1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 26 #include "llvm/CodeGen/LowLevelType.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/StackProtector.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfo.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GetElementPtrTypeIterator.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/InitializePasses.h" 60 #include "llvm/MC/MCContext.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CodeGen.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/LowLevelTypeImpl.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetIntrinsicInfo.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 #define DEBUG_TYPE "irtranslator" 80 81 using namespace llvm; 82 83 static cl::opt<bool> 84 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 85 cl::desc("Should enable CSE in irtranslator"), 86 cl::Optional, cl::init(false)); 87 char IRTranslator::ID = 0; 88 89 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 90 false, false) 91 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 92 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 93 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 94 false, false) 95 96 static void reportTranslationError(MachineFunction &MF, 97 const TargetPassConfig &TPC, 98 OptimizationRemarkEmitter &ORE, 99 OptimizationRemarkMissed &R) { 100 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 101 102 // Print the function name explicitly if we don't have a debug location (which 103 // makes the diagnostic less useful) or if we're going to emit a raw error. 104 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 105 R << (" (in function: " + MF.getName() + ")").str(); 106 107 if (TPC.isGlobalISelAbortEnabled()) 108 report_fatal_error(R.getMsg()); 109 else 110 ORE.emit(R); 111 } 112 113 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { } 114 115 #ifndef NDEBUG 116 namespace { 117 /// Verify that every instruction created has the same DILocation as the 118 /// instruction being translated. 119 class DILocationVerifier : public GISelChangeObserver { 120 const Instruction *CurrInst = nullptr; 121 122 public: 123 DILocationVerifier() = default; 124 ~DILocationVerifier() = default; 125 126 const Instruction *getCurrentInst() const { return CurrInst; } 127 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 128 129 void erasingInstr(MachineInstr &MI) override {} 130 void changingInstr(MachineInstr &MI) override {} 131 void changedInstr(MachineInstr &MI) override {} 132 133 void createdInstr(MachineInstr &MI) override { 134 assert(getCurrentInst() && "Inserted instruction without a current MI"); 135 136 // Only print the check message if we're actually checking it. 137 #ifndef NDEBUG 138 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 139 << " was copied to " << MI); 140 #endif 141 // We allow insts in the entry block to have a debug loc line of 0 because 142 // they could have originated from constants, and we don't want a jumpy 143 // debug experience. 144 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 145 MI.getDebugLoc().getLine() == 0) && 146 "Line info was not transferred to all instructions"); 147 } 148 }; 149 } // namespace 150 #endif // ifndef NDEBUG 151 152 153 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 154 AU.addRequired<StackProtector>(); 155 AU.addRequired<TargetPassConfig>(); 156 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 157 getSelectionDAGFallbackAnalysisUsage(AU); 158 MachineFunctionPass::getAnalysisUsage(AU); 159 } 160 161 IRTranslator::ValueToVRegInfo::VRegListT & 162 IRTranslator::allocateVRegs(const Value &Val) { 163 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 164 auto *Regs = VMap.getVRegs(Val); 165 auto *Offsets = VMap.getOffsets(Val); 166 SmallVector<LLT, 4> SplitTys; 167 computeValueLLTs(*DL, *Val.getType(), SplitTys, 168 Offsets->empty() ? Offsets : nullptr); 169 for (unsigned i = 0; i < SplitTys.size(); ++i) 170 Regs->push_back(0); 171 return *Regs; 172 } 173 174 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 175 auto VRegsIt = VMap.findVRegs(Val); 176 if (VRegsIt != VMap.vregs_end()) 177 return *VRegsIt->second; 178 179 if (Val.getType()->isVoidTy()) 180 return *VMap.getVRegs(Val); 181 182 // Create entry for this type. 183 auto *VRegs = VMap.getVRegs(Val); 184 auto *Offsets = VMap.getOffsets(Val); 185 186 assert(Val.getType()->isSized() && 187 "Don't know how to create an empty vreg"); 188 189 SmallVector<LLT, 4> SplitTys; 190 computeValueLLTs(*DL, *Val.getType(), SplitTys, 191 Offsets->empty() ? Offsets : nullptr); 192 193 if (!isa<Constant>(Val)) { 194 for (auto Ty : SplitTys) 195 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 196 return *VRegs; 197 } 198 199 if (Val.getType()->isAggregateType()) { 200 // UndefValue, ConstantAggregateZero 201 auto &C = cast<Constant>(Val); 202 unsigned Idx = 0; 203 while (auto Elt = C.getAggregateElement(Idx++)) { 204 auto EltRegs = getOrCreateVRegs(*Elt); 205 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 206 } 207 } else { 208 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 209 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 210 bool Success = translate(cast<Constant>(Val), VRegs->front()); 211 if (!Success) { 212 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 213 MF->getFunction().getSubprogram(), 214 &MF->getFunction().getEntryBlock()); 215 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 216 reportTranslationError(*MF, *TPC, *ORE, R); 217 return *VRegs; 218 } 219 } 220 221 return *VRegs; 222 } 223 224 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 225 if (FrameIndices.find(&AI) != FrameIndices.end()) 226 return FrameIndices[&AI]; 227 228 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 229 uint64_t Size = 230 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 231 232 // Always allocate at least one byte. 233 Size = std::max<uint64_t>(Size, 1u); 234 235 int &FI = FrameIndices[&AI]; 236 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI); 237 return FI; 238 } 239 240 Align IRTranslator::getMemOpAlign(const Instruction &I) { 241 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) 242 return SI->getAlign(); 243 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 244 return LI->getAlign(); 245 } 246 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 247 // TODO(PR27168): This instruction has no alignment attribute, but unlike 248 // the default alignment for load/store, the default here is to assume 249 // it has NATURAL alignment, not DataLayout-specified alignment. 250 const DataLayout &DL = AI->getModule()->getDataLayout(); 251 return Align(DL.getTypeStoreSize(AI->getCompareOperand()->getType())); 252 } 253 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 254 // TODO(PR27168): This instruction has no alignment attribute, but unlike 255 // the default alignment for load/store, the default here is to assume 256 // it has NATURAL alignment, not DataLayout-specified alignment. 257 const DataLayout &DL = AI->getModule()->getDataLayout(); 258 return Align(DL.getTypeStoreSize(AI->getValOperand()->getType())); 259 } 260 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 261 R << "unable to translate memop: " << ore::NV("Opcode", &I); 262 reportTranslationError(*MF, *TPC, *ORE, R); 263 return Align(1); 264 } 265 266 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 267 MachineBasicBlock *&MBB = BBToMBB[&BB]; 268 assert(MBB && "BasicBlock was not encountered before"); 269 return *MBB; 270 } 271 272 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 273 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 274 MachinePreds[Edge].push_back(NewPred); 275 } 276 277 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 278 MachineIRBuilder &MIRBuilder) { 279 // Get or create a virtual register for each value. 280 // Unless the value is a Constant => loadimm cst? 281 // or inline constant each time? 282 // Creation of a virtual register needs to have a size. 283 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 284 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 285 Register Res = getOrCreateVReg(U); 286 uint16_t Flags = 0; 287 if (isa<Instruction>(U)) { 288 const Instruction &I = cast<Instruction>(U); 289 Flags = MachineInstr::copyFlagsFromInstruction(I); 290 } 291 292 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 293 return true; 294 } 295 296 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 297 // -0.0 - X --> G_FNEG 298 if (isa<Constant>(U.getOperand(0)) && 299 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 300 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 301 Register Res = getOrCreateVReg(U); 302 uint16_t Flags = 0; 303 if (isa<Instruction>(U)) { 304 const Instruction &I = cast<Instruction>(U); 305 Flags = MachineInstr::copyFlagsFromInstruction(I); 306 } 307 // Negate the last operand of the FSUB 308 MIRBuilder.buildFNeg(Res, Op1, Flags); 309 return true; 310 } 311 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 312 } 313 314 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 315 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 316 Register Res = getOrCreateVReg(U); 317 uint16_t Flags = 0; 318 if (isa<Instruction>(U)) { 319 const Instruction &I = cast<Instruction>(U); 320 Flags = MachineInstr::copyFlagsFromInstruction(I); 321 } 322 MIRBuilder.buildFNeg(Res, Op0, Flags); 323 return true; 324 } 325 326 bool IRTranslator::translateCompare(const User &U, 327 MachineIRBuilder &MIRBuilder) { 328 auto *CI = dyn_cast<CmpInst>(&U); 329 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 330 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 331 Register Res = getOrCreateVReg(U); 332 CmpInst::Predicate Pred = 333 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 334 cast<ConstantExpr>(U).getPredicate()); 335 if (CmpInst::isIntPredicate(Pred)) 336 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 337 else if (Pred == CmpInst::FCMP_FALSE) 338 MIRBuilder.buildCopy( 339 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 340 else if (Pred == CmpInst::FCMP_TRUE) 341 MIRBuilder.buildCopy( 342 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 343 else { 344 assert(CI && "Instruction should be CmpInst"); 345 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, 346 MachineInstr::copyFlagsFromInstruction(*CI)); 347 } 348 349 return true; 350 } 351 352 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 353 const ReturnInst &RI = cast<ReturnInst>(U); 354 const Value *Ret = RI.getReturnValue(); 355 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 356 Ret = nullptr; 357 358 ArrayRef<Register> VRegs; 359 if (Ret) 360 VRegs = getOrCreateVRegs(*Ret); 361 362 Register SwiftErrorVReg = 0; 363 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 364 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 365 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 366 } 367 368 // The target may mess up with the insertion point, but 369 // this is not important as a return is the last instruction 370 // of the block anyway. 