xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp (revision f126d349810fdb512c0b01e101342d430b947488)
1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BranchProbabilityInfo.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
26 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
27 #include "llvm/CodeGen/LowLevelType.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/RuntimeLibcalls.h"
37 #include "llvm/CodeGen/StackProtector.h"
38 #include "llvm/CodeGen/SwitchLoweringUtils.h"
39 #include "llvm/CodeGen/TargetFrameLowering.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetLowering.h"
42 #include "llvm/CodeGen/TargetPassConfig.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/CodeGen/TargetSubtargetInfo.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/CFG.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfo.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/DiagnosticInfo.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/InlineAsm.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/Metadata.h"
62 #include "llvm/IR/PatternMatch.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/InitializePasses.h"
67 #include "llvm/MC/MCContext.h"
68 #include "llvm/Pass.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CodeGen.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/LowLevelTypeImpl.h"
74 #include "llvm/Support/MathExtras.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Target/TargetIntrinsicInfo.h"
77 #include "llvm/Target/TargetMachine.h"
78 #include "llvm/Transforms/Utils/MemoryOpRemark.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <cstddef>
82 #include <cstdint>
83 #include <iterator>
84 #include <string>
85 #include <utility>
86 #include <vector>
87 
88 #define DEBUG_TYPE "irtranslator"
89 
90 using namespace llvm;
91 
92 static cl::opt<bool>
93     EnableCSEInIRTranslator("enable-cse-in-irtranslator",
94                             cl::desc("Should enable CSE in irtranslator"),
95                             cl::Optional, cl::init(false));
96 char IRTranslator::ID = 0;
97 
98 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
99                 false, false)
100 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
101 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
102 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
103 INITIALIZE_PASS_DEPENDENCY(StackProtector)
104 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
105 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
106                 false, false)
107 
108 static void reportTranslationError(MachineFunction &MF,
109                                    const TargetPassConfig &TPC,
110                                    OptimizationRemarkEmitter &ORE,
111                                    OptimizationRemarkMissed &R) {
112   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
113 
114   // Print the function name explicitly if we don't have a debug location (which
115   // makes the diagnostic less useful) or if we're going to emit a raw error.
116   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
117     R << (" (in function: " + MF.getName() + ")").str();
118 
119   if (TPC.isGlobalISelAbortEnabled())
120     report_fatal_error(Twine(R.getMsg()));
121   else
122     ORE.emit(R);
123 }
124 
125 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel)
126     : MachineFunctionPass(ID), OptLevel(optlevel) {}
127 
128 #ifndef NDEBUG
129 namespace {
130 /// Verify that every instruction created has the same DILocation as the
131 /// instruction being translated.
132 class DILocationVerifier : public GISelChangeObserver {
133   const Instruction *CurrInst = nullptr;
134 
135 public:
136   DILocationVerifier() = default;
137   ~DILocationVerifier() = default;
138 
139   const Instruction *getCurrentInst() const { return CurrInst; }
140   void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
141 
142   void erasingInstr(MachineInstr &MI) override {}
143   void changingInstr(MachineInstr &MI) override {}
144   void changedInstr(MachineInstr &MI) override {}
145 
146   void createdInstr(MachineInstr &MI) override {
147     assert(getCurrentInst() && "Inserted instruction without a current MI");
148 
149     // Only print the check message if we're actually checking it.
150 #ifndef NDEBUG
151     LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
152                       << " was copied to " << MI);
153 #endif
154     // We allow insts in the entry block to have a debug loc line of 0 because
155     // they could have originated from constants, and we don't want a jumpy
156     // debug experience.
157     assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
158             MI.getDebugLoc().getLine() == 0) &&
159            "Line info was not transferred to all instructions");
160   }
161 };
162 } // namespace
163 #endif // ifndef NDEBUG
164 
165 
166 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
167   AU.addRequired<StackProtector>();
168   AU.addRequired<TargetPassConfig>();
169   AU.addRequired<GISelCSEAnalysisWrapperPass>();
170   if (OptLevel != CodeGenOpt::None)
171     AU.addRequired<BranchProbabilityInfoWrapperPass>();
172   AU.addRequired<TargetLibraryInfoWrapperPass>();
173   AU.addPreserved<TargetLibraryInfoWrapperPass>();
174   getSelectionDAGFallbackAnalysisUsage(AU);
175   MachineFunctionPass::getAnalysisUsage(AU);
176 }
177 
178 IRTranslator::ValueToVRegInfo::VRegListT &
179 IRTranslator::allocateVRegs(const Value &Val) {
180   auto VRegsIt = VMap.findVRegs(Val);
181   if (VRegsIt != VMap.vregs_end())
182     return *VRegsIt->second;
183   auto *Regs = VMap.getVRegs(Val);
184   auto *Offsets = VMap.getOffsets(Val);
185   SmallVector<LLT, 4> SplitTys;
186   computeValueLLTs(*DL, *Val.getType(), SplitTys,
187                    Offsets->empty() ? Offsets : nullptr);
188   for (unsigned i = 0; i < SplitTys.size(); ++i)
189     Regs->push_back(0);
190   return *Regs;
191 }
192 
193 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
194   auto VRegsIt = VMap.findVRegs(Val);
195   if (VRegsIt != VMap.vregs_end())
196     return *VRegsIt->second;
197 
198   if (Val.getType()->isVoidTy())
199     return *VMap.getVRegs(Val);
200 
201   // Create entry for this type.
202   auto *VRegs = VMap.getVRegs(Val);
203   auto *Offsets = VMap.getOffsets(Val);
204 
205   assert(Val.getType()->isSized() &&
206          "Don't know how to create an empty vreg");
207 
208   SmallVector<LLT, 4> SplitTys;
209   computeValueLLTs(*DL, *Val.getType(), SplitTys,
210                    Offsets->empty() ? Offsets : nullptr);
211 
212   if (!isa<Constant>(Val)) {
213     for (auto Ty : SplitTys)
214       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
215     return *VRegs;
216   }
217 
218   if (Val.getType()->isAggregateType()) {
219     // UndefValue, ConstantAggregateZero
220     auto &C = cast<Constant>(Val);
221     unsigned Idx = 0;
222     while (auto Elt = C.getAggregateElement(Idx++)) {
223       auto EltRegs = getOrCreateVRegs(*Elt);
224       llvm::copy(EltRegs, std::back_inserter(*VRegs));
225     }
226   } else {
227     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
228     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
229     bool Success = translate(cast<Constant>(Val), VRegs->front());
230     if (!Success) {
231       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
232                                  MF->getFunction().getSubprogram(),
233                                  &MF->getFunction().getEntryBlock());
234       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
235       reportTranslationError(*MF, *TPC, *ORE, R);
236       return *VRegs;
237     }
238   }
239 
240   return *VRegs;
241 }
242 
243 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
244   auto MapEntry = FrameIndices.find(&AI);
245   if (MapEntry != FrameIndices.end())
246     return MapEntry->second;
247 
248   uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
249   uint64_t Size =
250       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
251 
252   // Always allocate at least one byte.
253   Size = std::max<uint64_t>(Size, 1u);
254 
255   int &FI = FrameIndices[&AI];
256   FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
257   return FI;
258 }
259 
260 Align IRTranslator::getMemOpAlign(const Instruction &I) {
261   if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
262     return SI->getAlign();
263   if (const LoadInst *LI = dyn_cast<LoadInst>(&I))
264     return LI->getAlign();
265   if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I))
266     return AI->getAlign();
267   if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I))
268     return AI->getAlign();
269 
270   OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
271   R << "unable to translate memop: " << ore::NV("Opcode", &I);
272   reportTranslationError(*MF, *TPC, *ORE, R);
273   return Align(1);
274 }
275 
276 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
277   MachineBasicBlock *&MBB = BBToMBB[&BB];
278   assert(MBB && "BasicBlock was not encountered before");
279   return *MBB;
280 }
281 
282 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
283   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
284   MachinePreds[Edge].push_back(NewPred);
285 }
286 
287 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
288                                      MachineIRBuilder &MIRBuilder) {
289   // Get or create a virtual register for each value.
290   // Unless the value is a Constant => loadimm cst?
291   // or inline constant each time?
292   // Creation of a virtual register needs to have a size.
293   Register Op0 = getOrCreateVReg(*U.getOperand(0));
294   Register Op1 = getOrCreateVReg(*U.getOperand(1));
295   Register Res = getOrCreateVReg(U);
296   uint16_t Flags = 0;
297   if (isa<Instruction>(U)) {
298     const Instruction &I = cast<Instruction>(U);
299     Flags = MachineInstr::copyFlagsFromInstruction(I);
300   }
301 
302   MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
303   return true;
304 }
305 
306 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
307                                     MachineIRBuilder &MIRBuilder) {
308   Register Op0 = getOrCreateVReg(*U.getOperand(0));
309   Register Res = getOrCreateVReg(U);
310   uint16_t Flags = 0;
311   if (isa<Instruction>(U)) {
312     const Instruction &I = cast<Instruction>(U);
313     Flags = MachineInstr::copyFlagsFromInstruction(I);
314   }
315   MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
316   return true;
317 }
318 
319 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
320   return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
321 }
322 
323 bool IRTranslator::translateCompare(const User &U,
324                                     MachineIRBuilder &MIRBuilder) {
325   auto *CI = dyn_cast<CmpInst>(&U);
326   Register Op0 = getOrCreateVReg(*U.getOperand(0));
327   Register Op1 = getOrCreateVReg(*U.getOperand(1));
328   Register Res = getOrCreateVReg(U);
329   CmpInst::Predicate Pred =
330       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
331                                     cast<ConstantExpr>(U).getPredicate());
332   if (CmpInst::isIntPredicate(Pred))
333     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
334   else if (Pred == CmpInst::FCMP_FALSE)
335     MIRBuilder.buildCopy(
336         Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
337   else if (Pred == CmpInst::FCMP_TRUE)
338     MIRBuilder.buildCopy(
339         Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
340   else {
341     uint16_t Flags = 0;
342     if (CI)
343       Flags = MachineInstr::copyFlagsFromInstruction(*CI);
344     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags);
345   }
346 
347   return true;
348 }
349 
350 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
351   const ReturnInst &RI = cast<ReturnInst>(U);
352   const Value *Ret = RI.getReturnValue();
353   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
354     Ret = nullptr;
355 
356   ArrayRef<Register> VRegs;
357   if (Ret)
358     VRegs = getOrCreateVRegs(*Ret);
359 
360   Register SwiftErrorVReg = 0;
361   if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
362     SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
363         &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
364   }
365 
366   // The target may mess up with the insertion point, but
367   // this is not important as a return is the last instruction
368   // of the block anyway.
369   return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
370 }
371 
372 void IRTranslator::emitBranchForMergedCondition(
373     const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
374     MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
375     BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
376   // If the leaf of the tree is a comparison, merge the condition into
377   // the caseblock.
378   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
379     CmpInst::Predicate Condition;
380     if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
381       Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
382     } else {
383       const FCmpInst *FC = cast<FCmpInst>(Cond);
384       Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
385     }
386 
387     SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
388                            BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
389                            CurBuilder->getDebugLoc(), TProb, FProb);
390     SL->SwitchCases.push_back(CB);
391     return;
392   }
393 
394   // Create a CaseBlock record representing this branch.
395   CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
396   SwitchCG::CaseBlock CB(
397       Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
398       nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
399   SL->SwitchCases.push_back(CB);
400 }
401 
402 static bool isValInBlock(const Value *V, const BasicBlock *BB) {
403   if (const Instruction *I = dyn_cast<Instruction>(V))
404     return I->getParent() == BB;
405   return true;
406 }
407 
408 void IRTranslator::findMergedConditions(
409     const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
410     MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
411     Instruction::BinaryOps Opc, BranchProbability TProb,
412     BranchProbability FProb, bool InvertCond) {
413   using namespace PatternMatch;
414   assert((Opc == Instruction::And || Opc == Instruction::Or) &&
415          "Expected Opc to be AND/OR");
416   // Skip over not part of the tree and remember to invert op and operands at
417   // next level.
418   Value *NotCond;
419   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
420       isValInBlock(NotCond, CurBB->getBasicBlock())) {
421     findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
422                          !InvertCond);
423     return;
424   }
425 
426   const Instruction *BOp = dyn_cast<Instruction>(Cond);
427   const Value *BOpOp0, *BOpOp1;
428   // Compute the effective opcode for Cond, taking into account whether it needs
429   // to be inverted, e.g.
430   //   and (not (or A, B)), C
431   // gets lowered as
432   //   and (and (not A, not B), C)
433   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
434   if (BOp) {
435     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
436                ? Instruction::And
437                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
438                       ? Instruction::Or
439                       : (Instruction::BinaryOps)0);
440     if (InvertCond) {
441       if (BOpc == Instruction::And)
442         BOpc = Instruction::Or;
443       else if (BOpc == Instruction::Or)
444         BOpc = Instruction::And;
445     }
446   }
447 
448   // If this node is not part of the or/and tree, emit it as a branch.
449   // Note that all nodes in the tree should have same opcode.
450   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
451   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
452       !isValInBlock(BOpOp0, CurBB->getBasicBlock()) ||
453       !isValInBlock(BOpOp1, CurBB->getBasicBlock())) {
454     emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
455                                  InvertCond);
456     return;
457   }
458 
459   //  Create TmpBB after CurBB.
460   MachineFunction::iterator BBI(CurBB);
461   MachineBasicBlock *TmpBB =
462       MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
463   CurBB->getParent()->insert(++BBI, TmpBB);
464 
465   if (Opc == Instruction::Or) {
466     // Codegen X | Y as:
467     // BB1:
468     //   jmp_if_X TBB
469     //   jmp TmpBB
470     // TmpBB:
471     //   jmp_if_Y TBB
472     //   jmp FBB
473     //
474 
475     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
476     // The requirement is that
477     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
478     //     = TrueProb for original BB.
479     // Assuming the original probabilities are A and B, one choice is to set
480     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
481     // A/(1+B) and 2B/(1+B). This choice assumes that
482     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
483     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
484     // TmpBB, but the math is more complicated.
485 
486     auto NewTrueProb = TProb / 2;
487     auto NewFalseProb = TProb / 2 + FProb;
488     // Emit the LHS condition.
489     findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
490                          NewFalseProb, InvertCond);
491 
492     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
493     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
494     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
495     // Emit the RHS condition into TmpBB.
496     findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
497                          Probs[1], InvertCond);
498   } else {
499     assert(Opc == Instruction::And && "Unknown merge op!");
500     // Codegen X & Y as:
501     // BB1:
502     //   jmp_if_X TmpBB
503     //   jmp FBB
504     // TmpBB:
505     //   jmp_if_Y TBB
506     //   jmp FBB
507     //
508     //  This requires creation of TmpBB after CurBB.
509 
510     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
511     // The requirement is that
512     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
513     //     = FalseProb for original BB.
514     // Assuming the original probabilities are A and B, one choice is to set
515     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
516     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
517     // TrueProb for BB1 * FalseProb for TmpBB.
