1 //===-- lib/CodeGen/GlobalISel/InlineAsmLowering.cpp ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering from LLVM IR inline asm to MIR INLINEASM 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 15 #include "llvm/CodeGen/Analysis.h" 16 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 17 #include "llvm/CodeGen/GlobalISel/Utils.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 26 #define DEBUG_TYPE "inline-asm-lowering" 27 28 using namespace llvm; 29 30 void InlineAsmLowering::anchor() {} 31 32 namespace { 33 34 /// GISelAsmOperandInfo - This contains information for each constraint that we 35 /// are lowering. 36 class GISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 37 public: 38 /// Regs - If this is a register or register class operand, this 39 /// contains the set of assigned registers corresponding to the operand. 40 SmallVector<Register, 1> Regs; 41 42 explicit GISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &Info) 43 : TargetLowering::AsmOperandInfo(Info) {} 44 }; 45 46 using GISelAsmOperandInfoVector = SmallVector<GISelAsmOperandInfo, 16>; 47 48 class ExtraFlags { 49 unsigned Flags = 0; 50 51 public: 52 explicit ExtraFlags(const CallBase &CB) { 53 const InlineAsm *IA = cast<InlineAsm>(CB.getCalledOperand()); 54 if (IA->hasSideEffects()) 55 Flags |= InlineAsm::Extra_HasSideEffects; 56 if (IA->isAlignStack()) 57 Flags |= InlineAsm::Extra_IsAlignStack; 58 if (CB.isConvergent()) 59 Flags |= InlineAsm::Extra_IsConvergent; 60 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 61 } 62 63 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 64 // Ideally, we would only check against memory constraints. However, the 65 // meaning of an Other constraint can be target-specific and we can't easily 66 // reason about it. Therefore, be conservative and set MayLoad/MayStore 67 // for Other constraints as well. 68 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 69 OpInfo.ConstraintType == TargetLowering::C_Other) { 70 if (OpInfo.Type == InlineAsm::isInput) 71 Flags |= InlineAsm::Extra_MayLoad; 72 else if (OpInfo.Type == InlineAsm::isOutput) 73 Flags |= InlineAsm::Extra_MayStore; 74 else if (OpInfo.Type == InlineAsm::isClobber) 75 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 76 } 77 } 78 79 unsigned get() const { return Flags; } 80 }; 81 82 } // namespace 83 84 /// Assign virtual/physical registers for the specified register operand. 85 static void getRegistersForValue(MachineFunction &MF, 86 MachineIRBuilder &MIRBuilder, 87 GISelAsmOperandInfo &OpInfo, 88 GISelAsmOperandInfo &RefOpInfo) { 89 90 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 91 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 92 93 // No work to do for memory operations. 94 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 95 return; 96 97 // If this is a constraint for a single physreg, or a constraint for a 98 // register class, find it. 99 Register AssignedReg; 100 const TargetRegisterClass *RC; 101 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 102 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 103 // RC is unset only on failure. Return immediately. 104 if (!RC) 105 return; 106 107 // No need to allocate a matching input constraint since the constraint it's 108 // matching to has already been allocated. 109 if (OpInfo.isMatchingInputConstraint()) 110 return; 111 112 // Initialize NumRegs. 113 unsigned NumRegs = 1; 114 if (OpInfo.ConstraintVT != MVT::Other) 115 NumRegs = 116 TLI.getNumRegisters(MF.getFunction().getContext(), OpInfo.ConstraintVT); 117 118 // If this is a constraint for a specific physical register, but the type of 119 // the operand requires more than one register to be passed, we allocate the 120 // required amount of physical registers, starting from the selected physical 121 // register. 