371 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); 372 } 373 374 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 375 const BranchInst &BrInst = cast<BranchInst>(U); 376 unsigned Succ = 0; 377 if (!BrInst.isUnconditional()) { 378 // We want a G_BRCOND to the true BB followed by an unconditional branch. 379 Register Tst = getOrCreateVReg(*BrInst.getCondition()); 380 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 381 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 382 MIRBuilder.buildBrCond(Tst, TrueBB); 383 } 384 385 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 386 MachineBasicBlock &TgtBB = getMBB(BrTgt); 387 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 388 389 // If the unconditional target is the layout successor, fallthrough. 390 if (!CurBB.isLayoutSuccessor(&TgtBB)) 391 MIRBuilder.buildBr(TgtBB); 392 393 // Link successors. 394 for (const BasicBlock *Succ : successors(&BrInst)) 395 CurBB.addSuccessor(&getMBB(*Succ)); 396 return true; 397 } 398 399 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 400 MachineBasicBlock *Dst, 401 BranchProbability Prob) { 402 if (!FuncInfo.BPI) { 403 Src->addSuccessorWithoutProb(Dst); 404 return; 405 } 406 if (Prob.isUnknown()) 407 Prob = getEdgeProbability(Src, Dst); 408 Src->addSuccessor(Dst, Prob); 409 } 410 411 BranchProbability 412 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 413 const MachineBasicBlock *Dst) const { 414 const BasicBlock *SrcBB = Src->getBasicBlock(); 415 const BasicBlock *DstBB = Dst->getBasicBlock(); 416 if (!FuncInfo.BPI) { 417 // If BPI is not available, set the default probability as 1 / N, where N is 418 // the number of successors. 419 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 420 return BranchProbability(1, SuccSize); 421 } 422 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 423 } 424 425 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 426 using namespace SwitchCG; 427 // Extract cases from the switch. 428 const SwitchInst &SI = cast<SwitchInst>(U); 429 BranchProbabilityInfo *BPI = FuncInfo.BPI; 430 CaseClusterVector Clusters; 431 Clusters.reserve(SI.getNumCases()); 432 for (auto &I : SI.cases()) { 433 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 434 assert(Succ && "Could not find successor mbb in mapping"); 435 const ConstantInt *CaseVal = I.getCaseValue(); 436 BranchProbability Prob = 437 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 438 : BranchProbability(1, SI.getNumCases() + 1); 439 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 440 } 441 442 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 443 444 // Cluster adjacent cases with the same destination. We do this at all 445 // optimization levels because it's cheap to do and will make codegen faster 446 // if there are many clusters. 447 sortAndRangeify(Clusters); 448 449 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 450 451 // If there is only the default destination, jump there directly. 452 if (Clusters.empty()) { 453 SwitchMBB->addSuccessor(DefaultMBB); 454 if (DefaultMBB != SwitchMBB->getNextNode()) 455 MIB.buildBr(*DefaultMBB); 456 return true; 457 } 458 459 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 460 461 LLVM_DEBUG({ 462 dbgs() << "Case clusters: "; 463 for (const CaseCluster &C : Clusters) { 464 if (C.Kind == CC_JumpTable) 465 dbgs() << "JT:"; 466 if (C.Kind == CC_BitTests) 467 dbgs() << "BT:"; 468 469 C.Low->getValue().print(dbgs(), true); 470 if (C.Low != C.High) { 471 dbgs() << '-'; 472 C.High->getValue().print(dbgs(), true); 473 } 474 dbgs() << ' '; 475 } 476 dbgs() << '\n'; 477 }); 478 479 assert(!Clusters.empty()); 480 SwitchWorkList WorkList; 481 CaseClusterIt First = Clusters.begin(); 482 CaseClusterIt Last = Clusters.end() - 1; 483 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 484 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 485 486 // FIXME: At the moment we don't do any splitting optimizations here like 487 // SelectionDAG does, so this worklist only has one entry. 488 while (!WorkList.empty()) { 489 SwitchWorkListItem W = WorkList.back(); 490 WorkList.pop_back(); 491 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 492 return false; 493 } 494 return true; 495 } 496 497 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 498 MachineBasicBlock *MBB) { 499 // Emit the code for the jump table 500 assert(JT.Reg != -1U && "Should lower JT Header first!"); 501 MachineIRBuilder MIB(*MBB->getParent()); 502 MIB.setMBB(*MBB); 503 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 504 505 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 506 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 507 508 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 509 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 510 } 511 512 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 513 SwitchCG::JumpTableHeader &JTH, 514 MachineBasicBlock *HeaderBB) { 515 MachineIRBuilder MIB(*HeaderBB->getParent()); 516 MIB.setMBB(*HeaderBB); 517 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 518 519 const Value &SValue = *JTH.SValue; 520 // Subtract the lowest switch case value from the value being switched on. 521 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 522 Register SwitchOpReg = getOrCreateVReg(SValue); 523 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 524 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 525 526 // This value may be smaller or larger than the target's pointer type, and 527 // therefore require extension or truncating. 528 Type *PtrIRTy = SValue.getType()->getPointerTo(); 529 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 530 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 531 532 JT.Reg = Sub.getReg(0); 533 534 if (JTH.OmitRangeCheck) { 535 if (JT.MBB != HeaderBB->getNextNode()) 536 MIB.buildBr(*JT.MBB); 537 return true; 538 } 539 540 // Emit the range check for the jump table, and branch to the default block 541 // for the switch statement if the value being switched on exceeds the 542 // largest case in the switch. 543 auto Cst = getOrCreateVReg( 544 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 545 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 546 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 547 548 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 549 550 // Avoid emitting unnecessary branches to the next block. 551 if (JT.MBB != HeaderBB->getNextNode()) 552 BrCond = MIB.buildBr(*JT.MBB); 553 return true; 554 } 555 556 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 557 MachineBasicBlock *SwitchBB, 558 MachineIRBuilder &MIB) { 559 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 560 Register Cond; 561 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 562 MIB.setDebugLoc(CB.DbgLoc); 563 MIB.setMBB(*CB.ThisBB); 564 565 if (CB.PredInfo.NoCmp) { 566 // Branch or fall through to TrueBB. 567 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 568 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 569 CB.ThisBB); 570 CB.ThisBB->normalizeSuccProbs(); 571 if (CB.TrueBB != CB.ThisBB->getNextNode()) 572 MIB.buildBr(*CB.TrueBB); 573 MIB.setDebugLoc(OldDbgLoc); 574 return; 575 } 576 577 const LLT i1Ty = LLT::scalar(1); 578 // Build the compare. 579 if (!CB.CmpMHS) { 580 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 581 Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 582 } else { 583 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 584 "Can only handle SLE ranges"); 585 586 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 587 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 588 589 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 590 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 591 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 592 Cond = 593 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 594 } else { 595 const LLT CmpTy = MRI->getType(CmpOpReg); 596 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 597 auto Diff = MIB.buildConstant(CmpTy, High - Low); 598 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 599 } 600 } 601 602 // Update successor info 603 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 604 605 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 606 CB.ThisBB); 607 608 // TrueBB and FalseBB are always different unless the incoming IR is 609 // degenerate. This only happens when running llc on weird IR. 610 if (CB.TrueBB != CB.FalseBB) 611 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 612 CB.ThisBB->normalizeSuccProbs(); 613 614 // if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock()) 615 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 616 CB.ThisBB); 617 618 // If the lhs block is the next block, invert the condition so that we can 619 // fall through to the lhs instead of the rhs block. 620 if (CB.TrueBB == CB.ThisBB->getNextNode()) { 621 std::swap(CB.TrueBB, CB.FalseBB); 622 auto True = MIB.buildConstant(i1Ty, 1); 623 Cond = MIB.buildXor(i1Ty, Cond, True).getReg(0); 624 } 625 626 MIB.buildBrCond(Cond, *CB.TrueBB); 627 MIB.buildBr(*CB.FalseBB); 628 MIB.setDebugLoc(OldDbgLoc); 629 } 630 631 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 632 MachineBasicBlock *SwitchMBB, 633 MachineBasicBlock *CurMBB, 634 MachineBasicBlock *DefaultMBB, 635 MachineIRBuilder &MIB, 636 MachineFunction::iterator BBI, 637 BranchProbability UnhandledProbs, 638 SwitchCG::CaseClusterIt I, 639 MachineBasicBlock *Fallthrough, 640 bool FallthroughUnreachable) { 641 using namespace SwitchCG; 642 MachineFunction *CurMF = SwitchMBB->getParent(); 643 // FIXME: Optimize away range check based on pivot comparisons. 644 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 645 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 646 BranchProbability DefaultProb = W.DefaultProb; 647 648 // The jump block hasn't been inserted yet; insert it here. 649 MachineBasicBlock *JumpMBB = JT->MBB; 650 CurMF->insert(BBI, JumpMBB); 651 652 // Since the jump table block is separate from the switch block, we need 653 // to keep track of it as a machine predecessor to the default block, 654 // otherwise we lose the phi edges. 655 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 656 CurMBB); 657 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 658 JumpMBB); 659 660 auto JumpProb = I->Prob; 661 auto FallthroughProb = UnhandledProbs; 662 663 // If the default statement is a target of the jump table, we evenly 664 // distribute the default probability to successors of CurMBB. Also 665 // update the probability on the edge from JumpMBB to Fallthrough. 