xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp (revision e64fe029e9d3ce476e77a478318e0c3cd201ff08)
1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
26 #include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
27 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
28 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
29 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
30 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
31 #include "llvm/CodeGen/LowLevelType.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineModuleInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/RuntimeLibcalls.h"
41 #include "llvm/CodeGen/StackProtector.h"
42 #include "llvm/CodeGen/SwitchLoweringUtils.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/BasicBlock.h"
50 #include "llvm/IR/CFG.h"
51 #include "llvm/IR/Constant.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/DiagnosticInfo.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GetElementPtrTypeIterator.h"
58 #include "llvm/IR/InlineAsm.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Statepoint.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/InitializePasses.h"
71 #include "llvm/MC/MCContext.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/CodeGen.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/ErrorHandling.h"
77 #include "llvm/Support/LowLevelTypeImpl.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Target/TargetIntrinsicInfo.h"
81 #include "llvm/Target/TargetMachine.h"
82 #include "llvm/Transforms/Utils/MemoryOpRemark.h"
83 #include <algorithm>
84 #include <cassert>
85 #include <cstdint>
86 #include <iterator>
87 #include <optional>
88 #include <string>
89 #include <utility>
90 #include <vector>
91 
92 #define DEBUG_TYPE "irtranslator"
93 
94 using namespace llvm;
95 
96 static cl::opt<bool>
97     EnableCSEInIRTranslator("enable-cse-in-irtranslator",
98                             cl::desc("Should enable CSE in irtranslator"),
99                             cl::Optional, cl::init(false));
100 char IRTranslator::ID = 0;
101 
102 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
103                 false, false)
104 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
105 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
106 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
107 INITIALIZE_PASS_DEPENDENCY(StackProtector)
108 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
109 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
110                 false, false)
111 
112 static void reportTranslationError(MachineFunction &MF,
113                                    const TargetPassConfig &TPC,
114                                    OptimizationRemarkEmitter &ORE,
115                                    OptimizationRemarkMissed &R) {
116   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
117 
118   // Print the function name explicitly if we don't have a debug location (which
119   // makes the diagnostic less useful) or if we're going to emit a raw error.
120   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
121     R << (" (in function: " + MF.getName() + ")").str();
122 
123   if (TPC.isGlobalISelAbortEnabled())
124     report_fatal_error(Twine(R.getMsg()));
125   else
126     ORE.emit(R);
127 }
128 
129 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel)
130     : MachineFunctionPass(ID), OptLevel(optlevel) {}
131 
132 #ifndef NDEBUG
133 namespace {
134 /// Verify that every instruction created has the same DILocation as the
135 /// instruction being translated.
136 class DILocationVerifier : public GISelChangeObserver {
137   const Instruction *CurrInst = nullptr;
138 
139 public:
140   DILocationVerifier() = default;
141   ~DILocationVerifier() = default;
142 
143   const Instruction *getCurrentInst() const { return CurrInst; }
144   void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
145 
146   void erasingInstr(MachineInstr &MI) override {}
147   void changingInstr(MachineInstr &MI) override {}
148   void changedInstr(MachineInstr &MI) override {}
149 
150   void createdInstr(MachineInstr &MI) override {
151     assert(getCurrentInst() && "Inserted instruction without a current MI");
152 
153     // Only print the check message if we're actually checking it.
154 #ifndef NDEBUG
155     LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
156                       << " was copied to " << MI);
157 #endif
158     // We allow insts in the entry block to have no debug loc because
159     // they could have originated from constants, and we don't want a jumpy
160     // debug experience.
161     assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
162             (MI.getParent()->isEntryBlock() && !MI.getDebugLoc())) &&
163            "Line info was not transferred to all instructions");
164   }
165 };
166 } // namespace
167 #endif // ifndef NDEBUG
168 
169 
170 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
171   AU.addRequired<StackProtector>();
172   AU.addRequired<TargetPassConfig>();
173   AU.addRequired<GISelCSEAnalysisWrapperPass>();
174   AU.addRequired<AssumptionCacheTracker>();
175   if (OptLevel != CodeGenOpt::None) {
176     AU.addRequired<BranchProbabilityInfoWrapperPass>();
177     AU.addRequired<AAResultsWrapperPass>();
178   }
179   AU.addRequired<TargetLibraryInfoWrapperPass>();
180   AU.addPreserved<TargetLibraryInfoWrapperPass>();
181   getSelectionDAGFallbackAnalysisUsage(AU);
182   MachineFunctionPass::getAnalysisUsage(AU);
183 }
184 
185 IRTranslator::ValueToVRegInfo::VRegListT &
186 IRTranslator::allocateVRegs(const Value &Val) {
187   auto VRegsIt = VMap.findVRegs(Val);
188   if (VRegsIt != VMap.vregs_end())
189     return *VRegsIt->second;
190   auto *Regs = VMap.getVRegs(Val);
191   auto *Offsets = VMap.getOffsets(Val);
192   SmallVector<LLT, 4> SplitTys;
193   computeValueLLTs(*DL, *Val.getType(), SplitTys,
194                    Offsets->empty() ? Offsets : nullptr);
195   for (unsigned i = 0; i < SplitTys.size(); ++i)
196     Regs->push_back(0);
197   return *Regs;
198 }
199 
200 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
201   auto VRegsIt = VMap.findVRegs(Val);
202   if (VRegsIt != VMap.vregs_end())
203     return *VRegsIt->second;
204 
205   if (Val.getType()->isVoidTy())
206     return *VMap.getVRegs(Val);
207 
208   // Create entry for this type.
209   auto *VRegs = VMap.getVRegs(Val);
210   auto *Offsets = VMap.getOffsets(Val);
211 
212   assert(Val.getType()->isSized() &&
213          "Don't know how to create an empty vreg");
214 
215   SmallVector<LLT, 4> SplitTys;
216   computeValueLLTs(*DL, *Val.getType(), SplitTys,
217                    Offsets->empty() ? Offsets : nullptr);
218 
219   if (!isa<Constant>(Val)) {
220     for (auto Ty : SplitTys)
221       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
222     return *VRegs;
223   }
224 
225   if (Val.getType()->isAggregateType()) {
226     // UndefValue, ConstantAggregateZero
227     auto &C = cast<Constant>(Val);
228     unsigned Idx = 0;
229     while (auto Elt = C.getAggregateElement(Idx++)) {
230       auto EltRegs = getOrCreateVRegs(*Elt);
231       llvm::copy(EltRegs, std::back_inserter(*VRegs));
232     }
233   } else {
234     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
235     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
236     bool Success = translate(cast<Constant>(Val), VRegs->front());
237     if (!Success) {
238       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
239                                  MF->getFunction().getSubprogram(),
240                                  &MF->getFunction().getEntryBlock());
241       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
242       reportTranslationError(*MF, *TPC, *ORE, R);
243       return *VRegs;
244     }
245   }
246 
247   return *VRegs;
248 }
249 
250 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
251   auto MapEntry = FrameIndices.find(&AI);
252   if (MapEntry != FrameIndices.end())
253     return MapEntry->second;
254 
255   uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
256   uint64_t Size =
257       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
258 
259   // Always allocate at least one byte.
260   Size = std::max<uint64_t>(Size, 1u);
261 
262   int &FI = FrameIndices[&AI];
263   FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
264   return FI;
265 }
266 
267 Align IRTranslator::getMemOpAlign(const Instruction &I) {
268   if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
269     return SI->getAlign();
270   if (const LoadInst *LI = dyn_cast<LoadInst>(&I))
271     return LI->getAlign();
272   if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I))
273     return AI->getAlign();
274   if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I))
275     return AI->getAlign();
276 
277   OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
278   R << "unable to translate memop: " << ore::NV("Opcode", &I);
279   reportTranslationError(*MF, *TPC, *ORE, R);
280   return Align(1);
281 }
282 
283 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
284   MachineBasicBlock *&MBB = BBToMBB[&BB];
285   assert(MBB && "BasicBlock was not encountered before");
286   return *MBB;
287 }
288 
289 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
290   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
291   MachinePreds[Edge].push_back(NewPred);
292 }
293 
294 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
295                                      MachineIRBuilder &MIRBuilder) {
296   // Get or create a virtual register for each value.
297   // Unless the value is a Constant => loadimm cst?
298   // or inline constant each time?
299   // Creation of a virtual register needs to have a size.
300   Register Op0 = getOrCreateVReg(*U.getOperand(0));
301   Register Op1 = getOrCreateVReg(*U.getOperand(1));
302   Register Res = getOrCreateVReg(U);
303   uint16_t Flags = 0;
304   if (isa<Instruction>(U)) {
305     const Instruction &I = cast<Instruction>(U);
306     Flags = MachineInstr::copyFlagsFromInstruction(I);
307   }
308 
309   MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
310   return true;
311 }
312 
313 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
314                                     MachineIRBuilder &MIRBuilder) {
315   Register Op0 = getOrCreateVReg(*U.getOperand(0));
316   Register Res = getOrCreateVReg(U);
317   uint16_t Flags = 0;
318   if (isa<Instruction>(U)) {
319     const Instruction &I = cast<Instruction>(U);
320     Flags = MachineInstr::copyFlagsFromInstruction(I);
321   }
322   MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
323   return true;
324 }
325 
326 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
327   return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
328 }
329 
330 bool IRTranslator::translateCompare(const User &U,
331                                     MachineIRBuilder &MIRBuilder) {
332   auto *CI = dyn_cast<CmpInst>(&U);
333   Register Op0 = getOrCreateVReg(*U.getOperand(0));
334   Register Op1 = getOrCreateVReg(*U.getOperand(1));
335   Register Res = getOrCreateVReg(U);
336   CmpInst::Predicate Pred =
337       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
338                                     cast<ConstantExpr>(U).getPredicate());
339   if (CmpInst::isIntPredicate(Pred))
340     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
341   else if (Pred == CmpInst::FCMP_FALSE)
342     MIRBuilder.buildCopy(
343         Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
344   else if (Pred == CmpInst::FCMP_TRUE)
345     MIRBuilder.buildCopy(
346         Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
347   else {
348     uint16_t Flags = 0;
349     if (CI)
350       Flags = MachineInstr::copyFlagsFromInstruction(*CI);
351     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags);
352   }
353 
354   return true;
355 }
356 
357 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
358   const ReturnInst &RI = cast<ReturnInst>(U);
359   const Value *Ret = RI.getReturnValue();
360   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
361     Ret = nullptr;
362 
363   ArrayRef<Register> VRegs;
364   if (Ret)
365     VRegs = getOrCreateVRegs(*Ret);
366 
367   Register SwiftErrorVReg = 0;
368   if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
369     SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
370         &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
371   }
372 
373   // The target may mess up with the insertion point, but
374   // this is not important as a return is the last instruction
375   // of the block anyway.
376   return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
377 }
378 
379 void IRTranslator::emitBranchForMergedCondition(
380     const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
381     MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
382     BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
383   // If the leaf of the tree is a comparison, merge the condition into
384   // the caseblock.
385   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
386     CmpInst::Predicate Condition;
387     if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
388       Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
389     } else {
390       const FCmpInst *FC = cast<FCmpInst>(Cond);
391       Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
392     }
393 
394     SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
395                            BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
396                            CurBuilder->getDebugLoc(), TProb, FProb);
397     SL->SwitchCases.push_back(CB);
398     return;
399   }
400 
401   // Create a CaseBlock record representing this branch.
402   CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
403   SwitchCG::CaseBlock CB(
404       Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
405       nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
406   SL->SwitchCases.push_back(CB);
407 }
408 
409 static bool isValInBlock(const Value *V, const BasicBlock *BB) {
410   if (const Instruction *I = dyn_cast<Instruction>(V))
411     return I->getParent() == BB;
412   return true;
413 }
414 
415 void IRTranslator::findMergedConditions(
416     const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
417     MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
418     Instruction::BinaryOps Opc, BranchProbability TProb,
419     BranchProbability FProb, bool InvertCond) {
420   using namespace PatternMatch;
421   assert((Opc == Instruction::And || Opc == Instruction::Or) &&
422          "Expected Opc to be AND/OR");
423   // Skip over not part of the tree and remember to invert op and operands at
424   // next level.
425   Value *NotCond;
426   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
427       isValInBlock(NotCond, CurBB->getBasicBlock())) {
428     findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
429                          !InvertCond);
430     return;
431   }
432 
433   const Instruction *BOp = dyn_cast<Instruction>(Cond);
434   const Value *BOpOp0, *BOpOp1;
435   // Compute the effective opcode for Cond, taking into account whether it needs
436   // to be inverted, e.g.
437   //   and (not (or A, B)), C
438   // gets lowered as
439   //   and (and (not A, not B), C)
440   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
441   if (BOp) {
442     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
443                ? Instruction::And
444                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
445                       ? Instruction::Or
446                       : (Instruction::BinaryOps)0);
447     if (InvertCond) {
448       if (BOpc == Instruction::And)
449         BOpc = Instruction::Or;
450       else if (BOpc == Instruction::Or)
451         BOpc = Instruction::And;
452     }
453   }
454 
455   // If this node is not part of the or/and tree, emit it as a branch.
456   // Note that all nodes in the tree should have same opcode.
457   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
458   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
459       !isValInBlock(BOpOp0, CurBB->getBasicBlock()) ||
460       !isValInBlock(BOpOp1, CurBB->getBasicBlock())) {
461     emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
462                                  InvertCond);
463     return;
464   }
465 
466   //  Create TmpBB after CurBB.
467   MachineFunction::iterator BBI(CurBB);
468   MachineBasicBlock *TmpBB =
469       MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
470   CurBB->getParent()->insert(++BBI, TmpBB);
471 
472   if (Opc == Instruction::Or) {
473     // Codegen X | Y as:
474     // BB1:
475     //   jmp_if_X TBB
476     //   jmp TmpBB
477     // TmpBB:
478     //   jmp_if_Y TBB
479     //   jmp FBB
480     //
481 
482     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
483     // The requirement is that
484     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
485     //     = TrueProb for original BB.
486     // Assuming the original probabilities are A and B, one choice is to set
487     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
488     // A/(1+B) and 2B/(1+B). This choice assumes that
489     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
490     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
491     // TmpBB, but the math is more complicated.
492 
493     auto NewTrueProb = TProb / 2;
494     auto NewFalseProb = TProb / 2 + FProb;
495     // Emit the LHS condition.
496     findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
497                          NewFalseProb, InvertCond);
498 
499     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
500     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
501     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
502     // Emit the RHS condition into TmpBB.
503     findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
504                          Probs[1], InvertCond);
505   } else {
506     assert(Opc == Instruction::And && "Unknown merge op!");
507     // Codegen X & Y as:
508     // BB1:
509     //   jmp_if_X TmpBB
510     //   jmp FBB
511     // TmpBB:
512     //   jmp_if_Y TBB
513     //   jmp FBB
514     //
515     //  This requires creation of TmpBB after CurBB.
516 
517     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
518     // The requirement is that
519     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
520     //     = FalseProb for original BB.
521     // Assuming the original probabilities are A and B, one choice is to set
522     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
523     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
524     // TrueProb for BB1 * FalseProb for TmpBB.
525 
526     auto NewTrueProb = TProb + FProb / 2;
527     auto NewFalseProb = FProb / 2;
528     // Emit the LHS condition.
529     findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
530                          NewFalseProb, InvertCond);
531 
532     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
533     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
534     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
535     // Emit the RHS condition into TmpBB.
536     findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
537                          Probs[1], InvertCond);
538   }
539 }
540 
541 bool IRTranslator::shouldEmitAsBranches(
542     const std::vector<SwitchCG::CaseBlock> &Cases) {
543   // For multiple cases, it's better to emit as branches.
