xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/InlineAsmLowering.cpp (revision 5ffd83dbcc34f10e07f6d3e968ae6365869615f4)
1*5ffd83dbSDimitry Andric //===-- lib/CodeGen/GlobalISel/InlineAsmLowering.cpp ----------------------===//
2*5ffd83dbSDimitry Andric //
3*5ffd83dbSDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4*5ffd83dbSDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5*5ffd83dbSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6*5ffd83dbSDimitry Andric //
7*5ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
8*5ffd83dbSDimitry Andric ///
9*5ffd83dbSDimitry Andric /// \file
10*5ffd83dbSDimitry Andric /// This file implements the lowering from LLVM IR inline asm to MIR INLINEASM
11*5ffd83dbSDimitry Andric ///
12*5ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
13*5ffd83dbSDimitry Andric 
14*5ffd83dbSDimitry Andric #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
15*5ffd83dbSDimitry Andric #include "llvm/CodeGen/Analysis.h"
16*5ffd83dbSDimitry Andric #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
17*5ffd83dbSDimitry Andric #include "llvm/CodeGen/GlobalISel/Utils.h"
18*5ffd83dbSDimitry Andric #include "llvm/CodeGen/MachineOperand.h"
19*5ffd83dbSDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
20*5ffd83dbSDimitry Andric #include "llvm/CodeGen/TargetLowering.h"
21*5ffd83dbSDimitry Andric #include "llvm/IR/DataLayout.h"
22*5ffd83dbSDimitry Andric #include "llvm/IR/Instructions.h"
23*5ffd83dbSDimitry Andric #include "llvm/IR/LLVMContext.h"
24*5ffd83dbSDimitry Andric #include "llvm/IR/Module.h"
25*5ffd83dbSDimitry Andric 
26*5ffd83dbSDimitry Andric #define DEBUG_TYPE "inline-asm-lowering"
27*5ffd83dbSDimitry Andric 
28*5ffd83dbSDimitry Andric using namespace llvm;
29*5ffd83dbSDimitry Andric 
30*5ffd83dbSDimitry Andric void InlineAsmLowering::anchor() {}
31*5ffd83dbSDimitry Andric 
32*5ffd83dbSDimitry Andric namespace {
33*5ffd83dbSDimitry Andric 
34*5ffd83dbSDimitry Andric /// GISelAsmOperandInfo - This contains information for each constraint that we
35*5ffd83dbSDimitry Andric /// are lowering.
36*5ffd83dbSDimitry Andric class GISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
37*5ffd83dbSDimitry Andric public:
38*5ffd83dbSDimitry Andric   /// Regs - If this is a register or register class operand, this
39*5ffd83dbSDimitry Andric   /// contains the set of assigned registers corresponding to the operand.
40*5ffd83dbSDimitry Andric   SmallVector<Register, 1> Regs;
41*5ffd83dbSDimitry Andric 
42*5ffd83dbSDimitry Andric   explicit GISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &Info)
43*5ffd83dbSDimitry Andric       : TargetLowering::AsmOperandInfo(Info) {}
44*5ffd83dbSDimitry Andric };
45*5ffd83dbSDimitry Andric 
46*5ffd83dbSDimitry Andric using GISelAsmOperandInfoVector = SmallVector<GISelAsmOperandInfo, 16>;
47*5ffd83dbSDimitry Andric 
48*5ffd83dbSDimitry Andric class ExtraFlags {
49*5ffd83dbSDimitry Andric   unsigned Flags = 0;
50*5ffd83dbSDimitry Andric 
51*5ffd83dbSDimitry Andric public:
52*5ffd83dbSDimitry Andric   explicit ExtraFlags(const CallBase &CB) {
53*5ffd83dbSDimitry Andric     const InlineAsm *IA = cast<InlineAsm>(CB.getCalledOperand());
54*5ffd83dbSDimitry Andric     if (IA->hasSideEffects())
55*5ffd83dbSDimitry Andric       Flags |= InlineAsm::Extra_HasSideEffects;
56*5ffd83dbSDimitry Andric     if (IA->isAlignStack())
57*5ffd83dbSDimitry Andric       Flags |= InlineAsm::Extra_IsAlignStack;
58*5ffd83dbSDimitry Andric     if (CB.isConvergent())
59*5ffd83dbSDimitry Andric       Flags |= InlineAsm::Extra_IsConvergent;
60*5ffd83dbSDimitry Andric     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
61*5ffd83dbSDimitry Andric   }
62*5ffd83dbSDimitry Andric 
63*5ffd83dbSDimitry Andric   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
64*5ffd83dbSDimitry Andric     // Ideally, we would only check against memory constraints.  However, the
65*5ffd83dbSDimitry Andric     // meaning of an Other constraint can be target-specific and we can't easily
66*5ffd83dbSDimitry Andric     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
67*5ffd83dbSDimitry Andric     // for Other constraints as well.
68*5ffd83dbSDimitry Andric     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
69*5ffd83dbSDimitry Andric         OpInfo.ConstraintType == TargetLowering::C_Other) {
70*5ffd83dbSDimitry Andric       if (OpInfo.Type == InlineAsm::isInput)
71*5ffd83dbSDimitry Andric         Flags |= InlineAsm::Extra_MayLoad;
72*5ffd83dbSDimitry Andric       else if (OpInfo.Type == InlineAsm::isOutput)
73*5ffd83dbSDimitry Andric         Flags |= InlineAsm::Extra_MayStore;
74*5ffd83dbSDimitry Andric       else if (OpInfo.Type == InlineAsm::isClobber)
75*5ffd83dbSDimitry Andric         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
76*5ffd83dbSDimitry Andric     }
77*5ffd83dbSDimitry Andric   }
78*5ffd83dbSDimitry Andric 
79*5ffd83dbSDimitry Andric   unsigned get() const { return Flags; }
80*5ffd83dbSDimitry Andric };
81*5ffd83dbSDimitry Andric 
82*5ffd83dbSDimitry Andric } // namespace
83*5ffd83dbSDimitry Andric 
84*5ffd83dbSDimitry Andric /// Assign virtual/physical registers for the specified register operand.
