1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/BranchProbabilityInfo.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 24 #include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h" 25 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 26 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 27 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 28 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 29 #include "llvm/CodeGen/LowLevelType.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/StackProtector.h" 40 #include "llvm/CodeGen/SwitchLoweringUtils.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetPassConfig.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/CFG.h" 49 #include "llvm/IR/Constant.h" 50 #include "llvm/IR/Constants.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/DiagnosticInfo.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GetElementPtrTypeIterator.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/Metadata.h" 63 #include "llvm/IR/PatternMatch.h" 64 #include "llvm/IR/Type.h" 65 #include "llvm/IR/User.h" 66 #include "llvm/IR/Value.h" 67 #include "llvm/InitializePasses.h" 68 #include "llvm/MC/MCContext.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CodeGen.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/LowLevelTypeImpl.h" 75 #include "llvm/Support/MathExtras.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Target/TargetIntrinsicInfo.h" 78 #include "llvm/Target/TargetMachine.h" 79 #include "llvm/Transforms/Utils/MemoryOpRemark.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstdint> 83 #include <iterator> 84 #include <string> 85 #include <utility> 86 #include <vector> 87 88 #define DEBUG_TYPE "irtranslator" 89 90 using namespace llvm; 91 92 static cl::opt<bool> 93 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 94 cl::desc("Should enable CSE in irtranslator"), 95 cl::Optional, cl::init(false)); 96 char IRTranslator::ID = 0; 97 98 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 99 false, false) 100 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 101 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 102 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 103 INITIALIZE_PASS_DEPENDENCY(StackProtector) 104 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 105 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 106 false, false) 107 108 static void reportTranslationError(MachineFunction &MF, 109 const TargetPassConfig &TPC, 110 OptimizationRemarkEmitter &ORE, 111 OptimizationRemarkMissed &R) { 112 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 113 114 // Print the function name explicitly if we don't have a debug location (which 115 // makes the diagnostic less useful) or if we're going to emit a raw error. 116 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 117 R << (" (in function: " + MF.getName() + ")").str(); 118 119 if (TPC.isGlobalISelAbortEnabled()) 120 report_fatal_error(Twine(R.getMsg())); 121 else 122 ORE.emit(R); 123 } 124 125 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel) 126 : MachineFunctionPass(ID), OptLevel(optlevel) {} 127 128 #ifndef NDEBUG 129 namespace { 130 /// Verify that every instruction created has the same DILocation as the 131 /// instruction being translated. 132 class DILocationVerifier : public GISelChangeObserver { 133 const Instruction *CurrInst = nullptr; 134 135 public: 136 DILocationVerifier() = default; 137 ~DILocationVerifier() = default; 138 139 const Instruction *getCurrentInst() const { return CurrInst; } 140 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 141 142 void erasingInstr(MachineInstr &MI) override {} 143 void changingInstr(MachineInstr &MI) override {} 144 void changedInstr(MachineInstr &MI) override {} 145 146 void createdInstr(MachineInstr &MI) override { 147 assert(getCurrentInst() && "Inserted instruction without a current MI"); 148 149 // Only print the check message if we're actually checking it. 150 #ifndef NDEBUG 151 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 152 << " was copied to " << MI); 153 #endif 154 // We allow insts in the entry block to have no debug loc because 155 // they could have originated from constants, and we don't want a jumpy 156 // debug experience. 157 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 158 (MI.getParent()->isEntryBlock() && !MI.getDebugLoc())) && 159 "Line info was not transferred to all instructions"); 160 } 161 }; 162 } // namespace 163 #endif // ifndef NDEBUG 164 165 166 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 167 AU.addRequired<StackProtector>(); 168 AU.addRequired<TargetPassConfig>(); 169 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 170 if (OptLevel != CodeGenOpt::None) { 171 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 172 AU.addRequired<AAResultsWrapperPass>(); 173 } 174 AU.addRequired<TargetLibraryInfoWrapperPass>(); 175 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 176 getSelectionDAGFallbackAnalysisUsage(AU); 177 MachineFunctionPass::getAnalysisUsage(AU); 178 } 179 180 IRTranslator::ValueToVRegInfo::VRegListT & 181 IRTranslator::allocateVRegs(const Value &Val) { 182 auto VRegsIt = VMap.findVRegs(Val); 183 if (VRegsIt != VMap.vregs_end()) 184 return *VRegsIt->second; 185 auto *Regs = VMap.getVRegs(Val); 186 auto *Offsets = VMap.getOffsets(Val); 187 SmallVector<LLT, 4> SplitTys; 188 computeValueLLTs(*DL, *Val.getType(), SplitTys, 189 Offsets->empty() ? Offsets : nullptr); 190 for (unsigned i = 0; i < SplitTys.size(); ++i) 191 Regs->push_back(0); 192 return *Regs; 193 } 194 195 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 196 auto VRegsIt = VMap.findVRegs(Val); 197 if (VRegsIt != VMap.vregs_end()) 198 return *VRegsIt->second; 199 200 if (Val.getType()->isVoidTy()) 201 return *VMap.getVRegs(Val); 202 203 // Create entry for this type. 204 auto *VRegs = VMap.getVRegs(Val); 205 auto *Offsets = VMap.getOffsets(Val); 206 207 assert(Val.getType()->isSized() && 208 "Don't know how to create an empty vreg"); 209 210 SmallVector<LLT, 4> SplitTys; 211 computeValueLLTs(*DL, *Val.getType(), SplitTys, 212 Offsets->empty() ? Offsets : nullptr); 213 214 if (!isa<Constant>(Val)) { 215 for (auto Ty : SplitTys) 216 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 217 return *VRegs; 218 } 219 220 if (Val.getType()->isAggregateType()) { 221 // UndefValue, ConstantAggregateZero 222 auto &C = cast<Constant>(Val); 223 unsigned Idx = 0; 224 while (auto Elt = C.getAggregateElement(Idx++)) { 225 auto EltRegs = getOrCreateVRegs(*Elt); 226 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 227 } 228 } else { 229 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 230 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 231 bool Success = translate(cast<Constant>(Val), VRegs->front()); 232 if (!Success) { 233 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 234 MF->getFunction().getSubprogram(), 235 &MF->getFunction().getEntryBlock()); 236 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 237 reportTranslationError(*MF, *TPC, *ORE, R); 238 return *VRegs; 239 } 240 } 241 242 return *VRegs; 243 } 244 245 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 246 auto MapEntry = FrameIndices.find(&AI); 247 if (MapEntry != FrameIndices.end()) 248 return MapEntry->second; 249 250 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 251 uint64_t Size = 252 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 253 254 // Always allocate at least one byte. 255 Size = std::max<uint64_t>(Size, 1u); 256 257 int &FI = FrameIndices[&AI]; 258 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI); 259 return FI; 260 } 261 262 Align IRTranslator::getMemOpAlign(const Instruction &I) { 263 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) 264 return SI->getAlign(); 265 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) 266 return LI->getAlign(); 267 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 268 return AI->getAlign(); 269 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) 270 return AI->getAlign(); 271 272 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 273 R << "unable to translate memop: " << ore::NV("Opcode", &I); 274 reportTranslationError(*MF, *TPC, *ORE, R); 275 return Align(1); 276 } 277 278 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 279 MachineBasicBlock *&MBB = BBToMBB[&BB]; 280 assert(MBB && "BasicBlock was not encountered before"); 281 return *MBB; 282 } 283 284 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 285 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 286 MachinePreds[Edge].push_back(NewPred); 287 } 288 289 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 290 MachineIRBuilder &MIRBuilder) { 291 // Get or create a virtual register for each value. 292 // Unless the value is a Constant => loadimm cst? 293 // or inline constant each time? 294 // Creation of a virtual register needs to have a size. 295 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 296 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 297 Register Res = getOrCreateVReg(U); 298 uint16_t Flags = 0; 299 if (isa<Instruction>(U)) { 300 const Instruction &I = cast<Instruction>(U); 301 Flags = MachineInstr::copyFlagsFromInstruction(I); 302 } 303 304 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 305 return true; 306 } 307 308 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U, 309 MachineIRBuilder &MIRBuilder) { 310 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 311 Register Res = getOrCreateVReg(U); 312 uint16_t Flags = 0; 313 if (isa<Instruction>(U)) { 314 const Instruction &I = cast<Instruction>(U); 315 Flags = MachineInstr::copyFlagsFromInstruction(I); 316 } 317 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags); 318 return true; 319 } 320 321 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 322 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder); 323 } 324 325 bool IRTranslator::translateCompare(const User &U, 326 MachineIRBuilder &MIRBuilder) { 327 auto *CI = dyn_cast<CmpInst>(&U); 328 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 329 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 330 Register Res = getOrCreateVReg(U); 331 CmpInst::Predicate Pred = 332 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 333 cast<ConstantExpr>(U).getPredicate()); 334 if (CmpInst::isIntPredicate(Pred)) 335 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 336 else if (Pred == CmpInst::FCMP_FALSE) 337 MIRBuilder.buildCopy( 338 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 339 else if (Pred == CmpInst::FCMP_TRUE) 340 MIRBuilder.buildCopy( 341 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 342 else { 343 uint16_t Flags = 0; 344 if (CI) 345 Flags = MachineInstr::copyFlagsFromInstruction(*CI); 346 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags); 347 } 348 349 return true; 350 } 351 352 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 353 const ReturnInst &RI = cast<ReturnInst>(U); 354 const Value *Ret = RI.getReturnValue(); 355 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 356 Ret = nullptr; 357 358 ArrayRef<Register> VRegs; 359 if (Ret) 360 VRegs = getOrCreateVRegs(*Ret); 361 362 Register SwiftErrorVReg = 0; 363 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 364 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 365 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 366 } 367 368 // The target may mess up with the insertion point, but 369 // this is not important as a return is the last instruction 370 // of the block anyway. 371 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg); 372 } 373 374 void IRTranslator::emitBranchForMergedCondition( 375 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 376 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 377 BranchProbability TProb, BranchProbability FProb, bool InvertCond) { 378 // If the leaf of the tree is a comparison, merge the condition into 379 // the caseblock. 380 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 381 CmpInst::Predicate Condition; 382 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 383 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 384 } else { 385 const FCmpInst *FC = cast<FCmpInst>(Cond); 386 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 387 } 388 389 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0), 390 BOp->getOperand(1), nullptr, TBB, FBB, CurBB, 391 CurBuilder->getDebugLoc(), TProb, FProb); 392 SL->SwitchCases.push_back(CB); 393 return; 394 } 395 396 // Create a CaseBlock record representing this branch. 397 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 398 SwitchCG::CaseBlock CB( 399 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()), 400 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb); 401 SL->SwitchCases.push_back(CB); 402 } 403 404 static bool isValInBlock(const Value *V, const BasicBlock *BB) { 405 if (const Instruction *I = dyn_cast<Instruction>(V)) 406 return I->getParent() == BB; 407 return true; 408 } 409 410 void IRTranslator::findMergedConditions( 411 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 412 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 413 Instruction::BinaryOps Opc, BranchProbability TProb, 414 BranchProbability FProb, bool InvertCond) { 415 using namespace PatternMatch; 416 assert((Opc == Instruction::And || Opc == Instruction::Or) && 417 "Expected Opc to be AND/OR"); 418 // Skip over not part of the tree and remember to invert op and operands at 419 // next level. 