544   if (Cases.size() != 2)
545     return true;
546 
547   // If this is two comparisons of the same values or'd or and'd together, they
548   // will get folded into a single comparison, so don't emit two blocks.
549   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
550        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
551       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
552        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
553     return false;
554   }
555 
556   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
557   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
558   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
559       Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
560       isa<Constant>(Cases[0].CmpRHS) &&
561       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
562     if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
563         Cases[0].TrueBB == Cases[1].ThisBB)
564       return false;
565     if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
566         Cases[0].FalseBB == Cases[1].ThisBB)
567       return false;
568   }
569 
570   return true;
571 }
572 
573 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
574   const BranchInst &BrInst = cast<BranchInst>(U);
575   auto &CurMBB = MIRBuilder.getMBB();
576   auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));
577 
578   if (BrInst.isUnconditional()) {
579     // If the unconditional target is the layout successor, fallthrough.
580     if (OptLevel == CodeGenOpt::None || !CurMBB.isLayoutSuccessor(Succ0MBB))
581       MIRBuilder.buildBr(*Succ0MBB);
582 
583     // Link successors.
584     for (const BasicBlock *Succ : successors(&BrInst))
585       CurMBB.addSuccessor(&getMBB(*Succ));
586     return true;
587   }
588 
589   // If this condition is one of the special cases we handle, do special stuff
590   // now.
591   const Value *CondVal = BrInst.getCondition();
592   MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));
593 
594   const auto &TLI = *MF->getSubtarget().getTargetLowering();
595 
596   // If this is a series of conditions that are or'd or and'd together, emit
597   // this as a sequence of branches instead of setcc's with and/or operations.
598   // As long as jumps are not expensive (exceptions for multi-use logic ops,
599   // unpredictable branches, and vector extracts because those jumps are likely
600   // expensive for any target), this should improve performance.
601   // For example, instead of something like:
602   //     cmp A, B
603   //     C = seteq
604   //     cmp D, E
605   //     F = setle
606   //     or C, F
607   //     jnz foo
608   // Emit:
609   //     cmp A, B
610   //     je foo
611   //     cmp D, E
612   //     jle foo
613   using namespace PatternMatch;
614   const Instruction *CondI = dyn_cast<Instruction>(CondVal);
615   if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() &&
616       !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) {
617     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
618     Value *Vec;
619     const Value *BOp0, *BOp1;
620     if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
621       Opcode = Instruction::And;
622     else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
623       Opcode = Instruction::Or;
624 
625     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
626                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
627       findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
628                            getEdgeProbability(&CurMBB, Succ0MBB),
629                            getEdgeProbability(&CurMBB, Succ1MBB),
630                            /*InvertCond=*/false);
631       assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
632 
633       // Allow some cases to be rejected.
634       if (shouldEmitAsBranches(SL->SwitchCases)) {
635         // Emit the branch for this block.
636         emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
637         SL->SwitchCases.erase(SL->SwitchCases.begin());
638         return true;
639       }
640 
641       // Okay, we decided not to do this, remove any inserted MBB's and clear
642       // SwitchCases.
643       for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
644         MF->erase(SL->SwitchCases[I].ThisBB);
645 
646       SL->SwitchCases.clear();
647     }
648   }
649 
650   // Create a CaseBlock record representing this branch.
651   SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
652                          ConstantInt::getTrue(MF->getFunction().getContext()),
653                          nullptr, Succ0MBB, Succ1MBB, &CurMBB,
654                          CurBuilder->getDebugLoc());
655 
656   // Use emitSwitchCase to actually insert the fast branch sequence for this
657   // cond branch.
658   emitSwitchCase(CB, &CurMBB, *CurBuilder);
659   return true;
660 }
661 
662 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
663                                         MachineBasicBlock *Dst,
664                                         BranchProbability Prob) {
665   if (!FuncInfo.BPI) {
666     Src->addSuccessorWithoutProb(Dst);
667     return;
668   }
669   if (Prob.isUnknown())
670     Prob = getEdgeProbability(Src, Dst);
671   Src->addSuccessor(Dst, Prob);
672 }
673 
674 BranchProbability
675 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
676                                  const MachineBasicBlock *Dst) const {
677   const BasicBlock *SrcBB = Src->getBasicBlock();
678   const BasicBlock *DstBB = Dst->getBasicBlock();
679   if (!FuncInfo.BPI) {
680     // If BPI is not available, set the default probability as 1 / N, where N is
681     // the number of successors.
682     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
683     return BranchProbability(1, SuccSize);
684   }
685   return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
686 }
687 
688 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
689   using namespace SwitchCG;
690   // Extract cases from the switch.
691   const SwitchInst &SI = cast<SwitchInst>(U);
692   BranchProbabilityInfo *BPI = FuncInfo.BPI;
693   CaseClusterVector Clusters;
694   Clusters.reserve(SI.getNumCases());
695   for (const auto &I : SI.cases()) {
696     MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
697     assert(Succ && "Could not find successor mbb in mapping");
698     const ConstantInt *CaseVal = I.getCaseValue();
699     BranchProbability Prob =
700         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
701             : BranchProbability(1, SI.getNumCases() + 1);
702     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
703   }
704 
705   MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
706 
707   // Cluster adjacent cases with the same destination. We do this at all
708   // optimization levels because it's cheap to do and will make codegen faster
709   // if there are many clusters.
710   sortAndRangeify(Clusters);
711 
712   MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
713 
714   // If there is only the default destination, jump there directly.
715   if (Clusters.empty()) {
716     SwitchMBB->addSuccessor(DefaultMBB);
717     if (DefaultMBB != SwitchMBB->getNextNode())
718       MIB.buildBr(*DefaultMBB);
719     return true;
720   }
721 
722   SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
723   SL->findBitTestClusters(Clusters, &SI);
724 
725   LLVM_DEBUG({
726     dbgs() << "Case clusters: ";
727     for (const CaseCluster &C : Clusters) {
728       if (C.Kind == CC_JumpTable)
729         dbgs() << "JT:";
730       if (C.Kind == CC_BitTests)
731         dbgs() << "BT:";
732 
733       C.Low->getValue().print(dbgs(), true);
734       if (C.Low != C.High) {
735         dbgs() << '-';
736         C.High->getValue().print(dbgs(), true);
737       }
738       dbgs() << ' ';
739     }
740     dbgs() << '\n';
741   });
742 
743   assert(!Clusters.empty());
744   SwitchWorkList WorkList;
745   CaseClusterIt First = Clusters.begin();
746   CaseClusterIt Last = Clusters.end() - 1;
747   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
748   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
749 
750   // FIXME: At the moment we don't do any splitting optimizations here like
751   // SelectionDAG does, so this worklist only has one entry.
752   while (!WorkList.empty()) {
753     SwitchWorkListItem W = WorkList.pop_back_val();
754     if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
755       return false;
756   }
757   return true;
758 }
759 
760 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
761                                  MachineBasicBlock *MBB) {
762   // Emit the code for the jump table
763   assert(JT.Reg != -1U && "Should lower JT Header first!");
764   MachineIRBuilder MIB(*MBB->getParent());
765   MIB.setMBB(*MBB);
766   MIB.setDebugLoc(CurBuilder->getDebugLoc());
767 
768   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
769   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
770 
771   auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
772   MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
773 }
774 
775 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
776                                        SwitchCG::JumpTableHeader &JTH,
777                                        MachineBasicBlock *HeaderBB) {
778   MachineIRBuilder MIB(*HeaderBB->getParent());
779   MIB.setMBB(*HeaderBB);
780   MIB.setDebugLoc(CurBuilder->getDebugLoc());
781 
782   const Value &SValue = *JTH.SValue;
783   // Subtract the lowest switch case value from the value being switched on.
784   const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
785   Register SwitchOpReg = getOrCreateVReg(SValue);
786   auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
787   auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
788 
789   // This value may be smaller or larger than the target's pointer type, and
790   // therefore require extension or truncating.
791   Type *PtrIRTy = SValue.getType()->getPointerTo();
792   const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
793   Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
794 
795   JT.Reg = Sub.getReg(0);
796 
797   if (JTH.FallthroughUnreachable) {
798     if (JT.MBB != HeaderBB->getNextNode())
799       MIB.buildBr(*JT.MBB);
800     return true;
801   }
802 
803   // Emit the range check for the jump table, and branch to the default block
804   // for the switch statement if the value being switched on exceeds the
805   // largest case in the switch.
806   auto Cst = getOrCreateVReg(
807       *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
808   Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
809   auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
810 
811   auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
812 
813   // Avoid emitting unnecessary branches to the next block.
814   if (JT.MBB != HeaderBB->getNextNode())
815     BrCond = MIB.buildBr(*JT.MBB);
816   return true;
817 }
818 
819 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
820                                   MachineBasicBlock *SwitchBB,
821                                   MachineIRBuilder &MIB) {
822   Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
823   Register Cond;
824   DebugLoc OldDbgLoc = MIB.getDebugLoc();
825   MIB.setDebugLoc(CB.DbgLoc);
826   MIB.setMBB(*CB.ThisBB);
827 
828   if (CB.PredInfo.NoCmp) {
829     // Branch or fall through to TrueBB.
830     addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
831     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
832                       CB.ThisBB);
833     CB.ThisBB->normalizeSuccProbs();
834     if (CB.TrueBB != CB.ThisBB->getNextNode())
835       MIB.buildBr(*CB.TrueBB);
836     MIB.setDebugLoc(OldDbgLoc);
837     return;
838   }
839 
840   const LLT i1Ty = LLT::scalar(1);
841   // Build the compare.
842   if (!CB.CmpMHS) {
843     const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
844     // For conditional branch lowering, we might try to do something silly like
845     // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
846     // just re-use the existing condition vreg.
847     if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI &&
848         CI->getZExtValue() == 1 && CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
849       Cond = CondLHS;
850     } else {
851       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
852       if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
853         Cond =
854             MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
855       else
856         Cond =
857             MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
858     }
859   } else {
860     assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
861            "Can only handle SLE ranges");
862 
863     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
864     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
865 
866     Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
867     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
868       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
869       Cond =
870           MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
871     } else {
872       const LLT CmpTy = MRI->getType(CmpOpReg);
873       auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
874       auto Diff = MIB.buildConstant(CmpTy, High - Low);
875       Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
876     }
877   }
878 
879   // Update successor info
880   addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
881 
882   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
883                     CB.ThisBB);
884 
885   // TrueBB and FalseBB are always different unless the incoming IR is
886   // degenerate. This only happens when running llc on weird IR.
887   if (CB.TrueBB != CB.FalseBB)
888     addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
889   CB.ThisBB->normalizeSuccProbs();
890 
891   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
892                     CB.ThisBB);
893 
894   MIB.buildBrCond(Cond, *CB.TrueBB);
895   MIB.buildBr(*CB.FalseBB);
896   MIB.setDebugLoc(OldDbgLoc);
897 }
898 
899 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
900                                           MachineBasicBlock *SwitchMBB,
901                                           MachineBasicBlock *CurMBB,
902                                           MachineBasicBlock *DefaultMBB,
903                                           MachineIRBuilder &MIB,
904                                           MachineFunction::iterator BBI,
905                                           BranchProbability UnhandledProbs,
906                                           SwitchCG::CaseClusterIt I,
907                                           MachineBasicBlock *Fallthrough,
908                                           bool FallthroughUnreachable) {
909   using namespace SwitchCG;
910   MachineFunction *CurMF = SwitchMBB->getParent();
911   // FIXME: Optimize away range check based on pivot comparisons.
912   JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
913   SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
914   BranchProbability DefaultProb = W.DefaultProb;
915 
916   // The jump block hasn't been inserted yet; insert it here.
917   MachineBasicBlock *JumpMBB = JT->MBB;
918   CurMF->insert(BBI, JumpMBB);
919 
920   // Since the jump table block is separate from the switch block, we need
921   // to keep track of it as a machine predecessor to the default block,
922   // otherwise we lose the phi edges.
923   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
924                     CurMBB);
925   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
926                     JumpMBB);
927 
928   auto JumpProb = I->Prob;
929   auto FallthroughProb = UnhandledProbs;
930 
931   // If the default statement is a target of the jump table, we evenly
932   // distribute the default probability to successors of CurMBB. Also
933   // update the probability on the edge from JumpMBB to Fallthrough.
934   for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
935                                         SE = JumpMBB->succ_end();
936        SI != SE; ++SI) {
937     if (*SI == DefaultMBB) {
938       JumpProb += DefaultProb / 2;
939       FallthroughProb -= DefaultProb / 2;
940       JumpMBB->setSuccProbability(SI, DefaultProb / 2);
941       JumpMBB->normalizeSuccProbs();
942     } else {
943       // Also record edges from the jump table block to it's successors.
944       addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
945                         JumpMBB);
946     }
947   }
948 
949   if (FallthroughUnreachable)
950     JTH->FallthroughUnreachable = true;
951 
952   if (!JTH->FallthroughUnreachable)
953     addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
954   addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
955   CurMBB->normalizeSuccProbs();
956 
957   // The jump table header will be inserted in our current block, do the
958   // range check, and fall through to our fallthrough block.
959   JTH->HeaderBB = CurMBB;
960   JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
961 
962   // If we're in the right place, emit the jump table header right now.
963   if (CurMBB == SwitchMBB) {
964     if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
965       return false;
966     JTH->Emitted = true;
967   }
968   return true;
969 }
970 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
971                                             Value *Cond,
972                                             MachineBasicBlock *Fallthrough,
973                                             bool FallthroughUnreachable,
974                                             BranchProbability UnhandledProbs,
975                                             MachineBasicBlock *CurMBB,
976                                             MachineIRBuilder &MIB,
977                                             MachineBasicBlock *SwitchMBB) {
978   using namespace SwitchCG;
979   const Value *RHS, *LHS, *MHS;
980   CmpInst::Predicate Pred;
981   if (I->Low == I->High) {
982     // Check Cond == I->Low.
983     Pred = CmpInst::ICMP_EQ;
984     LHS = Cond;
985     RHS = I->Low;
986     MHS = nullptr;
987   } else {
988     // Check I->Low <= Cond <= I->High.
989     Pred = CmpInst::ICMP_SLE;
990     LHS = I->Low;
991     MHS = Cond;
992     RHS = I->High;
993   }
994 
995   // If Fallthrough is unreachable, fold away the comparison.
996   // The false probability is the sum of all unhandled cases.
997   CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
998                CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
999 
1000   emitSwitchCase(CB, SwitchMBB, MIB);
1001   return true;
1002 }
1003 
1004 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
1005                                      MachineBasicBlock *SwitchBB) {
1006   MachineIRBuilder &MIB = *CurBuilder;
1007   MIB.setMBB(*SwitchBB);
1008 
1009   // Subtract the minimum value.
1010   Register SwitchOpReg = getOrCreateVReg(*B.SValue);
1011 
1012   LLT SwitchOpTy = MRI->getType(SwitchOpReg);
1013   Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
1014   auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
1015 
1016   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
1017   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1018 
1019   LLT MaskTy = SwitchOpTy;
1020   if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() ||
1021       !isPowerOf2_32(MaskTy.getSizeInBits()))
1022     MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1023   else {
1024     // Ensure that the type will fit the mask value.
1025     for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
1026       if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
1027         // Switch table case range are encoded into series of masks.
1028         // Just use pointer type, it's guaranteed to fit.