85*5ffd83dbSDimitry Andric static void getRegistersForValue(MachineFunction &MF,
86*5ffd83dbSDimitry Andric                                  MachineIRBuilder &MIRBuilder,
87*5ffd83dbSDimitry Andric                                  GISelAsmOperandInfo &OpInfo,
88*5ffd83dbSDimitry Andric                                  GISelAsmOperandInfo &RefOpInfo) {
89*5ffd83dbSDimitry Andric 
90*5ffd83dbSDimitry Andric   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
91*5ffd83dbSDimitry Andric   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
92*5ffd83dbSDimitry Andric 
93*5ffd83dbSDimitry Andric   // No work to do for memory operations.
94*5ffd83dbSDimitry Andric   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
95*5ffd83dbSDimitry Andric     return;
96*5ffd83dbSDimitry Andric 
97*5ffd83dbSDimitry Andric   // If this is a constraint for a single physreg, or a constraint for a
98*5ffd83dbSDimitry Andric   // register class, find it.
99*5ffd83dbSDimitry Andric   Register AssignedReg;
100*5ffd83dbSDimitry Andric   const TargetRegisterClass *RC;
101*5ffd83dbSDimitry Andric   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
102*5ffd83dbSDimitry Andric       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
103*5ffd83dbSDimitry Andric   // RC is unset only on failure. Return immediately.
104*5ffd83dbSDimitry Andric   if (!RC)
105*5ffd83dbSDimitry Andric     return;
106*5ffd83dbSDimitry Andric 
107*5ffd83dbSDimitry Andric   // No need to allocate a matching input constraint since the constraint it's
108*5ffd83dbSDimitry Andric   // matching to has already been allocated.
109*5ffd83dbSDimitry Andric   if (OpInfo.isMatchingInputConstraint())
110*5ffd83dbSDimitry Andric     return;
111*5ffd83dbSDimitry Andric 
112*5ffd83dbSDimitry Andric   // Initialize NumRegs.
113*5ffd83dbSDimitry Andric   unsigned NumRegs = 1;
114*5ffd83dbSDimitry Andric   if (OpInfo.ConstraintVT != MVT::Other)
115*5ffd83dbSDimitry Andric     NumRegs =
116*5ffd83dbSDimitry Andric         TLI.getNumRegisters(MF.getFunction().getContext(), OpInfo.ConstraintVT);
117*5ffd83dbSDimitry Andric 
118*5ffd83dbSDimitry Andric   // If this is a constraint for a specific physical register, but the type of
119*5ffd83dbSDimitry Andric   // the operand requires more than one register to be passed, we allocate the
120*5ffd83dbSDimitry Andric   // required amount of physical registers, starting from the selected physical
121*5ffd83dbSDimitry Andric   // register.
122*5ffd83dbSDimitry Andric   // For this, first retrieve a register iterator for the given register class
123*5ffd83dbSDimitry Andric   TargetRegisterClass::iterator I = RC->begin();
124*5ffd83dbSDimitry Andric   MachineRegisterInfo &RegInfo = MF.getRegInfo();
125*5ffd83dbSDimitry Andric 
126*5ffd83dbSDimitry Andric   // Advance the iterator to the assigned register (if set)
127*5ffd83dbSDimitry Andric   if (AssignedReg) {
128*5ffd83dbSDimitry Andric     for (; *I != AssignedReg; ++I)
129*5ffd83dbSDimitry Andric       assert(I != RC->end() && "AssignedReg should be a member of provided RC");
130*5ffd83dbSDimitry Andric   }
131*5ffd83dbSDimitry Andric 
132*5ffd83dbSDimitry Andric   // Finally, assign the registers. If the AssignedReg isn't set, create virtual
133*5ffd83dbSDimitry Andric   // registers with the provided register class
134*5ffd83dbSDimitry Andric   for (; NumRegs; --NumRegs, ++I) {
135*5ffd83dbSDimitry Andric     assert(I != RC->end() && "Ran out of registers to allocate!");
136*5ffd83dbSDimitry Andric     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
137*5ffd83dbSDimitry Andric     OpInfo.Regs.push_back(R);
138*5ffd83dbSDimitry Andric   }
139*5ffd83dbSDimitry Andric }
140*5ffd83dbSDimitry Andric 
141*5ffd83dbSDimitry Andric /// Return an integer indicating how general CT is.
142*5ffd83dbSDimitry Andric static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
143*5ffd83dbSDimitry Andric   switch (CT) {
144*5ffd83dbSDimitry Andric   case TargetLowering::C_Immediate:
145*5ffd83dbSDimitry Andric   case TargetLowering::C_Other:
146*5ffd83dbSDimitry Andric   case TargetLowering::C_Unknown:
147*5ffd83dbSDimitry Andric     return 0;
148*5ffd83dbSDimitry Andric   case TargetLowering::C_Register:
149*5ffd83dbSDimitry Andric     return 1;
150*5ffd83dbSDimitry Andric   case TargetLowering::C_RegisterClass:
151*5ffd83dbSDimitry Andric     return 2;
152*5ffd83dbSDimitry Andric   case TargetLowering::C_Memory:
153*5ffd83dbSDimitry Andric     return 3;
154*5ffd83dbSDimitry Andric   }
155*5ffd83dbSDimitry Andric   llvm_unreachable("Invalid constraint type");
156*5ffd83dbSDimitry Andric }
157*5ffd83dbSDimitry Andric 
158*5ffd83dbSDimitry Andric static void chooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
159*5ffd83dbSDimitry Andric                              const TargetLowering *TLI) {
160*5ffd83dbSDimitry Andric   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
161*5ffd83dbSDimitry Andric   unsigned BestIdx = 0;
162*5ffd83dbSDimitry Andric   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
163*5ffd83dbSDimitry Andric   int BestGenerality = -1;
164*5ffd83dbSDimitry Andric 
165*5ffd83dbSDimitry Andric   // Loop over the options, keeping track of the most general one.
166*5ffd83dbSDimitry Andric   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
167*5ffd83dbSDimitry Andric     TargetLowering::ConstraintType CType =
168*5ffd83dbSDimitry Andric         TLI->getConstraintType(OpInfo.Codes[i]);
169*5ffd83dbSDimitry Andric 
170*5ffd83dbSDimitry Andric     // Indirect 'other' or 'immediate' constraints are not allowed.