518 
519     auto NewTrueProb = TProb + FProb / 2;
520     auto NewFalseProb = FProb / 2;
521     // Emit the LHS condition.
522     findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
523                          NewFalseProb, InvertCond);
524 
525     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
526     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
527     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
528     // Emit the RHS condition into TmpBB.
529     findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
530                          Probs[1], InvertCond);
531   }
532 }
533 
534 bool IRTranslator::shouldEmitAsBranches(
535     const std::vector<SwitchCG::CaseBlock> &Cases) {
536   // For multiple cases, it's better to emit as branches.
537   if (Cases.size() != 2)
538     return true;
539 
540   // If this is two comparisons of the same values or'd or and'd together, they
541   // will get folded into a single comparison, so don't emit two blocks.
542   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
543        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
544       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
545        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
546     return false;
547   }
548 
549   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
550   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
551   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
552       Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
553       isa<Constant>(Cases[0].CmpRHS) &&
554       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
555     if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
556         Cases[0].TrueBB == Cases[1].ThisBB)
557       return false;
558     if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
559         Cases[0].FalseBB == Cases[1].ThisBB)
560       return false;
561   }
562 
563   return true;
564 }
565 
566 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
567   const BranchInst &BrInst = cast<BranchInst>(U);
568   auto &CurMBB = MIRBuilder.getMBB();
569   auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));
570 
571   if (BrInst.isUnconditional()) {
572     // If the unconditional target is the layout successor, fallthrough.
573     if (OptLevel == CodeGenOpt::None || !CurMBB.isLayoutSuccessor(Succ0MBB))
574       MIRBuilder.buildBr(*Succ0MBB);
575 
576     // Link successors.
577     for (const BasicBlock *Succ : successors(&BrInst))
578       CurMBB.addSuccessor(&getMBB(*Succ));
579     return true;
580   }
581 
582   // If this condition is one of the special cases we handle, do special stuff
583   // now.
584   const Value *CondVal = BrInst.getCondition();
585   MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));
586 
587   const auto &TLI = *MF->getSubtarget().getTargetLowering();
588 
589   // If this is a series of conditions that are or'd or and'd together, emit
590   // this as a sequence of branches instead of setcc's with and/or operations.
591   // As long as jumps are not expensive (exceptions for multi-use logic ops,
592   // unpredictable branches, and vector extracts because those jumps are likely
593   // expensive for any target), this should improve performance.
594   // For example, instead of something like:
595   //     cmp A, B
596   //     C = seteq
597   //     cmp D, E
598   //     F = setle
599   //     or C, F
600   //     jnz foo
601   // Emit:
602   //     cmp A, B
603   //     je foo
604   //     cmp D, E
605   //     jle foo
606   using namespace PatternMatch;
607   const Instruction *CondI = dyn_cast<Instruction>(CondVal);
608   if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() &&
609       !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) {
610     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
611     Value *Vec;
612     const Value *BOp0, *BOp1;
613     if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
614       Opcode = Instruction::And;
615     else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
616       Opcode = Instruction::Or;
617 
618     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
619                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
620       findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
621                            getEdgeProbability(&CurMBB, Succ0MBB),
622                            getEdgeProbability(&CurMBB, Succ1MBB),
623                            /*InvertCond=*/false);
624       assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
625 
626       // Allow some cases to be rejected.
627       if (shouldEmitAsBranches(SL->SwitchCases)) {
628         // Emit the branch for this block.
629         emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
630         SL->SwitchCases.erase(SL->SwitchCases.begin());
631         return true;
632       }
633 
634       // Okay, we decided not to do this, remove any inserted MBB's and clear
635       // SwitchCases.
636       for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
637         MF->erase(SL->SwitchCases[I].ThisBB);
638 
639       SL->SwitchCases.clear();
640     }
641   }
642 
643   // Create a CaseBlock record representing this branch.
644   SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
645                          ConstantInt::getTrue(MF->getFunction().getContext()),
646                          nullptr, Succ0MBB, Succ1MBB, &CurMBB,
647                          CurBuilder->getDebugLoc());
648 
649   // Use emitSwitchCase to actually insert the fast branch sequence for this
650   // cond branch.
651   emitSwitchCase(CB, &CurMBB, *CurBuilder);
652   return true;
653 }
654 
655 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
656                                         MachineBasicBlock *Dst,
657                                         BranchProbability Prob) {
658   if (!FuncInfo.BPI) {
659     Src->addSuccessorWithoutProb(Dst);
660     return;
661   }
662   if (Prob.isUnknown())
663     Prob = getEdgeProbability(Src, Dst);
664   Src->addSuccessor(Dst, Prob);
665 }
666 
667 BranchProbability
668 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
669                                  const MachineBasicBlock *Dst) const {
670   const BasicBlock *SrcBB = Src->getBasicBlock();
671   const BasicBlock *DstBB = Dst->getBasicBlock();
672   if (!FuncInfo.BPI) {
673     // If BPI is not available, set the default probability as 1 / N, where N is
674     // the number of successors.
675     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
676     return BranchProbability(1, SuccSize);
677   }
678   return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
679 }
680 
681 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
682   using namespace SwitchCG;
683   // Extract cases from the switch.
684   const SwitchInst &SI = cast<SwitchInst>(U);
685   BranchProbabilityInfo *BPI = FuncInfo.BPI;
686   CaseClusterVector Clusters;
687   Clusters.reserve(SI.getNumCases());
688   for (auto &I : SI.cases()) {
689     MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
690     assert(Succ && "Could not find successor mbb in mapping");
691     const ConstantInt *CaseVal = I.getCaseValue();
692     BranchProbability Prob =
693         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
694             : BranchProbability(1, SI.getNumCases() + 1);
695     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
696   }
697 
698   MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
699 
700   // Cluster adjacent cases with the same destination. We do this at all
701   // optimization levels because it's cheap to do and will make codegen faster
702   // if there are many clusters.
703   sortAndRangeify(Clusters);
704 
705   MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
706 
707   // If there is only the default destination, jump there directly.
708   if (Clusters.empty()) {
709     SwitchMBB->addSuccessor(DefaultMBB);
710     if (DefaultMBB != SwitchMBB->getNextNode())
711       MIB.buildBr(*DefaultMBB);
712     return true;
713   }
714 
715   SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
716   SL->findBitTestClusters(Clusters, &SI);
717 
718   LLVM_DEBUG({
719     dbgs() << "Case clusters: ";
720     for (const CaseCluster &C : Clusters) {
721       if (C.Kind == CC_JumpTable)
722         dbgs() << "JT:";
723       if (C.Kind == CC_BitTests)
724         dbgs() << "BT:";
725 
726       C.Low->getValue().print(dbgs(), true);
727       if (C.Low != C.High) {
728         dbgs() << '-';
729         C.High->getValue().print(dbgs(), true);
730       }
731       dbgs() << ' ';
732     }
733     dbgs() << '\n';
734   });
735 
736   assert(!Clusters.empty());
737   SwitchWorkList WorkList;
738   CaseClusterIt First = Clusters.begin();
739   CaseClusterIt Last = Clusters.end() - 1;
740   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
741   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
742 
743   // FIXME: At the moment we don't do any splitting optimizations here like
744   // SelectionDAG does, so this worklist only has one entry.
745   while (!WorkList.empty()) {
746     SwitchWorkListItem W = WorkList.pop_back_val();
747     if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
748       return false;
749   }
750   return true;
751 }
752 
753 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
754                                  MachineBasicBlock *MBB) {
755   // Emit the code for the jump table
756   assert(JT.Reg != -1U && "Should lower JT Header first!");
757   MachineIRBuilder MIB(*MBB->getParent());
758   MIB.setMBB(*MBB);
759   MIB.setDebugLoc(CurBuilder->getDebugLoc());
760 
761   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
762   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
763 
764   auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
765   MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
766 }
767 
768 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
769                                        SwitchCG::JumpTableHeader &JTH,
770                                        MachineBasicBlock *HeaderBB) {
771   MachineIRBuilder MIB(*HeaderBB->getParent());
772   MIB.setMBB(*HeaderBB);
773   MIB.setDebugLoc(CurBuilder->getDebugLoc());
774 
775   const Value &SValue = *JTH.SValue;
776   // Subtract the lowest switch case value from the value being switched on.
777   const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
778   Register SwitchOpReg = getOrCreateVReg(SValue);
779   auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
780   auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
781 
782   // This value may be smaller or larger than the target's pointer type, and
783   // therefore require extension or truncating.
784   Type *PtrIRTy = SValue.getType()->getPointerTo();
785   const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
786   Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
787 
788   JT.Reg = Sub.getReg(0);
789 
790   if (JTH.FallthroughUnreachable) {
791     if (JT.MBB != HeaderBB->getNextNode())
792       MIB.buildBr(*JT.MBB);
793     return true;
794   }
795 
796   // Emit the range check for the jump table, and branch to the default block
797   // for the switch statement if the value being switched on exceeds the
798   // largest case in the switch.
799   auto Cst = getOrCreateVReg(
800       *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
801   Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
802   auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
803 
804   auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
805 
806   // Avoid emitting unnecessary branches to the next block.
807   if (JT.MBB != HeaderBB->getNextNode())
808     BrCond = MIB.buildBr(*JT.MBB);
809   return true;
810 }
811 
812 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
813                                   MachineBasicBlock *SwitchBB,
814                                   MachineIRBuilder &MIB) {
815   Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
816   Register Cond;
817   DebugLoc OldDbgLoc = MIB.getDebugLoc();
818   MIB.setDebugLoc(CB.DbgLoc);
819   MIB.setMBB(*CB.ThisBB);
820 
821   if (CB.PredInfo.NoCmp) {
822     // Branch or fall through to TrueBB.
823     addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
824     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
825                       CB.ThisBB);
826     CB.ThisBB->normalizeSuccProbs();
827     if (CB.TrueBB != CB.ThisBB->getNextNode())
828       MIB.buildBr(*CB.TrueBB);
829     MIB.setDebugLoc(OldDbgLoc);
830     return;
831   }
832 
833   const LLT i1Ty = LLT::scalar(1);
834   // Build the compare.
835   if (!CB.CmpMHS) {
836     const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
837     // For conditional branch lowering, we might try to do something silly like
838     // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
839     // just re-use the existing condition vreg.
840     if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI &&
841         CI->getZExtValue() == 1 && CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
842       Cond = CondLHS;
843     } else {
844       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
845       if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
846         Cond =
847             MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
848       else
849         Cond =
850             MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
851     }
852   } else {
853     assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
854            "Can only handle SLE ranges");
855 
856     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
857     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
858 
859     Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
860     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
861       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
862       Cond =
863           MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
864     } else {
865       const LLT CmpTy = MRI->getType(CmpOpReg);
866       auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
867       auto Diff = MIB.buildConstant(CmpTy, High - Low);
868       Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
869     }
870   }
871 
872   // Update successor info
873   addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
874 
875   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
876                     CB.ThisBB);
877 
878   // TrueBB and FalseBB are always different unless the incoming IR is
879   // degenerate. This only happens when running llc on weird IR.
880   if (CB.TrueBB != CB.FalseBB)
881     addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
882   CB.ThisBB->normalizeSuccProbs();
883 
884   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
885                     CB.ThisBB);
886 
887   MIB.buildBrCond(Cond, *CB.TrueBB);
888   MIB.buildBr(*CB.FalseBB);
889   MIB.setDebugLoc(OldDbgLoc);
890 }
891 
892 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
893                                           MachineBasicBlock *SwitchMBB,
894                                           MachineBasicBlock *CurMBB,
895                                           MachineBasicBlock *DefaultMBB,
896                                           MachineIRBuilder &MIB,
897                                           MachineFunction::iterator BBI,
898                                           BranchProbability UnhandledProbs,
899                                           SwitchCG::CaseClusterIt I,
900                                           MachineBasicBlock *Fallthrough,
901                                           bool FallthroughUnreachable) {
902   using namespace SwitchCG;
903   MachineFunction *CurMF = SwitchMBB->getParent();
904   // FIXME: Optimize away range check based on pivot comparisons.
905   JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
906   SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
907   BranchProbability DefaultProb = W.DefaultProb;
908 
909   // The jump block hasn't been inserted yet; insert it here.
910   MachineBasicBlock *JumpMBB = JT->MBB;
911   CurMF->insert(BBI, JumpMBB);
912 
913   // Since the jump table block is separate from the switch block, we need
914   // to keep track of it as a machine predecessor to the default block,
915   // otherwise we lose the phi edges.
916   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
917                     CurMBB);
918   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
919                     JumpMBB);
920 
921   auto JumpProb = I->Prob;
922   auto FallthroughProb = UnhandledProbs;
923 
924   // If the default statement is a target of the jump table, we evenly
925   // distribute the default probability to successors of CurMBB. Also
926   // update the probability on the edge from JumpMBB to Fallthrough.
927   for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
928                                         SE = JumpMBB->succ_end();
929        SI != SE; ++SI) {
930     if (*SI == DefaultMBB) {
931       JumpProb += DefaultProb / 2;
932       FallthroughProb -= DefaultProb / 2;
933       JumpMBB->setSuccProbability(SI, DefaultProb / 2);
934       JumpMBB->normalizeSuccProbs();
935     } else {
936       // Also record edges from the jump table block to it's successors.
937       addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
938                         JumpMBB);
939     }
940   }
941 
942   if (FallthroughUnreachable)
943     JTH->FallthroughUnreachable = true;
944 
945   if (!JTH->FallthroughUnreachable)
946     addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
947   addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
948   CurMBB->normalizeSuccProbs();
949 
950   // The jump table header will be inserted in our current block, do the
951   // range check, and fall through to our fallthrough block.
952   JTH->HeaderBB = CurMBB;
953   JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
954 
955   // If we're in the right place, emit the jump table header right now.
956   if (CurMBB == SwitchMBB) {
957     if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
958       return false;
959     JTH->Emitted = true;
960   }
961   return true;
962 }
963 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
964                                             Value *Cond,
965                                             MachineBasicBlock *Fallthrough,
966                                             bool FallthroughUnreachable,
967                                             BranchProbability UnhandledProbs,
968                                             MachineBasicBlock *CurMBB,
969                                             MachineIRBuilder &MIB,
970                                             MachineBasicBlock *SwitchMBB) {
971   using namespace SwitchCG;
972   const Value *RHS, *LHS, *MHS;
973   CmpInst::Predicate Pred;
974   if (I->Low == I->High) {
975     // Check Cond == I->Low.
976     Pred = CmpInst::ICMP_EQ;
977     LHS = Cond;
978     RHS = I->Low;
979     MHS = nullptr;
980   } else {
981     // Check I->Low <= Cond <= I->High.
982     Pred = CmpInst::ICMP_SLE;
983     LHS = I->Low;
984     MHS = Cond;
985     RHS = I->High;
986   }
987 
988   // If Fallthrough is unreachable, fold away the comparison.
989   // The false probability is the sum of all unhandled cases.