1029         MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1030         break;
1031       }
1032     }
1033   }
1034   Register SubReg = RangeSub.getReg(0);
1035   if (SwitchOpTy != MaskTy)
1036     SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);
1037 
1038   B.RegVT = getMVTForLLT(MaskTy);
1039   B.Reg = SubReg;
1040 
1041   MachineBasicBlock *MBB = B.Cases[0].ThisBB;
1042 
1043   if (!B.FallthroughUnreachable)
1044     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
1045   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
1046 
1047   SwitchBB->normalizeSuccProbs();
1048 
1049   if (!B.FallthroughUnreachable) {
1050     // Conditional branch to the default block.
1051     auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
1052     auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
1053                                   RangeSub, RangeCst);
1054     MIB.buildBrCond(RangeCmp, *B.Default);
1055   }
1056 
1057   // Avoid emitting unnecessary branches to the next block.
1058   if (MBB != SwitchBB->getNextNode())
1059     MIB.buildBr(*MBB);
1060 }
1061 
1062 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
1063                                    MachineBasicBlock *NextMBB,
1064                                    BranchProbability BranchProbToNext,
1065                                    Register Reg, SwitchCG::BitTestCase &B,
1066                                    MachineBasicBlock *SwitchBB) {
1067   MachineIRBuilder &MIB = *CurBuilder;
1068   MIB.setMBB(*SwitchBB);
1069 
1070   LLT SwitchTy = getLLTForMVT(BB.RegVT);
1071   Register Cmp;
1072   unsigned PopCount = llvm::popcount(B.Mask);
1073   if (PopCount == 1) {
1074     // Testing for a single bit; just compare the shift count with what it
1075     // would need to be to shift a 1 bit in that position.
1076     auto MaskTrailingZeros =
1077         MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask));
1078     Cmp =
1079         MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
1080             .getReg(0);
1081   } else if (PopCount == BB.Range) {
1082     // There is only one zero bit in the range, test for it directly.
1083     auto MaskTrailingOnes =
1084         MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask));
1085     Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
1086               .getReg(0);
1087   } else {
1088     // Make desired shift.
1089     auto CstOne = MIB.buildConstant(SwitchTy, 1);
1090     auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);
1091 
1092     // Emit bit tests and jumps.
1093     auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
1094     auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
1095     auto CstZero = MIB.buildConstant(SwitchTy, 0);
1096     Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
1097               .getReg(0);
1098   }
1099 
1100   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
1101   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
1102   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
1103   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
1104   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
1105   // one as they are relative probabilities (and thus work more like weights),
1106   // and hence we need to normalize them to let the sum of them become one.
1107   SwitchBB->normalizeSuccProbs();
1108 
1109   // Record the fact that the IR edge from the header to the bit test target
1110   // will go through our new block. Neeeded for PHIs to have nodes added.
1111   addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
1112                     SwitchBB);
1113 
1114   MIB.buildBrCond(Cmp, *B.TargetBB);
1115 
1116   // Avoid emitting unnecessary branches to the next block.
1117   if (NextMBB != SwitchBB->getNextNode())
1118     MIB.buildBr(*NextMBB);
1119 }
1120 
1121 bool IRTranslator::lowerBitTestWorkItem(
1122     SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
1123     MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
1124     MachineIRBuilder &MIB, MachineFunction::iterator BBI,
1125     BranchProbability DefaultProb, BranchProbability UnhandledProbs,
1126     SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
1127     bool FallthroughUnreachable) {
1128   using namespace SwitchCG;
1129   MachineFunction *CurMF = SwitchMBB->getParent();
1130   // FIXME: Optimize away range check based on pivot comparisons.
1131   BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
1132   // The bit test blocks haven't been inserted yet; insert them here.
1133   for (BitTestCase &BTC : BTB->Cases)
1134     CurMF->insert(BBI, BTC.ThisBB);
1135 
1136   // Fill in fields of the BitTestBlock.
1137   BTB->Parent = CurMBB;
1138   BTB->Default = Fallthrough;
1139 
1140   BTB->DefaultProb = UnhandledProbs;
1141   // If the cases in bit test don't form a contiguous range, we evenly
1142   // distribute the probability on the edge to Fallthrough to two
1143   // successors of CurMBB.
1144   if (!BTB->ContiguousRange) {
1145     BTB->Prob += DefaultProb / 2;
1146     BTB->DefaultProb -= DefaultProb / 2;
1147   }
1148 
1149   if (FallthroughUnreachable)
1150     BTB->FallthroughUnreachable = true;
1151 
1152   // If we're in the right place, emit the bit test header right now.
1153   if (CurMBB == SwitchMBB) {
1154     emitBitTestHeader(*BTB, SwitchMBB);
1155     BTB->Emitted = true;
1156   }
1157   return true;
1158 }
1159 
1160 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
1161                                        Value *Cond,
1162                                        MachineBasicBlock *SwitchMBB,
1163                                        MachineBasicBlock *DefaultMBB,
1164                                        MachineIRBuilder &MIB) {
1165   using namespace SwitchCG;
1166   MachineFunction *CurMF = FuncInfo.MF;
1167   MachineBasicBlock *NextMBB = nullptr;
1168   MachineFunction::iterator BBI(W.MBB);
1169   if (++BBI != FuncInfo.MF->end())
1170     NextMBB = &*BBI;
1171 
1172   if (EnableOpts) {
1173     // Here, we order cases by probability so the most likely case will be
1174     // checked first. However, two clusters can have the same probability in
1175     // which case their relative ordering is non-deterministic. So we use Low
1176     // as a tie-breaker as clusters are guaranteed to never overlap.
1177     llvm::sort(W.FirstCluster, W.LastCluster + 1,
1178                [](const CaseCluster &a, const CaseCluster &b) {
1179                  return a.Prob != b.Prob
1180                             ? a.Prob > b.Prob
1181                             : a.Low->getValue().slt(b.Low->getValue());
1182                });
1183 
1184     // Rearrange the case blocks so that the last one falls through if possible
1185     // without changing the order of probabilities.
1186     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
1187       --I;
1188       if (I->Prob > W.LastCluster->Prob)
1189         break;
1190       if (I->Kind == CC_Range && I->MBB == NextMBB) {
1191         std::swap(*I, *W.LastCluster);
1192         break;
1193       }
1194     }
1195   }
1196 
1197   // Compute total probability.
1198   BranchProbability DefaultProb = W.DefaultProb;
1199   BranchProbability UnhandledProbs = DefaultProb;
1200   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
1201     UnhandledProbs += I->Prob;
1202 
1203   MachineBasicBlock *CurMBB = W.MBB;
1204   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
1205     bool FallthroughUnreachable = false;
1206     MachineBasicBlock *Fallthrough;
1207     if (I == W.LastCluster) {
1208       // For the last cluster, fall through to the default destination.
1209       Fallthrough = DefaultMBB;
1210       FallthroughUnreachable = isa<UnreachableInst>(
1211           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
1212     } else {
1213       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
1214       CurMF->insert(BBI, Fallthrough);
1215     }
1216     UnhandledProbs -= I->Prob;
1217 
1218     switch (I->Kind) {
1219     case CC_BitTests: {
1220       if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1221                                 DefaultProb, UnhandledProbs, I, Fallthrough,
1222                                 FallthroughUnreachable)) {
1223         LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
1224         return false;
1225       }
1226       break;
1227     }
1228 
1229     case CC_JumpTable: {
1230       if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1231                                   UnhandledProbs, I, Fallthrough,
1232                                   FallthroughUnreachable)) {
1233         LLVM_DEBUG(dbgs() << "Failed to lower jump table");
1234         return false;
1235       }
1236       break;
1237     }
1238     case CC_Range: {
1239       if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
1240                                     FallthroughUnreachable, UnhandledProbs,
1241                                     CurMBB, MIB, SwitchMBB)) {
1242         LLVM_DEBUG(dbgs() << "Failed to lower switch range");
1243         return false;
1244       }
1245       break;
1246     }
1247     }
1248     CurMBB = Fallthrough;
1249   }
1250 
1251   return true;
1252 }
1253 
1254 bool IRTranslator::translateIndirectBr(const User &U,
1255                                        MachineIRBuilder &MIRBuilder) {
1256   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
1257 
1258   const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
1259   MIRBuilder.buildBrIndirect(Tgt);
1260 
1261   // Link successors.
1262   SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
1263   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
1264   for (const BasicBlock *Succ : successors(&BrInst)) {
1265     // It's legal for indirectbr instructions to have duplicate blocks in the
1266     // destination list. We don't allow this in MIR. Skip anything that's
1267     // already a successor.
1268     if (!AddedSuccessors.insert(Succ).second)
1269       continue;
1270     CurBB.addSuccessor(&getMBB(*Succ));
1271   }
1272 
1273   return true;
1274 }
1275 
1276 static bool isSwiftError(const Value *V) {
1277   if (auto Arg = dyn_cast<Argument>(V))
1278     return Arg->hasSwiftErrorAttr();
1279   if (auto AI = dyn_cast<AllocaInst>(V))
1280     return AI->isSwiftError();
1281   return false;
1282 }
1283 
1284 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
1285   const LoadInst &LI = cast<LoadInst>(U);
1286 
1287   unsigned StoreSize = DL->getTypeStoreSize(LI.getType());
1288   if (StoreSize == 0)
1289     return true;
1290 
1291   ArrayRef<Register> Regs = getOrCreateVRegs(LI);
1292   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
1293   Register Base = getOrCreateVReg(*LI.getPointerOperand());
1294   AAMDNodes AAInfo = LI.getAAMetadata();
1295 
1296   const Value *Ptr = LI.getPointerOperand();
1297   Type *OffsetIRTy = DL->getIntPtrType(Ptr->getType());
1298   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1299 
1300   if (CLI->supportSwiftError() && isSwiftError(Ptr)) {
1301     assert(Regs.size() == 1 && "swifterror should be single pointer");
1302     Register VReg =
1303         SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), Ptr);
1304     MIRBuilder.buildCopy(Regs[0], VReg);
1305     return true;
1306   }
1307 
1308   auto &TLI = *MF->getSubtarget().getTargetLowering();
1309   MachineMemOperand::Flags Flags =
1310       TLI.getLoadMemOperandFlags(LI, *DL, AC, LibInfo);
1311   if (AA && !(Flags & MachineMemOperand::MOInvariant)) {
1312     if (AA->pointsToConstantMemory(
1313             MemoryLocation(Ptr, LocationSize::precise(StoreSize), AAInfo))) {
1314       Flags |= MachineMemOperand::MOInvariant;
1315     }
1316   }
1317 
1318   const MDNode *Ranges =
1319       Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
1320   for (unsigned i = 0; i < Regs.size(); ++i) {
1321     Register Addr;
1322     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1323 
1324     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
1325     Align BaseAlign = getMemOpAlign(LI);
1326     auto MMO = MF->getMachineMemOperand(
1327         Ptr, Flags, MRI->getType(Regs[i]),
1328         commonAlignment(BaseAlign, Offsets[i] / 8), AAInfo, Ranges,
1329         LI.getSyncScopeID(), LI.getOrdering());
1330     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
1331   }
1332 
1333   return true;
1334 }
1335 
1336 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
1337   const StoreInst &SI = cast<StoreInst>(U);
1338   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
1339     return true;
1340 
1341   ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
1342   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
1343   Register Base = getOrCreateVReg(*SI.getPointerOperand());
1344 
1345   Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
1346   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1347 
1348   if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
1349     assert(Vals.size() == 1 && "swifterror should be single pointer");
1350 
1351     Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
1352                                                     SI.getPointerOperand());
1353     MIRBuilder.buildCopy(VReg, Vals[0]);
1354     return true;
1355   }
1356 
1357   auto &TLI = *MF->getSubtarget().getTargetLowering();
1358   MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
1359 
1360   for (unsigned i = 0; i < Vals.size(); ++i) {
1361     Register Addr;
1362     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1363 
1364     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
1365     Align BaseAlign = getMemOpAlign(SI);
1366     auto MMO = MF->getMachineMemOperand(
1367         Ptr, Flags, MRI->getType(Vals[i]),
1368         commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr,
1369         SI.getSyncScopeID(), SI.getOrdering());
1370     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
1371   }
1372   return true;
1373 }
1374 
1375 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
1376   const Value *Src = U.getOperand(0);
1377   Type *Int32Ty = Type::getInt32Ty(U.getContext());
1378 
1379   // getIndexedOffsetInType is designed for GEPs, so the first index is the
1380   // usual array element rather than looking into the actual aggregate.
1381   SmallVector<Value *, 1> Indices;
1382   Indices.push_back(ConstantInt::get(Int32Ty, 0));
1383 
1384   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
1385     for (auto Idx : EVI->indices())
1386       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1387   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
1388     for (auto Idx : IVI->indices())
1389       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1390   } else {
1391     for (unsigned i = 1; i < U.getNumOperands(); ++i)
1392       Indices.push_back(U.getOperand(i));
1393   }
1394 
1395   return 8 * static_cast<uint64_t>(
1396                  DL.getIndexedOffsetInType(Src->getType(), Indices));
1397 }
1398 
1399 bool IRTranslator::translateExtractValue(const User &U,
1400                                          MachineIRBuilder &MIRBuilder) {
1401   const Value *Src = U.getOperand(0);
1402   uint64_t Offset = getOffsetFromIndices(U, *DL);
1403   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1404   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
1405   unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
1406   auto &DstRegs = allocateVRegs(U);
1407 
1408   for (unsigned i = 0; i < DstRegs.size(); ++i)
1409     DstRegs[i] = SrcRegs[Idx++];
1410 
1411   return true;
1412 }
1413 
1414 bool IRTranslator::translateInsertValue(const User &U,
1415                                         MachineIRBuilder &MIRBuilder) {
1416   const Value *Src = U.getOperand(0);
1417   uint64_t Offset = getOffsetFromIndices(U, *DL);
1418   auto &DstRegs = allocateVRegs(U);
1419   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
1420   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1421   ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
1422   auto *InsertedIt = InsertedRegs.begin();
1423 
1424   for (unsigned i = 0; i < DstRegs.size(); ++i) {
1425     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
1426       DstRegs[i] = *InsertedIt++;
1427     else
1428       DstRegs[i] = SrcRegs[i];
1429   }
1430 
1431   return true;
1432 }
1433 
1434 bool IRTranslator::translateSelect(const User &U,
1435                                    MachineIRBuilder &MIRBuilder) {
1436   Register Tst = getOrCreateVReg(*U.getOperand(0));
1437   ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1438   ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1439   ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1440 
1441   uint16_t Flags = 0;
1442   if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
1443     Flags = MachineInstr::copyFlagsFromInstruction(*SI);
1444 
1445   for (unsigned i = 0; i < ResRegs.size(); ++i) {
1446     MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1447   }
1448 
1449   return true;
1450 }
1451 
1452 bool IRTranslator::translateCopy(const User &U, const Value &V,
1453                                  MachineIRBuilder &MIRBuilder) {
1454   Register Src = getOrCreateVReg(V);
1455   auto &Regs = *VMap.getVRegs(U);
1456   if (Regs.empty()) {
1457     Regs.push_back(Src);
1458     VMap.getOffsets(U)->push_back(0);
1459   } else {
1460     // If we already assigned a vreg for this instruction, we can't change that.
1461     // Emit a copy to satisfy the users we already emitted.
1462     MIRBuilder.buildCopy(Regs[0], Src);
1463   }
1464   return true;
1465 }
1466 
1467 bool IRTranslator::translateBitCast(const User &U,
1468                                     MachineIRBuilder &MIRBuilder) {
1469   // If we're bitcasting to the source type, we can reuse the source vreg.
