::G_FMINNUM: 557 RTLIBCASE(FMIN_F); 558 case TargetOpcode::G_FMAXNUM: 559 RTLIBCASE(FMAX_F); 560 case TargetOpcode::G_FSQRT: 561 RTLIBCASE(SQRT_F); 562 case TargetOpcode::G_FRINT: 563 RTLIBCASE(RINT_F); 564 case TargetOpcode::G_FNEARBYINT: 565 RTLIBCASE(NEARBYINT_F); 566 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 567 RTLIBCASE(ROUNDEVEN_F); 568 } 569 llvm_unreachable("Unknown libcall function"); 570 } 571 572 /// True if an instruction is in tail position in its caller. Intended for 573 /// legalizing libcalls as tail calls when possible. 574 static bool isLibCallInTailPosition(const CallLowering::ArgInfo &Result, 575 MachineInstr &MI, 576 const TargetInstrInfo &TII, 577 MachineRegisterInfo &MRI) { 578 MachineBasicBlock &MBB = *MI.getParent(); 579 const Function &F = MBB.getParent()->getFunction(); 580 581 // Conservatively require the attributes of the call to match those of 582 // the return. Ignore NoAlias and NonNull because they don't affect the 583 // call sequence. 584 AttributeList CallerAttrs = F.getAttributes(); 585 if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs()) 586 .removeAttribute(Attribute::NoAlias) 587 .removeAttribute(Attribute::NonNull) 588 .hasAttributes()) 589 return false; 590 591 // It's not safe to eliminate the sign / zero extension of the return value. 592 if (CallerAttrs.hasRetAttr(Attribute::ZExt) || 593 CallerAttrs.hasRetAttr(Attribute::SExt)) 594 return false; 595 596 // Only tail call if the following instruction is a standard return or if we 597 // have a `thisreturn` callee, and a sequence like: 598 // 599 // G_MEMCPY %0, %1, %2 600 // $x0 = COPY %0 601 // RET_ReallyLR implicit $x0 602 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 603 if (Next != MBB.instr_end() && Next->isCopy()) { 604 if (MI.getOpcode() == TargetOpcode::G_BZERO) 605 return false; 606 607 // For MEMCPY/MOMMOVE/MEMSET these will be the first use (the dst), as the 608 // mempy/etc routines return the same parameter. For other it will be the 609 // returned value. 610 Register VReg = MI.getOperand(0).getReg(); 611 if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg()) 612 return false; 613 614 Register PReg = Next->getOperand(0).getReg(); 615 if (!PReg.isPhysical()) 616 return false; 617 618 auto Ret = next_nodbg(Next, MBB.instr_end()); 619 if (Ret == MBB.instr_end() || !Ret->isReturn()) 620 return false; 621 622 if (Ret->getNumImplicitOperands() != 1) 623 return false; 624 625 if (!Ret->getOperand(0).isReg() || PReg != Ret->getOperand(0).getReg()) 626 return false; 627 628 // Skip over the COPY that we just validated. 629 Next = Ret; 630 } 631 632 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 633 return false; 634 635 return true; 636 } 637 638 LegalizerHelper::LegalizeResult 639 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 640 const CallLowering::ArgInfo &Result, 641 ArrayRef<CallLowering::ArgInfo> Args, 642 const CallingConv::ID CC, LostDebugLocObserver &LocObserver, 643 MachineInstr *MI) { 644 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 645 646 CallLowering::CallLoweringInfo Info; 647 Info.CallConv = CC; 648 Info.Callee = MachineOperand::CreateES(Name); 649 Info.OrigRet = Result; 650 if (MI) 651 Info.IsTailCall = 652 (Result.Ty->isVoidTy() || 653 Result.Ty == MIRBuilder.getMF().getFunction().getReturnType()) && 654 isLibCallInTailPosition(Result, *MI, MIRBuilder.getTII(), 655 *MIRBuilder.getMRI()); 656 657 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 658 if (!CLI.lowerCall(MIRBuilder, Info)) 659 return LegalizerHelper::UnableToLegalize; 660 661 if (MI && Info.LoweredTailCall) { 662 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 663 664 // Check debug locations before removing the return. 665 LocObserver.checkpoint(true); 666 667 // We must have a return following the call (or debug insts) to get past 668 // isLibCallInTailPosition. 669 do { 670 MachineInstr *Next = MI->getNextNode(); 671 assert(Next && 672 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && 673 "Expected instr following MI to be return or debug inst?"); 674 // We lowered a tail call, so the call is now the return from the block. 675 // Delete the old return. 676 Next->eraseFromParent(); 677 } while (MI->getNextNode()); 678 679 // We expect to lose the debug location from the return. 680 LocObserver.checkpoint(false); 681 } 682 return LegalizerHelper::Legalized; 683 } 684 685 LegalizerHelper::LegalizeResult 686 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 687 const CallLowering::ArgInfo &Result, 688 ArrayRef<CallLowering::ArgInfo> Args, 689 LostDebugLocObserver &LocObserver, MachineInstr *MI) { 690 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 691 const char *Name = TLI.getLibcallName(Libcall); 692 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 693 return createLibcall(MIRBuilder, Name, Result, Args, CC, LocObserver, MI); 694 } 695 696 // Useful for libcalls where all operands have the same type. 697 static LegalizerHelper::LegalizeResult 698 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 699 Type *OpType, LostDebugLocObserver &LocObserver) { 700 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 701 702 // FIXME: What does the original arg index mean here? 703 SmallVector<CallLowering::ArgInfo, 3> Args; 704 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 705 Args.push_back({MO.getReg(), OpType, 0}); 706 return createLibcall(MIRBuilder, Libcall, 707 {MI.getOperand(0).getReg(), OpType, 0}, Args, 708 LocObserver, &MI); 709 } 710 711 LegalizerHelper::LegalizeResult 712 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 713 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 714 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 715 716 SmallVector<CallLowering::ArgInfo, 3> Args; 717 // Add all the args, except for the last which is an imm denoting 'tail'. 718 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 719 Register Reg = MI.getOperand(i).getReg(); 720 721 // Need derive an IR type for call lowering. 722 LLT OpLLT = MRI.getType(Reg); 723 Type *OpTy = nullptr; 724 if (OpLLT.isPointer()) 725 OpTy = PointerType::get(Ctx, OpLLT.getAddressSpace()); 726 else 727 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 728 Args.push_back({Reg, OpTy, 0}); 729 } 730 731 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 732 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 733 RTLIB::Libcall RTLibcall; 734 unsigned Opc = MI.getOpcode(); 735 switch (Opc) { 736 case TargetOpcode::G_BZERO: 737 RTLibcall = RTLIB::BZERO; 738 break; 739 case TargetOpcode::G_MEMCPY: 740 RTLibcall = RTLIB::MEMCPY; 741 Args[0].Flags[0].setReturned(); 742 break; 743 case TargetOpcode::G_MEMMOVE: 744 RTLibcall = RTLIB::MEMMOVE; 745 Args[0].Flags[0].setReturned(); 746 break; 747 case TargetOpcode::G_MEMSET: 748 RTLibcall = RTLIB::MEMSET; 749 Args[0].Flags[0].setReturned(); 750 break; 751 default: 752 llvm_unreachable("unsupported opcode"); 753 } 754 const char *Name = TLI.getLibcallName(RTLibcall); 755 756 // Unsupported libcall on the target. 757 if (!Name) { 758 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 759 << MIRBuilder.getTII().getName(Opc) << "\n"); 760 return LegalizerHelper::UnableToLegalize; 761 } 762 763 CallLowering::CallLoweringInfo Info; 764 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 765 Info.Callee = MachineOperand::CreateES(Name); 766 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0); 767 Info.IsTailCall = 768 MI.getOperand(MI.getNumOperands() - 1).getImm() && 769 isLibCallInTailPosition(Info.OrigRet, MI, MIRBuilder.getTII(), MRI); 770 771 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 772 if (!CLI.lowerCall(MIRBuilder, Info)) 773 return LegalizerHelper::UnableToLegalize; 774 775 if (Info.LoweredTailCall) { 776 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 777 778 // Check debug locations before removing the return. 779 LocObserver.checkpoint(true); 780 781 // We must have a return following the call (or debug insts) to get past 782 // isLibCallInTailPosition. 783 do { 784 MachineInstr *Next = MI.getNextNode(); 785 assert(Next && 786 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && 787 "Expected instr following MI to be return or debug inst?"); 788 // We lowered a tail call, so the call is now the return from the block. 789 // Delete the old return. 790 Next->eraseFromParent(); 791 } while (MI.getNextNode()); 792 793 // We expect to lose the debug location from the return. 794 LocObserver.checkpoint(false); 795 } 796 797 return LegalizerHelper::Legalized; 798 } 799 800 static RTLIB::Libcall getOutlineAtomicLibcall(MachineInstr &MI) { 801 unsigned Opc = MI.getOpcode(); 802 auto &AtomicMI = cast<GMemOperation>(MI); 803 auto &MMO = AtomicMI.getMMO(); 804 auto Ordering = MMO.getMergedOrdering(); 805 LLT MemType = MMO.getMemoryType(); 806 uint64_t MemSize = MemType.getSizeInBytes(); 807 if (MemType.isVector()) 808 return RTLIB::UNKNOWN_LIBCALL; 809 810 #define LCALLS(A, B) \ 811 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL } 812 #define LCALL5(A) \ 813 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) 814 switch (Opc) { 815 case TargetOpcode::G_ATOMIC_CMPXCHG: 816 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 817 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_CAS)}; 818 return getOutlineAtomicHelper(LC, Ordering, MemSize); 819 } 820 case TargetOpcode::G_ATOMICRMW_XCHG: { 821 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_SWP)}; 822 return getOutlineAtomicHelper(LC, Ordering, MemSize); 823 } 824 case TargetOpcode::G_ATOMICRMW_ADD: 825 case TargetOpcode::G_ATOMICRMW_SUB: { 826 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDADD)}; 827 return getOutlineAtomicHelper(LC, Ordering, MemSize); 828 } 829 case TargetOpcode::G_ATOMICRMW_AND: { 830 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDCLR)}; 831 return getOutlineAtomicHelper(LC, Ordering, MemSize); 832 } 833 case TargetOpcode::G_ATOMICRMW_OR: { 834 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDSET)}; 835 return getOutlineAtomicHelper(LC, Ordering, MemSize); 836 } 837 case TargetOpcode::G_ATOMICRMW_XOR: { 838 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDEOR)}; 839 return getOutlineAtomicHelper(LC, Ordering, MemSize); 840 } 841 default: 842 return RTLIB::UNKNOWN_LIBCALL; 843 } 844 #undef LCALLS 845 #undef LCALL5 846 } 847 848 static LegalizerHelper::LegalizeResult 849 createAtomicLibcall(MachineIRBuilder &MIRBuilder, MachineInstr &MI) { 850 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 851 852 Type *RetTy; 853 SmallVector<Register> RetRegs; 854 SmallVector<CallLowering::ArgInfo, 3> Args; 855 unsigned Opc = MI.getOpcode(); 856 switch (Opc) { 857 case TargetOpcode::G_ATOMIC_CMPXCHG: 858 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 859 Register Success; 860 LLT SuccessLLT; 861 auto [Ret, RetLLT, Mem, MemLLT, Cmp, CmpLLT, New, NewLLT] = 862 MI.getFirst4RegLLTs(); 863 RetRegs.push_back(Ret); 864 RetTy = IntegerType::get(Ctx, RetLLT.getSizeInBits()); 865 if (Opc == TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS) { 866 std::tie(Ret, RetLLT, Success, SuccessLLT, Mem, MemLLT, Cmp, CmpLLT, New, 867 NewLLT) = MI.getFirst5RegLLTs(); 868 RetRegs.push_back(Success); 869 RetTy = StructType::get( 870 Ctx, {RetTy, IntegerType::get(Ctx, SuccessLLT.getSizeInBits())}); 871 } 872 Args.push_back({Cmp, IntegerType::get(Ctx, CmpLLT.getSizeInBits()), 0}); 873 Args.push_back({New, IntegerType::get(Ctx, NewLLT.getSizeInBits()), 0}); 874 Args.push_back({Mem, PointerType::get(Ctx, MemLLT.getAddressSpace()), 0}); 875 break; 876 } 877 case TargetOpcode::G_ATOMICRMW_XCHG: 878 case TargetOpcode::G_ATOMICRMW_ADD: 879 case TargetOpcode::G_ATOMICRMW_SUB: 880 case TargetOpcode::G_ATOMICRMW_AND: 881 case TargetOpcode::G_ATOMICRMW_OR: 882 case TargetOpcode::G_ATOMICRMW_XOR: { 883 auto [Ret, RetLLT, Mem, MemLLT, Val, ValLLT] = MI.getFirst3RegLLTs(); 884 RetRegs.push_back(Ret); 885 RetTy = IntegerType::get(Ctx, RetLLT.getSizeInBits()); 886 if (Opc == TargetOpcode::G_ATOMICRMW_AND) 887 Val = 888 MIRBuilder.buildXor(ValLLT, MIRBuilder.buildConstant(ValLLT, -1), Val) 889 .getReg(0); 890 else if (Opc == TargetOpcode::G_ATOMICRMW_SUB) 891 Val = 892 MIRBuilder.buildSub(ValLLT, MIRBuilder.buildConstant(ValLLT, 0), Val) 893 .getReg(0); 894 Args.push_back({Val, IntegerType::get(Ctx, ValLLT.getSizeInBits()), 0}); 895 Args.push_back({Mem, PointerType::get(Ctx, MemLLT.getAddressSpace()), 0}); 896 break; 897 } 898 default: 899 llvm_unreachable("unsupported opcode"); 900 } 901 902 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 903 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 904 RTLIB::Libcall RTLibcall = getOutlineAtomicLibcall(MI); 905 const char *Name = TLI.getLibcallName(RTLibcall); 906 907 // Unsupported libcall on the target. 908 if (!Name) { 909 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 910 << MIRBuilder.getTII().getName(Opc) << "\n"); 911 return LegalizerHelper::UnableToLegalize; 912 } 913 914 CallLowering::CallLoweringInfo Info; 915 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 916 Info.Callee = MachineOperand::CreateES(Name); 917 Info.OrigRet = CallLowering::ArgInfo(RetRegs, RetTy, 0); 918 919 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 920 if (!CLI.lowerCall(MIRBuilder, Info)) 921 return LegalizerHelper::UnableToLegalize; 922 923 return LegalizerHelper::Legalized; 924 } 925 926 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 927 Type *FromType) { 928 auto ToMVT = MVT::getVT(ToType); 929 auto FromMVT = MVT::getVT(FromType); 930 931 switch (Opcode) { 932 case TargetOpcode::G_FPEXT: 933 return RTLIB::getFPEXT(FromMVT, ToMVT); 934 case TargetOpcode::G_FPTRUNC: 935 return RTLIB::getFPROUND(FromMVT, ToMVT); 936 case TargetOpcode::G_FPTOSI: 937 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 938 case TargetOpcode::G_FPTOUI: 939 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 940 case TargetOpcode::G_SITOFP: 941 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 942 case TargetOpcode::G_UITOFP: 943 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 944 } 945 llvm_unreachable("Unsupported libcall function"); 946 } 947 948 static LegalizerHelper::LegalizeResult 949 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 950 Type *FromType, LostDebugLocObserver &LocObserver) { 951 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 952 return createLibcall( 953 MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType, 0}, 954 {{MI.getOperand(1).getReg(), FromType, 0}}, LocObserver, &MI); 955 } 956 957 static RTLIB::Libcall 958 getStateLibraryFunctionFor(MachineInstr &MI, const TargetLowering &TLI) { 959 RTLIB::Libcall RTLibcall; 960 switch (MI.getOpcode()) { 961 case TargetOpcode::G_GET_FPMODE: 962 RTLibcall = RTLIB::FEGETMODE; 963 break; 964 case TargetOpcode::G_SET_FPMODE: 965 case TargetOpcode::G_RESET_FPMODE: 966 RTLibcall = RTLIB::FESETMODE; 967 break; 968 default: 969 llvm_unreachable("Unexpected opcode"); 970 } 971 return RTLibcall; 972 } 973 974 // Some library functions that read FP state (fegetmode, fegetenv) write the 975 // state into a region in memory. IR intrinsics that do the same operations 976 // (get_fpmode, get_fpenv) return the state as integer value. To implement these 977 // intrinsics via the library functions, we need to use temporary variable, 978 // for example: 979 // 980 // %0:_(s32) = G_GET_FPMODE 981 // 982 // is transformed to: 983 // 984 // %1:_(p0) = G_FRAME_INDEX %stack.0 985 // BL &fegetmode 986 // %0:_(s32) = G_LOAD % 1 987 // 988 LegalizerHelper::LegalizeResult 989 LegalizerHelper::createGetStateLibcall(MachineIRBuilder &MIRBuilder, 990 MachineInstr &MI, 991 LostDebugLocObserver &LocObserver) { 992 const DataLayout &DL = MIRBuilder.getDataLayout(); 993 auto &MF = MIRBuilder.getMF(); 994 auto &MRI = *MIRBuilder.getMRI(); 995 auto &Ctx = MF.getFunction().getContext(); 996 997 // Create temporary, where library function will put the read state. 998 Register Dst = MI.getOperand(0).getReg(); 999 LLT StateTy = MRI.getType(Dst); 1000 TypeSize StateSize = StateTy.getSizeInBytes(); 1001 Align TempAlign = getStackTemporaryAlignment(StateTy); 1002 MachinePointerInfo TempPtrInfo; 1003 auto Temp = createStackTemporary(StateSize, TempAlign, TempPtrInfo); 1004 1005 // Create a call to library function, with the temporary as an argument. 1006 unsigned TempAddrSpace = DL.getAllocaAddrSpace(); 1007 Type *StatePtrTy = PointerType::get(Ctx, TempAddrSpace); 1008 RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI); 1009 auto Res = 1010 createLibcall(MIRBuilder, RTLibcall, 1011 CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0), 1012 CallLowering::ArgInfo({Temp.getReg(0), StatePtrTy, 0}), 1013 LocObserver, nullptr); 1014 if (Res != LegalizerHelper::Legalized) 1015 return Res; 1016 1017 // Create a load from the temporary. 1018 MachineMemOperand *MMO = MF.getMachineMemOperand( 1019 TempPtrInfo, MachineMemOperand::MOLoad, StateTy, TempAlign); 1020 MIRBuilder.buildLoadInstr(TargetOpcode::G_LOAD, Dst, Temp, *MMO); 1021 1022 return LegalizerHelper::Legalized; 1023 } 1024 1025 // Similar to `createGetStateLibcall` the function calls a library function 1026 // using transient space in stack. In this case the library function reads 1027 // content of memory region. 1028 LegalizerHelper::LegalizeResult 1029 LegalizerHelper::createSetStateLibcall(MachineIRBuilder &MIRBuilder, 1030 MachineInstr &MI, 1031 LostDebugLocObserver &LocObserver) { 1032 const DataLayout &DL = MIRBuilder.getDataLayout(); 1033 auto &MF = MIRBuilder.getMF(); 1034 auto &MRI = *MIRBuilder.getMRI(); 1035 auto &Ctx = MF.getFunction().getContext(); 1036 1037 // Create temporary, where library function will get the new state. 1038 Register Src = MI.getOperand(0).getReg(); 1039 LLT StateTy = MRI.getType(Src); 1040 TypeSize StateSize = StateTy.getSizeInBytes(); 1041 Align TempAlign = getStackTemporaryAlignment(StateTy); 1042 MachinePointerInfo TempPtrInfo; 1043 auto Temp = createStackTemporary(StateSize, TempAlign, TempPtrInfo); 1044 1045 // Put the new state into the temporary. 1046 MachineMemOperand *MMO = MF.getMachineMemOperand( 1047 TempPtrInfo, MachineMemOperand::MOStore, StateTy, TempAlign); 1048 MIRBuilder.buildStore(Src, Temp, *MMO); 1049 1050 // Create a call to library function, with the temporary as an argument. 1051 unsigned TempAddrSpace = DL.getAllocaAddrSpace(); 1052 Type *StatePtrTy = PointerType::get(Ctx, TempAddrSpace); 1053 RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI); 1054 return createLibcall(MIRBuilder, RTLibcall, 1055 CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0), 1056 CallLowering::ArgInfo({Temp.getReg(0), StatePtrTy, 0}), 1057 LocObserver, nullptr); 1058 } 1059 1060 // The function is used to legalize operations that set default environment 1061 // state. In C library a call like `fesetmode(FE_DFL_MODE)` is used for that. 1062 // On most targets supported in glibc FE_DFL_MODE is defined as 1063 // `((const femode_t *) -1)`. Such assumption is used here. If for some target 1064 // it is not true, the target must provide custom lowering. 1065 LegalizerHelper::LegalizeResult 1066 LegalizerHelper::createResetStateLibcall(MachineIRBuilder &MIRBuilder, 1067 MachineInstr &MI, 1068 LostDebugLocObserver &LocObserver) { 1069 const DataLayout &DL = MIRBuilder.getDataLayout(); 1070 auto &MF = MIRBuilder.getMF(); 1071 auto &Ctx = MF.getFunction().getContext(); 1072 1073 // Create an argument for the library function. 1074 unsigned AddrSpace = DL.getDefaultGlobalsAddressSpace(); 1075 Type *StatePtrTy = PointerType::get(Ctx, AddrSpace); 1076 unsigned PtrSize = DL.getPointerSizeInBits(AddrSpace); 1077 LLT MemTy = LLT::pointer(AddrSpace, PtrSize); 1078 auto DefValue = MIRBuilder.buildConstant(LLT::scalar(PtrSize), -1LL); 1079 DstOp Dest(MRI.createGenericVirtualRegister(MemTy)); 1080 MIRBuilder.buildIntToPtr(Dest, DefValue); 1081 1082 RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI); 1083 return createLibcall(MIRBuilder, RTLibcall, 1084 CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0), 1085 CallLowering::ArgInfo({Dest.getReg(), StatePtrTy, 0}), 1086 LocObserver, &MI); 1087 } 1088 1089 LegalizerHelper::LegalizeResult 1090 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 1091 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1092 1093 switch (MI.getOpcode()) { 1094 default: 1095 return UnableToLegalize; 1096 case TargetOpcode::G_MUL: 1097 case TargetOpcode::G_SDIV: 1098 case TargetOpcode::G_UDIV: 1099 case TargetOpcode::G_SREM: 1100 case TargetOpcode::G_UREM: 1101 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 1102 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 1103 unsigned Size = LLTy.getSizeInBits(); 1104 Type *HLTy = IntegerType::get(Ctx, Size); 1105 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy, LocObserver); 1106 if (Status != Legalized) 1107 return Status; 1108 break; 1109 } 1110 case TargetOpcode::G_FADD: 1111 case TargetOpcode::G_FSUB: 1112 case TargetOpcode::G_FMUL: 1113 case TargetOpcode::G_FDIV: 1114 case TargetOpcode::G_FMA: 1115 case TargetOpcode::G_FPOW: 1116 case TargetOpcode::G_FREM: 1117 case TargetOpcode::G_FCOS: 1118 case TargetOpcode::G_FSIN: 1119 case TargetOpcode::G_FLOG10: 1120 case TargetOpcode::G_FLOG: 1121 case TargetOpcode::G_FLOG2: 1122 case TargetOpcode::G_FLDEXP: 1123 case TargetOpcode::G_FEXP: 1124 case TargetOpcode::G_FEXP2: 1125 case TargetOpcode::G_FEXP10: 1126 case TargetOpcode::G_FCEIL: 1127 case TargetOpcode::G_FFLOOR: 1128 case TargetOpcode::G_FMINNUM: 1129 case TargetOpcode::G_FMAXNUM: 1130 case TargetOpcode::G_FSQRT: 1131 case TargetOpcode::G_FRINT: 1132 case TargetOpcode::G_FNEARBYINT: 1133 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 1134 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 1135 unsigned Size = LLTy.getSizeInBits(); 1136 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 1137 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 1138 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 1139 return UnableToLegalize; 1140 } 1141 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy, LocObserver); 1142 if (Status != Legalized) 1143 return Status; 1144 break; 1145 } 1146 case TargetOpcode::G_FPOWI: { 1147 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 1148 unsigned Size = LLTy.getSizeInBits(); 1149 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 1150 Type *ITy = IntegerType::get( 1151 Ctx, MRI.getType(MI.getOperand(2).getReg()).getSizeInBits()); 1152 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 1153 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 1154 return UnableToLegalize; 1155 } 1156 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 1157 std::initializer_list<CallLowering::ArgInfo> Args = { 1158 {MI.getOperand(1).getReg(), HLTy, 0}, 1159 {MI.getOperand(2).getReg(), ITy, 1}}; 1160 LegalizeResult Status = 1161 createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), HLTy, 0}, 1162 Args, LocObserver, &MI); 1163 if (Status != Legalized) 1164 return Status; 1165 break; 1166 } 1167 case TargetOpcode::G_FPEXT: 1168 case TargetOpcode::G_FPTRUNC: { 1169 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 1170 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 1171 if (!FromTy || !ToTy) 1172 return UnableToLegalize; 1173 LegalizeResult Status = 1174 conversionLibcall(MI, MIRBuilder, ToTy, FromTy, LocObserver); 1175 if (Status != Legalized) 1176 return Status; 1177 break; 1178 } 1179 case TargetOpcode::G_FPTOSI: 1180 case TargetOpcode::G_FPTOUI: { 1181 // FIXME: Support other types 1182 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 1183 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 1184 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 1185 return UnableToLegalize; 1186 LegalizeResult Status = conversionLibcall( 1187 MI, MIRBuilder, 1188 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 1189 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 1190 LocObserver); 1191 if (Status != Legalized) 1192 return Status; 1193 break; 1194 } 1195 case TargetOpcode::G_SITOFP: 1196 case TargetOpcode::G_UITOFP: { 1197 // FIXME: Support other types 1198 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 1199 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 1200 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 1201 return UnableToLegalize; 1202 LegalizeResult Status = conversionLibcall( 1203 MI, MIRBuilder, 1204 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 1205 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 1206 LocObserver); 1207 if (Status != Legalized) 1208 return Status; 1209 break; 1210 } 1211 case TargetOpcode::G_ATOMICRMW_XCHG: 1212 case TargetOpcode::G_ATOMICRMW_ADD: 1213 case TargetOpcode::G_ATOMICRMW_SUB: 1214 case TargetOpcode::G_ATOMICRMW_AND: 1215 case TargetOpcode::G_ATOMICRMW_OR: 1216 case TargetOpcode::G_ATOMICRMW_XOR: 1217 case TargetOpcode::G_ATOMIC_CMPXCHG: 1218 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1219 auto Status = createAtomicLibcall(MIRBuilder, MI); 1220 if (Status != Legalized) 1221 return Status; 1222 break; 1223 } 1224 case TargetOpcode::G_BZERO: 1225 case TargetOpcode::G_MEMCPY: 1226 case TargetOpcode::G_MEMMOVE: 1227 case TargetOpcode::G_MEMSET: { 1228 LegalizeResult Result = 1229 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 1230 if (Result != Legalized) 1231 return Result; 1232 MI.eraseFromParent(); 1233 return Result; 1234 } 1235 case TargetOpcode::G_GET_FPMODE: { 1236 LegalizeResult Result = createGetStateLibcall(MIRBuilder, MI, LocObserver); 1237 if (Result != Legalized) 1238 return Result; 1239 break; 1240 } 1241 case TargetOpcode::G_SET_FPMODE: { 1242 LegalizeResult Result = createSetStateLibcall(MIRBuilder, MI, LocObserver); 1243 if (Result != Legalized) 1244 return Result; 1245 break; 1246 } 1247 case TargetOpcode::G_RESET_FPMODE: { 1248 LegalizeResult Result = 1249 createResetStateLibcall(MIRBuilder, MI, LocObserver); 1250 if (Result != Legalized) 1251 return Result; 1252 break; 1253 } 1254 } 1255 1256 MI.eraseFromParent(); 1257 return Legalized; 1258 } 1259 1260 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 1261 unsigned TypeIdx, 1262 LLT NarrowTy) { 1263 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 1264 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 1265 1266 switch (MI.getOpcode()) { 1267 default: 1268 return UnableToLegalize; 1269 case TargetOpcode::G_IMPLICIT_DEF: { 1270 Register DstReg = MI.getOperand(0).getReg(); 1271 LLT DstTy = MRI.getType(DstReg); 1272 1273 // If SizeOp0 is not an exact multiple of NarrowSize, emit 1274 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 1275 // FIXME: Although this would also be legal for the general case, it causes 1276 // a lot of regressions in the emitted code (superfluous COPYs, artifact 1277 // combines not being hit). This seems to be a problem related to the 1278 // artifact combiner. 1279 if (SizeOp0 % NarrowSize != 0) { 1280 LLT ImplicitTy = NarrowTy; 1281 if (DstTy.isVector()) 1282 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); 1283 1284 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 1285 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 1286 1287 MI.eraseFromParent(); 1288 return Legalized; 1289 } 1290 1291 int NumParts = SizeOp0 / NarrowSize; 1292 1293 SmallVector<Register, 2> DstRegs; 1294 for (int i = 0; i < NumParts; ++i) 1295 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 1296 1297 if (DstTy.isVector()) 1298 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1299 else 1300 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); 1301 MI.eraseFromParent(); 1302 return Legalized; 1303 } 1304 case TargetOpcode::G_CONSTANT: { 1305 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1306 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 1307 unsigned TotalSize = Ty.getSizeInBits(); 1308 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1309 int NumParts = TotalSize / NarrowSize; 1310 1311 SmallVector<Register, 4> PartRegs; 1312 for (int I = 0; I != NumParts; ++I) { 1313 unsigned Offset = I * NarrowSize; 1314 auto K = MIRBuilder.buildConstant(NarrowTy, 1315 Val.lshr(Offset).trunc(NarrowSize)); 1316 PartRegs.push_back(K.getReg(0)); 1317 } 1318 1319 LLT LeftoverTy; 1320 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 1321 SmallVector<Register, 1> LeftoverRegs; 1322 if (LeftoverBits != 0) { 1323 LeftoverTy = LLT::scalar(LeftoverBits); 1324 auto K = MIRBuilder.buildConstant( 1325 LeftoverTy, 1326 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 1327 LeftoverRegs.push_back(K.getReg(0)); 1328 } 1329 1330 insertParts(MI.getOperand(0).getReg(), 1331 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 1332 1333 MI.eraseFromParent(); 1334 return Legalized; 1335 } 1336 case TargetOpcode::G_SEXT: 1337 case TargetOpcode::G_ZEXT: 1338 case TargetOpcode::G_ANYEXT: 1339 return narrowScalarExt(MI, TypeIdx, NarrowTy); 1340 case TargetOpcode::G_TRUNC: { 1341 if (TypeIdx != 1) 1342 return UnableToLegalize; 1343 1344 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 1345 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 1346 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 1347 return UnableToLegalize; 1348 } 1349 1350 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 1351 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 1352 MI.eraseFromParent(); 1353 return Legalized; 1354 } 1355 1356 case TargetOpcode::G_FREEZE: { 1357 if (TypeIdx != 0) 1358 return UnableToLegalize; 1359 1360 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1361 // Should widen scalar first 1362 if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0) 1363 return UnableToLegalize; 1364 1365 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); 1366 SmallVector<Register, 8> Parts; 1367 for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) { 1368 Parts.push_back( 1369 MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0)); 1370 } 1371 1372 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0).getReg(), Parts); 1373 MI.eraseFromParent(); 1374 return Legalized; 1375 } 1376 case TargetOpcode::G_ADD: 1377 case TargetOpcode::G_SUB: 1378 case TargetOpcode::G_SADDO: 1379 case TargetOpcode::G_SSUBO: 1380 case TargetOpcode::G_SADDE: 1381 case TargetOpcode::G_SSUBE: 1382 case TargetOpcode::G_UADDO: 1383 case TargetOpcode::G_USUBO: 1384 case TargetOpcode::G_UADDE: 1385 case TargetOpcode::G_USUBE: 1386 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 1387 case TargetOpcode::G_MUL: 1388 case TargetOpcode::G_UMULH: 1389 return narrowScalarMul(MI, NarrowTy); 1390 case TargetOpcode::G_EXTRACT: 1391 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 1392 case TargetOpcode::G_INSERT: 1393 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 1394 case TargetOpcode::G_LOAD: { 1395 auto &LoadMI = cast<GLoad>(MI); 1396 Register DstReg = LoadMI.getDstReg(); 1397 LLT DstTy = MRI.getType(DstReg); 1398 if (DstTy.isVector()) 1399 return UnableToLegalize; 1400 1401 if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) { 1402 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1403 MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO()); 1404 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1405 LoadMI.eraseFromParent(); 1406 return Legalized; 1407 } 1408 1409 return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy); 1410 } 1411 case TargetOpcode::G_ZEXTLOAD: 1412 case TargetOpcode::G_SEXTLOAD: { 1413 auto &LoadMI = cast<GExtLoad>(MI); 1414 Register DstReg = LoadMI.getDstReg(); 1415 Register PtrReg = LoadMI.getPointerReg(); 1416 1417 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1418 auto &MMO = LoadMI.getMMO(); 1419 unsigned MemSize = MMO.getSizeInBits(); 1420 1421 if (MemSize == NarrowSize) { 1422 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1423 } else if (MemSize < NarrowSize) { 1424 MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO); 1425 } else if (MemSize > NarrowSize) { 1426 // FIXME: Need to split the load. 1427 return UnableToLegalize; 1428 } 1429 1430 if (isa<GZExtLoad>(LoadMI)) 1431 MIRBuilder.buildZExt(DstReg, TmpReg); 1432 else 1433 MIRBuilder.buildSExt(DstReg, TmpReg); 1434 1435 LoadMI.eraseFromParent(); 1436 return Legalized; 1437 } 1438 case TargetOpcode::G_STORE: { 1439 auto &StoreMI = cast<GStore>(MI); 1440 1441 Register SrcReg = StoreMI.getValueReg(); 1442 LLT SrcTy = MRI.getType(SrcReg); 1443 if (SrcTy.isVector()) 1444 return UnableToLegalize; 1445 1446 int NumParts = SizeOp0 / NarrowSize; 1447 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 1448 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 1449 if (SrcTy.isVector() && LeftoverBits != 0) 1450 return UnableToLegalize; 1451 1452 if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) { 1453 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1454 MIRBuilder.buildTrunc(TmpReg, SrcReg); 1455 MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO()); 1456 StoreMI.eraseFromParent(); 1457 return Legalized; 1458 } 1459 1460 return reduceLoadStoreWidth(StoreMI, 0, NarrowTy); 1461 } 1462 case TargetOpcode::G_SELECT: 1463 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1464 case TargetOpcode::G_AND: 1465 case TargetOpcode::G_OR: 1466 case TargetOpcode::G_XOR: { 1467 // Legalize bitwise operation: 1468 // A = BinOp<Ty> B, C 1469 // into: 1470 // B1, ..., BN = G_UNMERGE_VALUES B 1471 // C1, ..., CN = G_UNMERGE_VALUES C 1472 // A1 = BinOp<Ty/N> B1, C2 1473 // ... 1474 // AN = BinOp<Ty/N> BN, CN 1475 // A = G_MERGE_VALUES A1, ..., AN 1476 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1477 } 1478 case TargetOpcode::G_SHL: 1479 case TargetOpcode::G_LSHR: 1480 case TargetOpcode::G_ASHR: 1481 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1482 case TargetOpcode::G_CTLZ: 1483 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1484 case TargetOpcode::G_CTTZ: 1485 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1486 case TargetOpcode::G_CTPOP: 1487 if (TypeIdx == 1) 1488 switch (MI.getOpcode()) { 1489 case TargetOpcode::G_CTLZ: 1490 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1491 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1492 case TargetOpcode::G_CTTZ: 1493 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1494 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1495 case TargetOpcode::G_CTPOP: 1496 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1497 default: 1498 return UnableToLegalize; 1499 } 1500 1501 Observer.changingInstr(MI); 1502 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1503 Observer.changedInstr(MI); 1504 return Legalized; 1505 case TargetOpcode::G_INTTOPTR: 1506 if (TypeIdx != 1) 1507 return UnableToLegalize; 1508 1509 Observer.changingInstr(MI); 1510 narrowScalarSrc(MI, NarrowTy, 1); 1511 Observer.changedInstr(MI); 1512 return Legalized; 1513 case TargetOpcode::G_PTRTOINT: 1514 if (TypeIdx != 0) 1515 return UnableToLegalize; 1516 1517 Observer.changingInstr(MI); 1518 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1519 Observer.changedInstr(MI); 1520 return Legalized; 1521 case TargetOpcode::G_PHI: { 1522 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1523 // NarrowSize. 1524 if (SizeOp0 % NarrowSize != 0) 1525 return UnableToLegalize; 1526 1527 unsigned NumParts = SizeOp0 / NarrowSize; 1528 SmallVector<Register, 2> DstRegs(NumParts); 1529 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1530 Observer.changingInstr(MI); 1531 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1532 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1533 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward()); 1534 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1535 SrcRegs[i / 2]); 1536 } 1537 MachineBasicBlock &MBB = *MI.getParent(); 1538 MIRBuilder.setInsertPt(MBB, MI); 1539 for (unsigned i = 0; i < NumParts; ++i) { 1540 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1541 MachineInstrBuilder MIB = 1542 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1543 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1544 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1545 } 1546 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1547 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), DstRegs); 1548 Observer.changedInstr(MI); 1549 MI.eraseFromParent(); 1550 return Legalized; 1551 } 1552 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1553 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1554 if (TypeIdx != 2) 1555 return UnableToLegalize; 1556 1557 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1558 Observer.changingInstr(MI); 1559 narrowScalarSrc(MI, NarrowTy, OpIdx); 1560 Observer.changedInstr(MI); 1561 return Legalized; 1562 } 1563 case TargetOpcode::G_ICMP: { 1564 Register LHS = MI.getOperand(2).getReg(); 1565 LLT SrcTy = MRI.getType(LHS); 1566 uint64_t SrcSize = SrcTy.getSizeInBits(); 1567 CmpInst::Predicate Pred = 1568 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1569 1570 // TODO: Handle the non-equality case for weird sizes. 