420 Value *NotCond; 421 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 422 isValInBlock(NotCond, CurBB->getBasicBlock())) { 423 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 424 !InvertCond); 425 return; 426 } 427 428 const Instruction *BOp = dyn_cast<Instruction>(Cond); 429 const Value *BOpOp0, *BOpOp1; 430 // Compute the effective opcode for Cond, taking into account whether it needs 431 // to be inverted, e.g. 432 // and (not (or A, B)), C 433 // gets lowered as 434 // and (and (not A, not B), C) 435 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 436 if (BOp) { 437 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 438 ? Instruction::And 439 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 440 ? Instruction::Or 441 : (Instruction::BinaryOps)0); 442 if (InvertCond) { 443 if (BOpc == Instruction::And) 444 BOpc = Instruction::Or; 445 else if (BOpc == Instruction::Or) 446 BOpc = Instruction::And; 447 } 448 } 449 450 // If this node is not part of the or/and tree, emit it as a branch. 451 // Note that all nodes in the tree should have same opcode. 452 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 453 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 454 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) || 455 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) { 456 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb, 457 InvertCond); 458 return; 459 } 460 461 // Create TmpBB after CurBB. 462 MachineFunction::iterator BBI(CurBB); 463 MachineBasicBlock *TmpBB = 464 MF->CreateMachineBasicBlock(CurBB->getBasicBlock()); 465 CurBB->getParent()->insert(++BBI, TmpBB); 466 467 if (Opc == Instruction::Or) { 468 // Codegen X | Y as: 469 // BB1: 470 // jmp_if_X TBB 471 // jmp TmpBB 472 // TmpBB: 473 // jmp_if_Y TBB 474 // jmp FBB 475 // 476 477 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 478 // The requirement is that 479 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 480 // = TrueProb for original BB. 481 // Assuming the original probabilities are A and B, one choice is to set 482 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 483 // A/(1+B) and 2B/(1+B). This choice assumes that 484 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 485 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 486 // TmpBB, but the math is more complicated. 487 488 auto NewTrueProb = TProb / 2; 489 auto NewFalseProb = TProb / 2 + FProb; 490 // Emit the LHS condition. 491 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 492 NewFalseProb, InvertCond); 493 494 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 495 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 496 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 497 // Emit the RHS condition into TmpBB. 498 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 499 Probs[1], InvertCond); 500 } else { 501 assert(Opc == Instruction::And && "Unknown merge op!"); 502 // Codegen X & Y as: 503 // BB1: 504 // jmp_if_X TmpBB 505 // jmp FBB 506 // TmpBB: 507 // jmp_if_Y TBB 508 // jmp FBB 509 // 510 // This requires creation of TmpBB after CurBB. 511 512 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 513 // The requirement is that 514 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 515 // = FalseProb for original BB. 516 // Assuming the original probabilities are A and B, one choice is to set 517 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 518 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 519 // TrueProb for BB1 * FalseProb for TmpBB. 520 521 auto NewTrueProb = TProb + FProb / 2; 522 auto NewFalseProb = FProb / 2; 523 // Emit the LHS condition. 524 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 525 NewFalseProb, InvertCond); 526 527 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 528 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 529 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 530 // Emit the RHS condition into TmpBB. 531 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 532 Probs[1], InvertCond); 533 } 534 } 535 536 bool IRTranslator::shouldEmitAsBranches( 537 const std::vector<SwitchCG::CaseBlock> &Cases) { 538 // For multiple cases, it's better to emit as branches. 539 if (Cases.size() != 2) 540 return true; 541 542 // If this is two comparisons of the same values or'd or and'd together, they 543 // will get folded into a single comparison, so don't emit two blocks. 544 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 545 Cases[0].CmpRHS == Cases[1].CmpRHS) || 546 (Cases[0].CmpRHS == Cases[1].CmpLHS && 547 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 548 return false; 549 } 550 551 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 552 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 553 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 554 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred && 555 isa<Constant>(Cases[0].CmpRHS) && 556 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 557 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ && 558 Cases[0].TrueBB == Cases[1].ThisBB) 559 return false; 560 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE && 561 Cases[0].FalseBB == Cases[1].ThisBB) 562 return false; 563 } 564 565 return true; 566 } 567 568 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 569 const BranchInst &BrInst = cast<BranchInst>(U); 570 auto &CurMBB = MIRBuilder.getMBB(); 571 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0)); 572 573 if (BrInst.isUnconditional()) { 574 // If the unconditional target is the layout successor, fallthrough. 575 if (OptLevel == CodeGenOpt::None || !CurMBB.isLayoutSuccessor(Succ0MBB)) 576 MIRBuilder.buildBr(*Succ0MBB); 577 578 // Link successors. 579 for (const BasicBlock *Succ : successors(&BrInst)) 580 CurMBB.addSuccessor(&getMBB(*Succ)); 581 return true; 582 } 583 584 // If this condition is one of the special cases we handle, do special stuff 585 // now. 586 const Value *CondVal = BrInst.getCondition(); 587 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1)); 588 589 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 590 591 // If this is a series of conditions that are or'd or and'd together, emit 592 // this as a sequence of branches instead of setcc's with and/or operations. 593 // As long as jumps are not expensive (exceptions for multi-use logic ops, 594 // unpredictable branches, and vector extracts because those jumps are likely 595 // expensive for any target), this should improve performance. 596 // For example, instead of something like: 597 // cmp A, B 598 // C = seteq 599 // cmp D, E 600 // F = setle 601 // or C, F 602 // jnz foo 603 // Emit: 604 // cmp A, B 605 // je foo 606 // cmp D, E 607 // jle foo 608 using namespace PatternMatch; 609 const Instruction *CondI = dyn_cast<Instruction>(CondVal); 610 if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() && 611 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) { 612 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 613 Value *Vec; 614 const Value *BOp0, *BOp1; 615 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 616 Opcode = Instruction::And; 617 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 618 Opcode = Instruction::Or; 619 620 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 621 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 622 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode, 623 getEdgeProbability(&CurMBB, Succ0MBB), 624 getEdgeProbability(&CurMBB, Succ1MBB), 625 /*InvertCond=*/false); 626 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!"); 627 628 // Allow some cases to be rejected. 629 if (shouldEmitAsBranches(SL->SwitchCases)) { 630 // Emit the branch for this block. 631 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder); 632 SL->SwitchCases.erase(SL->SwitchCases.begin()); 633 return true; 634 } 635 636 // Okay, we decided not to do this, remove any inserted MBB's and clear 637 // SwitchCases. 638 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I) 639 MF->erase(SL->SwitchCases[I].ThisBB); 640 641 SL->SwitchCases.clear(); 642 } 643 } 644 645 // Create a CaseBlock record representing this branch. 646 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal, 647 ConstantInt::getTrue(MF->getFunction().getContext()), 648 nullptr, Succ0MBB, Succ1MBB, &CurMBB, 649 CurBuilder->getDebugLoc()); 650 651 // Use emitSwitchCase to actually insert the fast branch sequence for this 652 // cond branch. 653 emitSwitchCase(CB, &CurMBB, *CurBuilder); 654 return true; 655 } 656 657 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 658 MachineBasicBlock *Dst, 659 BranchProbability Prob) { 660 if (!FuncInfo.BPI) { 661 Src->addSuccessorWithoutProb(Dst); 662 return; 663 } 664 if (Prob.isUnknown()) 665 Prob = getEdgeProbability(Src, Dst); 666 Src->addSuccessor(Dst, Prob); 667 } 668 669 BranchProbability 670 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 671 const MachineBasicBlock *Dst) const { 672 const BasicBlock *SrcBB = Src->getBasicBlock(); 673 const BasicBlock *DstBB = Dst->getBasicBlock(); 674 if (!FuncInfo.BPI) { 675 // If BPI is not available, set the default probability as 1 / N, where N is 676 // the number of successors. 677 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 678 return BranchProbability(1, SuccSize); 679 } 680 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 681 } 682 683 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 684 using namespace SwitchCG; 685 // Extract cases from the switch. 686 const SwitchInst &SI = cast<SwitchInst>(U); 687 BranchProbabilityInfo *BPI = FuncInfo.BPI; 688 CaseClusterVector Clusters; 689 Clusters.reserve(SI.getNumCases()); 690 for (const auto &I : SI.cases()) { 691 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 692 assert(Succ && "Could not find successor mbb in mapping"); 693 const ConstantInt *CaseVal = I.getCaseValue(); 694 BranchProbability Prob = 695 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 696 : BranchProbability(1, SI.getNumCases() + 1); 697 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 698 } 699 700 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 701 702 // Cluster adjacent cases with the same destination. We do this at all 703 // optimization levels because it's cheap to do and will make codegen faster 704 // if there are many clusters. 705 sortAndRangeify(Clusters); 706 707 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 708 709 // If there is only the default destination, jump there directly. 710 if (Clusters.empty()) { 711 SwitchMBB->addSuccessor(DefaultMBB); 712 if (DefaultMBB != SwitchMBB->getNextNode()) 713 MIB.buildBr(*DefaultMBB); 714 return true; 715 } 716 717 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 718 SL->findBitTestClusters(Clusters, &SI); 719 720 LLVM_DEBUG({ 721 dbgs() << "Case clusters: "; 722 for (const CaseCluster &C : Clusters) { 723 if (C.Kind == CC_JumpTable) 724 dbgs() << "JT:"; 725 if (C.Kind == CC_BitTests) 726 dbgs() << "BT:"; 727 728 C.Low->getValue().print(dbgs(), true); 729 if (C.Low != C.High) { 730 dbgs() << '-'; 731 C.High->getValue().print(dbgs(), true); 732 } 733 dbgs() << ' '; 734 } 735 dbgs() << '\n'; 736 }); 737 738 assert(!Clusters.empty()); 739 SwitchWorkList WorkList; 740 CaseClusterIt First = Clusters.begin(); 741 CaseClusterIt Last = Clusters.end() - 1; 742 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 743 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 744 745 // FIXME: At the moment we don't do any splitting optimizations here like 746 // SelectionDAG does, so this worklist only has one entry. 747 while (!WorkList.empty()) { 748 SwitchWorkListItem W = WorkList.pop_back_val(); 749 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 750 return false; 751 } 752 return true; 753 } 754 755 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 756 MachineBasicBlock *MBB) { 757 // Emit the code for the jump table 758 assert(JT.Reg != -1U && "Should lower JT Header first!"); 759 MachineIRBuilder MIB(*MBB->getParent()); 760 MIB.setMBB(*MBB); 761 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 762 763 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 764 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 765 766 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 767 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 768 } 769 770 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 771 SwitchCG::JumpTableHeader &JTH, 772 MachineBasicBlock *HeaderBB) { 773 MachineIRBuilder MIB(*HeaderBB->getParent()); 774 MIB.setMBB(*HeaderBB); 775 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 776 777 const Value &SValue = *JTH.SValue; 778 // Subtract the lowest switch case value from the value being switched on. 779 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 780 Register SwitchOpReg = getOrCreateVReg(SValue); 781 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 782 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 783 784 // This value may be smaller or larger than the target's pointer type, and 785 // therefore require extension or truncating. 