1470   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1471       getLLTForType(*U.getType(), *DL))
1472     return translateCopy(U, *U.getOperand(0), MIRBuilder);
1473 
1474   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1475 }
1476 
1477 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1478                                  MachineIRBuilder &MIRBuilder) {
1479   Register Op = getOrCreateVReg(*U.getOperand(0));
1480   Register Res = getOrCreateVReg(U);
1481   MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1482   return true;
1483 }
1484 
1485 bool IRTranslator::translateGetElementPtr(const User &U,
1486                                           MachineIRBuilder &MIRBuilder) {
1487   Value &Op0 = *U.getOperand(0);
1488   Register BaseReg = getOrCreateVReg(Op0);
1489   Type *PtrIRTy = Op0.getType();
1490   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1491   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1492   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1493 
1494   // Normalize Vector GEP - all scalar operands should be converted to the
1495   // splat vector.
1496   unsigned VectorWidth = 0;
1497 
1498   // True if we should use a splat vector; using VectorWidth alone is not
1499   // sufficient.
1500   bool WantSplatVector = false;
1501   if (auto *VT = dyn_cast<VectorType>(U.getType())) {
1502     VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
1503     // We don't produce 1 x N vectors; those are treated as scalars.
1504     WantSplatVector = VectorWidth > 1;
1505   }
1506 
1507   // We might need to splat the base pointer into a vector if the offsets
1508   // are vectors.
1509   if (WantSplatVector && !PtrTy.isVector()) {
1510     BaseReg =
1511         MIRBuilder
1512             .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg)
1513             .getReg(0);
1514     PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1515     PtrTy = getLLTForType(*PtrIRTy, *DL);
1516     OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1517     OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1518   }
1519 
1520   int64_t Offset = 0;
1521   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1522        GTI != E; ++GTI) {
1523     const Value *Idx = GTI.getOperand();
1524     if (StructType *StTy = GTI.getStructTypeOrNull()) {
1525       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1526       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1527       continue;
1528     } else {
1529       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1530 
1531       // If this is a scalar constant or a splat vector of constants,
1532       // handle it quickly.
1533       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1534         Offset += ElementSize * CI->getSExtValue();
1535         continue;
1536       }
1537 
1538       if (Offset != 0) {
1539         auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1540         BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1541                       .getReg(0);
1542         Offset = 0;
1543       }
1544 
1545       Register IdxReg = getOrCreateVReg(*Idx);
1546       LLT IdxTy = MRI->getType(IdxReg);
1547       if (IdxTy != OffsetTy) {
1548         if (!IdxTy.isVector() && WantSplatVector) {
1549           IdxReg = MIRBuilder.buildSplatVector(
1550             OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1551         }
1552 
1553         IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1554       }
1555 
1556       // N = N + Idx * ElementSize;
1557       // Avoid doing it for ElementSize of 1.
1558       Register GepOffsetReg;
1559       if (ElementSize != 1) {
1560         auto ElementSizeMIB = MIRBuilder.buildConstant(
1561             getLLTForType(*OffsetIRTy, *DL), ElementSize);
1562         GepOffsetReg =
1563             MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1564       } else
1565         GepOffsetReg = IdxReg;
1566 
1567       BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1568     }
1569   }
1570 
1571   if (Offset != 0) {
1572     auto OffsetMIB =
1573         MIRBuilder.buildConstant(OffsetTy, Offset);
1574     MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1575     return true;
1576   }
1577 
1578   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1579   return true;
1580 }
1581 
1582 bool IRTranslator::translateMemFunc(const CallInst &CI,
1583                                     MachineIRBuilder &MIRBuilder,
1584                                     unsigned Opcode) {
1585   const Value *SrcPtr = CI.getArgOperand(1);
1586   // If the source is undef, then just emit a nop.
1587   if (isa<UndefValue>(SrcPtr))
1588     return true;
1589 
1590   SmallVector<Register, 3> SrcRegs;
1591 
1592   unsigned MinPtrSize = UINT_MAX;
1593   for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
1594     Register SrcReg = getOrCreateVReg(**AI);
1595     LLT SrcTy = MRI->getType(SrcReg);
1596     if (SrcTy.isPointer())
1597       MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize);
1598     SrcRegs.push_back(SrcReg);
1599   }
1600 
1601   LLT SizeTy = LLT::scalar(MinPtrSize);
1602 
1603   // The size operand should be the minimum of the pointer sizes.
1604   Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
1605   if (MRI->getType(SizeOpReg) != SizeTy)
1606     SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);
1607 
1608   auto ICall = MIRBuilder.buildInstr(Opcode);
1609   for (Register SrcReg : SrcRegs)
1610     ICall.addUse(SrcReg);
1611 
1612   Align DstAlign;
1613   Align SrcAlign;
1614   unsigned IsVol =
1615       cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue();
1616 
1617   ConstantInt *CopySize = nullptr;
1618 
1619   if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1620     DstAlign = MCI->getDestAlign().valueOrOne();
1621     SrcAlign = MCI->getSourceAlign().valueOrOne();
1622     CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
1623   } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) {
1624     DstAlign = MCI->getDestAlign().valueOrOne();
1625     SrcAlign = MCI->getSourceAlign().valueOrOne();
1626     CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
1627   } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1628     DstAlign = MMI->getDestAlign().valueOrOne();
1629     SrcAlign = MMI->getSourceAlign().valueOrOne();
1630     CopySize = dyn_cast<ConstantInt>(MMI->getArgOperand(2));
1631   } else {
1632     auto *MSI = cast<MemSetInst>(&CI);
1633     DstAlign = MSI->getDestAlign().valueOrOne();
1634   }
1635 
1636   if (Opcode != TargetOpcode::G_MEMCPY_INLINE) {
1637     // We need to propagate the tail call flag from the IR inst as an argument.
1638     // Otherwise, we have to pessimize and assume later that we cannot tail call
1639     // any memory intrinsics.
1640     ICall.addImm(CI.isTailCall() ? 1 : 0);
1641   }
1642 
1643   // Create mem operands to store the alignment and volatile info.
1644   MachineMemOperand::Flags LoadFlags = MachineMemOperand::MOLoad;
1645   MachineMemOperand::Flags StoreFlags = MachineMemOperand::MOStore;
1646   if (IsVol) {
1647     LoadFlags |= MachineMemOperand::MOVolatile;
1648     StoreFlags |= MachineMemOperand::MOVolatile;
1649   }
1650 
1651   AAMDNodes AAInfo = CI.getAAMetadata();
1652   if (AA && CopySize &&
1653       AA->pointsToConstantMemory(MemoryLocation(
1654           SrcPtr, LocationSize::precise(CopySize->getZExtValue()), AAInfo))) {
1655     LoadFlags |= MachineMemOperand::MOInvariant;
1656 
1657     // FIXME: pointsToConstantMemory probably does not imply dereferenceable,
1658     // but the previous usage implied it did. Probably should check
1659     // isDereferenceableAndAlignedPointer.
1660     LoadFlags |= MachineMemOperand::MODereferenceable;
1661   }
1662 
1663   ICall.addMemOperand(
1664       MF->getMachineMemOperand(MachinePointerInfo(CI.getArgOperand(0)),
1665                                StoreFlags, 1, DstAlign, AAInfo));
1666   if (Opcode != TargetOpcode::G_MEMSET)
1667     ICall.addMemOperand(MF->getMachineMemOperand(
1668         MachinePointerInfo(SrcPtr), LoadFlags, 1, SrcAlign, AAInfo));
1669 
1670   return true;
1671 }
1672 
1673 void IRTranslator::getStackGuard(Register DstReg,
1674                                  MachineIRBuilder &MIRBuilder) {
1675   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1676   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1677   auto MIB =
1678       MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1679 
1680   auto &TLI = *MF->getSubtarget().getTargetLowering();
1681   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1682   if (!Global)
1683     return;
1684 
1685   unsigned AddrSpace = Global->getType()->getPointerAddressSpace();
1686   LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace));
1687 
1688   MachinePointerInfo MPInfo(Global);
1689   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1690                MachineMemOperand::MODereferenceable;
1691   MachineMemOperand *MemRef = MF->getMachineMemOperand(
1692       MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace));
1693   MIB.setMemRefs({MemRef});
1694 }
1695 
1696 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1697                                               MachineIRBuilder &MIRBuilder) {
1698   ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1699   MIRBuilder.buildInstr(
1700       Op, {ResRegs[0], ResRegs[1]},
1701       {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1702 
1703   return true;
1704 }
1705 
1706 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1707                                                 MachineIRBuilder &MIRBuilder) {
1708   Register Dst = getOrCreateVReg(CI);
1709   Register Src0 = getOrCreateVReg(*CI.getOperand(0));
1710   Register Src1 = getOrCreateVReg(*CI.getOperand(1));
1711   uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
1712   MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
1713   return true;
1714 }
1715 
1716 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1717   switch (ID) {
1718     default:
1719       break;
1720     case Intrinsic::bswap:
1721       return TargetOpcode::G_BSWAP;
1722     case Intrinsic::bitreverse:
1723       return TargetOpcode::G_BITREVERSE;
1724     case Intrinsic::fshl:
1725       return TargetOpcode::G_FSHL;
1726     case Intrinsic::fshr:
1727       return TargetOpcode::G_FSHR;
1728     case Intrinsic::ceil:
1729       return TargetOpcode::G_FCEIL;
1730     case Intrinsic::cos:
1731       return TargetOpcode::G_FCOS;
1732     case Intrinsic::ctpop:
1733       return TargetOpcode::G_CTPOP;
1734     case Intrinsic::exp:
1735       return TargetOpcode::G_FEXP;
1736     case Intrinsic::exp2:
1737       return TargetOpcode::G_FEXP2;
1738     case Intrinsic::fabs:
1739       return TargetOpcode::G_FABS;
1740     case Intrinsic::copysign:
1741       return TargetOpcode::G_FCOPYSIGN;
1742     case Intrinsic::minnum:
1743       return TargetOpcode::G_FMINNUM;
1744     case Intrinsic::maxnum:
1745       return TargetOpcode::G_FMAXNUM;
1746     case Intrinsic::minimum:
1747       return TargetOpcode::G_FMINIMUM;
1748     case Intrinsic::maximum:
1749       return TargetOpcode::G_FMAXIMUM;
1750     case Intrinsic::canonicalize:
1751       return TargetOpcode::G_FCANONICALIZE;
1752     case Intrinsic::floor:
1753       return TargetOpcode::G_FFLOOR;
1754     case Intrinsic::fma:
1755       return TargetOpcode::G_FMA;
1756     case Intrinsic::log:
1757       return TargetOpcode::G_FLOG;
1758     case Intrinsic::log2:
1759       return TargetOpcode::G_FLOG2;
1760     case Intrinsic::log10:
1761       return TargetOpcode::G_FLOG10;
1762     case Intrinsic::nearbyint:
1763       return TargetOpcode::G_FNEARBYINT;
1764     case Intrinsic::pow:
1765       return TargetOpcode::G_FPOW;
1766     case Intrinsic::powi:
1767       return TargetOpcode::G_FPOWI;
1768     case Intrinsic::rint:
1769       return TargetOpcode::G_FRINT;
1770     case Intrinsic::round:
1771       return TargetOpcode::G_INTRINSIC_ROUND;
1772     case Intrinsic::roundeven:
1773       return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1774     case Intrinsic::sin:
1775       return TargetOpcode::G_FSIN;
1776     case Intrinsic::sqrt:
1777       return TargetOpcode::G_FSQRT;
1778     case Intrinsic::trunc:
1779       return TargetOpcode::G_INTRINSIC_TRUNC;
1780     case Intrinsic::readcyclecounter:
1781       return TargetOpcode::G_READCYCLECOUNTER;
1782     case Intrinsic::ptrmask:
1783       return TargetOpcode::G_PTRMASK;
1784     case Intrinsic::lrint:
1785       return TargetOpcode::G_INTRINSIC_LRINT;
1786     // FADD/FMUL require checking the FMF, so are handled elsewhere.
1787     case Intrinsic::vector_reduce_fmin:
1788       return TargetOpcode::G_VECREDUCE_FMIN;
1789     case Intrinsic::vector_reduce_fmax:
1790       return TargetOpcode::G_VECREDUCE_FMAX;
1791     case Intrinsic::vector_reduce_add:
1792       return TargetOpcode::G_VECREDUCE_ADD;
1793     case Intrinsic::vector_reduce_mul:
1794       return TargetOpcode::G_VECREDUCE_MUL;
1795     case Intrinsic::vector_reduce_and:
1796       return TargetOpcode::G_VECREDUCE_AND;
1797     case Intrinsic::vector_reduce_or:
1798       return TargetOpcode::G_VECREDUCE_OR;
1799     case Intrinsic::vector_reduce_xor:
1800       return TargetOpcode::G_VECREDUCE_XOR;
1801     case Intrinsic::vector_reduce_smax:
1802       return TargetOpcode::G_VECREDUCE_SMAX;
1803     case Intrinsic::vector_reduce_smin:
1804       return TargetOpcode::G_VECREDUCE_SMIN;
1805     case Intrinsic::vector_reduce_umax:
1806       return TargetOpcode::G_VECREDUCE_UMAX;
1807     case Intrinsic::vector_reduce_umin:
1808       return TargetOpcode::G_VECREDUCE_UMIN;
1809     case Intrinsic::lround:
1810       return TargetOpcode::G_LROUND;
1811     case Intrinsic::llround:
1812       return TargetOpcode::G_LLROUND;
1813   }
1814   return Intrinsic::not_intrinsic;
1815 }
1816 
1817 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1818                                             Intrinsic::ID ID,
1819                                             MachineIRBuilder &MIRBuilder) {
1820 
1821   unsigned Op = getSimpleIntrinsicOpcode(ID);
1822 
1823   // Is this a simple intrinsic?
1824   if (Op == Intrinsic::not_intrinsic)
1825     return false;
1826 
1827   // Yes. Let's translate it.
1828   SmallVector<llvm::SrcOp, 4> VRegs;
1829   for (const auto &Arg : CI.args())
1830     VRegs.push_back(getOrCreateVReg(*Arg));
1831 
1832   MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1833                         MachineInstr::copyFlagsFromInstruction(CI));
1834   return true;
1835 }
1836 
1837 // TODO: Include ConstainedOps.def when all strict instructions are defined.
1838 static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
1839   switch (ID) {
1840   case Intrinsic::experimental_constrained_fadd:
1841     return TargetOpcode::G_STRICT_FADD;
1842   case Intrinsic::experimental_constrained_fsub:
1843     return TargetOpcode::G_STRICT_FSUB;
1844   case Intrinsic::experimental_constrained_fmul:
1845     return TargetOpcode::G_STRICT_FMUL;
1846   case Intrinsic::experimental_constrained_fdiv:
1847     return TargetOpcode::G_STRICT_FDIV;
1848   case Intrinsic::experimental_constrained_frem:
1849     return TargetOpcode::G_STRICT_FREM;
1850   case Intrinsic::experimental_constrained_fma:
1851     return TargetOpcode::G_STRICT_FMA;
1852   case Intrinsic::experimental_constrained_sqrt:
1853     return TargetOpcode::G_STRICT_FSQRT;
1854   default:
1855     return 0;
1856   }
1857 }
1858 
1859 bool IRTranslator::translateConstrainedFPIntrinsic(
1860   const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
1861   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
1862 
1863   unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
1864   if (!Opcode)
1865     return false;
1866 
1867   unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI);
1868   if (EB == fp::ExceptionBehavior::ebIgnore)
1869     Flags |= MachineInstr::NoFPExcept;
1870 
1871   SmallVector<llvm::SrcOp, 4> VRegs;
1872   VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
1873   if (!FPI.isUnaryOp())
1874     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
1875   if (FPI.isTernaryOp())
1876     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
1877 
1878   MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
1879   return true;
1880 }
1881 
1882 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1883                                            MachineIRBuilder &MIRBuilder) {
1884   if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) {
1885     if (ORE->enabled()) {
1886       if (MemoryOpRemark::canHandle(MI, *LibInfo)) {
1887         MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
1888         R.visit(MI);
1889       }
1890     }
1891   }
1892 
1893   // If this is a simple intrinsic (that is, we just need to add a def of
1894   // a vreg, and uses for each arg operand, then translate it.