1571 if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred)) 1572 return UnableToLegalize; 1573 1574 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover) 1575 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs; 1576 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs, 1577 LHSLeftoverRegs)) 1578 return UnableToLegalize; 1579 1580 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type. 1581 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs; 1582 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused, 1583 RHSPartRegs, RHSLeftoverRegs)) 1584 return UnableToLegalize; 1585 1586 // We now have the LHS and RHS of the compare split into narrow-type 1587 // registers, plus potentially some leftover type. 1588 Register Dst = MI.getOperand(0).getReg(); 1589 LLT ResTy = MRI.getType(Dst); 1590 if (ICmpInst::isEquality(Pred)) { 1591 // For each part on the LHS and RHS, keep track of the result of XOR-ing 1592 // them together. For each equal part, the result should be all 0s. For 1593 // each non-equal part, we'll get at least one 1. 1594 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1595 SmallVector<Register, 4> Xors; 1596 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) { 1597 auto LHS = std::get<0>(LHSAndRHS); 1598 auto RHS = std::get<1>(LHSAndRHS); 1599 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0); 1600 Xors.push_back(Xor); 1601 } 1602 1603 // Build a G_XOR for each leftover register. Each G_XOR must be widened 1604 // to the desired narrow type so that we can OR them together later. 1605 SmallVector<Register, 4> WidenedXors; 1606 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) { 1607 auto LHS = std::get<0>(LHSAndRHS); 1608 auto RHS = std::get<1>(LHSAndRHS); 1609 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0); 1610 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor); 1611 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors, 1612 /* PadStrategy = */ TargetOpcode::G_ZEXT); 1613 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end()); 1614 } 1615 1616 // Now, for each part we broke up, we know if they are equal/not equal 1617 // based off the G_XOR. We can OR these all together and compare against 1618 // 0 to get the result. 1619 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?"); 1620 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]); 1621 for (unsigned I = 2, E = Xors.size(); I < E; ++I) 1622 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]); 1623 MIRBuilder.buildICmp(Pred, Dst, Or, Zero); 1624 } else { 1625 // TODO: Handle non-power-of-two types. 1626 assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?"); 1627 assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?"); 1628 Register LHSL = LHSPartRegs[0]; 1629 Register LHSH = LHSPartRegs[1]; 1630 Register RHSL = RHSPartRegs[0]; 1631 Register RHSH = RHSPartRegs[1]; 1632 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1633 MachineInstrBuilder CmpHEQ = 1634 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1635 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1636 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1637 MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH); 1638 } 1639 MI.eraseFromParent(); 1640 return Legalized; 1641 } 1642 case TargetOpcode::G_SEXT_INREG: { 1643 if (TypeIdx != 0) 1644 return UnableToLegalize; 1645 1646 int64_t SizeInBits = MI.getOperand(2).getImm(); 1647 1648 // So long as the new type has more bits than the bits we're extending we 1649 // don't need to break it apart. 1650 if (NarrowTy.getScalarSizeInBits() > SizeInBits) { 1651 Observer.changingInstr(MI); 1652 // We don't lose any non-extension bits by truncating the src and 1653 // sign-extending the dst. 1654 MachineOperand &MO1 = MI.getOperand(1); 1655 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1656 MO1.setReg(TruncMIB.getReg(0)); 1657 1658 MachineOperand &MO2 = MI.getOperand(0); 1659 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1660 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1661 MIRBuilder.buildSExt(MO2, DstExt); 1662 MO2.setReg(DstExt); 1663 Observer.changedInstr(MI); 1664 return Legalized; 1665 } 1666 1667 // Break it apart. Components below the extension point are unmodified. The 1668 // component containing the extension point becomes a narrower SEXT_INREG. 1669 // Components above it are ashr'd from the component containing the 1670 // extension point. 1671 if (SizeOp0 % NarrowSize != 0) 1672 return UnableToLegalize; 1673 int NumParts = SizeOp0 / NarrowSize; 1674 1675 // List the registers where the destination will be scattered. 1676 SmallVector<Register, 2> DstRegs; 1677 // List the registers where the source will be split. 1678 SmallVector<Register, 2> SrcRegs; 1679 1680 // Create all the temporary registers. 1681 for (int i = 0; i < NumParts; ++i) { 1682 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1683 1684 SrcRegs.push_back(SrcReg); 1685 } 1686 1687 // Explode the big arguments into smaller chunks. 1688 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1689 1690 Register AshrCstReg = 1691 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1692 .getReg(0); 1693 Register FullExtensionReg; 1694 Register PartialExtensionReg; 1695 1696 // Do the operation on each small part. 1697 for (int i = 0; i < NumParts; ++i) { 1698 if ((i + 1) * NarrowTy.getScalarSizeInBits() <= SizeInBits) { 1699 DstRegs.push_back(SrcRegs[i]); 1700 PartialExtensionReg = DstRegs.back(); 1701 } else if (i * NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1702 assert(PartialExtensionReg && 1703 "Expected to visit partial extension before full"); 1704 if (FullExtensionReg) { 1705 DstRegs.push_back(FullExtensionReg); 1706 continue; 1707 } 1708 DstRegs.push_back( 1709 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1710 .getReg(0)); 1711 FullExtensionReg = DstRegs.back(); 1712 } else { 1713 DstRegs.push_back( 1714 MIRBuilder 1715 .buildInstr( 1716 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1717 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1718 .getReg(0)); 1719 PartialExtensionReg = DstRegs.back(); 1720 } 1721 } 1722 1723 // Gather the destination registers into the final destination. 1724 Register DstReg = MI.getOperand(0).getReg(); 1725 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); 1726 MI.eraseFromParent(); 1727 return Legalized; 1728 } 1729 case TargetOpcode::G_BSWAP: 1730 case TargetOpcode::G_BITREVERSE: { 1731 if (SizeOp0 % NarrowSize != 0) 1732 return UnableToLegalize; 1733 1734 Observer.changingInstr(MI); 1735 SmallVector<Register, 2> SrcRegs, DstRegs; 1736 unsigned NumParts = SizeOp0 / NarrowSize; 1737 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1738 1739 for (unsigned i = 0; i < NumParts; ++i) { 1740 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1741 {SrcRegs[NumParts - 1 - i]}); 1742 DstRegs.push_back(DstPart.getReg(0)); 1743 } 1744 1745 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), DstRegs); 1746 1747 Observer.changedInstr(MI); 1748 MI.eraseFromParent(); 1749 return Legalized; 1750 } 1751 case TargetOpcode::G_PTR_ADD: 1752 case TargetOpcode::G_PTRMASK: { 1753 if (TypeIdx != 1) 1754 return UnableToLegalize; 1755 Observer.changingInstr(MI); 1756 narrowScalarSrc(MI, NarrowTy, 2); 1757 Observer.changedInstr(MI); 1758 return Legalized; 1759 } 1760 case TargetOpcode::G_FPTOUI: 1761 case TargetOpcode::G_FPTOSI: 1762 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1763 case TargetOpcode::G_FPEXT: 1764 if (TypeIdx != 0) 1765 return UnableToLegalize; 1766 Observer.changingInstr(MI); 1767 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1768 Observer.changedInstr(MI); 1769 return Legalized; 1770 case TargetOpcode::G_FLDEXP: 1771 case TargetOpcode::G_STRICT_FLDEXP: 1772 return narrowScalarFLDEXP(MI, TypeIdx, NarrowTy); 1773 } 1774 } 1775 1776 Register LegalizerHelper::coerceToScalar(Register Val) { 1777 LLT Ty = MRI.getType(Val); 1778 if (Ty.isScalar()) 1779 return Val; 1780 1781 const DataLayout &DL = MIRBuilder.getDataLayout(); 1782 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1783 if (Ty.isPointer()) { 1784 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1785 return Register(); 1786 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1787 } 1788 1789 Register NewVal = Val; 1790 1791 assert(Ty.isVector()); 1792 LLT EltTy = Ty.getElementType(); 1793 if (EltTy.isPointer()) 1794 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1795 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1796 } 1797 1798 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1799 unsigned OpIdx, unsigned ExtOpcode) { 1800 MachineOperand &MO = MI.getOperand(OpIdx); 1801 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1802 MO.setReg(ExtB.getReg(0)); 1803 } 1804 1805 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1806 unsigned OpIdx) { 1807 MachineOperand &MO = MI.getOperand(OpIdx); 1808 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1809 MO.setReg(ExtB.getReg(0)); 1810 } 1811 1812 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1813 unsigned OpIdx, unsigned TruncOpcode) { 1814 MachineOperand &MO = MI.getOperand(OpIdx); 1815 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1816 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1817 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1818 MO.setReg(DstExt); 1819 } 1820 1821 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1822 unsigned OpIdx, unsigned ExtOpcode) { 1823 MachineOperand &MO = MI.getOperand(OpIdx); 1824 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1825 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1826 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1827 MO.setReg(DstTrunc); 1828 } 1829 1830 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1831 unsigned OpIdx) { 1832 MachineOperand &MO = MI.getOperand(OpIdx); 1833 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1834 Register Dst = MO.getReg(); 1835 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1836 MO.setReg(DstExt); 1837 MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt); 1838 } 1839 1840 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1841 unsigned OpIdx) { 1842 MachineOperand &MO = MI.getOperand(OpIdx); 1843 SmallVector<Register, 8> Regs; 1844 MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0)); 1845 } 1846 1847 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1848 MachineOperand &Op = MI.getOperand(OpIdx); 1849 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1850 } 1851 1852 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1853 MachineOperand &MO = MI.getOperand(OpIdx); 1854 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1855 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1856 MIRBuilder.buildBitcast(MO, CastDst); 1857 MO.setReg(CastDst); 1858 } 1859 1860 LegalizerHelper::LegalizeResult 1861 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1862 LLT WideTy) { 1863 if (TypeIdx != 1) 1864 return UnableToLegalize; 1865 1866 auto [DstReg, DstTy, Src1Reg, Src1Ty] = MI.getFirst2RegLLTs(); 1867 if (DstTy.isVector()) 1868 return UnableToLegalize; 1869 1870 LLT SrcTy = MRI.getType(Src1Reg); 1871 const int DstSize = DstTy.getSizeInBits(); 1872 const int SrcSize = SrcTy.getSizeInBits(); 1873 const int WideSize = WideTy.getSizeInBits(); 1874 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1875 1876 unsigned NumOps = MI.getNumOperands(); 1877 unsigned NumSrc = MI.getNumOperands() - 1; 1878 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1879 1880 if (WideSize >= DstSize) { 1881 // Directly pack the bits in the target type. 1882 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1Reg).getReg(0); 1883 1884 for (unsigned I = 2; I != NumOps; ++I) { 1885 const unsigned Offset = (I - 1) * PartSize; 1886 1887 Register SrcReg = MI.getOperand(I).getReg(); 1888 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1889 1890 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1891 1892 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1893 MRI.createGenericVirtualRegister(WideTy); 1894 1895 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1896 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1897 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1898 ResultReg = NextResult; 1899 } 1900 1901 if (WideSize > DstSize) 1902 MIRBuilder.buildTrunc(DstReg, ResultReg); 1903 else if (DstTy.isPointer()) 1904 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1905 1906 MI.eraseFromParent(); 1907 return Legalized; 1908 } 1909 1910 // Unmerge the original values to the GCD type, and recombine to the next 1911 // multiple greater than the original type. 1912 // 1913 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1914 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1915 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1916 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1917 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1918 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1919 // %12:_(s12) = G_MERGE_VALUES %10, %11 1920 // 1921 // Padding with undef if necessary: 1922 // 1923 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1924 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1925 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1926 // %7:_(s2) = G_IMPLICIT_DEF 1927 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1928 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1929 // %10:_(s12) = G_MERGE_VALUES %8, %9 1930 1931 const int GCD = std::gcd(SrcSize, WideSize); 1932 LLT GCDTy = LLT::scalar(GCD); 1933 1934 SmallVector<Register, 8> Parts; 1935 SmallVector<Register, 8> NewMergeRegs; 1936 SmallVector<Register, 8> Unmerges; 1937 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1938 1939 // Decompose the original operands if they don't evenly divide. 1940 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 1941 Register SrcReg = MO.getReg(); 1942 if (GCD == SrcSize) { 1943 Unmerges.push_back(SrcReg); 1944 } else { 1945 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1946 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1947 Unmerges.push_back(Unmerge.getReg(J)); 1948 } 1949 } 1950 1951 // Pad with undef to the next size that is a multiple of the requested size. 1952 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1953 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1954 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1955 Unmerges.push_back(UndefReg); 1956 } 1957 1958 const int PartsPerGCD = WideSize / GCD; 1959 1960 // Build merges of each piece. 1961 ArrayRef<Register> Slicer(Unmerges); 1962 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1963 auto Merge = 1964 MIRBuilder.buildMergeLikeInstr(WideTy, Slicer.take_front(PartsPerGCD)); 1965 NewMergeRegs.push_back(Merge.getReg(0)); 1966 } 1967 1968 // A truncate may be necessary if the requested type doesn't evenly divide the 1969 // original result type. 1970 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1971 MIRBuilder.buildMergeLikeInstr(DstReg, NewMergeRegs); 1972 } else { 1973 auto FinalMerge = MIRBuilder.buildMergeLikeInstr(WideDstTy, NewMergeRegs); 1974 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1975 } 1976 1977 MI.eraseFromParent(); 1978 return Legalized; 1979 } 1980 1981 LegalizerHelper::LegalizeResult 1982 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1983 LLT WideTy) { 1984 if (TypeIdx != 0) 1985 return UnableToLegalize; 1986 1987 int NumDst = MI.getNumOperands() - 1; 1988 Register SrcReg = MI.getOperand(NumDst).getReg(); 1989 LLT SrcTy = MRI.getType(SrcReg); 1990 if (SrcTy.isVector()) 1991 return UnableToLegalize; 1992 1993 Register Dst0Reg = MI.getOperand(0).getReg(); 1994 LLT DstTy = MRI.getType(Dst0Reg); 1995 if (!DstTy.isScalar()) 1996 return UnableToLegalize; 1997 1998 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1999 if (SrcTy.isPointer()) { 2000 const DataLayout &DL = MIRBuilder.getDataLayout(); 2001 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 2002 LLVM_DEBUG( 2003 dbgs() << "Not casting non-integral address space integer\n"); 2004 return UnableToLegalize; 2005 } 2006 2007 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 2008 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 2009 } 2010 2011 // Widen SrcTy to WideTy. This does not affect the result, but since the 2012 // user requested this size, it is probably better handled than SrcTy and 2013 // should reduce the total number of legalization artifacts. 2014 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 2015 SrcTy = WideTy; 2016 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 2017 } 2018 2019 // Theres no unmerge type to target. Directly extract the bits from the 2020 // source type 2021 unsigned DstSize = DstTy.getSizeInBits(); 2022 2023 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 2024 for (int I = 1; I != NumDst; ++I) { 2025 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 2026 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 2027 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 2028 } 2029 2030 MI.eraseFromParent(); 2031 return Legalized; 2032 } 2033 2034 // Extend the source to a wider type. 2035 LLT LCMTy = getLCMType(SrcTy, WideTy); 2036 2037 Register WideSrc = SrcReg; 2038 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 2039 // TODO: If this is an integral address space, cast to integer and anyext. 2040 if (SrcTy.isPointer()) { 2041 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 2042 return UnableToLegalize; 2043 } 2044 2045 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 2046 } 2047 2048 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 2049 2050 // Create a sequence of unmerges and merges to the original results. Since we 2051 // may have widened the source, we will need to pad the results with dead defs 2052 // to cover the source register. 2053 // e.g. widen s48 to s64: 2054 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 2055 // 2056 // => 2057 // %4:_(s192) = G_ANYEXT %0:_(s96) 2058 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 2059 // ; unpack to GCD type, with extra dead defs 2060 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 2061 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 2062 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 2063 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 2064 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 2065 const LLT GCDTy = getGCDType(WideTy, DstTy); 2066 const int NumUnmerge = Unmerge->getNumOperands() - 1; 2067 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 2068 2069 // Directly unmerge to the destination without going through a GCD type 2070 // if possible 2071 if (PartsPerRemerge == 1) { 2072 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 2073 2074 for (int I = 0; I != NumUnmerge; ++I) { 2075 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 2076 2077 for (int J = 0; J != PartsPerUnmerge; ++J) { 2078 int Idx = I * PartsPerUnmerge + J; 2079 if (Idx < NumDst) 2080 MIB.addDef(MI.getOperand(Idx).getReg()); 2081 else { 2082 // Create dead def for excess components. 2083 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 2084 } 2085 } 2086 2087 MIB.addUse(Unmerge.getReg(I)); 2088 } 2089 } else { 2090 SmallVector<Register, 16> Parts; 2091 for (int J = 0; J != NumUnmerge; ++J) 2092 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 2093 2094 SmallVector<Register, 8> RemergeParts; 2095 for (int I = 0; I != NumDst; ++I) { 2096 for (int J = 0; J < PartsPerRemerge; ++J) { 2097 const int Idx = I * PartsPerRemerge + J; 2098 RemergeParts.emplace_back(Parts[Idx]); 2099 } 2100 2101 MIRBuilder.buildMergeLikeInstr(MI.getOperand(I).getReg(), RemergeParts); 2102 RemergeParts.clear(); 2103 } 2104 } 2105 2106 MI.eraseFromParent(); 2107 return Legalized; 2108 } 2109 2110 LegalizerHelper::LegalizeResult 2111 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 2112 LLT WideTy) { 2113 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 2114 unsigned Offset = MI.getOperand(2).getImm(); 2115 2116 if (TypeIdx == 0) { 2117 if (SrcTy.isVector() || DstTy.isVector()) 2118 return UnableToLegalize; 2119 2120 SrcOp Src(SrcReg); 2121 if (SrcTy.isPointer()) { 2122 // Extracts from pointers can be handled only if they are really just 2123 // simple integers. 2124 const DataLayout &DL = MIRBuilder.getDataLayout(); 2125 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 2126 return UnableToLegalize; 2127 2128 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 2129 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 2130 SrcTy = SrcAsIntTy; 2131 } 2132 2133 if (DstTy.isPointer()) 2134 return UnableToLegalize; 2135 2136 if (Offset == 0) { 2137 // Avoid a shift in the degenerate case. 2138 MIRBuilder.buildTrunc(DstReg, 2139 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 2140 MI.eraseFromParent(); 2141 return Legalized; 2142 } 2143 2144 // Do a shift in the source type. 2145 LLT ShiftTy = SrcTy; 2146 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 2147 Src = MIRBuilder.buildAnyExt(WideTy, Src); 2148 ShiftTy = WideTy; 2149 } 2150 2151 auto LShr = MIRBuilder.buildLShr( 2152 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 2153 MIRBuilder.buildTrunc(DstReg, LShr); 2154 MI.eraseFromParent(); 2155 return Legalized; 2156 } 2157 2158 if (SrcTy.isScalar()) { 2159 Observer.changingInstr(MI); 2160 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2161 Observer.changedInstr(MI); 2162 return Legalized; 2163 } 2164 2165 if (!SrcTy.isVector()) 2166 return UnableToLegalize; 2167 2168 if (DstTy != SrcTy.getElementType()) 2169 return UnableToLegalize; 2170 2171 if (Offset % SrcTy.getScalarSizeInBits() != 0) 2172 return UnableToLegalize; 2173 2174 Observer.changingInstr(MI); 2175 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2176 2177 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 2178 Offset); 2179 widenScalarDst(MI, WideTy.getScalarType(), 0); 2180 Observer.changedInstr(MI); 2181 return Legalized; 2182 } 2183 2184 LegalizerHelper::LegalizeResult 2185 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 2186 LLT WideTy) { 2187 if (TypeIdx != 0 || WideTy.isVector()) 2188 return UnableToLegalize; 2189 Observer.changingInstr(MI); 2190 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2191 widenScalarDst(MI, WideTy); 2192 Observer.changedInstr(MI); 2193 return Legalized; 2194 } 2195 2196 LegalizerHelper::LegalizeResult 2197 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 2198 LLT WideTy) { 2199 unsigned Opcode; 2200 unsigned ExtOpcode; 2201 std::optional<Register> CarryIn; 2202 switch (MI.getOpcode()) { 2203 default: 2204 llvm_unreachable("Unexpected opcode!"); 2205 case TargetOpcode::G_SADDO: 2206 Opcode = TargetOpcode::G_ADD; 2207 ExtOpcode = TargetOpcode::G_SEXT; 2208 break; 2209 case TargetOpcode::G_SSUBO: 2210 Opcode = TargetOpcode::G_SUB; 2211 ExtOpcode = TargetOpcode::G_SEXT; 2212 break; 2213 case TargetOpcode::G_UADDO: 2214 Opcode = TargetOpcode::G_ADD; 2215 ExtOpcode = TargetOpcode::G_ZEXT; 2216 break; 2217 case TargetOpcode::G_USUBO: 2218 Opcode = TargetOpcode::G_SUB; 2219 ExtOpcode = TargetOpcode::G_ZEXT; 2220 break; 2221 case TargetOpcode::G_SADDE: 2222 Opcode = TargetOpcode::G_UADDE; 2223 ExtOpcode = TargetOpcode::G_SEXT; 2224 CarryIn = MI.getOperand(4).getReg(); 2225 break; 2226 case TargetOpcode::G_SSUBE: 2227 Opcode = TargetOpcode::G_USUBE; 2228 ExtOpcode = TargetOpcode::G_SEXT; 2229 CarryIn = MI.getOperand(4).getReg(); 2230 break; 2231 case TargetOpcode::G_UADDE: 2232 Opcode = TargetOpcode::G_UADDE; 2233 ExtOpcode = TargetOpcode::G_ZEXT; 2234 CarryIn = MI.getOperand(4).getReg(); 2235 break; 2236 case TargetOpcode::G_USUBE: 2237 Opcode = TargetOpcode::G_USUBE; 2238 ExtOpcode = TargetOpcode::G_ZEXT; 2239 CarryIn = MI.getOperand(4).getReg(); 2240 break; 2241 } 2242 2243 if (TypeIdx == 1) { 2244 unsigned BoolExtOp = MIRBuilder.getBoolExtOp(WideTy.isVector(), false); 2245 2246 Observer.changingInstr(MI); 2247 if (CarryIn) 2248 widenScalarSrc(MI, WideTy, 4, BoolExtOp); 2249 widenScalarDst(MI, WideTy, 1); 2250 2251 Observer.changedInstr(MI); 2252 return Legalized; 2253 } 2254 2255 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 2256 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 2257 // Do the arithmetic in the larger type. 2258 Register NewOp; 2259 if (CarryIn) { 2260 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 2261 NewOp = MIRBuilder 2262 .buildInstr(Opcode, {WideTy, CarryOutTy}, 2263 {LHSExt, RHSExt, *CarryIn}) 2264 .getReg(0); 2265 } else { 2266 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 2267 } 2268 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 2269 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 2270 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 2271 // There is no overflow if the ExtOp is the same as NewOp. 2272 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 2273 // Now trunc the NewOp to the original result. 2274 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 2275 MI.eraseFromParent(); 2276 return Legalized; 2277 } 2278 2279 LegalizerHelper::LegalizeResult 2280 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 2281 LLT WideTy) { 2282 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 2283 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 2284 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 2285 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 2286 MI.getOpcode() == TargetOpcode::G_USHLSAT; 2287 // We can convert this to: 2288 // 1. Any extend iN to iM 2289 // 2. SHL by M-N 2290 // 3. [US][ADD|SUB|SHL]SAT 2291 // 4. L/ASHR by M-N 2292 // 2293 // It may be more efficient to lower this to a min and a max operation in 2294 // the higher precision arithmetic if the promoted operation isn't legal, 2295 // but this decision is up to the target's lowering request. 2296 Register DstReg = MI.getOperand(0).getReg(); 2297 2298 unsigned NewBits = WideTy.getScalarSizeInBits(); 2299 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 2300 2301 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 2302 // must not left shift the RHS to preserve the shift amount. 2303 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 2304 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 2305 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 2306 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 2307 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 2308 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 2309 2310 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 2311 {ShiftL, ShiftR}, MI.getFlags()); 2312 2313 // Use a shift that will preserve the number of sign bits when the trunc is 2314 // folded away. 2315 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 2316 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 2317 2318 MIRBuilder.buildTrunc(DstReg, Result); 2319 MI.eraseFromParent(); 2320 return Legalized; 2321 } 2322 2323 LegalizerHelper::LegalizeResult 2324 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 2325 LLT WideTy) { 2326 if (TypeIdx == 1) { 2327 Observer.changingInstr(MI); 2328 widenScalarDst(MI, WideTy, 1); 2329 Observer.changedInstr(MI); 2330 return Legalized; 2331 } 2332 2333 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 2334 auto [Result, OriginalOverflow, LHS, RHS] = MI.getFirst4Regs(); 2335 LLT SrcTy = MRI.getType(LHS); 2336 LLT OverflowTy = MRI.getType(OriginalOverflow); 2337 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 2338 2339 // To determine if the result overflowed in the larger type, we extend the 2340 // input to the larger type, do the multiply (checking if it overflows), 2341 // then also check the high bits of the result to see if overflow happened 2342 // there. 2343 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2344 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 2345 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 2346 2347 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 2348 // so we don't need to check the overflow result of larger type Mulo. 2349 bool WideMulCanOverflow = WideTy.getScalarSizeInBits() < 2 * SrcBitWidth; 2350 2351 unsigned MulOpc = 2352 WideMulCanOverflow ? MI.getOpcode() : (unsigned)TargetOpcode::G_MUL; 2353 2354 MachineInstrBuilder Mulo; 2355 if (WideMulCanOverflow) 2356 Mulo = MIRBuilder.buildInstr(MulOpc, {WideTy, OverflowTy}, 2357 {LeftOperand, RightOperand}); 2358 else 2359 Mulo = MIRBuilder.buildInstr(MulOpc, {WideTy}, {LeftOperand, RightOperand}); 2360 2361 auto Mul = Mulo->getOperand(0); 2362 MIRBuilder.buildTrunc(Result, Mul); 2363 2364 MachineInstrBuilder ExtResult; 2365 // Overflow occurred if it occurred in the larger type, or if the high part 2366 // of the result does not zero/sign-extend the low part. Check this second 2367 // possibility first. 2368 if (IsSigned) { 2369 // For signed, overflow occurred when the high part does not sign-extend 2370 // the low part. 2371 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 2372 } else { 2373 // Unsigned overflow occurred when the high part does not zero-extend the 2374 // low part. 2375 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 2376 } 2377 2378 if (WideMulCanOverflow) { 2379 auto Overflow = 2380 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 2381 // Finally check if the multiplication in the larger type itself overflowed. 2382 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 2383 } else { 2384 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 2385 } 2386 MI.eraseFromParent(); 2387 return Legalized; 2388 } 2389 2390 LegalizerHelper::LegalizeResult 2391 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 2392 switch (MI.getOpcode()) { 2393 default: 2394 return UnableToLegalize; 2395 case TargetOpcode::G_ATOMICRMW_XCHG: 2396 case TargetOpcode::G_ATOMICRMW_ADD: 2397 case TargetOpcode::G_ATOMICRMW_SUB: 2398 case TargetOpcode::G_ATOMICRMW_AND: 2399 case TargetOpcode::G_ATOMICRMW_OR: 2400 case TargetOpcode::G_ATOMICRMW_XOR: 2401 case TargetOpcode::G_ATOMICRMW_MIN: 2402 case TargetOpcode::G_ATOMICRMW_MAX: 2403 case TargetOpcode::G_ATOMICRMW_UMIN: 2404 case TargetOpcode::G_ATOMICRMW_UMAX: 2405 assert(TypeIdx == 0 && "atomicrmw with second scalar type"); 2406 Observer.changingInstr(MI); 2407 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2408 widenScalarDst(MI, WideTy, 0); 2409 Observer.changedInstr(MI); 2410 return Legalized; 2411 case TargetOpcode::G_ATOMIC_CMPXCHG: 2412 assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type"); 2413 Observer.changingInstr(MI); 2414 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2415 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2416 widenScalarDst(MI, WideTy, 0); 2417 Observer.changedInstr(MI); 2418 return Legalized; 2419 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: 2420 if (TypeIdx == 0) { 2421 Observer.changingInstr(MI); 2422 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2423 widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT); 2424 widenScalarDst(MI, WideTy, 0); 2425 Observer.changedInstr(MI); 2426 return Legalized; 2427 } 2428 assert(TypeIdx == 1 && 2429 "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"); 2430 Observer.changingInstr(MI); 2431 widenScalarDst(MI, WideTy, 1); 2432 Observer.changedInstr(MI); 2433 return Legalized; 2434 case TargetOpcode::G_EXTRACT: 2435 return widenScalarExtract(MI, TypeIdx, WideTy); 2436 case TargetOpcode::G_INSERT: 2437 return widenScalarInsert(MI, TypeIdx, WideTy); 2438 case TargetOpcode::G_MERGE_VALUES: 2439 return widenScalarMergeValues(MI, TypeIdx, WideTy); 2440 case TargetOpcode::G_UNMERGE_VALUES: 2441 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 2442 case TargetOpcode::G_SADDO: 2443 case TargetOpcode::G_SSUBO: 2444 case TargetOpcode::G_UADDO: 2445 case TargetOpcode::G_USUBO: 2446 case TargetOpcode::G_SADDE: 2447 case TargetOpcode::G_SSUBE: 2448 case TargetOpcode::G_UADDE: 2449 case TargetOpcode::G_USUBE: 2450 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 2451 case TargetOpcode::G_UMULO: 2452 case TargetOpcode::G_SMULO: 2453 return widenScalarMulo(MI, TypeIdx, WideTy); 2454 case TargetOpcode::G_SADDSAT: 2455 case TargetOpcode::G_SSUBSAT: 2456 case TargetOpcode::G_SSHLSAT: 2457 case TargetOpcode::G_UADDSAT: 2458 case TargetOpcode::G_USUBSAT: 2459 case TargetOpcode::G_USHLSAT: 2460 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 2461 case TargetOpcode::G_CTTZ: 2462 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2463 case TargetOpcode::G_CTLZ: 2464 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2465 case TargetOpcode::G_CTPOP: { 2466 if (TypeIdx == 0) { 2467 Observer.changingInstr(MI); 2468 widenScalarDst(MI, WideTy, 0); 2469 Observer.changedInstr(MI); 2470 return Legalized; 2471 } 2472 2473 Register SrcReg = MI.getOperand(1).getReg(); 2474 2475 // First extend the input. 2476 unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ || 2477 MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF 2478 ? TargetOpcode::G_ANYEXT 2479 : TargetOpcode::G_ZEXT; 2480 auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg}); 2481 LLT CurTy = MRI.getType(SrcReg); 2482 unsigned NewOpc = MI.getOpcode(); 2483 if (NewOpc == TargetOpcode::G_CTTZ) { 2484 // The count is the same in the larger type except if the original 2485 // value was zero. This can be handled by setting the bit just off 2486 // the top of the original type. 2487 auto TopBit = 2488 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 2489 MIBSrc = MIRBuilder.buildOr( 2490 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 2491 // Now we know the operand is non-zero, use the more relaxed opcode. 2492 NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF; 2493 } 2494 2495 // Perform the operation at the larger size. 2496 auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc}); 2497 // This is already the correct result for CTPOP and CTTZs 2498 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 2499 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 2500 // The correct result is NewOp - (Difference in widety and current ty). 