990   CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
991                CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
992 
993   emitSwitchCase(CB, SwitchMBB, MIB);
994   return true;
995 }
996 
997 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
998                                      MachineBasicBlock *SwitchBB) {
999   MachineIRBuilder &MIB = *CurBuilder;
1000   MIB.setMBB(*SwitchBB);
1001 
1002   // Subtract the minimum value.
1003   Register SwitchOpReg = getOrCreateVReg(*B.SValue);
1004 
1005   LLT SwitchOpTy = MRI->getType(SwitchOpReg);
1006   Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
1007   auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
1008 
1009   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
1010   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1011 
1012   LLT MaskTy = SwitchOpTy;
1013   if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() ||
1014       !isPowerOf2_32(MaskTy.getSizeInBits()))
1015     MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1016   else {
1017     // Ensure that the type will fit the mask value.
1018     for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
1019       if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
1020         // Switch table case range are encoded into series of masks.
1021         // Just use pointer type, it's guaranteed to fit.
1022         MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1023         break;
1024       }
1025     }
1026   }
1027   Register SubReg = RangeSub.getReg(0);
1028   if (SwitchOpTy != MaskTy)
1029     SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);
1030 
1031   B.RegVT = getMVTForLLT(MaskTy);
1032   B.Reg = SubReg;
1033 
1034   MachineBasicBlock *MBB = B.Cases[0].ThisBB;
1035 
1036   if (!B.FallthroughUnreachable)
1037     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
1038   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
1039 
1040   SwitchBB->normalizeSuccProbs();
1041 
1042   if (!B.FallthroughUnreachable) {
1043     // Conditional branch to the default block.
1044     auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
1045     auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
1046                                   RangeSub, RangeCst);
1047     MIB.buildBrCond(RangeCmp, *B.Default);
1048   }
1049 
1050   // Avoid emitting unnecessary branches to the next block.
1051   if (MBB != SwitchBB->getNextNode())
1052     MIB.buildBr(*MBB);
1053 }
1054 
1055 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
1056                                    MachineBasicBlock *NextMBB,
1057                                    BranchProbability BranchProbToNext,
1058                                    Register Reg, SwitchCG::BitTestCase &B,
1059                                    MachineBasicBlock *SwitchBB) {
1060   MachineIRBuilder &MIB = *CurBuilder;
1061   MIB.setMBB(*SwitchBB);
1062 
1063   LLT SwitchTy = getLLTForMVT(BB.RegVT);
1064   Register Cmp;
1065   unsigned PopCount = countPopulation(B.Mask);
1066   if (PopCount == 1) {
1067     // Testing for a single bit; just compare the shift count with what it
1068     // would need to be to shift a 1 bit in that position.
1069     auto MaskTrailingZeros =
1070         MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask));
1071     Cmp =
1072         MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
1073             .getReg(0);
1074   } else if (PopCount == BB.Range) {
1075     // There is only one zero bit in the range, test for it directly.
1076     auto MaskTrailingOnes =
1077         MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask));
1078     Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
1079               .getReg(0);
1080   } else {
1081     // Make desired shift.
1082     auto CstOne = MIB.buildConstant(SwitchTy, 1);
1083     auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);
1084 
1085     // Emit bit tests and jumps.
1086     auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
1087     auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
1088     auto CstZero = MIB.buildConstant(SwitchTy, 0);
1089     Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
1090               .getReg(0);
1091   }
1092 
1093   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
1094   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
1095   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
1096   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
1097   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
1098   // one as they are relative probabilities (and thus work more like weights),
1099   // and hence we need to normalize them to let the sum of them become one.
1100   SwitchBB->normalizeSuccProbs();
1101 
1102   // Record the fact that the IR edge from the header to the bit test target
1103   // will go through our new block. Neeeded for PHIs to have nodes added.
1104   addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
1105                     SwitchBB);
1106 
1107   MIB.buildBrCond(Cmp, *B.TargetBB);
1108 
1109   // Avoid emitting unnecessary branches to the next block.
1110   if (NextMBB != SwitchBB->getNextNode())
1111     MIB.buildBr(*NextMBB);
1112 }
1113 
1114 bool IRTranslator::lowerBitTestWorkItem(
1115     SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
1116     MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
1117     MachineIRBuilder &MIB, MachineFunction::iterator BBI,
1118     BranchProbability DefaultProb, BranchProbability UnhandledProbs,
1119     SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
1120     bool FallthroughUnreachable) {
1121   using namespace SwitchCG;
1122   MachineFunction *CurMF = SwitchMBB->getParent();
1123   // FIXME: Optimize away range check based on pivot comparisons.
1124   BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
1125   // The bit test blocks haven't been inserted yet; insert them here.
1126   for (BitTestCase &BTC : BTB->Cases)
1127     CurMF->insert(BBI, BTC.ThisBB);
1128 
1129   // Fill in fields of the BitTestBlock.
1130   BTB->Parent = CurMBB;
1131   BTB->Default = Fallthrough;
1132 
1133   BTB->DefaultProb = UnhandledProbs;
1134   // If the cases in bit test don't form a contiguous range, we evenly
1135   // distribute the probability on the edge to Fallthrough to two
1136   // successors of CurMBB.
1137   if (!BTB->ContiguousRange) {
1138     BTB->Prob += DefaultProb / 2;
1139     BTB->DefaultProb -= DefaultProb / 2;
1140   }
1141 
1142   if (FallthroughUnreachable)
1143     BTB->FallthroughUnreachable = true;
1144 
1145   // If we're in the right place, emit the bit test header right now.
1146   if (CurMBB == SwitchMBB) {
1147     emitBitTestHeader(*BTB, SwitchMBB);
1148     BTB->Emitted = true;
1149   }
1150   return true;
1151 }
1152 
1153 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
1154                                        Value *Cond,
1155                                        MachineBasicBlock *SwitchMBB,
1156                                        MachineBasicBlock *DefaultMBB,
1157                                        MachineIRBuilder &MIB) {
1158   using namespace SwitchCG;
1159   MachineFunction *CurMF = FuncInfo.MF;
1160   MachineBasicBlock *NextMBB = nullptr;
1161   MachineFunction::iterator BBI(W.MBB);
1162   if (++BBI != FuncInfo.MF->end())
1163     NextMBB = &*BBI;
1164 
1165   if (EnableOpts) {
1166     // Here, we order cases by probability so the most likely case will be
1167     // checked first. However, two clusters can have the same probability in
1168     // which case their relative ordering is non-deterministic. So we use Low
1169     // as a tie-breaker as clusters are guaranteed to never overlap.
1170     llvm::sort(W.FirstCluster, W.LastCluster + 1,
1171                [](const CaseCluster &a, const CaseCluster &b) {
1172                  return a.Prob != b.Prob
1173                             ? a.Prob > b.Prob
1174                             : a.Low->getValue().slt(b.Low->getValue());
1175                });
1176 
1177     // Rearrange the case blocks so that the last one falls through if possible
1178     // without changing the order of probabilities.
1179     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
1180       --I;
1181       if (I->Prob > W.LastCluster->Prob)
1182         break;
1183       if (I->Kind == CC_Range && I->MBB == NextMBB) {
1184         std::swap(*I, *W.LastCluster);
1185         break;
1186       }
1187     }
1188   }
1189 
1190   // Compute total probability.
1191   BranchProbability DefaultProb = W.DefaultProb;
1192   BranchProbability UnhandledProbs = DefaultProb;
1193   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
1194     UnhandledProbs += I->Prob;
1195 
1196   MachineBasicBlock *CurMBB = W.MBB;
1197   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
1198     bool FallthroughUnreachable = false;
1199     MachineBasicBlock *Fallthrough;
1200     if (I == W.LastCluster) {
1201       // For the last cluster, fall through to the default destination.
1202       Fallthrough = DefaultMBB;
1203       FallthroughUnreachable = isa<UnreachableInst>(
1204           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
1205     } else {
1206       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
1207       CurMF->insert(BBI, Fallthrough);
1208     }
1209     UnhandledProbs -= I->Prob;
1210 
1211     switch (I->Kind) {
1212     case CC_BitTests: {
1213       if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1214                                 DefaultProb, UnhandledProbs, I, Fallthrough,
1215                                 FallthroughUnreachable)) {
1216         LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
1217         return false;
1218       }
1219       break;
1220     }
1221 
1222     case CC_JumpTable: {
1223       if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1224                                   UnhandledProbs, I, Fallthrough,
1225                                   FallthroughUnreachable)) {
1226         LLVM_DEBUG(dbgs() << "Failed to lower jump table");
1227         return false;
1228       }
1229       break;
1230     }
1231     case CC_Range: {
1232       if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
1233                                     FallthroughUnreachable, UnhandledProbs,
1234                                     CurMBB, MIB, SwitchMBB)) {
1235         LLVM_DEBUG(dbgs() << "Failed to lower switch range");
1236         return false;
1237       }
1238       break;
1239     }
1240     }
1241     CurMBB = Fallthrough;
1242   }
1243 
1244   return true;
1245 }
1246 
1247 bool IRTranslator::translateIndirectBr(const User &U,
1248                                        MachineIRBuilder &MIRBuilder) {
1249   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
1250 
1251   const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
1252   MIRBuilder.buildBrIndirect(Tgt);
1253 
1254   // Link successors.
1255   SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
1256   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
1257   for (const BasicBlock *Succ : successors(&BrInst)) {
1258     // It's legal for indirectbr instructions to have duplicate blocks in the
1259     // destination list. We don't allow this in MIR. Skip anything that's
1260     // already a successor.
1261     if (!AddedSuccessors.insert(Succ).second)
1262       continue;
1263     CurBB.addSuccessor(&getMBB(*Succ));
1264   }
1265 
1266   return true;
1267 }
1268 
1269 static bool isSwiftError(const Value *V) {
1270   if (auto Arg = dyn_cast<Argument>(V))
1271     return Arg->hasSwiftErrorAttr();
1272   if (auto AI = dyn_cast<AllocaInst>(V))
1273     return AI->isSwiftError();
1274   return false;
1275 }
1276 
1277 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
1278   const LoadInst &LI = cast<LoadInst>(U);
1279   if (DL->getTypeStoreSize(LI.getType()) == 0)
1280     return true;
1281 
1282   ArrayRef<Register> Regs = getOrCreateVRegs(LI);
1283   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
1284   Register Base = getOrCreateVReg(*LI.getPointerOperand());
1285 
1286   Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
1287   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1288 
1289   if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
1290     assert(Regs.size() == 1 && "swifterror should be single pointer");
1291     Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
1292                                                     LI.getPointerOperand());
1293     MIRBuilder.buildCopy(Regs[0], VReg);
1294     return true;
1295   }
1296 
1297   auto &TLI = *MF->getSubtarget().getTargetLowering();
1298   MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL);
1299 
1300   const MDNode *Ranges =
1301       Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
1302   for (unsigned i = 0; i < Regs.size(); ++i) {
1303     Register Addr;
1304     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1305 
1306     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
1307     Align BaseAlign = getMemOpAlign(LI);
1308     auto MMO = MF->getMachineMemOperand(
1309         Ptr, Flags, MRI->getType(Regs[i]),
1310         commonAlignment(BaseAlign, Offsets[i] / 8), LI.getAAMetadata(), Ranges,
1311         LI.getSyncScopeID(), LI.getOrdering());
1312     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
1313   }
1314 
1315   return true;
1316 }
1317 
1318 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
1319   const StoreInst &SI = cast<StoreInst>(U);
1320   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
1321     return true;
1322 
1323   ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
1324   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
1325   Register Base = getOrCreateVReg(*SI.getPointerOperand());
1326 
1327   Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
1328   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1329 
1330   if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
1331     assert(Vals.size() == 1 && "swifterror should be single pointer");
1332 
1333     Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
1334                                                     SI.getPointerOperand());
1335     MIRBuilder.buildCopy(VReg, Vals[0]);
1336     return true;
1337   }
1338 
1339   auto &TLI = *MF->getSubtarget().getTargetLowering();
1340   MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
1341 
1342   for (unsigned i = 0; i < Vals.size(); ++i) {
1343     Register Addr;
1344     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1345 
1346     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
1347     Align BaseAlign = getMemOpAlign(SI);
1348     auto MMO = MF->getMachineMemOperand(
1349         Ptr, Flags, MRI->getType(Vals[i]),
1350         commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr,
1351         SI.getSyncScopeID(), SI.getOrdering());
1352     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
1353   }
1354   return true;
1355 }
1356 
1357 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
1358   const Value *Src = U.getOperand(0);
1359   Type *Int32Ty = Type::getInt32Ty(U.getContext());
1360 
1361   // getIndexedOffsetInType is designed for GEPs, so the first index is the
1362   // usual array element rather than looking into the actual aggregate.
1363   SmallVector<Value *, 1> Indices;
1364   Indices.push_back(ConstantInt::get(Int32Ty, 0));
1365 
1366   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
1367     for (auto Idx : EVI->indices())
1368       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1369   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
1370     for (auto Idx : IVI->indices())
1371       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1372   } else {
1373     for (unsigned i = 1; i < U.getNumOperands(); ++i)
1374       Indices.push_back(U.getOperand(i));
1375   }
1376 
1377   return 8 * static_cast<uint64_t>(
1378                  DL.getIndexedOffsetInType(Src->getType(), Indices));
1379 }
1380 
1381 bool IRTranslator::translateExtractValue(const User &U,
1382                                          MachineIRBuilder &MIRBuilder) {
1383   const Value *Src = U.getOperand(0);
1384   uint64_t Offset = getOffsetFromIndices(U, *DL);
1385   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1386   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
1387   unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
1388   auto &DstRegs = allocateVRegs(U);
1389 
1390   for (unsigned i = 0; i < DstRegs.size(); ++i)
1391     DstRegs[i] = SrcRegs[Idx++];
1392 
1393   return true;
1394 }
1395 
1396 bool IRTranslator::translateInsertValue(const User &U,
1397                                         MachineIRBuilder &MIRBuilder) {
1398   const Value *Src = U.getOperand(0);
1399   uint64_t Offset = getOffsetFromIndices(U, *DL);
1400   auto &DstRegs = allocateVRegs(U);
1401   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
1402   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1403   ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
1404   auto InsertedIt = InsertedRegs.begin();
1405 
1406   for (unsigned i = 0; i < DstRegs.size(); ++i) {
1407     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
1408       DstRegs[i] = *InsertedIt++;
1409     else
1410       DstRegs[i] = SrcRegs[i];
1411   }
1412 
1413   return true;
1414 }
1415 
1416 bool IRTranslator::translateSelect(const User &U,
1417                                    MachineIRBuilder &MIRBuilder) {
1418   Register Tst = getOrCreateVReg(*U.getOperand(0));
1419   ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1420   ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1421   ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1422 
1423   uint16_t Flags = 0;
1424   if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
1425     Flags = MachineInstr::copyFlagsFromInstruction(*SI);
1426 
1427   for (unsigned i = 0; i < ResRegs.size(); ++i) {
1428     MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1429   }
1430 
1431   return true;
1432 }
1433 
1434 bool IRTranslator::translateCopy(const User &U, const Value &V,
1435                                  MachineIRBuilder &MIRBuilder) {
1436   Register Src = getOrCreateVReg(V);
1437   auto &Regs = *VMap.getVRegs(U);
1438   if (Regs.empty()) {
1439     Regs.push_back(Src);
1440     VMap.getOffsets(U)->push_back(0);
1441   } else {
1442     // If we already assigned a vreg for this instruction, we can't change that.