1895   if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1896     return true;
1897 
1898   switch (ID) {
1899   default:
1900     break;
1901   case Intrinsic::lifetime_start:
1902   case Intrinsic::lifetime_end: {
1903     // No stack colouring in O0, discard region information.
1904     if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1905       return true;
1906 
1907     unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1908                                                   : TargetOpcode::LIFETIME_END;
1909 
1910     // Get the underlying objects for the location passed on the lifetime
1911     // marker.
1912     SmallVector<const Value *, 4> Allocas;
1913     getUnderlyingObjects(CI.getArgOperand(1), Allocas);
1914 
1915     // Iterate over each underlying object, creating lifetime markers for each
1916     // static alloca. Quit if we find a non-static alloca.
1917     for (const Value *V : Allocas) {
1918       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1919       if (!AI)
1920         continue;
1921 
1922       if (!AI->isStaticAlloca())
1923         return true;
1924 
1925       MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1926     }
1927     return true;
1928   }
1929   case Intrinsic::dbg_declare: {
1930     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1931     assert(DI.getVariable() && "Missing variable");
1932 
1933     const Value *Address = DI.getAddress();
1934     if (!Address || isa<UndefValue>(Address)) {
1935       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1936       return true;
1937     }
1938 
1939     assert(DI.getVariable()->isValidLocationForIntrinsic(
1940                MIRBuilder.getDebugLoc()) &&
1941            "Expected inlined-at fields to agree");
1942     auto AI = dyn_cast<AllocaInst>(Address);
1943     if (AI && AI->isStaticAlloca()) {
1944       // Static allocas are tracked at the MF level, no need for DBG_VALUE
1945       // instructions (in fact, they get ignored if they *do* exist).
1946       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
1947                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
1948     } else {
1949       // A dbg.declare describes the address of a source variable, so lower it
1950       // into an indirect DBG_VALUE.
1951       MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
1952                                        DI.getVariable(), DI.getExpression());
1953     }
1954     return true;
1955   }
1956   case Intrinsic::dbg_label: {
1957     const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
1958     assert(DI.getLabel() && "Missing label");
1959 
1960     assert(DI.getLabel()->isValidLocationForIntrinsic(
1961                MIRBuilder.getDebugLoc()) &&
1962            "Expected inlined-at fields to agree");
1963 
1964     MIRBuilder.buildDbgLabel(DI.getLabel());
1965     return true;
1966   }
1967   case Intrinsic::vaend:
1968     // No target I know of cares about va_end. Certainly no in-tree target
1969     // does. Simplest intrinsic ever!
1970     return true;
1971   case Intrinsic::vastart: {
1972     auto &TLI = *MF->getSubtarget().getTargetLowering();
1973     Value *Ptr = CI.getArgOperand(0);
1974     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
1975 
1976     // FIXME: Get alignment
1977     MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
1978         .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
1979                                                 MachineMemOperand::MOStore,
1980                                                 ListSize, Align(1)));
1981     return true;
1982   }
1983   case Intrinsic::dbg_value: {
1984     // This form of DBG_VALUE is target-independent.
1985     const DbgValueInst &DI = cast<DbgValueInst>(CI);
1986     const Value *V = DI.getValue();
1987     assert(DI.getVariable()->isValidLocationForIntrinsic(
1988                MIRBuilder.getDebugLoc()) &&
1989            "Expected inlined-at fields to agree");
1990     if (!V || DI.hasArgList()) {
1991       // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to
1992       // terminate any prior location.
1993       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
1994     } else if (const auto *CI = dyn_cast<Constant>(V)) {
1995       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
1996     } else {
1997       for (Register Reg : getOrCreateVRegs(*V)) {
1998         // FIXME: This does not handle register-indirect values at offset 0. The
1999         // direct/indirect thing shouldn't really be handled by something as
2000         // implicit as reg+noreg vs reg+imm in the first place, but it seems
2001         // pretty baked in right now.
2002         MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
2003       }
2004     }
2005     return true;
2006   }
2007   case Intrinsic::uadd_with_overflow:
2008     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
2009   case Intrinsic::sadd_with_overflow:
2010     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
2011   case Intrinsic::usub_with_overflow:
2012     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
2013   case Intrinsic::ssub_with_overflow:
2014     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
2015   case Intrinsic::umul_with_overflow:
2016     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
2017   case Intrinsic::smul_with_overflow:
2018     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
2019   case Intrinsic::uadd_sat:
2020     return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
2021   case Intrinsic::sadd_sat:
2022     return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
2023   case Intrinsic::usub_sat:
2024     return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
2025   case Intrinsic::ssub_sat:
2026     return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
2027   case Intrinsic::ushl_sat:
2028     return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
2029   case Intrinsic::sshl_sat:
2030     return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
2031   case Intrinsic::umin:
2032     return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
2033   case Intrinsic::umax:
2034     return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
2035   case Intrinsic::smin:
2036     return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
2037   case Intrinsic::smax:
2038     return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
2039   case Intrinsic::abs:
2040     // TODO: Preserve "int min is poison" arg in GMIR?
2041     return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
2042   case Intrinsic::smul_fix:
2043     return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
2044   case Intrinsic::umul_fix:
2045     return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
2046   case Intrinsic::smul_fix_sat:
2047     return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
2048   case Intrinsic::umul_fix_sat:
2049     return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
2050   case Intrinsic::sdiv_fix:
2051     return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
2052   case Intrinsic::udiv_fix:
2053     return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
2054   case Intrinsic::sdiv_fix_sat:
2055     return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
2056   case Intrinsic::udiv_fix_sat:
2057     return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
2058   case Intrinsic::fmuladd: {
2059     const TargetMachine &TM = MF->getTarget();
2060     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2061     Register Dst = getOrCreateVReg(CI);
2062     Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
2063     Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
2064     Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
2065     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
2066         TLI.isFMAFasterThanFMulAndFAdd(*MF,
2067                                        TLI.getValueType(*DL, CI.getType()))) {
2068       // TODO: Revisit this to see if we should move this part of the
2069       // lowering to the combiner.
2070       MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
2071                           MachineInstr::copyFlagsFromInstruction(CI));
2072     } else {
2073       LLT Ty = getLLTForType(*CI.getType(), *DL);
2074       auto FMul = MIRBuilder.buildFMul(
2075           Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
2076       MIRBuilder.buildFAdd(Dst, FMul, Op2,
2077                            MachineInstr::copyFlagsFromInstruction(CI));
2078     }
2079     return true;
2080   }
2081   case Intrinsic::convert_from_fp16:
2082     // FIXME: This intrinsic should probably be removed from the IR.
2083     MIRBuilder.buildFPExt(getOrCreateVReg(CI),
2084                           getOrCreateVReg(*CI.getArgOperand(0)),
2085                           MachineInstr::copyFlagsFromInstruction(CI));
2086     return true;
2087   case Intrinsic::convert_to_fp16:
2088     // FIXME: This intrinsic should probably be removed from the IR.
2089     MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
2090                             getOrCreateVReg(*CI.getArgOperand(0)),
2091                             MachineInstr::copyFlagsFromInstruction(CI));
2092     return true;
2093   case Intrinsic::memcpy_inline:
2094     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE);
2095   case Intrinsic::memcpy:
2096     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
2097   case Intrinsic::memmove:
2098     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
2099   case Intrinsic::memset:
2100     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
2101   case Intrinsic::eh_typeid_for: {
2102     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
2103     Register Reg = getOrCreateVReg(CI);
2104     unsigned TypeID = MF->getTypeIDFor(GV);
2105     MIRBuilder.buildConstant(Reg, TypeID);
2106     return true;
2107   }
2108   case Intrinsic::objectsize:
2109     llvm_unreachable("llvm.objectsize.* should have been lowered already");
2110 
2111   case Intrinsic::is_constant:
2112     llvm_unreachable("llvm.is.constant.* should have been lowered already");
2113 
2114   case Intrinsic::stackguard:
2115     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
2116     return true;
2117   case Intrinsic::stackprotector: {
2118     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2119     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2120     Register GuardVal;
2121     if (TLI.useLoadStackGuardNode()) {
2122       GuardVal = MRI->createGenericVirtualRegister(PtrTy);
2123       getStackGuard(GuardVal, MIRBuilder);
2124     } else
2125       GuardVal = getOrCreateVReg(*CI.getArgOperand(0)); // The guard's value.
2126 
2127     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
2128     int FI = getOrCreateFrameIndex(*Slot);
2129     MF->getFrameInfo().setStackProtectorIndex(FI);
2130 
2131     MIRBuilder.buildStore(
2132         GuardVal, getOrCreateVReg(*Slot),
2133         *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
2134                                   MachineMemOperand::MOStore |
2135                                       MachineMemOperand::MOVolatile,
2136                                   PtrTy, Align(8)));
2137     return true;
2138   }
2139   case Intrinsic::stacksave: {
2140     // Save the stack pointer to the location provided by the intrinsic.
2141     Register Reg = getOrCreateVReg(CI);
2142     Register StackPtr = MF->getSubtarget()
2143                             .getTargetLowering()
2144                             ->getStackPointerRegisterToSaveRestore();
2145 
2146     // If the target doesn't specify a stack pointer, then fall back.
2147     if (!StackPtr)
2148       return false;
2149 
2150     MIRBuilder.buildCopy(Reg, StackPtr);
2151     return true;
2152   }
2153   case Intrinsic::stackrestore: {
2154     // Restore the stack pointer from the location provided by the intrinsic.
2155     Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
2156     Register StackPtr = MF->getSubtarget()
2157                             .getTargetLowering()
2158                             ->getStackPointerRegisterToSaveRestore();
2159 
2160     // If the target doesn't specify a stack pointer, then fall back.
2161     if (!StackPtr)
2162       return false;
2163 
2164     MIRBuilder.buildCopy(StackPtr, Reg);
2165     return true;
2166   }
2167   case Intrinsic::cttz:
2168   case Intrinsic::ctlz: {
2169     ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
2170     bool isTrailing = ID == Intrinsic::cttz;
2171     unsigned Opcode = isTrailing
2172                           ? Cst->isZero() ? TargetOpcode::G_CTTZ
2173                                           : TargetOpcode::G_CTTZ_ZERO_UNDEF
2174                           : Cst->isZero() ? TargetOpcode::G_CTLZ
2175                                           : TargetOpcode::G_CTLZ_ZERO_UNDEF;
2176     MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
2177                           {getOrCreateVReg(*CI.getArgOperand(0))});
2178     return true;
2179   }
2180   case Intrinsic::invariant_start: {
2181     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2182     Register Undef = MRI->createGenericVirtualRegister(PtrTy);
2183     MIRBuilder.buildUndef(Undef);
2184     return true;
2185   }
2186   case Intrinsic::invariant_end:
2187     return true;
2188   case Intrinsic::expect:
2189   case Intrinsic::annotation:
2190   case Intrinsic::ptr_annotation:
2191   case Intrinsic::launder_invariant_group:
2192   case Intrinsic::strip_invariant_group: {
2193     // Drop the intrinsic, but forward the value.
2194     MIRBuilder.buildCopy(getOrCreateVReg(CI),
2195                          getOrCreateVReg(*CI.getArgOperand(0)));
2196     return true;
2197   }
2198   case Intrinsic::assume:
2199   case Intrinsic::experimental_noalias_scope_decl:
2200   case Intrinsic::var_annotation:
2201   case Intrinsic::sideeffect:
2202     // Discard annotate attributes, assumptions, and artificial side-effects.
2203     return true;
2204   case Intrinsic::read_volatile_register:
2205   case Intrinsic::read_register: {
2206     Value *Arg = CI.getArgOperand(0);
2207     MIRBuilder
2208         .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
2209         .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
2210     return true;
2211   }
2212   case Intrinsic::write_register: {
2213     Value *Arg = CI.getArgOperand(0);
2214     MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
2215       .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
2216       .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
2217     return true;
2218   }
2219   case Intrinsic::localescape: {
2220     MachineBasicBlock &EntryMBB = MF->front();
2221     StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
2222 
2223     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
2224     // is the same on all targets.
2225     for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) {
2226       Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
2227       if (isa<ConstantPointerNull>(Arg))
2228         continue; // Skip null pointers. They represent a hole in index space.
2229 
2230       int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
2231       MCSymbol *FrameAllocSym =
2232           MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
2233                                                                 Idx);
2234 
2235       // This should be inserted at the start of the entry block.
2236       auto LocalEscape =
2237           MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
2238               .addSym(FrameAllocSym)
2239               .addFrameIndex(FI);
2240 
2241       EntryMBB.insert(EntryMBB.begin(), LocalEscape);
2242     }
2243 
2244     return true;
2245   }
2246   case Intrinsic::vector_reduce_fadd:
2247   case Intrinsic::vector_reduce_fmul: {
2248     // Need to check for the reassoc flag to decide whether we want a
2249     // sequential reduction opcode or not.
2250     Register Dst = getOrCreateVReg(CI);
2251     Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0));
2252     Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1));
2253     unsigned Opc = 0;
2254     if (!CI.hasAllowReassoc()) {
2255       // The sequential ordering case.
2256       Opc = ID == Intrinsic::vector_reduce_fadd
2257                 ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2258                 : TargetOpcode::G_VECREDUCE_SEQ_FMUL;
2259       MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc},
2260                             MachineInstr::copyFlagsFromInstruction(CI));
2261       return true;
2262     }
2263     // We split the operation into a separate G_FADD/G_FMUL + the reduce,
2264     // since the associativity doesn't matter.
2265     unsigned ScalarOpc;
2266     if (ID == Intrinsic::vector_reduce_fadd) {
2267       Opc = TargetOpcode::G_VECREDUCE_FADD;
2268       ScalarOpc = TargetOpcode::G_FADD;
2269     } else {
2270       Opc = TargetOpcode::G_VECREDUCE_FMUL;
2271       ScalarOpc = TargetOpcode::G_FMUL;
2272     }
2273     LLT DstTy = MRI->getType(Dst);
2274     auto Rdx = MIRBuilder.buildInstr(
2275         Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI));
2276     MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
2277                           MachineInstr::copyFlagsFromInstruction(CI));
2278 
2279     return true;
2280   }
2281   case Intrinsic::trap:
2282   case Intrinsic::debugtrap:
2283   case Intrinsic::ubsantrap: {
2284     StringRef TrapFuncName =
2285         CI.getAttributes().getFnAttr("trap-func-name").getValueAsString();
2286     if (TrapFuncName.empty())
2287       break; // Use the default handling.
