xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/InlineAsmLowering.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
15ffd83dbSDimitry Andric //===-- lib/CodeGen/GlobalISel/InlineAsmLowering.cpp ----------------------===//
25ffd83dbSDimitry Andric //
35ffd83dbSDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
45ffd83dbSDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
55ffd83dbSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
65ffd83dbSDimitry Andric //
75ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
85ffd83dbSDimitry Andric ///
95ffd83dbSDimitry Andric /// \file
105ffd83dbSDimitry Andric /// This file implements the lowering from LLVM IR inline asm to MIR INLINEASM
115ffd83dbSDimitry Andric ///
125ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
135ffd83dbSDimitry Andric 
145ffd83dbSDimitry Andric #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
155ffd83dbSDimitry Andric #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
165ffd83dbSDimitry Andric #include "llvm/CodeGen/MachineOperand.h"
175ffd83dbSDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
185ffd83dbSDimitry Andric #include "llvm/CodeGen/TargetLowering.h"
195ffd83dbSDimitry Andric #include "llvm/IR/Module.h"
205ffd83dbSDimitry Andric 
215ffd83dbSDimitry Andric #define DEBUG_TYPE "inline-asm-lowering"
225ffd83dbSDimitry Andric 
235ffd83dbSDimitry Andric using namespace llvm;
245ffd83dbSDimitry Andric 
anchor()255ffd83dbSDimitry Andric void InlineAsmLowering::anchor() {}
265ffd83dbSDimitry Andric 
275ffd83dbSDimitry Andric namespace {
285ffd83dbSDimitry Andric 
295ffd83dbSDimitry Andric /// GISelAsmOperandInfo - This contains information for each constraint that we
305ffd83dbSDimitry Andric /// are lowering.
315ffd83dbSDimitry Andric class GISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
325ffd83dbSDimitry Andric public:
335ffd83dbSDimitry Andric   /// Regs - If this is a register or register class operand, this
345ffd83dbSDimitry Andric   /// contains the set of assigned registers corresponding to the operand.
355ffd83dbSDimitry Andric   SmallVector<Register, 1> Regs;
365ffd83dbSDimitry Andric 
GISelAsmOperandInfo(const TargetLowering::AsmOperandInfo & Info)375ffd83dbSDimitry Andric   explicit GISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &Info)
385ffd83dbSDimitry Andric       : TargetLowering::AsmOperandInfo(Info) {}
395ffd83dbSDimitry Andric };
405ffd83dbSDimitry Andric 
415ffd83dbSDimitry Andric using GISelAsmOperandInfoVector = SmallVector<GISelAsmOperandInfo, 16>;
425ffd83dbSDimitry Andric 
435ffd83dbSDimitry Andric class ExtraFlags {
445ffd83dbSDimitry Andric   unsigned Flags = 0;
455ffd83dbSDimitry Andric 
465ffd83dbSDimitry Andric public:
ExtraFlags(const CallBase & CB)475ffd83dbSDimitry Andric   explicit ExtraFlags(const CallBase &CB) {
485ffd83dbSDimitry Andric     const InlineAsm *IA = cast<InlineAsm>(CB.getCalledOperand());
495ffd83dbSDimitry Andric     if (IA->hasSideEffects())
505ffd83dbSDimitry Andric       Flags |= InlineAsm::Extra_HasSideEffects;
515ffd83dbSDimitry Andric     if (IA->isAlignStack())
525ffd83dbSDimitry Andric       Flags |= InlineAsm::Extra_IsAlignStack;
535ffd83dbSDimitry Andric     if (CB.isConvergent())
545ffd83dbSDimitry Andric       Flags |= InlineAsm::Extra_IsConvergent;
555ffd83dbSDimitry Andric     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
565ffd83dbSDimitry Andric   }
575ffd83dbSDimitry Andric 
update(const TargetLowering::AsmOperandInfo & OpInfo)585ffd83dbSDimitry Andric   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
595ffd83dbSDimitry Andric     // Ideally, we would only check against memory constraints.  However, the
605ffd83dbSDimitry Andric     // meaning of an Other constraint can be target-specific and we can't easily
615ffd83dbSDimitry Andric     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
625ffd83dbSDimitry Andric     // for Other constraints as well.
635ffd83dbSDimitry Andric     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
645ffd83dbSDimitry Andric         OpInfo.ConstraintType == TargetLowering::C_Other) {
655ffd83dbSDimitry Andric       if (OpInfo.Type == InlineAsm::isInput)
665ffd83dbSDimitry Andric         Flags |= InlineAsm::Extra_MayLoad;
675ffd83dbSDimitry Andric       else if (OpInfo.Type == InlineAsm::isOutput)
685ffd83dbSDimitry Andric         Flags |= InlineAsm::Extra_MayStore;
695ffd83dbSDimitry Andric       else if (OpInfo.Type == InlineAsm::isClobber)
705ffd83dbSDimitry Andric         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
715ffd83dbSDimitry Andric     }
725ffd83dbSDimitry Andric   }
735ffd83dbSDimitry Andric 
get() const745ffd83dbSDimitry Andric   unsigned get() const { return Flags; }
755ffd83dbSDimitry Andric };
765ffd83dbSDimitry Andric 
775ffd83dbSDimitry Andric } // namespace
785ffd83dbSDimitry Andric 
795ffd83dbSDimitry Andric /// Assign virtual/physical registers for the specified register operand.
getRegistersForValue(MachineFunction & MF,MachineIRBuilder & MIRBuilder,GISelAsmOperandInfo & OpInfo,GISelAsmOperandInfo & RefOpInfo)805ffd83dbSDimitry Andric static void getRegistersForValue(MachineFunction &MF,
815ffd83dbSDimitry Andric                                  MachineIRBuilder &MIRBuilder,
825ffd83dbSDimitry Andric                                  GISelAsmOperandInfo &OpInfo,
835ffd83dbSDimitry Andric                                  GISelAsmOperandInfo &RefOpInfo) {
845ffd83dbSDimitry Andric 
855ffd83dbSDimitry Andric   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
865ffd83dbSDimitry Andric   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
875ffd83dbSDimitry Andric 
885ffd83dbSDimitry Andric   // No work to do for memory operations.