786 Type *PtrIRTy = SValue.getType()->getPointerTo(); 787 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 788 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 789 790 JT.Reg = Sub.getReg(0); 791 792 if (JTH.FallthroughUnreachable) { 793 if (JT.MBB != HeaderBB->getNextNode()) 794 MIB.buildBr(*JT.MBB); 795 return true; 796 } 797 798 // Emit the range check for the jump table, and branch to the default block 799 // for the switch statement if the value being switched on exceeds the 800 // largest case in the switch. 801 auto Cst = getOrCreateVReg( 802 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 803 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 804 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 805 806 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 807 808 // Avoid emitting unnecessary branches to the next block. 809 if (JT.MBB != HeaderBB->getNextNode()) 810 BrCond = MIB.buildBr(*JT.MBB); 811 return true; 812 } 813 814 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 815 MachineBasicBlock *SwitchBB, 816 MachineIRBuilder &MIB) { 817 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 818 Register Cond; 819 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 820 MIB.setDebugLoc(CB.DbgLoc); 821 MIB.setMBB(*CB.ThisBB); 822 823 if (CB.PredInfo.NoCmp) { 824 // Branch or fall through to TrueBB. 825 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 826 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 827 CB.ThisBB); 828 CB.ThisBB->normalizeSuccProbs(); 829 if (CB.TrueBB != CB.ThisBB->getNextNode()) 830 MIB.buildBr(*CB.TrueBB); 831 MIB.setDebugLoc(OldDbgLoc); 832 return; 833 } 834 835 const LLT i1Ty = LLT::scalar(1); 836 // Build the compare. 837 if (!CB.CmpMHS) { 838 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS); 839 // For conditional branch lowering, we might try to do something silly like 840 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so, 841 // just re-use the existing condition vreg. 842 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && 843 CI->getZExtValue() == 1 && CB.PredInfo.Pred == CmpInst::ICMP_EQ) { 844 Cond = CondLHS; 845 } else { 846 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 847 if (CmpInst::isFPPredicate(CB.PredInfo.Pred)) 848 Cond = 849 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 850 else 851 Cond = 852 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 853 } 854 } else { 855 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 856 "Can only handle SLE ranges"); 857 858 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 859 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 860 861 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 862 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 863 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 864 Cond = 865 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 866 } else { 867 const LLT CmpTy = MRI->getType(CmpOpReg); 868 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 869 auto Diff = MIB.buildConstant(CmpTy, High - Low); 870 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 871 } 872 } 873 874 // Update successor info 875 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 876 877 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 878 CB.ThisBB); 879 880 // TrueBB and FalseBB are always different unless the incoming IR is 881 // degenerate. This only happens when running llc on weird IR. 882 if (CB.TrueBB != CB.FalseBB) 883 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 884 CB.ThisBB->normalizeSuccProbs(); 885 886 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 887 CB.ThisBB); 888 889 MIB.buildBrCond(Cond, *CB.TrueBB); 890 MIB.buildBr(*CB.FalseBB); 891 MIB.setDebugLoc(OldDbgLoc); 892 } 893 894 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 895 MachineBasicBlock *SwitchMBB, 896 MachineBasicBlock *CurMBB, 897 MachineBasicBlock *DefaultMBB, 898 MachineIRBuilder &MIB, 899 MachineFunction::iterator BBI, 900 BranchProbability UnhandledProbs, 901 SwitchCG::CaseClusterIt I, 902 MachineBasicBlock *Fallthrough, 903 bool FallthroughUnreachable) { 904 using namespace SwitchCG; 905 MachineFunction *CurMF = SwitchMBB->getParent(); 906 // FIXME: Optimize away range check based on pivot comparisons. 907 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 908 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 909 BranchProbability DefaultProb = W.DefaultProb; 910 911 // The jump block hasn't been inserted yet; insert it here. 912 MachineBasicBlock *JumpMBB = JT->MBB; 913 CurMF->insert(BBI, JumpMBB); 914 915 // Since the jump table block is separate from the switch block, we need 916 // to keep track of it as a machine predecessor to the default block, 917 // otherwise we lose the phi edges. 918 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 919 CurMBB); 920 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 921 JumpMBB); 922 923 auto JumpProb = I->Prob; 924 auto FallthroughProb = UnhandledProbs; 925 926 // If the default statement is a target of the jump table, we evenly 927 // distribute the default probability to successors of CurMBB. Also 928 // update the probability on the edge from JumpMBB to Fallthrough. 929 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 930 SE = JumpMBB->succ_end(); 931 SI != SE; ++SI) { 932 if (*SI == DefaultMBB) { 933 JumpProb += DefaultProb / 2; 934 FallthroughProb -= DefaultProb / 2; 935 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 936 JumpMBB->normalizeSuccProbs(); 937 } else { 938 // Also record edges from the jump table block to it's successors. 939 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 940 JumpMBB); 941 } 942 } 943 944 if (FallthroughUnreachable) 945 JTH->FallthroughUnreachable = true; 946 947 if (!JTH->FallthroughUnreachable) 948 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 949 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 950 CurMBB->normalizeSuccProbs(); 951 952 // The jump table header will be inserted in our current block, do the 953 // range check, and fall through to our fallthrough block. 954 JTH->HeaderBB = CurMBB; 955 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 956 957 // If we're in the right place, emit the jump table header right now. 958 if (CurMBB == SwitchMBB) { 959 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 960 return false; 961 JTH->Emitted = true; 962 } 963 return true; 964 } 965 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 966 Value *Cond, 967 MachineBasicBlock *Fallthrough, 968 bool FallthroughUnreachable, 969 BranchProbability UnhandledProbs, 970 MachineBasicBlock *CurMBB, 971 MachineIRBuilder &MIB, 972 MachineBasicBlock *SwitchMBB) { 973 using namespace SwitchCG; 974 const Value *RHS, *LHS, *MHS; 975 CmpInst::Predicate Pred; 976 if (I->Low == I->High) { 977 // Check Cond == I->Low. 978 Pred = CmpInst::ICMP_EQ; 979 LHS = Cond; 980 RHS = I->Low; 981 MHS = nullptr; 982 } else { 983 // Check I->Low <= Cond <= I->High. 984 Pred = CmpInst::ICMP_SLE; 985 LHS = I->Low; 986 MHS = Cond; 987 RHS = I->High; 988 } 989 990 // If Fallthrough is unreachable, fold away the comparison. 991 // The false probability is the sum of all unhandled cases. 992 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 993 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 994 995 emitSwitchCase(CB, SwitchMBB, MIB); 996 return true; 997 } 998 999 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B, 1000 MachineBasicBlock *SwitchBB) { 1001 MachineIRBuilder &MIB = *CurBuilder; 1002 MIB.setMBB(*SwitchBB); 1003 1004 // Subtract the minimum value. 1005 Register SwitchOpReg = getOrCreateVReg(*B.SValue); 1006 1007 LLT SwitchOpTy = MRI->getType(SwitchOpReg); 1008 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0); 1009 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg); 1010 1011 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 1012 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1013 1014 LLT MaskTy = SwitchOpTy; 1015 if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() || 1016 !isPowerOf2_32(MaskTy.getSizeInBits())) 1017 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1018 else { 1019 // Ensure that the type will fit the mask value. 1020 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) { 1021 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) { 1022 // Switch table case range are encoded into series of masks. 1023 // Just use pointer type, it's guaranteed to fit. 1024 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1025 break; 1026 } 1027 } 1028 } 1029 Register SubReg = RangeSub.getReg(0); 1030 if (SwitchOpTy != MaskTy) 1031 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0); 1032 1033 B.RegVT = getMVTForLLT(MaskTy); 1034 B.Reg = SubReg; 1035 1036 MachineBasicBlock *MBB = B.Cases[0].ThisBB; 1037 1038 if (!B.FallthroughUnreachable) 1039 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 1040 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 1041 1042 SwitchBB->normalizeSuccProbs(); 1043 1044 if (!B.FallthroughUnreachable) { 1045 // Conditional branch to the default block. 1046 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range); 1047 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1), 1048 RangeSub, RangeCst); 1049 MIB.buildBrCond(RangeCmp, *B.Default); 1050 } 1051 1052 // Avoid emitting unnecessary branches to the next block. 1053 if (MBB != SwitchBB->getNextNode()) 1054 MIB.buildBr(*MBB); 1055 } 1056 1057 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB, 1058 MachineBasicBlock *NextMBB, 1059 BranchProbability BranchProbToNext, 1060 Register Reg, SwitchCG::BitTestCase &B, 1061 MachineBasicBlock *SwitchBB) { 1062 MachineIRBuilder &MIB = *CurBuilder; 1063 MIB.setMBB(*SwitchBB); 1064 1065 LLT SwitchTy = getLLTForMVT(BB.RegVT); 1066 Register Cmp; 1067 unsigned PopCount = countPopulation(B.Mask); 1068 if (PopCount == 1) { 1069 // Testing for a single bit; just compare the shift count with what it 1070 // would need to be to shift a 1 bit in that position. 1071 auto MaskTrailingZeros = 1072 MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask)); 1073 Cmp = 1074 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros) 1075 .getReg(0); 1076 } else if (PopCount == BB.Range) { 1077 // There is only one zero bit in the range, test for it directly. 1078 auto MaskTrailingOnes = 1079 MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask)); 1080 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes) 1081 .getReg(0); 1082 } else { 1083 // Make desired shift. 1084 auto CstOne = MIB.buildConstant(SwitchTy, 1); 1085 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg); 1086 1087 // Emit bit tests and jumps. 1088 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask); 1089 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask); 1090 auto CstZero = MIB.buildConstant(SwitchTy, 0); 1091 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero) 1092 .getReg(0); 1093 } 1094 1095 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 1096 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 1097 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 1098 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 1099 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 1100 // one as they are relative probabilities (and thus work more like weights), 1101 // and hence we need to normalize them to let the sum of them become one. 1102 SwitchBB->normalizeSuccProbs(); 1103 1104 // Record the fact that the IR edge from the header to the bit test target 1105 // will go through our new block. Neeeded for PHIs to have nodes added. 1106 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()}, 1107 SwitchBB); 1108 1109 MIB.buildBrCond(Cmp, *B.TargetBB); 1110 1111 // Avoid emitting unnecessary branches to the next block. 1112 if (NextMBB != SwitchBB->getNextNode()) 1113 MIB.buildBr(*NextMBB); 1114 } 1115 1116 bool IRTranslator::lowerBitTestWorkItem( 1117 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB, 1118 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB, 1119 MachineIRBuilder &MIB, MachineFunction::iterator BBI, 1120 BranchProbability DefaultProb, BranchProbability UnhandledProbs, 1121 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough, 1122 bool FallthroughUnreachable) { 1123 using namespace SwitchCG; 1124 MachineFunction *CurMF = SwitchMBB->getParent(); 1125 // FIXME: Optimize away range check based on pivot comparisons. 