171*5ffd83dbSDimitry Andric     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
172*5ffd83dbSDimitry Andric                                CType == TargetLowering::C_Register ||
173*5ffd83dbSDimitry Andric                                CType == TargetLowering::C_RegisterClass))
174*5ffd83dbSDimitry Andric       continue;
175*5ffd83dbSDimitry Andric 
176*5ffd83dbSDimitry Andric     // If this is an 'other' or 'immediate' constraint, see if the operand is
177*5ffd83dbSDimitry Andric     // valid for it. For example, on X86 we might have an 'rI' constraint. If
178*5ffd83dbSDimitry Andric     // the operand is an integer in the range [0..31] we want to use I (saving a
179*5ffd83dbSDimitry Andric     // load of a register), otherwise we must use 'r'.
180*5ffd83dbSDimitry Andric     if (CType == TargetLowering::C_Other ||
181*5ffd83dbSDimitry Andric         CType == TargetLowering::C_Immediate) {
182*5ffd83dbSDimitry Andric       assert(OpInfo.Codes[i].size() == 1 &&
183*5ffd83dbSDimitry Andric              "Unhandled multi-letter 'other' constraint");
184*5ffd83dbSDimitry Andric       // FIXME: prefer immediate constraints if the target allows it
185*5ffd83dbSDimitry Andric     }
186*5ffd83dbSDimitry Andric 
187*5ffd83dbSDimitry Andric     // Things with matching constraints can only be registers, per gcc
188*5ffd83dbSDimitry Andric     // documentation.  This mainly affects "g" constraints.
189*5ffd83dbSDimitry Andric     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
190*5ffd83dbSDimitry Andric       continue;
191*5ffd83dbSDimitry Andric 
192*5ffd83dbSDimitry Andric     // This constraint letter is more general than the previous one, use it.
193*5ffd83dbSDimitry Andric     int Generality = getConstraintGenerality(CType);
194*5ffd83dbSDimitry Andric     if (Generality > BestGenerality) {
195*5ffd83dbSDimitry Andric       BestType = CType;
196*5ffd83dbSDimitry Andric       BestIdx = i;
197*5ffd83dbSDimitry Andric       BestGenerality = Generality;
198*5ffd83dbSDimitry Andric     }
199*5ffd83dbSDimitry Andric   }
200*5ffd83dbSDimitry Andric 
201*5ffd83dbSDimitry Andric   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
202*5ffd83dbSDimitry Andric   OpInfo.ConstraintType = BestType;
203*5ffd83dbSDimitry Andric }
204*5ffd83dbSDimitry Andric 
205*5ffd83dbSDimitry Andric static void computeConstraintToUse(const TargetLowering *TLI,
206*5ffd83dbSDimitry Andric                                    TargetLowering::AsmOperandInfo &OpInfo) {
207*5ffd83dbSDimitry Andric   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
208*5ffd83dbSDimitry Andric 
209*5ffd83dbSDimitry Andric   // Single-letter constraints ('r') are very common.
210*5ffd83dbSDimitry Andric   if (OpInfo.Codes.size() == 1) {
211*5ffd83dbSDimitry Andric     OpInfo.ConstraintCode = OpInfo.Codes[0];
212*5ffd83dbSDimitry Andric     OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
213*5ffd83dbSDimitry Andric   } else {
214*5ffd83dbSDimitry Andric     chooseConstraint(OpInfo, TLI);
215*5ffd83dbSDimitry Andric   }
216*5ffd83dbSDimitry Andric 
217*5ffd83dbSDimitry Andric   // 'X' matches anything.
218*5ffd83dbSDimitry Andric   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
219*5ffd83dbSDimitry Andric     // Labels and constants are handled elsewhere ('X' is the only thing
220*5ffd83dbSDimitry Andric     // that matches labels).  For Functions, the type here is the type of
221*5ffd83dbSDimitry Andric     // the result, which is not what we want to look at; leave them alone.
222*5ffd83dbSDimitry Andric     Value *Val = OpInfo.CallOperandVal;
223*5ffd83dbSDimitry Andric     if (isa<BasicBlock>(Val) || isa<ConstantInt>(Val) || isa<Function>(Val))
224*5ffd83dbSDimitry Andric       return;
225*5ffd83dbSDimitry Andric 
226*5ffd83dbSDimitry Andric     // Otherwise, try to resolve it to something we know about by looking at
227*5ffd83dbSDimitry Andric     // the actual operand type.
228*5ffd83dbSDimitry Andric     if (const char *Repl = TLI->LowerXConstraint(OpInfo.ConstraintVT)) {
229*5ffd83dbSDimitry Andric       OpInfo.ConstraintCode = Repl;
230*5ffd83dbSDimitry Andric       OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
231*5ffd83dbSDimitry Andric     }
232*5ffd83dbSDimitry Andric   }
233*5ffd83dbSDimitry Andric }
234*5ffd83dbSDimitry Andric 
235*5ffd83dbSDimitry Andric static unsigned getNumOpRegs(const MachineInstr &I, unsigned OpIdx) {
236*5ffd83dbSDimitry Andric   unsigned Flag = I.getOperand(OpIdx).getImm();
237*5ffd83dbSDimitry Andric   return InlineAsm::getNumOperandRegisters(Flag);
238*5ffd83dbSDimitry Andric }
239*5ffd83dbSDimitry Andric 
240*5ffd83dbSDimitry Andric static bool buildAnyextOrCopy(Register Dst, Register Src,
241*5ffd83dbSDimitry Andric                               MachineIRBuilder &MIRBuilder) {
242*5ffd83dbSDimitry Andric   const TargetRegisterInfo *TRI =
243*5ffd83dbSDimitry Andric       MIRBuilder.getMF().getSubtarget().getRegisterInfo();
244*5ffd83dbSDimitry Andric   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
245*5ffd83dbSDimitry Andric 
246*5ffd83dbSDimitry Andric   auto SrcTy = MRI->getType(Src);
247*5ffd83dbSDimitry Andric   if (!SrcTy.isValid()) {
248*5ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "Source type for copy is not valid\n");
249*5ffd83dbSDimitry Andric     return false;
250*5ffd83dbSDimitry Andric   }
251*5ffd83dbSDimitry Andric   unsigned SrcSize = TRI->getRegSizeInBits(Src, *MRI);
252*5ffd83dbSDimitry Andric   unsigned DstSize = TRI->getRegSizeInBits(Dst, *MRI);
253*5ffd83dbSDimitry Andric 
254*5ffd83dbSDimitry Andric   if (DstSize < SrcSize) {
255*5ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "Input can't fit in destination reg class\n");
256*5ffd83dbSDimitry Andric     return false;
257*5ffd83dbSDimitry Andric   }
258*5ffd83dbSDimitry Andric 
259*5ffd83dbSDimitry Andric   // Attempt to anyext small scalar sources.