666 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 667 SE = JumpMBB->succ_end(); 668 SI != SE; ++SI) { 669 if (*SI == DefaultMBB) { 670 JumpProb += DefaultProb / 2; 671 FallthroughProb -= DefaultProb / 2; 672 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 673 JumpMBB->normalizeSuccProbs(); 674 } else { 675 // Also record edges from the jump table block to it's successors. 676 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 677 JumpMBB); 678 } 679 } 680 681 // Skip the range check if the fallthrough block is unreachable. 682 if (FallthroughUnreachable) 683 JTH->OmitRangeCheck = true; 684 685 if (!JTH->OmitRangeCheck) 686 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 687 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 688 CurMBB->normalizeSuccProbs(); 689 690 // The jump table header will be inserted in our current block, do the 691 // range check, and fall through to our fallthrough block. 692 JTH->HeaderBB = CurMBB; 693 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 694 695 // If we're in the right place, emit the jump table header right now. 696 if (CurMBB == SwitchMBB) { 697 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 698 return false; 699 JTH->Emitted = true; 700 } 701 return true; 702 } 703 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 704 Value *Cond, 705 MachineBasicBlock *Fallthrough, 706 bool FallthroughUnreachable, 707 BranchProbability UnhandledProbs, 708 MachineBasicBlock *CurMBB, 709 MachineIRBuilder &MIB, 710 MachineBasicBlock *SwitchMBB) { 711 using namespace SwitchCG; 712 const Value *RHS, *LHS, *MHS; 713 CmpInst::Predicate Pred; 714 if (I->Low == I->High) { 715 // Check Cond == I->Low. 716 Pred = CmpInst::ICMP_EQ; 717 LHS = Cond; 718 RHS = I->Low; 719 MHS = nullptr; 720 } else { 721 // Check I->Low <= Cond <= I->High. 722 Pred = CmpInst::ICMP_SLE; 723 LHS = I->Low; 724 MHS = Cond; 725 RHS = I->High; 726 } 727 728 // If Fallthrough is unreachable, fold away the comparison. 729 // The false probability is the sum of all unhandled cases. 730 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 731 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 732 733 emitSwitchCase(CB, SwitchMBB, MIB); 734 return true; 735 } 736 737 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 738 Value *Cond, 739 MachineBasicBlock *SwitchMBB, 740 MachineBasicBlock *DefaultMBB, 741 MachineIRBuilder &MIB) { 742 using namespace SwitchCG; 743 MachineFunction *CurMF = FuncInfo.MF; 744 MachineBasicBlock *NextMBB = nullptr; 745 MachineFunction::iterator BBI(W.MBB); 746 if (++BBI != FuncInfo.MF->end()) 747 NextMBB = &*BBI; 748 749 if (EnableOpts) { 750 // Here, we order cases by probability so the most likely case will be 751 // checked first. However, two clusters can have the same probability in 752 // which case their relative ordering is non-deterministic. So we use Low 753 // as a tie-breaker as clusters are guaranteed to never overlap. 754 llvm::sort(W.FirstCluster, W.LastCluster + 1, 755 [](const CaseCluster &a, const CaseCluster &b) { 756 return a.Prob != b.Prob 757 ? a.Prob > b.Prob 758 : a.Low->getValue().slt(b.Low->getValue()); 759 }); 760 761 // Rearrange the case blocks so that the last one falls through if possible 762 // without changing the order of probabilities. 763 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 764 --I; 765 if (I->Prob > W.LastCluster->Prob) 766 break; 767 if (I->Kind == CC_Range && I->MBB == NextMBB) { 768 std::swap(*I, *W.LastCluster); 769 break; 770 } 771 } 772 } 773 774 // Compute total probability. 775 BranchProbability DefaultProb = W.DefaultProb; 776 BranchProbability UnhandledProbs = DefaultProb; 777 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 778 UnhandledProbs += I->Prob; 779 780 MachineBasicBlock *CurMBB = W.MBB; 781 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 782 bool FallthroughUnreachable = false; 783 MachineBasicBlock *Fallthrough; 784 if (I == W.LastCluster) { 785 // For the last cluster, fall through to the default destination. 786 Fallthrough = DefaultMBB; 787 FallthroughUnreachable = isa<UnreachableInst>( 788 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 789 } else { 790 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 791 CurMF->insert(BBI, Fallthrough); 792 } 793 UnhandledProbs -= I->Prob; 794 795 switch (I->Kind) { 796 case CC_BitTests: { 797 LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented"); 798 return false; // Bit tests currently unimplemented. 799 } 800 case CC_JumpTable: { 801 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 802 UnhandledProbs, I, Fallthrough, 803 FallthroughUnreachable)) { 804 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 805 return false; 806 } 807 break; 808 } 809 case CC_Range: { 810 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 811 FallthroughUnreachable, UnhandledProbs, 812 CurMBB, MIB, SwitchMBB)) { 813 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 814 return false; 815 } 816 break; 817 } 818 } 819 CurMBB = Fallthrough; 820 } 821 822 return true; 823 } 824 825 bool IRTranslator::translateIndirectBr(const User &U, 826 MachineIRBuilder &MIRBuilder) { 827 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 828 829 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 830 MIRBuilder.buildBrIndirect(Tgt); 831 832 // Link successors. 833 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 834 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 835 for (const BasicBlock *Succ : successors(&BrInst)) { 836 // It's legal for indirectbr instructions to have duplicate blocks in the 837 // destination list. We don't allow this in MIR. Skip anything that's 838 // already a successor. 839 if (!AddedSuccessors.insert(Succ).second) 840 continue; 841 CurBB.addSuccessor(&getMBB(*Succ)); 842 } 843 844 return true; 845 } 846 847 static bool isSwiftError(const Value *V) { 848 if (auto Arg = dyn_cast<Argument>(V)) 849 return Arg->hasSwiftErrorAttr(); 850 if (auto AI = dyn_cast<AllocaInst>(V)) 851 return AI->isSwiftError(); 852 return false; 853 } 854 855 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 856 const LoadInst &LI = cast<LoadInst>(U); 857 if (DL->getTypeStoreSize(LI.getType()) == 0) 858 return true; 859 860 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 861 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 862 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 863 864 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 865 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 866 867 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 868 assert(Regs.size() == 1 && "swifterror should be single pointer"); 869 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 870 LI.getPointerOperand()); 871 MIRBuilder.buildCopy(Regs[0], VReg); 872 return true; 873 } 874 875 auto &TLI = *MF->getSubtarget().getTargetLowering(); 876 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL); 877 878 const MDNode *Ranges = 879 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 880 for (unsigned i = 0; i < Regs.size(); ++i) { 881 Register Addr; 882 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 883 884 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 885 Align BaseAlign = getMemOpAlign(LI); 886 AAMDNodes AAMetadata; 887 LI.getAAMetadata(AAMetadata); 888 auto MMO = MF->getMachineMemOperand( 889 Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(), 890 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges, 891 LI.getSyncScopeID(), LI.getOrdering()); 892 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 893 } 894 895 return true; 896 } 897 898 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 899 const StoreInst &SI = cast<StoreInst>(U); 900 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 901 return true; 902 903 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 904 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 905 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 906 907 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 908 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 909 910 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 911 assert(Vals.size() == 1 && "swifterror should be single pointer"); 912 913 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 914 SI.getPointerOperand()); 915 MIRBuilder.buildCopy(VReg, Vals[0]); 916 return true; 917 } 918 919 auto &TLI = *MF->getSubtarget().getTargetLowering(); 920 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 921 922 for (unsigned i = 0; i < Vals.size(); ++i) { 923 Register Addr; 924 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 925 926 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 927 Align BaseAlign = getMemOpAlign(SI); 928 AAMDNodes AAMetadata; 929 SI.getAAMetadata(AAMetadata); 930 auto MMO = MF->getMachineMemOperand( 931 Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(), 932 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr, 933 SI.getSyncScopeID(), SI.getOrdering()); 934 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 935 } 936 return true; 937 } 938 939 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 940 const Value *Src = U.getOperand(0); 941 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 942 943 // getIndexedOffsetInType is designed for GEPs, so the first index is the 944 // usual array element rather than looking into the actual aggregate. 945 SmallVector<Value *, 1> Indices; 946 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 947 948 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 949 for (auto Idx : EVI->indices()) 950 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 951 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 952 for (auto Idx : IVI->indices()) 953 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 954 } else { 955 for (unsigned i = 1; i < U.getNumOperands(); ++i) 956 Indices.push_back(U.getOperand(i)); 957 } 958 959 return 8 * static_cast<uint64_t>( 960 DL.getIndexedOffsetInType(Src->getType(), Indices)); 961 } 962 963 bool IRTranslator::translateExtractValue(const User &U, 964 MachineIRBuilder &MIRBuilder) { 965 const Value *Src = U.getOperand(0); 966 uint64_t Offset = getOffsetFromIndices(U, *DL); 967 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 968 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 969 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 970 auto &DstRegs = allocateVRegs(U); 971 972 for (unsigned i = 0; i < DstRegs.size(); ++i) 973 DstRegs[i] = SrcRegs[Idx++]; 974 975 return true; 976 } 977 978 bool IRTranslator::translateInsertValue(const User &U, 979 MachineIRBuilder &MIRBuilder) { 980 const Value *Src = U.getOperand(0); 981 uint64_t Offset = getOffsetFromIndices(U, *DL); 982 auto &DstRegs = allocateVRegs(U); 983 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 984 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 985 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 986 auto InsertedIt = InsertedRegs.begin(); 987 988 for (unsigned i = 0; i < DstRegs.size(); ++i) { 989 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 990 DstRegs[i] = *InsertedIt++; 991 else 992 DstRegs[i] = SrcRegs[i]; 993 } 994 995 return true; 996 } 997 998 bool IRTranslator::translateSelect(const User &U, 999 MachineIRBuilder &MIRBuilder) { 1000 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1001 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1002 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1003 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1004 1005 uint16_t Flags = 0; 1006 if (const SelectInst *SI = dyn_cast<SelectInst>(&U)) 1007 Flags = MachineInstr::copyFlagsFromInstruction(*SI); 1008 1009 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1010 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1011 } 1012 1013 return true; 1014 } 1015 1016 bool IRTranslator::translateCopy(const User &U, const Value &V, 1017 MachineIRBuilder &MIRBuilder) { 1018 Register Src = getOrCreateVReg(V); 1019 auto &Regs = *VMap.getVRegs(U); 1020 if (Regs.empty()) { 1021 Regs.push_back(Src); 1022 VMap.getOffsets(U)->push_back(0); 1023 } else { 1024 // If we already assigned a vreg for this instruction, we can't change that. 1025 // Emit a copy to satisfy the users we already emitted. 