1126 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 1127 // The bit test blocks haven't been inserted yet; insert them here. 1128 for (BitTestCase &BTC : BTB->Cases) 1129 CurMF->insert(BBI, BTC.ThisBB); 1130 1131 // Fill in fields of the BitTestBlock. 1132 BTB->Parent = CurMBB; 1133 BTB->Default = Fallthrough; 1134 1135 BTB->DefaultProb = UnhandledProbs; 1136 // If the cases in bit test don't form a contiguous range, we evenly 1137 // distribute the probability on the edge to Fallthrough to two 1138 // successors of CurMBB. 1139 if (!BTB->ContiguousRange) { 1140 BTB->Prob += DefaultProb / 2; 1141 BTB->DefaultProb -= DefaultProb / 2; 1142 } 1143 1144 if (FallthroughUnreachable) 1145 BTB->FallthroughUnreachable = true; 1146 1147 // If we're in the right place, emit the bit test header right now. 1148 if (CurMBB == SwitchMBB) { 1149 emitBitTestHeader(*BTB, SwitchMBB); 1150 BTB->Emitted = true; 1151 } 1152 return true; 1153 } 1154 1155 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 1156 Value *Cond, 1157 MachineBasicBlock *SwitchMBB, 1158 MachineBasicBlock *DefaultMBB, 1159 MachineIRBuilder &MIB) { 1160 using namespace SwitchCG; 1161 MachineFunction *CurMF = FuncInfo.MF; 1162 MachineBasicBlock *NextMBB = nullptr; 1163 MachineFunction::iterator BBI(W.MBB); 1164 if (++BBI != FuncInfo.MF->end()) 1165 NextMBB = &*BBI; 1166 1167 if (EnableOpts) { 1168 // Here, we order cases by probability so the most likely case will be 1169 // checked first. However, two clusters can have the same probability in 1170 // which case their relative ordering is non-deterministic. So we use Low 1171 // as a tie-breaker as clusters are guaranteed to never overlap. 1172 llvm::sort(W.FirstCluster, W.LastCluster + 1, 1173 [](const CaseCluster &a, const CaseCluster &b) { 1174 return a.Prob != b.Prob 1175 ? a.Prob > b.Prob 1176 : a.Low->getValue().slt(b.Low->getValue()); 1177 }); 1178 1179 // Rearrange the case blocks so that the last one falls through if possible 1180 // without changing the order of probabilities. 1181 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 1182 --I; 1183 if (I->Prob > W.LastCluster->Prob) 1184 break; 1185 if (I->Kind == CC_Range && I->MBB == NextMBB) { 1186 std::swap(*I, *W.LastCluster); 1187 break; 1188 } 1189 } 1190 } 1191 1192 // Compute total probability. 1193 BranchProbability DefaultProb = W.DefaultProb; 1194 BranchProbability UnhandledProbs = DefaultProb; 1195 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 1196 UnhandledProbs += I->Prob; 1197 1198 MachineBasicBlock *CurMBB = W.MBB; 1199 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 1200 bool FallthroughUnreachable = false; 1201 MachineBasicBlock *Fallthrough; 1202 if (I == W.LastCluster) { 1203 // For the last cluster, fall through to the default destination. 1204 Fallthrough = DefaultMBB; 1205 FallthroughUnreachable = isa<UnreachableInst>( 1206 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 1207 } else { 1208 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 1209 CurMF->insert(BBI, Fallthrough); 1210 } 1211 UnhandledProbs -= I->Prob; 1212 1213 switch (I->Kind) { 1214 case CC_BitTests: { 1215 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1216 DefaultProb, UnhandledProbs, I, Fallthrough, 1217 FallthroughUnreachable)) { 1218 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch"); 1219 return false; 1220 } 1221 break; 1222 } 1223 1224 case CC_JumpTable: { 1225 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1226 UnhandledProbs, I, Fallthrough, 1227 FallthroughUnreachable)) { 1228 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 1229 return false; 1230 } 1231 break; 1232 } 1233 case CC_Range: { 1234 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 1235 FallthroughUnreachable, UnhandledProbs, 1236 CurMBB, MIB, SwitchMBB)) { 1237 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 1238 return false; 1239 } 1240 break; 1241 } 1242 } 1243 CurMBB = Fallthrough; 1244 } 1245 1246 return true; 1247 } 1248 1249 bool IRTranslator::translateIndirectBr(const User &U, 1250 MachineIRBuilder &MIRBuilder) { 1251 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 1252 1253 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 1254 MIRBuilder.buildBrIndirect(Tgt); 1255 1256 // Link successors. 1257 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 1258 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 1259 for (const BasicBlock *Succ : successors(&BrInst)) { 1260 // It's legal for indirectbr instructions to have duplicate blocks in the 1261 // destination list. We don't allow this in MIR. Skip anything that's 1262 // already a successor. 1263 if (!AddedSuccessors.insert(Succ).second) 1264 continue; 1265 CurBB.addSuccessor(&getMBB(*Succ)); 1266 } 1267 1268 return true; 1269 } 1270 1271 static bool isSwiftError(const Value *V) { 1272 if (auto Arg = dyn_cast<Argument>(V)) 1273 return Arg->hasSwiftErrorAttr(); 1274 if (auto AI = dyn_cast<AllocaInst>(V)) 1275 return AI->isSwiftError(); 1276 return false; 1277 } 1278 1279 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 1280 const LoadInst &LI = cast<LoadInst>(U); 1281 1282 unsigned StoreSize = DL->getTypeStoreSize(LI.getType()); 1283 if (StoreSize == 0) 1284 return true; 1285 1286 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 1287 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 1288 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 1289 AAMDNodes AAInfo = LI.getAAMetadata(); 1290 1291 const Value *Ptr = LI.getPointerOperand(); 1292 Type *OffsetIRTy = DL->getIntPtrType(Ptr->getType()); 1293 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1294 1295 if (CLI->supportSwiftError() && isSwiftError(Ptr)) { 1296 assert(Regs.size() == 1 && "swifterror should be single pointer"); 1297 Register VReg = 1298 SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), Ptr); 1299 MIRBuilder.buildCopy(Regs[0], VReg); 1300 return true; 1301 } 1302 1303 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1304 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL); 1305 if (AA && !(Flags & MachineMemOperand::MOInvariant)) { 1306 if (AA->pointsToConstantMemory( 1307 MemoryLocation(Ptr, LocationSize::precise(StoreSize), AAInfo))) { 1308 Flags |= MachineMemOperand::MOInvariant; 1309 1310 // FIXME: pointsToConstantMemory probably does not imply dereferenceable, 1311 // but the previous usage implied it did. Probably should check 1312 // isDereferenceableAndAlignedPointer. 1313 Flags |= MachineMemOperand::MODereferenceable; 1314 } 1315 } 1316 1317 const MDNode *Ranges = 1318 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 1319 for (unsigned i = 0; i < Regs.size(); ++i) { 1320 Register Addr; 1321 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1322 1323 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 1324 Align BaseAlign = getMemOpAlign(LI); 1325 auto MMO = MF->getMachineMemOperand( 1326 Ptr, Flags, MRI->getType(Regs[i]), 1327 commonAlignment(BaseAlign, Offsets[i] / 8), AAInfo, Ranges, 1328 LI.getSyncScopeID(), LI.getOrdering()); 1329 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 1330 } 1331 1332 return true; 1333 } 1334 1335 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 1336 const StoreInst &SI = cast<StoreInst>(U); 1337 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 1338 return true; 1339 1340 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 1341 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 1342 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 1343 1344 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 1345 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1346 1347 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 1348 assert(Vals.size() == 1 && "swifterror should be single pointer"); 1349 1350 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 1351 SI.getPointerOperand()); 1352 MIRBuilder.buildCopy(VReg, Vals[0]); 1353 return true; 1354 } 1355 1356 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1357 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 1358 1359 for (unsigned i = 0; i < Vals.size(); ++i) { 1360 Register Addr; 1361 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1362 1363 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 1364 Align BaseAlign = getMemOpAlign(SI); 1365 auto MMO = MF->getMachineMemOperand( 1366 Ptr, Flags, MRI->getType(Vals[i]), 1367 commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr, 1368 SI.getSyncScopeID(), SI.getOrdering()); 1369 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 1370 } 1371 return true; 1372 } 1373 1374 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 1375 const Value *Src = U.getOperand(0); 1376 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 1377 1378 // getIndexedOffsetInType is designed for GEPs, so the first index is the 1379 // usual array element rather than looking into the actual aggregate. 1380 SmallVector<Value *, 1> Indices; 1381 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 1382 1383 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 1384 for (auto Idx : EVI->indices()) 1385 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1386 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 1387 for (auto Idx : IVI->indices()) 1388 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1389 } else { 1390 for (unsigned i = 1; i < U.getNumOperands(); ++i) 1391 Indices.push_back(U.getOperand(i)); 1392 } 1393 1394 return 8 * static_cast<uint64_t>( 1395 DL.getIndexedOffsetInType(Src->getType(), Indices)); 1396 } 1397 1398 bool IRTranslator::translateExtractValue(const User &U, 1399 MachineIRBuilder &MIRBuilder) { 1400 const Value *Src = U.getOperand(0); 1401 uint64_t Offset = getOffsetFromIndices(U, *DL); 1402 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1403 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 1404 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 1405 auto &DstRegs = allocateVRegs(U); 1406 1407 for (unsigned i = 0; i < DstRegs.size(); ++i) 1408 DstRegs[i] = SrcRegs[Idx++]; 1409 1410 return true; 1411 } 1412 1413 bool IRTranslator::translateInsertValue(const User &U, 1414 MachineIRBuilder &MIRBuilder) { 1415 const Value *Src = U.getOperand(0); 1416 uint64_t Offset = getOffsetFromIndices(U, *DL); 1417 auto &DstRegs = allocateVRegs(U); 1418 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 1419 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1420 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 1421 auto *InsertedIt = InsertedRegs.begin(); 1422 1423 for (unsigned i = 0; i < DstRegs.size(); ++i) { 1424 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 1425 DstRegs[i] = *InsertedIt++; 1426 else 1427 DstRegs[i] = SrcRegs[i]; 1428 } 1429 1430 return true; 1431 } 1432 1433 bool IRTranslator::translateSelect(const User &U, 1434 MachineIRBuilder &MIRBuilder) { 1435 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1436 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1437 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1438 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1439 1440 uint16_t Flags = 0; 1441 if (const SelectInst *SI = dyn_cast<SelectInst>(&U)) 1442 Flags = MachineInstr::copyFlagsFromInstruction(*SI); 1443 1444 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1445 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1446 } 1447 1448 return true; 1449 } 1450 1451 bool IRTranslator::translateCopy(const User &U, const Value &V, 1452 MachineIRBuilder &MIRBuilder) { 1453 Register Src = getOrCreateVReg(V); 1454 auto &Regs = *VMap.getVRegs(U); 1455 if (Regs.empty()) { 1456 Regs.push_back(Src); 1457 VMap.getOffsets(U)->push_back(0); 1458 } else { 1459 // If we already assigned a vreg for this instruction, we can't change that. 1460 // Emit a copy to satisfy the users we already emitted. 1461 MIRBuilder.buildCopy(Regs[0], Src); 1462 } 1463 return true; 1464 } 1465 1466 bool IRTranslator::translateBitCast(const User &U, 1467 MachineIRBuilder &MIRBuilder) { 1468 // If we're bitcasting to the source type, we can reuse the source vreg. 1469 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1470 getLLTForType(*U.getType(), *DL)) 1471 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1472 1473 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1474 } 1475 1476 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1477 MachineIRBuilder &MIRBuilder) { 1478 Register Op = getOrCreateVReg(*U.getOperand(0)); 1479 Register Res = getOrCreateVReg(U); 1480 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1481 return true; 1482 } 1483 1484 bool IRTranslator::translateGetElementPtr(const User &U, 1485 MachineIRBuilder &MIRBuilder) { 1486 Value &Op0 = *U.getOperand(0); 1487 Register BaseReg = getOrCreateVReg(Op0); 1488 Type *PtrIRTy = Op0.getType(); 1489 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1490 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1491 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1492 1493 // Normalize Vector GEP - all scalar operands should be converted to the 1494 // splat vector. 