260*5ffd83dbSDimitry Andric   if (DstSize > SrcSize) {
261*5ffd83dbSDimitry Andric     if (!SrcTy.isScalar()) {
262*5ffd83dbSDimitry Andric       LLVM_DEBUG(dbgs() << "Can't extend non-scalar input to size of"
263*5ffd83dbSDimitry Andric                            "destination register class\n");
264*5ffd83dbSDimitry Andric       return false;
265*5ffd83dbSDimitry Andric     }
266*5ffd83dbSDimitry Andric     Src = MIRBuilder.buildAnyExt(LLT::scalar(DstSize), Src).getReg(0);
267*5ffd83dbSDimitry Andric   }
268*5ffd83dbSDimitry Andric 
269*5ffd83dbSDimitry Andric   MIRBuilder.buildCopy(Dst, Src);
270*5ffd83dbSDimitry Andric   return true;
271*5ffd83dbSDimitry Andric }
272*5ffd83dbSDimitry Andric 
273*5ffd83dbSDimitry Andric bool InlineAsmLowering::lowerInlineAsm(
274*5ffd83dbSDimitry Andric     MachineIRBuilder &MIRBuilder, const CallBase &Call,
275*5ffd83dbSDimitry Andric     std::function<ArrayRef<Register>(const Value &Val)> GetOrCreateVRegs)
276*5ffd83dbSDimitry Andric     const {
277*5ffd83dbSDimitry Andric   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
278*5ffd83dbSDimitry Andric 
279*5ffd83dbSDimitry Andric   /// ConstraintOperands - Information about all of the constraints.
280*5ffd83dbSDimitry Andric   GISelAsmOperandInfoVector ConstraintOperands;
281*5ffd83dbSDimitry Andric 
282*5ffd83dbSDimitry Andric   MachineFunction &MF = MIRBuilder.getMF();
283*5ffd83dbSDimitry Andric   const Function &F = MF.getFunction();
284*5ffd83dbSDimitry Andric   const DataLayout &DL = F.getParent()->getDataLayout();
285*5ffd83dbSDimitry Andric   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
286*5ffd83dbSDimitry Andric 
287*5ffd83dbSDimitry Andric   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
288*5ffd83dbSDimitry Andric 
289*5ffd83dbSDimitry Andric   TargetLowering::AsmOperandInfoVector TargetConstraints =
290*5ffd83dbSDimitry Andric       TLI->ParseConstraints(DL, TRI, Call);
291*5ffd83dbSDimitry Andric 
292*5ffd83dbSDimitry Andric   ExtraFlags ExtraInfo(Call);
293*5ffd83dbSDimitry Andric   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
294*5ffd83dbSDimitry Andric   unsigned ResNo = 0; // ResNo - The result number of the next output.
295*5ffd83dbSDimitry Andric   for (auto &T : TargetConstraints) {
296*5ffd83dbSDimitry Andric     ConstraintOperands.push_back(GISelAsmOperandInfo(T));
297*5ffd83dbSDimitry Andric     GISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
298*5ffd83dbSDimitry Andric 
299*5ffd83dbSDimitry Andric     // Compute the value type for each operand.
300*5ffd83dbSDimitry Andric     if (OpInfo.Type == InlineAsm::isInput ||
301*5ffd83dbSDimitry Andric         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
302*5ffd83dbSDimitry Andric 
303*5ffd83dbSDimitry Andric       OpInfo.CallOperandVal = const_cast<Value *>(Call.getArgOperand(ArgNo++));
304*5ffd83dbSDimitry Andric 
305*5ffd83dbSDimitry Andric       if (isa<BasicBlock>(OpInfo.CallOperandVal)) {
306*5ffd83dbSDimitry Andric         LLVM_DEBUG(dbgs() << "Basic block input operands not supported yet\n");
307*5ffd83dbSDimitry Andric         return false;
308*5ffd83dbSDimitry Andric       }
309*5ffd83dbSDimitry Andric 
310*5ffd83dbSDimitry Andric       Type *OpTy = OpInfo.CallOperandVal->getType();
311*5ffd83dbSDimitry Andric 
312*5ffd83dbSDimitry Andric       // If this is an indirect operand, the operand is a pointer to the
313*5ffd83dbSDimitry Andric       // accessed type.
314*5ffd83dbSDimitry Andric       if (OpInfo.isIndirect) {
315*5ffd83dbSDimitry Andric         PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
316*5ffd83dbSDimitry Andric         if (!PtrTy)
317*5ffd83dbSDimitry Andric           report_fatal_error("Indirect operand for inline asm not a pointer!");
318*5ffd83dbSDimitry Andric         OpTy = PtrTy->getElementType();
319*5ffd83dbSDimitry Andric       }
320*5ffd83dbSDimitry Andric 
321*5ffd83dbSDimitry Andric       // FIXME: Support aggregate input operands
322*5ffd83dbSDimitry Andric       if (!OpTy->isSingleValueType()) {
323*5ffd83dbSDimitry Andric         LLVM_DEBUG(
324*5ffd83dbSDimitry Andric             dbgs() << "Aggregate input operands are not supported yet\n");
325*5ffd83dbSDimitry Andric         return false;
326*5ffd83dbSDimitry Andric       }
327*5ffd83dbSDimitry Andric 
328*5ffd83dbSDimitry Andric       OpInfo.ConstraintVT = TLI->getValueType(DL, OpTy, true).getSimpleVT();
329*5ffd83dbSDimitry Andric 
330*5ffd83dbSDimitry Andric     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
331*5ffd83dbSDimitry Andric       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
332*5ffd83dbSDimitry Andric       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
333*5ffd83dbSDimitry Andric         OpInfo.ConstraintVT =
334*5ffd83dbSDimitry Andric             TLI->getSimpleValueType(DL, STy->getElementType(ResNo));
335*5ffd83dbSDimitry Andric       } else {
336*5ffd83dbSDimitry Andric         assert(ResNo == 0 && "Asm only has one result!");
337*5ffd83dbSDimitry Andric         OpInfo.ConstraintVT = TLI->getSimpleValueType(DL, Call.getType());
338*5ffd83dbSDimitry Andric       }
339*5ffd83dbSDimitry Andric       ++ResNo;
340*5ffd83dbSDimitry Andric     } else {
341*5ffd83dbSDimitry Andric       OpInfo.ConstraintVT = MVT::Other;
342*5ffd83dbSDimitry Andric     }
343*5ffd83dbSDimitry Andric 
344*5ffd83dbSDimitry Andric     // Compute the constraint code and ConstraintType to use.