122 // For this, first retrieve a register iterator for the given register class 123 TargetRegisterClass::iterator I = RC->begin(); 124 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 125 126 // Advance the iterator to the assigned register (if set) 127 if (AssignedReg) { 128 for (; *I != AssignedReg; ++I) 129 assert(I != RC->end() && "AssignedReg should be a member of provided RC"); 130 } 131 132 // Finally, assign the registers. If the AssignedReg isn't set, create virtual 133 // registers with the provided register class 134 for (; NumRegs; --NumRegs, ++I) { 135 assert(I != RC->end() && "Ran out of registers to allocate!"); 136 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 137 OpInfo.Regs.push_back(R); 138 } 139 } 140 141 /// Return an integer indicating how general CT is. 142 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 143 switch (CT) { 144 case TargetLowering::C_Immediate: 145 case TargetLowering::C_Other: 146 case TargetLowering::C_Unknown: 147 return 0; 148 case TargetLowering::C_Register: 149 return 1; 150 case TargetLowering::C_RegisterClass: 151 return 2; 152 case TargetLowering::C_Memory: 153 return 3; 154 } 155 llvm_unreachable("Invalid constraint type"); 156 } 157 158 static void chooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 159 const TargetLowering *TLI) { 160 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 161 unsigned BestIdx = 0; 162 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 163 int BestGenerality = -1; 164 165 // Loop over the options, keeping track of the most general one. 166 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 167 TargetLowering::ConstraintType CType = 168 TLI->getConstraintType(OpInfo.Codes[i]); 169 170 // Indirect 'other' or 'immediate' constraints are not allowed. 171 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 172 CType == TargetLowering::C_Register || 173 CType == TargetLowering::C_RegisterClass)) 174 continue; 175 176 // If this is an 'other' or 'immediate' constraint, see if the operand is 177 // valid for it. For example, on X86 we might have an 'rI' constraint. If 178 // the operand is an integer in the range [0..31] we want to use I (saving a 179 // load of a register), otherwise we must use 'r'. 180 if (CType == TargetLowering::C_Other || 181 CType == TargetLowering::C_Immediate) { 182 assert(OpInfo.Codes[i].size() == 1 && 183 "Unhandled multi-letter 'other' constraint"); 184 // FIXME: prefer immediate constraints if the target allows it 185 } 186 187 // Things with matching constraints can only be registers, per gcc 188 // documentation. This mainly affects "g" constraints. 189 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 190 continue; 191 192 // This constraint letter is more general than the previous one, use it. 193 int Generality = getConstraintGenerality(CType); 194 if (Generality > BestGenerality) { 195 BestType = CType; 196 BestIdx = i; 197 BestGenerality = Generality; 198 } 199 } 200 201 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 202 OpInfo.ConstraintType = BestType; 203 } 204 205 static void computeConstraintToUse(const TargetLowering *TLI, 206 TargetLowering::AsmOperandInfo &OpInfo) { 207 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 208 209 // Single-letter constraints ('r') are very common. 210 if (OpInfo.Codes.size() == 1) { 211 OpInfo.ConstraintCode = OpInfo.Codes[0]; 212 OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode); 213 } else { 214 chooseConstraint(OpInfo, TLI); 215 } 216 217 // 'X' matches anything. 218 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 219 // Labels and constants are handled elsewhere ('X' is the only thing 220 // that matches labels). For Functions, the type here is the type of 221 // the result, which is not what we want to look at; leave them alone. 