2288     CallLowering::CallLoweringInfo Info;
2289     if (ID == Intrinsic::ubsantrap) {
2290       Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)),
2291                                CI.getArgOperand(0)->getType(), 0});
2292     }
2293     Info.Callee = MachineOperand::CreateES(TrapFuncName.data());
2294     Info.CB = &CI;
2295     Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0};
2296     return CLI->lowerCall(MIRBuilder, Info);
2297   }
2298   case Intrinsic::fptrunc_round: {
2299     unsigned Flags = MachineInstr::copyFlagsFromInstruction(CI);
2300 
2301     // Convert the metadata argument to a constant integer
2302     Metadata *MD = cast<MetadataAsValue>(CI.getArgOperand(1))->getMetadata();
2303     std::optional<RoundingMode> RoundMode =
2304         convertStrToRoundingMode(cast<MDString>(MD)->getString());
2305 
2306     // Add the Rounding mode as an integer
2307     MIRBuilder
2308         .buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND,
2309                     {getOrCreateVReg(CI)},
2310                     {getOrCreateVReg(*CI.getArgOperand(0))}, Flags)
2311         .addImm((int)*RoundMode);
2312 
2313     return true;
2314   }
2315   case Intrinsic::is_fpclass: {
2316     Value *FpValue = CI.getOperand(0);
2317     ConstantInt *TestMaskValue = cast<ConstantInt>(CI.getOperand(1));
2318 
2319     MIRBuilder
2320         .buildInstr(TargetOpcode::G_IS_FPCLASS, {getOrCreateVReg(CI)},
2321                     {getOrCreateVReg(*FpValue)})
2322         .addImm(TestMaskValue->getZExtValue());
2323 
2324     return true;
2325   }
2326 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)  \
2327   case Intrinsic::INTRINSIC:
2328 #include "llvm/IR/ConstrainedOps.def"
2329     return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
2330                                            MIRBuilder);
2331 
2332   }
2333   return false;
2334 }
2335 
2336 bool IRTranslator::translateInlineAsm(const CallBase &CB,
2337                                       MachineIRBuilder &MIRBuilder) {
2338 
2339   const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
2340 
2341   if (!ALI) {
2342     LLVM_DEBUG(
2343         dbgs() << "Inline asm lowering is not supported for this target yet\n");
2344     return false;
2345   }
2346 
2347   return ALI->lowerInlineAsm(
2348       MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
2349 }
2350 
2351 bool IRTranslator::translateCallBase(const CallBase &CB,
2352                                      MachineIRBuilder &MIRBuilder) {
2353   ArrayRef<Register> Res = getOrCreateVRegs(CB);
2354 
2355   SmallVector<ArrayRef<Register>, 8> Args;
2356   Register SwiftInVReg = 0;
2357   Register SwiftErrorVReg = 0;
2358   for (const auto &Arg : CB.args()) {
2359     if (CLI->supportSwiftError() && isSwiftError(Arg)) {
2360       assert(SwiftInVReg == 0 && "Expected only one swift error argument");
2361       LLT Ty = getLLTForType(*Arg->getType(), *DL);
2362       SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
2363       MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
2364                                             &CB, &MIRBuilder.getMBB(), Arg));
2365       Args.emplace_back(ArrayRef(SwiftInVReg));
2366       SwiftErrorVReg =
2367           SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
2368       continue;
2369     }
2370     Args.push_back(getOrCreateVRegs(*Arg));
2371   }
2372 
2373   if (auto *CI = dyn_cast<CallInst>(&CB)) {
2374     if (ORE->enabled()) {
2375       if (MemoryOpRemark::canHandle(CI, *LibInfo)) {
2376         MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
2377         R.visit(CI);
2378       }
2379     }
2380   }
2381 
2382   // We don't set HasCalls on MFI here yet because call lowering may decide to
2383   // optimize into tail calls. Instead, we defer that to selection where a final
2384   // scan is done to check if any instructions are calls.
2385   bool Success =
2386       CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
2387                      [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
2388 
2389   // Check if we just inserted a tail call.
2390   if (Success) {
2391     assert(!HasTailCall && "Can't tail call return twice from block?");
2392     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2393     HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
2394   }
2395 
2396   return Success;
2397 }
2398 
2399 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
2400   const CallInst &CI = cast<CallInst>(U);
2401   auto TII = MF->getTarget().getIntrinsicInfo();
2402   const Function *F = CI.getCalledFunction();
2403 
2404   // FIXME: support Windows dllimport function calls.
2405   if (F && (F->hasDLLImportStorageClass() ||
2406             (MF->getTarget().getTargetTriple().isOSWindows() &&
2407              F->hasExternalWeakLinkage())))
2408     return false;
2409 
2410   // FIXME: support control flow guard targets.
2411   if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2412     return false;
2413 
2414   // FIXME: support statepoints and related.
2415   if (isa<GCStatepointInst, GCRelocateInst, GCResultInst>(U))
2416     return false;
2417 
2418   if (CI.isInlineAsm())
2419     return translateInlineAsm(CI, MIRBuilder);
2420 
2421   diagnoseDontCall(CI);
2422 
2423   Intrinsic::ID ID = Intrinsic::not_intrinsic;
2424   if (F && F->isIntrinsic()) {
2425     ID = F->getIntrinsicID();
2426     if (TII && ID == Intrinsic::not_intrinsic)
2427       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
2428   }
2429 
2430   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
2431     return translateCallBase(CI, MIRBuilder);
2432 
2433   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
2434 
2435   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
2436     return true;
2437 
2438   ArrayRef<Register> ResultRegs;
2439   if (!CI.getType()->isVoidTy())
2440     ResultRegs = getOrCreateVRegs(CI);
2441 
2442   // Ignore the callsite attributes. Backend code is most likely not expecting
2443   // an intrinsic to sometimes have side effects and sometimes not.
2444   MachineInstrBuilder MIB =
2445       MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
2446   if (isa<FPMathOperator>(CI))
2447     MIB->copyIRFlags(CI);
2448 
2449   for (const auto &Arg : enumerate(CI.args())) {
2450     // If this is required to be an immediate, don't materialize it in a
2451     // register.
2452     if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
2453       if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
2454         // imm arguments are more convenient than cimm (and realistically
2455         // probably sufficient), so use them.
2456         assert(CI->getBitWidth() <= 64 &&
2457                "large intrinsic immediates not handled");
2458         MIB.addImm(CI->getSExtValue());
2459       } else {
2460         MIB.addFPImm(cast<ConstantFP>(Arg.value()));
2461       }
2462     } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) {
2463       auto *MD = MDVal->getMetadata();
2464       auto *MDN = dyn_cast<MDNode>(MD);
2465       if (!MDN) {
2466         if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD))
2467           MDN = MDNode::get(MF->getFunction().getContext(), ConstMD);
2468         else // This was probably an MDString.
2469           return false;
2470       }
2471       MIB.addMetadata(MDN);
2472     } else {
2473       ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
2474       if (VRegs.size() > 1)
2475         return false;
2476       MIB.addUse(VRegs[0]);
2477     }
2478   }
2479 
2480   // Add a MachineMemOperand if it is a target mem intrinsic.
2481   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2482   TargetLowering::IntrinsicInfo Info;
2483   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
2484   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
2485     Align Alignment = Info.align.value_or(
2486         DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
2487     LLT MemTy = Info.memVT.isSimple()
2488                     ? getLLTForMVT(Info.memVT.getSimpleVT())
2489                     : LLT::scalar(Info.memVT.getStoreSizeInBits());
2490 
2491     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
2492     //       didn't yield anything useful.
2493     MachinePointerInfo MPI;
2494     if (Info.ptrVal)
2495       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
2496     else if (Info.fallbackAddressSpace)
2497       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
2498     MIB.addMemOperand(
2499         MF->getMachineMemOperand(MPI, Info.flags, MemTy, Alignment, CI.getAAMetadata()));
2500   }
2501 
2502   return true;
2503 }
2504 
2505 bool IRTranslator::findUnwindDestinations(
2506     const BasicBlock *EHPadBB,
2507     BranchProbability Prob,
2508     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2509         &UnwindDests) {
2510   EHPersonality Personality = classifyEHPersonality(
2511       EHPadBB->getParent()->getFunction().getPersonalityFn());
2512   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2513   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2514   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2515   bool IsSEH = isAsynchronousEHPersonality(Personality);
2516 
2517   if (IsWasmCXX) {
2518     // Ignore this for now.
2519     return false;
2520   }
2521 
2522   while (EHPadBB) {
2523     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2524     BasicBlock *NewEHPadBB = nullptr;
2525     if (isa<LandingPadInst>(Pad)) {
2526       // Stop on landingpads. They are not funclets.
2527       UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2528       break;
2529     }
2530     if (isa<CleanupPadInst>(Pad)) {
2531       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2532       // personalities.
2533       UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2534       UnwindDests.back().first->setIsEHScopeEntry();
2535       UnwindDests.back().first->setIsEHFuncletEntry();
2536       break;
2537     }
2538     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2539       // Add the catchpad handlers to the possible destinations.
2540       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2541         UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
2542         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2543         if (IsMSVCCXX || IsCoreCLR)
2544           UnwindDests.back().first->setIsEHFuncletEntry();
2545         if (!IsSEH)
2546           UnwindDests.back().first->setIsEHScopeEntry();
2547       }
2548       NewEHPadBB = CatchSwitch->getUnwindDest();
2549     } else {
2550       continue;
2551     }
2552 
2553     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2554     if (BPI && NewEHPadBB)
2555       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2556     EHPadBB = NewEHPadBB;
2557   }
2558   return true;
2559 }
2560 
2561 bool IRTranslator::translateInvoke(const User &U,
2562                                    MachineIRBuilder &MIRBuilder) {
2563   const InvokeInst &I = cast<InvokeInst>(U);
2564   MCContext &Context = MF->getContext();
2565 
2566   const BasicBlock *ReturnBB = I.getSuccessor(0);
2567   const BasicBlock *EHPadBB = I.getSuccessor(1);
2568 
2569   const Function *Fn = I.getCalledFunction();
2570 
2571   // FIXME: support invoking patchpoint and statepoint intrinsics.
2572   if (Fn && Fn->isIntrinsic())
2573     return false;
2574 
2575   // FIXME: support whatever these are.
2576   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
2577     return false;
2578 
2579   // FIXME: support control flow guard targets.
2580   if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2581     return false;
2582 
2583   // FIXME: support Windows exception handling.
2584   if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
2585     return false;
2586 
2587   bool LowerInlineAsm = I.isInlineAsm();
2588   bool NeedEHLabel = true;
2589 
2590   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
2591   // the region covered by the try.
2592   MCSymbol *BeginSymbol = nullptr;
2593   if (NeedEHLabel) {
2594     MIRBuilder.buildInstr(TargetOpcode::G_INVOKE_REGION_START);
2595     BeginSymbol = Context.createTempSymbol();
2596     MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
2597   }
2598 
2599   if (LowerInlineAsm) {
2600     if (!translateInlineAsm(I, MIRBuilder))
2601       return false;
2602   } else if (!translateCallBase(I, MIRBuilder))
2603     return false;
2604 
2605   MCSymbol *EndSymbol = nullptr;
2606   if (NeedEHLabel) {
2607     EndSymbol = Context.createTempSymbol();
2608     MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
2609   }
2610 
2611   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2612   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2613   MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
2614   BranchProbability EHPadBBProb =
2615       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2616           : BranchProbability::getZero();
2617 
2618   if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
2619     return false;
2620 
2621   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
2622                     &ReturnMBB = getMBB(*ReturnBB);
2623   // Update successor info.
2624   addSuccessorWithProb(InvokeMBB, &ReturnMBB);
2625   for (auto &UnwindDest : UnwindDests) {
2626     UnwindDest.first->setIsEHPad();
2627     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2628   }
2629   InvokeMBB->normalizeSuccProbs();
2630 
2631   if (NeedEHLabel) {
2632     assert(BeginSymbol && "Expected a begin symbol!");
2633     assert(EndSymbol && "Expected an end symbol!");
2634     MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
2635   }
2636 
2637   MIRBuilder.buildBr(ReturnMBB);
2638   return true;
2639 }
2640 
2641 bool IRTranslator::translateCallBr(const User &U,
2642                                    MachineIRBuilder &MIRBuilder) {
2643   // FIXME: Implement this.
2644   return false;
2645 }
2646 
2647 bool IRTranslator::translateLandingPad(const User &U,
2648                                        MachineIRBuilder &MIRBuilder) {
2649   const LandingPadInst &LP = cast<LandingPadInst>(U);
2650 
2651   MachineBasicBlock &MBB = MIRBuilder.getMBB();
2652 
2653   MBB.setIsEHPad();
2654 
2655   // If there aren't registers to copy the values into (e.g., during SjLj
2656   // exceptions), then don't bother.
2657   auto &TLI = *MF->getSubtarget().getTargetLowering();
2658   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
2659   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2660       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2661     return true;
2662 
2663   // If landingpad's return type is token type, we don't create DAG nodes
2664   // for its exception pointer and selector value. The extraction of exception
2665   // pointer or selector value from token type landingpads is not currently
2666   // supported.
2667   if (LP.getType()->isTokenTy())
2668     return true;
2669 
2670   // Add a label to mark the beginning of the landing pad.  Deletion of the
2671   // landing pad can thus be detected via the MachineModuleInfo.
2672   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
2673     .addSym(MF->addLandingPad(&MBB));
2674 
2675   // If the unwinder does not preserve all registers, ensure that the
2676   // function marks the clobbered registers as used.
2677   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
2678   if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
2679     MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
2680 
2681   LLT Ty = getLLTForType(*LP.getType(), *DL);
2682   Register Undef = MRI->createGenericVirtualRegister(Ty);
2683   MIRBuilder.buildUndef(Undef);
2684 
2685   SmallVector<LLT, 2> Tys;
2686   for (Type *Ty : cast<StructType>(LP.getType())->elements())
2687     Tys.push_back(getLLTForType(*Ty, *DL));
2688   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
2689 
2690   // Mark exception register as live in.
2691   Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
2692   if (!ExceptionReg)
2693     return false;
2694 
2695   MBB.addLiveIn(ExceptionReg);
2696   ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
2697   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
2698 
2699   Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
2700   if (!SelectorReg)
2701     return false;
2702 
2703   MBB.addLiveIn(SelectorReg);
2704   Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
2705   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
2706   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
2707 
2708   return true;
2709 }
2710 
2711 bool IRTranslator::translateAlloca(const User &U,
2712                                    MachineIRBuilder &MIRBuilder) {
2713   auto &AI = cast<AllocaInst>(U);
2714 
2715   if (AI.isSwiftError())
2716     return true;
2717 
2718   if (AI.isStaticAlloca()) {
2719     Register Res = getOrCreateVReg(AI);
2720     int FI = getOrCreateFrameIndex(AI);
2721     MIRBuilder.buildFrameIndex(Res, FI);
2722     return true;
2723   }
2724 
2725   // FIXME: support stack probing for Windows.
2726   if (MF->getTarget().getTargetTriple().isOSWindows())
2727     return false;
2728 
2729   // Now we're in the harder dynamic case.
2730   Register NumElts = getOrCreateVReg(*AI.getArraySize());
2731   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
2732   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
2733   if (MRI->getType(NumElts) != IntPtrTy) {
2734     Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
2735     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
2736     NumElts = ExtElts;
2737   }
2738 
2739   Type *Ty = AI.getAllocatedType();
2740 
2741   Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
2742   Register TySize =
2743       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
2744   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
2745 
2746   // Round the size of the allocation up to the stack alignment size
2747   // by add SA-1 to the size. This doesn't overflow because we're computing
2748   // an address inside an alloca.