1495 unsigned VectorWidth = 0; 1496 1497 // True if we should use a splat vector; using VectorWidth alone is not 1498 // sufficient. 1499 bool WantSplatVector = false; 1500 if (auto *VT = dyn_cast<VectorType>(U.getType())) { 1501 VectorWidth = cast<FixedVectorType>(VT)->getNumElements(); 1502 // We don't produce 1 x N vectors; those are treated as scalars. 1503 WantSplatVector = VectorWidth > 1; 1504 } 1505 1506 // We might need to splat the base pointer into a vector if the offsets 1507 // are vectors. 1508 if (WantSplatVector && !PtrTy.isVector()) { 1509 BaseReg = 1510 MIRBuilder 1511 .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg) 1512 .getReg(0); 1513 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth); 1514 PtrTy = getLLTForType(*PtrIRTy, *DL); 1515 OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1516 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1517 } 1518 1519 int64_t Offset = 0; 1520 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1521 GTI != E; ++GTI) { 1522 const Value *Idx = GTI.getOperand(); 1523 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1524 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1525 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1526 continue; 1527 } else { 1528 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1529 1530 // If this is a scalar constant or a splat vector of constants, 1531 // handle it quickly. 1532 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1533 Offset += ElementSize * CI->getSExtValue(); 1534 continue; 1535 } 1536 1537 if (Offset != 0) { 1538 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1539 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1540 .getReg(0); 1541 Offset = 0; 1542 } 1543 1544 Register IdxReg = getOrCreateVReg(*Idx); 1545 LLT IdxTy = MRI->getType(IdxReg); 1546 if (IdxTy != OffsetTy) { 1547 if (!IdxTy.isVector() && WantSplatVector) { 1548 IdxReg = MIRBuilder.buildSplatVector( 1549 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1550 } 1551 1552 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1553 } 1554 1555 // N = N + Idx * ElementSize; 1556 // Avoid doing it for ElementSize of 1. 1557 Register GepOffsetReg; 1558 if (ElementSize != 1) { 1559 auto ElementSizeMIB = MIRBuilder.buildConstant( 1560 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1561 GepOffsetReg = 1562 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1563 } else 1564 GepOffsetReg = IdxReg; 1565 1566 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1567 } 1568 } 1569 1570 if (Offset != 0) { 1571 auto OffsetMIB = 1572 MIRBuilder.buildConstant(OffsetTy, Offset); 1573 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1574 return true; 1575 } 1576 1577 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1578 return true; 1579 } 1580 1581 bool IRTranslator::translateMemFunc(const CallInst &CI, 1582 MachineIRBuilder &MIRBuilder, 1583 unsigned Opcode) { 1584 const Value *SrcPtr = CI.getArgOperand(1); 1585 // If the source is undef, then just emit a nop. 1586 if (isa<UndefValue>(SrcPtr)) 1587 return true; 1588 1589 SmallVector<Register, 3> SrcRegs; 1590 1591 unsigned MinPtrSize = UINT_MAX; 1592 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) { 1593 Register SrcReg = getOrCreateVReg(**AI); 1594 LLT SrcTy = MRI->getType(SrcReg); 1595 if (SrcTy.isPointer()) 1596 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize); 1597 SrcRegs.push_back(SrcReg); 1598 } 1599 1600 LLT SizeTy = LLT::scalar(MinPtrSize); 1601 1602 // The size operand should be the minimum of the pointer sizes. 1603 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1]; 1604 if (MRI->getType(SizeOpReg) != SizeTy) 1605 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0); 1606 1607 auto ICall = MIRBuilder.buildInstr(Opcode); 1608 for (Register SrcReg : SrcRegs) 1609 ICall.addUse(SrcReg); 1610 1611 Align DstAlign; 1612 Align SrcAlign; 1613 unsigned IsVol = 1614 cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue(); 1615 1616 ConstantInt *CopySize = nullptr; 1617 1618 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1619 DstAlign = MCI->getDestAlign().valueOrOne(); 1620 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1621 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2)); 1622 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) { 1623 DstAlign = MCI->getDestAlign().valueOrOne(); 1624 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1625 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2)); 1626 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1627 DstAlign = MMI->getDestAlign().valueOrOne(); 1628 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1629 CopySize = dyn_cast<ConstantInt>(MMI->getArgOperand(2)); 1630 } else { 1631 auto *MSI = cast<MemSetInst>(&CI); 1632 DstAlign = MSI->getDestAlign().valueOrOne(); 1633 } 1634 1635 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) { 1636 // We need to propagate the tail call flag from the IR inst as an argument. 1637 // Otherwise, we have to pessimize and assume later that we cannot tail call 1638 // any memory intrinsics. 1639 ICall.addImm(CI.isTailCall() ? 1 : 0); 1640 } 1641 1642 // Create mem operands to store the alignment and volatile info. 1643 MachineMemOperand::Flags LoadFlags = MachineMemOperand::MOLoad; 1644 MachineMemOperand::Flags StoreFlags = MachineMemOperand::MOStore; 1645 if (IsVol) { 1646 LoadFlags |= MachineMemOperand::MOVolatile; 1647 StoreFlags |= MachineMemOperand::MOVolatile; 1648 } 1649 1650 AAMDNodes AAInfo = CI.getAAMetadata(); 1651 if (AA && CopySize && 1652 AA->pointsToConstantMemory(MemoryLocation( 1653 SrcPtr, LocationSize::precise(CopySize->getZExtValue()), AAInfo))) { 1654 LoadFlags |= MachineMemOperand::MOInvariant; 1655 1656 // FIXME: pointsToConstantMemory probably does not imply dereferenceable, 1657 // but the previous usage implied it did. Probably should check 1658 // isDereferenceableAndAlignedPointer. 1659 LoadFlags |= MachineMemOperand::MODereferenceable; 1660 } 1661 1662 ICall.addMemOperand( 1663 MF->getMachineMemOperand(MachinePointerInfo(CI.getArgOperand(0)), 1664 StoreFlags, 1, DstAlign, AAInfo)); 1665 if (Opcode != TargetOpcode::G_MEMSET) 1666 ICall.addMemOperand(MF->getMachineMemOperand( 1667 MachinePointerInfo(SrcPtr), LoadFlags, 1, SrcAlign, AAInfo)); 1668 1669 return true; 1670 } 1671 1672 void IRTranslator::getStackGuard(Register DstReg, 1673 MachineIRBuilder &MIRBuilder) { 1674 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1675 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1676 auto MIB = 1677 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1678 1679 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1680 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1681 if (!Global) 1682 return; 1683 1684 unsigned AddrSpace = Global->getType()->getPointerAddressSpace(); 1685 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace)); 1686 1687 MachinePointerInfo MPInfo(Global); 1688 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1689 MachineMemOperand::MODereferenceable; 1690 MachineMemOperand *MemRef = MF->getMachineMemOperand( 1691 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace)); 1692 MIB.setMemRefs({MemRef}); 1693 } 1694 1695 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1696 MachineIRBuilder &MIRBuilder) { 1697 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1698 MIRBuilder.buildInstr( 1699 Op, {ResRegs[0], ResRegs[1]}, 1700 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1701 1702 return true; 1703 } 1704 1705 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI, 1706 MachineIRBuilder &MIRBuilder) { 1707 Register Dst = getOrCreateVReg(CI); 1708 Register Src0 = getOrCreateVReg(*CI.getOperand(0)); 1709 Register Src1 = getOrCreateVReg(*CI.getOperand(1)); 1710 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 1711 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale }); 1712 return true; 1713 } 1714 1715 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1716 switch (ID) { 1717 default: 1718 break; 1719 case Intrinsic::bswap: 1720 return TargetOpcode::G_BSWAP; 1721 case Intrinsic::bitreverse: 1722 return TargetOpcode::G_BITREVERSE; 1723 case Intrinsic::fshl: 1724 return TargetOpcode::G_FSHL; 1725 case Intrinsic::fshr: 1726 return TargetOpcode::G_FSHR; 1727 case Intrinsic::ceil: 1728 return TargetOpcode::G_FCEIL; 1729 case Intrinsic::cos: 1730 return TargetOpcode::G_FCOS; 1731 case Intrinsic::ctpop: 1732 return TargetOpcode::G_CTPOP; 1733 case Intrinsic::exp: 1734 return TargetOpcode::G_FEXP; 1735 case Intrinsic::exp2: 1736 return TargetOpcode::G_FEXP2; 1737 case Intrinsic::fabs: 1738 return TargetOpcode::G_FABS; 1739 case Intrinsic::copysign: 1740 return TargetOpcode::G_FCOPYSIGN; 1741 case Intrinsic::minnum: 1742 return TargetOpcode::G_FMINNUM; 1743 case Intrinsic::maxnum: 1744 return TargetOpcode::G_FMAXNUM; 1745 case Intrinsic::minimum: 1746 return TargetOpcode::G_FMINIMUM; 1747 case Intrinsic::maximum: 1748 return TargetOpcode::G_FMAXIMUM; 1749 case Intrinsic::canonicalize: 1750 return TargetOpcode::G_FCANONICALIZE; 1751 case Intrinsic::floor: 1752 return TargetOpcode::G_FFLOOR; 1753 case Intrinsic::fma: 1754 return TargetOpcode::G_FMA; 1755 case Intrinsic::log: 1756 return TargetOpcode::G_FLOG; 1757 case Intrinsic::log2: 1758 return TargetOpcode::G_FLOG2; 1759 case Intrinsic::log10: 1760 return TargetOpcode::G_FLOG10; 1761 case Intrinsic::nearbyint: 1762 return TargetOpcode::G_FNEARBYINT; 1763 case Intrinsic::pow: 1764 return TargetOpcode::G_FPOW; 1765 case Intrinsic::powi: 1766 return TargetOpcode::G_FPOWI; 1767 case Intrinsic::rint: 1768 return TargetOpcode::G_FRINT; 1769 case Intrinsic::round: 1770 return TargetOpcode::G_INTRINSIC_ROUND; 1771 case Intrinsic::roundeven: 1772 return TargetOpcode::G_INTRINSIC_ROUNDEVEN; 1773 case Intrinsic::sin: 1774 return TargetOpcode::G_FSIN; 1775 case Intrinsic::sqrt: 1776 return TargetOpcode::G_FSQRT; 1777 case Intrinsic::trunc: 1778 return TargetOpcode::G_INTRINSIC_TRUNC; 1779 case Intrinsic::readcyclecounter: 1780 return TargetOpcode::G_READCYCLECOUNTER; 1781 case Intrinsic::ptrmask: 1782 return TargetOpcode::G_PTRMASK; 1783 case Intrinsic::lrint: 1784 return TargetOpcode::G_INTRINSIC_LRINT; 1785 // FADD/FMUL require checking the FMF, so are handled elsewhere. 1786 case Intrinsic::vector_reduce_fmin: 1787 return TargetOpcode::G_VECREDUCE_FMIN; 1788 case Intrinsic::vector_reduce_fmax: 1789 return TargetOpcode::G_VECREDUCE_FMAX; 1790 case Intrinsic::vector_reduce_add: 1791 return TargetOpcode::G_VECREDUCE_ADD; 1792 case Intrinsic::vector_reduce_mul: 1793 return TargetOpcode::G_VECREDUCE_MUL; 1794 case Intrinsic::vector_reduce_and: 1795 return TargetOpcode::G_VECREDUCE_AND; 1796 case Intrinsic::vector_reduce_or: 1797 return TargetOpcode::G_VECREDUCE_OR; 1798 case Intrinsic::vector_reduce_xor: 1799 return TargetOpcode::G_VECREDUCE_XOR; 1800 case Intrinsic::vector_reduce_smax: 1801 return TargetOpcode::G_VECREDUCE_SMAX; 1802 case Intrinsic::vector_reduce_smin: 1803 return TargetOpcode::G_VECREDUCE_SMIN; 1804 case Intrinsic::vector_reduce_umax: 1805 return TargetOpcode::G_VECREDUCE_UMAX; 1806 case Intrinsic::vector_reduce_umin: 1807 return TargetOpcode::G_VECREDUCE_UMIN; 1808 case Intrinsic::lround: 1809 return TargetOpcode::G_LROUND; 1810 case Intrinsic::llround: 1811 return TargetOpcode::G_LLROUND; 1812 } 1813 return Intrinsic::not_intrinsic; 1814 } 1815 1816 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1817 Intrinsic::ID ID, 1818 MachineIRBuilder &MIRBuilder) { 1819 1820 unsigned Op = getSimpleIntrinsicOpcode(ID); 1821 1822 // Is this a simple intrinsic? 1823 if (Op == Intrinsic::not_intrinsic) 1824 return false; 1825 1826 // Yes. Let's translate it. 1827 SmallVector<llvm::SrcOp, 4> VRegs; 1828 for (const auto &Arg : CI.args()) 1829 VRegs.push_back(getOrCreateVReg(*Arg)); 1830 1831 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1832 MachineInstr::copyFlagsFromInstruction(CI)); 1833 return true; 1834 } 1835 1836 // TODO: Include ConstainedOps.def when all strict instructions are defined. 