895ffd83dbSDimitry Andric   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
905ffd83dbSDimitry Andric     return;
915ffd83dbSDimitry Andric 
925ffd83dbSDimitry Andric   // If this is a constraint for a single physreg, or a constraint for a
935ffd83dbSDimitry Andric   // register class, find it.
945ffd83dbSDimitry Andric   Register AssignedReg;
955ffd83dbSDimitry Andric   const TargetRegisterClass *RC;
965ffd83dbSDimitry Andric   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
975ffd83dbSDimitry Andric       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
985ffd83dbSDimitry Andric   // RC is unset only on failure. Return immediately.
995ffd83dbSDimitry Andric   if (!RC)
1005ffd83dbSDimitry Andric     return;
1015ffd83dbSDimitry Andric 
1025ffd83dbSDimitry Andric   // No need to allocate a matching input constraint since the constraint it's
1035ffd83dbSDimitry Andric   // matching to has already been allocated.
1045ffd83dbSDimitry Andric   if (OpInfo.isMatchingInputConstraint())
1055ffd83dbSDimitry Andric     return;
1065ffd83dbSDimitry Andric 
1075ffd83dbSDimitry Andric   // Initialize NumRegs.
1085ffd83dbSDimitry Andric   unsigned NumRegs = 1;
1095ffd83dbSDimitry Andric   if (OpInfo.ConstraintVT != MVT::Other)
1105ffd83dbSDimitry Andric     NumRegs =
1115ffd83dbSDimitry Andric         TLI.getNumRegisters(MF.getFunction().getContext(), OpInfo.ConstraintVT);
1125ffd83dbSDimitry Andric 
1135ffd83dbSDimitry Andric   // If this is a constraint for a specific physical register, but the type of
1145ffd83dbSDimitry Andric   // the operand requires more than one register to be passed, we allocate the
1155ffd83dbSDimitry Andric   // required amount of physical registers, starting from the selected physical
1165ffd83dbSDimitry Andric   // register.
1175ffd83dbSDimitry Andric   // For this, first retrieve a register iterator for the given register class
1185ffd83dbSDimitry Andric   TargetRegisterClass::iterator I = RC->begin();
1195ffd83dbSDimitry Andric   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1205ffd83dbSDimitry Andric 
1215ffd83dbSDimitry Andric   // Advance the iterator to the assigned register (if set)
1225ffd83dbSDimitry Andric   if (AssignedReg) {
1235ffd83dbSDimitry Andric     for (; *I != AssignedReg; ++I)
1245ffd83dbSDimitry Andric       assert(I != RC->end() && "AssignedReg should be a member of provided RC");
1255ffd83dbSDimitry Andric   }
1265ffd83dbSDimitry Andric 
1275ffd83dbSDimitry Andric   // Finally, assign the registers. If the AssignedReg isn't set, create virtual
1285ffd83dbSDimitry Andric   // registers with the provided register class
1295ffd83dbSDimitry Andric   for (; NumRegs; --NumRegs, ++I) {
1305ffd83dbSDimitry Andric     assert(I != RC->end() && "Ran out of registers to allocate!");
1315ffd83dbSDimitry Andric     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
1325ffd83dbSDimitry Andric     OpInfo.Regs.push_back(R);
1335ffd83dbSDimitry Andric   }
1345ffd83dbSDimitry Andric }
1355ffd83dbSDimitry Andric 
computeConstraintToUse(const TargetLowering * TLI,TargetLowering::AsmOperandInfo & OpInfo)1365ffd83dbSDimitry Andric static void computeConstraintToUse(const TargetLowering *TLI,
1375ffd83dbSDimitry Andric                                    TargetLowering::AsmOperandInfo &OpInfo) {
1385ffd83dbSDimitry Andric   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
1395ffd83dbSDimitry Andric 
1405ffd83dbSDimitry Andric   // Single-letter constraints ('r') are very common.
1415ffd83dbSDimitry Andric   if (OpInfo.Codes.size() == 1) {
1425ffd83dbSDimitry Andric     OpInfo.ConstraintCode = OpInfo.Codes[0];
1435ffd83dbSDimitry Andric     OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
1445ffd83dbSDimitry Andric   } else {
1455f757f3fSDimitry Andric     TargetLowering::ConstraintGroup G = TLI->getConstraintPreferences(OpInfo);
1465f757f3fSDimitry Andric     if (G.empty())
1475f757f3fSDimitry Andric       return;
1485f757f3fSDimitry Andric     // FIXME: prefer immediate constraints if the target allows it
1495f757f3fSDimitry Andric     unsigned BestIdx = 0;
1505f757f3fSDimitry Andric     for (const unsigned E = G.size();
1515f757f3fSDimitry Andric          BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other ||
1525f757f3fSDimitry Andric                          G[BestIdx].second == TargetLowering::C_Immediate);
1535f757f3fSDimitry Andric          ++BestIdx)
1545f757f3fSDimitry Andric       ;
1555f757f3fSDimitry Andric     OpInfo.ConstraintCode = G[BestIdx].first;
1565f757f3fSDimitry Andric     OpInfo.ConstraintType = G[BestIdx].second;
1575ffd83dbSDimitry Andric   }
1585ffd83dbSDimitry Andric 
1595ffd83dbSDimitry Andric   // 'X' matches anything.
1605ffd83dbSDimitry Andric   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
1615ffd83dbSDimitry Andric     // Labels and constants are handled elsewhere ('X' is the only thing
1625ffd83dbSDimitry Andric     // that matches labels).  For Functions, the type here is the type of
1635ffd83dbSDimitry Andric     // the result, which is not what we want to look at; leave them alone.
1645ffd83dbSDimitry Andric     Value *Val = OpInfo.CallOperandVal;
1655ffd83dbSDimitry Andric     if (isa<BasicBlock>(Val) || isa<ConstantInt>(Val) || isa<Function>(Val))
1665ffd83dbSDimitry Andric       return;
1675ffd83dbSDimitry Andric 
1685ffd83dbSDimitry Andric     // Otherwise, try to resolve it to something we know about by looking at
1695ffd83dbSDimitry Andric     // the actual operand type.