2749   Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
2750   auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
2751   auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
2752                                       MachineInstr::NoUWrap);
2753   auto AlignCst =
2754       MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
2755   auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
2756 
2757   Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
2758   if (Alignment <= StackAlign)
2759     Alignment = Align(1);
2760   MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
2761 
2762   MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
2763   assert(MF->getFrameInfo().hasVarSizedObjects());
2764   return true;
2765 }
2766 
2767 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
2768   // FIXME: We may need more info about the type. Because of how LLT works,
2769   // we're completely discarding the i64/double distinction here (amongst
2770   // others). Fortunately the ABIs I know of where that matters don't use va_arg
2771   // anyway but that's not guaranteed.
2772   MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
2773                         {getOrCreateVReg(*U.getOperand(0)),
2774                          DL->getABITypeAlign(U.getType()).value()});
2775   return true;
2776 }
2777 
2778 bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) {
2779     if (!MF->getTarget().Options.TrapUnreachable)
2780     return true;
2781 
2782   auto &UI = cast<UnreachableInst>(U);
2783   // We may be able to ignore unreachable behind a noreturn call.
2784   if (MF->getTarget().Options.NoTrapAfterNoreturn) {
2785     const BasicBlock &BB = *UI.getParent();
2786     if (&UI != &BB.front()) {
2787       BasicBlock::const_iterator PredI =
2788         std::prev(BasicBlock::const_iterator(UI));
2789       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2790         if (Call->doesNotReturn())
2791           return true;
2792       }
2793     }
2794   }
2795 
2796   MIRBuilder.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true);
2797   return true;
2798 }
2799 
2800 bool IRTranslator::translateInsertElement(const User &U,
2801                                           MachineIRBuilder &MIRBuilder) {
2802   // If it is a <1 x Ty> vector, use the scalar as it is
2803   // not a legal vector type in LLT.
2804   if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
2805     return translateCopy(U, *U.getOperand(1), MIRBuilder);
2806 
2807   Register Res = getOrCreateVReg(U);
2808   Register Val = getOrCreateVReg(*U.getOperand(0));
2809   Register Elt = getOrCreateVReg(*U.getOperand(1));
2810   Register Idx = getOrCreateVReg(*U.getOperand(2));
2811   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
2812   return true;
2813 }
2814 
2815 bool IRTranslator::translateExtractElement(const User &U,
2816                                            MachineIRBuilder &MIRBuilder) {
2817   // If it is a <1 x Ty> vector, use the scalar as it is
2818   // not a legal vector type in LLT.
2819   if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
2820     return translateCopy(U, *U.getOperand(0), MIRBuilder);
2821 
2822   Register Res = getOrCreateVReg(U);
2823   Register Val = getOrCreateVReg(*U.getOperand(0));
2824   const auto &TLI = *MF->getSubtarget().getTargetLowering();
2825   unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
2826   Register Idx;
2827   if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
2828     if (CI->getBitWidth() != PreferredVecIdxWidth) {
2829       APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth);
2830       auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
2831       Idx = getOrCreateVReg(*NewIdxCI);
2832     }
2833   }
2834   if (!Idx)
2835     Idx = getOrCreateVReg(*U.getOperand(1));
2836   if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
2837     const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
2838     Idx = MIRBuilder.buildZExtOrTrunc(VecIdxTy, Idx).getReg(0);
2839   }
2840   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
2841   return true;
2842 }
2843 
2844 bool IRTranslator::translateShuffleVector(const User &U,
2845                                           MachineIRBuilder &MIRBuilder) {
2846   ArrayRef<int> Mask;
2847   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
2848     Mask = SVI->getShuffleMask();
2849   else
2850     Mask = cast<ConstantExpr>(U).getShuffleMask();
2851   ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
2852   MIRBuilder
2853       .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
2854                   {getOrCreateVReg(*U.getOperand(0)),
2855                    getOrCreateVReg(*U.getOperand(1))})
2856       .addShuffleMask(MaskAlloc);
2857   return true;
2858 }
2859 
2860 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
2861   const PHINode &PI = cast<PHINode>(U);
2862 
2863   SmallVector<MachineInstr *, 4> Insts;
2864   for (auto Reg : getOrCreateVRegs(PI)) {
2865     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
2866     Insts.push_back(MIB.getInstr());
2867   }
2868 
2869   PendingPHIs.emplace_back(&PI, std::move(Insts));
2870   return true;
2871 }
2872 
2873 bool IRTranslator::translateAtomicCmpXchg(const User &U,
2874                                           MachineIRBuilder &MIRBuilder) {
2875   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
2876 
2877   auto &TLI = *MF->getSubtarget().getTargetLowering();
2878   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2879 
2880   auto Res = getOrCreateVRegs(I);
2881   Register OldValRes = Res[0];
2882   Register SuccessRes = Res[1];
2883   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2884   Register Cmp = getOrCreateVReg(*I.getCompareOperand());
2885   Register NewVal = getOrCreateVReg(*I.getNewValOperand());
2886 
2887   MIRBuilder.buildAtomicCmpXchgWithSuccess(
2888       OldValRes, SuccessRes, Addr, Cmp, NewVal,
2889       *MF->getMachineMemOperand(
2890           MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp),
2891           getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(),
2892           I.getSuccessOrdering(), I.getFailureOrdering()));
2893   return true;
2894 }
2895 
2896 bool IRTranslator::translateAtomicRMW(const User &U,
2897                                       MachineIRBuilder &MIRBuilder) {
2898   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
2899   auto &TLI = *MF->getSubtarget().getTargetLowering();
2900   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2901 
2902   Register Res = getOrCreateVReg(I);
2903   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2904   Register Val = getOrCreateVReg(*I.getValOperand());
2905 
2906   unsigned Opcode = 0;
2907   switch (I.getOperation()) {
2908   default:
2909     return false;
2910   case AtomicRMWInst::Xchg:
2911     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
2912     break;
2913   case AtomicRMWInst::Add:
2914     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
2915     break;
2916   case AtomicRMWInst::Sub:
2917     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
2918     break;
2919   case AtomicRMWInst::And:
2920     Opcode = TargetOpcode::G_ATOMICRMW_AND;
2921     break;
2922   case AtomicRMWInst::Nand:
2923     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
2924     break;
2925   case AtomicRMWInst::Or:
2926     Opcode = TargetOpcode::G_ATOMICRMW_OR;
2927     break;
2928   case AtomicRMWInst::Xor:
2929     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
2930     break;
2931   case AtomicRMWInst::Max:
2932     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
2933     break;
2934   case AtomicRMWInst::Min:
2935     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
2936     break;
2937   case AtomicRMWInst::UMax:
2938     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
2939     break;
2940   case AtomicRMWInst::UMin:
2941     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
2942     break;
2943   case AtomicRMWInst::FAdd:
2944     Opcode = TargetOpcode::G_ATOMICRMW_FADD;
2945     break;
2946   case AtomicRMWInst::FSub:
2947     Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
2948     break;
2949   case AtomicRMWInst::FMax:
2950     Opcode = TargetOpcode::G_ATOMICRMW_FMAX;
2951     break;
2952   case AtomicRMWInst::FMin:
2953     Opcode = TargetOpcode::G_ATOMICRMW_FMIN;
2954     break;
2955   case AtomicRMWInst::UIncWrap:
2956     Opcode = TargetOpcode::G_ATOMICRMW_UINC_WRAP;
2957     break;
2958   case AtomicRMWInst::UDecWrap:
2959     Opcode = TargetOpcode::G_ATOMICRMW_UDEC_WRAP;
2960     break;
2961   }
2962 
2963   MIRBuilder.buildAtomicRMW(
2964       Opcode, Res, Addr, Val,
2965       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
2966                                 Flags, MRI->getType(Val), getMemOpAlign(I),
2967                                 I.getAAMetadata(), nullptr, I.getSyncScopeID(),
2968                                 I.getOrdering()));
2969   return true;
2970 }
2971 
2972 bool IRTranslator::translateFence(const User &U,
2973                                   MachineIRBuilder &MIRBuilder) {
2974   const FenceInst &Fence = cast<FenceInst>(U);
2975   MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
2976                         Fence.getSyncScopeID());
2977   return true;
2978 }
2979 
2980 bool IRTranslator::translateFreeze(const User &U,
2981                                    MachineIRBuilder &MIRBuilder) {
2982   const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
2983   const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
2984 
2985   assert(DstRegs.size() == SrcRegs.size() &&
2986          "Freeze with different source and destination type?");
2987 
2988   for (unsigned I = 0; I < DstRegs.size(); ++I) {
2989     MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
2990   }
2991 
2992   return true;
2993 }
2994 
2995 void IRTranslator::finishPendingPhis() {
2996 #ifndef NDEBUG
2997   DILocationVerifier Verifier;
2998   GISelObserverWrapper WrapperObserver(&Verifier);
2999   RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3000 #endif // ifndef NDEBUG
3001   for (auto &Phi : PendingPHIs) {
3002     const PHINode *PI = Phi.first;
3003     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
3004     MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
3005     EntryBuilder->setDebugLoc(PI->getDebugLoc());
3006 #ifndef NDEBUG
3007     Verifier.setCurrentInst(PI);
3008 #endif // ifndef NDEBUG
3009 
3010     SmallSet<const MachineBasicBlock *, 16> SeenPreds;
3011     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
3012       auto IRPred = PI->getIncomingBlock(i);
3013       ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
3014       for (auto *Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
3015         if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
3016           continue;
3017         SeenPreds.insert(Pred);
3018         for (unsigned j = 0; j < ValRegs.size(); ++j) {
3019           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
3020           MIB.addUse(ValRegs[j]);
3021           MIB.addMBB(Pred);
3022         }
3023       }
3024     }
3025   }
3026 }
3027 
3028 bool IRTranslator::translate(const Instruction &Inst) {
3029   CurBuilder->setDebugLoc(Inst.getDebugLoc());
3030   CurBuilder->setPCSections(Inst.getMetadata(LLVMContext::MD_pcsections));
3031 
3032   auto &TLI = *MF->getSubtarget().getTargetLowering();
3033   if (TLI.fallBackToDAGISel(Inst))
3034     return false;
3035 
3036   switch (Inst.getOpcode()) {
3037 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
3038   case Instruction::OPCODE:                                                    \
3039     return translate##OPCODE(Inst, *CurBuilder.get());
3040 #include "llvm/IR/Instruction.def"
3041   default:
3042     return false;
3043   }
3044 }
3045 
3046 bool IRTranslator::translate(const Constant &C, Register Reg) {
3047   // We only emit constants into the entry block from here. To prevent jumpy
3048   // debug behaviour remove debug line.
3049   if (auto CurrInstDL = CurBuilder->getDL())
3050     EntryBuilder->setDebugLoc(DebugLoc());
3051 
3052   if (auto CI = dyn_cast<ConstantInt>(&C))
3053     EntryBuilder->buildConstant(Reg, *CI);
3054   else if (auto CF = dyn_cast<ConstantFP>(&C))
3055     EntryBuilder->buildFConstant(Reg, *CF);
3056   else if (isa<UndefValue>(C))
3057     EntryBuilder->buildUndef(Reg);
3058   else if (isa<ConstantPointerNull>(C))
3059     EntryBuilder->buildConstant(Reg, 0);
3060   else if (auto GV = dyn_cast<GlobalValue>(&C))
3061     EntryBuilder->buildGlobalValue(Reg, GV);
3062   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
3063     if (!isa<FixedVectorType>(CAZ->getType()))
3064       return false;
3065     // Return the scalar if it is a <1 x Ty> vector.
3066     unsigned NumElts = CAZ->getElementCount().getFixedValue();
3067     if (NumElts == 1)
3068       return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder);
3069     SmallVector<Register, 4> Ops;
3070     for (unsigned I = 0; I < NumElts; ++I) {
3071       Constant &Elt = *CAZ->getElementValue(I);
3072       Ops.push_back(getOrCreateVReg(Elt));
3073     }
3074     EntryBuilder->buildBuildVector(Reg, Ops);
3075   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
3076     // Return the scalar if it is a <1 x Ty> vector.
3077     if (CV->getNumElements() == 1)
3078       return translateCopy(C, *CV->getElementAsConstant(0), *EntryBuilder);
3079     SmallVector<Register, 4> Ops;
3080     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
3081       Constant &Elt = *CV->getElementAsConstant(i);
3082       Ops.push_back(getOrCreateVReg(Elt));
3083     }
3084     EntryBuilder->buildBuildVector(Reg, Ops);
3085   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
3086     switch(CE->getOpcode()) {
3087 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
3088   case Instruction::OPCODE:                                                    \
3089     return translate##OPCODE(*CE, *EntryBuilder.get());
3090 #include "llvm/IR/Instruction.def"
3091     default:
3092       return false;
3093     }
3094   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
3095     if (CV->getNumOperands() == 1)
3096       return translateCopy(C, *CV->getOperand(0), *EntryBuilder);
3097     SmallVector<Register, 4> Ops;
3098     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
3099       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
3100     }
3101     EntryBuilder->buildBuildVector(Reg, Ops);
3102   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
3103     EntryBuilder->buildBlockAddress(Reg, BA);
3104   } else
3105     return false;
3106 
3107   return true;
3108 }
3109 
3110 bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB,
3111                                       MachineBasicBlock &MBB) {
3112   for (auto &BTB : SL->BitTestCases) {
3113     // Emit header first, if it wasn't already emitted.
3114     if (!BTB.Emitted)
3115       emitBitTestHeader(BTB, BTB.Parent);
3116 
3117     BranchProbability UnhandledProb = BTB.Prob;
3118     for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
3119       UnhandledProb -= BTB.Cases[j].ExtraProb;
3120       // Set the current basic block to the mbb we wish to insert the code into
3121       MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
3122       // If all cases cover a contiguous range, it is not necessary to jump to
3123       // the default block after the last bit test fails. This is because the
3124       // range check during bit test header creation has guaranteed that every
3125       // case here doesn't go outside the range. In this case, there is no need
3126       // to perform the last bit test, as it will always be true. Instead, make
3127       // the second-to-last bit-test fall through to the target of the last bit
3128       // test, and delete the last bit test.
3129 
3130       MachineBasicBlock *NextMBB;
3131       if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3132         // Second-to-last bit-test with contiguous range: fall through to the
3133         // target of the final bit test.
3134         NextMBB = BTB.Cases[j + 1].TargetBB;
3135       } else if (j + 1 == ej) {
3136         // For the last bit test, fall through to Default.
3137         NextMBB = BTB.Default;
3138       } else {
3139         // Otherwise, fall through to the next bit test.
3140         NextMBB = BTB.Cases[j + 1].ThisBB;
3141       }
3142 
3143       emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);
3144 
3145       if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3146         // We need to record the replacement phi edge here that normally
3147         // happens in emitBitTestCase before we delete the case, otherwise the
3148         // phi edge will be lost.
3149         addMachineCFGPred({BTB.Parent->getBasicBlock(),
3150                            BTB.Cases[ej - 1].TargetBB->getBasicBlock()},
3151                           MBB);
3152         // Since we're not going to use the final bit test, remove it.
3153         BTB.Cases.pop_back();
3154         break;
3155       }
3156     }
3157     // This is "default" BB. We have two jumps to it. From "header" BB and from
3158     // last "case" BB, unless the latter was skipped.
3159     CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
3160                                    BTB.Default->getBasicBlock()};
3161     addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
3162     if (!BTB.ContiguousRange) {
3163       addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
3164     }
3165   }
3166   SL->BitTestCases.clear();
3167 
3168   for (auto &JTCase : SL->JTCases) {
3169     // Emit header first, if it wasn't already emitted.
3170     if (!JTCase.first.Emitted)
3171       emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
3172 
3173     emitJumpTable(JTCase.second, JTCase.second.MBB);
3174   }
3175   SL->JTCases.clear();
3176 
3177   for (auto &SwCase : SL->SwitchCases)
3178     emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
3179   SL->SwitchCases.clear();
3180 
3181   // Check if we need to generate stack-protector guard checks.