222 Value *Val = OpInfo.CallOperandVal; 223 if (isa<BasicBlock>(Val) || isa<ConstantInt>(Val) || isa<Function>(Val)) 224 return; 225 226 // Otherwise, try to resolve it to something we know about by looking at 227 // the actual operand type. 228 if (const char *Repl = TLI->LowerXConstraint(OpInfo.ConstraintVT)) { 229 OpInfo.ConstraintCode = Repl; 230 OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode); 231 } 232 } 233 } 234 235 static unsigned getNumOpRegs(const MachineInstr &I, unsigned OpIdx) { 236 unsigned Flag = I.getOperand(OpIdx).getImm(); 237 return InlineAsm::getNumOperandRegisters(Flag); 238 } 239 240 static bool buildAnyextOrCopy(Register Dst, Register Src, 241 MachineIRBuilder &MIRBuilder) { 242 const TargetRegisterInfo *TRI = 243 MIRBuilder.getMF().getSubtarget().getRegisterInfo(); 244 MachineRegisterInfo *MRI = MIRBuilder.getMRI(); 245 246 auto SrcTy = MRI->getType(Src); 247 if (!SrcTy.isValid()) { 248 LLVM_DEBUG(dbgs() << "Source type for copy is not valid\n"); 249 return false; 250 } 251 unsigned SrcSize = TRI->getRegSizeInBits(Src, *MRI); 252 unsigned DstSize = TRI->getRegSizeInBits(Dst, *MRI); 253 254 if (DstSize < SrcSize) { 255 LLVM_DEBUG(dbgs() << "Input can't fit in destination reg class\n"); 256 return false; 257 } 258 259 // Attempt to anyext small scalar sources. 260 if (DstSize > SrcSize) { 261 if (!SrcTy.isScalar()) { 262 LLVM_DEBUG(dbgs() << "Can't extend non-scalar input to size of" 263 "destination register class\n"); 264 return false; 265 } 266 Src = MIRBuilder.buildAnyExt(LLT::scalar(DstSize), Src).getReg(0); 267 } 268 269 MIRBuilder.buildCopy(Dst, Src); 270 return true; 271 } 272 273 bool InlineAsmLowering::lowerInlineAsm( 274 MachineIRBuilder &MIRBuilder, const CallBase &Call, 275 std::function<ArrayRef<Register>(const Value &Val)> GetOrCreateVRegs) 276 const { 277 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 278 279 /// ConstraintOperands - Information about all of the constraints. 280 GISelAsmOperandInfoVector ConstraintOperands; 281 282 MachineFunction &MF = MIRBuilder.getMF(); 283 const Function &F = MF.getFunction(); 284 const DataLayout &DL = F.getParent()->getDataLayout(); 285 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 286 287 MachineRegisterInfo *MRI = MIRBuilder.getMRI(); 288 289 TargetLowering::AsmOperandInfoVector TargetConstraints = 290 TLI->ParseConstraints(DL, TRI, Call); 291 292 ExtraFlags ExtraInfo(Call); 293 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 294 unsigned ResNo = 0; // ResNo - The result number of the next output. 295 for (auto &T : TargetConstraints) { 296 ConstraintOperands.push_back(GISelAsmOperandInfo(T)); 297 GISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 298 299 // Compute the value type for each operand. 300 if (OpInfo.hasArg()) { 301 OpInfo.CallOperandVal = const_cast<Value *>(Call.getArgOperand(ArgNo)); 302 303 if (isa<BasicBlock>(OpInfo.CallOperandVal)) { 304 LLVM_DEBUG(dbgs() << "Basic block input operands not supported yet\n"); 305 return false; 306 } 307 308 Type *OpTy = OpInfo.CallOperandVal->getType(); 309 310 // If this is an indirect operand, the operand is a pointer to the 311 // accessed type. 312 if (OpInfo.isIndirect) { 313 OpTy = Call.getAttributes().getParamElementType(ArgNo); 314 assert(OpTy && "Indirect operand must have elementtype attribute"); 315 } 316 317 // FIXME: Support aggregate input operands 318 if (!OpTy->isSingleValueType()) { 319 LLVM_DEBUG( 320 dbgs() << "Aggregate input operands are not supported yet\n"); 321 return false; 322 } 323 324 OpInfo.ConstraintVT = 325 TLI->getAsmOperandValueType(DL, OpTy, true).getSimpleVT(); 326 ++ArgNo; 327 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 328 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 329 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 330 OpInfo.ConstraintVT = 331 TLI->getSimpleValueType(DL, STy->getElementType(ResNo)); 332 } else { 333 assert(ResNo == 0 && "Asm only has one result!"); 334 OpInfo.ConstraintVT = 335 TLI->getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 336 } 337 ++ResNo; 338 } else { 339 OpInfo.ConstraintVT = MVT::Other; 340 } 341 342 if (OpInfo.ConstraintVT == MVT::i64x8) 343 return false; 344 345 // Compute the constraint code and ConstraintType to use. 346 computeConstraintToUse(TLI, OpInfo); 347 348 // The selected constraint type might expose new sideeffects 349 ExtraInfo.update(OpInfo); 350 } 351 352 // At this point, all operand types are decided. 