1837 static unsigned getConstrainedOpcode(Intrinsic::ID ID) { 1838 switch (ID) { 1839 case Intrinsic::experimental_constrained_fadd: 1840 return TargetOpcode::G_STRICT_FADD; 1841 case Intrinsic::experimental_constrained_fsub: 1842 return TargetOpcode::G_STRICT_FSUB; 1843 case Intrinsic::experimental_constrained_fmul: 1844 return TargetOpcode::G_STRICT_FMUL; 1845 case Intrinsic::experimental_constrained_fdiv: 1846 return TargetOpcode::G_STRICT_FDIV; 1847 case Intrinsic::experimental_constrained_frem: 1848 return TargetOpcode::G_STRICT_FREM; 1849 case Intrinsic::experimental_constrained_fma: 1850 return TargetOpcode::G_STRICT_FMA; 1851 case Intrinsic::experimental_constrained_sqrt: 1852 return TargetOpcode::G_STRICT_FSQRT; 1853 default: 1854 return 0; 1855 } 1856 } 1857 1858 bool IRTranslator::translateConstrainedFPIntrinsic( 1859 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) { 1860 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 1861 1862 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID()); 1863 if (!Opcode) 1864 return false; 1865 1866 unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI); 1867 if (EB == fp::ExceptionBehavior::ebIgnore) 1868 Flags |= MachineInstr::NoFPExcept; 1869 1870 SmallVector<llvm::SrcOp, 4> VRegs; 1871 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0))); 1872 if (!FPI.isUnaryOp()) 1873 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1))); 1874 if (FPI.isTernaryOp()) 1875 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2))); 1876 1877 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags); 1878 return true; 1879 } 1880 1881 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1882 MachineIRBuilder &MIRBuilder) { 1883 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) { 1884 if (ORE->enabled()) { 1885 const Function &F = *MI->getParent()->getParent(); 1886 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1887 if (MemoryOpRemark::canHandle(MI, TLI)) { 1888 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI); 1889 R.visit(MI); 1890 } 1891 } 1892 } 1893 1894 // If this is a simple intrinsic (that is, we just need to add a def of 1895 // a vreg, and uses for each arg operand, then translate it. 1896 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1897 return true; 1898 1899 switch (ID) { 1900 default: 1901 break; 1902 case Intrinsic::lifetime_start: 1903 case Intrinsic::lifetime_end: { 1904 // No stack colouring in O0, discard region information. 1905 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1906 return true; 1907 1908 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1909 : TargetOpcode::LIFETIME_END; 1910 1911 // Get the underlying objects for the location passed on the lifetime 1912 // marker. 1913 SmallVector<const Value *, 4> Allocas; 1914 getUnderlyingObjects(CI.getArgOperand(1), Allocas); 1915 1916 // Iterate over each underlying object, creating lifetime markers for each 1917 // static alloca. Quit if we find a non-static alloca. 1918 for (const Value *V : Allocas) { 1919 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1920 if (!AI) 1921 continue; 1922 1923 if (!AI->isStaticAlloca()) 1924 return true; 1925 1926 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1927 } 1928 return true; 1929 } 1930 case Intrinsic::dbg_declare: { 1931 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1932 assert(DI.getVariable() && "Missing variable"); 1933 1934 const Value *Address = DI.getAddress(); 1935 if (!Address || isa<UndefValue>(Address)) { 1936 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1937 return true; 1938 } 1939 1940 assert(DI.getVariable()->isValidLocationForIntrinsic( 1941 MIRBuilder.getDebugLoc()) && 1942 "Expected inlined-at fields to agree"); 1943 auto AI = dyn_cast<AllocaInst>(Address); 1944 if (AI && AI->isStaticAlloca()) { 1945 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1946 // instructions (in fact, they get ignored if they *do* exist). 1947 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1948 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1949 } else { 1950 // A dbg.declare describes the address of a source variable, so lower it 1951 // into an indirect DBG_VALUE. 1952 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1953 DI.getVariable(), DI.getExpression()); 1954 } 1955 return true; 1956 } 1957 case Intrinsic::dbg_label: { 1958 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1959 assert(DI.getLabel() && "Missing label"); 1960 1961 assert(DI.getLabel()->isValidLocationForIntrinsic( 1962 MIRBuilder.getDebugLoc()) && 1963 "Expected inlined-at fields to agree"); 1964 1965 MIRBuilder.buildDbgLabel(DI.getLabel()); 1966 return true; 1967 } 1968 case Intrinsic::vaend: 1969 // No target I know of cares about va_end. Certainly no in-tree target 1970 // does. Simplest intrinsic ever! 1971 return true; 1972 case Intrinsic::vastart: { 1973 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1974 Value *Ptr = CI.getArgOperand(0); 1975 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1976 1977 // FIXME: Get alignment 1978 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 1979 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 1980 MachineMemOperand::MOStore, 1981 ListSize, Align(1))); 1982 return true; 1983 } 1984 case Intrinsic::dbg_value: { 1985 // This form of DBG_VALUE is target-independent. 1986 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1987 const Value *V = DI.getValue(); 1988 assert(DI.getVariable()->isValidLocationForIntrinsic( 1989 MIRBuilder.getDebugLoc()) && 1990 "Expected inlined-at fields to agree"); 1991 if (!V || DI.hasArgList()) { 1992 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to 1993 // terminate any prior location. 1994 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1995 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1996 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1997 } else { 1998 for (Register Reg : getOrCreateVRegs(*V)) { 1999 // FIXME: This does not handle register-indirect values at offset 0. The 2000 // direct/indirect thing shouldn't really be handled by something as 2001 // implicit as reg+noreg vs reg+imm in the first place, but it seems 2002 // pretty baked in right now. 2003 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 2004 } 2005 } 2006 return true; 2007 } 2008 case Intrinsic::uadd_with_overflow: 2009 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 2010 case Intrinsic::sadd_with_overflow: 2011 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 2012 case Intrinsic::usub_with_overflow: 2013 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 2014 case Intrinsic::ssub_with_overflow: 2015 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 2016 case Intrinsic::umul_with_overflow: 2017 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 2018 case Intrinsic::smul_with_overflow: 2019 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 2020 case Intrinsic::uadd_sat: 2021 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 2022 case Intrinsic::sadd_sat: 2023 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 2024 case Intrinsic::usub_sat: 2025 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 2026 case Intrinsic::ssub_sat: 2027 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 2028 case Intrinsic::ushl_sat: 2029 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder); 2030 case Intrinsic::sshl_sat: 2031 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder); 2032 case Intrinsic::umin: 2033 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder); 2034 case Intrinsic::umax: 2035 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder); 2036 case Intrinsic::smin: 2037 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder); 2038 case Intrinsic::smax: 2039 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder); 2040 case Intrinsic::abs: 2041 // TODO: Preserve "int min is poison" arg in GMIR? 2042 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder); 2043 case Intrinsic::smul_fix: 2044 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder); 2045 case Intrinsic::umul_fix: 2046 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder); 2047 case Intrinsic::smul_fix_sat: 2048 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder); 2049 case Intrinsic::umul_fix_sat: 2050 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder); 2051 case Intrinsic::sdiv_fix: 2052 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder); 2053 case Intrinsic::udiv_fix: 2054 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder); 2055 case Intrinsic::sdiv_fix_sat: 2056 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder); 2057 case Intrinsic::udiv_fix_sat: 2058 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder); 2059 case Intrinsic::fmuladd: { 2060 const TargetMachine &TM = MF->getTarget(); 2061 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2062 Register Dst = getOrCreateVReg(CI); 2063 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 2064 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 2065 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 2066 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 2067 TLI.isFMAFasterThanFMulAndFAdd(*MF, 2068 TLI.getValueType(*DL, CI.getType()))) { 2069 // TODO: Revisit this to see if we should move this part of the 2070 // lowering to the combiner. 2071 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 2072 MachineInstr::copyFlagsFromInstruction(CI)); 2073 } else { 2074 LLT Ty = getLLTForType(*CI.getType(), *DL); 2075 auto FMul = MIRBuilder.buildFMul( 2076 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 2077 MIRBuilder.buildFAdd(Dst, FMul, Op2, 2078 MachineInstr::copyFlagsFromInstruction(CI)); 2079 } 2080 return true; 2081 } 2082 case Intrinsic::convert_from_fp16: 2083 // FIXME: This intrinsic should probably be removed from the IR. 2084 MIRBuilder.buildFPExt(getOrCreateVReg(CI), 2085 getOrCreateVReg(*CI.getArgOperand(0)), 2086 MachineInstr::copyFlagsFromInstruction(CI)); 2087 return true; 2088 case Intrinsic::convert_to_fp16: 2089 // FIXME: This intrinsic should probably be removed from the IR. 2090 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI), 2091 getOrCreateVReg(*CI.getArgOperand(0)), 2092 MachineInstr::copyFlagsFromInstruction(CI)); 2093 return true; 2094 case Intrinsic::memcpy_inline: 2095 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE); 2096 case Intrinsic::memcpy: 2097 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY); 2098 case Intrinsic::memmove: 2099 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE); 2100 case Intrinsic::memset: 2101 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET); 2102 case Intrinsic::eh_typeid_for: { 2103 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 2104 Register Reg = getOrCreateVReg(CI); 2105 unsigned TypeID = MF->getTypeIDFor(GV); 2106 MIRBuilder.buildConstant(Reg, TypeID); 2107 return true; 2108 } 2109 case Intrinsic::objectsize: 2110 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2111 2112 case Intrinsic::is_constant: 2113 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2114 2115 case Intrinsic::stackguard: 2116 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 2117 return true; 2118 case Intrinsic::stackprotector: { 2119 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2120 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2121 Register GuardVal; 2122 if (TLI.useLoadStackGuardNode()) { 2123 GuardVal = MRI->createGenericVirtualRegister(PtrTy); 2124 getStackGuard(GuardVal, MIRBuilder); 2125 } else 2126 GuardVal = getOrCreateVReg(*CI.getArgOperand(0)); // The guard's value. 2127 2128 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 2129 int FI = getOrCreateFrameIndex(*Slot); 2130 MF->getFrameInfo().setStackProtectorIndex(FI); 2131 2132 MIRBuilder.buildStore( 2133 GuardVal, getOrCreateVReg(*Slot), 2134 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 2135 MachineMemOperand::MOStore | 2136 MachineMemOperand::MOVolatile, 2137 PtrTy, Align(8))); 2138 return true; 2139 } 2140 case Intrinsic::stacksave: { 2141 // Save the stack pointer to the location provided by the intrinsic. 2142 Register Reg = getOrCreateVReg(CI); 2143 Register StackPtr = MF->getSubtarget() 2144 .getTargetLowering() 2145 ->getStackPointerRegisterToSaveRestore(); 2146 2147 // If the target doesn't specify a stack pointer, then fall back. 2148 if (!StackPtr) 2149 return false; 2150 2151 MIRBuilder.buildCopy(Reg, StackPtr); 2152 return true; 2153 } 2154 case Intrinsic::stackrestore: { 2155 // Restore the stack pointer from the location provided by the intrinsic. 2156 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 2157 Register StackPtr = MF->getSubtarget() 2158 .getTargetLowering() 2159 ->getStackPointerRegisterToSaveRestore(); 2160 2161 // If the target doesn't specify a stack pointer, then fall back. 2162 if (!StackPtr) 2163 return false; 2164 2165 MIRBuilder.buildCopy(StackPtr, Reg); 2166 return true; 2167 } 2168 case Intrinsic::cttz: 2169 case Intrinsic::ctlz: { 2170 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 2171 bool isTrailing = ID == Intrinsic::cttz; 2172 unsigned Opcode = isTrailing 2173 ? Cst->isZero() ? TargetOpcode::G_CTTZ 2174 : TargetOpcode::G_CTTZ_ZERO_UNDEF 2175 : Cst->isZero() ? TargetOpcode::G_CTLZ 2176 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 2177 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 2178 {getOrCreateVReg(*CI.getArgOperand(0))}); 2179 return true; 2180 } 2181 case Intrinsic::invariant_start: { 2182 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2183 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 2184 MIRBuilder.buildUndef(Undef); 2185 return true; 2186 } 2187 case Intrinsic::invariant_end: 2188 return true; 2189 case Intrinsic::expect: 2190 case Intrinsic::annotation: 2191 case Intrinsic::ptr_annotation: 2192 case Intrinsic::launder_invariant_group: 2193 case Intrinsic::strip_invariant_group: { 2194 // Drop the intrinsic, but forward the value. 