1443     // Emit a copy to satisfy the users we already emitted.
1444     MIRBuilder.buildCopy(Regs[0], Src);
1445   }
1446   return true;
1447 }
1448 
1449 bool IRTranslator::translateBitCast(const User &U,
1450                                     MachineIRBuilder &MIRBuilder) {
1451   // If we're bitcasting to the source type, we can reuse the source vreg.
1452   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1453       getLLTForType(*U.getType(), *DL))
1454     return translateCopy(U, *U.getOperand(0), MIRBuilder);
1455 
1456   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1457 }
1458 
1459 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1460                                  MachineIRBuilder &MIRBuilder) {
1461   Register Op = getOrCreateVReg(*U.getOperand(0));
1462   Register Res = getOrCreateVReg(U);
1463   MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1464   return true;
1465 }
1466 
1467 bool IRTranslator::translateGetElementPtr(const User &U,
1468                                           MachineIRBuilder &MIRBuilder) {
1469   Value &Op0 = *U.getOperand(0);
1470   Register BaseReg = getOrCreateVReg(Op0);
1471   Type *PtrIRTy = Op0.getType();
1472   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1473   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1474   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1475 
1476   // Normalize Vector GEP - all scalar operands should be converted to the
1477   // splat vector.
1478   unsigned VectorWidth = 0;
1479 
1480   // True if we should use a splat vector; using VectorWidth alone is not
1481   // sufficient.
1482   bool WantSplatVector = false;
1483   if (auto *VT = dyn_cast<VectorType>(U.getType())) {
1484     VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
1485     // We don't produce 1 x N vectors; those are treated as scalars.
1486     WantSplatVector = VectorWidth > 1;
1487   }
1488 
1489   // We might need to splat the base pointer into a vector if the offsets
1490   // are vectors.
1491   if (WantSplatVector && !PtrTy.isVector()) {
1492     BaseReg =
1493         MIRBuilder
1494             .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg)
1495             .getReg(0);
1496     PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1497     PtrTy = getLLTForType(*PtrIRTy, *DL);
1498     OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1499     OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1500   }
1501 
1502   int64_t Offset = 0;
1503   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1504        GTI != E; ++GTI) {
1505     const Value *Idx = GTI.getOperand();
1506     if (StructType *StTy = GTI.getStructTypeOrNull()) {
1507       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1508       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1509       continue;
1510     } else {
1511       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1512 
1513       // If this is a scalar constant or a splat vector of constants,
1514       // handle it quickly.
1515       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1516         Offset += ElementSize * CI->getSExtValue();
1517         continue;
1518       }
1519 
1520       if (Offset != 0) {
1521         auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1522         BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1523                       .getReg(0);
1524         Offset = 0;
1525       }
1526 
1527       Register IdxReg = getOrCreateVReg(*Idx);
1528       LLT IdxTy = MRI->getType(IdxReg);
1529       if (IdxTy != OffsetTy) {
1530         if (!IdxTy.isVector() && WantSplatVector) {
1531           IdxReg = MIRBuilder.buildSplatVector(
1532             OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1533         }
1534 
1535         IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1536       }
1537 
1538       // N = N + Idx * ElementSize;
1539       // Avoid doing it for ElementSize of 1.
1540       Register GepOffsetReg;
1541       if (ElementSize != 1) {
1542         auto ElementSizeMIB = MIRBuilder.buildConstant(
1543             getLLTForType(*OffsetIRTy, *DL), ElementSize);
1544         GepOffsetReg =
1545             MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1546       } else
1547         GepOffsetReg = IdxReg;
1548 
1549       BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1550     }
1551   }
1552 
1553   if (Offset != 0) {
1554     auto OffsetMIB =
1555         MIRBuilder.buildConstant(OffsetTy, Offset);
1556     MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1557     return true;
1558   }
1559 
1560   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1561   return true;
1562 }
1563 
1564 bool IRTranslator::translateMemFunc(const CallInst &CI,
1565                                     MachineIRBuilder &MIRBuilder,
1566                                     unsigned Opcode) {
1567 
1568   // If the source is undef, then just emit a nop.
1569   if (isa<UndefValue>(CI.getArgOperand(1)))
1570     return true;
1571 
1572   SmallVector<Register, 3> SrcRegs;
1573 
1574   unsigned MinPtrSize = UINT_MAX;
1575   for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
1576     Register SrcReg = getOrCreateVReg(**AI);
1577     LLT SrcTy = MRI->getType(SrcReg);
1578     if (SrcTy.isPointer())
1579       MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize);
1580     SrcRegs.push_back(SrcReg);
1581   }
1582 
1583   LLT SizeTy = LLT::scalar(MinPtrSize);
1584 
1585   // The size operand should be the minimum of the pointer sizes.
1586   Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
1587   if (MRI->getType(SizeOpReg) != SizeTy)
1588     SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);
1589 
1590   auto ICall = MIRBuilder.buildInstr(Opcode);
1591   for (Register SrcReg : SrcRegs)
1592     ICall.addUse(SrcReg);
1593 
1594   Align DstAlign;
1595   Align SrcAlign;
1596   unsigned IsVol =
1597       cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue();
1598 
1599   if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1600     DstAlign = MCI->getDestAlign().valueOrOne();
1601     SrcAlign = MCI->getSourceAlign().valueOrOne();
1602   } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) {
1603     DstAlign = MCI->getDestAlign().valueOrOne();
1604     SrcAlign = MCI->getSourceAlign().valueOrOne();
1605   } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1606     DstAlign = MMI->getDestAlign().valueOrOne();
1607     SrcAlign = MMI->getSourceAlign().valueOrOne();
1608   } else {
1609     auto *MSI = cast<MemSetInst>(&CI);
1610     DstAlign = MSI->getDestAlign().valueOrOne();
1611   }
1612 
1613   if (Opcode != TargetOpcode::G_MEMCPY_INLINE) {
1614     // We need to propagate the tail call flag from the IR inst as an argument.
1615     // Otherwise, we have to pessimize and assume later that we cannot tail call
1616     // any memory intrinsics.
1617     ICall.addImm(CI.isTailCall() ? 1 : 0);
1618   }
1619 
1620   // Create mem operands to store the alignment and volatile info.
1621   auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
1622   ICall.addMemOperand(MF->getMachineMemOperand(
1623       MachinePointerInfo(CI.getArgOperand(0)),
1624       MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
1625   if (Opcode != TargetOpcode::G_MEMSET)
1626     ICall.addMemOperand(MF->getMachineMemOperand(
1627         MachinePointerInfo(CI.getArgOperand(1)),
1628         MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
1629 
1630   return true;
1631 }
1632 
1633 void IRTranslator::getStackGuard(Register DstReg,
1634                                  MachineIRBuilder &MIRBuilder) {
1635   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1636   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1637   auto MIB =
1638       MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1639 
1640   auto &TLI = *MF->getSubtarget().getTargetLowering();
1641   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1642   if (!Global)
1643     return;
1644 
1645   unsigned AddrSpace = Global->getType()->getPointerAddressSpace();
1646   LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace));
1647 
1648   MachinePointerInfo MPInfo(Global);
1649   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1650                MachineMemOperand::MODereferenceable;
1651   MachineMemOperand *MemRef = MF->getMachineMemOperand(
1652       MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace));
1653   MIB.setMemRefs({MemRef});
1654 }
1655 
1656 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1657                                               MachineIRBuilder &MIRBuilder) {
1658   ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1659   MIRBuilder.buildInstr(
1660       Op, {ResRegs[0], ResRegs[1]},
1661       {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1662 
1663   return true;
1664 }
1665 
1666 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1667                                                 MachineIRBuilder &MIRBuilder) {
1668   Register Dst = getOrCreateVReg(CI);
1669   Register Src0 = getOrCreateVReg(*CI.getOperand(0));
1670   Register Src1 = getOrCreateVReg(*CI.getOperand(1));
1671   uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
1672   MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
1673   return true;
1674 }
1675 
1676 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1677   switch (ID) {
1678     default:
1679       break;
1680     case Intrinsic::bswap:
1681       return TargetOpcode::G_BSWAP;
1682     case Intrinsic::bitreverse:
1683       return TargetOpcode::G_BITREVERSE;
1684     case Intrinsic::fshl:
1685       return TargetOpcode::G_FSHL;
1686     case Intrinsic::fshr:
1687       return TargetOpcode::G_FSHR;
1688     case Intrinsic::ceil:
1689       return TargetOpcode::G_FCEIL;
1690     case Intrinsic::cos:
1691       return TargetOpcode::G_FCOS;
1692     case Intrinsic::ctpop:
1693       return TargetOpcode::G_CTPOP;
1694     case Intrinsic::exp:
1695       return TargetOpcode::G_FEXP;
1696     case Intrinsic::exp2:
1697       return TargetOpcode::G_FEXP2;
1698     case Intrinsic::fabs:
1699       return TargetOpcode::G_FABS;
1700     case Intrinsic::copysign:
1701       return TargetOpcode::G_FCOPYSIGN;
1702     case Intrinsic::minnum:
1703       return TargetOpcode::G_FMINNUM;
1704     case Intrinsic::maxnum:
1705       return TargetOpcode::G_FMAXNUM;
1706     case Intrinsic::minimum:
1707       return TargetOpcode::G_FMINIMUM;
1708     case Intrinsic::maximum:
1709       return TargetOpcode::G_FMAXIMUM;
1710     case Intrinsic::canonicalize:
1711       return TargetOpcode::G_FCANONICALIZE;
1712     case Intrinsic::floor:
1713       return TargetOpcode::G_FFLOOR;
1714     case Intrinsic::fma:
1715       return TargetOpcode::G_FMA;
1716     case Intrinsic::log:
1717       return TargetOpcode::G_FLOG;
1718     case Intrinsic::log2:
1719       return TargetOpcode::G_FLOG2;
1720     case Intrinsic::log10:
1721       return TargetOpcode::G_FLOG10;
1722     case Intrinsic::nearbyint:
1723       return TargetOpcode::G_FNEARBYINT;
1724     case Intrinsic::pow:
1725       return TargetOpcode::G_FPOW;
1726     case Intrinsic::powi:
1727       return TargetOpcode::G_FPOWI;
1728     case Intrinsic::rint:
1729       return TargetOpcode::G_FRINT;
1730     case Intrinsic::round:
1731       return TargetOpcode::G_INTRINSIC_ROUND;
1732     case Intrinsic::roundeven:
1733       return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1734     case Intrinsic::sin:
1735       return TargetOpcode::G_FSIN;
1736     case Intrinsic::sqrt:
1737       return TargetOpcode::G_FSQRT;
1738     case Intrinsic::trunc:
1739       return TargetOpcode::G_INTRINSIC_TRUNC;
1740     case Intrinsic::readcyclecounter:
1741       return TargetOpcode::G_READCYCLECOUNTER;
1742     case Intrinsic::ptrmask:
1743       return TargetOpcode::G_PTRMASK;
1744     case Intrinsic::lrint:
1745       return TargetOpcode::G_INTRINSIC_LRINT;
1746     // FADD/FMUL require checking the FMF, so are handled elsewhere.
1747     case Intrinsic::vector_reduce_fmin:
1748       return TargetOpcode::G_VECREDUCE_FMIN;
1749     case Intrinsic::vector_reduce_fmax:
1750       return TargetOpcode::G_VECREDUCE_FMAX;
1751     case Intrinsic::vector_reduce_add:
1752       return TargetOpcode::G_VECREDUCE_ADD;
1753     case Intrinsic::vector_reduce_mul:
1754       return TargetOpcode::G_VECREDUCE_MUL;
1755     case Intrinsic::vector_reduce_and:
1756       return TargetOpcode::G_VECREDUCE_AND;
1757     case Intrinsic::vector_reduce_or:
1758       return TargetOpcode::G_VECREDUCE_OR;
1759     case Intrinsic::vector_reduce_xor:
1760       return TargetOpcode::G_VECREDUCE_XOR;
1761     case Intrinsic::vector_reduce_smax:
1762       return TargetOpcode::G_VECREDUCE_SMAX;
1763     case Intrinsic::vector_reduce_smin:
1764       return TargetOpcode::G_VECREDUCE_SMIN;
1765     case Intrinsic::vector_reduce_umax:
1766       return TargetOpcode::G_VECREDUCE_UMAX;
1767     case Intrinsic::vector_reduce_umin:
1768       return TargetOpcode::G_VECREDUCE_UMIN;
1769     case Intrinsic::lround:
1770       return TargetOpcode::G_LROUND;
1771     case Intrinsic::llround:
1772       return TargetOpcode::G_LLROUND;
1773   }
1774   return Intrinsic::not_intrinsic;
1775 }
1776 
1777 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1778                                             Intrinsic::ID ID,
1779                                             MachineIRBuilder &MIRBuilder) {
1780 
1781   unsigned Op = getSimpleIntrinsicOpcode(ID);
1782 
1783   // Is this a simple intrinsic?
1784   if (Op == Intrinsic::not_intrinsic)
1785     return false;
1786 
1787   // Yes. Let's translate it.
1788   SmallVector<llvm::SrcOp, 4> VRegs;
1789   for (auto &Arg : CI.args())
1790     VRegs.push_back(getOrCreateVReg(*Arg));
1791 
1792   MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1793                         MachineInstr::copyFlagsFromInstruction(CI));
1794   return true;
1795 }
1796 
1797 // TODO: Include ConstainedOps.def when all strict instructions are defined.
1798 static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
1799   switch (ID) {
1800   case Intrinsic::experimental_constrained_fadd:
1801     return TargetOpcode::G_STRICT_FADD;
1802   case Intrinsic::experimental_constrained_fsub:
1803     return TargetOpcode::G_STRICT_FSUB;
1804   case Intrinsic::experimental_constrained_fmul:
1805     return TargetOpcode::G_STRICT_FMUL;
1806   case Intrinsic::experimental_constrained_fdiv:
1807     return TargetOpcode::G_STRICT_FDIV;
1808   case Intrinsic::experimental_constrained_frem:
1809     return TargetOpcode::G_STRICT_FREM;
1810   case Intrinsic::experimental_constrained_fma:
1811     return TargetOpcode::G_STRICT_FMA;
1812   case Intrinsic::experimental_constrained_sqrt:
1813     return TargetOpcode::G_STRICT_FSQRT;
1814   default:
1815     return 0;
1816   }
1817 }
1818 
1819 bool IRTranslator::translateConstrainedFPIntrinsic(
1820   const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
1821   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
1822 
1823   unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
1824   if (!Opcode)
1825     return false;
1826 
1827   unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI);
1828   if (EB == fp::ExceptionBehavior::ebIgnore)
1829     Flags |= MachineInstr::NoFPExcept;
1830 
1831   SmallVector<llvm::SrcOp, 4> VRegs;
1832   VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
1833   if (!FPI.isUnaryOp())
1834     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
1835   if (FPI.isTernaryOp())
1836     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
1837 
1838   MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
1839   return true;
1840 }
1841 
1842 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1843                                            MachineIRBuilder &MIRBuilder) {
1844   if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) {
1845     if (ORE->enabled()) {
1846       const Function &F = *MI->getParent()->getParent();
1847       auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1848       if (MemoryOpRemark::canHandle(MI, TLI)) {
1849         MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI);
1850         R.visit(MI);
1851       }
1852     }
1853   }
1854 
1855   // If this is a simple intrinsic (that is, we just need to add a def of
1856   // a vreg, and uses for each arg operand, then translate it.