353 // Create the MachineInstr, but don't insert it yet since input 354 // operands still need to insert instructions before this one 355 auto Inst = MIRBuilder.buildInstrNoInsert(TargetOpcode::INLINEASM) 356 .addExternalSymbol(IA->getAsmString().c_str()) 357 .addImm(ExtraInfo.get()); 358 359 // Starting from this operand: flag followed by register(s) will be added as 360 // operands to Inst for each constraint. Used for matching input constraints. 361 unsigned StartIdx = Inst->getNumOperands(); 362 363 // Collects the output operands for later processing 364 GISelAsmOperandInfoVector OutputOperands; 365 366 for (auto &OpInfo : ConstraintOperands) { 367 GISelAsmOperandInfo &RefOpInfo = 368 OpInfo.isMatchingInputConstraint() 369 ? ConstraintOperands[OpInfo.getMatchedOperand()] 370 : OpInfo; 371 372 // Assign registers for register operands 373 getRegistersForValue(MF, MIRBuilder, OpInfo, RefOpInfo); 374 375 switch (OpInfo.Type) { 376 case InlineAsm::isOutput: 377 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 378 unsigned ConstraintID = 379 TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode); 380 assert(ConstraintID != InlineAsm::Constraint_Unknown && 381 "Failed to convert memory constraint code to constraint id."); 382 383 // Add information to the INLINEASM instruction to know about this 384 // output. 385 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 386 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 387 Inst.addImm(OpFlags); 388 ArrayRef<Register> SourceRegs = 389 GetOrCreateVRegs(*OpInfo.CallOperandVal); 390 assert( 391 SourceRegs.size() == 1 && 392 "Expected the memory output to fit into a single virtual register"); 393 Inst.addReg(SourceRegs[0]); 394 } else { 395 // Otherwise, this outputs to a register (directly for C_Register / 396 // C_RegisterClass. Find a register that we can use. 397 assert(OpInfo.ConstraintType == TargetLowering::C_Register || 398 OpInfo.ConstraintType == TargetLowering::C_RegisterClass); 399 400 if (OpInfo.Regs.empty()) { 401 LLVM_DEBUG(dbgs() 402 << "Couldn't allocate output register for constraint\n"); 403 return false; 404 } 405 406 // Add information to the INLINEASM instruction to know that this 407 // register is set. 408 unsigned Flag = InlineAsm::getFlagWord( 409 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 410 : InlineAsm::Kind_RegDef, 411 OpInfo.Regs.size()); 412 if (OpInfo.Regs.front().isVirtual()) { 413 // Put the register class of the virtual registers in the flag word. 414 // That way, later passes can recompute register class constraints for 415 // inline assembly as well as normal instructions. Don't do this for 416 // tied operands that can use the regclass information from the def. 417 const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front()); 418 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 419 } 420 421 Inst.addImm(Flag); 422 423 for (Register Reg : OpInfo.Regs) { 424 Inst.addReg(Reg, 425 RegState::Define | getImplRegState(Reg.isPhysical()) | 426 (OpInfo.isEarlyClobber ? RegState::EarlyClobber : 0)); 427 } 428 429 // Remember this output operand for later processing 430 OutputOperands.push_back(OpInfo); 431 } 432 433 break; 434 case InlineAsm::isInput: { 435 if (OpInfo.isMatchingInputConstraint()) { 436 unsigned DefIdx = OpInfo.getMatchedOperand(); 437 // Find operand with register def that corresponds to DefIdx. 438 unsigned InstFlagIdx = StartIdx; 439 for (unsigned i = 0; i < DefIdx; ++i) 440 InstFlagIdx += getNumOpRegs(*Inst, InstFlagIdx) + 1; 441 assert(getNumOpRegs(*Inst, InstFlagIdx) == 1 && "Wrong flag"); 442 443 unsigned MatchedOperandFlag = Inst->getOperand(InstFlagIdx).getImm(); 444 if (InlineAsm::isMemKind(MatchedOperandFlag)) { 445 LLVM_DEBUG(dbgs() << "Matching input constraint to mem operand not " 446 "supported. This should be target specific.