2195 MIRBuilder.buildCopy(getOrCreateVReg(CI), 2196 getOrCreateVReg(*CI.getArgOperand(0))); 2197 return true; 2198 } 2199 case Intrinsic::assume: 2200 case Intrinsic::experimental_noalias_scope_decl: 2201 case Intrinsic::var_annotation: 2202 case Intrinsic::sideeffect: 2203 // Discard annotate attributes, assumptions, and artificial side-effects. 2204 return true; 2205 case Intrinsic::read_volatile_register: 2206 case Intrinsic::read_register: { 2207 Value *Arg = CI.getArgOperand(0); 2208 MIRBuilder 2209 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 2210 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 2211 return true; 2212 } 2213 case Intrinsic::write_register: { 2214 Value *Arg = CI.getArgOperand(0); 2215 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 2216 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 2217 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 2218 return true; 2219 } 2220 case Intrinsic::localescape: { 2221 MachineBasicBlock &EntryMBB = MF->front(); 2222 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName()); 2223 2224 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 2225 // is the same on all targets. 2226 for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) { 2227 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts(); 2228 if (isa<ConstantPointerNull>(Arg)) 2229 continue; // Skip null pointers. They represent a hole in index space. 2230 2231 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg)); 2232 MCSymbol *FrameAllocSym = 2233 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName, 2234 Idx); 2235 2236 // This should be inserted at the start of the entry block. 2237 auto LocalEscape = 2238 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE) 2239 .addSym(FrameAllocSym) 2240 .addFrameIndex(FI); 2241 2242 EntryMBB.insert(EntryMBB.begin(), LocalEscape); 2243 } 2244 2245 return true; 2246 } 2247 case Intrinsic::vector_reduce_fadd: 2248 case Intrinsic::vector_reduce_fmul: { 2249 // Need to check for the reassoc flag to decide whether we want a 2250 // sequential reduction opcode or not. 2251 Register Dst = getOrCreateVReg(CI); 2252 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0)); 2253 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1)); 2254 unsigned Opc = 0; 2255 if (!CI.hasAllowReassoc()) { 2256 // The sequential ordering case. 2257 Opc = ID == Intrinsic::vector_reduce_fadd 2258 ? TargetOpcode::G_VECREDUCE_SEQ_FADD 2259 : TargetOpcode::G_VECREDUCE_SEQ_FMUL; 2260 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc}, 2261 MachineInstr::copyFlagsFromInstruction(CI)); 2262 return true; 2263 } 2264 // We split the operation into a separate G_FADD/G_FMUL + the reduce, 2265 // since the associativity doesn't matter. 2266 unsigned ScalarOpc; 2267 if (ID == Intrinsic::vector_reduce_fadd) { 2268 Opc = TargetOpcode::G_VECREDUCE_FADD; 2269 ScalarOpc = TargetOpcode::G_FADD; 2270 } else { 2271 Opc = TargetOpcode::G_VECREDUCE_FMUL; 2272 ScalarOpc = TargetOpcode::G_FMUL; 2273 } 2274 LLT DstTy = MRI->getType(Dst); 2275 auto Rdx = MIRBuilder.buildInstr( 2276 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI)); 2277 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx}, 2278 MachineInstr::copyFlagsFromInstruction(CI)); 2279 2280 return true; 2281 } 2282 case Intrinsic::trap: 2283 case Intrinsic::debugtrap: 2284 case Intrinsic::ubsantrap: { 2285 StringRef TrapFuncName = 2286 CI.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 2287 if (TrapFuncName.empty()) 2288 break; // Use the default handling. 2289 CallLowering::CallLoweringInfo Info; 2290 if (ID == Intrinsic::ubsantrap) { 2291 Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)), 2292 CI.getArgOperand(0)->getType(), 0}); 2293 } 2294 Info.Callee = MachineOperand::CreateES(TrapFuncName.data()); 2295 Info.CB = &CI; 2296 Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0}; 2297 return CLI->lowerCall(MIRBuilder, Info); 2298 } 2299 case Intrinsic::fptrunc_round: { 2300 unsigned Flags = MachineInstr::copyFlagsFromInstruction(CI); 2301 2302 // Convert the metadata argument to a constant integer 2303 Metadata *MD = cast<MetadataAsValue>(CI.getArgOperand(1))->getMetadata(); 2304 Optional<RoundingMode> RoundMode = 2305 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 2306 2307 // Add the Rounding mode as an integer 2308 MIRBuilder 2309 .buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND, 2310 {getOrCreateVReg(CI)}, 2311 {getOrCreateVReg(*CI.getArgOperand(0))}, Flags) 2312 .addImm((int)*RoundMode); 2313 2314 return true; 2315 } 2316 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 2317 case Intrinsic::INTRINSIC: 2318 #include "llvm/IR/ConstrainedOps.def" 2319 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI), 2320 MIRBuilder); 2321 2322 } 2323 return false; 2324 } 2325 2326 bool IRTranslator::translateInlineAsm(const CallBase &CB, 2327 MachineIRBuilder &MIRBuilder) { 2328 2329 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 2330 2331 if (!ALI) { 2332 LLVM_DEBUG( 2333 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 2334 return false; 2335 } 2336 2337 return ALI->lowerInlineAsm( 2338 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 2339 } 2340 2341 bool IRTranslator::translateCallBase(const CallBase &CB, 2342 MachineIRBuilder &MIRBuilder) { 2343 ArrayRef<Register> Res = getOrCreateVRegs(CB); 2344 2345 SmallVector<ArrayRef<Register>, 8> Args; 2346 Register SwiftInVReg = 0; 2347 Register SwiftErrorVReg = 0; 2348 for (const auto &Arg : CB.args()) { 2349 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 2350 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 2351 LLT Ty = getLLTForType(*Arg->getType(), *DL); 2352 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 2353 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 2354 &CB, &MIRBuilder.getMBB(), Arg)); 2355 Args.emplace_back(makeArrayRef(SwiftInVReg)); 2356 SwiftErrorVReg = 2357 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 2358 continue; 2359 } 2360 Args.push_back(getOrCreateVRegs(*Arg)); 2361 } 2362 2363 if (auto *CI = dyn_cast<CallInst>(&CB)) { 2364 if (ORE->enabled()) { 2365 const Function &F = *CI->getParent()->getParent(); 2366 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2367 if (MemoryOpRemark::canHandle(CI, TLI)) { 2368 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI); 2369 R.visit(CI); 2370 } 2371 } 2372 } 2373 2374 // We don't set HasCalls on MFI here yet because call lowering may decide to 2375 // optimize into tail calls. Instead, we defer that to selection where a final 2376 // scan is done to check if any instructions are calls. 2377 bool Success = 2378 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg, 2379 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 2380 2381 // Check if we just inserted a tail call. 2382 if (Success) { 2383 assert(!HasTailCall && "Can't tail call return twice from block?"); 2384 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 2385 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 2386 } 2387 2388 return Success; 2389 } 2390 2391 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 2392 const CallInst &CI = cast<CallInst>(U); 2393 auto TII = MF->getTarget().getIntrinsicInfo(); 2394 const Function *F = CI.getCalledFunction(); 2395 2396 // FIXME: support Windows dllimport function calls. 2397 if (F && (F->hasDLLImportStorageClass() || 2398 (MF->getTarget().getTargetTriple().isOSWindows() && 2399 F->hasExternalWeakLinkage()))) 2400 return false; 2401 2402 // FIXME: support control flow guard targets. 2403 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2404 return false; 2405 2406 if (CI.isInlineAsm()) 2407 return translateInlineAsm(CI, MIRBuilder); 2408 2409 diagnoseDontCall(CI); 2410 2411 Intrinsic::ID ID = Intrinsic::not_intrinsic; 2412 if (F && F->isIntrinsic()) { 2413 ID = F->getIntrinsicID(); 2414 if (TII && ID == Intrinsic::not_intrinsic) 2415 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 2416 } 2417 2418 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 2419 return translateCallBase(CI, MIRBuilder); 2420 2421 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 2422 2423 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 2424 return true; 2425 2426 ArrayRef<Register> ResultRegs; 2427 if (!CI.getType()->isVoidTy()) 2428 ResultRegs = getOrCreateVRegs(CI); 2429 2430 // Ignore the callsite attributes. Backend code is most likely not expecting 2431 // an intrinsic to sometimes have side effects and sometimes not. 2432 MachineInstrBuilder MIB = 2433 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 2434 if (isa<FPMathOperator>(CI)) 2435 MIB->copyIRFlags(CI); 2436 2437 for (const auto &Arg : enumerate(CI.args())) { 2438 // If this is required to be an immediate, don't materialize it in a 2439 // register. 2440 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 2441 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 2442 // imm arguments are more convenient than cimm (and realistically 2443 // probably sufficient), so use them. 2444 assert(CI->getBitWidth() <= 64 && 2445 "large intrinsic immediates not handled"); 2446 MIB.addImm(CI->getSExtValue()); 2447 } else { 2448 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 2449 } 2450 } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) { 2451 auto *MD = MDVal->getMetadata(); 2452 auto *MDN = dyn_cast<MDNode>(MD); 2453 if (!MDN) { 2454 if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD)) 2455 MDN = MDNode::get(MF->getFunction().getContext(), ConstMD); 2456 else // This was probably an MDString. 2457 return false; 2458 } 2459 MIB.addMetadata(MDN); 2460 } else { 2461 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 2462 if (VRegs.size() > 1) 2463 return false; 2464 MIB.addUse(VRegs[0]); 2465 } 2466 } 2467 2468 // Add a MachineMemOperand if it is a target mem intrinsic. 2469 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2470 TargetLowering::IntrinsicInfo Info; 2471 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 2472 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 2473 Align Alignment = Info.align.value_or( 2474 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 2475 LLT MemTy = Info.memVT.isSimple() 2476 ? getLLTForMVT(Info.memVT.getSimpleVT()) 2477 : LLT::scalar(Info.memVT.getStoreSizeInBits()); 2478 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 2479 Info.flags, MemTy, Alignment)); 2480 } 2481 2482 return true; 2483 } 2484 2485 bool IRTranslator::findUnwindDestinations( 2486 const BasicBlock *EHPadBB, 2487 BranchProbability Prob, 2488 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2489 &UnwindDests) { 2490 EHPersonality Personality = classifyEHPersonality( 2491 EHPadBB->getParent()->getFunction().getPersonalityFn()); 2492 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2493 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2494 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2495 bool IsSEH = isAsynchronousEHPersonality(Personality); 2496 2497 if (IsWasmCXX) { 2498 // Ignore this for now. 2499 return false; 2500 } 2501 2502 while (EHPadBB) { 2503 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2504 BasicBlock *NewEHPadBB = nullptr; 2505 if (isa<LandingPadInst>(Pad)) { 2506 // Stop on landingpads. They are not funclets. 2507 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2508 break; 2509 } 2510 if (isa<CleanupPadInst>(Pad)) { 2511 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2512 // personalities. 2513 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2514 UnwindDests.back().first->setIsEHScopeEntry(); 2515 UnwindDests.back().first->setIsEHFuncletEntry(); 2516 break; 2517 } 2518 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2519 // Add the catchpad handlers to the possible destinations. 2520 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2521 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob); 2522 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2523 if (IsMSVCCXX || IsCoreCLR) 2524 UnwindDests.back().first->setIsEHFuncletEntry(); 2525 if (!IsSEH) 2526 UnwindDests.back().first->setIsEHScopeEntry(); 2527 } 2528 NewEHPadBB = CatchSwitch->getUnwindDest(); 2529 } else { 2530 continue; 2531 } 2532 2533 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2534 if (BPI && NewEHPadBB) 2535 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2536 EHPadBB = NewEHPadBB; 2537 } 2538 return true; 2539 } 2540 2541 bool IRTranslator::translateInvoke(const User &U, 2542 MachineIRBuilder &MIRBuilder) { 2543 const InvokeInst &I = cast<InvokeInst>(U); 2544 MCContext &Context = MF->getContext(); 2545 2546 const BasicBlock *ReturnBB = I.getSuccessor(0); 2547 const BasicBlock *EHPadBB = I.getSuccessor(1); 2548 2549 const Function *Fn = I.getCalledFunction(); 2550 2551 // FIXME: support invoking patchpoint and statepoint intrinsics. 2552 if (Fn && Fn->isIntrinsic()) 2553 return false; 2554 2555 // FIXME: support whatever these are. 2556 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 2557 return false; 2558 2559 // FIXME: support control flow guard targets. 