2501 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 2502 MIBNewOp = MIRBuilder.buildSub( 2503 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 2504 } 2505 2506 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 2507 MI.eraseFromParent(); 2508 return Legalized; 2509 } 2510 case TargetOpcode::G_BSWAP: { 2511 Observer.changingInstr(MI); 2512 Register DstReg = MI.getOperand(0).getReg(); 2513 2514 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 2515 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2516 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 2517 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2518 2519 MI.getOperand(0).setReg(DstExt); 2520 2521 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2522 2523 LLT Ty = MRI.getType(DstReg); 2524 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2525 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 2526 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 2527 2528 MIRBuilder.buildTrunc(DstReg, ShrReg); 2529 Observer.changedInstr(MI); 2530 return Legalized; 2531 } 2532 case TargetOpcode::G_BITREVERSE: { 2533 Observer.changingInstr(MI); 2534 2535 Register DstReg = MI.getOperand(0).getReg(); 2536 LLT Ty = MRI.getType(DstReg); 2537 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2538 2539 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2540 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2541 MI.getOperand(0).setReg(DstExt); 2542 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2543 2544 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 2545 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 2546 MIRBuilder.buildTrunc(DstReg, Shift); 2547 Observer.changedInstr(MI); 2548 return Legalized; 2549 } 2550 case TargetOpcode::G_FREEZE: 2551 Observer.changingInstr(MI); 2552 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2553 widenScalarDst(MI, WideTy); 2554 Observer.changedInstr(MI); 2555 return Legalized; 2556 2557 case TargetOpcode::G_ABS: 2558 Observer.changingInstr(MI); 2559 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2560 widenScalarDst(MI, WideTy); 2561 Observer.changedInstr(MI); 2562 return Legalized; 2563 2564 case TargetOpcode::G_ADD: 2565 case TargetOpcode::G_AND: 2566 case TargetOpcode::G_MUL: 2567 case TargetOpcode::G_OR: 2568 case TargetOpcode::G_XOR: 2569 case TargetOpcode::G_SUB: 2570 // Perform operation at larger width (any extension is fines here, high bits 2571 // don't affect the result) and then truncate the result back to the 2572 // original type. 2573 Observer.changingInstr(MI); 2574 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2575 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2576 widenScalarDst(MI, WideTy); 2577 Observer.changedInstr(MI); 2578 return Legalized; 2579 2580 case TargetOpcode::G_SBFX: 2581 case TargetOpcode::G_UBFX: 2582 Observer.changingInstr(MI); 2583 2584 if (TypeIdx == 0) { 2585 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2586 widenScalarDst(MI, WideTy); 2587 } else { 2588 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2589 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2590 } 2591 2592 Observer.changedInstr(MI); 2593 return Legalized; 2594 2595 case TargetOpcode::G_SHL: 2596 Observer.changingInstr(MI); 2597 2598 if (TypeIdx == 0) { 2599 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2600 widenScalarDst(MI, WideTy); 2601 } else { 2602 assert(TypeIdx == 1); 2603 // The "number of bits to shift" operand must preserve its value as an 2604 // unsigned integer: 2605 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2606 } 2607 2608 Observer.changedInstr(MI); 2609 return Legalized; 2610 2611 case TargetOpcode::G_ROTR: 2612 case TargetOpcode::G_ROTL: 2613 if (TypeIdx != 1) 2614 return UnableToLegalize; 2615 2616 Observer.changingInstr(MI); 2617 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2618 Observer.changedInstr(MI); 2619 return Legalized; 2620 2621 case TargetOpcode::G_SDIV: 2622 case TargetOpcode::G_SREM: 2623 case TargetOpcode::G_SMIN: 2624 case TargetOpcode::G_SMAX: 2625 Observer.changingInstr(MI); 2626 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2627 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2628 widenScalarDst(MI, WideTy); 2629 Observer.changedInstr(MI); 2630 return Legalized; 2631 2632 case TargetOpcode::G_SDIVREM: 2633 Observer.changingInstr(MI); 2634 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2635 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2636 widenScalarDst(MI, WideTy); 2637 widenScalarDst(MI, WideTy, 1); 2638 Observer.changedInstr(MI); 2639 return Legalized; 2640 2641 case TargetOpcode::G_ASHR: 2642 case TargetOpcode::G_LSHR: 2643 Observer.changingInstr(MI); 2644 2645 if (TypeIdx == 0) { 2646 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2647 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2648 2649 widenScalarSrc(MI, WideTy, 1, CvtOp); 2650 widenScalarDst(MI, WideTy); 2651 } else { 2652 assert(TypeIdx == 1); 2653 // The "number of bits to shift" operand must preserve its value as an 2654 // unsigned integer: 2655 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2656 } 2657 2658 Observer.changedInstr(MI); 2659 return Legalized; 2660 case TargetOpcode::G_UDIV: 2661 case TargetOpcode::G_UREM: 2662 case TargetOpcode::G_UMIN: 2663 case TargetOpcode::G_UMAX: 2664 Observer.changingInstr(MI); 2665 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2666 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2667 widenScalarDst(MI, WideTy); 2668 Observer.changedInstr(MI); 2669 return Legalized; 2670 2671 case TargetOpcode::G_UDIVREM: 2672 Observer.changingInstr(MI); 2673 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2674 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2675 widenScalarDst(MI, WideTy); 2676 widenScalarDst(MI, WideTy, 1); 2677 Observer.changedInstr(MI); 2678 return Legalized; 2679 2680 case TargetOpcode::G_SELECT: 2681 Observer.changingInstr(MI); 2682 if (TypeIdx == 0) { 2683 // Perform operation at larger width (any extension is fine here, high 2684 // bits don't affect the result) and then truncate the result back to the 2685 // original type. 2686 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2687 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2688 widenScalarDst(MI, WideTy); 2689 } else { 2690 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2691 // Explicit extension is required here since high bits affect the result. 2692 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2693 } 2694 Observer.changedInstr(MI); 2695 return Legalized; 2696 2697 case TargetOpcode::G_FPTOSI: 2698 case TargetOpcode::G_FPTOUI: 2699 case TargetOpcode::G_IS_FPCLASS: 2700 Observer.changingInstr(MI); 2701 2702 if (TypeIdx == 0) 2703 widenScalarDst(MI, WideTy); 2704 else 2705 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2706 2707 Observer.changedInstr(MI); 2708 return Legalized; 2709 case TargetOpcode::G_SITOFP: 2710 Observer.changingInstr(MI); 2711 2712 if (TypeIdx == 0) 2713 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2714 else 2715 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2716 2717 Observer.changedInstr(MI); 2718 return Legalized; 2719 case TargetOpcode::G_UITOFP: 2720 Observer.changingInstr(MI); 2721 2722 if (TypeIdx == 0) 2723 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2724 else 2725 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2726 2727 Observer.changedInstr(MI); 2728 return Legalized; 2729 case TargetOpcode::G_LOAD: 2730 case TargetOpcode::G_SEXTLOAD: 2731 case TargetOpcode::G_ZEXTLOAD: 2732 Observer.changingInstr(MI); 2733 widenScalarDst(MI, WideTy); 2734 Observer.changedInstr(MI); 2735 return Legalized; 2736 2737 case TargetOpcode::G_STORE: { 2738 if (TypeIdx != 0) 2739 return UnableToLegalize; 2740 2741 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2742 if (!Ty.isScalar()) 2743 return UnableToLegalize; 2744 2745 Observer.changingInstr(MI); 2746 2747 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2748 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2749 widenScalarSrc(MI, WideTy, 0, ExtType); 2750 2751 Observer.changedInstr(MI); 2752 return Legalized; 2753 } 2754 case TargetOpcode::G_CONSTANT: { 2755 MachineOperand &SrcMO = MI.getOperand(1); 2756 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2757 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2758 MRI.getType(MI.getOperand(0).getReg())); 2759 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2760 ExtOpc == TargetOpcode::G_ANYEXT) && 2761 "Illegal Extend"); 2762 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2763 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2764 ? SrcVal.sext(WideTy.getSizeInBits()) 2765 : SrcVal.zext(WideTy.getSizeInBits()); 2766 Observer.changingInstr(MI); 2767 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2768 2769 widenScalarDst(MI, WideTy); 2770 Observer.changedInstr(MI); 2771 return Legalized; 2772 } 2773 case TargetOpcode::G_FCONSTANT: { 2774 // To avoid changing the bits of the constant due to extension to a larger 2775 // type and then using G_FPTRUNC, we simply convert to a G_CONSTANT. 2776 MachineOperand &SrcMO = MI.getOperand(1); 2777 APInt Val = SrcMO.getFPImm()->getValueAPF().bitcastToAPInt(); 2778 MIRBuilder.setInstrAndDebugLoc(MI); 2779 auto IntCst = MIRBuilder.buildConstant(MI.getOperand(0).getReg(), Val); 2780 widenScalarDst(*IntCst, WideTy, 0, TargetOpcode::G_TRUNC); 2781 MI.eraseFromParent(); 2782 return Legalized; 2783 } 2784 case TargetOpcode::G_IMPLICIT_DEF: { 2785 Observer.changingInstr(MI); 2786 widenScalarDst(MI, WideTy); 2787 Observer.changedInstr(MI); 2788 return Legalized; 2789 } 2790 case TargetOpcode::G_BRCOND: 2791 Observer.changingInstr(MI); 2792 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2793 Observer.changedInstr(MI); 2794 return Legalized; 2795 2796 case TargetOpcode::G_FCMP: 2797 Observer.changingInstr(MI); 2798 if (TypeIdx == 0) 2799 widenScalarDst(MI, WideTy); 2800 else { 2801 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2802 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2803 } 2804 Observer.changedInstr(MI); 2805 return Legalized; 2806 2807 case TargetOpcode::G_ICMP: 2808 Observer.changingInstr(MI); 2809 if (TypeIdx == 0) 2810 widenScalarDst(MI, WideTy); 2811 else { 2812 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2813 MI.getOperand(1).getPredicate())) 2814 ? TargetOpcode::G_SEXT 2815 : TargetOpcode::G_ZEXT; 2816 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2817 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2818 } 2819 Observer.changedInstr(MI); 2820 return Legalized; 2821 2822 case TargetOpcode::G_PTR_ADD: 2823 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2824 Observer.changingInstr(MI); 2825 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2826 Observer.changedInstr(MI); 2827 return Legalized; 2828 2829 case TargetOpcode::G_PHI: { 2830 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2831 2832 Observer.changingInstr(MI); 2833 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2834 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2835 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward()); 2836 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2837 } 2838 2839 MachineBasicBlock &MBB = *MI.getParent(); 2840 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2841 widenScalarDst(MI, WideTy); 2842 Observer.changedInstr(MI); 2843 return Legalized; 2844 } 2845 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2846 if (TypeIdx == 0) { 2847 Register VecReg = MI.getOperand(1).getReg(); 2848 LLT VecTy = MRI.getType(VecReg); 2849 Observer.changingInstr(MI); 2850 2851 widenScalarSrc( 2852 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, 2853 TargetOpcode::G_ANYEXT); 2854 2855 widenScalarDst(MI, WideTy, 0); 2856 Observer.changedInstr(MI); 2857 return Legalized; 2858 } 2859 2860 if (TypeIdx != 2) 2861 return UnableToLegalize; 2862 Observer.changingInstr(MI); 2863 // TODO: Probably should be zext 2864 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2865 Observer.changedInstr(MI); 2866 return Legalized; 2867 } 2868 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2869 if (TypeIdx == 0) { 2870 Observer.changingInstr(MI); 2871 const LLT WideEltTy = WideTy.getElementType(); 2872 2873 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2874 widenScalarSrc(MI, WideEltTy, 2, TargetOpcode::G_ANYEXT); 2875 widenScalarDst(MI, WideTy, 0); 2876 Observer.changedInstr(MI); 2877 return Legalized; 2878 } 2879 2880 if (TypeIdx == 1) { 2881 Observer.changingInstr(MI); 2882 2883 Register VecReg = MI.getOperand(1).getReg(); 2884 LLT VecTy = MRI.getType(VecReg); 2885 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); 2886 2887 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2888 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2889 widenScalarDst(MI, WideVecTy, 0); 2890 Observer.changedInstr(MI); 2891 return Legalized; 2892 } 2893 2894 if (TypeIdx == 2) { 2895 Observer.changingInstr(MI); 2896 // TODO: Probably should be zext 2897 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2898 Observer.changedInstr(MI); 2899 return Legalized; 2900 } 2901 2902 return UnableToLegalize; 2903 } 2904 case TargetOpcode::G_FADD: 2905 case TargetOpcode::G_FMUL: 2906 case TargetOpcode::G_FSUB: 2907 case TargetOpcode::G_FMA: 2908 case TargetOpcode::G_FMAD: 2909 case TargetOpcode::G_FNEG: 2910 case TargetOpcode::G_FABS: 2911 case TargetOpcode::G_FCANONICALIZE: 2912 case TargetOpcode::G_FMINNUM: 2913 case TargetOpcode::G_FMAXNUM: 2914 case TargetOpcode::G_FMINNUM_IEEE: 2915 case TargetOpcode::G_FMAXNUM_IEEE: 2916 case TargetOpcode::G_FMINIMUM: 2917 case TargetOpcode::G_FMAXIMUM: 2918 case TargetOpcode::G_FDIV: 2919 case TargetOpcode::G_FREM: 2920 case TargetOpcode::G_FCEIL: 2921 case TargetOpcode::G_FFLOOR: 2922 case TargetOpcode::G_FCOS: 2923 case TargetOpcode::G_FSIN: 2924 case TargetOpcode::G_FLOG10: 2925 case TargetOpcode::G_FLOG: 2926 case TargetOpcode::G_FLOG2: 2927 case TargetOpcode::G_FRINT: 2928 case TargetOpcode::G_FNEARBYINT: 2929 case TargetOpcode::G_FSQRT: 2930 case TargetOpcode::G_FEXP: 2931 case TargetOpcode::G_FEXP2: 2932 case TargetOpcode::G_FEXP10: 2933 case TargetOpcode::G_FPOW: 2934 case TargetOpcode::G_INTRINSIC_TRUNC: 2935 case TargetOpcode::G_INTRINSIC_ROUND: 2936 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2937 assert(TypeIdx == 0); 2938 Observer.changingInstr(MI); 2939 2940 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2941 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2942 2943 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2944 Observer.changedInstr(MI); 2945 return Legalized; 2946 case TargetOpcode::G_FPOWI: 2947 case TargetOpcode::G_FLDEXP: 2948 case TargetOpcode::G_STRICT_FLDEXP: { 2949 if (TypeIdx == 0) { 2950 if (MI.getOpcode() == TargetOpcode::G_STRICT_FLDEXP) 2951 return UnableToLegalize; 2952 2953 Observer.changingInstr(MI); 2954 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2955 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2956 Observer.changedInstr(MI); 2957 return Legalized; 2958 } 2959 2960 if (TypeIdx == 1) { 2961 // For some reason SelectionDAG tries to promote to a libcall without 2962 // actually changing the integer type for promotion. 2963 Observer.changingInstr(MI); 2964 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2965 Observer.changedInstr(MI); 2966 return Legalized; 2967 } 2968 2969 return UnableToLegalize; 2970 } 2971 case TargetOpcode::G_FFREXP: { 2972 Observer.changingInstr(MI); 2973 2974 if (TypeIdx == 0) { 2975 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2976 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2977 } else { 2978 widenScalarDst(MI, WideTy, 1); 2979 } 2980 2981 Observer.changedInstr(MI); 2982 return Legalized; 2983 } 2984 case TargetOpcode::G_INTTOPTR: 2985 if (TypeIdx != 1) 2986 return UnableToLegalize; 2987 2988 Observer.changingInstr(MI); 2989 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2990 Observer.changedInstr(MI); 2991 return Legalized; 2992 case TargetOpcode::G_PTRTOINT: 2993 if (TypeIdx != 0) 2994 return UnableToLegalize; 2995 2996 Observer.changingInstr(MI); 2997 widenScalarDst(MI, WideTy, 0); 2998 Observer.changedInstr(MI); 2999 return Legalized; 3000 case TargetOpcode::G_BUILD_VECTOR: { 3001 Observer.changingInstr(MI); 3002 3003 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 3004 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 3005 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 3006 3007 // Avoid changing the result vector type if the source element type was 3008 // requested. 3009 if (TypeIdx == 1) { 3010 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 3011 } else { 3012 widenScalarDst(MI, WideTy, 0); 3013 } 3014 3015 Observer.changedInstr(MI); 3016 return Legalized; 3017 } 3018 case TargetOpcode::G_SEXT_INREG: 3019 if (TypeIdx != 0) 3020 return UnableToLegalize; 3021 3022 Observer.changingInstr(MI); 3023 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 3024 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 3025 Observer.changedInstr(MI); 3026 return Legalized; 3027 case TargetOpcode::G_PTRMASK: { 3028 if (TypeIdx != 1) 3029 return UnableToLegalize; 3030 Observer.changingInstr(MI); 3031 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 3032 Observer.changedInstr(MI); 3033 return Legalized; 3034 } 3035 case TargetOpcode::G_VECREDUCE_FADD: 3036 case TargetOpcode::G_VECREDUCE_FMUL: 3037 case TargetOpcode::G_VECREDUCE_FMIN: 3038 case TargetOpcode::G_VECREDUCE_FMAX: 3039 case TargetOpcode::G_VECREDUCE_FMINIMUM: 3040 case TargetOpcode::G_VECREDUCE_FMAXIMUM: 3041 if (TypeIdx != 0) 3042 return UnableToLegalize; 3043 Observer.changingInstr(MI); 3044 Register VecReg = MI.getOperand(1).getReg(); 3045 LLT VecTy = MRI.getType(VecReg); 3046 LLT WideVecTy = VecTy.isVector() 3047 ? LLT::vector(VecTy.getElementCount(), WideTy) 3048 : WideTy; 3049 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_FPEXT); 3050 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 3051 Observer.changedInstr(MI); 3052 return Legalized; 3053 } 3054 } 3055 3056 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 3057 MachineIRBuilder &B, Register Src, LLT Ty) { 3058 auto Unmerge = B.buildUnmerge(Ty, Src); 3059 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 3060 Pieces.push_back(Unmerge.getReg(I)); 3061 } 3062 3063 LegalizerHelper::LegalizeResult 3064 LegalizerHelper::lowerFConstant(MachineInstr &MI) { 3065 Register Dst = MI.getOperand(0).getReg(); 3066 3067 MachineFunction &MF = MIRBuilder.getMF(); 3068 const DataLayout &DL = MIRBuilder.getDataLayout(); 3069 3070 unsigned AddrSpace = DL.getDefaultGlobalsAddressSpace(); 3071 LLT AddrPtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3072 Align Alignment = Align(DL.getABITypeAlign( 3073 getFloatTypeForLLT(MF.getFunction().getContext(), MRI.getType(Dst)))); 3074 3075 auto Addr = MIRBuilder.buildConstantPool( 3076 AddrPtrTy, MF.getConstantPool()->getConstantPoolIndex( 3077 MI.getOperand(1).getFPImm(), Alignment)); 3078 3079 MachineMemOperand *MMO = MF.getMachineMemOperand( 3080 MachinePointerInfo::getConstantPool(MF), MachineMemOperand::MOLoad, 3081 MRI.getType(Dst), Alignment); 3082 3083 MIRBuilder.buildLoadInstr(TargetOpcode::G_LOAD, Dst, Addr, *MMO); 3084 MI.eraseFromParent(); 3085 3086 return Legalized; 3087 } 3088 3089 LegalizerHelper::LegalizeResult 3090 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 3091 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); 3092 if (SrcTy.isVector()) { 3093 LLT SrcEltTy = SrcTy.getElementType(); 3094 SmallVector<Register, 8> SrcRegs; 3095 3096 if (DstTy.isVector()) { 3097 int NumDstElt = DstTy.getNumElements(); 3098 int NumSrcElt = SrcTy.getNumElements(); 3099 3100 LLT DstEltTy = DstTy.getElementType(); 3101 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 3102 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 3103 3104 // If there's an element size mismatch, insert intermediate casts to match 3105 // the result element type. 3106 if (NumSrcElt < NumDstElt) { // Source element type is larger. 3107 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 3108 // 3109 // => 3110 // 3111 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 3112 // %3:_(<2 x s8>) = G_BITCAST %2 3113 // %4:_(<2 x s8>) = G_BITCAST %3 3114 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 3115 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); 3116 SrcPartTy = SrcEltTy; 3117 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 3118 // 3119 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 3120 // 3121 // => 3122 // 3123 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 3124 // %3:_(s16) = G_BITCAST %2 3125 // %4:_(s16) = G_BITCAST %3 3126 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 3127 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); 3128 DstCastTy = DstEltTy; 3129 } 3130 3131 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 3132 for (Register &SrcReg : SrcRegs) 3133 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 3134 } else 3135 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 3136 3137 MIRBuilder.buildMergeLikeInstr(Dst, SrcRegs); 3138 MI.eraseFromParent(); 3139 return Legalized; 3140 } 3141 3142 if (DstTy.isVector()) { 3143 SmallVector<Register, 8> SrcRegs; 3144 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 3145 MIRBuilder.buildMergeLikeInstr(Dst, SrcRegs); 3146 MI.eraseFromParent(); 3147 return Legalized; 3148 } 3149 3150 return UnableToLegalize; 3151 } 3152 3153 /// Figure out the bit offset into a register when coercing a vector index for 3154 /// the wide element type. This is only for the case when promoting vector to 3155 /// one with larger elements. 3156 // 3157 /// 3158 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 3159 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 3160 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 3161 Register Idx, 3162 unsigned NewEltSize, 3163 unsigned OldEltSize) { 3164 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 3165 LLT IdxTy = B.getMRI()->getType(Idx); 3166 3167 // Now figure out the amount we need to shift to get the target bits. 3168 auto OffsetMask = B.buildConstant( 3169 IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio)); 3170 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 3171 return B.buildShl(IdxTy, OffsetIdx, 3172 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 3173 } 3174 3175 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 3176 /// is casting to a vector with a smaller element size, perform multiple element 3177 /// extracts and merge the results. If this is coercing to a vector with larger 3178 /// elements, index the bitcasted vector and extract the target element with bit 3179 /// operations. This is intended to force the indexing in the native register 3180 /// size for architectures that can dynamically index the register file. 3181 LegalizerHelper::LegalizeResult 3182 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 3183 LLT CastTy) { 3184 if (TypeIdx != 1) 3185 return UnableToLegalize; 3186 3187 auto [Dst, DstTy, SrcVec, SrcVecTy, Idx, IdxTy] = MI.getFirst3RegLLTs(); 3188 3189 LLT SrcEltTy = SrcVecTy.getElementType(); 3190 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 3191 unsigned OldNumElts = SrcVecTy.getNumElements(); 3192 3193 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 3194 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 3195 3196 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 3197 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 3198 if (NewNumElts > OldNumElts) { 3199 // Decreasing the vector element size 3200 // 3201 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 3202 // => 3203 // v4i32:castx = bitcast x:v2i64 3204 // 3205 // i64 = bitcast 3206 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 3207 // (i32 (extract_vector_elt castx, (2 * y + 1))) 3208 // 3209 if (NewNumElts % OldNumElts != 0) 3210 return UnableToLegalize; 3211 3212 // Type of the intermediate result vector. 3213 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 3214 LLT MidTy = 3215 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); 3216 3217 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 3218 3219 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 3220 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 3221 3222 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 3223 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 3224 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 3225 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 3226 NewOps[I] = Elt.getReg(0); 3227 } 3228 3229 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 3230 MIRBuilder.buildBitcast(Dst, NewVec); 3231 MI.eraseFromParent(); 3232 return Legalized; 3233 } 3234 3235 if (NewNumElts < OldNumElts) { 3236 if (NewEltSize % OldEltSize != 0) 3237 return UnableToLegalize; 3238 3239 // This only depends on powers of 2 because we use bit tricks to figure out 3240 // the bit offset we need to shift to get the target element. A general 3241 // expansion could emit division/multiply. 3242 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 3243 return UnableToLegalize; 3244 3245 // Increasing the vector element size. 3246 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 3247 // 3248 // => 3249 // 3250 // %cast = G_BITCAST %vec 3251 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 3252 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 3253 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 3254 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 3255 // %elt_bits = G_LSHR %wide_elt, %offset_bits 3256 // %elt = G_TRUNC %elt_bits 3257 3258 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 3259 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 3260 3261 // Divide to get the index in the wider element type. 3262 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 3263 3264 Register WideElt = CastVec; 3265 if (CastTy.isVector()) { 3266 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 3267 ScaledIdx).getReg(0); 3268 } 3269 3270 // Compute the bit offset into the register of the target element. 3271 Register OffsetBits = getBitcastWiderVectorElementOffset( 3272 MIRBuilder, Idx, NewEltSize, OldEltSize); 3273 3274 // Shift the wide element to get the target element. 3275 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 3276 MIRBuilder.buildTrunc(Dst, ExtractedBits); 3277 MI.eraseFromParent(); 3278 return Legalized; 3279 } 3280 3281 return UnableToLegalize; 3282 } 3283 3284 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 3285 /// TargetReg, while preserving other bits in \p TargetReg. 3286 /// 3287 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 3288 static Register buildBitFieldInsert(MachineIRBuilder &B, 3289 Register TargetReg, Register InsertReg, 3290 Register OffsetBits) { 3291 LLT TargetTy = B.getMRI()->getType(TargetReg); 3292 LLT InsertTy = B.getMRI()->getType(InsertReg); 3293 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 3294 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 3295 3296 // Produce a bitmask of the value to insert 3297 auto EltMask = B.buildConstant( 3298 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 3299 InsertTy.getSizeInBits())); 3300 // Shift it into position 3301 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 3302 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 3303 3304 // Clear out the bits in the wide element 3305 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 3306 3307 // The value to insert has all zeros already, so stick it into the masked 3308 // wide element. 3309 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 3310 } 3311 3312 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 3313 /// is increasing the element size, perform the indexing in the target element 3314 /// type, and use bit operations to insert at the element position. This is 3315 /// intended for architectures that can dynamically index the register file and 3316 /// want to force indexing in the native register size. 3317 LegalizerHelper::LegalizeResult 3318 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 3319 LLT CastTy) { 3320 if (TypeIdx != 0) 3321 return UnableToLegalize; 3322 3323 auto [Dst, DstTy, SrcVec, SrcVecTy, Val, ValTy, Idx, IdxTy] = 3324 MI.getFirst4RegLLTs(); 3325 LLT VecTy = DstTy; 3326 3327 LLT VecEltTy = VecTy.getElementType(); 3328 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 3329 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 3330 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 3331 3332 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 3333 unsigned OldNumElts = VecTy.getNumElements(); 3334 3335 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 3336 if (NewNumElts < OldNumElts) { 3337 if (NewEltSize % OldEltSize != 0) 3338 return UnableToLegalize; 3339 3340 // This only depends on powers of 2 because we use bit tricks to figure out 3341 // the bit offset we need to shift to get the target element. A general 3342 // expansion could emit division/multiply. 3343 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 3344 return UnableToLegalize; 3345 3346 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 3347 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 3348 3349 // Divide to get the index in the wider element type. 3350 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 3351 3352 Register ExtractedElt = CastVec; 3353 if (CastTy.isVector()) { 3354 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 3355 ScaledIdx).getReg(0); 3356 } 3357 3358 // Compute the bit offset into the register of the target element. 3359 Register OffsetBits = getBitcastWiderVectorElementOffset( 3360 MIRBuilder, Idx, NewEltSize, OldEltSize); 3361 3362 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 3363 Val, OffsetBits); 3364 if (CastTy.isVector()) { 3365 InsertedElt = MIRBuilder.buildInsertVectorElement( 3366 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 3367 } 3368 3369 MIRBuilder.buildBitcast(Dst, InsertedElt); 3370 MI.eraseFromParent(); 3371 return Legalized; 3372 } 3373 3374 return UnableToLegalize; 3375 } 3376 3377 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) { 3378 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 3379 Register DstReg = LoadMI.getDstReg(); 3380 Register PtrReg = LoadMI.getPointerReg(); 3381 LLT DstTy = MRI.getType(DstReg); 3382 MachineMemOperand &MMO = LoadMI.getMMO(); 3383 LLT MemTy = MMO.getMemoryType(); 3384 MachineFunction &MF = MIRBuilder.getMF(); 3385 3386 unsigned MemSizeInBits = MemTy.getSizeInBits(); 3387 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); 3388 3389 if (MemSizeInBits != MemStoreSizeInBits) { 3390 if (MemTy.isVector()) 3391 return UnableToLegalize; 3392 3393 // Promote to a byte-sized load if not loading an integral number of 3394 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 3395 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); 3396 MachineMemOperand *NewMMO = 3397 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); 3398 3399 Register LoadReg = DstReg; 3400 LLT LoadTy = DstTy; 3401 3402 // If this wasn't already an extending load, we need to widen the result 3403 // register to avoid creating a load with a narrower result than the source. 3404 if (MemStoreSizeInBits > DstTy.getSizeInBits()) { 3405 LoadTy = WideMemTy; 3406 LoadReg = MRI.createGenericVirtualRegister(WideMemTy); 3407 } 3408 3409 if (isa<GSExtLoad>(LoadMI)) { 3410 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 3411 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); 3412 } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == LoadTy) { 3413 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 3414 // The extra bits are guaranteed to be zero, since we stored them that 3415 // way. A zext load from Wide thus automatically gives zext from MemVT. 3416 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); 3417 } else { 3418 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); 3419 } 3420 3421 if (DstTy != LoadTy) 3422 MIRBuilder.buildTrunc(DstReg, LoadReg); 3423 3424 LoadMI.eraseFromParent(); 3425 return Legalized; 3426 } 3427 3428 // Big endian lowering not implemented. 3429 if (MIRBuilder.getDataLayout().isBigEndian()) 3430 return UnableToLegalize; 3431 3432 // This load needs splitting into power of 2 sized loads. 3433 // 3434 // Our strategy here is to generate anyextending loads for the smaller 3435 // types up to next power-2 result type, and then combine the two larger 3436 // result values together, before truncating back down to the non-pow-2 3437 // type. 3438 // E.g. v1 = i24 load => 3439 // v2 = i32 zextload (2 byte) 3440 // v3 = i32 load (1 byte) 3441 // v4 = i32 shl v3, 16 3442 // v5 = i32 or v4, v2 3443 // v1 = i24 trunc v5 3444 // By doing this we generate the correct truncate which should get 3445 // combined away as an artifact with a matching extend. 3446 3447 uint64_t LargeSplitSize, SmallSplitSize; 3448 3449 if (!isPowerOf2_32(MemSizeInBits)) { 3450 // This load needs splitting into power of 2 sized loads. 3451 LargeSplitSize = llvm::bit_floor(MemSizeInBits); 3452 SmallSplitSize = MemSizeInBits - LargeSplitSize; 3453 } else { 3454 // This is already a power of 2, but we still need to split this in half. 3455 // 3456 // Assume we're being asked to decompose an unaligned load. 3457 // TODO: If this requires multiple splits, handle them all at once. 3458 auto &Ctx = MF.getFunction().getContext(); 3459 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3460 return UnableToLegalize; 3461 3462 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3463 } 3464 3465 if (MemTy.isVector()) { 3466 // TODO: Handle vector extloads 3467 if (MemTy != DstTy) 3468 return UnableToLegalize; 3469 3470 // TODO: We can do better than scalarizing the vector and at least split it 3471 // in half. 3472 return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType()); 3473 } 3474 3475 MachineMemOperand *LargeMMO = 3476 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3477 MachineMemOperand *SmallMMO = 3478 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3479 3480 LLT PtrTy = MRI.getType(PtrReg); 3481 unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits()); 3482 LLT AnyExtTy = LLT::scalar(AnyExtSize); 3483 auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy, 3484 PtrReg, *LargeMMO); 3485 3486 auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), 3487 LargeSplitSize / 8); 3488 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 3489 auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 3490 auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy, 3491 SmallPtr, *SmallMMO); 3492 3493 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 3494 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 3495 3496 if (AnyExtTy == DstTy) 3497 MIRBuilder.buildOr(DstReg, Shift, LargeLoad); 3498 else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) { 3499 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3500 MIRBuilder.buildTrunc(DstReg, {Or}); 3501 } else { 3502 assert(DstTy.isPointer() && "expected pointer"); 3503 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3504 3505 // FIXME: We currently consider this to be illegal for non-integral address 3506 // spaces, but we need still need a way to reinterpret the bits. 3507 MIRBuilder.buildIntToPtr(DstReg, Or); 3508 } 3509 3510 LoadMI.eraseFromParent(); 3511 return Legalized; 3512 } 3513 3514 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) { 3515 // Lower a non-power of 2 store into multiple pow-2 stores. 3516 // E.g. split an i24 store into an i16 store + i8 store. 3517 // We do this by first extending the stored value to the next largest power 3518 // of 2 type, and then using truncating stores to store the components. 3519 // By doing this, likewise with G_LOAD, generate an extend that can be 3520 // artifact-combined away instead of leaving behind extracts. 3521 Register SrcReg = StoreMI.getValueReg(); 3522 Register PtrReg = StoreMI.getPointerReg(); 3523 LLT SrcTy = MRI.getType(SrcReg); 3524 MachineFunction &MF = MIRBuilder.getMF(); 3525 MachineMemOperand &MMO = **StoreMI.memoperands_begin(); 3526 LLT MemTy = MMO.getMemoryType(); 3527 3528 unsigned StoreWidth = MemTy.getSizeInBits(); 3529 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); 3530 3531 if (StoreWidth != StoreSizeInBits) { 3532 if (SrcTy.isVector()) 3533 return UnableToLegalize; 3534 3535 // Promote to a byte-sized store with upper bits zero if not 3536 // storing an integral number of bytes. For example, promote 3537 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 3538 LLT WideTy = LLT::scalar(StoreSizeInBits); 3539 3540 if (StoreSizeInBits > SrcTy.getSizeInBits()) { 3541 // Avoid creating a store with a narrower source than result. 3542 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 3543 SrcTy = WideTy; 3544 } 3545 3546 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); 3547 3548 MachineMemOperand *NewMMO = 3549 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); 3550 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); 3551 StoreMI.eraseFromParent(); 3552 return Legalized; 3553 } 3554 3555 if (MemTy.isVector()) { 3556 // TODO: Handle vector trunc stores 3557 if (MemTy != SrcTy) 3558 return UnableToLegalize; 3559 3560 // TODO: We can do better than scalarizing the vector and at least split it 3561 // in half. 3562 return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType()); 3563 } 3564 3565 unsigned MemSizeInBits = MemTy.getSizeInBits(); 3566 uint64_t LargeSplitSize, SmallSplitSize; 3567 3568 if (!isPowerOf2_32(MemSizeInBits)) { 3569 LargeSplitSize = llvm::bit_floor<uint64_t>(MemTy.getSizeInBits()); 3570 SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize; 3571 } else { 3572 auto &Ctx = MF.getFunction().getContext(); 3573 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3574 return UnableToLegalize; // Don't know what we're being asked to do. 3575 3576 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3577 } 3578 3579 // Extend to the next pow-2. If this store was itself the result of lowering, 3580 // e.g. an s56 store being broken into s32 + s24, we might have a stored type 3581 // that's wider than the stored size. 3582 unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits()); 3583 const LLT NewSrcTy = LLT::scalar(AnyExtSize); 3584 3585 if (SrcTy.isPointer()) { 3586 const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits()); 3587 SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0); 3588 } 3589 3590 auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg); 3591 3592 // Obtain the smaller value by shifting away the larger value. 3593 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize); 3594 auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt); 3595 3596 // Generate the PtrAdd and truncating stores. 