345*5ffd83dbSDimitry Andric     computeConstraintToUse(TLI, OpInfo);
346*5ffd83dbSDimitry Andric 
347*5ffd83dbSDimitry Andric     // The selected constraint type might expose new sideeffects
348*5ffd83dbSDimitry Andric     ExtraInfo.update(OpInfo);
349*5ffd83dbSDimitry Andric   }
350*5ffd83dbSDimitry Andric 
351*5ffd83dbSDimitry Andric   // At this point, all operand types are decided.
352*5ffd83dbSDimitry Andric   // Create the MachineInstr, but don't insert it yet since input
353*5ffd83dbSDimitry Andric   // operands still need to insert instructions before this one
354*5ffd83dbSDimitry Andric   auto Inst = MIRBuilder.buildInstrNoInsert(TargetOpcode::INLINEASM)
355*5ffd83dbSDimitry Andric                   .addExternalSymbol(IA->getAsmString().c_str())
356*5ffd83dbSDimitry Andric                   .addImm(ExtraInfo.get());
357*5ffd83dbSDimitry Andric 
358*5ffd83dbSDimitry Andric   // Starting from this operand: flag followed by register(s) will be added as
359*5ffd83dbSDimitry Andric   // operands to Inst for each constraint. Used for matching input constraints.
360*5ffd83dbSDimitry Andric   unsigned StartIdx = Inst->getNumOperands();
361*5ffd83dbSDimitry Andric 
362*5ffd83dbSDimitry Andric   // Collects the output operands for later processing
363*5ffd83dbSDimitry Andric   GISelAsmOperandInfoVector OutputOperands;
364*5ffd83dbSDimitry Andric 
365*5ffd83dbSDimitry Andric   for (auto &OpInfo : ConstraintOperands) {
366*5ffd83dbSDimitry Andric     GISelAsmOperandInfo &RefOpInfo =
367*5ffd83dbSDimitry Andric         OpInfo.isMatchingInputConstraint()
368*5ffd83dbSDimitry Andric             ? ConstraintOperands[OpInfo.getMatchedOperand()]
369*5ffd83dbSDimitry Andric             : OpInfo;
370*5ffd83dbSDimitry Andric 
371*5ffd83dbSDimitry Andric     // Assign registers for register operands
372*5ffd83dbSDimitry Andric     getRegistersForValue(MF, MIRBuilder, OpInfo, RefOpInfo);
373*5ffd83dbSDimitry Andric 
374*5ffd83dbSDimitry Andric     switch (OpInfo.Type) {
375*5ffd83dbSDimitry Andric     case InlineAsm::isOutput:
376*5ffd83dbSDimitry Andric       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
377*5ffd83dbSDimitry Andric         unsigned ConstraintID =
378*5ffd83dbSDimitry Andric             TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
379*5ffd83dbSDimitry Andric         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
380*5ffd83dbSDimitry Andric                "Failed to convert memory constraint code to constraint id.");
381*5ffd83dbSDimitry Andric 
382*5ffd83dbSDimitry Andric         // Add information to the INLINEASM instruction to know about this
383*5ffd83dbSDimitry Andric         // output.
384*5ffd83dbSDimitry Andric         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
385*5ffd83dbSDimitry Andric         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
386*5ffd83dbSDimitry Andric         Inst.addImm(OpFlags);
387*5ffd83dbSDimitry Andric         ArrayRef<Register> SourceRegs =
388*5ffd83dbSDimitry Andric             GetOrCreateVRegs(*OpInfo.CallOperandVal);
389*5ffd83dbSDimitry Andric         assert(
390*5ffd83dbSDimitry Andric             SourceRegs.size() == 1 &&
391*5ffd83dbSDimitry Andric             "Expected the memory output to fit into a single virtual register");
392*5ffd83dbSDimitry Andric         Inst.addReg(SourceRegs[0]);
393*5ffd83dbSDimitry Andric       } else {
394*5ffd83dbSDimitry Andric         // Otherwise, this outputs to a register (directly for C_Register /
395*5ffd83dbSDimitry Andric         // C_RegisterClass. Find a register that we can use.
396*5ffd83dbSDimitry Andric         assert(OpInfo.ConstraintType == TargetLowering::C_Register ||
397*5ffd83dbSDimitry Andric                OpInfo.ConstraintType == TargetLowering::C_RegisterClass);
398*5ffd83dbSDimitry Andric 
399*5ffd83dbSDimitry Andric         if (OpInfo.Regs.empty()) {
400*5ffd83dbSDimitry Andric           LLVM_DEBUG(dbgs()
401*5ffd83dbSDimitry Andric                      << "Couldn't allocate output register for constraint\n");
402*5ffd83dbSDimitry Andric           return false;
403*5ffd83dbSDimitry Andric         }
404*5ffd83dbSDimitry Andric 
405*5ffd83dbSDimitry Andric         // Add information to the INLINEASM instruction to know that this
406*5ffd83dbSDimitry Andric         // register is set.
407*5ffd83dbSDimitry Andric         unsigned Flag = InlineAsm::getFlagWord(
408*5ffd83dbSDimitry Andric             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
409*5ffd83dbSDimitry Andric                                   : InlineAsm::Kind_RegDef,
410*5ffd83dbSDimitry Andric             OpInfo.Regs.size());
411*5ffd83dbSDimitry Andric         if (OpInfo.Regs.front().isVirtual()) {
412*5ffd83dbSDimitry Andric           // Put the register class of the virtual registers in the flag word.
413*5ffd83dbSDimitry Andric           // That way, later passes can recompute register class constraints for
414*5ffd83dbSDimitry Andric           // inline assembly as well as normal instructions. Don't do this for
415*5ffd83dbSDimitry Andric           // tied operands that can use the regclass information from the def.