3182   StackProtector &SP = getAnalysis<StackProtector>();
3183   if (SP.shouldEmitSDCheck(BB)) {
3184     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3185     bool FunctionBasedInstrumentation =
3186         TLI.getSSPStackGuardCheck(*MF->getFunction().getParent());
3187     SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation);
3188   }
3189   // Handle stack protector.
3190   if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
3191     LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n");
3192     return false;
3193   } else if (SPDescriptor.shouldEmitStackProtector()) {
3194     MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB();
3195     MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB();
3196 
3197     // Find the split point to split the parent mbb. At the same time copy all
3198     // physical registers used in the tail of parent mbb into virtual registers
3199     // before the split point and back into physical registers after the split
3200     // point. This prevents us needing to deal with Live-ins and many other
3201     // register allocation issues caused by us splitting the parent mbb. The
3202     // register allocator will clean up said virtual copies later on.
3203     MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector(
3204         ParentMBB, *MF->getSubtarget().getInstrInfo());
3205 
3206     // Splice the terminator of ParentMBB into SuccessMBB.
3207     SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint,
3208                        ParentMBB->end());
3209 
3210     // Add compare/jump on neq/jump to the parent BB.
3211     if (!emitSPDescriptorParent(SPDescriptor, ParentMBB))
3212       return false;
3213 
3214     // CodeGen Failure MBB if we have not codegened it yet.
3215     MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB();
3216     if (FailureMBB->empty()) {
3217       if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB))
3218         return false;
3219     }
3220 
3221     // Clear the Per-BB State.
3222     SPDescriptor.resetPerBBState();
3223   }
3224   return true;
3225 }
3226 
3227 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD,
3228                                           MachineBasicBlock *ParentBB) {
3229   CurBuilder->setInsertPt(*ParentBB, ParentBB->end());
3230   // First create the loads to the guard/stack slot for the comparison.
3231   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3232   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
3233   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
3234   LLT PtrMemTy = getLLTForMVT(TLI.getPointerMemTy(*DL));
3235 
3236   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3237   int FI = MFI.getStackProtectorIndex();
3238 
3239   Register Guard;
3240   Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0);
3241   const Module &M = *ParentBB->getParent()->getFunction().getParent();
3242   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
3243 
3244   // Generate code to load the content of the guard slot.
3245   Register GuardVal =
3246       CurBuilder
3247           ->buildLoad(PtrMemTy, StackSlotPtr,
3248                       MachinePointerInfo::getFixedStack(*MF, FI), Align,
3249                       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile)
3250           .getReg(0);
3251 
3252   if (TLI.useStackGuardXorFP()) {
3253     LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented");
3254     return false;
3255   }
3256 
3257   // Retrieve guard check function, nullptr if instrumentation is inlined.
3258   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3259     // This path is currently untestable on GlobalISel, since the only platform
3260     // that needs this seems to be Windows, and we fall back on that currently.
3261     // The code still lives here in case that changes.
3262     // Silence warning about unused variable until the code below that uses
3263     // 'GuardCheckFn' is enabled.
3264     (void)GuardCheckFn;
3265     return false;
3266 #if 0
3267     // The target provides a guard check function to validate the guard value.
3268     // Generate a call to that function with the content of the guard slot as
3269     // argument.
3270     FunctionType *FnTy = GuardCheckFn->getFunctionType();
3271     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3272     ISD::ArgFlagsTy Flags;
3273     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
3274       Flags.setInReg();
3275     CallLowering::ArgInfo GuardArgInfo(
3276         {GuardVal, FnTy->getParamType(0), {Flags}});
3277 
3278     CallLowering::CallLoweringInfo Info;
3279     Info.OrigArgs.push_back(GuardArgInfo);
3280     Info.CallConv = GuardCheckFn->getCallingConv();
3281     Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0);
3282     Info.OrigRet = {Register(), FnTy->getReturnType()};
3283     if (!CLI->lowerCall(MIRBuilder, Info)) {
3284       LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n");
3285       return false;
3286     }
3287     return true;
3288 #endif
3289   }
3290 
3291   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3292   // Otherwise, emit a volatile load to retrieve the stack guard value.
3293   if (TLI.useLoadStackGuardNode()) {
3294     Guard =
3295         MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits()));
3296     getStackGuard(Guard, *CurBuilder);
3297   } else {
3298     // TODO: test using android subtarget when we support @llvm.thread.pointer.
3299     const Value *IRGuard = TLI.getSDagStackGuard(M);
3300     Register GuardPtr = getOrCreateVReg(*IRGuard);
3301 
3302     Guard = CurBuilder
3303                 ->buildLoad(PtrMemTy, GuardPtr,
3304                             MachinePointerInfo::getFixedStack(*MF, FI), Align,
3305                             MachineMemOperand::MOLoad |
3306                                 MachineMemOperand::MOVolatile)
3307                 .getReg(0);
3308   }
3309 
3310   // Perform the comparison.
3311   auto Cmp =
3312       CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal);
3313   // If the guard/stackslot do not equal, branch to failure MBB.
3314   CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB());
3315   // Otherwise branch to success MBB.
3316   CurBuilder->buildBr(*SPD.getSuccessMBB());
3317   return true;
3318 }
3319 
3320 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD,
3321                                            MachineBasicBlock *FailureBB) {
3322   CurBuilder->setInsertPt(*FailureBB, FailureBB->end());
3323   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3324 
3325   const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL;
3326   const char *Name = TLI.getLibcallName(Libcall);
3327 
3328   CallLowering::CallLoweringInfo Info;
3329   Info.CallConv = TLI.getLibcallCallingConv(Libcall);
3330   Info.Callee = MachineOperand::CreateES(Name);
3331   Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()),
3332                   0};
3333   if (!CLI->lowerCall(*CurBuilder, Info)) {
3334     LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n");
3335     return false;
3336   }
3337 
3338   // On PS4/PS5, the "return address" must still be within the calling
3339   // function, even if it's at the very end, so emit an explicit TRAP here.
3340   // WebAssembly needs an unreachable instruction after a non-returning call,
3341   // because the function return type can be different from __stack_chk_fail's
3342   // return type (void).
3343   const TargetMachine &TM = MF->getTarget();
3344   if (TM.getTargetTriple().isPS() || TM.getTargetTriple().isWasm()) {
3345     LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n");
3346     return false;
3347   }
3348   return true;
3349 }
3350 
3351 void IRTranslator::finalizeFunction() {
3352   // Release the memory used by the different maps we
3353   // needed during the translation.
3354   PendingPHIs.clear();
3355   VMap.reset();
3356   FrameIndices.clear();
3357   MachinePreds.clear();
3358   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
3359   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
3360   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
3361   EntryBuilder.reset();
3362   CurBuilder.reset();
3363   FuncInfo.clear();
3364   SPDescriptor.resetPerFunctionState();
3365 }
3366 
3367 /// Returns true if a BasicBlock \p BB within a variadic function contains a
3368 /// variadic musttail call.
3369 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
3370   if (!IsVarArg)
3371     return false;
3372 
3373   // Walk the block backwards, because tail calls usually only appear at the end
3374   // of a block.
3375   return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) {
3376     const auto *CI = dyn_cast<CallInst>(&I);
3377     return CI && CI->isMustTailCall();
3378   });
3379 }
3380 
3381 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
3382   MF = &CurMF;
3383   const Function &F = MF->getFunction();
3384   GISelCSEAnalysisWrapper &Wrapper =
3385       getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
3386   // Set the CSEConfig and run the analysis.
3387   GISelCSEInfo *CSEInfo = nullptr;
3388   TPC = &getAnalysis<TargetPassConfig>();
3389   bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
3390                        ? EnableCSEInIRTranslator
3391                        : TPC->isGISelCSEEnabled();
3392 
3393   if (EnableCSE) {
3394     EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3395     CSEInfo = &Wrapper.get(TPC->getCSEConfig());
3396     EntryBuilder->setCSEInfo(CSEInfo);
3397     CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3398     CurBuilder->setCSEInfo(CSEInfo);
3399   } else {
3400     EntryBuilder = std::make_unique<MachineIRBuilder>();
3401     CurBuilder = std::make_unique<MachineIRBuilder>();
3402   }
3403   CLI = MF->getSubtarget().getCallLowering();
3404   CurBuilder->setMF(*MF);
3405   EntryBuilder->setMF(*MF);
3406   MRI = &MF->getRegInfo();
3407   DL = &F.getParent()->getDataLayout();
3408   ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
3409   const TargetMachine &TM = MF->getTarget();
3410   TM.resetTargetOptions(F);
3411   EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F);
3412   FuncInfo.MF = MF;
3413   if (EnableOpts) {
3414     AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3415     FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
3416   } else {
3417     AA = nullptr;
3418     FuncInfo.BPI = nullptr;
3419   }
3420 
3421   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
3422       MF->getFunction());
3423   LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3424   FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
3425 
3426   const auto &TLI = *MF->getSubtarget().getTargetLowering();
3427 
3428   SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
3429   SL->init(TLI, TM, *DL);
3430 
3431 
3432 
3433   assert(PendingPHIs.empty() && "stale PHIs");
3434 
3435   // Targets which want to use big endian can enable it using
3436   // enableBigEndian()
3437   if (!DL->isLittleEndian() && !CLI->enableBigEndian()) {
3438     // Currently we don't properly handle big endian code.
3439     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3440                                F.getSubprogram(), &F.getEntryBlock());
3441     R << "unable to translate in big endian mode";
3442     reportTranslationError(*MF, *TPC, *ORE, R);
3443   }
3444 
3445   // Release the per-function state when we return, whether we succeeded or not.
3446   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
3447 
3448   // Setup a separate basic-block for the arguments and constants
3449   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
3450   MF->push_back(EntryBB);
3451   EntryBuilder->setMBB(*EntryBB);
3452 
3453   DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
3454   SwiftError.setFunction(CurMF);
3455   SwiftError.createEntriesInEntryBlock(DbgLoc);
3456 
3457   bool IsVarArg = F.isVarArg();
3458   bool HasMustTailInVarArgFn = false;
3459 
3460   // Create all blocks, in IR order, to preserve the layout.
3461   for (const BasicBlock &BB: F) {
3462     auto *&MBB = BBToMBB[&BB];
3463 
3464     MBB = MF->CreateMachineBasicBlock(&BB);
3465     MF->push_back(MBB);
3466 
3467     if (BB.hasAddressTaken())
3468       MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB));
3469 
3470     if (!HasMustTailInVarArgFn)
3471       HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
3472   }
3473 
3474   MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
3475 
3476   // Make our arguments/constants entry block fallthrough to the IR entry block.
3477   EntryBB->addSuccessor(&getMBB(F.front()));
3478 
3479   if (CLI->fallBackToDAGISel(*MF)) {
3480     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3481                                F.getSubprogram(), &F.getEntryBlock());
3482     R << "unable to lower function: " << ore::NV("Prototype", F.getType());
3483     reportTranslationError(*MF, *TPC, *ORE, R);
3484     return false;
3485   }
3486 
3487   // Lower the actual args into this basic block.
3488   SmallVector<ArrayRef<Register>, 8> VRegArgs;
3489   for (const Argument &Arg: F.args()) {
3490     if (DL->getTypeStoreSize(Arg.getType()).isZero())
3491       continue; // Don't handle zero sized types.
3492     ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
3493     VRegArgs.push_back(VRegs);
3494 
3495     if (Arg.hasSwiftErrorAttr()) {
3496       assert(VRegs.size() == 1 && "Too many vregs for Swift error");
3497       SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
3498     }
3499   }
3500 
3501   if (!CLI->lowerFormalArguments(*EntryBuilder, F, VRegArgs, FuncInfo)) {
3502     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3503                                F.getSubprogram(), &F.getEntryBlock());
3504     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
3505     reportTranslationError(*MF, *TPC, *ORE, R);
3506     return false;
3507   }
3508 
3509   // Need to visit defs before uses when translating instructions.
3510   GISelObserverWrapper WrapperObserver;
3511   if (EnableCSE && CSEInfo)
3512     WrapperObserver.addObserver(CSEInfo);
3513   {
3514     ReversePostOrderTraversal<const Function *> RPOT(&F);
3515 #ifndef NDEBUG
3516     DILocationVerifier Verifier;
3517     WrapperObserver.addObserver(&Verifier);
3518 #endif // ifndef NDEBUG
3519     RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3520     RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
3521     for (const BasicBlock *BB : RPOT) {
3522       MachineBasicBlock &MBB = getMBB(*BB);
3523       // Set the insertion point of all the following translations to
3524       // the end of this basic block.
3525       CurBuilder->setMBB(MBB);
3526       HasTailCall = false;
3527       for (const Instruction &Inst : *BB) {
3528         // If we translated a tail call in the last step, then we know
3529         // everything after the call is either a return, or something that is
3530         // handled by the call itself. (E.g. a lifetime marker or assume
3531         // intrinsic.) In this case, we should stop translating the block and
3532         // move on.
3533         if (HasTailCall)
3534           break;
3535 #ifndef NDEBUG
3536         Verifier.setCurrentInst(&Inst);
3537 #endif // ifndef NDEBUG
3538         if (translate(Inst))
3539           continue;
3540 
3541         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3542                                    Inst.getDebugLoc(), BB);
3543         R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
3544 
3545         if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
3546           std::string InstStrStorage;
3547           raw_string_ostream InstStr(InstStrStorage);
3548           InstStr << Inst;
3549 
3550           R << ": '" << InstStr.str() << "'";
3551         }
3552 
3553         reportTranslationError(*MF, *TPC, *ORE, R);
3554         return false;
3555       }
3556 
3557       if (!finalizeBasicBlock(*BB, MBB)) {
3558         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3559                                    BB->getTerminator()->getDebugLoc(), BB);
3560         R << "unable to translate basic block";
3561         reportTranslationError(*MF, *TPC, *ORE, R);
3562         return false;
3563       }
3564     }
3565 #ifndef NDEBUG
3566     WrapperObserver.removeObserver(&Verifier);
3567 #endif
3568   }
3569 
3570   finishPendingPhis();
3571 
3572   SwiftError.propagateVRegs();
3573 
3574   // Merge the argument lowering and constants block with its single
3575   // successor, the LLVM-IR entry block.  We want the basic block to
3576   // be maximal.
3577   assert(EntryBB->succ_size() == 1 &&
3578          "Custom BB used for lowering should have only one successor");
3579   // Get the successor of the current entry block.
3580   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
3581   assert(NewEntryBB.pred_size() == 1 &&
3582          "LLVM-IR entry block has a predecessor!?");
3583   // Move all the instruction from the current entry block to the
3584   // new entry block.
3585   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
3586                     EntryBB->end());
3587 
3588   // Update the live-in information for the new entry block.
3589   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
3590     NewEntryBB.addLiveIn(LiveIn);
3591   NewEntryBB.sortUniqueLiveIns();
3592 
3593   // Get rid of the now empty basic block.
3594   EntryBB->removeSuccessor(&NewEntryBB);
3595   MF->remove(EntryBB);
3596   MF->deleteMachineBasicBlock(EntryBB);
3597 
3598   assert(&MF->front() == &NewEntryBB &&
3599          "New entry wasn't next in the list of basic block!");
3600 
3601   // Initialize stack protector information.
3602   StackProtector &SP = getAnalysis<StackProtector>();
3603   SP.copyToMachineFrameInfo(MF->getFrameInfo());
3604 
3605   return false;
3606 }
3607