3597 LLT PtrTy = MRI.getType(PtrReg); 3598 auto OffsetCst = MIRBuilder.buildConstant( 3599 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 3600 auto SmallPtr = 3601 MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst); 3602 3603 MachineMemOperand *LargeMMO = 3604 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3605 MachineMemOperand *SmallMMO = 3606 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3607 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); 3608 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); 3609 StoreMI.eraseFromParent(); 3610 return Legalized; 3611 } 3612 3613 LegalizerHelper::LegalizeResult 3614 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 3615 switch (MI.getOpcode()) { 3616 case TargetOpcode::G_LOAD: { 3617 if (TypeIdx != 0) 3618 return UnableToLegalize; 3619 MachineMemOperand &MMO = **MI.memoperands_begin(); 3620 3621 // Not sure how to interpret a bitcast of an extending load. 3622 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3623 return UnableToLegalize; 3624 3625 Observer.changingInstr(MI); 3626 bitcastDst(MI, CastTy, 0); 3627 MMO.setType(CastTy); 3628 Observer.changedInstr(MI); 3629 return Legalized; 3630 } 3631 case TargetOpcode::G_STORE: { 3632 if (TypeIdx != 0) 3633 return UnableToLegalize; 3634 3635 MachineMemOperand &MMO = **MI.memoperands_begin(); 3636 3637 // Not sure how to interpret a bitcast of a truncating store. 3638 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3639 return UnableToLegalize; 3640 3641 Observer.changingInstr(MI); 3642 bitcastSrc(MI, CastTy, 0); 3643 MMO.setType(CastTy); 3644 Observer.changedInstr(MI); 3645 return Legalized; 3646 } 3647 case TargetOpcode::G_SELECT: { 3648 if (TypeIdx != 0) 3649 return UnableToLegalize; 3650 3651 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 3652 LLVM_DEBUG( 3653 dbgs() << "bitcast action not implemented for vector select\n"); 3654 return UnableToLegalize; 3655 } 3656 3657 Observer.changingInstr(MI); 3658 bitcastSrc(MI, CastTy, 2); 3659 bitcastSrc(MI, CastTy, 3); 3660 bitcastDst(MI, CastTy, 0); 3661 Observer.changedInstr(MI); 3662 return Legalized; 3663 } 3664 case TargetOpcode::G_AND: 3665 case TargetOpcode::G_OR: 3666 case TargetOpcode::G_XOR: { 3667 Observer.changingInstr(MI); 3668 bitcastSrc(MI, CastTy, 1); 3669 bitcastSrc(MI, CastTy, 2); 3670 bitcastDst(MI, CastTy, 0); 3671 Observer.changedInstr(MI); 3672 return Legalized; 3673 } 3674 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 3675 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 3676 case TargetOpcode::G_INSERT_VECTOR_ELT: 3677 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 3678 default: 3679 return UnableToLegalize; 3680 } 3681 } 3682 3683 // Legalize an instruction by changing the opcode in place. 3684 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 3685 Observer.changingInstr(MI); 3686 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 3687 Observer.changedInstr(MI); 3688 } 3689 3690 LegalizerHelper::LegalizeResult 3691 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 3692 using namespace TargetOpcode; 3693 3694 switch(MI.getOpcode()) { 3695 default: 3696 return UnableToLegalize; 3697 case TargetOpcode::G_FCONSTANT: 3698 return lowerFConstant(MI); 3699 case TargetOpcode::G_BITCAST: 3700 return lowerBitcast(MI); 3701 case TargetOpcode::G_SREM: 3702 case TargetOpcode::G_UREM: { 3703 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3704 auto Quot = 3705 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 3706 {MI.getOperand(1), MI.getOperand(2)}); 3707 3708 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 3709 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 3710 MI.eraseFromParent(); 3711 return Legalized; 3712 } 3713 case TargetOpcode::G_SADDO: 3714 case TargetOpcode::G_SSUBO: 3715 return lowerSADDO_SSUBO(MI); 3716 case TargetOpcode::G_UMULH: 3717 case TargetOpcode::G_SMULH: 3718 return lowerSMULH_UMULH(MI); 3719 case TargetOpcode::G_SMULO: 3720 case TargetOpcode::G_UMULO: { 3721 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 3722 // result. 3723 auto [Res, Overflow, LHS, RHS] = MI.getFirst4Regs(); 3724 LLT Ty = MRI.getType(Res); 3725 3726 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 3727 ? TargetOpcode::G_SMULH 3728 : TargetOpcode::G_UMULH; 3729 3730 Observer.changingInstr(MI); 3731 const auto &TII = MIRBuilder.getTII(); 3732 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 3733 MI.removeOperand(1); 3734 Observer.changedInstr(MI); 3735 3736 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 3737 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3738 3739 // Move insert point forward so we can use the Res register if needed. 3740 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 3741 3742 // For *signed* multiply, overflow is detected by checking: 3743 // (hi != (lo >> bitwidth-1)) 3744 if (Opcode == TargetOpcode::G_SMULH) { 3745 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 3746 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 3747 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 3748 } else { 3749 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 3750 } 3751 return Legalized; 3752 } 3753 case TargetOpcode::G_FNEG: { 3754 auto [Res, SubByReg] = MI.getFirst2Regs(); 3755 LLT Ty = MRI.getType(Res); 3756 3757 // TODO: Handle vector types once we are able to 3758 // represent them. 3759 if (Ty.isVector()) 3760 return UnableToLegalize; 3761 auto SignMask = 3762 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3763 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3764 MI.eraseFromParent(); 3765 return Legalized; 3766 } 3767 case TargetOpcode::G_FSUB: 3768 case TargetOpcode::G_STRICT_FSUB: { 3769 auto [Res, LHS, RHS] = MI.getFirst3Regs(); 3770 LLT Ty = MRI.getType(Res); 3771 3772 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3773 auto Neg = MIRBuilder.buildFNeg(Ty, RHS); 3774 3775 if (MI.getOpcode() == TargetOpcode::G_STRICT_FSUB) 3776 MIRBuilder.buildStrictFAdd(Res, LHS, Neg, MI.getFlags()); 3777 else 3778 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3779 3780 MI.eraseFromParent(); 3781 return Legalized; 3782 } 3783 case TargetOpcode::G_FMAD: 3784 return lowerFMad(MI); 3785 case TargetOpcode::G_FFLOOR: 3786 return lowerFFloor(MI); 3787 case TargetOpcode::G_INTRINSIC_ROUND: 3788 return lowerIntrinsicRound(MI); 3789 case TargetOpcode::G_FRINT: { 3790 // Since round even is the assumed rounding mode for unconstrained FP 3791 // operations, rint and roundeven are the same operation. 3792 changeOpcode(MI, TargetOpcode::G_INTRINSIC_ROUNDEVEN); 3793 return Legalized; 3794 } 3795 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3796 auto [OldValRes, SuccessRes, Addr, CmpVal, NewVal] = MI.getFirst5Regs(); 3797 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3798 **MI.memoperands_begin()); 3799 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3800 MI.eraseFromParent(); 3801 return Legalized; 3802 } 3803 case TargetOpcode::G_LOAD: 3804 case TargetOpcode::G_SEXTLOAD: 3805 case TargetOpcode::G_ZEXTLOAD: 3806 return lowerLoad(cast<GAnyLoad>(MI)); 3807 case TargetOpcode::G_STORE: 3808 return lowerStore(cast<GStore>(MI)); 3809 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3810 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3811 case TargetOpcode::G_CTLZ: 3812 case TargetOpcode::G_CTTZ: 3813 case TargetOpcode::G_CTPOP: 3814 return lowerBitCount(MI); 3815 case G_UADDO: { 3816 auto [Res, CarryOut, LHS, RHS] = MI.getFirst4Regs(); 3817 3818 MIRBuilder.buildAdd(Res, LHS, RHS); 3819 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3820 3821 MI.eraseFromParent(); 3822 return Legalized; 3823 } 3824 case G_UADDE: { 3825 auto [Res, CarryOut, LHS, RHS, CarryIn] = MI.getFirst5Regs(); 3826 const LLT CondTy = MRI.getType(CarryOut); 3827 const LLT Ty = MRI.getType(Res); 3828 3829 // Initial add of the two operands. 3830 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3831 3832 // Initial check for carry. 3833 auto Carry = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, TmpRes, LHS); 3834 3835 // Add the sum and the carry. 3836 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3837 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3838 3839 // Second check for carry. We can only carry if the initial sum is all 1s 3840 // and the carry is set, resulting in a new sum of 0. 3841 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3842 auto ResEqZero = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, Res, Zero); 3843 auto Carry2 = MIRBuilder.buildAnd(CondTy, ResEqZero, CarryIn); 3844 MIRBuilder.buildOr(CarryOut, Carry, Carry2); 3845 3846 MI.eraseFromParent(); 3847 return Legalized; 3848 } 3849 case G_USUBO: { 3850 auto [Res, BorrowOut, LHS, RHS] = MI.getFirst4Regs(); 3851 3852 MIRBuilder.buildSub(Res, LHS, RHS); 3853 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3854 3855 MI.eraseFromParent(); 3856 return Legalized; 3857 } 3858 case G_USUBE: { 3859 auto [Res, BorrowOut, LHS, RHS, BorrowIn] = MI.getFirst5Regs(); 3860 const LLT CondTy = MRI.getType(BorrowOut); 3861 const LLT Ty = MRI.getType(Res); 3862 3863 // Initial subtract of the two operands. 3864 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3865 3866 // Initial check for borrow. 3867 auto Borrow = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, CondTy, TmpRes, LHS); 3868 3869 // Subtract the borrow from the first subtract. 3870 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3871 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3872 3873 // Second check for borrow. We can only borrow if the initial difference is 3874 // 0 and the borrow is set, resulting in a new difference of all 1s. 3875 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3876 auto TmpResEqZero = 3877 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, TmpRes, Zero); 3878 auto Borrow2 = MIRBuilder.buildAnd(CondTy, TmpResEqZero, BorrowIn); 3879 MIRBuilder.buildOr(BorrowOut, Borrow, Borrow2); 3880 3881 MI.eraseFromParent(); 3882 return Legalized; 3883 } 3884 case G_UITOFP: 3885 return lowerUITOFP(MI); 3886 case G_SITOFP: 3887 return lowerSITOFP(MI); 3888 case G_FPTOUI: 3889 return lowerFPTOUI(MI); 3890 case G_FPTOSI: 3891 return lowerFPTOSI(MI); 3892 case G_FPTRUNC: 3893 return lowerFPTRUNC(MI); 3894 case G_FPOWI: 3895 return lowerFPOWI(MI); 3896 case G_SMIN: 3897 case G_SMAX: 3898 case G_UMIN: 3899 case G_UMAX: 3900 return lowerMinMax(MI); 3901 case G_FCOPYSIGN: 3902 return lowerFCopySign(MI); 3903 case G_FMINNUM: 3904 case G_FMAXNUM: 3905 return lowerFMinNumMaxNum(MI); 3906 case G_MERGE_VALUES: 3907 return lowerMergeValues(MI); 3908 case G_UNMERGE_VALUES: 3909 return lowerUnmergeValues(MI); 3910 case TargetOpcode::G_SEXT_INREG: { 3911 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3912 int64_t SizeInBits = MI.getOperand(2).getImm(); 3913 3914 auto [DstReg, SrcReg] = MI.getFirst2Regs(); 3915 LLT DstTy = MRI.getType(DstReg); 3916 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3917 3918 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3919 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3920 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3921 MI.eraseFromParent(); 3922 return Legalized; 3923 } 3924 case G_EXTRACT_VECTOR_ELT: 3925 case G_INSERT_VECTOR_ELT: 3926 return lowerExtractInsertVectorElt(MI); 3927 case G_SHUFFLE_VECTOR: 3928 return lowerShuffleVector(MI); 3929 case G_DYN_STACKALLOC: 3930 return lowerDynStackAlloc(MI); 3931 case G_STACKSAVE: 3932 return lowerStackSave(MI); 3933 case G_STACKRESTORE: 3934 return lowerStackRestore(MI); 3935 case G_EXTRACT: 3936 return lowerExtract(MI); 3937 case G_INSERT: 3938 return lowerInsert(MI); 3939 case G_BSWAP: 3940 return lowerBswap(MI); 3941 case G_BITREVERSE: 3942 return lowerBitreverse(MI); 3943 case G_READ_REGISTER: 3944 case G_WRITE_REGISTER: 3945 return lowerReadWriteRegister(MI); 3946 case G_UADDSAT: 3947 case G_USUBSAT: { 3948 // Try to make a reasonable guess about which lowering strategy to use. The 3949 // target can override this with custom lowering and calling the 3950 // implementation functions. 3951 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3952 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3953 return lowerAddSubSatToMinMax(MI); 3954 return lowerAddSubSatToAddoSubo(MI); 3955 } 3956 case G_SADDSAT: 3957 case G_SSUBSAT: { 3958 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3959 3960 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3961 // since it's a shorter expansion. However, we would need to figure out the 3962 // preferred boolean type for the carry out for the query. 3963 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3964 return lowerAddSubSatToMinMax(MI); 3965 return lowerAddSubSatToAddoSubo(MI); 3966 } 3967 case G_SSHLSAT: 3968 case G_USHLSAT: 3969 return lowerShlSat(MI); 3970 case G_ABS: 3971 return lowerAbsToAddXor(MI); 3972 case G_SELECT: 3973 return lowerSelect(MI); 3974 case G_IS_FPCLASS: 3975 return lowerISFPCLASS(MI); 3976 case G_SDIVREM: 3977 case G_UDIVREM: 3978 return lowerDIVREM(MI); 3979 case G_FSHL: 3980 case G_FSHR: 3981 return lowerFunnelShift(MI); 3982 case G_ROTL: 3983 case G_ROTR: 3984 return lowerRotate(MI); 3985 case G_MEMSET: 3986 case G_MEMCPY: 3987 case G_MEMMOVE: 3988 return lowerMemCpyFamily(MI); 3989 case G_MEMCPY_INLINE: 3990 return lowerMemcpyInline(MI); 3991 case G_ZEXT: 3992 case G_SEXT: 3993 case G_ANYEXT: 3994 return lowerEXT(MI); 3995 case G_TRUNC: 3996 return lowerTRUNC(MI); 3997 GISEL_VECREDUCE_CASES_NONSEQ 3998 return lowerVectorReduction(MI); 3999 case G_VAARG: 4000 return lowerVAArg(MI); 4001 } 4002 } 4003 4004 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 4005 Align MinAlign) const { 4006 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 4007 // datalayout for the preferred alignment. Also there should be a target hook 4008 // for this to allow targets to reduce the alignment and ignore the 4009 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 4010 // the type. 4011 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 4012 } 4013 4014 MachineInstrBuilder 4015 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 4016 MachinePointerInfo &PtrInfo) { 4017 MachineFunction &MF = MIRBuilder.getMF(); 4018 const DataLayout &DL = MIRBuilder.getDataLayout(); 4019 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 4020 4021 unsigned AddrSpace = DL.getAllocaAddrSpace(); 4022 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 4023 4024 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 4025 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 4026 } 4027 4028 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 4029 LLT VecTy) { 4030 int64_t IdxVal; 4031 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 4032 return IdxReg; 4033 4034 LLT IdxTy = B.getMRI()->getType(IdxReg); 4035 unsigned NElts = VecTy.getNumElements(); 4036 if (isPowerOf2_32(NElts)) { 4037 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 4038 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 4039 } 4040 4041 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 4042 .getReg(0); 4043 } 4044 4045 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 4046 Register Index) { 4047 LLT EltTy = VecTy.getElementType(); 4048 4049 // Calculate the element offset and add it to the pointer. 4050 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 4051 assert(EltSize * 8 == EltTy.getSizeInBits() && 4052 "Converting bits to bytes lost precision"); 4053 4054 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 4055 4056 LLT IdxTy = MRI.getType(Index); 4057 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 4058 MIRBuilder.buildConstant(IdxTy, EltSize)); 4059 4060 LLT PtrTy = MRI.getType(VecPtr); 4061 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 4062 } 4063 4064 #ifndef NDEBUG 4065 /// Check that all vector operands have same number of elements. Other operands 4066 /// should be listed in NonVecOp. 4067 static bool hasSameNumEltsOnAllVectorOperands( 4068 GenericMachineInstr &MI, MachineRegisterInfo &MRI, 4069 std::initializer_list<unsigned> NonVecOpIndices) { 4070 if (MI.getNumMemOperands() != 0) 4071 return false; 4072 4073 LLT VecTy = MRI.getType(MI.getReg(0)); 4074 if (!VecTy.isVector()) 4075 return false; 4076 unsigned NumElts = VecTy.getNumElements(); 4077 4078 for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) { 4079 MachineOperand &Op = MI.getOperand(OpIdx); 4080 if (!Op.isReg()) { 4081 if (!is_contained(NonVecOpIndices, OpIdx)) 4082 return false; 4083 continue; 4084 } 4085 4086 LLT Ty = MRI.getType(Op.getReg()); 4087 if (!Ty.isVector()) { 4088 if (!is_contained(NonVecOpIndices, OpIdx)) 4089 return false; 4090 continue; 4091 } 4092 4093 if (Ty.getNumElements() != NumElts) 4094 return false; 4095 } 4096 4097 return true; 4098 } 4099 #endif 4100 4101 /// Fill \p DstOps with DstOps that have same number of elements combined as 4102 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are 4103 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple 4104 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements. 4105 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty, 4106 unsigned NumElts) { 4107 LLT LeftoverTy; 4108 assert(Ty.isVector() && "Expected vector type"); 4109 LLT EltTy = Ty.getElementType(); 4110 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 4111 int NumParts, NumLeftover; 4112 std::tie(NumParts, NumLeftover) = 4113 getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy); 4114 4115 assert(NumParts > 0 && "Error in getNarrowTypeBreakDown"); 4116 for (int i = 0; i < NumParts; ++i) { 4117 DstOps.push_back(NarrowTy); 4118 } 4119 4120 if (LeftoverTy.isValid()) { 4121 assert(NumLeftover == 1 && "expected exactly one leftover"); 4122 DstOps.push_back(LeftoverTy); 4123 } 4124 } 4125 4126 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps 4127 /// made from \p Op depending on operand type. 4128 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N, 4129 MachineOperand &Op) { 4130 for (unsigned i = 0; i < N; ++i) { 4131 if (Op.isReg()) 4132 Ops.push_back(Op.getReg()); 4133 else if (Op.isImm()) 4134 Ops.push_back(Op.getImm()); 4135 else if (Op.isPredicate()) 4136 Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate())); 4137 else 4138 llvm_unreachable("Unsupported type"); 4139 } 4140 } 4141 4142 // Handle splitting vector operations which need to have the same number of 4143 // elements in each type index, but each type index may have a different element 4144 // type. 4145 // 4146 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 4147 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 4148 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 4149 // 4150 // Also handles some irregular breakdown cases, e.g. 4151 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 4152 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 4153 // s64 = G_SHL s64, s32 4154 LegalizerHelper::LegalizeResult 4155 LegalizerHelper::fewerElementsVectorMultiEltType( 4156 GenericMachineInstr &MI, unsigned NumElts, 4157 std::initializer_list<unsigned> NonVecOpIndices) { 4158 assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) && 4159 "Non-compatible opcode or not specified non-vector operands"); 4160 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 4161 4162 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 4163 unsigned NumDefs = MI.getNumDefs(); 4164 4165 // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output. 4166 // Build instructions with DstOps to use instruction found by CSE directly. 4167 // CSE copies found instruction into given vreg when building with vreg dest. 4168 SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs); 4169 // Output registers will be taken from created instructions. 4170 SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs); 4171 for (unsigned i = 0; i < NumDefs; ++i) { 4172 makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts); 4173 } 4174 4175 // Split vector input operands into sub-vectors with NumElts elts + Leftover. 4176 // Operands listed in NonVecOpIndices will be used as is without splitting; 4177 // examples: compare predicate in icmp and fcmp (op 1), vector select with i1 4178 // scalar condition (op 1), immediate in sext_inreg (op 2). 4179 SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs); 4180 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 4181 ++UseIdx, ++UseNo) { 4182 if (is_contained(NonVecOpIndices, UseIdx)) { 4183 broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(), 4184 MI.getOperand(UseIdx)); 4185 } else { 4186 SmallVector<Register, 8> SplitPieces; 4187 extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces); 4188 for (auto Reg : SplitPieces) 4189 InputOpsPieces[UseNo].push_back(Reg); 4190 } 4191 } 4192 4193 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 4194 4195 // Take i-th piece of each input operand split and build sub-vector/scalar 4196 // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s). 4197 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 4198 SmallVector<DstOp, 2> Defs; 4199 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 4200 Defs.push_back(OutputOpsPieces[DstNo][i]); 4201 4202 SmallVector<SrcOp, 3> Uses; 4203 for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo) 4204 Uses.push_back(InputOpsPieces[InputNo][i]); 4205 4206 auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags()); 4207 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 4208 OutputRegs[DstNo].push_back(I.getReg(DstNo)); 4209 } 4210 4211 // Merge small outputs into MI's output for each def operand. 4212 if (NumLeftovers) { 4213 for (unsigned i = 0; i < NumDefs; ++i) 4214 mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]); 4215 } else { 4216 for (unsigned i = 0; i < NumDefs; ++i) 4217 MIRBuilder.buildMergeLikeInstr(MI.getReg(i), OutputRegs[i]); 4218 } 4219 4220 MI.eraseFromParent(); 4221 return Legalized; 4222 } 4223 4224 LegalizerHelper::LegalizeResult 4225 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI, 4226 unsigned NumElts) { 4227 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 4228 4229 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 4230 unsigned NumDefs = MI.getNumDefs(); 4231 4232 SmallVector<DstOp, 8> OutputOpsPieces; 4233 SmallVector<Register, 8> OutputRegs; 4234 makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts); 4235 4236 // Instructions that perform register split will be inserted in basic block 4237 // where register is defined (basic block is in the next operand). 4238 SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2); 4239 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 4240 UseIdx += 2, ++UseNo) { 4241 MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB(); 4242 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward()); 4243 extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]); 4244 } 4245 4246 // Build PHIs with fewer elements. 4247 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 4248 MIRBuilder.setInsertPt(*MI.getParent(), MI); 4249 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 4250 auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI); 4251 Phi.addDef( 4252 MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI))); 4253 OutputRegs.push_back(Phi.getReg(0)); 4254 4255 for (unsigned j = 0; j < NumInputs / 2; ++j) { 4256 Phi.addUse(InputOpsPieces[j][i]); 4257 Phi.add(MI.getOperand(1 + j * 2 + 1)); 4258 } 4259 } 4260 4261 // Merge small outputs into MI's def. 4262 if (NumLeftovers) { 4263 mergeMixedSubvectors(MI.getReg(0), OutputRegs); 4264 } else { 4265 MIRBuilder.buildMergeLikeInstr(MI.getReg(0), OutputRegs); 4266 } 4267 4268 MI.eraseFromParent(); 4269 return Legalized; 4270 } 4271 4272 LegalizerHelper::LegalizeResult 4273 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 4274 unsigned TypeIdx, 4275 LLT NarrowTy) { 4276 const int NumDst = MI.getNumOperands() - 1; 4277 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4278 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4279 LLT SrcTy = MRI.getType(SrcReg); 4280 4281 if (TypeIdx != 1 || NarrowTy == DstTy) 4282 return UnableToLegalize; 4283 4284 // Requires compatible types. Otherwise SrcReg should have been defined by 4285 // merge-like instruction that would get artifact combined. Most likely 4286 // instruction that defines SrcReg has to perform more/fewer elements 4287 // legalization compatible with NarrowTy. 4288 assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 4289 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 4290 4291 if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 4292 (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0)) 4293 return UnableToLegalize; 4294 4295 // This is most likely DstTy (smaller then register size) packed in SrcTy 4296 // (larger then register size) and since unmerge was not combined it will be 4297 // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy 4298 // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy. 4299 4300 // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy) 4301 // 4302 // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence 4303 // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg 4304 // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy) 4305 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg); 4306 const int NumUnmerge = Unmerge->getNumOperands() - 1; 4307 const int PartsPerUnmerge = NumDst / NumUnmerge; 4308 4309 for (int I = 0; I != NumUnmerge; ++I) { 4310 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4311 4312 for (int J = 0; J != PartsPerUnmerge; ++J) 4313 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 4314 MIB.addUse(Unmerge.getReg(I)); 4315 } 4316 4317 MI.eraseFromParent(); 4318 return Legalized; 4319 } 4320 4321 LegalizerHelper::LegalizeResult 4322 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 4323 LLT NarrowTy) { 4324 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 4325 // Requires compatible types. Otherwise user of DstReg did not perform unmerge 4326 // that should have been artifact combined. Most likely instruction that uses 4327 // DstReg has to do more/fewer elements legalization compatible with NarrowTy. 4328 assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 4329 assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 4330 if (NarrowTy == SrcTy) 4331 return UnableToLegalize; 4332 4333 // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use 4334 // is for old mir tests. Since the changes to more/fewer elements it should no 4335 // longer be possible to generate MIR like this when starting from llvm-ir 4336 // because LCMTy approach was replaced with merge/unmerge to vector elements. 4337 if (TypeIdx == 1) { 4338 assert(SrcTy.isVector() && "Expected vector types"); 4339 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 4340 if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 4341 (NarrowTy.getNumElements() >= SrcTy.getNumElements())) 4342 return UnableToLegalize; 4343 // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy) 4344 // 4345 // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy) 4346 // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy) 4347 // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4 4348 // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6 4349 // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8 4350 // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11 4351 4352 SmallVector<Register, 8> Elts; 4353 LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType(); 4354 for (unsigned i = 1; i < MI.getNumOperands(); ++i) { 4355 auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg()); 4356 for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j) 4357 Elts.push_back(Unmerge.getReg(j)); 4358 } 4359 4360 SmallVector<Register, 8> NarrowTyElts; 4361 unsigned NumNarrowTyElts = NarrowTy.getNumElements(); 4362 unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts; 4363 for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces; 4364 ++i, Offset += NumNarrowTyElts) { 4365 ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts); 4366 NarrowTyElts.push_back( 4367 MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0)); 4368 } 4369 4370 MIRBuilder.buildMergeLikeInstr(DstReg, NarrowTyElts); 4371 MI.eraseFromParent(); 4372 return Legalized; 4373 } 4374 4375 assert(TypeIdx == 0 && "Bad type index"); 4376 if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) || 4377 (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0)) 4378 return UnableToLegalize; 4379 4380 // This is most likely SrcTy (smaller then register size) packed in DstTy 4381 // (larger then register size) and since merge was not combined it will be 4382 // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy 4383 // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy. 4384 4385 // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4 4386 // 4387 // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg 4388 // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4 4389 // %0:_(DstTy) = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence 4390 SmallVector<Register, 8> NarrowTyElts; 4391 unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 4392 unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1; 4393 unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts; 4394 for (unsigned i = 0; i < NumParts; ++i) { 4395 SmallVector<Register, 8> Sources; 4396 for (unsigned j = 0; j < NumElts; ++j) 4397 Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg()); 4398 NarrowTyElts.push_back( 4399 MIRBuilder.buildMergeLikeInstr(NarrowTy, Sources).getReg(0)); 4400 } 4401 4402 MIRBuilder.buildMergeLikeInstr(DstReg, NarrowTyElts); 4403 MI.eraseFromParent(); 4404 return Legalized; 4405 } 4406 4407 LegalizerHelper::LegalizeResult 4408 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 4409 unsigned TypeIdx, 4410 LLT NarrowVecTy) { 4411 auto [DstReg, SrcVec] = MI.getFirst2Regs(); 4412 Register InsertVal; 4413 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 4414 4415 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 4416 if (IsInsert) 4417 InsertVal = MI.getOperand(2).getReg(); 4418 4419 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 4420 4421 // TODO: Handle total scalarization case. 4422 if (!NarrowVecTy.isVector()) 4423 return UnableToLegalize; 4424 4425 LLT VecTy = MRI.getType(SrcVec); 4426 4427 // If the index is a constant, we can really break this down as you would 4428 // expect, and index into the target size pieces. 4429 int64_t IdxVal; 4430 auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI); 4431 if (MaybeCst) { 4432 IdxVal = MaybeCst->Value.getSExtValue(); 4433 // Avoid out of bounds indexing the pieces. 4434 if (IdxVal >= VecTy.getNumElements()) { 4435 MIRBuilder.buildUndef(DstReg); 4436 MI.eraseFromParent(); 4437 return Legalized; 4438 } 4439 4440 SmallVector<Register, 8> VecParts; 4441 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 4442 4443 // Build a sequence of NarrowTy pieces in VecParts for this operand. 4444 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 4445 TargetOpcode::G_ANYEXT); 4446 4447 unsigned NewNumElts = NarrowVecTy.getNumElements(); 4448 4449 LLT IdxTy = MRI.getType(Idx); 4450 int64_t PartIdx = IdxVal / NewNumElts; 4451 auto NewIdx = 4452 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 4453 4454 if (IsInsert) { 4455 LLT PartTy = MRI.getType(VecParts[PartIdx]); 4456 4457 // Use the adjusted index to insert into one of the subvectors. 4458 auto InsertPart = MIRBuilder.buildInsertVectorElement( 4459 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 4460 VecParts[PartIdx] = InsertPart.getReg(0); 4461 4462 // Recombine the inserted subvector with the others to reform the result 4463 // vector. 4464 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 4465 } else { 4466 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 4467 } 4468 4469 MI.eraseFromParent(); 4470 return Legalized; 4471 } 4472 4473 // With a variable index, we can't perform the operation in a smaller type, so 4474 // we're forced to expand this. 4475 // 4476 // TODO: We could emit a chain of compare/select to figure out which piece to 4477 // index. 4478 return lowerExtractInsertVectorElt(MI); 4479 } 4480 4481 LegalizerHelper::LegalizeResult 4482 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx, 4483 LLT NarrowTy) { 4484 // FIXME: Don't know how to handle secondary types yet. 4485 if (TypeIdx != 0) 4486 return UnableToLegalize; 4487 4488 // This implementation doesn't work for atomics. Give up instead of doing 4489 // something invalid. 4490 if (LdStMI.isAtomic()) 4491 return UnableToLegalize; 4492 4493 bool IsLoad = isa<GLoad>(LdStMI); 4494 Register ValReg = LdStMI.getReg(0); 4495 Register AddrReg = LdStMI.getPointerReg(); 4496 LLT ValTy = MRI.getType(ValReg); 4497 4498 // FIXME: Do we need a distinct NarrowMemory legalize action? 4499 if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) { 4500 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 4501 return UnableToLegalize; 4502 } 4503 4504 int NumParts = -1; 4505 int NumLeftover = -1; 4506 LLT LeftoverTy; 4507 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 4508 if (IsLoad) { 4509 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 4510 } else { 4511 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 4512 NarrowLeftoverRegs)) { 4513 NumParts = NarrowRegs.size(); 4514 NumLeftover = NarrowLeftoverRegs.size(); 4515 } 4516 } 4517 4518 if (NumParts == -1) 4519 return UnableToLegalize; 4520 4521 LLT PtrTy = MRI.getType(AddrReg); 4522 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 4523 4524 unsigned TotalSize = ValTy.getSizeInBits(); 4525 4526 // Split the load/store into PartTy sized pieces starting at Offset. If this 4527 // is a load, return the new registers in ValRegs. For a store, each elements 4528 // of ValRegs should be PartTy. Returns the next offset that needs to be 4529 // handled. 4530 bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian(); 4531 auto MMO = LdStMI.getMMO(); 4532 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 4533 unsigned NumParts, unsigned Offset) -> unsigned { 4534 MachineFunction &MF = MIRBuilder.getMF(); 4535 unsigned PartSize = PartTy.getSizeInBits(); 4536 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 4537 ++Idx) { 4538 unsigned ByteOffset = Offset / 8; 4539 Register NewAddrReg; 4540 4541 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 4542 4543 MachineMemOperand *NewMMO = 4544 MF.getMachineMemOperand(&MMO, ByteOffset, PartTy); 4545 4546 if (IsLoad) { 4547 Register Dst = MRI.createGenericVirtualRegister(PartTy); 4548 ValRegs.push_back(Dst); 4549 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 4550 } else { 4551 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 4552 } 4553 Offset = isBigEndian ? Offset - PartSize : Offset + PartSize; 4554 } 4555 4556 return Offset; 4557 }; 4558 4559 unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0; 4560 unsigned HandledOffset = 4561 splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset); 4562 4563 // Handle the rest of the register if this isn't an even type breakdown. 