1705ffd83dbSDimitry Andric     if (const char *Repl = TLI->LowerXConstraint(OpInfo.ConstraintVT)) {
1715ffd83dbSDimitry Andric       OpInfo.ConstraintCode = Repl;
1725ffd83dbSDimitry Andric       OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
1735ffd83dbSDimitry Andric     }
1745ffd83dbSDimitry Andric   }
1755ffd83dbSDimitry Andric }
1765ffd83dbSDimitry Andric 
getNumOpRegs(const MachineInstr & I,unsigned OpIdx)1775ffd83dbSDimitry Andric static unsigned getNumOpRegs(const MachineInstr &I, unsigned OpIdx) {
1785f757f3fSDimitry Andric   const InlineAsm::Flag F(I.getOperand(OpIdx).getImm());
1795f757f3fSDimitry Andric   return F.getNumOperandRegisters();
1805ffd83dbSDimitry Andric }
1815ffd83dbSDimitry Andric 
buildAnyextOrCopy(Register Dst,Register Src,MachineIRBuilder & MIRBuilder)1825ffd83dbSDimitry Andric static bool buildAnyextOrCopy(Register Dst, Register Src,
1835ffd83dbSDimitry Andric                               MachineIRBuilder &MIRBuilder) {
1845ffd83dbSDimitry Andric   const TargetRegisterInfo *TRI =
1855ffd83dbSDimitry Andric       MIRBuilder.getMF().getSubtarget().getRegisterInfo();
1865ffd83dbSDimitry Andric   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1875ffd83dbSDimitry Andric 
1885ffd83dbSDimitry Andric   auto SrcTy = MRI->getType(Src);
1895ffd83dbSDimitry Andric   if (!SrcTy.isValid()) {
1905ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "Source type for copy is not valid\n");
1915ffd83dbSDimitry Andric     return false;
1925ffd83dbSDimitry Andric   }
1935ffd83dbSDimitry Andric   unsigned SrcSize = TRI->getRegSizeInBits(Src, *MRI);
1945ffd83dbSDimitry Andric   unsigned DstSize = TRI->getRegSizeInBits(Dst, *MRI);
1955ffd83dbSDimitry Andric 
1965ffd83dbSDimitry Andric   if (DstSize < SrcSize) {
1975ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "Input can't fit in destination reg class\n");
1985ffd83dbSDimitry Andric     return false;
1995ffd83dbSDimitry Andric   }
2005ffd83dbSDimitry Andric 
2015ffd83dbSDimitry Andric   // Attempt to anyext small scalar sources.
2025ffd83dbSDimitry Andric   if (DstSize > SrcSize) {
2035ffd83dbSDimitry Andric     if (!SrcTy.isScalar()) {
2045ffd83dbSDimitry Andric       LLVM_DEBUG(dbgs() << "Can't extend non-scalar input to size of"
2055ffd83dbSDimitry Andric                            "destination register class\n");
2065ffd83dbSDimitry Andric       return false;
2075ffd83dbSDimitry Andric     }
2085ffd83dbSDimitry Andric     Src = MIRBuilder.buildAnyExt(LLT::scalar(DstSize), Src).getReg(0);
2095ffd83dbSDimitry Andric   }
2105ffd83dbSDimitry Andric 
2115ffd83dbSDimitry Andric   MIRBuilder.buildCopy(Dst, Src);
2125ffd83dbSDimitry Andric   return true;
2135ffd83dbSDimitry Andric }
2145ffd83dbSDimitry Andric 
lowerInlineAsm(MachineIRBuilder & MIRBuilder,const CallBase & Call,std::function<ArrayRef<Register> (const Value & Val)> GetOrCreateVRegs) const2155ffd83dbSDimitry Andric bool InlineAsmLowering::lowerInlineAsm(
2165ffd83dbSDimitry Andric     MachineIRBuilder &MIRBuilder, const CallBase &Call,
2175ffd83dbSDimitry Andric     std::function<ArrayRef<Register>(const Value &Val)> GetOrCreateVRegs)
2185ffd83dbSDimitry Andric     const {
2195ffd83dbSDimitry Andric   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
2205ffd83dbSDimitry Andric 
2215ffd83dbSDimitry Andric   /// ConstraintOperands - Information about all of the constraints.
2225ffd83dbSDimitry Andric   GISelAsmOperandInfoVector ConstraintOperands;
2235ffd83dbSDimitry Andric 
2245ffd83dbSDimitry Andric   MachineFunction &MF = MIRBuilder.getMF();
2255ffd83dbSDimitry Andric   const Function &F = MF.getFunction();
226*0fca6ea1SDimitry Andric   const DataLayout &DL = F.getDataLayout();
2275ffd83dbSDimitry Andric   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2285ffd83dbSDimitry Andric 
2295ffd83dbSDimitry Andric   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
2305ffd83dbSDimitry Andric 
2315ffd83dbSDimitry Andric   TargetLowering::AsmOperandInfoVector TargetConstraints =
2325ffd83dbSDimitry Andric       TLI->ParseConstraints(DL, TRI, Call);
2335ffd83dbSDimitry Andric 
2345ffd83dbSDimitry Andric   ExtraFlags ExtraInfo(Call);
2355ffd83dbSDimitry Andric   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
2365ffd83dbSDimitry Andric   unsigned ResNo = 0; // ResNo - The result number of the next output.
2375ffd83dbSDimitry Andric   for (auto &T : TargetConstraints) {
2385ffd83dbSDimitry Andric     ConstraintOperands.push_back(GISelAsmOperandInfo(T));
2395ffd83dbSDimitry Andric     GISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
2405ffd83dbSDimitry Andric 
2415ffd83dbSDimitry Andric     // Compute the value type for each operand.
24204eeddc0SDimitry Andric     if (OpInfo.hasArg()) {
24304eeddc0SDimitry Andric       OpInfo.CallOperandVal = const_cast<Value *>(Call.getArgOperand(ArgNo));
2445ffd83dbSDimitry Andric 
2455ffd83dbSDimitry Andric       if (isa<BasicBlock>(OpInfo.CallOperandVal)) {
2465ffd83dbSDimitry Andric         LLVM_DEBUG(dbgs() << "Basic block input operands not supported yet\n");
2475ffd83dbSDimitry Andric         return false;
2485ffd83dbSDimitry Andric       }
2495ffd83dbSDimitry Andric 
2505ffd83dbSDimitry Andric       Type *OpTy = OpInfo.CallOperandVal->getType();
2515ffd83dbSDimitry Andric 
2525ffd83dbSDimitry Andric       // If this is an indirect operand, the operand is a pointer to the
2535ffd83dbSDimitry Andric       // accessed type.