\n"); 447 return false; 448 } 449 if (!InlineAsm::isRegDefKind(MatchedOperandFlag) && 450 !InlineAsm::isRegDefEarlyClobberKind(MatchedOperandFlag)) { 451 LLVM_DEBUG(dbgs() << "Unknown matching constraint\n"); 452 return false; 453 } 454 455 // We want to tie input to register in next operand. 456 unsigned DefRegIdx = InstFlagIdx + 1; 457 Register Def = Inst->getOperand(DefRegIdx).getReg(); 458 459 ArrayRef<Register> SrcRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal); 460 assert(SrcRegs.size() == 1 && "Single register is expected here"); 461 462 // When Def is physreg: use given input. 463 Register In = SrcRegs[0]; 464 // When Def is vreg: copy input to new vreg with same reg class as Def. 465 if (Def.isVirtual()) { 466 In = MRI->createVirtualRegister(MRI->getRegClass(Def)); 467 if (!buildAnyextOrCopy(In, SrcRegs[0], MIRBuilder)) 468 return false; 469 } 470 471 // Add Flag and input register operand (In) to Inst. Tie In to Def. 472 unsigned UseFlag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, 1); 473 unsigned Flag = InlineAsm::getFlagWordForMatchingOp(UseFlag, DefIdx); 474 Inst.addImm(Flag); 475 Inst.addReg(In); 476 Inst->tieOperands(DefRegIdx, Inst->getNumOperands() - 1); 477 break; 478 } 479 480 if (OpInfo.ConstraintType == TargetLowering::C_Other && 481 OpInfo.isIndirect) { 482 LLVM_DEBUG(dbgs() << "Indirect input operands with unknown constraint " 483 "not supported yet\n"); 484 return false; 485 } 486 487 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 488 OpInfo.ConstraintType == TargetLowering::C_Other) { 489 490 std::vector<MachineOperand> Ops; 491 if (!lowerAsmOperandForConstraint(OpInfo.CallOperandVal, 492 OpInfo.ConstraintCode, Ops, 493 MIRBuilder)) { 494 LLVM_DEBUG(dbgs() << "Don't support constraint: " 495 << OpInfo.ConstraintCode << " yet\n"); 496 return false; 497 } 498 499 assert(Ops.size() > 0 && 500 "Expected constraint to be lowered to at least one operand"); 501 502 // Add information to the INLINEASM node to know about this input. 503 unsigned OpFlags = 504 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 505 Inst.addImm(OpFlags); 506 Inst.add(Ops); 507 break; 508 } 509 510 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 511 512 if (!OpInfo.isIndirect) { 513 LLVM_DEBUG(dbgs() 514 << "Cannot indirectify memory input operands yet\n"); 515 return false; 516 } 517 518 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 519 520 unsigned ConstraintID = 521 TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode); 522 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 523 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 524 Inst.addImm(OpFlags); 525 ArrayRef<Register> SourceRegs = 526 GetOrCreateVRegs(*OpInfo.CallOperandVal); 527 assert( 528 SourceRegs.size() == 1 && 529 "Expected the memory input to fit into a single virtual register"); 530 Inst.addReg(SourceRegs[0]); 531 break; 532 } 533 534 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 535 OpInfo.ConstraintType == TargetLowering::C_Register) && 536 "Unknown constraint type!"); 537 538 if (OpInfo.isIndirect) { 539 LLVM_DEBUG(dbgs() << "Can't handle indirect register inputs yet " 540 "for constraint '" 541 << OpInfo.ConstraintCode << "'\n"); 542 return false; 543 } 544 545 // Copy the input into the appropriate registers. 