1026 MIRBuilder.buildCopy(Regs[0], Src); 1027 } 1028 return true; 1029 } 1030 1031 bool IRTranslator::translateBitCast(const User &U, 1032 MachineIRBuilder &MIRBuilder) { 1033 // If we're bitcasting to the source type, we can reuse the source vreg. 1034 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1035 getLLTForType(*U.getType(), *DL)) 1036 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1037 1038 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1039 } 1040 1041 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1042 MachineIRBuilder &MIRBuilder) { 1043 Register Op = getOrCreateVReg(*U.getOperand(0)); 1044 Register Res = getOrCreateVReg(U); 1045 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1046 return true; 1047 } 1048 1049 bool IRTranslator::translateGetElementPtr(const User &U, 1050 MachineIRBuilder &MIRBuilder) { 1051 Value &Op0 = *U.getOperand(0); 1052 Register BaseReg = getOrCreateVReg(Op0); 1053 Type *PtrIRTy = Op0.getType(); 1054 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1055 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1056 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1057 1058 // Normalize Vector GEP - all scalar operands should be converted to the 1059 // splat vector. 1060 unsigned VectorWidth = 0; 1061 if (auto *VT = dyn_cast<VectorType>(U.getType())) 1062 VectorWidth = cast<FixedVectorType>(VT)->getNumElements(); 1063 1064 // We might need to splat the base pointer into a vector if the offsets 1065 // are vectors. 1066 if (VectorWidth && !PtrTy.isVector()) { 1067 BaseReg = 1068 MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg) 1069 .getReg(0); 1070 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth); 1071 PtrTy = getLLTForType(*PtrIRTy, *DL); 1072 OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1073 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1074 } 1075 1076 int64_t Offset = 0; 1077 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1078 GTI != E; ++GTI) { 1079 const Value *Idx = GTI.getOperand(); 1080 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1081 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1082 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1083 continue; 1084 } else { 1085 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1086 1087 // If this is a scalar constant or a splat vector of constants, 1088 // handle it quickly. 1089 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1090 Offset += ElementSize * CI->getSExtValue(); 1091 continue; 1092 } 1093 1094 if (Offset != 0) { 1095 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1096 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1097 .getReg(0); 1098 Offset = 0; 1099 } 1100 1101 Register IdxReg = getOrCreateVReg(*Idx); 1102 LLT IdxTy = MRI->getType(IdxReg); 1103 if (IdxTy != OffsetTy) { 1104 if (!IdxTy.isVector() && VectorWidth) { 1105 IdxReg = MIRBuilder.buildSplatVector( 1106 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1107 } 1108 1109 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1110 } 1111 1112 // N = N + Idx * ElementSize; 1113 // Avoid doing it for ElementSize of 1. 1114 Register GepOffsetReg; 1115 if (ElementSize != 1) { 1116 auto ElementSizeMIB = MIRBuilder.buildConstant( 1117 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1118 GepOffsetReg = 1119 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1120 } else 1121 GepOffsetReg = IdxReg; 1122 1123 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1124 } 1125 } 1126 1127 if (Offset != 0) { 1128 auto OffsetMIB = 1129 MIRBuilder.buildConstant(OffsetTy, Offset); 1130 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1131 return true; 1132 } 1133 1134 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1135 return true; 1136 } 1137 1138 bool IRTranslator::translateMemFunc(const CallInst &CI, 1139 MachineIRBuilder &MIRBuilder, 1140 Intrinsic::ID ID) { 1141 1142 // If the source is undef, then just emit a nop. 1143 if (isa<UndefValue>(CI.getArgOperand(1))) 1144 return true; 1145 1146 ArrayRef<Register> Res; 1147 auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true); 1148 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) 1149 ICall.addUse(getOrCreateVReg(**AI)); 1150 1151 Align DstAlign; 1152 Align SrcAlign; 1153 unsigned IsVol = 1154 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) 1155 ->getZExtValue(); 1156 1157 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1158 DstAlign = MCI->getDestAlign().valueOrOne(); 1159 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1160 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1161 DstAlign = MMI->getDestAlign().valueOrOne(); 1162 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1163 } else { 1164 auto *MSI = cast<MemSetInst>(&CI); 1165 DstAlign = MSI->getDestAlign().valueOrOne(); 1166 } 1167 1168 // We need to propagate the tail call flag from the IR inst as an argument. 1169 // Otherwise, we have to pessimize and assume later that we cannot tail call 1170 // any memory intrinsics. 1171 ICall.addImm(CI.isTailCall() ? 1 : 0); 1172 1173 // Create mem operands to store the alignment and volatile info. 1174 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1175 ICall.addMemOperand(MF->getMachineMemOperand( 1176 MachinePointerInfo(CI.getArgOperand(0)), 1177 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1178 if (ID != Intrinsic::memset) 1179 ICall.addMemOperand(MF->getMachineMemOperand( 1180 MachinePointerInfo(CI.getArgOperand(1)), 1181 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1182 1183 return true; 1184 } 1185 1186 void IRTranslator::getStackGuard(Register DstReg, 1187 MachineIRBuilder &MIRBuilder) { 1188 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1189 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1190 auto MIB = 1191 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1192 1193 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1194 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1195 if (!Global) 1196 return; 1197 1198 MachinePointerInfo MPInfo(Global); 1199 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1200 MachineMemOperand::MODereferenceable; 1201 MachineMemOperand *MemRef = 1202 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 1203 DL->getPointerABIAlignment(0)); 1204 MIB.setMemRefs({MemRef}); 1205 } 1206 1207 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1208 MachineIRBuilder &MIRBuilder) { 1209 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1210 MIRBuilder.buildInstr( 1211 Op, {ResRegs[0], ResRegs[1]}, 1212 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1213 1214 return true; 1215 } 1216 1217 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1218 switch (ID) { 1219 default: 1220 break; 1221 case Intrinsic::bswap: 1222 return TargetOpcode::G_BSWAP; 1223 case Intrinsic::bitreverse: 1224 return TargetOpcode::G_BITREVERSE; 1225 case Intrinsic::fshl: 1226 return TargetOpcode::G_FSHL; 1227 case Intrinsic::fshr: 1228 return TargetOpcode::G_FSHR; 1229 case Intrinsic::ceil: 1230 return TargetOpcode::G_FCEIL; 1231 case Intrinsic::cos: 1232 return TargetOpcode::G_FCOS; 1233 case Intrinsic::ctpop: 1234 return TargetOpcode::G_CTPOP; 1235 case Intrinsic::exp: 1236 return TargetOpcode::G_FEXP; 1237 case Intrinsic::exp2: 1238 return TargetOpcode::G_FEXP2; 1239 case Intrinsic::fabs: 1240 return TargetOpcode::G_FABS; 1241 case Intrinsic::copysign: 1242 return TargetOpcode::G_FCOPYSIGN; 1243 case Intrinsic::minnum: 1244 return TargetOpcode::G_FMINNUM; 1245 case Intrinsic::maxnum: 1246 return TargetOpcode::G_FMAXNUM; 1247 case Intrinsic::minimum: 1248 return TargetOpcode::G_FMINIMUM; 1249 case Intrinsic::maximum: 1250 return TargetOpcode::G_FMAXIMUM; 1251 case Intrinsic::canonicalize: 1252 return TargetOpcode::G_FCANONICALIZE; 1253 case Intrinsic::floor: 1254 return TargetOpcode::G_FFLOOR; 1255 case Intrinsic::fma: 1256 return TargetOpcode::G_FMA; 1257 case Intrinsic::log: 1258 return TargetOpcode::G_FLOG; 1259 case Intrinsic::log2: 1260 return TargetOpcode::G_FLOG2; 1261 case Intrinsic::log10: 1262 return TargetOpcode::G_FLOG10; 1263 case Intrinsic::nearbyint: 1264 return TargetOpcode::G_FNEARBYINT; 1265 case Intrinsic::pow: 1266 return TargetOpcode::G_FPOW; 1267 case Intrinsic::rint: 1268 return TargetOpcode::G_FRINT; 1269 case Intrinsic::round: 1270 return TargetOpcode::G_INTRINSIC_ROUND; 1271 case Intrinsic::sin: 1272 return TargetOpcode::G_FSIN; 1273 case Intrinsic::sqrt: 1274 return TargetOpcode::G_FSQRT; 1275 case Intrinsic::trunc: 1276 return TargetOpcode::G_INTRINSIC_TRUNC; 1277 case Intrinsic::readcyclecounter: 1278 return TargetOpcode::G_READCYCLECOUNTER; 1279 case Intrinsic::ptrmask: 1280 return TargetOpcode::G_PTRMASK; 1281 } 1282 return Intrinsic::not_intrinsic; 1283 } 1284 1285 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1286 Intrinsic::ID ID, 1287 MachineIRBuilder &MIRBuilder) { 1288 1289 unsigned Op = getSimpleIntrinsicOpcode(ID); 1290 1291 // Is this a simple intrinsic? 1292 if (Op == Intrinsic::not_intrinsic) 1293 return false; 1294 1295 // Yes. Let's translate it. 1296 SmallVector<llvm::SrcOp, 4> VRegs; 1297 for (auto &Arg : CI.arg_operands()) 1298 VRegs.push_back(getOrCreateVReg(*Arg)); 1299 1300 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1301 MachineInstr::copyFlagsFromInstruction(CI)); 1302 return true; 1303 } 1304 1305 // TODO: Include ConstainedOps.def when all strict instructions are defined. 