2545ffd83dbSDimitry Andric       if (OpInfo.isIndirect) {
25581ad6265SDimitry Andric         OpTy = Call.getParamElementType(ArgNo);
25604eeddc0SDimitry Andric         assert(OpTy && "Indirect operand must have elementtype attribute");
2575ffd83dbSDimitry Andric       }
2585ffd83dbSDimitry Andric 
2595ffd83dbSDimitry Andric       // FIXME: Support aggregate input operands
2605ffd83dbSDimitry Andric       if (!OpTy->isSingleValueType()) {
2615ffd83dbSDimitry Andric         LLVM_DEBUG(
2625ffd83dbSDimitry Andric             dbgs() << "Aggregate input operands are not supported yet\n");
2635ffd83dbSDimitry Andric         return false;
2645ffd83dbSDimitry Andric       }
2655ffd83dbSDimitry Andric 
2666e75b2fbSDimitry Andric       OpInfo.ConstraintVT =
2676e75b2fbSDimitry Andric           TLI->getAsmOperandValueType(DL, OpTy, true).getSimpleVT();
26804eeddc0SDimitry Andric       ++ArgNo;
2695ffd83dbSDimitry Andric     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
2705ffd83dbSDimitry Andric       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
2715ffd83dbSDimitry Andric       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
2725ffd83dbSDimitry Andric         OpInfo.ConstraintVT =
2735ffd83dbSDimitry Andric             TLI->getSimpleValueType(DL, STy->getElementType(ResNo));
2745ffd83dbSDimitry Andric       } else {
2755ffd83dbSDimitry Andric         assert(ResNo == 0 && "Asm only has one result!");
2766e75b2fbSDimitry Andric         OpInfo.ConstraintVT =
2776e75b2fbSDimitry Andric             TLI->getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
2785ffd83dbSDimitry Andric       }
2795ffd83dbSDimitry Andric       ++ResNo;
2805ffd83dbSDimitry Andric     } else {
281fcaf7f86SDimitry Andric       assert(OpInfo.Type != InlineAsm::isLabel &&
282fcaf7f86SDimitry Andric              "GlobalISel currently doesn't support callbr");
2835ffd83dbSDimitry Andric       OpInfo.ConstraintVT = MVT::Other;
2845ffd83dbSDimitry Andric     }
2855ffd83dbSDimitry Andric 
2866e75b2fbSDimitry Andric     if (OpInfo.ConstraintVT == MVT::i64x8)
2876e75b2fbSDimitry Andric       return false;
2886e75b2fbSDimitry Andric 
2895ffd83dbSDimitry Andric     // Compute the constraint code and ConstraintType to use.
2905ffd83dbSDimitry Andric     computeConstraintToUse(TLI, OpInfo);
2915ffd83dbSDimitry Andric 
2925ffd83dbSDimitry Andric     // The selected constraint type might expose new sideeffects
2935ffd83dbSDimitry Andric     ExtraInfo.update(OpInfo);
2945ffd83dbSDimitry Andric   }
2955ffd83dbSDimitry Andric 
2965ffd83dbSDimitry Andric   // At this point, all operand types are decided.
2975ffd83dbSDimitry Andric   // Create the MachineInstr, but don't insert it yet since input
2985ffd83dbSDimitry Andric   // operands still need to insert instructions before this one
2995ffd83dbSDimitry Andric   auto Inst = MIRBuilder.buildInstrNoInsert(TargetOpcode::INLINEASM)
3005ffd83dbSDimitry Andric                   .addExternalSymbol(IA->getAsmString().c_str())
3015ffd83dbSDimitry Andric                   .addImm(ExtraInfo.get());
3025ffd83dbSDimitry Andric 
3035ffd83dbSDimitry Andric   // Starting from this operand: flag followed by register(s) will be added as
3045ffd83dbSDimitry Andric   // operands to Inst for each constraint. Used for matching input constraints.
3055ffd83dbSDimitry Andric   unsigned StartIdx = Inst->getNumOperands();
3065ffd83dbSDimitry Andric 
3075ffd83dbSDimitry Andric   // Collects the output operands for later processing
3085ffd83dbSDimitry Andric   GISelAsmOperandInfoVector OutputOperands;
3095ffd83dbSDimitry Andric 
3105ffd83dbSDimitry Andric   for (auto &OpInfo : ConstraintOperands) {
3115ffd83dbSDimitry Andric     GISelAsmOperandInfo &RefOpInfo =
3125ffd83dbSDimitry Andric         OpInfo.isMatchingInputConstraint()
3135ffd83dbSDimitry Andric             ? ConstraintOperands[OpInfo.getMatchedOperand()]
3145ffd83dbSDimitry Andric             : OpInfo;
3155ffd83dbSDimitry Andric 
3165ffd83dbSDimitry Andric     // Assign registers for register operands
3175ffd83dbSDimitry Andric     getRegistersForValue(MF, MIRBuilder, OpInfo, RefOpInfo);
3185ffd83dbSDimitry Andric 
3195ffd83dbSDimitry Andric     switch (OpInfo.Type) {
3205ffd83dbSDimitry Andric     case InlineAsm::isOutput:
3215ffd83dbSDimitry Andric       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3225f757f3fSDimitry Andric         const InlineAsm::ConstraintCode ConstraintID =
3235ffd83dbSDimitry Andric             TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
3245f757f3fSDimitry Andric         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
3255ffd83dbSDimitry Andric                "Failed to convert memory constraint code to constraint id.");
3265ffd83dbSDimitry Andric 
3275ffd83dbSDimitry Andric         // Add information to the INLINEASM instruction to know about this
3285ffd83dbSDimitry Andric         // output.