1857   if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1858     return true;
1859 
1860   switch (ID) {
1861   default:
1862     break;
1863   case Intrinsic::lifetime_start:
1864   case Intrinsic::lifetime_end: {
1865     // No stack colouring in O0, discard region information.
1866     if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1867       return true;
1868 
1869     unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1870                                                   : TargetOpcode::LIFETIME_END;
1871 
1872     // Get the underlying objects for the location passed on the lifetime
1873     // marker.
1874     SmallVector<const Value *, 4> Allocas;
1875     getUnderlyingObjects(CI.getArgOperand(1), Allocas);
1876 
1877     // Iterate over each underlying object, creating lifetime markers for each
1878     // static alloca. Quit if we find a non-static alloca.
1879     for (const Value *V : Allocas) {
1880       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1881       if (!AI)
1882         continue;
1883 
1884       if (!AI->isStaticAlloca())
1885         return true;
1886 
1887       MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1888     }
1889     return true;
1890   }
1891   case Intrinsic::dbg_declare: {
1892     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1893     assert(DI.getVariable() && "Missing variable");
1894 
1895     const Value *Address = DI.getAddress();
1896     if (!Address || isa<UndefValue>(Address)) {
1897       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1898       return true;
1899     }
1900 
1901     assert(DI.getVariable()->isValidLocationForIntrinsic(
1902                MIRBuilder.getDebugLoc()) &&
1903            "Expected inlined-at fields to agree");
1904     auto AI = dyn_cast<AllocaInst>(Address);
1905     if (AI && AI->isStaticAlloca()) {
1906       // Static allocas are tracked at the MF level, no need for DBG_VALUE
1907       // instructions (in fact, they get ignored if they *do* exist).
1908       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
1909                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
1910     } else {
1911       // A dbg.declare describes the address of a source variable, so lower it
1912       // into an indirect DBG_VALUE.
1913       MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
1914                                        DI.getVariable(), DI.getExpression());
1915     }
1916     return true;
1917   }
1918   case Intrinsic::dbg_label: {
1919     const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
1920     assert(DI.getLabel() && "Missing label");
1921 
1922     assert(DI.getLabel()->isValidLocationForIntrinsic(
1923                MIRBuilder.getDebugLoc()) &&
1924            "Expected inlined-at fields to agree");
1925 
1926     MIRBuilder.buildDbgLabel(DI.getLabel());
1927     return true;
1928   }
1929   case Intrinsic::vaend:
1930     // No target I know of cares about va_end. Certainly no in-tree target
1931     // does. Simplest intrinsic ever!
1932     return true;
1933   case Intrinsic::vastart: {
1934     auto &TLI = *MF->getSubtarget().getTargetLowering();
1935     Value *Ptr = CI.getArgOperand(0);
1936     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
1937 
1938     // FIXME: Get alignment
1939     MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
1940         .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
1941                                                 MachineMemOperand::MOStore,
1942                                                 ListSize, Align(1)));
1943     return true;
1944   }
1945   case Intrinsic::dbg_value: {
1946     // This form of DBG_VALUE is target-independent.
1947     const DbgValueInst &DI = cast<DbgValueInst>(CI);
1948     const Value *V = DI.getValue();
1949     assert(DI.getVariable()->isValidLocationForIntrinsic(
1950                MIRBuilder.getDebugLoc()) &&
1951            "Expected inlined-at fields to agree");
1952     if (!V || DI.hasArgList()) {
1953       // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to
1954       // terminate any prior location.
1955       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
1956     } else if (const auto *CI = dyn_cast<Constant>(V)) {
1957       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
1958     } else {
1959       for (Register Reg : getOrCreateVRegs(*V)) {
1960         // FIXME: This does not handle register-indirect values at offset 0. The
1961         // direct/indirect thing shouldn't really be handled by something as
1962         // implicit as reg+noreg vs reg+imm in the first place, but it seems
1963         // pretty baked in right now.
1964         MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
1965       }
1966     }
1967     return true;
1968   }
1969   case Intrinsic::uadd_with_overflow:
1970     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
1971   case Intrinsic::sadd_with_overflow:
1972     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
1973   case Intrinsic::usub_with_overflow:
1974     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
1975   case Intrinsic::ssub_with_overflow:
1976     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
1977   case Intrinsic::umul_with_overflow:
1978     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
1979   case Intrinsic::smul_with_overflow:
1980     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
1981   case Intrinsic::uadd_sat:
1982     return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
1983   case Intrinsic::sadd_sat:
1984     return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
1985   case Intrinsic::usub_sat:
1986     return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
1987   case Intrinsic::ssub_sat:
1988     return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
1989   case Intrinsic::ushl_sat:
1990     return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
1991   case Intrinsic::sshl_sat:
1992     return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
1993   case Intrinsic::umin:
1994     return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
1995   case Intrinsic::umax:
1996     return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
1997   case Intrinsic::smin:
1998     return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
1999   case Intrinsic::smax:
2000     return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
2001   case Intrinsic::abs:
2002     // TODO: Preserve "int min is poison" arg in GMIR?
2003     return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
2004   case Intrinsic::smul_fix:
2005     return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
2006   case Intrinsic::umul_fix:
2007     return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
2008   case Intrinsic::smul_fix_sat:
2009     return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
2010   case Intrinsic::umul_fix_sat:
2011     return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
2012   case Intrinsic::sdiv_fix:
2013     return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
2014   case Intrinsic::udiv_fix:
2015     return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
2016   case Intrinsic::sdiv_fix_sat:
2017     return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
2018   case Intrinsic::udiv_fix_sat:
2019     return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
2020   case Intrinsic::fmuladd: {
2021     const TargetMachine &TM = MF->getTarget();
2022     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2023     Register Dst = getOrCreateVReg(CI);
2024     Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
2025     Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
2026     Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
2027     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
2028         TLI.isFMAFasterThanFMulAndFAdd(*MF,
2029                                        TLI.getValueType(*DL, CI.getType()))) {
2030       // TODO: Revisit this to see if we should move this part of the
2031       // lowering to the combiner.
2032       MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
2033                           MachineInstr::copyFlagsFromInstruction(CI));
2034     } else {
2035       LLT Ty = getLLTForType(*CI.getType(), *DL);
2036       auto FMul = MIRBuilder.buildFMul(
2037           Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
2038       MIRBuilder.buildFAdd(Dst, FMul, Op2,
2039                            MachineInstr::copyFlagsFromInstruction(CI));
2040     }
2041     return true;
2042   }
2043   case Intrinsic::convert_from_fp16:
2044     // FIXME: This intrinsic should probably be removed from the IR.
2045     MIRBuilder.buildFPExt(getOrCreateVReg(CI),
2046                           getOrCreateVReg(*CI.getArgOperand(0)),
2047                           MachineInstr::copyFlagsFromInstruction(CI));
2048     return true;
2049   case Intrinsic::convert_to_fp16:
2050     // FIXME: This intrinsic should probably be removed from the IR.
2051     MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
2052                             getOrCreateVReg(*CI.getArgOperand(0)),
2053                             MachineInstr::copyFlagsFromInstruction(CI));
2054     return true;
2055   case Intrinsic::memcpy_inline:
2056     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE);
2057   case Intrinsic::memcpy:
2058     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
2059   case Intrinsic::memmove:
2060     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
2061   case Intrinsic::memset:
2062     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
2063   case Intrinsic::eh_typeid_for: {
2064     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
2065     Register Reg = getOrCreateVReg(CI);
2066     unsigned TypeID = MF->getTypeIDFor(GV);
2067     MIRBuilder.buildConstant(Reg, TypeID);
2068     return true;
2069   }
2070   case Intrinsic::objectsize:
2071     llvm_unreachable("llvm.objectsize.* should have been lowered already");
2072 
2073   case Intrinsic::is_constant:
2074     llvm_unreachable("llvm.is.constant.* should have been lowered already");
2075 
2076   case Intrinsic::stackguard:
2077     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
2078     return true;
2079   case Intrinsic::stackprotector: {
2080     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2081     Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
2082     getStackGuard(GuardVal, MIRBuilder);
2083 
2084     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
2085     int FI = getOrCreateFrameIndex(*Slot);
2086     MF->getFrameInfo().setStackProtectorIndex(FI);
2087 
2088     MIRBuilder.buildStore(
2089         GuardVal, getOrCreateVReg(*Slot),
2090         *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
2091                                   MachineMemOperand::MOStore |
2092                                       MachineMemOperand::MOVolatile,
2093                                   PtrTy, Align(8)));
2094     return true;
2095   }
2096   case Intrinsic::stacksave: {
2097     // Save the stack pointer to the location provided by the intrinsic.
2098     Register Reg = getOrCreateVReg(CI);
2099     Register StackPtr = MF->getSubtarget()
2100                             .getTargetLowering()
2101                             ->getStackPointerRegisterToSaveRestore();
2102 
2103     // If the target doesn't specify a stack pointer, then fall back.
2104     if (!StackPtr)
2105       return false;
2106 
2107     MIRBuilder.buildCopy(Reg, StackPtr);
2108     return true;
2109   }
2110   case Intrinsic::stackrestore: {
2111     // Restore the stack pointer from the location provided by the intrinsic.
2112     Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
2113     Register StackPtr = MF->getSubtarget()
2114                             .getTargetLowering()
2115                             ->getStackPointerRegisterToSaveRestore();
2116 
2117     // If the target doesn't specify a stack pointer, then fall back.
2118     if (!StackPtr)
2119       return false;
2120 
2121     MIRBuilder.buildCopy(StackPtr, Reg);
2122     return true;
2123   }
2124   case Intrinsic::cttz:
2125   case Intrinsic::ctlz: {
2126     ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
2127     bool isTrailing = ID == Intrinsic::cttz;
2128     unsigned Opcode = isTrailing
2129                           ? Cst->isZero() ? TargetOpcode::G_CTTZ
2130                                           : TargetOpcode::G_CTTZ_ZERO_UNDEF
2131                           : Cst->isZero() ? TargetOpcode::G_CTLZ
2132                                           : TargetOpcode::G_CTLZ_ZERO_UNDEF;
2133     MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
2134                           {getOrCreateVReg(*CI.getArgOperand(0))});
2135     return true;
2136   }
2137   case Intrinsic::invariant_start: {
2138     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2139     Register Undef = MRI->createGenericVirtualRegister(PtrTy);
2140     MIRBuilder.buildUndef(Undef);
2141     return true;
2142   }
2143   case Intrinsic::invariant_end:
2144     return true;
2145   case Intrinsic::expect:
2146   case Intrinsic::annotation:
2147   case Intrinsic::ptr_annotation:
2148   case Intrinsic::launder_invariant_group:
2149   case Intrinsic::strip_invariant_group: {
2150     // Drop the intrinsic, but forward the value.
2151     MIRBuilder.buildCopy(getOrCreateVReg(CI),
2152                          getOrCreateVReg(*CI.getArgOperand(0)));
2153     return true;
2154   }
2155   case Intrinsic::assume:
2156   case Intrinsic::experimental_noalias_scope_decl:
2157   case Intrinsic::var_annotation:
2158   case Intrinsic::sideeffect:
2159     // Discard annotate attributes, assumptions, and artificial side-effects.
2160     return true;
2161   case Intrinsic::read_volatile_register:
2162   case Intrinsic::read_register: {
2163     Value *Arg = CI.getArgOperand(0);
2164     MIRBuilder
2165         .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
2166         .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
2167     return true;
2168   }
2169   case Intrinsic::write_register: {
2170     Value *Arg = CI.getArgOperand(0);
2171     MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
2172       .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
2173       .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
2174     return true;
2175   }
2176   case Intrinsic::localescape: {
2177     MachineBasicBlock &EntryMBB = MF->front();
2178     StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
2179 
2180     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
2181     // is the same on all targets.
2182     for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) {
2183       Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
2184       if (isa<ConstantPointerNull>(Arg))
2185         continue; // Skip null pointers. They represent a hole in index space.
2186 
2187       int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
2188       MCSymbol *FrameAllocSym =
2189           MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
2190                                                                 Idx);
2191 
2192       // This should be inserted at the start of the entry block.
2193       auto LocalEscape =
2194           MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
2195               .addSym(FrameAllocSym)
2196               .addFrameIndex(FI);
2197 
2198       EntryMBB.insert(EntryMBB.begin(), LocalEscape);
2199     }
2200 
2201     return true;
2202   }
2203   case Intrinsic::vector_reduce_fadd:
2204   case Intrinsic::vector_reduce_fmul: {
2205     // Need to check for the reassoc flag to decide whether we want a
2206     // sequential reduction opcode or not.
2207     Register Dst = getOrCreateVReg(CI);
2208     Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0));
2209     Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1));
2210     unsigned Opc = 0;
2211     if (!CI.hasAllowReassoc()) {
2212       // The sequential ordering case.
2213       Opc = ID == Intrinsic::vector_reduce_fadd
2214                 ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2215                 : TargetOpcode::G_VECREDUCE_SEQ_FMUL;
2216       MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc},
2217                             MachineInstr::copyFlagsFromInstruction(CI));
2218       return true;
2219     }
2220     // We split the operation into a separate G_FADD/G_FMUL + the reduce,
2221     // since the associativity doesn't matter.
2222     unsigned ScalarOpc;
2223     if (ID == Intrinsic::vector_reduce_fadd) {
2224       Opc = TargetOpcode::G_VECREDUCE_FADD;
2225       ScalarOpc = TargetOpcode::G_FADD;
2226     } else {
2227       Opc = TargetOpcode::G_VECREDUCE_FMUL;
2228       ScalarOpc = TargetOpcode::G_FMUL;
2229     }
2230     LLT DstTy = MRI->getType(Dst);
2231     auto Rdx = MIRBuilder.buildInstr(
2232         Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI));
2233     MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
2234                           MachineInstr::copyFlagsFromInstruction(CI));
2235 
2236     return true;
2237   }
2238   case Intrinsic::trap:
2239   case Intrinsic::debugtrap:
2240   case Intrinsic::ubsantrap: {
2241     StringRef TrapFuncName =
2242         CI.getAttributes().getFnAttr("trap-func-name").getValueAsString();
2243     if (TrapFuncName.empty())
2244       break; // Use the default handling.