4564 if (LeftoverTy.isValid()) 4565 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset); 4566 4567 if (IsLoad) { 4568 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 4569 LeftoverTy, NarrowLeftoverRegs); 4570 } 4571 4572 LdStMI.eraseFromParent(); 4573 return Legalized; 4574 } 4575 4576 LegalizerHelper::LegalizeResult 4577 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4578 LLT NarrowTy) { 4579 using namespace TargetOpcode; 4580 GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI); 4581 unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 4582 4583 switch (MI.getOpcode()) { 4584 case G_IMPLICIT_DEF: 4585 case G_TRUNC: 4586 case G_AND: 4587 case G_OR: 4588 case G_XOR: 4589 case G_ADD: 4590 case G_SUB: 4591 case G_MUL: 4592 case G_PTR_ADD: 4593 case G_SMULH: 4594 case G_UMULH: 4595 case G_FADD: 4596 case G_FMUL: 4597 case G_FSUB: 4598 case G_FNEG: 4599 case G_FABS: 4600 case G_FCANONICALIZE: 4601 case G_FDIV: 4602 case G_FREM: 4603 case G_FMA: 4604 case G_FMAD: 4605 case G_FPOW: 4606 case G_FEXP: 4607 case G_FEXP2: 4608 case G_FEXP10: 4609 case G_FLOG: 4610 case G_FLOG2: 4611 case G_FLOG10: 4612 case G_FLDEXP: 4613 case G_FNEARBYINT: 4614 case G_FCEIL: 4615 case G_FFLOOR: 4616 case G_FRINT: 4617 case G_INTRINSIC_ROUND: 4618 case G_INTRINSIC_ROUNDEVEN: 4619 case G_INTRINSIC_TRUNC: 4620 case G_FCOS: 4621 case G_FSIN: 4622 case G_FSQRT: 4623 case G_BSWAP: 4624 case G_BITREVERSE: 4625 case G_SDIV: 4626 case G_UDIV: 4627 case G_SREM: 4628 case G_UREM: 4629 case G_SDIVREM: 4630 case G_UDIVREM: 4631 case G_SMIN: 4632 case G_SMAX: 4633 case G_UMIN: 4634 case G_UMAX: 4635 case G_ABS: 4636 case G_FMINNUM: 4637 case G_FMAXNUM: 4638 case G_FMINNUM_IEEE: 4639 case G_FMAXNUM_IEEE: 4640 case G_FMINIMUM: 4641 case G_FMAXIMUM: 4642 case G_FSHL: 4643 case G_FSHR: 4644 case G_ROTL: 4645 case G_ROTR: 4646 case G_FREEZE: 4647 case G_SADDSAT: 4648 case G_SSUBSAT: 4649 case G_UADDSAT: 4650 case G_USUBSAT: 4651 case G_UMULO: 4652 case G_SMULO: 4653 case G_SHL: 4654 case G_LSHR: 4655 case G_ASHR: 4656 case G_SSHLSAT: 4657 case G_USHLSAT: 4658 case G_CTLZ: 4659 case G_CTLZ_ZERO_UNDEF: 4660 case G_CTTZ: 4661 case G_CTTZ_ZERO_UNDEF: 4662 case G_CTPOP: 4663 case G_FCOPYSIGN: 4664 case G_ZEXT: 4665 case G_SEXT: 4666 case G_ANYEXT: 4667 case G_FPEXT: 4668 case G_FPTRUNC: 4669 case G_SITOFP: 4670 case G_UITOFP: 4671 case G_FPTOSI: 4672 case G_FPTOUI: 4673 case G_INTTOPTR: 4674 case G_PTRTOINT: 4675 case G_ADDRSPACE_CAST: 4676 case G_UADDO: 4677 case G_USUBO: 4678 case G_UADDE: 4679 case G_USUBE: 4680 case G_SADDO: 4681 case G_SSUBO: 4682 case G_SADDE: 4683 case G_SSUBE: 4684 case G_STRICT_FADD: 4685 case G_STRICT_FSUB: 4686 case G_STRICT_FMUL: 4687 case G_STRICT_FMA: 4688 case G_STRICT_FLDEXP: 4689 case G_FFREXP: 4690 return fewerElementsVectorMultiEltType(GMI, NumElts); 4691 case G_ICMP: 4692 case G_FCMP: 4693 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/}); 4694 case G_IS_FPCLASS: 4695 return fewerElementsVectorMultiEltType(GMI, NumElts, {2, 3 /*mask,fpsem*/}); 4696 case G_SELECT: 4697 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4698 return fewerElementsVectorMultiEltType(GMI, NumElts); 4699 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/}); 4700 case G_PHI: 4701 return fewerElementsVectorPhi(GMI, NumElts); 4702 case G_UNMERGE_VALUES: 4703 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4704 case G_BUILD_VECTOR: 4705 assert(TypeIdx == 0 && "not a vector type index"); 4706 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4707 case G_CONCAT_VECTORS: 4708 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4709 return UnableToLegalize; 4710 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4711 case G_EXTRACT_VECTOR_ELT: 4712 case G_INSERT_VECTOR_ELT: 4713 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4714 case G_LOAD: 4715 case G_STORE: 4716 return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy); 4717 case G_SEXT_INREG: 4718 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/}); 4719 GISEL_VECREDUCE_CASES_NONSEQ 4720 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4721 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 4722 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: 4723 return fewerElementsVectorSeqReductions(MI, TypeIdx, NarrowTy); 4724 case G_SHUFFLE_VECTOR: 4725 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 4726 case G_FPOWI: 4727 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*pow*/}); 4728 default: 4729 return UnableToLegalize; 4730 } 4731 } 4732 4733 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 4734 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4735 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 4736 if (TypeIdx != 0) 4737 return UnableToLegalize; 4738 4739 auto [DstReg, DstTy, Src1Reg, Src1Ty, Src2Reg, Src2Ty] = 4740 MI.getFirst3RegLLTs(); 4741 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4742 // The shuffle should be canonicalized by now. 4743 if (DstTy != Src1Ty) 4744 return UnableToLegalize; 4745 if (DstTy != Src2Ty) 4746 return UnableToLegalize; 4747 4748 if (!isPowerOf2_32(DstTy.getNumElements())) 4749 return UnableToLegalize; 4750 4751 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 4752 // Further legalization attempts will be needed to do split further. 4753 NarrowTy = 4754 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); 4755 unsigned NewElts = NarrowTy.getNumElements(); 4756 4757 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 4758 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); 4759 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); 4760 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 4761 SplitSrc2Regs[1]}; 4762 4763 Register Hi, Lo; 4764 4765 // If Lo or Hi uses elements from at most two of the four input vectors, then 4766 // express it as a vector shuffle of those two inputs. Otherwise extract the 4767 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 4768 SmallVector<int, 16> Ops; 4769 for (unsigned High = 0; High < 2; ++High) { 4770 Register &Output = High ? Hi : Lo; 4771 4772 // Build a shuffle mask for the output, discovering on the fly which 4773 // input vectors to use as shuffle operands (recorded in InputUsed). 4774 // If building a suitable shuffle vector proves too hard, then bail 4775 // out with useBuildVector set. 4776 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 4777 unsigned FirstMaskIdx = High * NewElts; 4778 bool UseBuildVector = false; 4779 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4780 // The mask element. This indexes into the input. 4781 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4782 4783 // The input vector this mask element indexes into. 4784 unsigned Input = (unsigned)Idx / NewElts; 4785 4786 if (Input >= std::size(Inputs)) { 4787 // The mask element does not index into any input vector. 4788 Ops.push_back(-1); 4789 continue; 4790 } 4791 4792 // Turn the index into an offset from the start of the input vector. 4793 Idx -= Input * NewElts; 4794 4795 // Find or create a shuffle vector operand to hold this input. 4796 unsigned OpNo; 4797 for (OpNo = 0; OpNo < std::size(InputUsed); ++OpNo) { 4798 if (InputUsed[OpNo] == Input) { 4799 // This input vector is already an operand. 4800 break; 4801 } else if (InputUsed[OpNo] == -1U) { 4802 // Create a new operand for this input vector. 4803 InputUsed[OpNo] = Input; 4804 break; 4805 } 4806 } 4807 4808 if (OpNo >= std::size(InputUsed)) { 4809 // More than two input vectors used! Give up on trying to create a 4810 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 4811 UseBuildVector = true; 4812 break; 4813 } 4814 4815 // Add the mask index for the new shuffle vector. 4816 Ops.push_back(Idx + OpNo * NewElts); 4817 } 4818 4819 if (UseBuildVector) { 4820 LLT EltTy = NarrowTy.getElementType(); 4821 SmallVector<Register, 16> SVOps; 4822 4823 // Extract the input elements by hand. 4824 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4825 // The mask element. This indexes into the input. 4826 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4827 4828 // The input vector this mask element indexes into. 4829 unsigned Input = (unsigned)Idx / NewElts; 4830 4831 if (Input >= std::size(Inputs)) { 4832 // The mask element is "undef" or indexes off the end of the input. 4833 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 4834 continue; 4835 } 4836 4837 // Turn the index into an offset from the start of the input vector. 4838 Idx -= Input * NewElts; 4839 4840 // Extract the vector element by hand. 4841 SVOps.push_back(MIRBuilder 4842 .buildExtractVectorElement( 4843 EltTy, Inputs[Input], 4844 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 4845 .getReg(0)); 4846 } 4847 4848 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 4849 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 4850 } else if (InputUsed[0] == -1U) { 4851 // No input vectors were used! The result is undefined. 4852 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 4853 } else { 4854 Register Op0 = Inputs[InputUsed[0]]; 4855 // If only one input was used, use an undefined vector for the other. 4856 Register Op1 = InputUsed[1] == -1U 4857 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 4858 : Inputs[InputUsed[1]]; 4859 // At least one input vector was used. Create a new shuffle vector. 4860 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 4861 } 4862 4863 Ops.clear(); 4864 } 4865 4866 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); 4867 MI.eraseFromParent(); 4868 return Legalized; 4869 } 4870 4871 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4872 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4873 auto &RdxMI = cast<GVecReduce>(MI); 4874 4875 if (TypeIdx != 1) 4876 return UnableToLegalize; 4877 4878 // The semantics of the normal non-sequential reductions allow us to freely 4879 // re-associate the operation. 4880 auto [DstReg, DstTy, SrcReg, SrcTy] = RdxMI.getFirst2RegLLTs(); 4881 4882 if (NarrowTy.isVector() && 4883 (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)) 4884 return UnableToLegalize; 4885 4886 unsigned ScalarOpc = RdxMI.getScalarOpcForReduction(); 4887 SmallVector<Register> SplitSrcs; 4888 // If NarrowTy is a scalar then we're being asked to scalarize. 4889 const unsigned NumParts = 4890 NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements() 4891 : SrcTy.getNumElements(); 4892 4893 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4894 if (NarrowTy.isScalar()) { 4895 if (DstTy != NarrowTy) 4896 return UnableToLegalize; // FIXME: handle implicit extensions. 4897 4898 if (isPowerOf2_32(NumParts)) { 4899 // Generate a tree of scalar operations to reduce the critical path. 4900 SmallVector<Register> PartialResults; 4901 unsigned NumPartsLeft = NumParts; 4902 while (NumPartsLeft > 1) { 4903 for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) { 4904 PartialResults.emplace_back( 4905 MIRBuilder 4906 .buildInstr(ScalarOpc, {NarrowTy}, 4907 {SplitSrcs[Idx], SplitSrcs[Idx + 1]}) 4908 .getReg(0)); 4909 } 4910 SplitSrcs = PartialResults; 4911 PartialResults.clear(); 4912 NumPartsLeft = SplitSrcs.size(); 4913 } 4914 assert(SplitSrcs.size() == 1); 4915 MIRBuilder.buildCopy(DstReg, SplitSrcs[0]); 4916 MI.eraseFromParent(); 4917 return Legalized; 4918 } 4919 // If we can't generate a tree, then just do sequential operations. 4920 Register Acc = SplitSrcs[0]; 4921 for (unsigned Idx = 1; Idx < NumParts; ++Idx) 4922 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]}) 4923 .getReg(0); 4924 MIRBuilder.buildCopy(DstReg, Acc); 4925 MI.eraseFromParent(); 4926 return Legalized; 4927 } 4928 SmallVector<Register> PartialReductions; 4929 for (unsigned Part = 0; Part < NumParts; ++Part) { 4930 PartialReductions.push_back( 4931 MIRBuilder.buildInstr(RdxMI.getOpcode(), {DstTy}, {SplitSrcs[Part]}) 4932 .getReg(0)); 4933 } 4934 4935 // If the types involved are powers of 2, we can generate intermediate vector 4936 // ops, before generating a final reduction operation. 4937 if (isPowerOf2_32(SrcTy.getNumElements()) && 4938 isPowerOf2_32(NarrowTy.getNumElements())) { 4939 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4940 } 4941 4942 Register Acc = PartialReductions[0]; 4943 for (unsigned Part = 1; Part < NumParts; ++Part) { 4944 if (Part == NumParts - 1) { 4945 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4946 {Acc, PartialReductions[Part]}); 4947 } else { 4948 Acc = MIRBuilder 4949 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4950 .getReg(0); 4951 } 4952 } 4953 MI.eraseFromParent(); 4954 return Legalized; 4955 } 4956 4957 LegalizerHelper::LegalizeResult 4958 LegalizerHelper::fewerElementsVectorSeqReductions(MachineInstr &MI, 4959 unsigned int TypeIdx, 4960 LLT NarrowTy) { 4961 auto [DstReg, DstTy, ScalarReg, ScalarTy, SrcReg, SrcTy] = 4962 MI.getFirst3RegLLTs(); 4963 if (!NarrowTy.isScalar() || TypeIdx != 2 || DstTy != ScalarTy || 4964 DstTy != NarrowTy) 4965 return UnableToLegalize; 4966 4967 assert((MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FADD || 4968 MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FMUL) && 4969 "Unexpected vecreduce opcode"); 4970 unsigned ScalarOpc = MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FADD 4971 ? TargetOpcode::G_FADD 4972 : TargetOpcode::G_FMUL; 4973 4974 SmallVector<Register> SplitSrcs; 4975 unsigned NumParts = SrcTy.getNumElements(); 4976 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4977 Register Acc = ScalarReg; 4978 for (unsigned i = 0; i < NumParts; i++) 4979 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[i]}) 4980 .getReg(0); 4981 4982 MIRBuilder.buildCopy(DstReg, Acc); 4983 MI.eraseFromParent(); 4984 return Legalized; 4985 } 4986 4987 LegalizerHelper::LegalizeResult 4988 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4989 LLT SrcTy, LLT NarrowTy, 4990 unsigned ScalarOpc) { 4991 SmallVector<Register> SplitSrcs; 4992 // Split the sources into NarrowTy size pieces. 4993 extractParts(SrcReg, NarrowTy, 4994 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4995 // We're going to do a tree reduction using vector operations until we have 4996 // one NarrowTy size value left. 4997 while (SplitSrcs.size() > 1) { 4998 SmallVector<Register> PartialRdxs; 4999 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 5000 Register LHS = SplitSrcs[Idx]; 5001 Register RHS = SplitSrcs[Idx + 1]; 5002 // Create the intermediate vector op. 5003 Register Res = 5004 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 5005 PartialRdxs.push_back(Res); 5006 } 5007 SplitSrcs = std::move(PartialRdxs); 5008 } 5009 // Finally generate the requested NarrowTy based reduction. 5010 Observer.changingInstr(MI); 5011 MI.getOperand(1).setReg(SplitSrcs[0]); 5012 Observer.changedInstr(MI); 5013 return Legalized; 5014 } 5015 5016 LegalizerHelper::LegalizeResult 5017 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 5018 const LLT HalfTy, const LLT AmtTy) { 5019 5020 Register InL = MRI.createGenericVirtualRegister(HalfTy); 5021 Register InH = MRI.createGenericVirtualRegister(HalfTy); 5022 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 5023 5024 if (Amt.isZero()) { 5025 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), {InL, InH}); 5026 MI.eraseFromParent(); 5027 return Legalized; 5028 } 5029 5030 LLT NVT = HalfTy; 5031 unsigned NVTBits = HalfTy.getSizeInBits(); 5032 unsigned VTBits = 2 * NVTBits; 5033 5034 SrcOp Lo(Register(0)), Hi(Register(0)); 5035 if (MI.getOpcode() == TargetOpcode::G_SHL) { 5036 if (Amt.ugt(VTBits)) { 5037 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 5038 } else if (Amt.ugt(NVTBits)) { 5039 Lo = MIRBuilder.buildConstant(NVT, 0); 5040 Hi = MIRBuilder.buildShl(NVT, InL, 5041 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 5042 } else if (Amt == NVTBits) { 5043 Lo = MIRBuilder.buildConstant(NVT, 0); 5044 Hi = InL; 5045 } else { 5046 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 5047 auto OrLHS = 5048 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 5049 auto OrRHS = MIRBuilder.buildLShr( 5050 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 5051 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 5052 } 5053 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 5054 if (Amt.ugt(VTBits)) { 5055 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 5056 } else if (Amt.ugt(NVTBits)) { 5057 Lo = MIRBuilder.buildLShr(NVT, InH, 5058 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 5059 Hi = MIRBuilder.buildConstant(NVT, 0); 5060 } else if (Amt == NVTBits) { 5061 Lo = InH; 5062 Hi = MIRBuilder.buildConstant(NVT, 0); 5063 } else { 5064 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 5065 5066 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 5067 auto OrRHS = MIRBuilder.buildShl( 5068 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 5069 5070 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 5071 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 5072 } 5073 } else { 5074 if (Amt.ugt(VTBits)) { 5075 Hi = Lo = MIRBuilder.buildAShr( 5076 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 5077 } else if (Amt.ugt(NVTBits)) { 5078 Lo = MIRBuilder.buildAShr(NVT, InH, 5079 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 5080 Hi = MIRBuilder.buildAShr(NVT, InH, 5081 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 5082 } else if (Amt == NVTBits) { 5083 Lo = InH; 5084 Hi = MIRBuilder.buildAShr(NVT, InH, 5085 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 5086 } else { 5087 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 5088 5089 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 5090 auto OrRHS = MIRBuilder.buildShl( 5091 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 5092 5093 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 5094 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 5095 } 5096 } 5097 5098 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), {Lo, Hi}); 5099 MI.eraseFromParent(); 5100 5101 return Legalized; 5102 } 5103 5104 // TODO: Optimize if constant shift amount. 5105 LegalizerHelper::LegalizeResult 5106 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 5107 LLT RequestedTy) { 5108 if (TypeIdx == 1) { 5109 Observer.changingInstr(MI); 5110 narrowScalarSrc(MI, RequestedTy, 2); 5111 Observer.changedInstr(MI); 5112 return Legalized; 5113 } 5114 5115 Register DstReg = MI.getOperand(0).getReg(); 5116 LLT DstTy = MRI.getType(DstReg); 5117 if (DstTy.isVector()) 5118 return UnableToLegalize; 5119 5120 Register Amt = MI.getOperand(2).getReg(); 5121 LLT ShiftAmtTy = MRI.getType(Amt); 5122 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 5123 if (DstEltSize % 2 != 0) 5124 return UnableToLegalize; 5125 5126 // Ignore the input type. We can only go to exactly half the size of the 5127 // input. If that isn't small enough, the resulting pieces will be further 5128 // legalized. 5129 const unsigned NewBitSize = DstEltSize / 2; 5130 const LLT HalfTy = LLT::scalar(NewBitSize); 5131 const LLT CondTy = LLT::scalar(1); 5132 5133 if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) { 5134 return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy, 5135 ShiftAmtTy); 5136 } 5137 5138 // TODO: Expand with known bits. 5139 5140 // Handle the fully general expansion by an unknown amount. 5141 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 5142 5143 Register InL = MRI.createGenericVirtualRegister(HalfTy); 5144 Register InH = MRI.createGenericVirtualRegister(HalfTy); 5145 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 5146 5147 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 5148 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 5149 5150 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 5151 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 5152 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 5153 5154 Register ResultRegs[2]; 5155 switch (MI.getOpcode()) { 5156 case TargetOpcode::G_SHL: { 5157 // Short: ShAmt < NewBitSize 5158 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 5159 5160 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 5161 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 5162 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 5163 5164 // Long: ShAmt >= NewBitSize 5165 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 5166 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 5167 5168 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 5169 auto Hi = MIRBuilder.buildSelect( 5170 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 5171 5172 ResultRegs[0] = Lo.getReg(0); 5173 ResultRegs[1] = Hi.getReg(0); 5174 break; 5175 } 5176 case TargetOpcode::G_LSHR: 5177 case TargetOpcode::G_ASHR: { 5178 // Short: ShAmt < NewBitSize 5179 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 5180 5181 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 5182 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 5183 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 5184 5185 // Long: ShAmt >= NewBitSize 5186 MachineInstrBuilder HiL; 5187 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 5188 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 5189 } else { 5190 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 5191 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 5192 } 5193 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 5194 {InH, AmtExcess}); // Lo from Hi part. 5195 5196 auto Lo = MIRBuilder.buildSelect( 5197 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 5198 5199 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 5200 5201 ResultRegs[0] = Lo.getReg(0); 5202 ResultRegs[1] = Hi.getReg(0); 5203 break; 5204 } 5205 default: 5206 llvm_unreachable("not a shift"); 5207 } 5208 5209 MIRBuilder.buildMergeLikeInstr(DstReg, ResultRegs); 5210 MI.eraseFromParent(); 5211 return Legalized; 5212 } 5213 5214 LegalizerHelper::LegalizeResult 5215 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 5216 LLT MoreTy) { 5217 assert(TypeIdx == 0 && "Expecting only Idx 0"); 5218 5219 Observer.changingInstr(MI); 5220 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 5221 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 5222 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 5223 moreElementsVectorSrc(MI, MoreTy, I); 5224 } 5225 5226 MachineBasicBlock &MBB = *MI.getParent(); 5227 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 5228 moreElementsVectorDst(MI, MoreTy, 0); 5229 Observer.changedInstr(MI); 5230 return Legalized; 5231 } 5232 5233 LegalizerHelper::LegalizeResult 5234 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 5235 LLT MoreTy) { 5236 unsigned Opc = MI.getOpcode(); 5237 switch (Opc) { 5238 case TargetOpcode::G_IMPLICIT_DEF: 5239 case TargetOpcode::G_LOAD: { 5240 if (TypeIdx != 0) 5241 return UnableToLegalize; 5242 Observer.changingInstr(MI); 5243 moreElementsVectorDst(MI, MoreTy, 0); 5244 Observer.changedInstr(MI); 5245 return Legalized; 5246 } 5247 case TargetOpcode::G_STORE: 5248 if (TypeIdx != 0) 5249 return UnableToLegalize; 5250 Observer.changingInstr(MI); 5251 moreElementsVectorSrc(MI, MoreTy, 0); 5252 Observer.changedInstr(MI); 5253 return Legalized; 5254 case TargetOpcode::G_AND: 5255 case TargetOpcode::G_OR: 5256 case TargetOpcode::G_XOR: 5257 case TargetOpcode::G_ADD: 5258 case TargetOpcode::G_SUB: 5259 case TargetOpcode::G_MUL: 5260 case TargetOpcode::G_FADD: 5261 case TargetOpcode::G_FSUB: 5262 case TargetOpcode::G_FMUL: 5263 case TargetOpcode::G_FDIV: 5264 case TargetOpcode::G_UADDSAT: 5265 case TargetOpcode::G_USUBSAT: 5266 case TargetOpcode::G_SADDSAT: 5267 case TargetOpcode::G_SSUBSAT: 5268 case TargetOpcode::G_SMIN: 5269 case TargetOpcode::G_SMAX: 5270 case TargetOpcode::G_UMIN: 5271 case TargetOpcode::G_UMAX: 5272 case TargetOpcode::G_FMINNUM: 5273 case TargetOpcode::G_FMAXNUM: 5274 case TargetOpcode::G_FMINNUM_IEEE: 5275 case TargetOpcode::G_FMAXNUM_IEEE: 5276 case TargetOpcode::G_FMINIMUM: 5277 case TargetOpcode::G_FMAXIMUM: 5278 case TargetOpcode::G_STRICT_FADD: 5279 case TargetOpcode::G_STRICT_FSUB: 5280 case TargetOpcode::G_STRICT_FMUL: { 5281 Observer.changingInstr(MI); 5282 moreElementsVectorSrc(MI, MoreTy, 1); 5283 moreElementsVectorSrc(MI, MoreTy, 2); 5284 moreElementsVectorDst(MI, MoreTy, 0); 5285 Observer.changedInstr(MI); 5286 return Legalized; 5287 } 5288 case TargetOpcode::G_FMA: 5289 case TargetOpcode::G_STRICT_FMA: 5290 case TargetOpcode::G_FSHR: 5291 case TargetOpcode::G_FSHL: { 5292 Observer.changingInstr(MI); 5293 moreElementsVectorSrc(MI, MoreTy, 1); 5294 moreElementsVectorSrc(MI, MoreTy, 2); 5295 moreElementsVectorSrc(MI, MoreTy, 3); 5296 moreElementsVectorDst(MI, MoreTy, 0); 5297 Observer.changedInstr(MI); 5298 return Legalized; 5299 } 5300 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 5301 case TargetOpcode::G_EXTRACT: 5302 if (TypeIdx != 1) 5303 return UnableToLegalize; 5304 Observer.changingInstr(MI); 5305 moreElementsVectorSrc(MI, MoreTy, 1); 5306 Observer.changedInstr(MI); 5307 return Legalized; 5308 case TargetOpcode::G_INSERT: 5309 case TargetOpcode::G_INSERT_VECTOR_ELT: 5310 case TargetOpcode::G_FREEZE: 5311 case TargetOpcode::G_FNEG: 5312 case TargetOpcode::G_FABS: 5313 case TargetOpcode::G_FSQRT: 5314 case TargetOpcode::G_FCEIL: 5315 case TargetOpcode::G_FFLOOR: 5316 case TargetOpcode::G_FNEARBYINT: 5317 case TargetOpcode::G_FRINT: 5318 case TargetOpcode::G_INTRINSIC_ROUND: 5319 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 5320 case TargetOpcode::G_INTRINSIC_TRUNC: 5321 case TargetOpcode::G_BSWAP: 5322 case TargetOpcode::G_FCANONICALIZE: 5323 case TargetOpcode::G_SEXT_INREG: 5324 if (TypeIdx != 0) 5325 return UnableToLegalize; 5326 Observer.changingInstr(MI); 5327 moreElementsVectorSrc(MI, MoreTy, 1); 5328 moreElementsVectorDst(MI, MoreTy, 0); 5329 Observer.changedInstr(MI); 5330 return Legalized; 5331 case TargetOpcode::G_SELECT: { 5332 auto [DstReg, DstTy, CondReg, CondTy] = MI.getFirst2RegLLTs(); 5333 if (TypeIdx == 1) { 5334 if (!CondTy.isScalar() || 5335 DstTy.getElementCount() != MoreTy.getElementCount()) 5336 return UnableToLegalize; 5337 5338 // This is turning a scalar select of vectors into a vector 5339 // select. Broadcast the select condition. 5340 auto ShufSplat = MIRBuilder.buildShuffleSplat(MoreTy, CondReg); 5341 Observer.changingInstr(MI); 5342 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 5343 Observer.changedInstr(MI); 5344 return Legalized; 5345 } 5346 5347 if (CondTy.isVector()) 5348 return UnableToLegalize; 5349 5350 Observer.changingInstr(MI); 5351 moreElementsVectorSrc(MI, MoreTy, 2); 5352 moreElementsVectorSrc(MI, MoreTy, 3); 5353 moreElementsVectorDst(MI, MoreTy, 0); 5354 Observer.changedInstr(MI); 5355 return Legalized; 5356 } 5357 case TargetOpcode::G_UNMERGE_VALUES: 5358 return UnableToLegalize; 5359 case TargetOpcode::G_PHI: 5360 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 5361 case TargetOpcode::G_SHUFFLE_VECTOR: 5362 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy); 5363 case TargetOpcode::G_BUILD_VECTOR: { 5364 SmallVector<SrcOp, 8> Elts; 5365 for (auto Op : MI.uses()) { 5366 Elts.push_back(Op.getReg()); 5367 } 5368 5369 for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) { 5370 Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType())); 5371 } 5372 5373 MIRBuilder.buildDeleteTrailingVectorElements( 5374 MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts)); 5375 MI.eraseFromParent(); 5376 return Legalized; 5377 } 5378 case TargetOpcode::G_TRUNC: 5379 case TargetOpcode::G_FPTRUNC: 5380 case TargetOpcode::G_FPEXT: 5381 case TargetOpcode::G_FPTOSI: 5382 case TargetOpcode::G_FPTOUI: 5383 case TargetOpcode::G_SITOFP: 5384 case TargetOpcode::G_UITOFP: { 5385 if (TypeIdx != 0) 5386 return UnableToLegalize; 5387 Observer.changingInstr(MI); 5388 LLT SrcTy = LLT::fixed_vector( 5389 MoreTy.getNumElements(), 5390 MRI.getType(MI.getOperand(1).getReg()).getElementType()); 5391 moreElementsVectorSrc(MI, SrcTy, 1); 5392 moreElementsVectorDst(MI, MoreTy, 0); 5393 Observer.changedInstr(MI); 5394 return Legalized; 5395 } 5396 default: 5397 return UnableToLegalize; 5398 } 5399 } 5400 5401 LegalizerHelper::LegalizeResult 5402 LegalizerHelper::equalizeVectorShuffleLengths(MachineInstr &MI) { 5403 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 5404 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5405 unsigned MaskNumElts = Mask.size(); 5406 unsigned SrcNumElts = SrcTy.getNumElements(); 5407 LLT DestEltTy = DstTy.getElementType(); 5408 5409 if (MaskNumElts == SrcNumElts) 5410 return Legalized; 5411 5412 if (MaskNumElts < SrcNumElts) { 5413 // Extend mask to match new destination vector size with 5414 // undef values. 5415 SmallVector<int, 16> NewMask(Mask); 5416 for (unsigned I = MaskNumElts; I < SrcNumElts; ++I) 5417 NewMask.push_back(-1); 5418 5419 moreElementsVectorDst(MI, SrcTy, 0); 5420 MIRBuilder.setInstrAndDebugLoc(MI); 5421 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), 5422 MI.getOperand(1).getReg(), 5423 MI.getOperand(2).getReg(), NewMask); 5424 MI.eraseFromParent(); 5425 5426 return Legalized; 5427 } 5428 5429 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 5430 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 5431 LLT PaddedTy = LLT::fixed_vector(PaddedMaskNumElts, DestEltTy); 5432 5433 // Create new source vectors by concatenating the initial 5434 // source vectors with undefined vectors of the same size. 5435 auto Undef = MIRBuilder.buildUndef(SrcTy); 5436 SmallVector<Register, 8> MOps1(NumConcat, Undef.getReg(0)); 5437 SmallVector<Register, 8> MOps2(NumConcat, Undef.getReg(0)); 5438 MOps1[0] = MI.getOperand(1).getReg(); 5439 MOps2[0] = MI.getOperand(2).getReg(); 5440 5441 auto Src1 = MIRBuilder.buildConcatVectors(PaddedTy, MOps1); 5442 auto Src2 = MIRBuilder.buildConcatVectors(PaddedTy, MOps2); 5443 5444 // Readjust mask for new input vector length. 5445 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 5446 for (unsigned I = 0; I != MaskNumElts; ++I) { 5447 int Idx = Mask[I]; 5448 if (Idx >= static_cast<int>(SrcNumElts)) 5449 Idx += PaddedMaskNumElts - SrcNumElts; 5450 MappedOps[I] = Idx; 5451 } 5452 5453 // If we got more elements than required, extract subvector. 5454 if (MaskNumElts != PaddedMaskNumElts) { 5455 auto Shuffle = 5456 MIRBuilder.buildShuffleVector(PaddedTy, Src1, Src2, MappedOps); 5457 5458 SmallVector<Register, 16> Elts(MaskNumElts); 5459 for (unsigned I = 0; I < MaskNumElts; ++I) { 5460 Elts[I] = 5461 MIRBuilder.buildExtractVectorElementConstant(DestEltTy, Shuffle, I) 5462 .getReg(0); 5463 } 5464 MIRBuilder.buildBuildVector(DstReg, Elts); 5465 } else { 5466 MIRBuilder.buildShuffleVector(DstReg, Src1, Src2, MappedOps); 5467 } 5468 5469 MI.eraseFromParent(); 5470 return LegalizerHelper::LegalizeResult::Legalized; 5471 } 5472 5473 LegalizerHelper::LegalizeResult 5474 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI, 5475 unsigned int TypeIdx, LLT MoreTy) { 5476 auto [DstTy, Src1Ty, Src2Ty] = MI.getFirst3LLTs(); 5477 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5478 unsigned NumElts = DstTy.getNumElements(); 5479 unsigned WidenNumElts = MoreTy.getNumElements(); 5480 5481 if (DstTy.isVector() && Src1Ty.isVector() && 5482 DstTy.getNumElements() != Src1Ty.getNumElements()) { 5483 return equalizeVectorShuffleLengths(MI); 5484 } 5485 5486 if (TypeIdx != 0) 5487 return UnableToLegalize; 5488 5489 // Expect a canonicalized shuffle. 5490 if (DstTy != Src1Ty || DstTy != Src2Ty) 5491 return UnableToLegalize; 5492 5493 moreElementsVectorSrc(MI, MoreTy, 1); 5494 moreElementsVectorSrc(MI, MoreTy, 2); 5495 5496 // Adjust mask based on new input vector length. 5497 SmallVector<int, 16> NewMask; 5498 for (unsigned I = 0; I != NumElts; ++I) { 5499 int Idx = Mask[I]; 5500 if (Idx < static_cast<int>(NumElts)) 5501 NewMask.push_back(Idx); 5502 else 5503 NewMask.push_back(Idx - NumElts + WidenNumElts); 5504 } 5505 for (unsigned I = NumElts; I != WidenNumElts; ++I) 5506 NewMask.push_back(-1); 5507 moreElementsVectorDst(MI, MoreTy, 0); 5508 MIRBuilder.setInstrAndDebugLoc(MI); 5509 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), 5510 MI.getOperand(1).getReg(), 5511 MI.getOperand(2).getReg(), NewMask); 5512 MI.eraseFromParent(); 5513 return Legalized; 5514 } 5515 5516 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 5517 ArrayRef<Register> Src1Regs, 5518 ArrayRef<Register> Src2Regs, 5519 LLT NarrowTy) { 5520 MachineIRBuilder &B = MIRBuilder; 5521 unsigned SrcParts = Src1Regs.size(); 5522 unsigned DstParts = DstRegs.size(); 5523 5524 unsigned DstIdx = 0; // Low bits of the result. 5525 Register FactorSum = 5526 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 5527 DstRegs[DstIdx] = FactorSum; 5528 5529 unsigned CarrySumPrevDstIdx; 5530 SmallVector<Register, 4> Factors; 5531 5532 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 5533 // Collect low parts of muls for DstIdx. 5534 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 5535 i <= std::min(DstIdx, SrcParts - 1); ++i) { 5536 MachineInstrBuilder Mul = 5537 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 5538 Factors.push_back(Mul.getReg(0)); 5539 } 5540 // Collect high parts of muls from previous DstIdx. 5541 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 5542 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 5543 MachineInstrBuilder Umulh = 5544 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 5545 Factors.push_back(Umulh.getReg(0)); 5546 } 5547 // Add CarrySum from additions calculated for previous DstIdx. 5548 if (DstIdx != 1) { 5549 Factors.push_back(CarrySumPrevDstIdx); 5550 } 5551 5552 Register CarrySum; 5553 // Add all factors and accumulate all carries into CarrySum. 5554 if (DstIdx != DstParts - 1) { 5555 MachineInstrBuilder Uaddo = 5556 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 5557 FactorSum = Uaddo.getReg(0); 5558 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 5559 for (unsigned i = 2; i < Factors.size(); ++i) { 5560 MachineInstrBuilder Uaddo = 5561 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 5562 FactorSum = Uaddo.getReg(0); 5563 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 5564 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 5565 } 5566 } else { 5567 // Since value for the next index is not calculated, neither is CarrySum. 5568 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 5569 for (unsigned i = 2; i < Factors.size(); ++i) 5570 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 5571 } 5572 5573 CarrySumPrevDstIdx = CarrySum; 5574 DstRegs[DstIdx] = FactorSum; 5575 Factors.clear(); 5576 } 5577 } 5578 5579 LegalizerHelper::LegalizeResult 5580 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 5581 LLT NarrowTy) { 5582 if (TypeIdx != 0) 5583 return UnableToLegalize; 5584 5585 Register DstReg = MI.getOperand(0).getReg(); 5586 LLT DstType = MRI.getType(DstReg); 5587 // FIXME: add support for vector types 5588 if (DstType.isVector()) 5589 return UnableToLegalize; 5590 5591 unsigned Opcode = MI.getOpcode(); 5592 unsigned OpO, OpE, OpF; 5593 switch (Opcode) { 5594 case TargetOpcode::G_SADDO: 5595 case TargetOpcode::G_SADDE: 5596 case TargetOpcode::G_UADDO: 5597 case TargetOpcode::G_UADDE: 5598 case TargetOpcode::G_ADD: 5599 OpO = TargetOpcode::G_UADDO; 5600 OpE = TargetOpcode::G_UADDE; 5601 OpF = TargetOpcode::G_UADDE; 5602 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 5603 OpF = TargetOpcode::G_SADDE; 5604 break; 5605 case TargetOpcode::G_SSUBO: 5606 case TargetOpcode::G_SSUBE: 5607 case TargetOpcode::G_USUBO: 5608 case TargetOpcode::G_USUBE: 5609 case TargetOpcode::G_SUB: 5610 OpO = TargetOpcode::G_USUBO; 5611 OpE = TargetOpcode::G_USUBE; 5612 OpF = TargetOpcode::G_USUBE; 5613 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 5614 OpF = TargetOpcode::G_SSUBE; 5615 break; 5616 default: 5617 llvm_unreachable("Unexpected add/sub opcode!"); 5618 } 5619 5620 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 5621 unsigned NumDefs = MI.getNumExplicitDefs(); 5622 Register Src1 = MI.getOperand(NumDefs).getReg(); 5623 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 5624 Register CarryDst, CarryIn; 5625 if (NumDefs == 2) 5626 CarryDst = MI.getOperand(1).getReg(); 5627 if (MI.getNumOperands() == NumDefs + 3) 5628 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 5629 5630 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5631 LLT LeftoverTy, DummyTy; 5632 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; 5633 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left); 5634 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left); 5635 5636 int NarrowParts = Src1Regs.size(); 5637 for (int I = 0, E = Src1Left.size(); I != E; ++I) { 5638 Src1Regs.push_back(Src1Left[I]); 5639 Src2Regs.push_back(Src2Left[I]); 5640 } 5641 DstRegs.reserve(Src1Regs.size()); 5642 5643 for (int i = 0, e = Src1Regs.size(); i != e; ++i) { 5644 Register DstReg = 5645 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); 5646 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 5647 // Forward the final carry-out to the destination register 5648 if (i == e - 1 && CarryDst) 5649 CarryOut = CarryDst; 5650 5651 if (!CarryIn) { 5652 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 5653 {Src1Regs[i], Src2Regs[i]}); 5654 } else if (i == e - 1) { 5655 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 5656 {Src1Regs[i], Src2Regs[i], CarryIn}); 5657 } else { 5658 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 5659 {Src1Regs[i], Src2Regs[i], CarryIn}); 5660 } 5661 5662 DstRegs.push_back(DstReg); 5663 CarryIn = CarryOut; 5664 } 5665 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, 5666 ArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, 5667 ArrayRef(DstRegs).drop_front(NarrowParts)); 5668 5669 MI.eraseFromParent(); 5670 return Legalized; 5671 } 5672 5673 LegalizerHelper::LegalizeResult 5674 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 5675 auto [DstReg, Src1, Src2] = MI.getFirst3Regs(); 5676 5677 LLT Ty = MRI.getType(DstReg); 5678 if (Ty.isVector()) 5679 return UnableToLegalize; 5680 5681 unsigned Size = Ty.getSizeInBits(); 5682 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5683 if (Size % NarrowSize != 0) 5684 return UnableToLegalize; 5685 5686 unsigned NumParts = Size / NarrowSize; 5687 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 5688 unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1); 5689 5690 SmallVector<Register, 2> Src1Parts, Src2Parts; 5691 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 5692 extractParts(Src1, NarrowTy, NumParts, Src1Parts); 5693 extractParts(Src2, NarrowTy, NumParts, Src2Parts); 5694 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 5695 5696 // Take only high half of registers if this is high mul. 5697 ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts); 5698 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); 5699 MI.eraseFromParent(); 5700 return Legalized; 5701 } 5702 5703 LegalizerHelper::LegalizeResult 5704 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 5705 LLT NarrowTy) { 5706 if (TypeIdx != 0) 5707 return UnableToLegalize; 5708 5709 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 5710 5711 Register Src = MI.getOperand(1).getReg(); 5712 LLT SrcTy = MRI.getType(Src); 5713 5714 // If all finite floats fit into the narrowed integer type, we can just swap 5715 // out the result type. This is practically only useful for conversions from 5716 // half to at least 16-bits, so just handle the one case. 5717 if (SrcTy.getScalarType() != LLT::scalar(16) || 5718 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 5719 return UnableToLegalize; 5720 5721 Observer.changingInstr(MI); 5722 narrowScalarDst(MI, NarrowTy, 0, 5723 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 5724 Observer.changedInstr(MI); 5725 return Legalized; 5726 } 5727 5728 LegalizerHelper::LegalizeResult 5729 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 5730 LLT NarrowTy) { 5731 if (TypeIdx != 1) 5732 return UnableToLegalize; 5733 5734 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5735 5736 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 5737 // FIXME: add support for when SizeOp1 isn't an exact multiple of 5738 // NarrowSize. 