546 if (OpInfo.Regs.empty()) { 547 LLVM_DEBUG( 548 dbgs() 549 << "Couldn't allocate input register for register constraint\n"); 550 return false; 551 } 552 553 unsigned NumRegs = OpInfo.Regs.size(); 554 ArrayRef<Register> SourceRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal); 555 assert(NumRegs == SourceRegs.size() && 556 "Expected the number of input registers to match the number of " 557 "source registers"); 558 559 if (NumRegs > 1) { 560 LLVM_DEBUG(dbgs() << "Input operands with multiple input registers are " 561 "not supported yet\n"); 562 return false; 563 } 564 565 unsigned Flag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, NumRegs); 566 if (OpInfo.Regs.front().isVirtual()) { 567 // Put the register class of the virtual registers in the flag word. 568 const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front()); 569 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 570 } 571 Inst.addImm(Flag); 572 if (!buildAnyextOrCopy(OpInfo.Regs[0], SourceRegs[0], MIRBuilder)) 573 return false; 574 Inst.addReg(OpInfo.Regs[0]); 575 break; 576 } 577 578 case InlineAsm::isClobber: { 579 580 unsigned NumRegs = OpInfo.Regs.size(); 581 if (NumRegs > 0) { 582 unsigned Flag = 583 InlineAsm::getFlagWord(InlineAsm::Kind_Clobber, NumRegs); 584 Inst.addImm(Flag); 585 586 for (Register Reg : OpInfo.Regs) { 587 Inst.addReg(Reg, RegState::Define | RegState::EarlyClobber | 588 getImplRegState(Reg.isPhysical())); 589 } 590 } 591 break; 592 } 593 } 594 } 595 596 if (const MDNode *SrcLoc = Call.getMetadata("srcloc")) 597 Inst.addMetadata(SrcLoc); 598 599 // All inputs are handled, insert the instruction now 600 MIRBuilder.insertInstr(Inst); 601 602 // Finally, copy the output operands into the output registers 603 ArrayRef<Register> ResRegs = GetOrCreateVRegs(Call); 604 if (ResRegs.size() != OutputOperands.size()) { 605 LLVM_DEBUG(dbgs() << "Expected the number of output registers to match the " 606 "number of destination registers\n"); 607 return false; 608 } 609 for (unsigned int i = 0, e = ResRegs.size(); i < e; i++) { 610 GISelAsmOperandInfo &OpInfo = OutputOperands[i]; 611 612 if (OpInfo.Regs.empty()) 613 continue; 614 615 switch (OpInfo.ConstraintType) { 616 case TargetLowering::C_Register: 617 case TargetLowering::C_RegisterClass: { 618 if (OpInfo.Regs.size() > 1) { 619 LLVM_DEBUG(dbgs() << "Output operands with multiple defining " 620 "registers are not supported yet\n"); 621 return false; 622 } 623 624 Register SrcReg = OpInfo.Regs[0]; 625 unsigned SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI); 626 LLT ResTy = MRI->getType(ResRegs[i]); 627 if (ResTy.isScalar() && ResTy.getSizeInBits() < SrcSize) { 628 // First copy the non-typed virtual register into a generic virtual 629 // register 630 Register Tmp1Reg = 631 MRI->createGenericVirtualRegister(LLT::scalar(SrcSize)); 632 MIRBuilder.buildCopy(Tmp1Reg, SrcReg); 633 // Need to truncate the result of the register 634 MIRBuilder.buildTrunc(ResRegs[i], Tmp1Reg); 635 } else if (ResTy.getSizeInBits() == SrcSize) { 636 MIRBuilder.buildCopy(ResRegs[i], SrcReg); 637 } else { 638 LLVM_DEBUG(dbgs() << "Unhandled output operand with " 639 "mismatched register size\n"); 640 return false; 641 } 642 643 break; 644 } 645 case TargetLowering::C_Immediate: 646 case TargetLowering::C_Other: 647 LLVM_DEBUG( 648 dbgs() << "Cannot lower target specific output constraints yet\n"); 649 return false; 650 case TargetLowering::C_Memory: 651 break; // Already handled. 652 case TargetLowering::C_Unknown: 653 LLVM_DEBUG(dbgs() << "Unexpected unknown constraint\n"); 654 return false; 655 } 656 } 657 658 return true; 659 } 660 661 bool InlineAsmLowering::lowerAsmOperandForConstraint( 662 Value *Val, StringRef Constraint, std::vector<MachineOperand> &Ops, 663 MachineIRBuilder &MIRBuilder) const { 664 if (Constraint.size() > 1) 665 return false; 666 667 char ConstraintLetter = Constraint[0]; 668 switch (ConstraintLetter) { 669 default: 670 return false; 671 case 'i': // Simple Integer or Relocatable Constant 672 case 'n': // immediate integer with a known value. 673 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 674 assert(CI->getBitWidth() <= 64 && 675 "expected immediate to fit into 64-bits"); 676 // Boolean constants should be zero-extended, others are sign-extended 677 bool IsBool = CI->getBitWidth() == 1; 678 int64_t ExtVal = IsBool ? CI->getZExtValue() : CI->getSExtValue(); 679 Ops.push_back(MachineOperand::CreateImm(ExtVal)); 680 return true; 681 } 682 return false; 683 } 684 } 685