3295f757f3fSDimitry Andric         InlineAsm::Flag Flag(InlineAsm::Kind::Mem, 1);
3305f757f3fSDimitry Andric         Flag.setMemConstraint(ConstraintID);
3315f757f3fSDimitry Andric         Inst.addImm(Flag);
3325ffd83dbSDimitry Andric         ArrayRef<Register> SourceRegs =
3335ffd83dbSDimitry Andric             GetOrCreateVRegs(*OpInfo.CallOperandVal);
3345ffd83dbSDimitry Andric         assert(
3355ffd83dbSDimitry Andric             SourceRegs.size() == 1 &&
3365ffd83dbSDimitry Andric             "Expected the memory output to fit into a single virtual register");
3375ffd83dbSDimitry Andric         Inst.addReg(SourceRegs[0]);
3385ffd83dbSDimitry Andric       } else {
3395ffd83dbSDimitry Andric         // Otherwise, this outputs to a register (directly for C_Register /
34006c3fb27SDimitry Andric         // C_RegisterClass/C_Other.
3415ffd83dbSDimitry Andric         assert(OpInfo.ConstraintType == TargetLowering::C_Register ||
34206c3fb27SDimitry Andric                OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
34306c3fb27SDimitry Andric                OpInfo.ConstraintType == TargetLowering::C_Other);
3445ffd83dbSDimitry Andric 
34506c3fb27SDimitry Andric         // Find a register that we can use.
3465ffd83dbSDimitry Andric         if (OpInfo.Regs.empty()) {
3475ffd83dbSDimitry Andric           LLVM_DEBUG(dbgs()
3485ffd83dbSDimitry Andric                      << "Couldn't allocate output register for constraint\n");
3495ffd83dbSDimitry Andric           return false;
3505ffd83dbSDimitry Andric         }
3515ffd83dbSDimitry Andric 
3525ffd83dbSDimitry Andric         // Add information to the INLINEASM instruction to know that this
3535ffd83dbSDimitry Andric         // register is set.
3545f757f3fSDimitry Andric         InlineAsm::Flag Flag(OpInfo.isEarlyClobber
3555f757f3fSDimitry Andric                                  ? InlineAsm::Kind::RegDefEarlyClobber
3565f757f3fSDimitry Andric                                  : InlineAsm::Kind::RegDef,
3575ffd83dbSDimitry Andric                              OpInfo.Regs.size());
3585ffd83dbSDimitry Andric         if (OpInfo.Regs.front().isVirtual()) {
3595ffd83dbSDimitry Andric           // Put the register class of the virtual registers in the flag word.
3605ffd83dbSDimitry Andric           // That way, later passes can recompute register class constraints for
3615ffd83dbSDimitry Andric           // inline assembly as well as normal instructions. Don't do this for
3625ffd83dbSDimitry Andric           // tied operands that can use the regclass information from the def.
3635ffd83dbSDimitry Andric           const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front());
3645f757f3fSDimitry Andric           Flag.setRegClass(RC->getID());
3655ffd83dbSDimitry Andric         }
3665ffd83dbSDimitry Andric 
3675ffd83dbSDimitry Andric         Inst.addImm(Flag);
3685ffd83dbSDimitry Andric 
3695ffd83dbSDimitry Andric         for (Register Reg : OpInfo.Regs) {
3705ffd83dbSDimitry Andric           Inst.addReg(Reg,
3715ffd83dbSDimitry Andric                       RegState::Define | getImplRegState(Reg.isPhysical()) |
3725ffd83dbSDimitry Andric                           (OpInfo.isEarlyClobber ? RegState::EarlyClobber : 0));
3735ffd83dbSDimitry Andric         }
3745ffd83dbSDimitry Andric 
3755ffd83dbSDimitry Andric         // Remember this output operand for later processing
3765ffd83dbSDimitry Andric         OutputOperands.push_back(OpInfo);
3775ffd83dbSDimitry Andric       }
3785ffd83dbSDimitry Andric 
3795ffd83dbSDimitry Andric       break;
380fcaf7f86SDimitry Andric     case InlineAsm::isInput:
381fcaf7f86SDimitry Andric     case InlineAsm::isLabel: {
3825ffd83dbSDimitry Andric       if (OpInfo.isMatchingInputConstraint()) {
3835ffd83dbSDimitry Andric         unsigned DefIdx = OpInfo.getMatchedOperand();
3845ffd83dbSDimitry Andric         // Find operand with register def that corresponds to DefIdx.
3855ffd83dbSDimitry Andric         unsigned InstFlagIdx = StartIdx;
3865ffd83dbSDimitry Andric         for (unsigned i = 0; i < DefIdx; ++i)
3875ffd83dbSDimitry Andric           InstFlagIdx += getNumOpRegs(*Inst, InstFlagIdx) + 1;
3885ffd83dbSDimitry Andric         assert(getNumOpRegs(*Inst, InstFlagIdx) == 1 && "Wrong flag");
3895ffd83dbSDimitry Andric 
3905f757f3fSDimitry Andric         const InlineAsm::Flag MatchedOperandFlag(Inst->getOperand(InstFlagIdx).getImm());
3915f757f3fSDimitry Andric         if (MatchedOperandFlag.isMemKind()) {
3925ffd83dbSDimitry Andric           LLVM_DEBUG(dbgs() << "Matching input constraint to mem operand not "
3935ffd83dbSDimitry Andric                                "supported. This should be target specific.\n");
3945ffd83dbSDimitry Andric           return false;
3955ffd83dbSDimitry Andric         }
3965f757f3fSDimitry Andric         if (!MatchedOperandFlag.isRegDefKind() && !MatchedOperandFlag.isRegDefEarlyClobberKind()) {
3975ffd83dbSDimitry Andric           LLVM_DEBUG(dbgs() << "Unknown matching constraint\n");
3985ffd83dbSDimitry Andric           return false;
3995ffd83dbSDimitry Andric         }
4005ffd83dbSDimitry Andric 
4015ffd83dbSDimitry Andric         // We want to tie input to register in next operand.