5739 if (SizeOp1 % NarrowSize != 0) 5740 return UnableToLegalize; 5741 int NumParts = SizeOp1 / NarrowSize; 5742 5743 SmallVector<Register, 2> SrcRegs, DstRegs; 5744 SmallVector<uint64_t, 2> Indexes; 5745 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5746 5747 Register OpReg = MI.getOperand(0).getReg(); 5748 uint64_t OpStart = MI.getOperand(2).getImm(); 5749 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5750 for (int i = 0; i < NumParts; ++i) { 5751 unsigned SrcStart = i * NarrowSize; 5752 5753 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 5754 // No part of the extract uses this subregister, ignore it. 5755 continue; 5756 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5757 // The entire subregister is extracted, forward the value. 5758 DstRegs.push_back(SrcRegs[i]); 5759 continue; 5760 } 5761 5762 // OpSegStart is where this destination segment would start in OpReg if it 5763 // extended infinitely in both directions. 5764 int64_t ExtractOffset; 5765 uint64_t SegSize; 5766 if (OpStart < SrcStart) { 5767 ExtractOffset = 0; 5768 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 5769 } else { 5770 ExtractOffset = OpStart - SrcStart; 5771 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 5772 } 5773 5774 Register SegReg = SrcRegs[i]; 5775 if (ExtractOffset != 0 || SegSize != NarrowSize) { 5776 // A genuine extract is needed. 5777 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5778 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 5779 } 5780 5781 DstRegs.push_back(SegReg); 5782 } 5783 5784 Register DstReg = MI.getOperand(0).getReg(); 5785 if (MRI.getType(DstReg).isVector()) 5786 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5787 else if (DstRegs.size() > 1) 5788 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); 5789 else 5790 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 5791 MI.eraseFromParent(); 5792 return Legalized; 5793 } 5794 5795 LegalizerHelper::LegalizeResult 5796 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 5797 LLT NarrowTy) { 5798 // FIXME: Don't know how to handle secondary types yet. 5799 if (TypeIdx != 0) 5800 return UnableToLegalize; 5801 5802 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; 5803 SmallVector<uint64_t, 2> Indexes; 5804 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5805 LLT LeftoverTy; 5806 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, 5807 LeftoverRegs); 5808 5809 for (Register Reg : LeftoverRegs) 5810 SrcRegs.push_back(Reg); 5811 5812 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5813 Register OpReg = MI.getOperand(2).getReg(); 5814 uint64_t OpStart = MI.getOperand(3).getImm(); 5815 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5816 for (int I = 0, E = SrcRegs.size(); I != E; ++I) { 5817 unsigned DstStart = I * NarrowSize; 5818 5819 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5820 // The entire subregister is defined by this insert, forward the new 5821 // value. 5822 DstRegs.push_back(OpReg); 5823 continue; 5824 } 5825 5826 Register SrcReg = SrcRegs[I]; 5827 if (MRI.getType(SrcRegs[I]) == LeftoverTy) { 5828 // The leftover reg is smaller than NarrowTy, so we need to extend it. 5829 SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 5830 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); 5831 } 5832 5833 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 5834 // No part of the insert affects this subregister, forward the original. 5835 DstRegs.push_back(SrcReg); 5836 continue; 5837 } 5838 5839 // OpSegStart is where this destination segment would start in OpReg if it 5840 // extended infinitely in both directions. 5841 int64_t ExtractOffset, InsertOffset; 5842 uint64_t SegSize; 5843 if (OpStart < DstStart) { 5844 InsertOffset = 0; 5845 ExtractOffset = DstStart - OpStart; 5846 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 5847 } else { 5848 InsertOffset = OpStart - DstStart; 5849 ExtractOffset = 0; 5850 SegSize = 5851 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 5852 } 5853 5854 Register SegReg = OpReg; 5855 if (ExtractOffset != 0 || SegSize != OpSize) { 5856 // A genuine extract is needed. 5857 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5858 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5859 } 5860 5861 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5862 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); 5863 DstRegs.push_back(DstReg); 5864 } 5865 5866 uint64_t WideSize = DstRegs.size() * NarrowSize; 5867 Register DstReg = MI.getOperand(0).getReg(); 5868 if (WideSize > RegTy.getSizeInBits()) { 5869 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); 5870 MIRBuilder.buildMergeLikeInstr(MergeReg, DstRegs); 5871 MIRBuilder.buildTrunc(DstReg, MergeReg); 5872 } else 5873 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); 5874 5875 MI.eraseFromParent(); 5876 return Legalized; 5877 } 5878 5879 LegalizerHelper::LegalizeResult 5880 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5881 LLT NarrowTy) { 5882 Register DstReg = MI.getOperand(0).getReg(); 5883 LLT DstTy = MRI.getType(DstReg); 5884 5885 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5886 5887 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5888 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5889 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5890 LLT LeftoverTy; 5891 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5892 Src0Regs, Src0LeftoverRegs)) 5893 return UnableToLegalize; 5894 5895 LLT Unused; 5896 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5897 Src1Regs, Src1LeftoverRegs)) 5898 llvm_unreachable("inconsistent extractParts result"); 5899 5900 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5901 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5902 {Src0Regs[I], Src1Regs[I]}); 5903 DstRegs.push_back(Inst.getReg(0)); 5904 } 5905 5906 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5907 auto Inst = MIRBuilder.buildInstr( 5908 MI.getOpcode(), 5909 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5910 DstLeftoverRegs.push_back(Inst.getReg(0)); 5911 } 5912 5913 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5914 LeftoverTy, DstLeftoverRegs); 5915 5916 MI.eraseFromParent(); 5917 return Legalized; 5918 } 5919 5920 LegalizerHelper::LegalizeResult 5921 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5922 LLT NarrowTy) { 5923 if (TypeIdx != 0) 5924 return UnableToLegalize; 5925 5926 auto [DstReg, SrcReg] = MI.getFirst2Regs(); 5927 5928 LLT DstTy = MRI.getType(DstReg); 5929 if (DstTy.isVector()) 5930 return UnableToLegalize; 5931 5932 SmallVector<Register, 8> Parts; 5933 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5934 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5935 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5936 5937 MI.eraseFromParent(); 5938 return Legalized; 5939 } 5940 5941 LegalizerHelper::LegalizeResult 5942 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5943 LLT NarrowTy) { 5944 if (TypeIdx != 0) 5945 return UnableToLegalize; 5946 5947 Register CondReg = MI.getOperand(1).getReg(); 5948 LLT CondTy = MRI.getType(CondReg); 5949 if (CondTy.isVector()) // TODO: Handle vselect 5950 return UnableToLegalize; 5951 5952 Register DstReg = MI.getOperand(0).getReg(); 5953 LLT DstTy = MRI.getType(DstReg); 5954 5955 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5956 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5957 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5958 LLT LeftoverTy; 5959 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5960 Src1Regs, Src1LeftoverRegs)) 5961 return UnableToLegalize; 5962 5963 LLT Unused; 5964 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5965 Src2Regs, Src2LeftoverRegs)) 5966 llvm_unreachable("inconsistent extractParts result"); 5967 5968 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5969 auto Select = MIRBuilder.buildSelect(NarrowTy, 5970 CondReg, Src1Regs[I], Src2Regs[I]); 5971 DstRegs.push_back(Select.getReg(0)); 5972 } 5973 5974 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5975 auto Select = MIRBuilder.buildSelect( 5976 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5977 DstLeftoverRegs.push_back(Select.getReg(0)); 5978 } 5979 5980 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5981 LeftoverTy, DstLeftoverRegs); 5982 5983 MI.eraseFromParent(); 5984 return Legalized; 5985 } 5986 5987 LegalizerHelper::LegalizeResult 5988 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5989 LLT NarrowTy) { 5990 if (TypeIdx != 1) 5991 return UnableToLegalize; 5992 5993 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 5994 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5995 5996 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5997 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5998 5999 MachineIRBuilder &B = MIRBuilder; 6000 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 6001 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 6002 auto C_0 = B.buildConstant(NarrowTy, 0); 6003 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 6004 UnmergeSrc.getReg(1), C_0); 6005 auto LoCTLZ = IsUndef ? 6006 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 6007 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 6008 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 6009 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 6010 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 6011 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 6012 6013 MI.eraseFromParent(); 6014 return Legalized; 6015 } 6016 6017 return UnableToLegalize; 6018 } 6019 6020 LegalizerHelper::LegalizeResult 6021 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 6022 LLT NarrowTy) { 6023 if (TypeIdx != 1) 6024 return UnableToLegalize; 6025 6026 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 6027 unsigned NarrowSize = NarrowTy.getSizeInBits(); 6028 6029 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 6030 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 6031 6032 MachineIRBuilder &B = MIRBuilder; 6033 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 6034 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 6035 auto C_0 = B.buildConstant(NarrowTy, 0); 6036 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 6037 UnmergeSrc.getReg(0), C_0); 6038 auto HiCTTZ = IsUndef ? 6039 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 6040 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 6041 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 6042 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 6043 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 6044 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 6045 6046 MI.eraseFromParent(); 6047 return Legalized; 6048 } 6049 6050 return UnableToLegalize; 6051 } 6052 6053 LegalizerHelper::LegalizeResult 6054 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 6055 LLT NarrowTy) { 6056 if (TypeIdx != 1) 6057 return UnableToLegalize; 6058 6059 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 6060 unsigned NarrowSize = NarrowTy.getSizeInBits(); 6061 6062 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 6063 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 6064 6065 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 6066 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 6067 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 6068 6069 MI.eraseFromParent(); 6070 return Legalized; 6071 } 6072 6073 return UnableToLegalize; 6074 } 6075 6076 LegalizerHelper::LegalizeResult 6077 LegalizerHelper::narrowScalarFLDEXP(MachineInstr &MI, unsigned TypeIdx, 6078 LLT NarrowTy) { 6079 if (TypeIdx != 1) 6080 return UnableToLegalize; 6081 6082 MachineIRBuilder &B = MIRBuilder; 6083 Register ExpReg = MI.getOperand(2).getReg(); 6084 LLT ExpTy = MRI.getType(ExpReg); 6085 6086 unsigned ClampSize = NarrowTy.getScalarSizeInBits(); 6087 6088 // Clamp the exponent to the range of the target type. 6089 auto MinExp = B.buildConstant(ExpTy, minIntN(ClampSize)); 6090 auto ClampMin = B.buildSMax(ExpTy, ExpReg, MinExp); 6091 auto MaxExp = B.buildConstant(ExpTy, maxIntN(ClampSize)); 6092 auto Clamp = B.buildSMin(ExpTy, ClampMin, MaxExp); 6093 6094 auto Trunc = B.buildTrunc(NarrowTy, Clamp); 6095 Observer.changingInstr(MI); 6096 MI.getOperand(2).setReg(Trunc.getReg(0)); 6097 Observer.changedInstr(MI); 6098 return Legalized; 6099 } 6100 6101 LegalizerHelper::LegalizeResult 6102 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 6103 unsigned Opc = MI.getOpcode(); 6104 const auto &TII = MIRBuilder.getTII(); 6105 auto isSupported = [this](const LegalityQuery &Q) { 6106 auto QAction = LI.getAction(Q).Action; 6107 return QAction == Legal || QAction == Libcall || QAction == Custom; 6108 }; 6109 switch (Opc) { 6110 default: 6111 return UnableToLegalize; 6112 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 6113 // This trivially expands to CTLZ. 6114 Observer.changingInstr(MI); 6115 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 6116 Observer.changedInstr(MI); 6117 return Legalized; 6118 } 6119 case TargetOpcode::G_CTLZ: { 6120 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 6121 unsigned Len = SrcTy.getSizeInBits(); 6122 6123 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 6124 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 6125 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 6126 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 6127 auto ICmp = MIRBuilder.buildICmp( 6128 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 6129 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 6130 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 6131 MI.eraseFromParent(); 6132 return Legalized; 6133 } 6134 // for now, we do this: 6135 // NewLen = NextPowerOf2(Len); 6136 // x = x | (x >> 1); 6137 // x = x | (x >> 2); 6138 // ... 6139 // x = x | (x >>16); 6140 // x = x | (x >>32); // for 64-bit input 6141 // Upto NewLen/2 6142 // return Len - popcount(x); 6143 // 6144 // Ref: "Hacker's Delight" by Henry Warren 6145 Register Op = SrcReg; 6146 unsigned NewLen = PowerOf2Ceil(Len); 6147 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 6148 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 6149 auto MIBOp = MIRBuilder.buildOr( 6150 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 6151 Op = MIBOp.getReg(0); 6152 } 6153 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 6154 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 6155 MIBPop); 6156 MI.eraseFromParent(); 6157 return Legalized; 6158 } 6159 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 6160 // This trivially expands to CTTZ. 6161 Observer.changingInstr(MI); 6162 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 6163 Observer.changedInstr(MI); 6164 return Legalized; 6165 } 6166 case TargetOpcode::G_CTTZ: { 6167 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 6168 6169 unsigned Len = SrcTy.getSizeInBits(); 6170 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 6171 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 6172 // zero. 6173 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 6174 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 6175 auto ICmp = MIRBuilder.buildICmp( 6176 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 6177 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 6178 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 6179 MI.eraseFromParent(); 6180 return Legalized; 6181 } 6182 // for now, we use: { return popcount(~x & (x - 1)); } 6183 // unless the target has ctlz but not ctpop, in which case we use: 6184 // { return 32 - nlz(~x & (x-1)); } 6185 // Ref: "Hacker's Delight" by Henry Warren 6186 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 6187 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 6188 auto MIBTmp = MIRBuilder.buildAnd( 6189 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 6190 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 6191 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 6192 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 6193 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 6194 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 6195 MI.eraseFromParent(); 6196 return Legalized; 6197 } 6198 Observer.changingInstr(MI); 6199 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 6200 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 6201 Observer.changedInstr(MI); 6202 return Legalized; 6203 } 6204 case TargetOpcode::G_CTPOP: { 6205 Register SrcReg = MI.getOperand(1).getReg(); 6206 LLT Ty = MRI.getType(SrcReg); 6207 unsigned Size = Ty.getSizeInBits(); 6208 MachineIRBuilder &B = MIRBuilder; 6209 6210 // Count set bits in blocks of 2 bits. Default approach would be 6211 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 6212 // We use following formula instead: 6213 // B2Count = val - { (val >> 1) & 0x55555555 } 6214 // since it gives same result in blocks of 2 with one instruction less. 6215 auto C_1 = B.buildConstant(Ty, 1); 6216 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 6217 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 6218 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 6219 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 6220 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 6221 6222 // In order to get count in blocks of 4 add values from adjacent block of 2. 6223 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 6224 auto C_2 = B.buildConstant(Ty, 2); 6225 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 6226 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 6227 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 6228 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 6229 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 6230 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 6231 6232 // For count in blocks of 8 bits we don't have to mask high 4 bits before 6233 // addition since count value sits in range {0,...,8} and 4 bits are enough 6234 // to hold such binary values. After addition high 4 bits still hold count 6235 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 6236 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 6237 auto C_4 = B.buildConstant(Ty, 4); 6238 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 6239 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 6240 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 6241 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 6242 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 6243 6244 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 6245 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 6246 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 6247 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 6248 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 6249 6250 // Shift count result from 8 high bits to low bits. 6251 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 6252 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 6253 6254 MI.eraseFromParent(); 6255 return Legalized; 6256 } 6257 } 6258 } 6259 6260 // Check that (every element of) Reg is undef or not an exact multiple of BW. 6261 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 6262 Register Reg, unsigned BW) { 6263 return matchUnaryPredicate( 6264 MRI, Reg, 6265 [=](const Constant *C) { 6266 // Null constant here means an undef. 6267 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 6268 return !CI || CI->getValue().urem(BW) != 0; 6269 }, 6270 /*AllowUndefs*/ true); 6271 } 6272 6273 LegalizerHelper::LegalizeResult 6274 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 6275 auto [Dst, X, Y, Z] = MI.getFirst4Regs(); 6276 LLT Ty = MRI.getType(Dst); 6277 LLT ShTy = MRI.getType(Z); 6278 6279 unsigned BW = Ty.getScalarSizeInBits(); 6280 6281 if (!isPowerOf2_32(BW)) 6282 return UnableToLegalize; 6283 6284 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 6285 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 6286 6287 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 6288 // fshl X, Y, Z -> fshr X, Y, -Z 6289 // fshr X, Y, Z -> fshl X, Y, -Z 6290 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 6291 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 6292 } else { 6293 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6294 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6295 auto One = MIRBuilder.buildConstant(ShTy, 1); 6296 if (IsFSHL) { 6297 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 6298 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 6299 } else { 6300 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 6301 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 6302 } 6303 6304 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 6305 } 6306 6307 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 6308 MI.eraseFromParent(); 6309 return Legalized; 6310 } 6311 6312 LegalizerHelper::LegalizeResult 6313 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 6314 auto [Dst, X, Y, Z] = MI.getFirst4Regs(); 6315 LLT Ty = MRI.getType(Dst); 6316 LLT ShTy = MRI.getType(Z); 6317 6318 const unsigned BW = Ty.getScalarSizeInBits(); 6319 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 6320 6321 Register ShX, ShY; 6322 Register ShAmt, InvShAmt; 6323 6324 // FIXME: Emit optimized urem by constant instead of letting it expand later. 6325 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 6326 // fshl: X << C | Y >> (BW - C) 6327 // fshr: X << (BW - C) | Y >> C 6328 // where C = Z % BW is not zero 6329 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 6330 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 6331 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 6332 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 6333 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 6334 } else { 6335 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6336 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6337 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 6338 if (isPowerOf2_32(BW)) { 6339 // Z % BW -> Z & (BW - 1) 6340 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 6341 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6342 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 6343 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 6344 } else { 6345 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 6346 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 6347 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 6348 } 6349 6350 auto One = MIRBuilder.buildConstant(ShTy, 1); 6351 if (IsFSHL) { 6352 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 6353 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 6354 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 6355 } else { 6356 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 6357 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 6358 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 6359 } 6360 } 6361 6362 MIRBuilder.buildOr(Dst, ShX, ShY); 6363 MI.eraseFromParent(); 6364 return Legalized; 6365 } 6366 6367 LegalizerHelper::LegalizeResult 6368 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 6369 // These operations approximately do the following (while avoiding undefined 6370 // shifts by BW): 6371 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6372 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6373 Register Dst = MI.getOperand(0).getReg(); 6374 LLT Ty = MRI.getType(Dst); 6375 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 6376 6377 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 6378 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 6379 6380 // TODO: Use smarter heuristic that accounts for vector legalization. 6381 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 6382 return lowerFunnelShiftAsShifts(MI); 6383 6384 // This only works for powers of 2, fallback to shifts if it fails. 6385 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 6386 if (Result == UnableToLegalize) 6387 return lowerFunnelShiftAsShifts(MI); 6388 return Result; 6389 } 6390 6391 LegalizerHelper::LegalizeResult LegalizerHelper::lowerEXT(MachineInstr &MI) { 6392 auto [Dst, Src] = MI.getFirst2Regs(); 6393 LLT DstTy = MRI.getType(Dst); 6394 LLT SrcTy = MRI.getType(Src); 6395 6396 uint32_t DstTySize = DstTy.getSizeInBits(); 6397 uint32_t DstTyScalarSize = DstTy.getScalarSizeInBits(); 6398 uint32_t SrcTyScalarSize = SrcTy.getScalarSizeInBits(); 6399 6400 if (!isPowerOf2_32(DstTySize) || !isPowerOf2_32(DstTyScalarSize) || 6401 !isPowerOf2_32(SrcTyScalarSize)) 6402 return UnableToLegalize; 6403 6404 // The step between extend is too large, split it by creating an intermediate 6405 // extend instruction 6406 if (SrcTyScalarSize * 2 < DstTyScalarSize) { 6407 LLT MidTy = SrcTy.changeElementSize(SrcTyScalarSize * 2); 6408 // If the destination type is illegal, split it into multiple statements 6409 // zext x -> zext(merge(zext(unmerge), zext(unmerge))) 6410 auto NewExt = MIRBuilder.buildInstr(MI.getOpcode(), {MidTy}, {Src}); 6411 // Unmerge the vector 6412 LLT EltTy = MidTy.changeElementCount( 6413 MidTy.getElementCount().divideCoefficientBy(2)); 6414 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, NewExt); 6415 6416 // ZExt the vectors 6417 LLT ZExtResTy = DstTy.changeElementCount( 6418 DstTy.getElementCount().divideCoefficientBy(2)); 6419 auto ZExtRes1 = MIRBuilder.buildInstr(MI.getOpcode(), {ZExtResTy}, 6420 {UnmergeSrc.getReg(0)}); 6421 auto ZExtRes2 = MIRBuilder.buildInstr(MI.getOpcode(), {ZExtResTy}, 6422 {UnmergeSrc.getReg(1)}); 6423 6424 // Merge the ending vectors 6425 MIRBuilder.buildMergeLikeInstr(Dst, {ZExtRes1, ZExtRes2}); 6426 6427 MI.eraseFromParent(); 6428 return Legalized; 6429 } 6430 return UnableToLegalize; 6431 } 6432 6433 LegalizerHelper::LegalizeResult LegalizerHelper::lowerTRUNC(MachineInstr &MI) { 6434 // MachineIRBuilder &MIRBuilder = Helper.MIRBuilder; 6435 MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); 6436 // Similar to how operand splitting is done in SelectiondDAG, we can handle 6437 // %res(v8s8) = G_TRUNC %in(v8s32) by generating: 6438 // %inlo(<4x s32>), %inhi(<4 x s32>) = G_UNMERGE %in(<8 x s32>) 6439 // %lo16(<4 x s16>) = G_TRUNC %inlo 6440 // %hi16(<4 x s16>) = G_TRUNC %inhi 6441 // %in16(<8 x s16>) = G_CONCAT_VECTORS %lo16, %hi16 6442 // %res(<8 x s8>) = G_TRUNC %in16 6443 6444 assert(MI.getOpcode() == TargetOpcode::G_TRUNC); 6445 6446 Register DstReg = MI.getOperand(0).getReg(); 6447 Register SrcReg = MI.getOperand(1).getReg(); 6448 LLT DstTy = MRI.getType(DstReg); 6449 LLT SrcTy = MRI.getType(SrcReg); 6450 6451 if (DstTy.isVector() && isPowerOf2_32(DstTy.getNumElements()) && 6452 isPowerOf2_32(DstTy.getScalarSizeInBits()) && 6453 isPowerOf2_32(SrcTy.getNumElements()) && 6454 isPowerOf2_32(SrcTy.getScalarSizeInBits())) { 6455 // Split input type. 6456 LLT SplitSrcTy = SrcTy.changeElementCount( 6457 SrcTy.getElementCount().divideCoefficientBy(2)); 6458 6459 // First, split the source into two smaller vectors. 6460 SmallVector<Register, 2> SplitSrcs; 6461 extractParts(SrcReg, SplitSrcTy, 2, SplitSrcs); 6462 6463 // Truncate the splits into intermediate narrower elements. 6464 LLT InterTy; 6465 if (DstTy.getScalarSizeInBits() * 2 < SrcTy.getScalarSizeInBits()) 6466 InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits() * 2); 6467 else 6468 InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits()); 6469 for (unsigned I = 0; I < SplitSrcs.size(); ++I) { 6470 SplitSrcs[I] = MIRBuilder.buildTrunc(InterTy, SplitSrcs[I]).getReg(0); 6471 } 6472 6473 // Combine the new truncates into one vector 6474 auto Merge = MIRBuilder.buildMergeLikeInstr( 6475 DstTy.changeElementSize(InterTy.getScalarSizeInBits()), SplitSrcs); 6476 6477 // Truncate the new vector to the final result type 6478 if (DstTy.getScalarSizeInBits() * 2 < SrcTy.getScalarSizeInBits()) 6479 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), Merge.getReg(0)); 6480 else 6481 MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Merge.getReg(0)); 6482 6483 MI.eraseFromParent(); 6484 6485 return Legalized; 6486 } 6487 return UnableToLegalize; 6488 } 6489 6490 LegalizerHelper::LegalizeResult 6491 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 6492 auto [Dst, DstTy, Src, SrcTy, Amt, AmtTy] = MI.getFirst3RegLLTs(); 6493 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 6494 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 6495 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 6496 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 6497 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 6498 MI.eraseFromParent(); 6499 return Legalized; 6500 } 6501 6502 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 6503 auto [Dst, DstTy, Src, SrcTy, Amt, AmtTy] = MI.getFirst3RegLLTs(); 6504 6505 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 6506 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 6507 6508 MIRBuilder.setInstrAndDebugLoc(MI); 6509 6510 // If a rotate in the other direction is supported, use it. 6511 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 6512 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 6513 isPowerOf2_32(EltSizeInBits)) 6514 return lowerRotateWithReverseRotate(MI); 6515 6516 // If a funnel shift is supported, use it. 6517 unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 6518 unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 6519 bool IsFShLegal = false; 6520 if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) || 6521 LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) { 6522 auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2, 6523 Register R3) { 6524 MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3}); 6525 MI.eraseFromParent(); 6526 return Legalized; 6527 }; 6528 // If a funnel shift in the other direction is supported, use it. 6529 if (IsFShLegal) { 6530 return buildFunnelShift(FShOpc, Dst, Src, Amt); 6531 } else if (isPowerOf2_32(EltSizeInBits)) { 6532 Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0); 6533 return buildFunnelShift(RevFsh, Dst, Src, Amt); 6534 } 6535 } 6536 6537 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 6538 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 6539 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 6540 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 6541 Register ShVal; 6542 Register RevShiftVal; 6543 if (isPowerOf2_32(EltSizeInBits)) { 6544 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6545 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6546 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 6547 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 6548 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 6549 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 6550 RevShiftVal = 6551 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 6552 } else { 6553 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6554 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6555 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 6556 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 6557 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 6558 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 6559 auto One = MIRBuilder.buildConstant(AmtTy, 1); 6560 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 6561 RevShiftVal = 6562 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 6563 } 6564 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 6565 MI.eraseFromParent(); 6566 return Legalized; 6567 } 6568 6569 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 6570 // representation. 6571 LegalizerHelper::LegalizeResult 6572 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 6573 auto [Dst, Src] = MI.getFirst2Regs(); 6574 const LLT S64 = LLT::scalar(64); 6575 const LLT S32 = LLT::scalar(32); 6576 const LLT S1 = LLT::scalar(1); 6577 6578 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 6579 6580 // unsigned cul2f(ulong u) { 6581 // uint lz = clz(u); 6582 // uint e = (u != 0) ? 127U + 63U - lz : 0; 6583 // u = (u << lz) & 0x7fffffffffffffffUL; 6584 // ulong t = u & 0xffffffffffUL; 6585 // uint v = (e << 23) | (uint)(u >> 40); 6586 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 6587 // return as_float(v + r); 6588 // } 6589 6590 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 6591 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 6592 6593 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 6594 6595 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 6596 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 6597 6598 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 6599 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 6600 6601 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 6602 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 6603 6604 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 6605 6606 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 6607 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 6608 6609 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 6610 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 6611 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 6612 6613 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 6614 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 6615 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 6616 auto One = MIRBuilder.buildConstant(S32, 1); 6617 6618 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 6619 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 6620 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 6621 MIRBuilder.buildAdd(Dst, V, R); 6622 6623 MI.eraseFromParent(); 6624 return Legalized; 6625 } 6626 6627 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 6628 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); 6629 6630 if (SrcTy == LLT::scalar(1)) { 6631 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 6632 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6633 MIRBuilder.buildSelect(Dst, Src, True, False); 6634 MI.eraseFromParent(); 6635 return Legalized; 6636 } 6637 6638 if (SrcTy != LLT::scalar(64)) 6639 return UnableToLegalize; 6640 6641 if (DstTy == LLT::scalar(32)) { 6642 // TODO: SelectionDAG has several alternative expansions to port which may 6643 // be more reasonble depending on the available instructions. If a target 6644 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 6645 // intermediate type, this is probably worse. 6646 return lowerU64ToF32BitOps(MI); 6647 } 6648 6649 return UnableToLegalize; 6650 } 6651 6652 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 6653 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); 6654 6655 const LLT S64 = LLT::scalar(64); 6656 const LLT S32 = LLT::scalar(32); 6657 const LLT S1 = LLT::scalar(1); 6658 6659 if (SrcTy == S1) { 6660 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 6661 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6662 MIRBuilder.buildSelect(Dst, Src, True, False); 6663 MI.eraseFromParent(); 6664 return Legalized; 6665 } 6666 6667 if (SrcTy != S64) 6668 return UnableToLegalize; 6669 6670 if (DstTy == S32) { 6671 // signed cl2f(long l) { 6672 // long s = l >> 63; 6673 // float r = cul2f((l + s) ^ s); 6674 // return s ? -r : r; 6675 // } 6676 Register L = Src; 6677 auto SignBit = MIRBuilder.buildConstant(S64, 63); 6678 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 6679 6680 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 6681 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 6682 auto R = MIRBuilder.buildUITOFP(S32, Xor); 6683 6684 auto RNeg = MIRBuilder.buildFNeg(S32, R); 6685 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 6686 MIRBuilder.buildConstant(S64, 0)); 6687 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 6688 MI.eraseFromParent(); 6689 return Legalized; 6690 } 6691 6692 return UnableToLegalize; 6693 } 6694 6695 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 6696 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); 6697 const LLT S64 = LLT::scalar(64); 6698 const LLT S32 = LLT::scalar(32); 6699 6700 if (SrcTy != S64 && SrcTy != S32) 6701 return UnableToLegalize; 6702 if (DstTy != S32 && DstTy != S64) 6703 return UnableToLegalize; 6704 6705 // FPTOSI gives same result as FPTOUI for positive signed integers. 