2245     CallLowering::CallLoweringInfo Info;
2246     if (ID == Intrinsic::ubsantrap) {
2247       Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)),
2248                                CI.getArgOperand(0)->getType(), 0});
2249     }
2250     Info.Callee = MachineOperand::CreateES(TrapFuncName.data());
2251     Info.CB = &CI;
2252     Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0};
2253     return CLI->lowerCall(MIRBuilder, Info);
2254   }
2255 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)  \
2256   case Intrinsic::INTRINSIC:
2257 #include "llvm/IR/ConstrainedOps.def"
2258     return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
2259                                            MIRBuilder);
2260 
2261   }
2262   return false;
2263 }
2264 
2265 bool IRTranslator::translateInlineAsm(const CallBase &CB,
2266                                       MachineIRBuilder &MIRBuilder) {
2267 
2268   const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
2269 
2270   if (!ALI) {
2271     LLVM_DEBUG(
2272         dbgs() << "Inline asm lowering is not supported for this target yet\n");
2273     return false;
2274   }
2275 
2276   return ALI->lowerInlineAsm(
2277       MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
2278 }
2279 
2280 bool IRTranslator::translateCallBase(const CallBase &CB,
2281                                      MachineIRBuilder &MIRBuilder) {
2282   ArrayRef<Register> Res = getOrCreateVRegs(CB);
2283 
2284   SmallVector<ArrayRef<Register>, 8> Args;
2285   Register SwiftInVReg = 0;
2286   Register SwiftErrorVReg = 0;
2287   for (auto &Arg : CB.args()) {
2288     if (CLI->supportSwiftError() && isSwiftError(Arg)) {
2289       assert(SwiftInVReg == 0 && "Expected only one swift error argument");
2290       LLT Ty = getLLTForType(*Arg->getType(), *DL);
2291       SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
2292       MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
2293                                             &CB, &MIRBuilder.getMBB(), Arg));
2294       Args.emplace_back(makeArrayRef(SwiftInVReg));
2295       SwiftErrorVReg =
2296           SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
2297       continue;
2298     }
2299     Args.push_back(getOrCreateVRegs(*Arg));
2300   }
2301 
2302   if (auto *CI = dyn_cast<CallInst>(&CB)) {
2303     if (ORE->enabled()) {
2304       const Function &F = *CI->getParent()->getParent();
2305       auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2306       if (MemoryOpRemark::canHandle(CI, TLI)) {
2307         MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI);
2308         R.visit(CI);
2309       }
2310     }
2311   }
2312 
2313   // We don't set HasCalls on MFI here yet because call lowering may decide to
2314   // optimize into tail calls. Instead, we defer that to selection where a final
2315   // scan is done to check if any instructions are calls.
2316   bool Success =
2317       CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
2318                      [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
2319 
2320   // Check if we just inserted a tail call.
2321   if (Success) {
2322     assert(!HasTailCall && "Can't tail call return twice from block?");
2323     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2324     HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
2325   }
2326 
2327   return Success;
2328 }
2329 
2330 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
2331   const CallInst &CI = cast<CallInst>(U);
2332   auto TII = MF->getTarget().getIntrinsicInfo();
2333   const Function *F = CI.getCalledFunction();
2334 
2335   // FIXME: support Windows dllimport function calls.
2336   if (F && (F->hasDLLImportStorageClass() ||
2337             (MF->getTarget().getTargetTriple().isOSWindows() &&
2338              F->hasExternalWeakLinkage())))
2339     return false;
2340 
2341   // FIXME: support control flow guard targets.
2342   if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2343     return false;
2344 
2345   if (CI.isInlineAsm())
2346     return translateInlineAsm(CI, MIRBuilder);
2347 
2348   diagnoseDontCall(CI);
2349 
2350   Intrinsic::ID ID = Intrinsic::not_intrinsic;
2351   if (F && F->isIntrinsic()) {
2352     ID = F->getIntrinsicID();
2353     if (TII && ID == Intrinsic::not_intrinsic)
2354       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
2355   }
2356 
2357   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
2358     return translateCallBase(CI, MIRBuilder);
2359 
2360   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
2361 
2362   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
2363     return true;
2364 
2365   ArrayRef<Register> ResultRegs;
2366   if (!CI.getType()->isVoidTy())
2367     ResultRegs = getOrCreateVRegs(CI);
2368 
2369   // Ignore the callsite attributes. Backend code is most likely not expecting
2370   // an intrinsic to sometimes have side effects and sometimes not.
2371   MachineInstrBuilder MIB =
2372       MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
2373   if (isa<FPMathOperator>(CI))
2374     MIB->copyIRFlags(CI);
2375 
2376   for (auto &Arg : enumerate(CI.args())) {
2377     // If this is required to be an immediate, don't materialize it in a
2378     // register.
2379     if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
2380       if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
2381         // imm arguments are more convenient than cimm (and realistically
2382         // probably sufficient), so use them.
2383         assert(CI->getBitWidth() <= 64 &&
2384                "large intrinsic immediates not handled");
2385         MIB.addImm(CI->getSExtValue());
2386       } else {
2387         MIB.addFPImm(cast<ConstantFP>(Arg.value()));
2388       }
2389     } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) {
2390       auto *MD = MDVal->getMetadata();
2391       auto *MDN = dyn_cast<MDNode>(MD);
2392       if (!MDN) {
2393         if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD))
2394           MDN = MDNode::get(MF->getFunction().getContext(), ConstMD);
2395         else // This was probably an MDString.
2396           return false;
2397       }
2398       MIB.addMetadata(MDN);
2399     } else {
2400       ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
2401       if (VRegs.size() > 1)
2402         return false;
2403       MIB.addUse(VRegs[0]);
2404     }
2405   }
2406 
2407   // Add a MachineMemOperand if it is a target mem intrinsic.
2408   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2409   TargetLowering::IntrinsicInfo Info;
2410   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
2411   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
2412     Align Alignment = Info.align.getValueOr(
2413         DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
2414     LLT MemTy = Info.memVT.isSimple()
2415                     ? getLLTForMVT(Info.memVT.getSimpleVT())
2416                     : LLT::scalar(Info.memVT.getStoreSizeInBits());
2417     MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
2418                                                Info.flags, MemTy, Alignment));
2419   }
2420 
2421   return true;
2422 }
2423 
2424 bool IRTranslator::findUnwindDestinations(
2425     const BasicBlock *EHPadBB,
2426     BranchProbability Prob,
2427     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2428         &UnwindDests) {
2429   EHPersonality Personality = classifyEHPersonality(
2430       EHPadBB->getParent()->getFunction().getPersonalityFn());
2431   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2432   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2433   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2434   bool IsSEH = isAsynchronousEHPersonality(Personality);
2435 
2436   if (IsWasmCXX) {
2437     // Ignore this for now.
2438     return false;
2439   }
2440 
2441   while (EHPadBB) {
2442     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2443     BasicBlock *NewEHPadBB = nullptr;
2444     if (isa<LandingPadInst>(Pad)) {
2445       // Stop on landingpads. They are not funclets.
2446       UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2447       break;
2448     }
2449     if (isa<CleanupPadInst>(Pad)) {
2450       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2451       // personalities.
2452       UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2453       UnwindDests.back().first->setIsEHScopeEntry();
2454       UnwindDests.back().first->setIsEHFuncletEntry();
2455       break;
2456     }
2457     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2458       // Add the catchpad handlers to the possible destinations.
2459       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2460         UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
2461         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2462         if (IsMSVCCXX || IsCoreCLR)
2463           UnwindDests.back().first->setIsEHFuncletEntry();
2464         if (!IsSEH)
2465           UnwindDests.back().first->setIsEHScopeEntry();
2466       }
2467       NewEHPadBB = CatchSwitch->getUnwindDest();
2468     } else {
2469       continue;
2470     }
2471 
2472     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2473     if (BPI && NewEHPadBB)
2474       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2475     EHPadBB = NewEHPadBB;
2476   }
2477   return true;
2478 }
2479 
2480 bool IRTranslator::translateInvoke(const User &U,
2481                                    MachineIRBuilder &MIRBuilder) {
2482   const InvokeInst &I = cast<InvokeInst>(U);
2483   MCContext &Context = MF->getContext();
2484 
2485   const BasicBlock *ReturnBB = I.getSuccessor(0);
2486   const BasicBlock *EHPadBB = I.getSuccessor(1);
2487 
2488   const Function *Fn = I.getCalledFunction();
2489 
2490   // FIXME: support invoking patchpoint and statepoint intrinsics.
2491   if (Fn && Fn->isIntrinsic())
2492     return false;
2493 
2494   // FIXME: support whatever these are.
2495   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
2496     return false;
2497 
2498   // FIXME: support control flow guard targets.
2499   if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2500     return false;
2501 
2502   // FIXME: support Windows exception handling.
2503   if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
2504     return false;
2505 
2506   bool LowerInlineAsm = I.isInlineAsm();
2507   bool NeedEHLabel = true;
2508   // If it can't throw then use a fast-path without emitting EH labels.
2509   if (LowerInlineAsm)
2510     NeedEHLabel = (cast<InlineAsm>(I.getCalledOperand()))->canThrow();
2511 
2512   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
2513   // the region covered by the try.
2514   MCSymbol *BeginSymbol = nullptr;
2515   if (NeedEHLabel) {
2516     BeginSymbol = Context.createTempSymbol();
2517     MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
2518   }
2519 
2520   if (LowerInlineAsm) {
2521     if (!translateInlineAsm(I, MIRBuilder))
2522       return false;
2523   } else if (!translateCallBase(I, MIRBuilder))
2524     return false;
2525 
2526   MCSymbol *EndSymbol = nullptr;
2527   if (NeedEHLabel) {
2528     EndSymbol = Context.createTempSymbol();
2529     MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
2530   }
2531 
2532   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2533   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2534   MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
2535   BranchProbability EHPadBBProb =
2536       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2537           : BranchProbability::getZero();
2538 
2539   if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
2540     return false;
2541 
2542   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
2543                     &ReturnMBB = getMBB(*ReturnBB);
2544   // Update successor info.
2545   addSuccessorWithProb(InvokeMBB, &ReturnMBB);
2546   for (auto &UnwindDest : UnwindDests) {
2547     UnwindDest.first->setIsEHPad();
2548     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2549   }
2550   InvokeMBB->normalizeSuccProbs();
2551 
2552   if (NeedEHLabel) {
2553     assert(BeginSymbol && "Expected a begin symbol!");
2554     assert(EndSymbol && "Expected an end symbol!");
2555     MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
2556   }
2557 
2558   MIRBuilder.buildBr(ReturnMBB);
2559   return true;
2560 }
2561 
2562 bool IRTranslator::translateCallBr(const User &U,
2563                                    MachineIRBuilder &MIRBuilder) {
2564   // FIXME: Implement this.
2565   return false;
2566 }
2567 
2568 bool IRTranslator::translateLandingPad(const User &U,
2569                                        MachineIRBuilder &MIRBuilder) {
2570   const LandingPadInst &LP = cast<LandingPadInst>(U);
2571 
2572   MachineBasicBlock &MBB = MIRBuilder.getMBB();
2573 
2574   MBB.setIsEHPad();
2575 
2576   // If there aren't registers to copy the values into (e.g., during SjLj
2577   // exceptions), then don't bother.
2578   auto &TLI = *MF->getSubtarget().getTargetLowering();
2579   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
2580   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2581       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2582     return true;
2583 
2584   // If landingpad's return type is token type, we don't create DAG nodes
2585   // for its exception pointer and selector value. The extraction of exception
2586   // pointer or selector value from token type landingpads is not currently
2587   // supported.
2588   if (LP.getType()->isTokenTy())
2589     return true;
2590 
2591   // Add a label to mark the beginning of the landing pad.  Deletion of the
2592   // landing pad can thus be detected via the MachineModuleInfo.
2593   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
2594     .addSym(MF->addLandingPad(&MBB));
2595 
2596   // If the unwinder does not preserve all registers, ensure that the
2597   // function marks the clobbered registers as used.
2598   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
2599   if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
2600     MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
2601 
2602   LLT Ty = getLLTForType(*LP.getType(), *DL);
2603   Register Undef = MRI->createGenericVirtualRegister(Ty);
2604   MIRBuilder.buildUndef(Undef);
2605 
2606   SmallVector<LLT, 2> Tys;
2607   for (Type *Ty : cast<StructType>(LP.getType())->elements())
2608     Tys.push_back(getLLTForType(*Ty, *DL));
2609   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
2610 
2611   // Mark exception register as live in.
2612   Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
2613   if (!ExceptionReg)
2614     return false;
2615 
2616   MBB.addLiveIn(ExceptionReg);
2617   ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
2618   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
2619 
2620   Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
2621   if (!SelectorReg)
2622     return false;
2623 
2624   MBB.addLiveIn(SelectorReg);
2625   Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
2626   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
2627   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
2628 
2629   return true;
2630 }
2631 
2632 bool IRTranslator::translateAlloca(const User &U,
2633                                    MachineIRBuilder &MIRBuilder) {
2634   auto &AI = cast<AllocaInst>(U);
2635 
2636   if (AI.isSwiftError())
2637     return true;
2638 
2639   if (AI.isStaticAlloca()) {
2640     Register Res = getOrCreateVReg(AI);
2641     int FI = getOrCreateFrameIndex(AI);
2642     MIRBuilder.buildFrameIndex(Res, FI);
2643     return true;
2644   }
2645 
2646   // FIXME: support stack probing for Windows.
2647   if (MF->getTarget().getTargetTriple().isOSWindows())
2648     return false;
2649 
2650   // Now we're in the harder dynamic case.
2651   Register NumElts = getOrCreateVReg(*AI.getArraySize());
2652   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
2653   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
2654   if (MRI->getType(NumElts) != IntPtrTy) {
2655     Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
2656     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
2657     NumElts = ExtElts;
2658   }
2659 
2660   Type *Ty = AI.getAllocatedType();
2661 
2662   Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
2663   Register TySize =
2664       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
2665   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
2666 
2667   // Round the size of the allocation up to the stack alignment size
2668   // by add SA-1 to the size. This doesn't overflow because we're computing
2669   // an address inside an alloca.
2670   Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
2671   auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
2672   auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
2673                                       MachineInstr::NoUWrap);
2674   auto AlignCst =
2675       MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
2676   auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
2677 
2678   Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
2679   if (Alignment <= StackAlign)
2680     Alignment = Align(1);
2681   MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
2682 
2683   MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
2684   assert(MF->getFrameInfo().hasVarSizedObjects());
2685   return true;
2686 }
2687 
2688 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
2689   // FIXME: We may need more info about the type. Because of how LLT works,
2690   // we're completely discarding the i64/double distinction here (amongst
2691   // others). Fortunately the ABIs I know of where that matters don't use va_arg
2692   // anyway but that's not guaranteed.
2693   MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
2694                         {getOrCreateVReg(*U.getOperand(0)),
2695                          DL->getABITypeAlign(U.getType()).value()});
2696   return true;
2697 }
2698 
2699 bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) {
2700     if (!MF->getTarget().Options.TrapUnreachable)
2701     return true;
2702 
2703   auto &UI = cast<UnreachableInst>(U);
2704   // We may be able to ignore unreachable behind a noreturn call.