4025ffd83dbSDimitry Andric         unsigned DefRegIdx = InstFlagIdx + 1;
4035ffd83dbSDimitry Andric         Register Def = Inst->getOperand(DefRegIdx).getReg();
4045ffd83dbSDimitry Andric 
4055ffd83dbSDimitry Andric         ArrayRef<Register> SrcRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
4065ffd83dbSDimitry Andric         assert(SrcRegs.size() == 1 && "Single register is expected here");
4075ffd83dbSDimitry Andric 
4081106035dSDimitry Andric         // When Def is physreg: use given input.
4091106035dSDimitry Andric         Register In = SrcRegs[0];
4101106035dSDimitry Andric         // When Def is vreg: copy input to new vreg with same reg class as Def.
4111106035dSDimitry Andric         if (Def.isVirtual()) {
4121106035dSDimitry Andric           In = MRI->createVirtualRegister(MRI->getRegClass(Def));
4131106035dSDimitry Andric           if (!buildAnyextOrCopy(In, SrcRegs[0], MIRBuilder))
4141106035dSDimitry Andric             return false;
4151106035dSDimitry Andric         }
4161106035dSDimitry Andric 
4171106035dSDimitry Andric         // Add Flag and input register operand (In) to Inst. Tie In to Def.
4185f757f3fSDimitry Andric         InlineAsm::Flag UseFlag(InlineAsm::Kind::RegUse, 1);
4195f757f3fSDimitry Andric         UseFlag.setMatchingOp(DefIdx);
4205f757f3fSDimitry Andric         Inst.addImm(UseFlag);
4211106035dSDimitry Andric         Inst.addReg(In);
4225ffd83dbSDimitry Andric         Inst->tieOperands(DefRegIdx, Inst->getNumOperands() - 1);
4235ffd83dbSDimitry Andric         break;
4245ffd83dbSDimitry Andric       }
4255ffd83dbSDimitry Andric 
4265ffd83dbSDimitry Andric       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
4275ffd83dbSDimitry Andric           OpInfo.isIndirect) {
4285ffd83dbSDimitry Andric         LLVM_DEBUG(dbgs() << "Indirect input operands with unknown constraint "
4295ffd83dbSDimitry Andric                              "not supported yet\n");
4305ffd83dbSDimitry Andric         return false;
4315ffd83dbSDimitry Andric       }
4325ffd83dbSDimitry Andric 
4335ffd83dbSDimitry Andric       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
4345ffd83dbSDimitry Andric           OpInfo.ConstraintType == TargetLowering::C_Other) {
4355ffd83dbSDimitry Andric 
4365ffd83dbSDimitry Andric         std::vector<MachineOperand> Ops;
4375ffd83dbSDimitry Andric         if (!lowerAsmOperandForConstraint(OpInfo.CallOperandVal,
4385ffd83dbSDimitry Andric                                           OpInfo.ConstraintCode, Ops,
4395ffd83dbSDimitry Andric                                           MIRBuilder)) {
4405ffd83dbSDimitry Andric           LLVM_DEBUG(dbgs() << "Don't support constraint: "
4415ffd83dbSDimitry Andric                             << OpInfo.ConstraintCode << " yet\n");
4425ffd83dbSDimitry Andric           return false;
4435ffd83dbSDimitry Andric         }
4445ffd83dbSDimitry Andric 
4455ffd83dbSDimitry Andric         assert(Ops.size() > 0 &&
4465ffd83dbSDimitry Andric                "Expected constraint to be lowered to at least one operand");
4475ffd83dbSDimitry Andric 
4485ffd83dbSDimitry Andric         // Add information to the INLINEASM node to know about this input.
4495f757f3fSDimitry Andric         const unsigned OpFlags =
4505f757f3fSDimitry Andric             InlineAsm::Flag(InlineAsm::Kind::Imm, Ops.size());
4515ffd83dbSDimitry Andric         Inst.addImm(OpFlags);
4525ffd83dbSDimitry Andric         Inst.add(Ops);
4535ffd83dbSDimitry Andric         break;
4545ffd83dbSDimitry Andric       }
4555ffd83dbSDimitry Andric 
4565ffd83dbSDimitry Andric       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4575ffd83dbSDimitry Andric 
4585ffd83dbSDimitry Andric         if (!OpInfo.isIndirect) {
4595ffd83dbSDimitry Andric           LLVM_DEBUG(dbgs()
4605ffd83dbSDimitry Andric                      << "Cannot indirectify memory input operands yet\n");
4615ffd83dbSDimitry Andric           return false;
4625ffd83dbSDimitry Andric         }
4635ffd83dbSDimitry Andric 
4645ffd83dbSDimitry Andric         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4655ffd83dbSDimitry Andric 
4665f757f3fSDimitry Andric         const InlineAsm::ConstraintCode ConstraintID =
4675ffd83dbSDimitry Andric             TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
4685f757f3fSDimitry Andric         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
4695f757f3fSDimitry Andric         OpFlags.setMemConstraint(ConstraintID);
4705ffd83dbSDimitry Andric         Inst.addImm(OpFlags);
4715ffd83dbSDimitry Andric         ArrayRef<Register> SourceRegs =
4725ffd83dbSDimitry Andric             GetOrCreateVRegs(*OpInfo.CallOperandVal);
4735ffd83dbSDimitry Andric         assert(
4745ffd83dbSDimitry Andric             SourceRegs.size() == 1 &&
4755ffd83dbSDimitry Andric             "Expected the memory input to fit into a single virtual register");
4765ffd83dbSDimitry Andric         Inst.addReg(SourceRegs[0]);
4775ffd83dbSDimitry Andric         break;
4785ffd83dbSDimitry Andric       }
4795ffd83dbSDimitry Andric 
4805ffd83dbSDimitry Andric       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4815ffd83dbSDimitry Andric               OpInfo.ConstraintType == TargetLowering::C_Register) &&
4825ffd83dbSDimitry Andric              "Unknown constraint type!");
4835ffd83dbSDimitry Andric 
4845ffd83dbSDimitry Andric       if (OpInfo.isIndirect) {
4855ffd83dbSDimitry Andric         LLVM_DEBUG(dbgs() << "Can't handle indirect register inputs yet "
4865ffd83dbSDimitry Andric                              "for constraint '"
4875ffd83dbSDimitry Andric                           << OpInfo.ConstraintCode << "'\n");
4885ffd83dbSDimitry Andric         return false;
4895ffd83dbSDimitry Andric       }
4905ffd83dbSDimitry Andric 
4915ffd83dbSDimitry Andric       // Copy the input into the appropriate registers.