6706 // FPTOUI needs to deal with fp values that convert to unsigned integers 6707 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 6708 6709 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 6710 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 6711 : APFloat::IEEEdouble(), 6712 APInt::getZero(SrcTy.getSizeInBits())); 6713 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 6714 6715 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 6716 6717 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 6718 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 6719 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 6720 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 6721 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 6722 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 6723 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 6724 6725 const LLT S1 = LLT::scalar(1); 6726 6727 MachineInstrBuilder FCMP = 6728 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 6729 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 6730 6731 MI.eraseFromParent(); 6732 return Legalized; 6733 } 6734 6735 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 6736 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); 6737 const LLT S64 = LLT::scalar(64); 6738 const LLT S32 = LLT::scalar(32); 6739 6740 // FIXME: Only f32 to i64 conversions are supported. 6741 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 6742 return UnableToLegalize; 6743 6744 // Expand f32 -> i64 conversion 6745 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6746 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6747 6748 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 6749 6750 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 6751 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 6752 6753 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 6754 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 6755 6756 auto SignMask = MIRBuilder.buildConstant(SrcTy, 6757 APInt::getSignMask(SrcEltBits)); 6758 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 6759 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 6760 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 6761 Sign = MIRBuilder.buildSExt(DstTy, Sign); 6762 6763 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 6764 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 6765 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 6766 6767 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 6768 R = MIRBuilder.buildZExt(DstTy, R); 6769 6770 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 6771 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 6772 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 6773 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 6774 6775 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 6776 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 6777 6778 const LLT S1 = LLT::scalar(1); 6779 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 6780 S1, Exponent, ExponentLoBit); 6781 6782 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 6783 6784 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 6785 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 6786 6787 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 6788 6789 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 6790 S1, Exponent, ZeroSrcTy); 6791 6792 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 6793 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 6794 6795 MI.eraseFromParent(); 6796 return Legalized; 6797 } 6798 6799 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 6800 LegalizerHelper::LegalizeResult 6801 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 6802 const LLT S1 = LLT::scalar(1); 6803 const LLT S32 = LLT::scalar(32); 6804 6805 auto [Dst, Src] = MI.getFirst2Regs(); 6806 assert(MRI.getType(Dst).getScalarType() == LLT::scalar(16) && 6807 MRI.getType(Src).getScalarType() == LLT::scalar(64)); 6808 6809 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 6810 return UnableToLegalize; 6811 6812 if (MIRBuilder.getMF().getTarget().Options.UnsafeFPMath) { 6813 unsigned Flags = MI.getFlags(); 6814 auto Src32 = MIRBuilder.buildFPTrunc(S32, Src, Flags); 6815 MIRBuilder.buildFPTrunc(Dst, Src32, Flags); 6816 MI.eraseFromParent(); 6817 return Legalized; 6818 } 6819 6820 const unsigned ExpMask = 0x7ff; 6821 const unsigned ExpBiasf64 = 1023; 6822 const unsigned ExpBiasf16 = 15; 6823 6824 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 6825 Register U = Unmerge.getReg(0); 6826 Register UH = Unmerge.getReg(1); 6827 6828 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 6829 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 6830 6831 // Subtract the fp64 exponent bias (1023) to get the real exponent and 6832 // add the f16 bias (15) to get the biased exponent for the f16 format. 6833 E = MIRBuilder.buildAdd( 6834 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 6835 6836 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 6837 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 6838 6839 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 6840 MIRBuilder.buildConstant(S32, 0x1ff)); 6841 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 6842 6843 auto Zero = MIRBuilder.buildConstant(S32, 0); 6844 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 6845 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 6846 M = MIRBuilder.buildOr(S32, M, Lo40Set); 6847 6848 // (M != 0 ? 0x0200 : 0) | 0x7c00; 6849 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 6850 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 6851 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 6852 6853 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 6854 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 6855 6856 // N = M | (E << 12); 6857 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 6858 auto N = MIRBuilder.buildOr(S32, M, EShl12); 6859 6860 // B = clamp(1-E, 0, 13); 6861 auto One = MIRBuilder.buildConstant(S32, 1); 6862 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 6863 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 6864 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 6865 6866 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 6867 MIRBuilder.buildConstant(S32, 0x1000)); 6868 6869 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 6870 auto D0 = MIRBuilder.buildShl(S32, D, B); 6871 6872 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 6873 D0, SigSetHigh); 6874 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 6875 D = MIRBuilder.buildOr(S32, D, D1); 6876 6877 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 6878 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 6879 6880 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 6881 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 6882 6883 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 6884 MIRBuilder.buildConstant(S32, 3)); 6885 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 6886 6887 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 6888 MIRBuilder.buildConstant(S32, 5)); 6889 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 6890 6891 V1 = MIRBuilder.buildOr(S32, V0, V1); 6892 V = MIRBuilder.buildAdd(S32, V, V1); 6893 6894 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 6895 E, MIRBuilder.buildConstant(S32, 30)); 6896 V = MIRBuilder.buildSelect(S32, CmpEGt30, 6897 MIRBuilder.buildConstant(S32, 0x7c00), V); 6898 6899 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 6900 E, MIRBuilder.buildConstant(S32, 1039)); 6901 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 6902 6903 // Extract the sign bit. 6904 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 6905 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 6906 6907 // Insert the sign bit 6908 V = MIRBuilder.buildOr(S32, Sign, V); 6909 6910 MIRBuilder.buildTrunc(Dst, V); 6911 MI.eraseFromParent(); 6912 return Legalized; 6913 } 6914 6915 LegalizerHelper::LegalizeResult 6916 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 6917 auto [DstTy, SrcTy] = MI.getFirst2LLTs(); 6918 const LLT S64 = LLT::scalar(64); 6919 const LLT S16 = LLT::scalar(16); 6920 6921 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 6922 return lowerFPTRUNC_F64_TO_F16(MI); 6923 6924 return UnableToLegalize; 6925 } 6926 6927 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 6928 // multiplication tree. 6929 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 6930 auto [Dst, Src0, Src1] = MI.getFirst3Regs(); 6931 LLT Ty = MRI.getType(Dst); 6932 6933 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 6934 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 6935 MI.eraseFromParent(); 6936 return Legalized; 6937 } 6938 6939 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 6940 switch (Opc) { 6941 case TargetOpcode::G_SMIN: 6942 return CmpInst::ICMP_SLT; 6943 case TargetOpcode::G_SMAX: 6944 return CmpInst::ICMP_SGT; 6945 case TargetOpcode::G_UMIN: 6946 return CmpInst::ICMP_ULT; 6947 case TargetOpcode::G_UMAX: 6948 return CmpInst::ICMP_UGT; 6949 default: 6950 llvm_unreachable("not in integer min/max"); 6951 } 6952 } 6953 6954 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 6955 auto [Dst, Src0, Src1] = MI.getFirst3Regs(); 6956 6957 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 6958 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 6959 6960 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 6961 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 6962 6963 MI.eraseFromParent(); 6964 return Legalized; 6965 } 6966 6967 LegalizerHelper::LegalizeResult 6968 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6969 auto [Dst, DstTy, Src0, Src0Ty, Src1, Src1Ty] = MI.getFirst3RegLLTs(); 6970 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6971 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6972 6973 auto SignBitMask = MIRBuilder.buildConstant( 6974 Src0Ty, APInt::getSignMask(Src0Size)); 6975 6976 auto NotSignBitMask = MIRBuilder.buildConstant( 6977 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6978 6979 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6980 Register And1; 6981 if (Src0Ty == Src1Ty) { 6982 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6983 } else if (Src0Size > Src1Size) { 6984 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6985 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6986 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6987 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6988 } else { 6989 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6990 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6991 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6992 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6993 } 6994 6995 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6996 // constants are a nan and -0.0, but the final result should preserve 6997 // everything. 6998 unsigned Flags = MI.getFlags(); 6999 MIRBuilder.buildOr(Dst, And0, And1, Flags); 7000 7001 MI.eraseFromParent(); 7002 return Legalized; 7003 } 7004 7005 LegalizerHelper::LegalizeResult 7006 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 7007 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 7008 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 7009 7010 auto [Dst, Src0, Src1] = MI.getFirst3Regs(); 7011 LLT Ty = MRI.getType(Dst); 7012 7013 if (!MI.getFlag(MachineInstr::FmNoNans)) { 7014 // Insert canonicalizes if it's possible we need to quiet to get correct 7015 // sNaN behavior. 7016 7017 // Note this must be done here, and not as an optimization combine in the 7018 // absence of a dedicate quiet-snan instruction as we're using an 7019 // omni-purpose G_FCANONICALIZE. 7020 if (!isKnownNeverSNaN(Src0, MRI)) 7021 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 7022 7023 if (!isKnownNeverSNaN(Src1, MRI)) 7024 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 7025 } 7026 7027 // If there are no nans, it's safe to simply replace this with the non-IEEE 7028 // version. 7029 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 7030 MI.eraseFromParent(); 7031 return Legalized; 7032 } 7033 7034 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 7035 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 7036 Register DstReg = MI.getOperand(0).getReg(); 7037 LLT Ty = MRI.getType(DstReg); 7038 unsigned Flags = MI.getFlags(); 7039 7040 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 7041 Flags); 7042 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 7043 MI.eraseFromParent(); 7044 return Legalized; 7045 } 7046 7047 LegalizerHelper::LegalizeResult 7048 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 7049 auto [DstReg, X] = MI.getFirst2Regs(); 7050 const unsigned Flags = MI.getFlags(); 7051 const LLT Ty = MRI.getType(DstReg); 7052 const LLT CondTy = Ty.changeElementSize(1); 7053 7054 // round(x) => 7055 // t = trunc(x); 7056 // d = fabs(x - t); 7057 // o = copysign(d >= 0.5 ? 1.0 : 0.0, x); 7058 // return t + o; 7059 7060 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 7061 7062 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 7063 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 7064 7065 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 7066 auto Cmp = 7067 MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, Flags); 7068 7069 // Could emit G_UITOFP instead 7070 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 7071 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 7072 auto BoolFP = MIRBuilder.buildSelect(Ty, Cmp, One, Zero); 7073 auto SignedOffset = MIRBuilder.buildFCopysign(Ty, BoolFP, X); 7074 7075 MIRBuilder.buildFAdd(DstReg, T, SignedOffset, Flags); 7076 7077 MI.eraseFromParent(); 7078 return Legalized; 7079 } 7080 7081 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFFloor(MachineInstr &MI) { 7082 auto [DstReg, SrcReg] = MI.getFirst2Regs(); 7083 unsigned Flags = MI.getFlags(); 7084 LLT Ty = MRI.getType(DstReg); 7085 const LLT CondTy = Ty.changeElementSize(1); 7086 7087 // result = trunc(src); 7088 // if (src < 0.0 && src != result) 7089 // result += -1.0. 7090 7091 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 7092 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 7093 7094 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 7095 SrcReg, Zero, Flags); 7096 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 7097 SrcReg, Trunc, Flags); 7098 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 7099 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 7100 7101 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 7102 MI.eraseFromParent(); 7103 return Legalized; 7104 } 7105 7106 LegalizerHelper::LegalizeResult 7107 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 7108 const unsigned NumOps = MI.getNumOperands(); 7109 auto [DstReg, DstTy, Src0Reg, Src0Ty] = MI.getFirst2RegLLTs(); 7110 unsigned PartSize = Src0Ty.getSizeInBits(); 7111 7112 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 7113 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 7114 7115 for (unsigned I = 2; I != NumOps; ++I) { 7116 const unsigned Offset = (I - 1) * PartSize; 7117 7118 Register SrcReg = MI.getOperand(I).getReg(); 7119 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 7120 7121 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 7122 MRI.createGenericVirtualRegister(WideTy); 7123 7124 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 7125 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 7126 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 7127 ResultReg = NextResult; 7128 } 7129 7130 if (DstTy.isPointer()) { 7131 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 7132 DstTy.getAddressSpace())) { 7133 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 7134 return UnableToLegalize; 7135 } 7136 7137 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 7138 } 7139 7140 MI.eraseFromParent(); 7141 return Legalized; 7142 } 7143 7144 LegalizerHelper::LegalizeResult 7145 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 7146 const unsigned NumDst = MI.getNumOperands() - 1; 7147 Register SrcReg = MI.getOperand(NumDst).getReg(); 7148 Register Dst0Reg = MI.getOperand(0).getReg(); 7149 LLT DstTy = MRI.getType(Dst0Reg); 7150 if (DstTy.isPointer()) 7151 return UnableToLegalize; // TODO 7152 7153 SrcReg = coerceToScalar(SrcReg); 7154 if (!SrcReg) 7155 return UnableToLegalize; 7156 7157 // Expand scalarizing unmerge as bitcast to integer and shift. 7158 LLT IntTy = MRI.getType(SrcReg); 7159 7160 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 7161 7162 const unsigned DstSize = DstTy.getSizeInBits(); 7163 unsigned Offset = DstSize; 7164 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 7165 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 7166 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 7167 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 7168 } 7169 7170 MI.eraseFromParent(); 7171 return Legalized; 7172 } 7173 7174 /// Lower a vector extract or insert by writing the vector to a stack temporary 7175 /// and reloading the element or vector. 7176 /// 7177 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 7178 /// => 7179 /// %stack_temp = G_FRAME_INDEX 7180 /// G_STORE %vec, %stack_temp 7181 /// %idx = clamp(%idx, %vec.getNumElements()) 7182 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 7183 /// %dst = G_LOAD %element_ptr 7184 LegalizerHelper::LegalizeResult 7185 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 7186 Register DstReg = MI.getOperand(0).getReg(); 7187 Register SrcVec = MI.getOperand(1).getReg(); 7188 Register InsertVal; 7189 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 7190 InsertVal = MI.getOperand(2).getReg(); 7191 7192 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 7193 7194 LLT VecTy = MRI.getType(SrcVec); 7195 LLT EltTy = VecTy.getElementType(); 7196 unsigned NumElts = VecTy.getNumElements(); 7197 7198 int64_t IdxVal; 7199 if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) { 7200 SmallVector<Register, 8> SrcRegs; 7201 extractParts(SrcVec, EltTy, NumElts, SrcRegs); 7202 7203 if (InsertVal) { 7204 SrcRegs[IdxVal] = MI.getOperand(2).getReg(); 7205 MIRBuilder.buildMergeLikeInstr(DstReg, SrcRegs); 7206 } else { 7207 MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]); 7208 } 7209 7210 MI.eraseFromParent(); 7211 return Legalized; 7212 } 7213 7214 if (!EltTy.isByteSized()) { // Not implemented. 7215 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 7216 return UnableToLegalize; 7217 } 7218 7219 unsigned EltBytes = EltTy.getSizeInBytes(); 7220 Align VecAlign = getStackTemporaryAlignment(VecTy); 7221 Align EltAlign; 7222 7223 MachinePointerInfo PtrInfo; 7224 auto StackTemp = createStackTemporary( 7225 TypeSize::getFixed(VecTy.getSizeInBytes()), VecAlign, PtrInfo); 7226 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 7227 7228 // Get the pointer to the element, and be sure not to hit undefined behavior 7229 // if the index is out of bounds. 7230 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 7231 7232 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 7233 int64_t Offset = IdxVal * EltBytes; 7234 PtrInfo = PtrInfo.getWithOffset(Offset); 7235 EltAlign = commonAlignment(VecAlign, Offset); 7236 } else { 7237 // We lose information with a variable offset. 7238 EltAlign = getStackTemporaryAlignment(EltTy); 7239 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 7240 } 7241 7242 if (InsertVal) { 7243 // Write the inserted element 7244 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 7245 7246 // Reload the whole vector. 7247 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 7248 } else { 7249 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 7250 } 7251 7252 MI.eraseFromParent(); 7253 return Legalized; 7254 } 7255 7256 LegalizerHelper::LegalizeResult 7257 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 7258 auto [DstReg, DstTy, Src0Reg, Src0Ty, Src1Reg, Src1Ty] = 7259 MI.getFirst3RegLLTs(); 7260 LLT IdxTy = LLT::scalar(32); 7261 7262 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 7263 Register Undef; 7264 SmallVector<Register, 32> BuildVec; 7265 LLT EltTy = DstTy.getScalarType(); 7266 7267 for (int Idx : Mask) { 7268 if (Idx < 0) { 7269 if (!Undef.isValid()) 7270 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 7271 BuildVec.push_back(Undef); 7272 continue; 7273 } 7274 7275 if (Src0Ty.isScalar()) { 7276 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 7277 } else { 7278 int NumElts = Src0Ty.getNumElements(); 7279 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 7280 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 7281 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 7282 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 7283 BuildVec.push_back(Extract.getReg(0)); 7284 } 7285 } 7286 7287 if (DstTy.isScalar()) 7288 MIRBuilder.buildCopy(DstReg, BuildVec[0]); 7289 else 7290 MIRBuilder.buildBuildVector(DstReg, BuildVec); 7291 MI.eraseFromParent(); 7292 return Legalized; 7293 } 7294 7295 Register LegalizerHelper::getDynStackAllocTargetPtr(Register SPReg, 7296 Register AllocSize, 7297 Align Alignment, 7298 LLT PtrTy) { 7299 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 7300 7301 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 7302 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 7303 7304 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 7305 // have to generate an extra instruction to negate the alloc and then use 7306 // G_PTR_ADD to add the negative offset. 7307 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 7308 if (Alignment > Align(1)) { 7309 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 7310 AlignMask.negate(); 7311 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 7312 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 7313 } 7314 7315 return MIRBuilder.buildCast(PtrTy, Alloc).getReg(0); 7316 } 7317 7318 LegalizerHelper::LegalizeResult 7319 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 7320 const auto &MF = *MI.getMF(); 7321 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 7322 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 7323 return UnableToLegalize; 7324 7325 Register Dst = MI.getOperand(0).getReg(); 7326 Register AllocSize = MI.getOperand(1).getReg(); 7327 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 7328 7329 LLT PtrTy = MRI.getType(Dst); 7330 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 7331 Register SPTmp = 7332 getDynStackAllocTargetPtr(SPReg, AllocSize, Alignment, PtrTy); 7333 7334 MIRBuilder.buildCopy(SPReg, SPTmp); 7335 MIRBuilder.buildCopy(Dst, SPTmp); 7336 7337 MI.eraseFromParent(); 7338 return Legalized; 7339 } 7340 7341 LegalizerHelper::LegalizeResult 7342 LegalizerHelper::lowerStackSave(MachineInstr &MI) { 7343 Register StackPtr = TLI.getStackPointerRegisterToSaveRestore(); 7344 if (!StackPtr) 7345 return UnableToLegalize; 7346 7347 MIRBuilder.buildCopy(MI.getOperand(0), StackPtr); 7348 MI.eraseFromParent(); 7349 return Legalized; 7350 } 7351 7352 LegalizerHelper::LegalizeResult 7353 LegalizerHelper::lowerStackRestore(MachineInstr &MI) { 7354 Register StackPtr = TLI.getStackPointerRegisterToSaveRestore(); 7355 if (!StackPtr) 7356 return UnableToLegalize; 7357 7358 MIRBuilder.buildCopy(StackPtr, MI.getOperand(0)); 7359 MI.eraseFromParent(); 7360 return Legalized; 7361 } 7362 7363 LegalizerHelper::LegalizeResult 7364 LegalizerHelper::lowerExtract(MachineInstr &MI) { 7365 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 7366 unsigned Offset = MI.getOperand(2).getImm(); 7367 7368 // Extract sub-vector or one element 7369 if (SrcTy.isVector()) { 7370 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits(); 7371 unsigned DstSize = DstTy.getSizeInBits(); 7372 7373 if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) && 7374 (Offset + DstSize <= SrcTy.getSizeInBits())) { 7375 // Unmerge and allow access to each Src element for the artifact combiner. 7376 auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), SrcReg); 7377 7378 // Take element(s) we need to extract and copy it (merge them). 7379 SmallVector<Register, 8> SubVectorElts; 7380 for (unsigned Idx = Offset / SrcEltSize; 7381 Idx < (Offset + DstSize) / SrcEltSize; ++Idx) { 7382 SubVectorElts.push_back(Unmerge.getReg(Idx)); 7383 } 7384 if (SubVectorElts.size() == 1) 7385 MIRBuilder.buildCopy(DstReg, SubVectorElts[0]); 7386 else 7387 MIRBuilder.buildMergeLikeInstr(DstReg, SubVectorElts); 7388 7389 MI.eraseFromParent(); 7390 return Legalized; 7391 } 7392 } 7393 7394 if (DstTy.isScalar() && 7395 (SrcTy.isScalar() || 7396 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 7397 LLT SrcIntTy = SrcTy; 7398 if (!SrcTy.isScalar()) { 7399 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 7400 SrcReg = MIRBuilder.buildBitcast(SrcIntTy, SrcReg).getReg(0); 7401 } 7402 7403 if (Offset == 0) 7404 MIRBuilder.buildTrunc(DstReg, SrcReg); 7405 else { 7406 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 7407 auto Shr = MIRBuilder.buildLShr(SrcIntTy, SrcReg, ShiftAmt); 7408 MIRBuilder.buildTrunc(DstReg, Shr); 7409 } 7410 7411 MI.eraseFromParent(); 7412 return Legalized; 7413 } 7414 7415 return UnableToLegalize; 7416 } 7417 7418 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 7419 auto [Dst, Src, InsertSrc] = MI.getFirst3Regs(); 7420 uint64_t Offset = MI.getOperand(3).getImm(); 7421 7422 LLT DstTy = MRI.getType(Src); 7423 LLT InsertTy = MRI.getType(InsertSrc); 7424 7425 // Insert sub-vector or one element 7426 if (DstTy.isVector() && !InsertTy.isPointer()) { 7427 LLT EltTy = DstTy.getElementType(); 7428 unsigned EltSize = EltTy.getSizeInBits(); 7429 unsigned InsertSize = InsertTy.getSizeInBits(); 7430 7431 if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) && 7432 (Offset + InsertSize <= DstTy.getSizeInBits())) { 7433 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src); 7434 SmallVector<Register, 8> DstElts; 7435 unsigned Idx = 0; 7436 // Elements from Src before insert start Offset 7437 for (; Idx < Offset / EltSize; ++Idx) { 7438 DstElts.push_back(UnmergeSrc.getReg(Idx)); 7439 } 7440 7441 // Replace elements in Src with elements from InsertSrc 7442 if (InsertTy.getSizeInBits() > EltSize) { 7443 auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc); 7444 for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize; 7445 ++Idx, ++i) { 7446 DstElts.push_back(UnmergeInsertSrc.getReg(i)); 7447 } 7448 } else { 7449 DstElts.push_back(InsertSrc); 7450 ++Idx; 7451 } 7452 7453 // Remaining elements from Src after insert 7454 for (; Idx < DstTy.getNumElements(); ++Idx) { 7455 DstElts.push_back(UnmergeSrc.getReg(Idx)); 7456 } 7457 7458 MIRBuilder.buildMergeLikeInstr(Dst, DstElts); 7459 MI.eraseFromParent(); 7460 return Legalized; 7461 } 7462 } 7463 7464 if (InsertTy.isVector() || 7465 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 7466 return UnableToLegalize; 7467 7468 const DataLayout &DL = MIRBuilder.getDataLayout(); 7469 if ((DstTy.isPointer() && 7470 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 7471 (InsertTy.isPointer() && 7472 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 7473 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 7474 return UnableToLegalize; 7475 } 7476 7477 LLT IntDstTy = DstTy; 7478 7479 if (!DstTy.isScalar()) { 7480 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 7481 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 7482 } 7483 7484 if (!InsertTy.isScalar()) { 7485 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 7486 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 7487 } 7488 7489 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 7490 if (Offset != 0) { 7491 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 7492 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 7493 } 7494 7495 APInt MaskVal = APInt::getBitsSetWithWrap( 7496 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 7497 7498 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 7499 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 7500 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 7501 7502 MIRBuilder.buildCast(Dst, Or); 7503 MI.eraseFromParent(); 7504 return Legalized; 7505 } 7506 7507 LegalizerHelper::LegalizeResult 7508 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 7509 auto [Dst0, Dst0Ty, Dst1, Dst1Ty, LHS, LHSTy, RHS, RHSTy] = 7510 MI.getFirst4RegLLTs(); 7511 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 7512 7513 LLT Ty = Dst0Ty; 7514 LLT BoolTy = Dst1Ty; 7515 7516 if (IsAdd) 7517 MIRBuilder.buildAdd(Dst0, LHS, RHS); 7518 else 7519 MIRBuilder.buildSub(Dst0, LHS, RHS); 7520 7521 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7522 7523 auto Zero = MIRBuilder.buildConstant(Ty, 0); 7524 7525 // For an addition, the result should be less than one of the operands (LHS) 7526 // if and only if the other operand (RHS) is negative, otherwise there will 7527 // be overflow. 7528 // For a subtraction, the result should be less than one of the operands 7529 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7530 // otherwise there will be overflow. 7531 auto ResultLowerThanLHS = 7532 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 7533 auto ConditionRHS = MIRBuilder.buildICmp( 7534 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 7535 7536 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 7537 MI.eraseFromParent(); 7538 return Legalized; 7539 } 7540 7541 LegalizerHelper::LegalizeResult 7542 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 7543 auto [Res, LHS, RHS] = MI.getFirst3Regs(); 7544 LLT Ty = MRI.getType(Res); 7545 bool IsSigned; 7546 bool IsAdd; 7547 unsigned BaseOp; 7548 switch (MI.getOpcode()) { 7549 default: 7550 llvm_unreachable("unexpected addsat/subsat opcode"); 7551 case TargetOpcode::G_UADDSAT: 7552 IsSigned = false; 7553 IsAdd = true; 7554 BaseOp = TargetOpcode::G_ADD; 7555 break; 7556 case TargetOpcode::G_SADDSAT: 7557 IsSigned = true; 7558 IsAdd = true; 7559 BaseOp = TargetOpcode::G_ADD; 7560 break; 7561 case TargetOpcode::G_USUBSAT: 7562 IsSigned = false; 7563 IsAdd = false; 7564 BaseOp = TargetOpcode::G_SUB; 7565 break; 7566 case TargetOpcode::G_SSUBSAT: 7567 IsSigned = true; 7568 IsAdd = false; 7569 BaseOp = TargetOpcode::G_SUB; 7570 break; 7571 } 7572 7573 if (IsSigned) { 7574 // sadd.sat(a, b) -> 7575 // hi = 0x7fffffff - smax(a, 0) 7576 // lo = 0x80000000 - smin(a, 0) 7577 // a + smin(smax(lo, b), hi) 7578 // ssub.sat(a, b) -> 7579 // lo = smax(a, -1) - 0x7fffffff 7580 // hi = smin(a, -1) - 0x80000000 7581 // a - smin(smax(lo, b), hi) 7582 // TODO: AMDGPU can use a "median of 3" instruction here: 7583 // a +/- med3(lo, b, hi) 7584 uint64_t NumBits = Ty.getScalarSizeInBits(); 7585 auto MaxVal = 7586 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 7587 auto MinVal = 7588 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 7589 MachineInstrBuilder Hi, Lo; 7590 if (IsAdd) { 7591 auto Zero = MIRBuilder.buildConstant(Ty, 0); 7592 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 7593 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 7594 } else { 7595 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 7596 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 7597 MaxVal); 7598 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 7599 MinVal); 7600 } 7601 auto RHSClamped = 7602 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 7603 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 7604 } else { 7605 // uadd.sat(a, b) -> a + umin(~a, b) 7606 // usub.sat(a, b) -> a - umin(a, b) 7607 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 7608 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 7609 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 7610 } 7611 7612 MI.eraseFromParent(); 7613 return Legalized; 7614 } 7615 7616 LegalizerHelper::LegalizeResult 7617 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 7618 auto [Res, LHS, RHS] = MI.getFirst3Regs(); 7619 LLT Ty = MRI.getType(Res); 7620 LLT BoolTy = Ty.changeElementSize(1); 7621 bool IsSigned; 7622 bool IsAdd; 7623 unsigned OverflowOp; 7624 switch (MI.getOpcode()) { 7625 default: 7626 llvm_unreachable("unexpected addsat/subsat opcode"); 7627 case TargetOpcode::G_UADDSAT: 7628 IsSigned = false; 7629 IsAdd = true; 7630 OverflowOp = TargetOpcode::G_UADDO; 7631 break; 7632 case TargetOpcode::G_SADDSAT: 7633 IsSigned = true; 7634 IsAdd = true; 7635 OverflowOp = TargetOpcode::G_SADDO; 7636 break; 7637 case TargetOpcode::G_USUBSAT: 7638 IsSigned = false; 7639 IsAdd = false; 7640 OverflowOp = TargetOpcode::G_USUBO; 7641 break; 7642 case TargetOpcode::G_SSUBSAT: 7643 IsSigned = true; 7644 IsAdd = false; 7645 OverflowOp = TargetOpcode::G_SSUBO; 7646 break; 7647 } 7648 7649 auto OverflowRes = 7650 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 7651 Register Tmp = OverflowRes.getReg(0); 7652 Register Ov = OverflowRes.getReg(1); 7653 MachineInstrBuilder Clamp; 7654 if (IsSigned) { 7655 // sadd.sat(a, b) -> 7656 // {tmp, ov} = saddo(a, b) 7657 // ov ? (tmp >>s 31) + 0x80000000 : r 7658 // ssub.sat(a, b) -> 7659 // {tmp, ov} = ssubo(a, b) 7660 // ov ? (tmp >>s 31) + 0x80000000 : r 7661 uint64_t NumBits = Ty.getScalarSizeInBits(); 7662 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 7663 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 7664 auto MinVal = 7665 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 7666 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 7667 } else { 7668 // uadd.sat(a, b) -> 7669 // {tmp, ov} = uaddo(a, b) 7670 // ov ? 0xffffffff : tmp 7671 // usub.sat(a, b) -> 7672 // {tmp, ov} = usubo(a, b) 7673 // ov ? 0 : tmp 7674 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 7675 } 7676 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 7677 7678 MI.eraseFromParent(); 7679 return Legalized; 7680 } 7681 7682 LegalizerHelper::LegalizeResult 7683 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 7684 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 7685 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 7686 "Expected shlsat opcode!"); 7687 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 7688 auto [Res, LHS, RHS] = MI.getFirst3Regs(); 7689 LLT Ty = MRI.getType(Res); 7690 LLT BoolTy = Ty.changeElementSize(1); 7691 7692 unsigned BW = Ty.getScalarSizeInBits(); 7693 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 7694 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 7695 : MIRBuilder.buildLShr(Ty, Result, RHS); 7696 7697 MachineInstrBuilder SatVal; 7698 if (IsSigned) { 7699 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 7700 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 7701 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 7702 MIRBuilder.buildConstant(Ty, 0)); 7703 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 7704 } else { 7705 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 7706 } 7707 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 7708 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 7709 7710 MI.eraseFromParent(); 7711 return Legalized; 7712 } 7713 7714 LegalizerHelper::LegalizeResult LegalizerHelper::lowerBswap(MachineInstr &MI) { 7715 auto [Dst, Src] = MI.getFirst2Regs(); 7716 const LLT Ty = MRI.getType(Src); 7717 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 7718 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 7719 7720 // Swap most and least significant byte, set remaining bytes in Res to zero. 7721 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 7722 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 7723 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7724 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 7725 7726 // Set i-th high/low byte in Res to i-th low/high byte from Src. 7727 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 7728 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 7729 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 7730 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 7731 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 7732 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 7733 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 7734 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 7735 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 7736 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 7737 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7738 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 7739 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 7740 } 7741 Res.getInstr()->getOperand(0).setReg(Dst); 7742 7743 MI.eraseFromParent(); 7744 return Legalized; 7745 } 7746 7747 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 7748 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 7749 MachineInstrBuilder Src, APInt Mask) { 7750 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 7751 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 7752 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 7753 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 7754 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 7755 return B.buildOr(Dst, LHS, RHS); 7756 } 7757 7758 LegalizerHelper::LegalizeResult 7759 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 7760 auto [Dst, Src] = MI.getFirst2Regs(); 7761 const LLT Ty = MRI.getType(Src); 7762 unsigned Size = Ty.getSizeInBits(); 7763 7764 MachineInstrBuilder BSWAP = 7765 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 7766 7767 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 7768 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 7769 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 7770 MachineInstrBuilder Swap4 = 7771 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 7772 7773 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 7774 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 7775 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 7776 MachineInstrBuilder Swap2 = 7777 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 7778 7779 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 7780 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 7781 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 7782 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 7783 7784 MI.eraseFromParent(); 7785 return Legalized; 7786 } 7787 7788 LegalizerHelper::LegalizeResult 7789 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 7790 MachineFunction &MF = MIRBuilder.getMF(); 7791 7792 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 7793 int NameOpIdx = IsRead ? 