1306 static unsigned getConstrainedOpcode(Intrinsic::ID ID) { 1307 switch (ID) { 1308 case Intrinsic::experimental_constrained_fadd: 1309 return TargetOpcode::G_STRICT_FADD; 1310 case Intrinsic::experimental_constrained_fsub: 1311 return TargetOpcode::G_STRICT_FSUB; 1312 case Intrinsic::experimental_constrained_fmul: 1313 return TargetOpcode::G_STRICT_FMUL; 1314 case Intrinsic::experimental_constrained_fdiv: 1315 return TargetOpcode::G_STRICT_FDIV; 1316 case Intrinsic::experimental_constrained_frem: 1317 return TargetOpcode::G_STRICT_FREM; 1318 case Intrinsic::experimental_constrained_fma: 1319 return TargetOpcode::G_STRICT_FMA; 1320 case Intrinsic::experimental_constrained_sqrt: 1321 return TargetOpcode::G_STRICT_FSQRT; 1322 default: 1323 return 0; 1324 } 1325 } 1326 1327 bool IRTranslator::translateConstrainedFPIntrinsic( 1328 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) { 1329 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 1330 1331 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID()); 1332 if (!Opcode) 1333 return false; 1334 1335 unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI); 1336 if (EB == fp::ExceptionBehavior::ebIgnore) 1337 Flags |= MachineInstr::NoFPExcept; 1338 1339 SmallVector<llvm::SrcOp, 4> VRegs; 1340 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0))); 1341 if (!FPI.isUnaryOp()) 1342 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1))); 1343 if (FPI.isTernaryOp()) 1344 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2))); 1345 1346 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags); 1347 return true; 1348 } 1349 1350 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1351 MachineIRBuilder &MIRBuilder) { 1352 1353 // If this is a simple intrinsic (that is, we just need to add a def of 1354 // a vreg, and uses for each arg operand, then translate it. 1355 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1356 return true; 1357 1358 switch (ID) { 1359 default: 1360 break; 1361 case Intrinsic::lifetime_start: 1362 case Intrinsic::lifetime_end: { 1363 // No stack colouring in O0, discard region information. 1364 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1365 return true; 1366 1367 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1368 : TargetOpcode::LIFETIME_END; 1369 1370 // Get the underlying objects for the location passed on the lifetime 1371 // marker. 1372 SmallVector<const Value *, 4> Allocas; 1373 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 1374 1375 // Iterate over each underlying object, creating lifetime markers for each 1376 // static alloca. Quit if we find a non-static alloca. 1377 for (const Value *V : Allocas) { 1378 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1379 if (!AI) 1380 continue; 1381 1382 if (!AI->isStaticAlloca()) 1383 return true; 1384 1385 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1386 } 1387 return true; 1388 } 1389 case Intrinsic::dbg_declare: { 1390 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1391 assert(DI.getVariable() && "Missing variable"); 1392 1393 const Value *Address = DI.getAddress(); 1394 if (!Address || isa<UndefValue>(Address)) { 1395 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1396 return true; 1397 } 1398 1399 assert(DI.getVariable()->isValidLocationForIntrinsic( 1400 MIRBuilder.getDebugLoc()) && 1401 "Expected inlined-at fields to agree"); 1402 auto AI = dyn_cast<AllocaInst>(Address); 1403 if (AI && AI->isStaticAlloca()) { 1404 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1405 // instructions (in fact, they get ignored if they *do* exist). 1406 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1407 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1408 } else { 1409 // A dbg.declare describes the address of a source variable, so lower it 1410 // into an indirect DBG_VALUE. 1411 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1412 DI.getVariable(), DI.getExpression()); 1413 } 1414 return true; 1415 } 1416 case Intrinsic::dbg_label: { 1417 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1418 assert(DI.getLabel() && "Missing label"); 1419 1420 assert(DI.getLabel()->isValidLocationForIntrinsic( 1421 MIRBuilder.getDebugLoc()) && 1422 "Expected inlined-at fields to agree"); 1423 1424 MIRBuilder.buildDbgLabel(DI.getLabel()); 1425 return true; 1426 } 1427 case Intrinsic::vaend: 1428 // No target I know of cares about va_end. Certainly no in-tree target 1429 // does. Simplest intrinsic ever! 1430 return true; 1431 case Intrinsic::vastart: { 1432 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1433 Value *Ptr = CI.getArgOperand(0); 1434 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1435 1436 // FIXME: Get alignment 1437 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 1438 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 1439 MachineMemOperand::MOStore, 1440 ListSize, Align(1))); 1441 return true; 1442 } 1443 case Intrinsic::dbg_value: { 1444 // This form of DBG_VALUE is target-independent. 1445 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1446 const Value *V = DI.getValue(); 1447 assert(DI.getVariable()->isValidLocationForIntrinsic( 1448 MIRBuilder.getDebugLoc()) && 1449 "Expected inlined-at fields to agree"); 1450 if (!V) { 1451 // Currently the optimizer can produce this; insert an undef to 1452 // help debugging. Probably the optimizer should not do this. 1453 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1454 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1455 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1456 } else { 1457 for (Register Reg : getOrCreateVRegs(*V)) { 1458 // FIXME: This does not handle register-indirect values at offset 0. The 1459 // direct/indirect thing shouldn't really be handled by something as 1460 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1461 // pretty baked in right now. 1462 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1463 } 1464 } 1465 return true; 1466 } 1467 case Intrinsic::uadd_with_overflow: 1468 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1469 case Intrinsic::sadd_with_overflow: 1470 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1471 case Intrinsic::usub_with_overflow: 1472 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1473 case Intrinsic::ssub_with_overflow: 1474 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1475 case Intrinsic::umul_with_overflow: 1476 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1477 case Intrinsic::smul_with_overflow: 1478 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1479 case Intrinsic::uadd_sat: 1480 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 1481 case Intrinsic::sadd_sat: 1482 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 1483 case Intrinsic::usub_sat: 1484 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 1485 case Intrinsic::ssub_sat: 1486 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 1487 case Intrinsic::fmuladd: { 1488 const TargetMachine &TM = MF->getTarget(); 1489 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1490 Register Dst = getOrCreateVReg(CI); 1491 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 1492 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 1493 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 1494 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 1495 TLI.isFMAFasterThanFMulAndFAdd(*MF, 1496 TLI.getValueType(*DL, CI.getType()))) { 1497 // TODO: Revisit this to see if we should move this part of the 1498 // lowering to the combiner. 1499 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 1500 MachineInstr::copyFlagsFromInstruction(CI)); 1501 } else { 1502 LLT Ty = getLLTForType(*CI.getType(), *DL); 1503 auto FMul = MIRBuilder.buildFMul( 1504 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 1505 MIRBuilder.buildFAdd(Dst, FMul, Op2, 1506 MachineInstr::copyFlagsFromInstruction(CI)); 1507 } 1508 return true; 1509 } 1510 case Intrinsic::memcpy: 1511 case Intrinsic::memmove: 1512 case Intrinsic::memset: 1513 return translateMemFunc(CI, MIRBuilder, ID); 1514 case Intrinsic::eh_typeid_for: { 1515 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1516 Register Reg = getOrCreateVReg(CI); 1517 unsigned TypeID = MF->getTypeIDFor(GV); 1518 MIRBuilder.buildConstant(Reg, TypeID); 1519 return true; 1520 } 1521 case Intrinsic::objectsize: 1522 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1523 1524 case Intrinsic::is_constant: 1525 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1526 1527 case Intrinsic::stackguard: 1528 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1529 return true; 1530 case Intrinsic::stackprotector: { 1531 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1532 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1533 getStackGuard(GuardVal, MIRBuilder); 1534 1535 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1536 int FI = getOrCreateFrameIndex(*Slot); 1537 MF->getFrameInfo().setStackProtectorIndex(FI); 1538 1539 MIRBuilder.buildStore( 1540 GuardVal, getOrCreateVReg(*Slot), 1541 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1542 MachineMemOperand::MOStore | 1543 MachineMemOperand::MOVolatile, 1544 PtrTy.getSizeInBits() / 8, Align(8))); 1545 return true; 1546 } 1547 case Intrinsic::stacksave: { 1548 // Save the stack pointer to the location provided by the intrinsic. 1549 Register Reg = getOrCreateVReg(CI); 1550 Register StackPtr = MF->getSubtarget() 1551 .getTargetLowering() 1552 ->getStackPointerRegisterToSaveRestore(); 1553 1554 // If the target doesn't specify a stack pointer, then fall back. 1555 if (!StackPtr) 1556 return false; 1557 1558 MIRBuilder.buildCopy(Reg, StackPtr); 1559 return true; 1560 } 1561 case Intrinsic::stackrestore: { 1562 // Restore the stack pointer from the location provided by the intrinsic. 1563 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1564 Register StackPtr = MF->getSubtarget() 1565 .getTargetLowering() 1566 ->getStackPointerRegisterToSaveRestore(); 1567 1568 // If the target doesn't specify a stack pointer, then fall back. 1569 if (!StackPtr) 1570 return false; 1571 1572 MIRBuilder.buildCopy(StackPtr, Reg); 1573 return true; 1574 } 1575 case Intrinsic::cttz: 1576 case Intrinsic::ctlz: { 1577 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1578 bool isTrailing = ID == Intrinsic::cttz; 1579 unsigned Opcode = isTrailing 1580 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1581 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1582 : Cst->isZero() ? TargetOpcode::G_CTLZ 1583 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1584 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 1585 {getOrCreateVReg(*CI.getArgOperand(0))}); 1586 return true; 1587 } 1588 case Intrinsic::invariant_start: { 1589 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1590 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 1591 MIRBuilder.buildUndef(Undef); 1592 return true; 1593 } 1594 case Intrinsic::invariant_end: 1595 return true; 1596 case Intrinsic::assume: 1597 case Intrinsic::var_annotation: 1598 case Intrinsic::sideeffect: 1599 // Discard annotate attributes, assumptions, and artificial side-effects. 