416*5ffd83dbSDimitry Andric           const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front());
417*5ffd83dbSDimitry Andric           Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
418*5ffd83dbSDimitry Andric         }
419*5ffd83dbSDimitry Andric 
420*5ffd83dbSDimitry Andric         Inst.addImm(Flag);
421*5ffd83dbSDimitry Andric 
422*5ffd83dbSDimitry Andric         for (Register Reg : OpInfo.Regs) {
423*5ffd83dbSDimitry Andric           Inst.addReg(Reg,
424*5ffd83dbSDimitry Andric                       RegState::Define | getImplRegState(Reg.isPhysical()) |
425*5ffd83dbSDimitry Andric                           (OpInfo.isEarlyClobber ? RegState::EarlyClobber : 0));
426*5ffd83dbSDimitry Andric         }
427*5ffd83dbSDimitry Andric 
428*5ffd83dbSDimitry Andric         // Remember this output operand for later processing
429*5ffd83dbSDimitry Andric         OutputOperands.push_back(OpInfo);
430*5ffd83dbSDimitry Andric       }
431*5ffd83dbSDimitry Andric 
432*5ffd83dbSDimitry Andric       break;
433*5ffd83dbSDimitry Andric     case InlineAsm::isInput: {
434*5ffd83dbSDimitry Andric       if (OpInfo.isMatchingInputConstraint()) {
435*5ffd83dbSDimitry Andric         unsigned DefIdx = OpInfo.getMatchedOperand();
436*5ffd83dbSDimitry Andric         // Find operand with register def that corresponds to DefIdx.
437*5ffd83dbSDimitry Andric         unsigned InstFlagIdx = StartIdx;
438*5ffd83dbSDimitry Andric         for (unsigned i = 0; i < DefIdx; ++i)
439*5ffd83dbSDimitry Andric           InstFlagIdx += getNumOpRegs(*Inst, InstFlagIdx) + 1;
440*5ffd83dbSDimitry Andric         assert(getNumOpRegs(*Inst, InstFlagIdx) == 1 && "Wrong flag");
441*5ffd83dbSDimitry Andric 
442*5ffd83dbSDimitry Andric         unsigned MatchedOperandFlag = Inst->getOperand(InstFlagIdx).getImm();
443*5ffd83dbSDimitry Andric         if (InlineAsm::isMemKind(MatchedOperandFlag)) {
444*5ffd83dbSDimitry Andric           LLVM_DEBUG(dbgs() << "Matching input constraint to mem operand not "
445*5ffd83dbSDimitry Andric                                "supported. This should be target specific.\n");
446*5ffd83dbSDimitry Andric           return false;
447*5ffd83dbSDimitry Andric         }
448*5ffd83dbSDimitry Andric         if (!InlineAsm::isRegDefKind(MatchedOperandFlag) &&
449*5ffd83dbSDimitry Andric             !InlineAsm::isRegDefEarlyClobberKind(MatchedOperandFlag)) {
450*5ffd83dbSDimitry Andric           LLVM_DEBUG(dbgs() << "Unknown matching constraint\n");
451*5ffd83dbSDimitry Andric           return false;
452*5ffd83dbSDimitry Andric         }
453*5ffd83dbSDimitry Andric 
454*5ffd83dbSDimitry Andric         // We want to tie input to register in next operand.
455*5ffd83dbSDimitry Andric         unsigned DefRegIdx = InstFlagIdx + 1;
456*5ffd83dbSDimitry Andric         Register Def = Inst->getOperand(DefRegIdx).getReg();
457*5ffd83dbSDimitry Andric 
458*5ffd83dbSDimitry Andric         // Copy input to new vreg with same reg class as Def
459*5ffd83dbSDimitry Andric         const TargetRegisterClass *RC = MRI->getRegClass(Def);
460*5ffd83dbSDimitry Andric         ArrayRef<Register> SrcRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
461*5ffd83dbSDimitry Andric         assert(SrcRegs.size() == 1 && "Single register is expected here");
462*5ffd83dbSDimitry Andric         Register Tmp = MRI->createVirtualRegister(RC);
463*5ffd83dbSDimitry Andric         if (!buildAnyextOrCopy(Tmp, SrcRegs[0], MIRBuilder))
464*5ffd83dbSDimitry Andric           return false;
465*5ffd83dbSDimitry Andric 
466*5ffd83dbSDimitry Andric         // Add Flag and input register operand (Tmp) to Inst. Tie Tmp to Def.
467*5ffd83dbSDimitry Andric         unsigned UseFlag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, 1);
468*5ffd83dbSDimitry Andric         unsigned Flag = InlineAsm::getFlagWordForMatchingOp(UseFlag, DefIdx);
469*5ffd83dbSDimitry Andric         Inst.addImm(Flag);
470*5ffd83dbSDimitry Andric         Inst.addReg(Tmp);
471*5ffd83dbSDimitry Andric         Inst->tieOperands(DefRegIdx, Inst->getNumOperands() - 1);
472*5ffd83dbSDimitry Andric         break;
473*5ffd83dbSDimitry Andric       }
474*5ffd83dbSDimitry Andric 
475*5ffd83dbSDimitry Andric       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
476*5ffd83dbSDimitry Andric           OpInfo.isIndirect) {
477*5ffd83dbSDimitry Andric         LLVM_DEBUG(dbgs() << "Indirect input operands with unknown constraint "
478*5ffd83dbSDimitry Andric                              "not supported yet\n");
479*5ffd83dbSDimitry Andric         return false;
480*5ffd83dbSDimitry Andric       }
481*5ffd83dbSDimitry Andric 
482*5ffd83dbSDimitry Andric       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
483*5ffd83dbSDimitry Andric           OpInfo.ConstraintType == TargetLowering::C_Other) {
484*5ffd83dbSDimitry Andric 
485*5ffd83dbSDimitry Andric         std::vector<MachineOperand> Ops;
486*5ffd83dbSDimitry Andric         if (!lowerAsmOperandForConstraint(OpInfo.CallOperandVal,
487*5ffd83dbSDimitry Andric                                           OpInfo.ConstraintCode, Ops,
488*5ffd83dbSDimitry Andric                                           MIRBuilder)) {
489*5ffd83dbSDimitry Andric           LLVM_DEBUG(dbgs() << "Don't support constraint: "
490*5ffd83dbSDimitry Andric                             << OpInfo.ConstraintCode << " yet\n");
491*5ffd83dbSDimitry Andric           return false;
492*5ffd83dbSDimitry Andric         }
493*5ffd83dbSDimitry Andric 
494*5ffd83dbSDimitry Andric         assert(Ops.size() > 0 &&
495*5ffd83dbSDimitry Andric                "Expected constraint to be lowered to at least one operand");
496*5ffd83dbSDimitry Andric 
497*5ffd83dbSDimitry Andric         // Add information to the INLINEASM node to know about this input.