2705   if (MF->getTarget().Options.NoTrapAfterNoreturn) {
2706     const BasicBlock &BB = *UI.getParent();
2707     if (&UI != &BB.front()) {
2708       BasicBlock::const_iterator PredI =
2709         std::prev(BasicBlock::const_iterator(UI));
2710       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2711         if (Call->doesNotReturn())
2712           return true;
2713       }
2714     }
2715   }
2716 
2717   MIRBuilder.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true);
2718   return true;
2719 }
2720 
2721 bool IRTranslator::translateInsertElement(const User &U,
2722                                           MachineIRBuilder &MIRBuilder) {
2723   // If it is a <1 x Ty> vector, use the scalar as it is
2724   // not a legal vector type in LLT.
2725   if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
2726     return translateCopy(U, *U.getOperand(1), MIRBuilder);
2727 
2728   Register Res = getOrCreateVReg(U);
2729   Register Val = getOrCreateVReg(*U.getOperand(0));
2730   Register Elt = getOrCreateVReg(*U.getOperand(1));
2731   Register Idx = getOrCreateVReg(*U.getOperand(2));
2732   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
2733   return true;
2734 }
2735 
2736 bool IRTranslator::translateExtractElement(const User &U,
2737                                            MachineIRBuilder &MIRBuilder) {
2738   // If it is a <1 x Ty> vector, use the scalar as it is
2739   // not a legal vector type in LLT.
2740   if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
2741     return translateCopy(U, *U.getOperand(0), MIRBuilder);
2742 
2743   Register Res = getOrCreateVReg(U);
2744   Register Val = getOrCreateVReg(*U.getOperand(0));
2745   const auto &TLI = *MF->getSubtarget().getTargetLowering();
2746   unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
2747   Register Idx;
2748   if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
2749     if (CI->getBitWidth() != PreferredVecIdxWidth) {
2750       APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
2751       auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
2752       Idx = getOrCreateVReg(*NewIdxCI);
2753     }
2754   }
2755   if (!Idx)
2756     Idx = getOrCreateVReg(*U.getOperand(1));
2757   if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
2758     const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
2759     Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0);
2760   }
2761   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
2762   return true;
2763 }
2764 
2765 bool IRTranslator::translateShuffleVector(const User &U,
2766                                           MachineIRBuilder &MIRBuilder) {
2767   ArrayRef<int> Mask;
2768   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
2769     Mask = SVI->getShuffleMask();
2770   else
2771     Mask = cast<ConstantExpr>(U).getShuffleMask();
2772   ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
2773   MIRBuilder
2774       .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
2775                   {getOrCreateVReg(*U.getOperand(0)),
2776                    getOrCreateVReg(*U.getOperand(1))})
2777       .addShuffleMask(MaskAlloc);
2778   return true;
2779 }
2780 
2781 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
2782   const PHINode &PI = cast<PHINode>(U);
2783 
2784   SmallVector<MachineInstr *, 4> Insts;
2785   for (auto Reg : getOrCreateVRegs(PI)) {
2786     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
2787     Insts.push_back(MIB.getInstr());
2788   }
2789 
2790   PendingPHIs.emplace_back(&PI, std::move(Insts));
2791   return true;
2792 }
2793 
2794 bool IRTranslator::translateAtomicCmpXchg(const User &U,
2795                                           MachineIRBuilder &MIRBuilder) {
2796   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
2797 
2798   auto &TLI = *MF->getSubtarget().getTargetLowering();
2799   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2800 
2801   auto Res = getOrCreateVRegs(I);
2802   Register OldValRes = Res[0];
2803   Register SuccessRes = Res[1];
2804   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2805   Register Cmp = getOrCreateVReg(*I.getCompareOperand());
2806   Register NewVal = getOrCreateVReg(*I.getNewValOperand());
2807 
2808   MIRBuilder.buildAtomicCmpXchgWithSuccess(
2809       OldValRes, SuccessRes, Addr, Cmp, NewVal,
2810       *MF->getMachineMemOperand(
2811           MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp),
2812           getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(),
2813           I.getSuccessOrdering(), I.getFailureOrdering()));
2814   return true;
2815 }
2816 
2817 bool IRTranslator::translateAtomicRMW(const User &U,
2818                                       MachineIRBuilder &MIRBuilder) {
2819   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
2820   auto &TLI = *MF->getSubtarget().getTargetLowering();
2821   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2822 
2823   Register Res = getOrCreateVReg(I);
2824   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2825   Register Val = getOrCreateVReg(*I.getValOperand());
2826 
2827   unsigned Opcode = 0;
2828   switch (I.getOperation()) {
2829   default:
2830     return false;
2831   case AtomicRMWInst::Xchg:
2832     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
2833     break;
2834   case AtomicRMWInst::Add:
2835     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
2836     break;
2837   case AtomicRMWInst::Sub:
2838     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
2839     break;
2840   case AtomicRMWInst::And:
2841     Opcode = TargetOpcode::G_ATOMICRMW_AND;
2842     break;
2843   case AtomicRMWInst::Nand:
2844     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
2845     break;
2846   case AtomicRMWInst::Or:
2847     Opcode = TargetOpcode::G_ATOMICRMW_OR;
2848     break;
2849   case AtomicRMWInst::Xor:
2850     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
2851     break;
2852   case AtomicRMWInst::Max:
2853     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
2854     break;
2855   case AtomicRMWInst::Min:
2856     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
2857     break;
2858   case AtomicRMWInst::UMax:
2859     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
2860     break;
2861   case AtomicRMWInst::UMin:
2862     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
2863     break;
2864   case AtomicRMWInst::FAdd:
2865     Opcode = TargetOpcode::G_ATOMICRMW_FADD;
2866     break;
2867   case AtomicRMWInst::FSub:
2868     Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
2869     break;
2870   }
2871 
2872   MIRBuilder.buildAtomicRMW(
2873       Opcode, Res, Addr, Val,
2874       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
2875                                 Flags, MRI->getType(Val), getMemOpAlign(I),
2876                                 I.getAAMetadata(), nullptr, I.getSyncScopeID(),
2877                                 I.getOrdering()));
2878   return true;
2879 }
2880 
2881 bool IRTranslator::translateFence(const User &U,
2882                                   MachineIRBuilder &MIRBuilder) {
2883   const FenceInst &Fence = cast<FenceInst>(U);
2884   MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
2885                         Fence.getSyncScopeID());
2886   return true;
2887 }
2888 
2889 bool IRTranslator::translateFreeze(const User &U,
2890                                    MachineIRBuilder &MIRBuilder) {
2891   const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
2892   const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
2893 
2894   assert(DstRegs.size() == SrcRegs.size() &&
2895          "Freeze with different source and destination type?");
2896 
2897   for (unsigned I = 0; I < DstRegs.size(); ++I) {
2898     MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
2899   }
2900 
2901   return true;
2902 }
2903 
2904 void IRTranslator::finishPendingPhis() {
2905 #ifndef NDEBUG
2906   DILocationVerifier Verifier;
2907   GISelObserverWrapper WrapperObserver(&Verifier);
2908   RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2909 #endif // ifndef NDEBUG
2910   for (auto &Phi : PendingPHIs) {
2911     const PHINode *PI = Phi.first;
2912     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
2913     MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
2914     EntryBuilder->setDebugLoc(PI->getDebugLoc());
2915 #ifndef NDEBUG
2916     Verifier.setCurrentInst(PI);
2917 #endif // ifndef NDEBUG
2918 
2919     SmallSet<const MachineBasicBlock *, 16> SeenPreds;
2920     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
2921       auto IRPred = PI->getIncomingBlock(i);
2922       ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
2923       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
2924         if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
2925           continue;
2926         SeenPreds.insert(Pred);
2927         for (unsigned j = 0; j < ValRegs.size(); ++j) {
2928           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
2929           MIB.addUse(ValRegs[j]);
2930           MIB.addMBB(Pred);
2931         }
2932       }
2933     }
2934   }
2935 }
2936 
2937 bool IRTranslator::valueIsSplit(const Value &V,
2938                                 SmallVectorImpl<uint64_t> *Offsets) {
2939   SmallVector<LLT, 4> SplitTys;
2940   if (Offsets && !Offsets->empty())
2941     Offsets->clear();
2942   computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
2943   return SplitTys.size() > 1;
2944 }
2945 
2946 bool IRTranslator::translate(const Instruction &Inst) {
2947   CurBuilder->setDebugLoc(Inst.getDebugLoc());
2948 
2949   auto &TLI = *MF->getSubtarget().getTargetLowering();
2950   if (TLI.fallBackToDAGISel(Inst))
2951     return false;
2952 
2953   switch (Inst.getOpcode()) {
2954 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2955   case Instruction::OPCODE:                                                    \
2956     return translate##OPCODE(Inst, *CurBuilder.get());
2957 #include "llvm/IR/Instruction.def"
2958   default:
2959     return false;
2960   }
2961 }
2962 
2963 bool IRTranslator::translate(const Constant &C, Register Reg) {
2964   // We only emit constants into the entry block from here. To prevent jumpy
2965   // debug behaviour set the line to 0.
2966   if (auto CurrInstDL = CurBuilder->getDL())
2967     EntryBuilder->setDebugLoc(DILocation::get(C.getContext(), 0, 0,
2968                                               CurrInstDL.getScope(),
2969                                               CurrInstDL.getInlinedAt()));
2970 
2971   if (auto CI = dyn_cast<ConstantInt>(&C))
2972     EntryBuilder->buildConstant(Reg, *CI);
2973   else if (auto CF = dyn_cast<ConstantFP>(&C))
2974     EntryBuilder->buildFConstant(Reg, *CF);
2975   else if (isa<UndefValue>(C))
2976     EntryBuilder->buildUndef(Reg);
2977   else if (isa<ConstantPointerNull>(C))
2978     EntryBuilder->buildConstant(Reg, 0);
2979   else if (auto GV = dyn_cast<GlobalValue>(&C))
2980     EntryBuilder->buildGlobalValue(Reg, GV);
2981   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
2982     if (!isa<FixedVectorType>(CAZ->getType()))
2983       return false;
2984     // Return the scalar if it is a <1 x Ty> vector.
2985     unsigned NumElts = CAZ->getElementCount().getFixedValue();
2986     if (NumElts == 1)
2987       return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get());
2988     SmallVector<Register, 4> Ops;
2989     for (unsigned I = 0; I < NumElts; ++I) {
2990       Constant &Elt = *CAZ->getElementValue(I);
2991       Ops.push_back(getOrCreateVReg(Elt));
2992     }
2993     EntryBuilder->buildBuildVector(Reg, Ops);
2994   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
2995     // Return the scalar if it is a <1 x Ty> vector.
2996     if (CV->getNumElements() == 1)
2997       return translateCopy(C, *CV->getElementAsConstant(0),
2998                            *EntryBuilder.get());
2999     SmallVector<Register, 4> Ops;
3000     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
3001       Constant &Elt = *CV->getElementAsConstant(i);
3002       Ops.push_back(getOrCreateVReg(Elt));
3003     }
3004     EntryBuilder->buildBuildVector(Reg, Ops);
3005   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
3006     switch(CE->getOpcode()) {
3007 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
3008   case Instruction::OPCODE:                                                    \
3009     return translate##OPCODE(*CE, *EntryBuilder.get());
3010 #include "llvm/IR/Instruction.def"
3011     default:
3012       return false;
3013     }
3014   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
3015     if (CV->getNumOperands() == 1)
3016       return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get());
3017     SmallVector<Register, 4> Ops;
3018     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
3019       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
3020     }
3021     EntryBuilder->buildBuildVector(Reg, Ops);
3022   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
3023     EntryBuilder->buildBlockAddress(Reg, BA);
3024   } else
3025     return false;
3026 
3027   return true;
3028 }
3029 
3030 bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB,
3031                                       MachineBasicBlock &MBB) {
3032   for (auto &BTB : SL->BitTestCases) {
3033     // Emit header first, if it wasn't already emitted.
3034     if (!BTB.Emitted)
3035       emitBitTestHeader(BTB, BTB.Parent);
3036 
3037     BranchProbability UnhandledProb = BTB.Prob;
3038     for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
3039       UnhandledProb -= BTB.Cases[j].ExtraProb;
3040       // Set the current basic block to the mbb we wish to insert the code into
3041       MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
3042       // If all cases cover a contiguous range, it is not necessary to jump to
3043       // the default block after the last bit test fails. This is because the
3044       // range check during bit test header creation has guaranteed that every
3045       // case here doesn't go outside the range. In this case, there is no need
3046       // to perform the last bit test, as it will always be true. Instead, make
3047       // the second-to-last bit-test fall through to the target of the last bit
3048       // test, and delete the last bit test.
3049 
3050       MachineBasicBlock *NextMBB;
3051       if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3052         // Second-to-last bit-test with contiguous range: fall through to the
3053         // target of the final bit test.
3054         NextMBB = BTB.Cases[j + 1].TargetBB;
3055       } else if (j + 1 == ej) {
3056         // For the last bit test, fall through to Default.
3057         NextMBB = BTB.Default;
3058       } else {
3059         // Otherwise, fall through to the next bit test.
3060         NextMBB = BTB.Cases[j + 1].ThisBB;
3061       }
3062 
3063       emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);
3064 
3065       if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3066         // We need to record the replacement phi edge here that normally
3067         // happens in emitBitTestCase before we delete the case, otherwise the
3068         // phi edge will be lost.
3069         addMachineCFGPred({BTB.Parent->getBasicBlock(),
3070                            BTB.Cases[ej - 1].TargetBB->getBasicBlock()},
3071                           MBB);
3072         // Since we're not going to use the final bit test, remove it.
3073         BTB.Cases.pop_back();
3074         break;
3075       }
3076     }
3077     // This is "default" BB. We have two jumps to it. From "header" BB and from
3078     // last "case" BB, unless the latter was skipped.
3079     CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
3080                                    BTB.Default->getBasicBlock()};
3081     addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
3082     if (!BTB.ContiguousRange) {
3083       addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
3084     }
3085   }
3086   SL->BitTestCases.clear();
3087 
3088   for (auto &JTCase : SL->JTCases) {
3089     // Emit header first, if it wasn't already emitted.
3090     if (!JTCase.first.Emitted)
3091       emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
3092 
3093     emitJumpTable(JTCase.second, JTCase.second.MBB);
3094   }
3095   SL->JTCases.clear();
3096 
3097   for (auto &SwCase : SL->SwitchCases)
3098     emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
3099   SL->SwitchCases.clear();
3100 
3101   // Check if we need to generate stack-protector guard checks.
3102   StackProtector &SP = getAnalysis<StackProtector>();
3103   if (SP.shouldEmitSDCheck(BB)) {
3104     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3105     bool FunctionBasedInstrumentation =
3106         TLI.getSSPStackGuardCheck(*MF->getFunction().getParent());
3107     SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation);
3108   }
3109   // Handle stack protector.