1600 return true; 1601 case Intrinsic::read_volatile_register: 1602 case Intrinsic::read_register: { 1603 Value *Arg = CI.getArgOperand(0); 1604 MIRBuilder 1605 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 1606 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 1607 return true; 1608 } 1609 case Intrinsic::write_register: { 1610 Value *Arg = CI.getArgOperand(0); 1611 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 1612 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 1613 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 1614 return true; 1615 } 1616 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 1617 case Intrinsic::INTRINSIC: 1618 #include "llvm/IR/ConstrainedOps.def" 1619 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI), 1620 MIRBuilder); 1621 1622 } 1623 return false; 1624 } 1625 1626 bool IRTranslator::translateInlineAsm(const CallBase &CB, 1627 MachineIRBuilder &MIRBuilder) { 1628 1629 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 1630 1631 if (!ALI) { 1632 LLVM_DEBUG( 1633 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 1634 return false; 1635 } 1636 1637 return ALI->lowerInlineAsm( 1638 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 1639 } 1640 1641 bool IRTranslator::translateCallBase(const CallBase &CB, 1642 MachineIRBuilder &MIRBuilder) { 1643 ArrayRef<Register> Res = getOrCreateVRegs(CB); 1644 1645 SmallVector<ArrayRef<Register>, 8> Args; 1646 Register SwiftInVReg = 0; 1647 Register SwiftErrorVReg = 0; 1648 for (auto &Arg : CB.args()) { 1649 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1650 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 1651 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1652 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 1653 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 1654 &CB, &MIRBuilder.getMBB(), Arg)); 1655 Args.emplace_back(makeArrayRef(SwiftInVReg)); 1656 SwiftErrorVReg = 1657 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 1658 continue; 1659 } 1660 Args.push_back(getOrCreateVRegs(*Arg)); 1661 } 1662 1663 // We don't set HasCalls on MFI here yet because call lowering may decide to 1664 // optimize into tail calls. Instead, we defer that to selection where a final 1665 // scan is done to check if any instructions are calls. 1666 bool Success = 1667 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg, 1668 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 1669 1670 // Check if we just inserted a tail call. 1671 if (Success) { 1672 assert(!HasTailCall && "Can't tail call return twice from block?"); 1673 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1674 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 1675 } 1676 1677 return Success; 1678 } 1679 1680 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1681 const CallInst &CI = cast<CallInst>(U); 1682 auto TII = MF->getTarget().getIntrinsicInfo(); 1683 const Function *F = CI.getCalledFunction(); 1684 1685 // FIXME: support Windows dllimport function calls. 1686 if (F && (F->hasDLLImportStorageClass() || 1687 (MF->getTarget().getTargetTriple().isOSWindows() && 1688 F->hasExternalWeakLinkage()))) 1689 return false; 1690 1691 // FIXME: support control flow guard targets. 1692 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1693 return false; 1694 1695 if (CI.isInlineAsm()) 1696 return translateInlineAsm(CI, MIRBuilder); 1697 1698 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1699 if (F && F->isIntrinsic()) { 1700 ID = F->getIntrinsicID(); 1701 if (TII && ID == Intrinsic::not_intrinsic) 1702 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1703 } 1704 1705 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 1706 return translateCallBase(CI, MIRBuilder); 1707 1708 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1709 1710 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1711 return true; 1712 1713 ArrayRef<Register> ResultRegs; 1714 if (!CI.getType()->isVoidTy()) 1715 ResultRegs = getOrCreateVRegs(CI); 1716 1717 // Ignore the callsite attributes. Backend code is most likely not expecting 1718 // an intrinsic to sometimes have side effects and sometimes not. 1719 MachineInstrBuilder MIB = 1720 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 1721 if (isa<FPMathOperator>(CI)) 1722 MIB->copyIRFlags(CI); 1723 1724 for (auto &Arg : enumerate(CI.arg_operands())) { 1725 // Some intrinsics take metadata parameters. Reject them. 1726 if (isa<MetadataAsValue>(Arg.value())) 1727 return false; 1728 1729 // If this is required to be an immediate, don't materialize it in a 1730 // register. 1731 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 1732 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 1733 // imm arguments are more convenient than cimm (and realistically 1734 // probably sufficient), so use them. 1735 assert(CI->getBitWidth() <= 64 && 1736 "large intrinsic immediates not handled"); 1737 MIB.addImm(CI->getSExtValue()); 1738 } else { 1739 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 1740 } 1741 } else { 1742 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 1743 if (VRegs.size() > 1) 1744 return false; 1745 MIB.addUse(VRegs[0]); 1746 } 1747 } 1748 1749 // Add a MachineMemOperand if it is a target mem intrinsic. 1750 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1751 TargetLowering::IntrinsicInfo Info; 1752 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1753 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1754 Align Alignment = Info.align.getValueOr( 1755 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 1756 1757 uint64_t Size = Info.memVT.getStoreSize(); 1758 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1759 Info.flags, Size, Alignment)); 1760 } 1761 1762 return true; 1763 } 1764 1765 bool IRTranslator::translateInvoke(const User &U, 1766 MachineIRBuilder &MIRBuilder) { 1767 const InvokeInst &I = cast<InvokeInst>(U); 1768 MCContext &Context = MF->getContext(); 1769 1770 const BasicBlock *ReturnBB = I.getSuccessor(0); 1771 const BasicBlock *EHPadBB = I.getSuccessor(1); 1772 1773 const Function *Fn = I.getCalledFunction(); 1774 if (I.isInlineAsm()) 1775 return false; 1776 1777 // FIXME: support invoking patchpoint and statepoint intrinsics. 1778 if (Fn && Fn->isIntrinsic()) 1779 return false; 1780 1781 // FIXME: support whatever these are. 1782 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1783 return false; 1784 1785 // FIXME: support control flow guard targets. 1786 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1787 return false; 1788 1789 // FIXME: support Windows exception handling. 1790 if (!isa<LandingPadInst>(EHPadBB->front())) 1791 return false; 1792 1793 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1794 // the region covered by the try. 1795 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1796 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1797 1798 if (!translateCallBase(I, MIRBuilder)) 1799 return false; 1800 1801 MCSymbol *EndSymbol = Context.createTempSymbol(); 1802 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1803 1804 // FIXME: track probabilities. 1805 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1806 &ReturnMBB = getMBB(*ReturnBB); 1807 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1808 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1809 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1810 MIRBuilder.buildBr(ReturnMBB); 1811 1812 return true; 1813 } 1814 1815 bool IRTranslator::translateCallBr(const User &U, 1816 MachineIRBuilder &MIRBuilder) { 1817 // FIXME: Implement this. 1818 return false; 1819 } 1820 1821 bool IRTranslator::translateLandingPad(const User &U, 1822 MachineIRBuilder &MIRBuilder) { 1823 const LandingPadInst &LP = cast<LandingPadInst>(U); 1824 1825 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1826 1827 MBB.setIsEHPad(); 1828 1829 // If there aren't registers to copy the values into (e.g., during SjLj 1830 // exceptions), then don't bother. 1831 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1832 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1833 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1834 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1835 return true; 1836 1837 // If landingpad's return type is token type, we don't create DAG nodes 1838 // for its exception pointer and selector value. The extraction of exception 1839 // pointer or selector value from token type landingpads is not currently 1840 // supported. 1841 if (LP.getType()->isTokenTy()) 1842 return true; 1843 1844 // Add a label to mark the beginning of the landing pad. Deletion of the 1845 // landing pad can thus be detected via the MachineModuleInfo. 1846 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1847 .addSym(MF->addLandingPad(&MBB)); 1848 1849 LLT Ty = getLLTForType(*LP.getType(), *DL); 1850 Register Undef = MRI->createGenericVirtualRegister(Ty); 1851 MIRBuilder.buildUndef(Undef); 1852 1853 SmallVector<LLT, 2> Tys; 1854 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1855 Tys.push_back(getLLTForType(*Ty, *DL)); 1856 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1857 1858 // Mark exception register as live in. 1859 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1860 if (!ExceptionReg) 1861 return false; 1862 1863 MBB.addLiveIn(ExceptionReg); 1864 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 1865 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1866 1867 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1868 if (!SelectorReg) 1869 return false; 1870 1871 MBB.addLiveIn(SelectorReg); 1872 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1873 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1874 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1875 1876 return true; 1877 } 1878 1879 bool IRTranslator::translateAlloca(const User &U, 1880 MachineIRBuilder &MIRBuilder) { 1881 auto &AI = cast<AllocaInst>(U); 1882 1883 if (AI.isSwiftError()) 1884 return true; 1885 1886 if (AI.isStaticAlloca()) { 1887 Register Res = getOrCreateVReg(AI); 1888 int FI = getOrCreateFrameIndex(AI); 1889 MIRBuilder.buildFrameIndex(Res, FI); 1890 return true; 1891 } 1892 1893 // FIXME: support stack probing for Windows. 1894 if (MF->getTarget().getTargetTriple().isOSWindows()) 1895 return false; 1896 1897 // Now we're in the harder dynamic case. 1898 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 1899 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1900 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1901 if (MRI->getType(NumElts) != IntPtrTy) { 1902 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1903 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1904 NumElts = ExtElts; 1905 } 1906 1907 Type *Ty = AI.getAllocatedType(); 1908 1909 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1910 Register TySize = 1911 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 1912 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1913 1914 // Round the size of the allocation up to the stack alignment size 1915 // by add SA-1 to the size. This doesn't overflow because we're computing 1916 // an address inside an alloca. 