498*5ffd83dbSDimitry Andric         unsigned OpFlags =
499*5ffd83dbSDimitry Andric             InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
500*5ffd83dbSDimitry Andric         Inst.addImm(OpFlags);
501*5ffd83dbSDimitry Andric         Inst.add(Ops);
502*5ffd83dbSDimitry Andric         break;
503*5ffd83dbSDimitry Andric       }
504*5ffd83dbSDimitry Andric 
505*5ffd83dbSDimitry Andric       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
506*5ffd83dbSDimitry Andric 
507*5ffd83dbSDimitry Andric         if (!OpInfo.isIndirect) {
508*5ffd83dbSDimitry Andric           LLVM_DEBUG(dbgs()
509*5ffd83dbSDimitry Andric                      << "Cannot indirectify memory input operands yet\n");
510*5ffd83dbSDimitry Andric           return false;
511*5ffd83dbSDimitry Andric         }
512*5ffd83dbSDimitry Andric 
513*5ffd83dbSDimitry Andric         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
514*5ffd83dbSDimitry Andric 
515*5ffd83dbSDimitry Andric         unsigned ConstraintID =
516*5ffd83dbSDimitry Andric             TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
517*5ffd83dbSDimitry Andric         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
518*5ffd83dbSDimitry Andric         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
519*5ffd83dbSDimitry Andric         Inst.addImm(OpFlags);
520*5ffd83dbSDimitry Andric         ArrayRef<Register> SourceRegs =
521*5ffd83dbSDimitry Andric             GetOrCreateVRegs(*OpInfo.CallOperandVal);
522*5ffd83dbSDimitry Andric         assert(
523*5ffd83dbSDimitry Andric             SourceRegs.size() == 1 &&
524*5ffd83dbSDimitry Andric             "Expected the memory input to fit into a single virtual register");
525*5ffd83dbSDimitry Andric         Inst.addReg(SourceRegs[0]);
526*5ffd83dbSDimitry Andric         break;
527*5ffd83dbSDimitry Andric       }
528*5ffd83dbSDimitry Andric 
529*5ffd83dbSDimitry Andric       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
530*5ffd83dbSDimitry Andric               OpInfo.ConstraintType == TargetLowering::C_Register) &&
531*5ffd83dbSDimitry Andric              "Unknown constraint type!");
532*5ffd83dbSDimitry Andric 
533*5ffd83dbSDimitry Andric       if (OpInfo.isIndirect) {
534*5ffd83dbSDimitry Andric         LLVM_DEBUG(dbgs() << "Can't handle indirect register inputs yet "
535*5ffd83dbSDimitry Andric                              "for constraint '"
536*5ffd83dbSDimitry Andric                           << OpInfo.ConstraintCode << "'\n");
537*5ffd83dbSDimitry Andric         return false;
538*5ffd83dbSDimitry Andric       }
539*5ffd83dbSDimitry Andric 
540*5ffd83dbSDimitry Andric       // Copy the input into the appropriate registers.
541*5ffd83dbSDimitry Andric       if (OpInfo.Regs.empty()) {
542*5ffd83dbSDimitry Andric         LLVM_DEBUG(
543*5ffd83dbSDimitry Andric             dbgs()
544*5ffd83dbSDimitry Andric             << "Couldn't allocate input register for register constraint\n");
545*5ffd83dbSDimitry Andric         return false;
546*5ffd83dbSDimitry Andric       }
547*5ffd83dbSDimitry Andric 
548*5ffd83dbSDimitry Andric       unsigned NumRegs = OpInfo.Regs.size();
549*5ffd83dbSDimitry Andric       ArrayRef<Register> SourceRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
550*5ffd83dbSDimitry Andric       assert(NumRegs == SourceRegs.size() &&
551*5ffd83dbSDimitry Andric              "Expected the number of input registers to match the number of "
552*5ffd83dbSDimitry Andric              "source registers");
553*5ffd83dbSDimitry Andric 
554*5ffd83dbSDimitry Andric       if (NumRegs > 1) {
555*5ffd83dbSDimitry Andric         LLVM_DEBUG(dbgs() << "Input operands with multiple input registers are "
556*5ffd83dbSDimitry Andric                              "not supported yet\n");
557*5ffd83dbSDimitry Andric         return false;
558*5ffd83dbSDimitry Andric       }
559*5ffd83dbSDimitry Andric 
560*5ffd83dbSDimitry Andric       unsigned Flag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, NumRegs);
561*5ffd83dbSDimitry Andric       Inst.addImm(Flag);
562*5ffd83dbSDimitry Andric       if (!buildAnyextOrCopy(OpInfo.Regs[0], SourceRegs[0], MIRBuilder))
563*5ffd83dbSDimitry Andric         return false;
564*5ffd83dbSDimitry Andric       Inst.addReg(OpInfo.Regs[0]);
565*5ffd83dbSDimitry Andric       break;
566*5ffd83dbSDimitry Andric     }
567*5ffd83dbSDimitry Andric 
568*5ffd83dbSDimitry Andric     case InlineAsm::isClobber: {
569*5ffd83dbSDimitry Andric 
570*5ffd83dbSDimitry Andric       unsigned NumRegs = OpInfo.Regs.size();
571*5ffd83dbSDimitry Andric       if (NumRegs > 0) {
572*5ffd83dbSDimitry Andric         unsigned Flag =
573*5ffd83dbSDimitry Andric             InlineAsm::getFlagWord(InlineAsm::Kind_Clobber, NumRegs);
574*5ffd83dbSDimitry Andric         Inst.addImm(Flag);
575*5ffd83dbSDimitry Andric 
576*5ffd83dbSDimitry Andric         for (Register Reg : OpInfo.Regs) {
577*5ffd83dbSDimitry Andric           Inst.addReg(Reg, RegState::Define | RegState::EarlyClobber |
578*5ffd83dbSDimitry Andric                                getImplRegState(Reg.isPhysical()));
579*5ffd83dbSDimitry Andric         }
580*5ffd83dbSDimitry Andric       }
581*5ffd83dbSDimitry Andric       break;
582*5ffd83dbSDimitry Andric     }