4925ffd83dbSDimitry Andric       if (OpInfo.Regs.empty()) {
4935ffd83dbSDimitry Andric         LLVM_DEBUG(
4945ffd83dbSDimitry Andric             dbgs()
4955ffd83dbSDimitry Andric             << "Couldn't allocate input register for register constraint\n");
4965ffd83dbSDimitry Andric         return false;
4975ffd83dbSDimitry Andric       }
4985ffd83dbSDimitry Andric 
4995ffd83dbSDimitry Andric       unsigned NumRegs = OpInfo.Regs.size();
5005ffd83dbSDimitry Andric       ArrayRef<Register> SourceRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
5015ffd83dbSDimitry Andric       assert(NumRegs == SourceRegs.size() &&
5025ffd83dbSDimitry Andric              "Expected the number of input registers to match the number of "
5035ffd83dbSDimitry Andric              "source registers");
5045ffd83dbSDimitry Andric 
5055ffd83dbSDimitry Andric       if (NumRegs > 1) {
5065ffd83dbSDimitry Andric         LLVM_DEBUG(dbgs() << "Input operands with multiple input registers are "
5075ffd83dbSDimitry Andric                              "not supported yet\n");
5085ffd83dbSDimitry Andric         return false;
5095ffd83dbSDimitry Andric       }
5105ffd83dbSDimitry Andric 
5115f757f3fSDimitry Andric       InlineAsm::Flag Flag(InlineAsm::Kind::RegUse, NumRegs);
512e8d8bef9SDimitry Andric       if (OpInfo.Regs.front().isVirtual()) {
513e8d8bef9SDimitry Andric         // Put the register class of the virtual registers in the flag word.
514e8d8bef9SDimitry Andric         const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front());
5155f757f3fSDimitry Andric         Flag.setRegClass(RC->getID());
516e8d8bef9SDimitry Andric       }
5175ffd83dbSDimitry Andric       Inst.addImm(Flag);
5185ffd83dbSDimitry Andric       if (!buildAnyextOrCopy(OpInfo.Regs[0], SourceRegs[0], MIRBuilder))
5195ffd83dbSDimitry Andric         return false;
5205ffd83dbSDimitry Andric       Inst.addReg(OpInfo.Regs[0]);
5215ffd83dbSDimitry Andric       break;
5225ffd83dbSDimitry Andric     }
5235ffd83dbSDimitry Andric 
5245ffd83dbSDimitry Andric     case InlineAsm::isClobber: {
5255ffd83dbSDimitry Andric 
5265f757f3fSDimitry Andric       const unsigned NumRegs = OpInfo.Regs.size();
5275ffd83dbSDimitry Andric       if (NumRegs > 0) {
5285f757f3fSDimitry Andric         unsigned Flag = InlineAsm::Flag(InlineAsm::Kind::Clobber, NumRegs);
5295ffd83dbSDimitry Andric         Inst.addImm(Flag);
5305ffd83dbSDimitry Andric 
5315ffd83dbSDimitry Andric         for (Register Reg : OpInfo.Regs) {
5325ffd83dbSDimitry Andric           Inst.addReg(Reg, RegState::Define | RegState::EarlyClobber |
5335ffd83dbSDimitry Andric                                getImplRegState(Reg.isPhysical()));
5345ffd83dbSDimitry Andric         }
5355ffd83dbSDimitry Andric       }
5365ffd83dbSDimitry Andric       break;
5375ffd83dbSDimitry Andric     }
5385ffd83dbSDimitry Andric     }
5395ffd83dbSDimitry Andric   }
5405ffd83dbSDimitry Andric 
541*0fca6ea1SDimitry Andric   // Add rounding control registers as implicit def for inline asm.
542*0fca6ea1SDimitry Andric   if (MF.getFunction().hasFnAttribute(Attribute::StrictFP)) {
543*0fca6ea1SDimitry Andric     ArrayRef<MCPhysReg> RCRegs = TLI->getRoundingControlRegisters();
544*0fca6ea1SDimitry Andric     for (MCPhysReg Reg : RCRegs)
545*0fca6ea1SDimitry Andric       Inst.addReg(Reg, RegState::ImplicitDefine);
546*0fca6ea1SDimitry Andric   }
547*0fca6ea1SDimitry Andric 
548*0fca6ea1SDimitry Andric   if (auto Bundle = Call.getOperandBundle(LLVMContext::OB_convergencectrl)) {
549*0fca6ea1SDimitry Andric     auto *Token = Bundle->Inputs[0].get();
550*0fca6ea1SDimitry Andric     ArrayRef<Register> SourceRegs = GetOrCreateVRegs(*Token);
551*0fca6ea1SDimitry Andric     assert(SourceRegs.size() == 1 &&
552*0fca6ea1SDimitry Andric            "Expected the control token to fit into a single virtual register");
553*0fca6ea1SDimitry Andric     Inst.addUse(SourceRegs[0], RegState::Implicit);
554*0fca6ea1SDimitry Andric   }
555*0fca6ea1SDimitry Andric 
5565ffd83dbSDimitry Andric   if (const MDNode *SrcLoc = Call.getMetadata("srcloc"))
5575ffd83dbSDimitry Andric     Inst.addMetadata(SrcLoc);
5585ffd83dbSDimitry Andric 
5595ffd83dbSDimitry Andric   // All inputs are handled, insert the instruction now
5605ffd83dbSDimitry Andric   MIRBuilder.insertInstr(Inst);
5615ffd83dbSDimitry Andric 
5625ffd83dbSDimitry Andric   // Finally, copy the output operands into the output registers
5635ffd83dbSDimitry Andric   ArrayRef<Register> ResRegs = GetOrCreateVRegs(Call);
5645ffd83dbSDimitry Andric   if (ResRegs.size() != OutputOperands.size()) {
5655ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "Expected the number of output registers to match the "
5665ffd83dbSDimitry Andric                          "number of destination registers\n");
5675ffd83dbSDimitry Andric     return false;
5685ffd83dbSDimitry Andric   }
5695ffd83dbSDimitry Andric   for (unsigned int i = 0, e = ResRegs.size(); i < e; i++) {