1917 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 1918 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 1919 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 1920 MachineInstr::NoUWrap); 1921 auto AlignCst = 1922 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 1923 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 1924 1925 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 1926 if (Alignment <= StackAlign) 1927 Alignment = Align(1); 1928 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 1929 1930 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 1931 assert(MF->getFrameInfo().hasVarSizedObjects()); 1932 return true; 1933 } 1934 1935 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1936 // FIXME: We may need more info about the type. Because of how LLT works, 1937 // we're completely discarding the i64/double distinction here (amongst 1938 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1939 // anyway but that's not guaranteed. 1940 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 1941 {getOrCreateVReg(*U.getOperand(0)), 1942 DL->getABITypeAlign(U.getType()).value()}); 1943 return true; 1944 } 1945 1946 bool IRTranslator::translateInsertElement(const User &U, 1947 MachineIRBuilder &MIRBuilder) { 1948 // If it is a <1 x Ty> vector, use the scalar as it is 1949 // not a legal vector type in LLT. 1950 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1) 1951 return translateCopy(U, *U.getOperand(1), MIRBuilder); 1952 1953 Register Res = getOrCreateVReg(U); 1954 Register Val = getOrCreateVReg(*U.getOperand(0)); 1955 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1956 Register Idx = getOrCreateVReg(*U.getOperand(2)); 1957 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1958 return true; 1959 } 1960 1961 bool IRTranslator::translateExtractElement(const User &U, 1962 MachineIRBuilder &MIRBuilder) { 1963 // If it is a <1 x Ty> vector, use the scalar as it is 1964 // not a legal vector type in LLT. 1965 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1) 1966 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1967 1968 Register Res = getOrCreateVReg(U); 1969 Register Val = getOrCreateVReg(*U.getOperand(0)); 1970 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1971 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1972 Register Idx; 1973 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1974 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1975 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1976 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1977 Idx = getOrCreateVReg(*NewIdxCI); 1978 } 1979 } 1980 if (!Idx) 1981 Idx = getOrCreateVReg(*U.getOperand(1)); 1982 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1983 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1984 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0); 1985 } 1986 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1987 return true; 1988 } 1989 1990 bool IRTranslator::translateShuffleVector(const User &U, 1991 MachineIRBuilder &MIRBuilder) { 1992 ArrayRef<int> Mask; 1993 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 1994 Mask = SVI->getShuffleMask(); 1995 else 1996 Mask = cast<ConstantExpr>(U).getShuffleMask(); 1997 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 1998 MIRBuilder 1999 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 2000 {getOrCreateVReg(*U.getOperand(0)), 2001 getOrCreateVReg(*U.getOperand(1))}) 2002 .addShuffleMask(MaskAlloc); 2003 return true; 2004 } 2005 2006 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 2007 const PHINode &PI = cast<PHINode>(U); 2008 2009 SmallVector<MachineInstr *, 4> Insts; 2010 for (auto Reg : getOrCreateVRegs(PI)) { 2011 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 2012 Insts.push_back(MIB.getInstr()); 2013 } 2014 2015 PendingPHIs.emplace_back(&PI, std::move(Insts)); 2016 return true; 2017 } 2018 2019 bool IRTranslator::translateAtomicCmpXchg(const User &U, 2020 MachineIRBuilder &MIRBuilder) { 2021 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 2022 2023 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2024 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2025 2026 Type *ResType = I.getType(); 2027 Type *ValType = ResType->Type::getStructElementType(0); 2028 2029 auto Res = getOrCreateVRegs(I); 2030 Register OldValRes = Res[0]; 2031 Register SuccessRes = Res[1]; 2032 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2033 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 2034 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 2035 2036 AAMDNodes AAMetadata; 2037 I.getAAMetadata(AAMetadata); 2038 2039 MIRBuilder.buildAtomicCmpXchgWithSuccess( 2040 OldValRes, SuccessRes, Addr, Cmp, NewVal, 2041 *MF->getMachineMemOperand( 2042 MachinePointerInfo(I.getPointerOperand()), Flags, 2043 DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr, 2044 I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering())); 2045 return true; 2046 } 2047 2048 bool IRTranslator::translateAtomicRMW(const User &U, 2049 MachineIRBuilder &MIRBuilder) { 2050 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 2051 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2052 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2053 2054 Type *ResType = I.getType(); 2055 2056 Register Res = getOrCreateVReg(I); 2057 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2058 Register Val = getOrCreateVReg(*I.getValOperand()); 2059 2060 unsigned Opcode = 0; 2061 switch (I.getOperation()) { 2062 default: 2063 return false; 2064 case AtomicRMWInst::Xchg: 2065 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2066 break; 2067 case AtomicRMWInst::Add: 2068 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2069 break; 2070 case AtomicRMWInst::Sub: 2071 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2072 break; 2073 case AtomicRMWInst::And: 2074 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2075 break; 2076 case AtomicRMWInst::Nand: 2077 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2078 break; 2079 case AtomicRMWInst::Or: 2080 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2081 break; 2082 case AtomicRMWInst::Xor: 2083 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2084 break; 2085 case AtomicRMWInst::Max: 2086 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2087 break; 2088 case AtomicRMWInst::Min: 2089 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2090 break; 2091 case AtomicRMWInst::UMax: 2092 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2093 break; 2094 case AtomicRMWInst::UMin: 2095 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2096 break; 2097 case AtomicRMWInst::FAdd: 2098 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2099 break; 2100 case AtomicRMWInst::FSub: 2101 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2102 break; 2103 } 2104 2105 AAMDNodes AAMetadata; 2106 I.getAAMetadata(AAMetadata); 2107 2108 MIRBuilder.buildAtomicRMW( 2109 Opcode, Res, Addr, Val, 2110 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2111 Flags, DL->getTypeStoreSize(ResType), 2112 getMemOpAlign(I), AAMetadata, nullptr, 2113 I.getSyncScopeID(), I.getOrdering())); 2114 return true; 2115 } 2116 2117 bool IRTranslator::translateFence(const User &U, 2118 MachineIRBuilder &MIRBuilder) { 2119 const FenceInst &Fence = cast<FenceInst>(U); 2120 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2121 Fence.getSyncScopeID()); 2122 return true; 2123 } 2124 2125 bool IRTranslator::translateFreeze(const User &U, 2126 MachineIRBuilder &MIRBuilder) { 2127 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 2128 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 2129 2130 assert(DstRegs.size() == SrcRegs.size() && 2131 "Freeze with different source and destination type?"); 2132 2133 for (unsigned I = 0; I < DstRegs.size(); ++I) { 2134 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 2135 } 2136 2137 return true; 2138 } 2139 2140 void IRTranslator::finishPendingPhis() { 2141 #ifndef NDEBUG 2142 DILocationVerifier Verifier; 2143 GISelObserverWrapper WrapperObserver(&Verifier); 2144 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2145 #endif // ifndef NDEBUG 2146 for (auto &Phi : PendingPHIs) { 2147 const PHINode *PI = Phi.first; 2148 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2149 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2150 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2151 #ifndef NDEBUG 2152 Verifier.setCurrentInst(PI); 2153 #endif // ifndef NDEBUG 2154 2155 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2156 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2157 auto IRPred = PI->getIncomingBlock(i); 2158 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2159 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2160 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2161 continue; 2162 SeenPreds.insert(Pred); 2163 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2164 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2165 MIB.addUse(ValRegs[j]); 2166 MIB.addMBB(Pred); 2167 } 2168 } 2169 } 2170 } 2171 } 2172 2173 bool IRTranslator::valueIsSplit(const Value &V, 2174 SmallVectorImpl<uint64_t> *Offsets) { 2175 SmallVector<LLT, 4> SplitTys; 2176 if (Offsets && !Offsets->empty()) 2177 Offsets->clear(); 2178 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2179 return SplitTys.size() > 1; 2180 } 2181 2182 bool IRTranslator::translate(const Instruction &Inst) { 2183 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2184 // We only emit constants into the entry block from here. To prevent jumpy 2185 // debug behaviour set the line to 0. 2186 if (const DebugLoc &DL = Inst.getDebugLoc()) 2187 EntryBuilder->setDebugLoc( 2188 DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 2189 else 2190 EntryBuilder->setDebugLoc(DebugLoc()); 2191 2192 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2193 if (TLI.fallBackToDAGISel(Inst)) 2194 return false; 2195 2196 switch (Inst.getOpcode()) { 2197 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2198 case Instruction::OPCODE: \ 2199 return translate##OPCODE(Inst, *CurBuilder.get()); 2200 #include "llvm/IR/Instruction.def" 2201 default: 2202 return false; 2203 } 2204 } 2205 2206 bool IRTranslator::translate(const Constant &C, Register Reg) { 2207 if (auto CI = dyn_cast<ConstantInt>(&C)) 2208 EntryBuilder->buildConstant(Reg, *CI); 2209 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2210 EntryBuilder->buildFConstant(Reg, *CF); 2211 else if (isa<UndefValue>(C)) 2212 EntryBuilder->buildUndef(Reg); 2213 else if (isa<ConstantPointerNull>(C)) 2214 EntryBuilder->buildConstant(Reg, 0); 2215 else if (auto GV = dyn_cast<GlobalValue>(&C)) 2216 EntryBuilder->buildGlobalValue(Reg, GV); 2217 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2218 if (!CAZ->getType()->isVectorTy()) 2219 return false; 2220 // Return the scalar if it is a <1 x Ty> vector. 