583*5ffd83dbSDimitry Andric     }
584*5ffd83dbSDimitry Andric   }
585*5ffd83dbSDimitry Andric 
586*5ffd83dbSDimitry Andric   if (const MDNode *SrcLoc = Call.getMetadata("srcloc"))
587*5ffd83dbSDimitry Andric     Inst.addMetadata(SrcLoc);
588*5ffd83dbSDimitry Andric 
589*5ffd83dbSDimitry Andric   // All inputs are handled, insert the instruction now
590*5ffd83dbSDimitry Andric   MIRBuilder.insertInstr(Inst);
591*5ffd83dbSDimitry Andric 
592*5ffd83dbSDimitry Andric   // Finally, copy the output operands into the output registers
593*5ffd83dbSDimitry Andric   ArrayRef<Register> ResRegs = GetOrCreateVRegs(Call);
594*5ffd83dbSDimitry Andric   if (ResRegs.size() != OutputOperands.size()) {
595*5ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "Expected the number of output registers to match the "
596*5ffd83dbSDimitry Andric                          "number of destination registers\n");
597*5ffd83dbSDimitry Andric     return false;
598*5ffd83dbSDimitry Andric   }
599*5ffd83dbSDimitry Andric   for (unsigned int i = 0, e = ResRegs.size(); i < e; i++) {
600*5ffd83dbSDimitry Andric     GISelAsmOperandInfo &OpInfo = OutputOperands[i];
601*5ffd83dbSDimitry Andric 
602*5ffd83dbSDimitry Andric     if (OpInfo.Regs.empty())
603*5ffd83dbSDimitry Andric       continue;
604*5ffd83dbSDimitry Andric 
605*5ffd83dbSDimitry Andric     switch (OpInfo.ConstraintType) {
606*5ffd83dbSDimitry Andric     case TargetLowering::C_Register:
607*5ffd83dbSDimitry Andric     case TargetLowering::C_RegisterClass: {
608*5ffd83dbSDimitry Andric       if (OpInfo.Regs.size() > 1) {
609*5ffd83dbSDimitry Andric         LLVM_DEBUG(dbgs() << "Output operands with multiple defining "
610*5ffd83dbSDimitry Andric                              "registers are not supported yet\n");
611*5ffd83dbSDimitry Andric         return false;
612*5ffd83dbSDimitry Andric       }
613*5ffd83dbSDimitry Andric 
614*5ffd83dbSDimitry Andric       Register SrcReg = OpInfo.Regs[0];
615*5ffd83dbSDimitry Andric       unsigned SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
616*5ffd83dbSDimitry Andric       if (MRI->getType(ResRegs[i]).getSizeInBits() < SrcSize) {
617*5ffd83dbSDimitry Andric         // First copy the non-typed virtual register into a generic virtual
618*5ffd83dbSDimitry Andric         // register
619*5ffd83dbSDimitry Andric         Register Tmp1Reg =
620*5ffd83dbSDimitry Andric             MRI->createGenericVirtualRegister(LLT::scalar(SrcSize));
621*5ffd83dbSDimitry Andric         MIRBuilder.buildCopy(Tmp1Reg, SrcReg);
622*5ffd83dbSDimitry Andric         // Need to truncate the result of the register
623*5ffd83dbSDimitry Andric         MIRBuilder.buildTrunc(ResRegs[i], Tmp1Reg);
624*5ffd83dbSDimitry Andric       } else {
625*5ffd83dbSDimitry Andric         MIRBuilder.buildCopy(ResRegs[i], SrcReg);
626*5ffd83dbSDimitry Andric       }
627*5ffd83dbSDimitry Andric       break;
628*5ffd83dbSDimitry Andric     }
629*5ffd83dbSDimitry Andric     case TargetLowering::C_Immediate:
630*5ffd83dbSDimitry Andric     case TargetLowering::C_Other:
631*5ffd83dbSDimitry Andric       LLVM_DEBUG(
632*5ffd83dbSDimitry Andric           dbgs() << "Cannot lower target specific output constraints yet\n");
633*5ffd83dbSDimitry Andric       return false;
634*5ffd83dbSDimitry Andric     case TargetLowering::C_Memory:
635*5ffd83dbSDimitry Andric       break; // Already handled.
636*5ffd83dbSDimitry Andric     case TargetLowering::C_Unknown:
637*5ffd83dbSDimitry Andric       LLVM_DEBUG(dbgs() << "Unexpected unknown constraint\n");
638*5ffd83dbSDimitry Andric       return false;
639*5ffd83dbSDimitry Andric     }
640*5ffd83dbSDimitry Andric   }
641*5ffd83dbSDimitry Andric 
642*5ffd83dbSDimitry Andric   return true;
643*5ffd83dbSDimitry Andric }
644*5ffd83dbSDimitry Andric 
645*5ffd83dbSDimitry Andric bool InlineAsmLowering::lowerAsmOperandForConstraint(
646*5ffd83dbSDimitry Andric     Value *Val, StringRef Constraint, std::vector<MachineOperand> &Ops,
647*5ffd83dbSDimitry Andric     MachineIRBuilder &MIRBuilder) const {
648*5ffd83dbSDimitry Andric   if (Constraint.size() > 1)
649*5ffd83dbSDimitry Andric     return false;
650*5ffd83dbSDimitry Andric 
651*5ffd83dbSDimitry Andric   char ConstraintLetter = Constraint[0];
652*5ffd83dbSDimitry Andric   switch (ConstraintLetter) {
653*5ffd83dbSDimitry Andric   default:
654*5ffd83dbSDimitry Andric     return false;
655*5ffd83dbSDimitry Andric   case 'i': // Simple Integer or Relocatable Constant
656*5ffd83dbSDimitry Andric     if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
657*5ffd83dbSDimitry Andric       assert(CI->getBitWidth() <= 64 &&
658*5ffd83dbSDimitry Andric              "expected immediate to fit into 64-bits");
659*5ffd83dbSDimitry Andric       // Boolean constants should be zero-extended, others are sign-extended
660*5ffd83dbSDimitry Andric       bool IsBool = CI->getBitWidth() == 1;
661*5ffd83dbSDimitry Andric       int64_t ExtVal = IsBool ? CI->getZExtValue() : CI->getSExtValue();
662*5ffd83dbSDimitry Andric       Ops.push_back(MachineOperand::CreateImm(ExtVal));
663*5ffd83dbSDimitry Andric       return true;
664*5ffd83dbSDimitry Andric     }
665*5ffd83dbSDimitry Andric     return false;
666*5ffd83dbSDimitry Andric   }
667*5ffd83dbSDimitry Andric }
668