5705ffd83dbSDimitry Andric     GISelAsmOperandInfo &OpInfo = OutputOperands[i];
5715ffd83dbSDimitry Andric 
5725ffd83dbSDimitry Andric     if (OpInfo.Regs.empty())
5735ffd83dbSDimitry Andric       continue;
5745ffd83dbSDimitry Andric 
5755ffd83dbSDimitry Andric     switch (OpInfo.ConstraintType) {
5765ffd83dbSDimitry Andric     case TargetLowering::C_Register:
5775ffd83dbSDimitry Andric     case TargetLowering::C_RegisterClass: {
5785ffd83dbSDimitry Andric       if (OpInfo.Regs.size() > 1) {
5795ffd83dbSDimitry Andric         LLVM_DEBUG(dbgs() << "Output operands with multiple defining "
5805ffd83dbSDimitry Andric                              "registers are not supported yet\n");
5815ffd83dbSDimitry Andric         return false;
5825ffd83dbSDimitry Andric       }
5835ffd83dbSDimitry Andric 
5845ffd83dbSDimitry Andric       Register SrcReg = OpInfo.Regs[0];
5855ffd83dbSDimitry Andric       unsigned SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
58604eeddc0SDimitry Andric       LLT ResTy = MRI->getType(ResRegs[i]);
58704eeddc0SDimitry Andric       if (ResTy.isScalar() && ResTy.getSizeInBits() < SrcSize) {
5885ffd83dbSDimitry Andric         // First copy the non-typed virtual register into a generic virtual
5895ffd83dbSDimitry Andric         // register
5905ffd83dbSDimitry Andric         Register Tmp1Reg =
5915ffd83dbSDimitry Andric             MRI->createGenericVirtualRegister(LLT::scalar(SrcSize));
5925ffd83dbSDimitry Andric         MIRBuilder.buildCopy(Tmp1Reg, SrcReg);
5935ffd83dbSDimitry Andric         // Need to truncate the result of the register
5945ffd83dbSDimitry Andric         MIRBuilder.buildTrunc(ResRegs[i], Tmp1Reg);
59504eeddc0SDimitry Andric       } else if (ResTy.getSizeInBits() == SrcSize) {
5965ffd83dbSDimitry Andric         MIRBuilder.buildCopy(ResRegs[i], SrcReg);
59704eeddc0SDimitry Andric       } else {
59804eeddc0SDimitry Andric         LLVM_DEBUG(dbgs() << "Unhandled output operand with "
59904eeddc0SDimitry Andric                              "mismatched register size\n");
60004eeddc0SDimitry Andric         return false;
6015ffd83dbSDimitry Andric       }
60204eeddc0SDimitry Andric 
6035ffd83dbSDimitry Andric       break;
6045ffd83dbSDimitry Andric     }
6055ffd83dbSDimitry Andric     case TargetLowering::C_Immediate:
6065ffd83dbSDimitry Andric     case TargetLowering::C_Other:
6075ffd83dbSDimitry Andric       LLVM_DEBUG(
6085ffd83dbSDimitry Andric           dbgs() << "Cannot lower target specific output constraints yet\n");
6095ffd83dbSDimitry Andric       return false;
6105ffd83dbSDimitry Andric     case TargetLowering::C_Memory:
6115ffd83dbSDimitry Andric       break; // Already handled.
61281ad6265SDimitry Andric     case TargetLowering::C_Address:
61381ad6265SDimitry Andric       break; // Silence warning.
6145ffd83dbSDimitry Andric     case TargetLowering::C_Unknown:
6155ffd83dbSDimitry Andric       LLVM_DEBUG(dbgs() << "Unexpected unknown constraint\n");
6165ffd83dbSDimitry Andric       return false;
6175ffd83dbSDimitry Andric     }
6185ffd83dbSDimitry Andric   }
6195ffd83dbSDimitry Andric 
6205ffd83dbSDimitry Andric   return true;
6215ffd83dbSDimitry Andric }
6225ffd83dbSDimitry Andric 
lowerAsmOperandForConstraint(Value * Val,StringRef Constraint,std::vector<MachineOperand> & Ops,MachineIRBuilder & MIRBuilder) const6235ffd83dbSDimitry Andric bool InlineAsmLowering::lowerAsmOperandForConstraint(
6245ffd83dbSDimitry Andric     Value *Val, StringRef Constraint, std::vector<MachineOperand> &Ops,
6255ffd83dbSDimitry Andric     MachineIRBuilder &MIRBuilder) const {
6265ffd83dbSDimitry Andric   if (Constraint.size() > 1)
6275ffd83dbSDimitry Andric     return false;
6285ffd83dbSDimitry Andric 
6295ffd83dbSDimitry Andric   char ConstraintLetter = Constraint[0];
6305ffd83dbSDimitry Andric   switch (ConstraintLetter) {
6315ffd83dbSDimitry Andric   default:
6325ffd83dbSDimitry Andric     return false;
6335ffd83dbSDimitry Andric   case 'i': // Simple Integer or Relocatable Constant
634e8d8bef9SDimitry Andric   case 'n': // immediate integer with a known value.
6355ffd83dbSDimitry Andric     if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
6365ffd83dbSDimitry Andric       assert(CI->getBitWidth() <= 64 &&
6375ffd83dbSDimitry Andric              "expected immediate to fit into 64-bits");
6385ffd83dbSDimitry Andric       // Boolean constants should be zero-extended, others are sign-extended
6395ffd83dbSDimitry Andric       bool IsBool = CI->getBitWidth() == 1;
6405ffd83dbSDimitry Andric       int64_t ExtVal = IsBool ? CI->getZExtValue() : CI->getSExtValue();
6415ffd83dbSDimitry Andric       Ops.push_back(MachineOperand::CreateImm(ExtVal));
6425ffd83dbSDimitry Andric       return true;
6435ffd83dbSDimitry Andric     }
6445ffd83dbSDimitry Andric     return false;
6455ffd83dbSDimitry Andric   }
6465ffd83dbSDimitry Andric }
647