2221 if (CAZ->getNumElements() == 1) 2222 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get()); 2223 SmallVector<Register, 4> Ops; 2224 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 2225 Constant &Elt = *CAZ->getElementValue(i); 2226 Ops.push_back(getOrCreateVReg(Elt)); 2227 } 2228 EntryBuilder->buildBuildVector(Reg, Ops); 2229 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2230 // Return the scalar if it is a <1 x Ty> vector. 2231 if (CV->getNumElements() == 1) 2232 return translateCopy(C, *CV->getElementAsConstant(0), 2233 *EntryBuilder.get()); 2234 SmallVector<Register, 4> Ops; 2235 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 2236 Constant &Elt = *CV->getElementAsConstant(i); 2237 Ops.push_back(getOrCreateVReg(Elt)); 2238 } 2239 EntryBuilder->buildBuildVector(Reg, Ops); 2240 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 2241 switch(CE->getOpcode()) { 2242 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2243 case Instruction::OPCODE: \ 2244 return translate##OPCODE(*CE, *EntryBuilder.get()); 2245 #include "llvm/IR/Instruction.def" 2246 default: 2247 return false; 2248 } 2249 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 2250 if (CV->getNumOperands() == 1) 2251 return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get()); 2252 SmallVector<Register, 4> Ops; 2253 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 2254 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 2255 } 2256 EntryBuilder->buildBuildVector(Reg, Ops); 2257 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 2258 EntryBuilder->buildBlockAddress(Reg, BA); 2259 } else 2260 return false; 2261 2262 return true; 2263 } 2264 2265 void IRTranslator::finalizeBasicBlock() { 2266 for (auto &JTCase : SL->JTCases) { 2267 // Emit header first, if it wasn't already emitted. 2268 if (!JTCase.first.Emitted) 2269 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 2270 2271 emitJumpTable(JTCase.second, JTCase.second.MBB); 2272 } 2273 SL->JTCases.clear(); 2274 } 2275 2276 void IRTranslator::finalizeFunction() { 2277 // Release the memory used by the different maps we 2278 // needed during the translation. 2279 PendingPHIs.clear(); 2280 VMap.reset(); 2281 FrameIndices.clear(); 2282 MachinePreds.clear(); 2283 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 2284 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 2285 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 2286 EntryBuilder.reset(); 2287 CurBuilder.reset(); 2288 FuncInfo.clear(); 2289 } 2290 2291 /// Returns true if a BasicBlock \p BB within a variadic function contains a 2292 /// variadic musttail call. 2293 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 2294 if (!IsVarArg) 2295 return false; 2296 2297 // Walk the block backwards, because tail calls usually only appear at the end 2298 // of a block. 2299 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { 2300 const auto *CI = dyn_cast<CallInst>(&I); 2301 return CI && CI->isMustTailCall(); 2302 }); 2303 } 2304 2305 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 2306 MF = &CurMF; 2307 const Function &F = MF->getFunction(); 2308 if (F.empty()) 2309 return false; 2310 GISelCSEAnalysisWrapper &Wrapper = 2311 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 2312 // Set the CSEConfig and run the analysis. 2313 GISelCSEInfo *CSEInfo = nullptr; 2314 TPC = &getAnalysis<TargetPassConfig>(); 2315 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 2316 ? EnableCSEInIRTranslator 2317 : TPC->isGISelCSEEnabled(); 2318 2319 if (EnableCSE) { 2320 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2321 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 2322 EntryBuilder->setCSEInfo(CSEInfo); 2323 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2324 CurBuilder->setCSEInfo(CSEInfo); 2325 } else { 2326 EntryBuilder = std::make_unique<MachineIRBuilder>(); 2327 CurBuilder = std::make_unique<MachineIRBuilder>(); 2328 } 2329 CLI = MF->getSubtarget().getCallLowering(); 2330 CurBuilder->setMF(*MF); 2331 EntryBuilder->setMF(*MF); 2332 MRI = &MF->getRegInfo(); 2333 DL = &F.getParent()->getDataLayout(); 2334 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2335 FuncInfo.MF = MF; 2336 FuncInfo.BPI = nullptr; 2337 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2338 const TargetMachine &TM = MF->getTarget(); 2339 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 2340 SL->init(TLI, TM, *DL); 2341 2342 EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F); 2343 2344 assert(PendingPHIs.empty() && "stale PHIs"); 2345 2346 if (!DL->isLittleEndian()) { 2347 // Currently we don't properly handle big endian code. 2348 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2349 F.getSubprogram(), &F.getEntryBlock()); 2350 R << "unable to translate in big endian mode"; 2351 reportTranslationError(*MF, *TPC, *ORE, R); 2352 } 2353 2354 // Release the per-function state when we return, whether we succeeded or not. 2355 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 2356 2357 // Setup a separate basic-block for the arguments and constants 2358 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 2359 MF->push_back(EntryBB); 2360 EntryBuilder->setMBB(*EntryBB); 2361 2362 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 2363 SwiftError.setFunction(CurMF); 2364 SwiftError.createEntriesInEntryBlock(DbgLoc); 2365 2366 bool IsVarArg = F.isVarArg(); 2367 bool HasMustTailInVarArgFn = false; 2368 2369 // Create all blocks, in IR order, to preserve the layout. 2370 for (const BasicBlock &BB: F) { 2371 auto *&MBB = BBToMBB[&BB]; 2372 2373 MBB = MF->CreateMachineBasicBlock(&BB); 2374 MF->push_back(MBB); 2375 2376 if (BB.hasAddressTaken()) 2377 MBB->setHasAddressTaken(); 2378 2379 if (!HasMustTailInVarArgFn) 2380 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 2381 } 2382 2383 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 2384 2385 // Make our arguments/constants entry block fallthrough to the IR entry block. 2386 EntryBB->addSuccessor(&getMBB(F.front())); 2387 2388 if (CLI->fallBackToDAGISel(F)) { 2389 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2390 F.getSubprogram(), &F.getEntryBlock()); 2391 R << "unable to lower function: " << ore::NV("Prototype", F.getType()); 2392 reportTranslationError(*MF, *TPC, *ORE, R); 2393 return false; 2394 } 2395 2396 // Lower the actual args into this basic block. 2397 SmallVector<ArrayRef<Register>, 8> VRegArgs; 2398 for (const Argument &Arg: F.args()) { 2399 if (DL->getTypeStoreSize(Arg.getType()).isZero()) 2400 continue; // Don't handle zero sized types. 2401 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 2402 VRegArgs.push_back(VRegs); 2403 2404 if (Arg.hasSwiftErrorAttr()) { 2405 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 2406 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 2407 } 2408 } 2409 2410 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 2411 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2412 F.getSubprogram(), &F.getEntryBlock()); 2413 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 2414 reportTranslationError(*MF, *TPC, *ORE, R); 2415 return false; 2416 } 2417 2418 // Need to visit defs before uses when translating instructions. 2419 GISelObserverWrapper WrapperObserver; 2420 if (EnableCSE && CSEInfo) 2421 WrapperObserver.addObserver(CSEInfo); 2422 { 2423 ReversePostOrderTraversal<const Function *> RPOT(&F); 2424 #ifndef NDEBUG 2425 DILocationVerifier Verifier; 2426 WrapperObserver.addObserver(&Verifier); 2427 #endif // ifndef NDEBUG 2428 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2429 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 2430 for (const BasicBlock *BB : RPOT) { 2431 MachineBasicBlock &MBB = getMBB(*BB); 2432 // Set the insertion point of all the following translations to 2433 // the end of this basic block. 2434 CurBuilder->setMBB(MBB); 2435 HasTailCall = false; 2436 for (const Instruction &Inst : *BB) { 2437 // If we translated a tail call in the last step, then we know 2438 // everything after the call is either a return, or something that is 2439 // handled by the call itself. (E.g. a lifetime marker or assume 2440 // intrinsic.) In this case, we should stop translating the block and 2441 // move on. 2442 if (HasTailCall) 2443 break; 2444 #ifndef NDEBUG 2445 Verifier.setCurrentInst(&Inst); 2446 #endif // ifndef NDEBUG 2447 if (translate(Inst)) 2448 continue; 2449 2450 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2451 Inst.getDebugLoc(), BB); 2452 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 2453 2454 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 2455 std::string InstStrStorage; 2456 raw_string_ostream InstStr(InstStrStorage); 2457 InstStr << Inst; 2458 2459 R << ": '" << InstStr.str() << "'"; 2460 } 2461 2462 reportTranslationError(*MF, *TPC, *ORE, R); 2463 return false; 2464 } 2465 2466 finalizeBasicBlock(); 2467 } 2468 #ifndef NDEBUG 2469 WrapperObserver.removeObserver(&Verifier); 2470 #endif 2471 } 2472 2473 finishPendingPhis(); 2474 2475 SwiftError.propagateVRegs(); 2476 2477 // Merge the argument lowering and constants block with its single 2478 // successor, the LLVM-IR entry block. We want the basic block to 2479 // be maximal. 2480 assert(EntryBB->succ_size() == 1 && 2481 "Custom BB used for lowering should have only one successor"); 2482 // Get the successor of the current entry block. 2483 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 2484 assert(NewEntryBB.pred_size() == 1 && 2485 "LLVM-IR entry block has a predecessor!?"); 2486 // Move all the instruction from the current entry block to the 2487 // new entry block. 2488 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 2489 EntryBB->end()); 2490 2491 // Update the live-in information for the new entry block. 2492 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 2493 NewEntryBB.addLiveIn(LiveIn); 2494 NewEntryBB.sortUniqueLiveIns(); 2495 2496 // Get rid of the now empty basic block. 2497 EntryBB->removeSuccessor(&NewEntryBB); 2498 MF->remove(EntryBB); 2499 MF->DeleteMachineBasicBlock(EntryBB); 2500 2501 assert(&MF->front() == &NewEntryBB && 2502 "New entry wasn't next in the list of basic block!"); 2503 2504 // Initialize stack protector information. 2505 StackProtector &SP = getAnalysis<StackProtector>(); 2506 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 2507 2508 return false; 2509 } 2510