1 : 0; 7794 int ValRegIndex = IsRead ? 0 : 1; 7795 7796 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 7797 const LLT Ty = MRI.getType(ValReg); 7798 const MDString *RegStr = cast<MDString>( 7799 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 7800 7801 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 7802 if (!PhysReg.isValid()) 7803 return UnableToLegalize; 7804 7805 if (IsRead) 7806 MIRBuilder.buildCopy(ValReg, PhysReg); 7807 else 7808 MIRBuilder.buildCopy(PhysReg, ValReg); 7809 7810 MI.eraseFromParent(); 7811 return Legalized; 7812 } 7813 7814 LegalizerHelper::LegalizeResult 7815 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 7816 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 7817 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 7818 Register Result = MI.getOperand(0).getReg(); 7819 LLT OrigTy = MRI.getType(Result); 7820 auto SizeInBits = OrigTy.getScalarSizeInBits(); 7821 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 7822 7823 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 7824 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 7825 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 7826 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 7827 7828 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 7829 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 7830 MIRBuilder.buildTrunc(Result, Shifted); 7831 7832 MI.eraseFromParent(); 7833 return Legalized; 7834 } 7835 7836 LegalizerHelper::LegalizeResult 7837 LegalizerHelper::lowerISFPCLASS(MachineInstr &MI) { 7838 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 7839 FPClassTest Mask = static_cast<FPClassTest>(MI.getOperand(2).getImm()); 7840 7841 if (Mask == fcNone) { 7842 MIRBuilder.buildConstant(DstReg, 0); 7843 MI.eraseFromParent(); 7844 return Legalized; 7845 } 7846 if (Mask == fcAllFlags) { 7847 MIRBuilder.buildConstant(DstReg, 1); 7848 MI.eraseFromParent(); 7849 return Legalized; 7850 } 7851 7852 // TODO: Try inverting the test with getInvertedFPClassTest like the DAG 7853 // version 7854 7855 unsigned BitSize = SrcTy.getScalarSizeInBits(); 7856 const fltSemantics &Semantics = getFltSemanticForLLT(SrcTy.getScalarType()); 7857 7858 LLT IntTy = LLT::scalar(BitSize); 7859 if (SrcTy.isVector()) 7860 IntTy = LLT::vector(SrcTy.getElementCount(), IntTy); 7861 auto AsInt = MIRBuilder.buildCopy(IntTy, SrcReg); 7862 7863 // Various masks. 7864 APInt SignBit = APInt::getSignMask(BitSize); 7865 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 7866 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 7867 APInt ExpMask = Inf; 7868 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 7869 APInt QNaNBitMask = 7870 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 7871 APInt InvertionMask = APInt::getAllOnes(DstTy.getScalarSizeInBits()); 7872 7873 auto SignBitC = MIRBuilder.buildConstant(IntTy, SignBit); 7874 auto ValueMaskC = MIRBuilder.buildConstant(IntTy, ValueMask); 7875 auto InfC = MIRBuilder.buildConstant(IntTy, Inf); 7876 auto ExpMaskC = MIRBuilder.buildConstant(IntTy, ExpMask); 7877 auto ZeroC = MIRBuilder.buildConstant(IntTy, 0); 7878 7879 auto Abs = MIRBuilder.buildAnd(IntTy, AsInt, ValueMaskC); 7880 auto Sign = 7881 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_NE, DstTy, AsInt, Abs); 7882 7883 auto Res = MIRBuilder.buildConstant(DstTy, 0); 7884 // Clang doesn't support capture of structured bindings: 7885 LLT DstTyCopy = DstTy; 7886 const auto appendToRes = [&](MachineInstrBuilder ToAppend) { 7887 Res = MIRBuilder.buildOr(DstTyCopy, Res, ToAppend); 7888 }; 7889 7890 // Tests that involve more than one class should be processed first. 7891 if ((Mask & fcFinite) == fcFinite) { 7892 // finite(V) ==> abs(V) u< exp_mask 7893 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, Abs, 7894 ExpMaskC)); 7895 Mask &= ~fcFinite; 7896 } else if ((Mask & fcFinite) == fcPosFinite) { 7897 // finite(V) && V > 0 ==> V u< exp_mask 7898 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, AsInt, 7899 ExpMaskC)); 7900 Mask &= ~fcPosFinite; 7901 } else if ((Mask & fcFinite) == fcNegFinite) { 7902 // finite(V) && V < 0 ==> abs(V) u< exp_mask && signbit == 1 7903 auto Cmp = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, Abs, 7904 ExpMaskC); 7905 auto And = MIRBuilder.buildAnd(DstTy, Cmp, Sign); 7906 appendToRes(And); 7907 Mask &= ~fcNegFinite; 7908 } 7909 7910 if (FPClassTest PartialCheck = Mask & (fcZero | fcSubnormal)) { 7911 // fcZero | fcSubnormal => test all exponent bits are 0 7912 // TODO: Handle sign bit specific cases 7913 // TODO: Handle inverted case 7914 if (PartialCheck == (fcZero | fcSubnormal)) { 7915 auto ExpBits = MIRBuilder.buildAnd(IntTy, AsInt, ExpMaskC); 7916 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, 7917 ExpBits, ZeroC)); 7918 Mask &= ~PartialCheck; 7919 } 7920 } 7921 7922 // Check for individual classes. 7923 if (FPClassTest PartialCheck = Mask & fcZero) { 7924 if (PartialCheck == fcPosZero) 7925 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, 7926 AsInt, ZeroC)); 7927 else if (PartialCheck == fcZero) 7928 appendToRes( 7929 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, Abs, ZeroC)); 7930 else // fcNegZero 7931 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, 7932 AsInt, SignBitC)); 7933 } 7934 7935 if (FPClassTest PartialCheck = Mask & fcSubnormal) { 7936 // issubnormal(V) ==> unsigned(abs(V) - 1) u< (all mantissa bits set) 7937 // issubnormal(V) && V>0 ==> unsigned(V - 1) u< (all mantissa bits set) 7938 auto V = (PartialCheck == fcPosSubnormal) ? AsInt : Abs; 7939 auto OneC = MIRBuilder.buildConstant(IntTy, 1); 7940 auto VMinusOne = MIRBuilder.buildSub(IntTy, V, OneC); 7941 auto SubnormalRes = 7942 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, VMinusOne, 7943 MIRBuilder.buildConstant(IntTy, AllOneMantissa)); 7944 if (PartialCheck == fcNegSubnormal) 7945 SubnormalRes = MIRBuilder.buildAnd(DstTy, SubnormalRes, Sign); 7946 appendToRes(SubnormalRes); 7947 } 7948 7949 if (FPClassTest PartialCheck = Mask & fcInf) { 7950 if (PartialCheck == fcPosInf) 7951 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, 7952 AsInt, InfC)); 7953 else if (PartialCheck == fcInf) 7954 appendToRes( 7955 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, Abs, InfC)); 7956 else { // fcNegInf 7957 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 7958 auto NegInfC = MIRBuilder.buildConstant(IntTy, NegInf); 7959 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, 7960 AsInt, NegInfC)); 7961 } 7962 } 7963 7964 if (FPClassTest PartialCheck = Mask & fcNan) { 7965 auto InfWithQnanBitC = MIRBuilder.buildConstant(IntTy, Inf | QNaNBitMask); 7966 if (PartialCheck == fcNan) { 7967 // isnan(V) ==> abs(V) u> int(inf) 7968 appendToRes( 7969 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGT, DstTy, Abs, InfC)); 7970 } else if (PartialCheck == fcQNan) { 7971 // isquiet(V) ==> abs(V) u>= (unsigned(Inf) | quiet_bit) 7972 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGE, DstTy, Abs, 7973 InfWithQnanBitC)); 7974 } else { // fcSNan 7975 // issignaling(V) ==> abs(V) u> unsigned(Inf) && 7976 // abs(V) u< (unsigned(Inf) | quiet_bit) 7977 auto IsNan = 7978 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGT, DstTy, Abs, InfC); 7979 auto IsNotQnan = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, 7980 Abs, InfWithQnanBitC); 7981 appendToRes(MIRBuilder.buildAnd(DstTy, IsNan, IsNotQnan)); 7982 } 7983 } 7984 7985 if (FPClassTest PartialCheck = Mask & fcNormal) { 7986 // isnormal(V) ==> (0 u< exp u< max_exp) ==> (unsigned(exp-1) u< 7987 // (max_exp-1)) 7988 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 7989 auto ExpMinusOne = MIRBuilder.buildSub( 7990 IntTy, Abs, MIRBuilder.buildConstant(IntTy, ExpLSB)); 7991 APInt MaxExpMinusOne = ExpMask - ExpLSB; 7992 auto NormalRes = 7993 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, ExpMinusOne, 7994 MIRBuilder.buildConstant(IntTy, MaxExpMinusOne)); 7995 if (PartialCheck == fcNegNormal) 7996 NormalRes = MIRBuilder.buildAnd(DstTy, NormalRes, Sign); 7997 else if (PartialCheck == fcPosNormal) { 7998 auto PosSign = MIRBuilder.buildXor( 7999 DstTy, Sign, MIRBuilder.buildConstant(DstTy, InvertionMask)); 8000 NormalRes = MIRBuilder.buildAnd(DstTy, NormalRes, PosSign); 8001 } 8002 appendToRes(NormalRes); 8003 } 8004 8005 MIRBuilder.buildCopy(DstReg, Res); 8006 MI.eraseFromParent(); 8007 return Legalized; 8008 } 8009 8010 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 8011 // Implement vector G_SELECT in terms of XOR, AND, OR. 8012 auto [DstReg, DstTy, MaskReg, MaskTy, Op1Reg, Op1Ty, Op2Reg, Op2Ty] = 8013 MI.getFirst4RegLLTs(); 8014 if (!DstTy.isVector()) 8015 return UnableToLegalize; 8016 8017 bool IsEltPtr = DstTy.getElementType().isPointer(); 8018 if (IsEltPtr) { 8019 LLT ScalarPtrTy = LLT::scalar(DstTy.getScalarSizeInBits()); 8020 LLT NewTy = DstTy.changeElementType(ScalarPtrTy); 8021 Op1Reg = MIRBuilder.buildPtrToInt(NewTy, Op1Reg).getReg(0); 8022 Op2Reg = MIRBuilder.buildPtrToInt(NewTy, Op2Reg).getReg(0); 8023 DstTy = NewTy; 8024 } 8025 8026 if (MaskTy.isScalar()) { 8027 // Turn the scalar condition into a vector condition mask. 8028 8029 Register MaskElt = MaskReg; 8030 8031 // The condition was potentially zero extended before, but we want a sign 8032 // extended boolean. 8033 if (MaskTy != LLT::scalar(1)) 8034 MaskElt = MIRBuilder.buildSExtInReg(MaskTy, MaskElt, 1).getReg(0); 8035 8036 // Continue the sign extension (or truncate) to match the data type. 8037 MaskElt = MIRBuilder.buildSExtOrTrunc(DstTy.getElementType(), 8038 MaskElt).getReg(0); 8039 8040 // Generate a vector splat idiom. 8041 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 8042 MaskReg = ShufSplat.getReg(0); 8043 MaskTy = DstTy; 8044 } 8045 8046 if (MaskTy.getSizeInBits() != DstTy.getSizeInBits()) { 8047 return UnableToLegalize; 8048 } 8049 8050 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 8051 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 8052 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 8053 if (IsEltPtr) { 8054 auto Or = MIRBuilder.buildOr(DstTy, NewOp1, NewOp2); 8055 MIRBuilder.buildIntToPtr(DstReg, Or); 8056 } else { 8057 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 8058 } 8059 MI.eraseFromParent(); 8060 return Legalized; 8061 } 8062 8063 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 8064 // Split DIVREM into individual instructions. 8065 unsigned Opcode = MI.getOpcode(); 8066 8067 MIRBuilder.buildInstr( 8068 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 8069 : TargetOpcode::G_UDIV, 8070 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 8071 MIRBuilder.buildInstr( 8072 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 8073 : TargetOpcode::G_UREM, 8074 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 8075 MI.eraseFromParent(); 8076 return Legalized; 8077 } 8078 8079 LegalizerHelper::LegalizeResult 8080 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { 8081 // Expand %res = G_ABS %a into: 8082 // %v1 = G_ASHR %a, scalar_size-1 8083 // %v2 = G_ADD %a, %v1 8084 // %res = G_XOR %v2, %v1 8085 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 8086 Register OpReg = MI.getOperand(1).getReg(); 8087 auto ShiftAmt = 8088 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 8089 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 8090 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 8091 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 8092 MI.eraseFromParent(); 8093 return Legalized; 8094 } 8095 8096 LegalizerHelper::LegalizeResult 8097 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { 8098 // Expand %res = G_ABS %a into: 8099 // %v1 = G_CONSTANT 0 8100 // %v2 = G_SUB %v1, %a 8101 // %res = G_SMAX %a, %v2 8102 Register SrcReg = MI.getOperand(1).getReg(); 8103 LLT Ty = MRI.getType(SrcReg); 8104 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); 8105 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); 8106 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); 8107 MI.eraseFromParent(); 8108 return Legalized; 8109 } 8110 8111 LegalizerHelper::LegalizeResult 8112 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) { 8113 Register SrcReg = MI.getOperand(1).getReg(); 8114 LLT SrcTy = MRI.getType(SrcReg); 8115 LLT DstTy = MRI.getType(SrcReg); 8116 8117 // The source could be a scalar if the IR type was <1 x sN>. 8118 if (SrcTy.isScalar()) { 8119 if (DstTy.getSizeInBits() > SrcTy.getSizeInBits()) 8120 return UnableToLegalize; // FIXME: handle extension. 8121 // This can be just a plain copy. 8122 Observer.changingInstr(MI); 8123 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY)); 8124 Observer.changedInstr(MI); 8125 return Legalized; 8126 } 8127 return UnableToLegalize; 8128 } 8129 8130 static Type *getTypeForLLT(LLT Ty, LLVMContext &C); 8131 8132 LegalizerHelper::LegalizeResult LegalizerHelper::lowerVAArg(MachineInstr &MI) { 8133 MachineFunction &MF = *MI.getMF(); 8134 const DataLayout &DL = MIRBuilder.getDataLayout(); 8135 LLVMContext &Ctx = MF.getFunction().getContext(); 8136 Register ListPtr = MI.getOperand(1).getReg(); 8137 LLT PtrTy = MRI.getType(ListPtr); 8138 8139 // LstPtr is a pointer to the head of the list. Get the address 8140 // of the head of the list. 8141 Align PtrAlignment = DL.getABITypeAlign(getTypeForLLT(PtrTy, Ctx)); 8142 MachineMemOperand *PtrLoadMMO = MF.getMachineMemOperand( 8143 MachinePointerInfo(), MachineMemOperand::MOLoad, PtrTy, PtrAlignment); 8144 auto VAList = MIRBuilder.buildLoad(PtrTy, ListPtr, *PtrLoadMMO).getReg(0); 8145 8146 const Align A(MI.getOperand(2).getImm()); 8147 LLT PtrTyAsScalarTy = LLT::scalar(PtrTy.getSizeInBits()); 8148 if (A > TLI.getMinStackArgumentAlignment()) { 8149 Register AlignAmt = 8150 MIRBuilder.buildConstant(PtrTyAsScalarTy, A.value() - 1).getReg(0); 8151 auto AddDst = MIRBuilder.buildPtrAdd(PtrTy, VAList, AlignAmt); 8152 auto AndDst = MIRBuilder.buildMaskLowPtrBits(PtrTy, AddDst, Log2(A)); 8153 VAList = AndDst.getReg(0); 8154 } 8155 8156 // Increment the pointer, VAList, to the next vaarg 8157 // The list should be bumped by the size of element in the current head of 8158 // list. 8159 Register Dst = MI.getOperand(0).getReg(); 8160 LLT LLTTy = MRI.getType(Dst); 8161 Type *Ty = getTypeForLLT(LLTTy, Ctx); 8162 auto IncAmt = 8163 MIRBuilder.buildConstant(PtrTyAsScalarTy, DL.getTypeAllocSize(Ty)); 8164 auto Succ = MIRBuilder.buildPtrAdd(PtrTy, VAList, IncAmt); 8165 8166 // Store the increment VAList to the legalized pointer 8167 MachineMemOperand *StoreMMO = MF.getMachineMemOperand( 8168 MachinePointerInfo(), MachineMemOperand::MOStore, PtrTy, PtrAlignment); 8169 MIRBuilder.buildStore(Succ, ListPtr, *StoreMMO); 8170 // Load the actual argument out of the pointer VAList 8171 Align EltAlignment = DL.getABITypeAlign(Ty); 8172 MachineMemOperand *EltLoadMMO = MF.getMachineMemOperand( 8173 MachinePointerInfo(), MachineMemOperand::MOLoad, LLTTy, EltAlignment); 8174 MIRBuilder.buildLoad(Dst, VAList, *EltLoadMMO); 8175 8176 MI.eraseFromParent(); 8177 return Legalized; 8178 } 8179 8180 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 8181 // On Darwin, -Os means optimize for size without hurting performance, so 8182 // only really optimize for size when -Oz (MinSize) is used. 8183 if (MF.getTarget().getTargetTriple().isOSDarwin()) 8184 return MF.getFunction().hasMinSize(); 8185 return MF.getFunction().hasOptSize(); 8186 } 8187 8188 // Returns a list of types to use for memory op lowering in MemOps. A partial 8189 // port of findOptimalMemOpLowering in TargetLowering. 8190 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 8191 unsigned Limit, const MemOp &Op, 8192 unsigned DstAS, unsigned SrcAS, 8193 const AttributeList &FuncAttributes, 8194 const TargetLowering &TLI) { 8195 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 8196 return false; 8197 8198 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 8199 8200 if (Ty == LLT()) { 8201 // Use the largest scalar type whose alignment constraints are satisfied. 8202 // We only need to check DstAlign here as SrcAlign is always greater or 8203 // equal to DstAlign (or zero). 8204 Ty = LLT::scalar(64); 8205 if (Op.isFixedDstAlign()) 8206 while (Op.getDstAlign() < Ty.getSizeInBytes() && 8207 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 8208 Ty = LLT::scalar(Ty.getSizeInBytes()); 8209 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 8210 // FIXME: check for the largest legal type we can load/store to. 8211 } 8212 8213 unsigned NumMemOps = 0; 8214 uint64_t Size = Op.size(); 8215 while (Size) { 8216 unsigned TySize = Ty.getSizeInBytes(); 8217 while (TySize > Size) { 8218 // For now, only use non-vector load / store's for the left-over pieces. 8219 LLT NewTy = Ty; 8220 // FIXME: check for mem op safety and legality of the types. Not all of 8221 // SDAGisms map cleanly to GISel concepts. 8222 if (NewTy.isVector()) 8223 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 8224 NewTy = LLT::scalar(llvm::bit_floor(NewTy.getSizeInBits() - 1)); 8225 unsigned NewTySize = NewTy.getSizeInBytes(); 8226 assert(NewTySize > 0 && "Could not find appropriate type"); 8227 8228 // If the new LLT cannot cover all of the remaining bits, then consider 8229 // issuing a (or a pair of) unaligned and overlapping load / store. 8230 unsigned Fast; 8231 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 8232 MVT VT = getMVTForLLT(Ty); 8233 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 8234 TLI.allowsMisalignedMemoryAccesses( 8235 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 8236 MachineMemOperand::MONone, &Fast) && 8237 Fast) 8238 TySize = Size; 8239 else { 8240 Ty = NewTy; 8241 TySize = NewTySize; 8242 } 8243 } 8244 8245 if (++NumMemOps > Limit) 8246 return false; 8247 8248 MemOps.push_back(Ty); 8249 Size -= TySize; 8250 } 8251 8252 return true; 8253 } 8254 8255 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 8256 if (Ty.isVector()) 8257 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 8258 Ty.getNumElements()); 8259 return IntegerType::get(C, Ty.getSizeInBits()); 8260 } 8261 8262 // Get a vectorized representation of the memset value operand, GISel edition. 8263 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 8264 MachineRegisterInfo &MRI = *MIB.getMRI(); 8265 unsigned NumBits = Ty.getScalarSizeInBits(); 8266 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 8267 if (!Ty.isVector() && ValVRegAndVal) { 8268 APInt Scalar = ValVRegAndVal->Value.trunc(8); 8269 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 8270 return MIB.buildConstant(Ty, SplatVal).getReg(0); 8271 } 8272 8273 // Extend the byte value to the larger type, and then multiply by a magic 8274 // value 0x010101... in order to replicate it across every byte. 8275 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 8276 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 8277 return MIB.buildConstant(Ty, 0).getReg(0); 8278 } 8279 8280 LLT ExtType = Ty.getScalarType(); 8281 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 8282 if (NumBits > 8) { 8283 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 8284 auto MagicMI = MIB.buildConstant(ExtType, Magic); 8285 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 8286 } 8287 8288 // For vector types create a G_BUILD_VECTOR. 8289 if (Ty.isVector()) 8290 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 8291 8292 return Val; 8293 } 8294 8295 LegalizerHelper::LegalizeResult 8296 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val, 8297 uint64_t KnownLen, Align Alignment, 8298 bool IsVolatile) { 8299 auto &MF = *MI.getParent()->getParent(); 8300 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 8301 auto &DL = MF.getDataLayout(); 8302 LLVMContext &C = MF.getFunction().getContext(); 8303 8304 assert(KnownLen != 0 && "Have a zero length memset length!"); 8305 8306 bool DstAlignCanChange = false; 8307 MachineFrameInfo &MFI = MF.getFrameInfo(); 8308 bool OptSize = shouldLowerMemFuncForSize(MF); 8309 8310 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 8311 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 8312 DstAlignCanChange = true; 8313 8314 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 8315 std::vector<LLT> MemOps; 8316 8317 const auto &DstMMO = **MI.memoperands_begin(); 8318 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 8319 8320 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 8321 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 8322 8323 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 8324 MemOp::Set(KnownLen, DstAlignCanChange, 8325 Alignment, 8326 /*IsZeroMemset=*/IsZeroVal, 8327 /*IsVolatile=*/IsVolatile), 8328 DstPtrInfo.getAddrSpace(), ~0u, 8329 MF.getFunction().getAttributes(), TLI)) 8330 return UnableToLegalize; 8331 8332 if (DstAlignCanChange) { 8333 // Get an estimate of the type from the LLT. 8334 Type *IRTy = getTypeForLLT(MemOps[0], C); 8335 Align NewAlign = DL.getABITypeAlign(IRTy); 8336 if (NewAlign > Alignment) { 8337 Alignment = NewAlign; 8338 unsigned FI = FIDef->getOperand(1).getIndex(); 8339 // Give the stack frame object a larger alignment if needed. 8340 if (MFI.getObjectAlign(FI) < Alignment) 8341 MFI.setObjectAlignment(FI, Alignment); 8342 } 8343 } 8344 8345 MachineIRBuilder MIB(MI); 8346 // Find the largest store and generate the bit pattern for it. 8347 LLT LargestTy = MemOps[0]; 8348 for (unsigned i = 1; i < MemOps.size(); i++) 8349 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 8350 LargestTy = MemOps[i]; 8351 8352 // The memset stored value is always defined as an s8, so in order to make it 8353 // work with larger store types we need to repeat the bit pattern across the 8354 // wider type. 8355 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 8356 8357 if (!MemSetValue) 8358 return UnableToLegalize; 8359 8360 // Generate the stores. For each store type in the list, we generate the 8361 // matching store of that type to the destination address. 8362 LLT PtrTy = MRI.getType(Dst); 8363 unsigned DstOff = 0; 8364 unsigned Size = KnownLen; 8365 for (unsigned I = 0; I < MemOps.size(); I++) { 8366 LLT Ty = MemOps[I]; 8367 unsigned TySize = Ty.getSizeInBytes(); 8368 if (TySize > Size) { 8369 // Issuing an unaligned load / store pair that overlaps with the previous 8370 // pair. Adjust the offset accordingly. 8371 assert(I == MemOps.size() - 1 && I != 0); 8372 DstOff -= TySize - Size; 8373 } 8374 8375 // If this store is smaller than the largest store see whether we can get 8376 // the smaller value for free with a truncate. 8377 Register Value = MemSetValue; 8378 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 8379 MVT VT = getMVTForLLT(Ty); 8380 MVT LargestVT = getMVTForLLT(LargestTy); 8381 if (!LargestTy.isVector() && !Ty.isVector() && 8382 TLI.isTruncateFree(LargestVT, VT)) 8383 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 8384 else 8385 Value = getMemsetValue(Val, Ty, MIB); 8386 if (!Value) 8387 return UnableToLegalize; 8388 } 8389 8390 auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty); 8391 8392 Register Ptr = Dst; 8393 if (DstOff != 0) { 8394 auto Offset = 8395 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 8396 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 8397 } 8398 8399 MIB.buildStore(Value, Ptr, *StoreMMO); 8400 DstOff += Ty.getSizeInBytes(); 8401 Size -= TySize; 8402 } 8403 8404 MI.eraseFromParent(); 8405 return Legalized; 8406 } 8407 8408 LegalizerHelper::LegalizeResult 8409 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) { 8410 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 8411 8412 auto [Dst, Src, Len] = MI.getFirst3Regs(); 8413 8414 const auto *MMOIt = MI.memoperands_begin(); 8415 const MachineMemOperand *MemOp = *MMOIt; 8416 bool IsVolatile = MemOp->isVolatile(); 8417 8418 // See if this is a constant length copy 8419 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 8420 // FIXME: support dynamically sized G_MEMCPY_INLINE 8421 assert(LenVRegAndVal && 8422 "inline memcpy with dynamic size is not yet supported"); 8423 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 8424 if (KnownLen == 0) { 8425 MI.eraseFromParent(); 8426 return Legalized; 8427 } 8428 8429 const auto &DstMMO = **MI.memoperands_begin(); 8430 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 8431 Align DstAlign = DstMMO.getBaseAlign(); 8432 Align SrcAlign = SrcMMO.getBaseAlign(); 8433 8434 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 8435 IsVolatile); 8436 } 8437 8438 LegalizerHelper::LegalizeResult 8439 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src, 8440 uint64_t KnownLen, Align DstAlign, 8441 Align SrcAlign, bool IsVolatile) { 8442 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 8443 return lowerMemcpy(MI, Dst, Src, KnownLen, 8444 std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign, 8445 IsVolatile); 8446 } 8447 8448 LegalizerHelper::LegalizeResult 8449 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src, 8450 uint64_t KnownLen, uint64_t Limit, Align DstAlign, 8451 Align SrcAlign, bool IsVolatile) { 8452 auto &MF = *MI.getParent()->getParent(); 8453 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 8454 auto &DL = MF.getDataLayout(); 8455 LLVMContext &C = MF.getFunction().getContext(); 8456 8457 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 8458 8459 bool DstAlignCanChange = false; 8460 MachineFrameInfo &MFI = MF.getFrameInfo(); 8461 Align Alignment = std::min(DstAlign, SrcAlign); 8462 8463 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 8464 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 8465 DstAlignCanChange = true; 8466 8467 // FIXME: infer better src pointer alignment like SelectionDAG does here. 8468 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 8469 // if the memcpy is in a tail call position. 8470 8471 std::vector<LLT> MemOps; 8472 8473 const auto &DstMMO = **MI.memoperands_begin(); 8474 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 8475 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 8476 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 8477 8478 if (!findGISelOptimalMemOpLowering( 8479 MemOps, Limit, 8480 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 8481 IsVolatile), 8482 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 8483 MF.getFunction().getAttributes(), TLI)) 8484 return UnableToLegalize; 8485 8486 if (DstAlignCanChange) { 8487 // Get an estimate of the type from the LLT. 8488 Type *IRTy = getTypeForLLT(MemOps[0], C); 8489 Align NewAlign = DL.getABITypeAlign(IRTy); 8490 8491 // Don't promote to an alignment that would require dynamic stack 8492 // realignment. 8493 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 8494 if (!TRI->hasStackRealignment(MF)) 8495 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 8496 NewAlign = NewAlign.previous(); 8497 8498 if (NewAlign > Alignment) { 8499 Alignment = NewAlign; 8500 unsigned FI = FIDef->getOperand(1).getIndex(); 8501 // Give the stack frame object a larger alignment if needed. 8502 if (MFI.getObjectAlign(FI) < Alignment) 8503 MFI.setObjectAlignment(FI, Alignment); 8504 } 8505 } 8506 8507 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 8508 8509 MachineIRBuilder MIB(MI); 8510 // Now we need to emit a pair of load and stores for each of the types we've 8511 // collected. I.e. for each type, generate a load from the source pointer of 8512 // that type width, and then generate a corresponding store to the dest buffer 8513 // of that value loaded. This can result in a sequence of loads and stores 8514 // mixed types, depending on what the target specifies as good types to use. 8515 unsigned CurrOffset = 0; 8516 unsigned Size = KnownLen; 8517 for (auto CopyTy : MemOps) { 8518 // Issuing an unaligned load / store pair that overlaps with the previous 8519 // pair. Adjust the offset accordingly. 8520 if (CopyTy.getSizeInBytes() > Size) 8521 CurrOffset -= CopyTy.getSizeInBytes() - Size; 8522 8523 // Construct MMOs for the accesses. 8524 auto *LoadMMO = 8525 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 8526 auto *StoreMMO = 8527 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 8528 8529 // Create the load. 8530 Register LoadPtr = Src; 8531 Register Offset; 8532 if (CurrOffset != 0) { 8533 LLT SrcTy = MRI.getType(Src); 8534 Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset) 8535 .getReg(0); 8536 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 8537 } 8538 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 8539 8540 // Create the store. 8541 Register StorePtr = Dst; 8542 if (CurrOffset != 0) { 8543 LLT DstTy = MRI.getType(Dst); 8544 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 8545 } 8546 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 8547 CurrOffset += CopyTy.getSizeInBytes(); 8548 Size -= CopyTy.getSizeInBytes(); 8549 } 8550 8551 MI.eraseFromParent(); 8552 return Legalized; 8553 } 8554 8555 LegalizerHelper::LegalizeResult 8556 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src, 8557 uint64_t KnownLen, Align DstAlign, Align SrcAlign, 8558 bool IsVolatile) { 8559 auto &MF = *MI.getParent()->getParent(); 8560 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 8561 auto &DL = MF.getDataLayout(); 8562 LLVMContext &C = MF.getFunction().getContext(); 8563 8564 assert(KnownLen != 0 && "Have a zero length memmove length!"); 8565 8566 bool DstAlignCanChange = false; 8567 MachineFrameInfo &MFI = MF.getFrameInfo(); 8568 bool OptSize = shouldLowerMemFuncForSize(MF); 8569 Align Alignment = std::min(DstAlign, SrcAlign); 8570 8571 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 8572 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 8573 DstAlignCanChange = true; 8574 8575 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 8576 std::vector<LLT> MemOps; 8577 8578 const auto &DstMMO = **MI.memoperands_begin(); 8579 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 8580 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 8581 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 8582 8583 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 8584 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 8585 // same thing here. 8586 if (!findGISelOptimalMemOpLowering( 8587 MemOps, Limit, 8588 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 8589 /*IsVolatile*/ true), 8590 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 8591 MF.getFunction().getAttributes(), TLI)) 8592 return UnableToLegalize; 8593 8594 if (DstAlignCanChange) { 8595 // Get an estimate of the type from the LLT. 8596 Type *IRTy = getTypeForLLT(MemOps[0], C); 8597 Align NewAlign = DL.getABITypeAlign(IRTy); 8598 8599 // Don't promote to an alignment that would require dynamic stack 8600 // realignment. 8601 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 8602 if (!TRI->hasStackRealignment(MF)) 8603 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 8604 NewAlign = NewAlign.previous(); 8605 8606 if (NewAlign > Alignment) { 8607 Alignment = NewAlign; 8608 unsigned FI = FIDef->getOperand(1).getIndex(); 8609 // Give the stack frame object a larger alignment if needed. 8610 if (MFI.getObjectAlign(FI) < Alignment) 8611 MFI.setObjectAlignment(FI, Alignment); 8612 } 8613 } 8614 8615 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 8616 8617 MachineIRBuilder MIB(MI); 8618 // Memmove requires that we perform the loads first before issuing the stores. 8619 // Apart from that, this loop is pretty much doing the same thing as the 8620 // memcpy codegen function. 8621 unsigned CurrOffset = 0; 8622 SmallVector<Register, 16> LoadVals; 8623 for (auto CopyTy : MemOps) { 8624 // Construct MMO for the load. 8625 auto *LoadMMO = 8626 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 8627 8628 // Create the load. 8629 Register LoadPtr = Src; 8630 if (CurrOffset != 0) { 8631 LLT SrcTy = MRI.getType(Src); 8632 auto Offset = 8633 MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset); 8634 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 8635 } 8636 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 8637 CurrOffset += CopyTy.getSizeInBytes(); 8638 } 8639 8640 CurrOffset = 0; 8641 for (unsigned I = 0; I < MemOps.size(); ++I) { 8642 LLT CopyTy = MemOps[I]; 8643 // Now store the values loaded. 8644 auto *StoreMMO = 8645 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 8646 8647 Register StorePtr = Dst; 8648 if (CurrOffset != 0) { 8649 LLT DstTy = MRI.getType(Dst); 8650 auto Offset = 8651 MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset); 8652 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 8653 } 8654 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 8655 CurrOffset += CopyTy.getSizeInBytes(); 8656 } 8657 MI.eraseFromParent(); 8658 return Legalized; 8659 } 8660 8661 LegalizerHelper::LegalizeResult 8662 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 8663 const unsigned Opc = MI.getOpcode(); 8664 // This combine is fairly complex so it's not written with a separate 8665 // matcher function. 8666 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 8667 Opc == TargetOpcode::G_MEMSET) && 8668 "Expected memcpy like instruction"); 8669 8670 auto MMOIt = MI.memoperands_begin(); 8671 const MachineMemOperand *MemOp = *MMOIt; 8672 8673 Align DstAlign = MemOp->getBaseAlign(); 8674 Align SrcAlign; 8675 auto [Dst, Src, Len] = MI.getFirst3Regs(); 8676 8677 if (Opc != TargetOpcode::G_MEMSET) { 8678 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 8679 MemOp = *(++MMOIt); 8680 SrcAlign = MemOp->getBaseAlign(); 8681 } 8682 8683 // See if this is a constant length copy 8684 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 8685 if (!LenVRegAndVal) 8686 return UnableToLegalize; 8687 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 8688 8689 if (KnownLen == 0) { 8690 MI.eraseFromParent(); 8691 return Legalized; 8692 } 8693 8694 bool IsVolatile = MemOp->isVolatile(); 8695 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 8696 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 8697 IsVolatile); 8698 8699 // Don't try to optimize volatile. 8700 if (IsVolatile) 8701 return UnableToLegalize; 8702 8703 if (MaxLen && KnownLen > MaxLen) 8704 return UnableToLegalize; 8705 8706 if (Opc == TargetOpcode::G_MEMCPY) { 8707 auto &MF = *MI.getParent()->getParent(); 8708 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 8709 bool OptSize = shouldLowerMemFuncForSize(MF); 8710 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 8711 return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 8712 IsVolatile); 8713 } 8714 if (Opc == TargetOpcode::G_MEMMOVE) 8715 return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 8716 if (Opc == TargetOpcode::G_MEMSET) 8717 return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 8718 return UnableToLegalize; 8719 } 8720