3110   if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
3111     LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n");
3112     return false;
3113   } else if (SPDescriptor.shouldEmitStackProtector()) {
3114     MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB();
3115     MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB();
3116 
3117     // Find the split point to split the parent mbb. At the same time copy all
3118     // physical registers used in the tail of parent mbb into virtual registers
3119     // before the split point and back into physical registers after the split
3120     // point. This prevents us needing to deal with Live-ins and many other
3121     // register allocation issues caused by us splitting the parent mbb. The
3122     // register allocator will clean up said virtual copies later on.
3123     MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector(
3124         ParentMBB, *MF->getSubtarget().getInstrInfo());
3125 
3126     // Splice the terminator of ParentMBB into SuccessMBB.
3127     SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint,
3128                        ParentMBB->end());
3129 
3130     // Add compare/jump on neq/jump to the parent BB.
3131     if (!emitSPDescriptorParent(SPDescriptor, ParentMBB))
3132       return false;
3133 
3134     // CodeGen Failure MBB if we have not codegened it yet.
3135     MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB();
3136     if (FailureMBB->empty()) {
3137       if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB))
3138         return false;
3139     }
3140 
3141     // Clear the Per-BB State.
3142     SPDescriptor.resetPerBBState();
3143   }
3144   return true;
3145 }
3146 
3147 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD,
3148                                           MachineBasicBlock *ParentBB) {
3149   CurBuilder->setInsertPt(*ParentBB, ParentBB->end());
3150   // First create the loads to the guard/stack slot for the comparison.
3151   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3152   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
3153   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
3154   LLT PtrMemTy = getLLTForMVT(TLI.getPointerMemTy(*DL));
3155 
3156   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3157   int FI = MFI.getStackProtectorIndex();
3158 
3159   Register Guard;
3160   Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0);
3161   const Module &M = *ParentBB->getParent()->getFunction().getParent();
3162   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
3163 
3164   // Generate code to load the content of the guard slot.
3165   Register GuardVal =
3166       CurBuilder
3167           ->buildLoad(PtrMemTy, StackSlotPtr,
3168                       MachinePointerInfo::getFixedStack(*MF, FI), Align,
3169                       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile)
3170           .getReg(0);
3171 
3172   if (TLI.useStackGuardXorFP()) {
3173     LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented");
3174     return false;
3175   }
3176 
3177   // Retrieve guard check function, nullptr if instrumentation is inlined.
3178   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3179     // This path is currently untestable on GlobalISel, since the only platform
3180     // that needs this seems to be Windows, and we fall back on that currently.
3181     // The code still lives here in case that changes.
3182     // Silence warning about unused variable until the code below that uses
3183     // 'GuardCheckFn' is enabled.
3184     (void)GuardCheckFn;
3185     return false;
3186 #if 0
3187     // The target provides a guard check function to validate the guard value.
3188     // Generate a call to that function with the content of the guard slot as
3189     // argument.
3190     FunctionType *FnTy = GuardCheckFn->getFunctionType();
3191     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3192     ISD::ArgFlagsTy Flags;
3193     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
3194       Flags.setInReg();
3195     CallLowering::ArgInfo GuardArgInfo(
3196         {GuardVal, FnTy->getParamType(0), {Flags}});
3197 
3198     CallLowering::CallLoweringInfo Info;
3199     Info.OrigArgs.push_back(GuardArgInfo);
3200     Info.CallConv = GuardCheckFn->getCallingConv();
3201     Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0);
3202     Info.OrigRet = {Register(), FnTy->getReturnType()};
3203     if (!CLI->lowerCall(MIRBuilder, Info)) {
3204       LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n");
3205       return false;
3206     }
3207     return true;
3208 #endif
3209   }
3210 
3211   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3212   // Otherwise, emit a volatile load to retrieve the stack guard value.
3213   if (TLI.useLoadStackGuardNode()) {
3214     Guard =
3215         MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits()));
3216     getStackGuard(Guard, *CurBuilder);
3217   } else {
3218     // TODO: test using android subtarget when we support @llvm.thread.pointer.
3219     const Value *IRGuard = TLI.getSDagStackGuard(M);
3220     Register GuardPtr = getOrCreateVReg(*IRGuard);
3221 
3222     Guard = CurBuilder
3223                 ->buildLoad(PtrMemTy, GuardPtr,
3224                             MachinePointerInfo::getFixedStack(*MF, FI), Align,
3225                             MachineMemOperand::MOLoad |
3226                                 MachineMemOperand::MOVolatile)
3227                 .getReg(0);
3228   }
3229 
3230   // Perform the comparison.
3231   auto Cmp =
3232       CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal);
3233   // If the guard/stackslot do not equal, branch to failure MBB.
3234   CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB());
3235   // Otherwise branch to success MBB.
3236   CurBuilder->buildBr(*SPD.getSuccessMBB());
3237   return true;
3238 }
3239 
3240 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD,
3241                                            MachineBasicBlock *FailureBB) {
3242   CurBuilder->setInsertPt(*FailureBB, FailureBB->end());
3243   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3244 
3245   const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL;
3246   const char *Name = TLI.getLibcallName(Libcall);
3247 
3248   CallLowering::CallLoweringInfo Info;
3249   Info.CallConv = TLI.getLibcallCallingConv(Libcall);
3250   Info.Callee = MachineOperand::CreateES(Name);
3251   Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()),
3252                   0};
3253   if (!CLI->lowerCall(*CurBuilder, Info)) {
3254     LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n");
3255     return false;
3256   }
3257 
3258   // On PS4, the "return address" must still be within the calling function,
3259   // even if it's at the very end, so emit an explicit TRAP here.
3260   // Passing 'true' for doesNotReturn above won't generate the trap for us.
3261   // WebAssembly needs an unreachable instruction after a non-returning call,
3262   // because the function return type can be different from __stack_chk_fail's
3263   // return type (void).
3264   const TargetMachine &TM = MF->getTarget();
3265   if (TM.getTargetTriple().isPS4CPU() || TM.getTargetTriple().isWasm()) {
3266     LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n");
3267     return false;
3268   }
3269   return true;
3270 }
3271 
3272 void IRTranslator::finalizeFunction() {
3273   // Release the memory used by the different maps we
3274   // needed during the translation.
3275   PendingPHIs.clear();
3276   VMap.reset();
3277   FrameIndices.clear();
3278   MachinePreds.clear();
3279   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
3280   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
3281   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
3282   EntryBuilder.reset();
3283   CurBuilder.reset();
3284   FuncInfo.clear();
3285   SPDescriptor.resetPerFunctionState();
3286 }
3287 
3288 /// Returns true if a BasicBlock \p BB within a variadic function contains a
3289 /// variadic musttail call.
3290 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
3291   if (!IsVarArg)
3292     return false;
3293 
3294   // Walk the block backwards, because tail calls usually only appear at the end
3295   // of a block.
3296   return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) {
3297     const auto *CI = dyn_cast<CallInst>(&I);
3298     return CI && CI->isMustTailCall();
3299   });
3300 }
3301 
3302 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
3303   MF = &CurMF;
3304   const Function &F = MF->getFunction();
3305   GISelCSEAnalysisWrapper &Wrapper =
3306       getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
3307   // Set the CSEConfig and run the analysis.
3308   GISelCSEInfo *CSEInfo = nullptr;
3309   TPC = &getAnalysis<TargetPassConfig>();
3310   bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
3311                        ? EnableCSEInIRTranslator
3312                        : TPC->isGISelCSEEnabled();
3313 
3314   if (EnableCSE) {
3315     EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3316     CSEInfo = &Wrapper.get(TPC->getCSEConfig());
3317     EntryBuilder->setCSEInfo(CSEInfo);
3318     CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3319     CurBuilder->setCSEInfo(CSEInfo);
3320   } else {
3321     EntryBuilder = std::make_unique<MachineIRBuilder>();
3322     CurBuilder = std::make_unique<MachineIRBuilder>();
3323   }
3324   CLI = MF->getSubtarget().getCallLowering();
3325   CurBuilder->setMF(*MF);
3326   EntryBuilder->setMF(*MF);
3327   MRI = &MF->getRegInfo();
3328   DL = &F.getParent()->getDataLayout();
3329   ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
3330   const TargetMachine &TM = MF->getTarget();
3331   TM.resetTargetOptions(F);
3332   EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F);
3333   FuncInfo.MF = MF;
3334   if (EnableOpts)
3335     FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
3336   else
3337     FuncInfo.BPI = nullptr;
3338 
3339   FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
3340 
3341   const auto &TLI = *MF->getSubtarget().getTargetLowering();
3342 
3343   SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
3344   SL->init(TLI, TM, *DL);
3345 
3346 
3347 
3348   assert(PendingPHIs.empty() && "stale PHIs");
3349 
3350   // Targets which want to use big endian can enable it using
3351   // enableBigEndian()
3352   if (!DL->isLittleEndian() && !CLI->enableBigEndian()) {
3353     // Currently we don't properly handle big endian code.
3354     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3355                                F.getSubprogram(), &F.getEntryBlock());
3356     R << "unable to translate in big endian mode";
3357     reportTranslationError(*MF, *TPC, *ORE, R);
3358   }
3359 
3360   // Release the per-function state when we return, whether we succeeded or not.
3361   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
3362 
3363   // Setup a separate basic-block for the arguments and constants
3364   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
3365   MF->push_back(EntryBB);
3366   EntryBuilder->setMBB(*EntryBB);
3367 
3368   DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
3369   SwiftError.setFunction(CurMF);
3370   SwiftError.createEntriesInEntryBlock(DbgLoc);
3371 
3372   bool IsVarArg = F.isVarArg();
3373   bool HasMustTailInVarArgFn = false;
3374 
3375   // Create all blocks, in IR order, to preserve the layout.
3376   for (const BasicBlock &BB: F) {
3377     auto *&MBB = BBToMBB[&BB];
3378 
3379     MBB = MF->CreateMachineBasicBlock(&BB);
3380     MF->push_back(MBB);
3381 
3382     if (BB.hasAddressTaken())
3383       MBB->setHasAddressTaken();
3384 
3385     if (!HasMustTailInVarArgFn)
3386       HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
3387   }
3388 
3389   MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
3390 
3391   // Make our arguments/constants entry block fallthrough to the IR entry block.
3392   EntryBB->addSuccessor(&getMBB(F.front()));
3393 
3394   if (CLI->fallBackToDAGISel(*MF)) {
3395     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3396                                F.getSubprogram(), &F.getEntryBlock());
3397     R << "unable to lower function: " << ore::NV("Prototype", F.getType());
3398     reportTranslationError(*MF, *TPC, *ORE, R);
3399     return false;
3400   }
3401 
3402   // Lower the actual args into this basic block.
3403   SmallVector<ArrayRef<Register>, 8> VRegArgs;
3404   for (const Argument &Arg: F.args()) {
3405     if (DL->getTypeStoreSize(Arg.getType()).isZero())
3406       continue; // Don't handle zero sized types.
3407     ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
3408     VRegArgs.push_back(VRegs);
3409 
3410     if (Arg.hasSwiftErrorAttr()) {
3411       assert(VRegs.size() == 1 && "Too many vregs for Swift error");
3412       SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
3413     }
3414   }
3415 
3416   if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs, FuncInfo)) {
3417     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3418                                F.getSubprogram(), &F.getEntryBlock());
3419     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
3420     reportTranslationError(*MF, *TPC, *ORE, R);
3421     return false;
3422   }
3423 
3424   // Need to visit defs before uses when translating instructions.
3425   GISelObserverWrapper WrapperObserver;
3426   if (EnableCSE && CSEInfo)
3427     WrapperObserver.addObserver(CSEInfo);
3428   {
3429     ReversePostOrderTraversal<const Function *> RPOT(&F);
3430 #ifndef NDEBUG
3431     DILocationVerifier Verifier;
3432     WrapperObserver.addObserver(&Verifier);
3433 #endif // ifndef NDEBUG
3434     RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3435     RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
3436     for (const BasicBlock *BB : RPOT) {
3437       MachineBasicBlock &MBB = getMBB(*BB);
3438       // Set the insertion point of all the following translations to
3439       // the end of this basic block.
3440       CurBuilder->setMBB(MBB);
3441       HasTailCall = false;
3442       for (const Instruction &Inst : *BB) {
3443         // If we translated a tail call in the last step, then we know
3444         // everything after the call is either a return, or something that is
3445         // handled by the call itself. (E.g. a lifetime marker or assume
3446         // intrinsic.) In this case, we should stop translating the block and
3447         // move on.
3448         if (HasTailCall)
3449           break;
3450 #ifndef NDEBUG
3451         Verifier.setCurrentInst(&Inst);
3452 #endif // ifndef NDEBUG
3453         if (translate(Inst))
3454           continue;
3455 
3456         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3457                                    Inst.getDebugLoc(), BB);
3458         R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
3459 
3460         if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
3461           std::string InstStrStorage;
3462           raw_string_ostream InstStr(InstStrStorage);
3463           InstStr << Inst;
3464 
3465           R << ": '" << InstStr.str() << "'";
3466         }
3467 
3468         reportTranslationError(*MF, *TPC, *ORE, R);
3469         return false;
3470       }
3471 
3472       if (!finalizeBasicBlock(*BB, MBB)) {
3473         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3474                                    BB->getTerminator()->getDebugLoc(), BB);
3475         R << "unable to translate basic block";
3476         reportTranslationError(*MF, *TPC, *ORE, R);
3477         return false;
3478       }
3479     }
3480 #ifndef NDEBUG
3481     WrapperObserver.removeObserver(&Verifier);
3482 #endif
3483   }
3484 
3485   finishPendingPhis();
3486 
3487   SwiftError.propagateVRegs();
3488 
3489   // Merge the argument lowering and constants block with its single
3490   // successor, the LLVM-IR entry block.  We want the basic block to
3491   // be maximal.
3492   assert(EntryBB->succ_size() == 1 &&
3493          "Custom BB used for lowering should have only one successor");
3494   // Get the successor of the current entry block.
3495   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
3496   assert(NewEntryBB.pred_size() == 1 &&
3497          "LLVM-IR entry block has a predecessor!?");
3498   // Move all the instruction from the current entry block to the
3499   // new entry block.
3500   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
3501                     EntryBB->end());
3502 
3503   // Update the live-in information for the new entry block.
3504   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
3505     NewEntryBB.addLiveIn(LiveIn);
3506   NewEntryBB.sortUniqueLiveIns();
3507 
3508   // Get rid of the now empty basic block.
3509   EntryBB->removeSuccessor(&NewEntryBB);
3510   MF->remove(EntryBB);
3511   MF->deleteMachineBasicBlock(EntryBB);
3512 
3513   assert(&MF->front() == &NewEntryBB &&
3514          "New entry wasn't next in the list of basic block!");
3515 
3516   // Initialize stack protector information.
3517   StackProtector &SP = getAnalysis<StackProtector>();
3518   SP.copyToMachineFrameInfo(MF->getFrameInfo());
3519 
3520   return false;
3521 }
3522