2560 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2561 return false; 2562 2563 // FIXME: support Windows exception handling. 2564 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI())) 2565 return false; 2566 2567 bool LowerInlineAsm = I.isInlineAsm(); 2568 bool NeedEHLabel = true; 2569 // If it can't throw then use a fast-path without emitting EH labels. 2570 if (LowerInlineAsm) 2571 NeedEHLabel = (cast<InlineAsm>(I.getCalledOperand()))->canThrow(); 2572 2573 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 2574 // the region covered by the try. 2575 MCSymbol *BeginSymbol = nullptr; 2576 if (NeedEHLabel) { 2577 BeginSymbol = Context.createTempSymbol(); 2578 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 2579 } 2580 2581 if (LowerInlineAsm) { 2582 if (!translateInlineAsm(I, MIRBuilder)) 2583 return false; 2584 } else if (!translateCallBase(I, MIRBuilder)) 2585 return false; 2586 2587 MCSymbol *EndSymbol = nullptr; 2588 if (NeedEHLabel) { 2589 EndSymbol = Context.createTempSymbol(); 2590 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 2591 } 2592 2593 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2594 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2595 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(); 2596 BranchProbability EHPadBBProb = 2597 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2598 : BranchProbability::getZero(); 2599 2600 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests)) 2601 return false; 2602 2603 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 2604 &ReturnMBB = getMBB(*ReturnBB); 2605 // Update successor info. 2606 addSuccessorWithProb(InvokeMBB, &ReturnMBB); 2607 for (auto &UnwindDest : UnwindDests) { 2608 UnwindDest.first->setIsEHPad(); 2609 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2610 } 2611 InvokeMBB->normalizeSuccProbs(); 2612 2613 if (NeedEHLabel) { 2614 assert(BeginSymbol && "Expected a begin symbol!"); 2615 assert(EndSymbol && "Expected an end symbol!"); 2616 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 2617 } 2618 2619 MIRBuilder.buildBr(ReturnMBB); 2620 return true; 2621 } 2622 2623 bool IRTranslator::translateCallBr(const User &U, 2624 MachineIRBuilder &MIRBuilder) { 2625 // FIXME: Implement this. 2626 return false; 2627 } 2628 2629 bool IRTranslator::translateLandingPad(const User &U, 2630 MachineIRBuilder &MIRBuilder) { 2631 const LandingPadInst &LP = cast<LandingPadInst>(U); 2632 2633 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 2634 2635 MBB.setIsEHPad(); 2636 2637 // If there aren't registers to copy the values into (e.g., during SjLj 2638 // exceptions), then don't bother. 2639 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2640 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 2641 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2642 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2643 return true; 2644 2645 // If landingpad's return type is token type, we don't create DAG nodes 2646 // for its exception pointer and selector value. The extraction of exception 2647 // pointer or selector value from token type landingpads is not currently 2648 // supported. 2649 if (LP.getType()->isTokenTy()) 2650 return true; 2651 2652 // Add a label to mark the beginning of the landing pad. Deletion of the 2653 // landing pad can thus be detected via the MachineModuleInfo. 2654 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 2655 .addSym(MF->addLandingPad(&MBB)); 2656 2657 // If the unwinder does not preserve all registers, ensure that the 2658 // function marks the clobbered registers as used. 2659 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 2660 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 2661 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 2662 2663 LLT Ty = getLLTForType(*LP.getType(), *DL); 2664 Register Undef = MRI->createGenericVirtualRegister(Ty); 2665 MIRBuilder.buildUndef(Undef); 2666 2667 SmallVector<LLT, 2> Tys; 2668 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 2669 Tys.push_back(getLLTForType(*Ty, *DL)); 2670 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 2671 2672 // Mark exception register as live in. 2673 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 2674 if (!ExceptionReg) 2675 return false; 2676 2677 MBB.addLiveIn(ExceptionReg); 2678 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 2679 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 2680 2681 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 2682 if (!SelectorReg) 2683 return false; 2684 2685 MBB.addLiveIn(SelectorReg); 2686 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 2687 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 2688 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 2689 2690 return true; 2691 } 2692 2693 bool IRTranslator::translateAlloca(const User &U, 2694 MachineIRBuilder &MIRBuilder) { 2695 auto &AI = cast<AllocaInst>(U); 2696 2697 if (AI.isSwiftError()) 2698 return true; 2699 2700 if (AI.isStaticAlloca()) { 2701 Register Res = getOrCreateVReg(AI); 2702 int FI = getOrCreateFrameIndex(AI); 2703 MIRBuilder.buildFrameIndex(Res, FI); 2704 return true; 2705 } 2706 2707 // FIXME: support stack probing for Windows. 2708 if (MF->getTarget().getTargetTriple().isOSWindows()) 2709 return false; 2710 2711 // Now we're in the harder dynamic case. 2712 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 2713 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 2714 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 2715 if (MRI->getType(NumElts) != IntPtrTy) { 2716 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 2717 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 2718 NumElts = ExtElts; 2719 } 2720 2721 Type *Ty = AI.getAllocatedType(); 2722 2723 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 2724 Register TySize = 2725 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 2726 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 2727 2728 // Round the size of the allocation up to the stack alignment size 2729 // by add SA-1 to the size. This doesn't overflow because we're computing 2730 // an address inside an alloca. 2731 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 2732 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 2733 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 2734 MachineInstr::NoUWrap); 2735 auto AlignCst = 2736 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 2737 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 2738 2739 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 2740 if (Alignment <= StackAlign) 2741 Alignment = Align(1); 2742 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 2743 2744 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 2745 assert(MF->getFrameInfo().hasVarSizedObjects()); 2746 return true; 2747 } 2748 2749 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 2750 // FIXME: We may need more info about the type. Because of how LLT works, 2751 // we're completely discarding the i64/double distinction here (amongst 2752 // others). Fortunately the ABIs I know of where that matters don't use va_arg 2753 // anyway but that's not guaranteed. 2754 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 2755 {getOrCreateVReg(*U.getOperand(0)), 2756 DL->getABITypeAlign(U.getType()).value()}); 2757 return true; 2758 } 2759 2760 bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) { 2761 if (!MF->getTarget().Options.TrapUnreachable) 2762 return true; 2763 2764 auto &UI = cast<UnreachableInst>(U); 2765 // We may be able to ignore unreachable behind a noreturn call. 2766 if (MF->getTarget().Options.NoTrapAfterNoreturn) { 2767 const BasicBlock &BB = *UI.getParent(); 2768 if (&UI != &BB.front()) { 2769 BasicBlock::const_iterator PredI = 2770 std::prev(BasicBlock::const_iterator(UI)); 2771 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2772 if (Call->doesNotReturn()) 2773 return true; 2774 } 2775 } 2776 } 2777 2778 MIRBuilder.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true); 2779 return true; 2780 } 2781 2782 bool IRTranslator::translateInsertElement(const User &U, 2783 MachineIRBuilder &MIRBuilder) { 2784 // If it is a <1 x Ty> vector, use the scalar as it is 2785 // not a legal vector type in LLT. 2786 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1) 2787 return translateCopy(U, *U.getOperand(1), MIRBuilder); 2788 2789 Register Res = getOrCreateVReg(U); 2790 Register Val = getOrCreateVReg(*U.getOperand(0)); 2791 Register Elt = getOrCreateVReg(*U.getOperand(1)); 2792 Register Idx = getOrCreateVReg(*U.getOperand(2)); 2793 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 2794 return true; 2795 } 2796 2797 bool IRTranslator::translateExtractElement(const User &U, 2798 MachineIRBuilder &MIRBuilder) { 2799 // If it is a <1 x Ty> vector, use the scalar as it is 2800 // not a legal vector type in LLT. 2801 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1) 2802 return translateCopy(U, *U.getOperand(0), MIRBuilder); 2803 2804 Register Res = getOrCreateVReg(U); 2805 Register Val = getOrCreateVReg(*U.getOperand(0)); 2806 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2807 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 2808 Register Idx; 2809 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 2810 if (CI->getBitWidth() != PreferredVecIdxWidth) { 2811 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 2812 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 2813 Idx = getOrCreateVReg(*NewIdxCI); 2814 } 2815 } 2816 if (!Idx) 2817 Idx = getOrCreateVReg(*U.getOperand(1)); 2818 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 2819 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 2820 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0); 2821 } 2822 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 2823 return true; 2824 } 2825 2826 bool IRTranslator::translateShuffleVector(const User &U, 2827 MachineIRBuilder &MIRBuilder) { 2828 ArrayRef<int> Mask; 2829 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 2830 Mask = SVI->getShuffleMask(); 2831 else 2832 Mask = cast<ConstantExpr>(U).getShuffleMask(); 2833 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 2834 MIRBuilder 2835 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 2836 {getOrCreateVReg(*U.getOperand(0)), 2837 getOrCreateVReg(*U.getOperand(1))}) 2838 .addShuffleMask(MaskAlloc); 2839 return true; 2840 } 2841 2842 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 2843 const PHINode &PI = cast<PHINode>(U); 2844 2845 SmallVector<MachineInstr *, 4> Insts; 2846 for (auto Reg : getOrCreateVRegs(PI)) { 2847 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 2848 Insts.push_back(MIB.getInstr()); 2849 } 2850 2851 PendingPHIs.emplace_back(&PI, std::move(Insts)); 2852 return true; 2853 } 2854 2855 bool IRTranslator::translateAtomicCmpXchg(const User &U, 2856 MachineIRBuilder &MIRBuilder) { 2857 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 2858 2859 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2860 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2861 2862 auto Res = getOrCreateVRegs(I); 2863 Register OldValRes = Res[0]; 2864 Register SuccessRes = Res[1]; 2865 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2866 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 2867 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 2868 2869 MIRBuilder.buildAtomicCmpXchgWithSuccess( 2870 OldValRes, SuccessRes, Addr, Cmp, NewVal, 2871 *MF->getMachineMemOperand( 2872 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp), 2873 getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(), 2874 I.getSuccessOrdering(), I.getFailureOrdering())); 2875 return true; 2876 } 2877 2878 bool IRTranslator::translateAtomicRMW(const User &U, 2879 MachineIRBuilder &MIRBuilder) { 2880 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 2881 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2882 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2883 2884 Register Res = getOrCreateVReg(I); 2885 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2886 Register Val = getOrCreateVReg(*I.getValOperand()); 2887 2888 unsigned Opcode = 0; 2889 switch (I.getOperation()) { 2890 default: 2891 return false; 2892 case AtomicRMWInst::Xchg: 2893 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2894 break; 2895 case AtomicRMWInst::Add: 2896 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2897 break; 2898 case AtomicRMWInst::Sub: 2899 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2900 break; 2901 case AtomicRMWInst::And: 2902 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2903 break; 2904 case AtomicRMWInst::Nand: 2905 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2906 break; 2907 case AtomicRMWInst::Or: 2908 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2909 break; 2910 case AtomicRMWInst::Xor: 2911 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2912 break; 2913 case AtomicRMWInst::Max: 2914 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2915 break; 2916 case AtomicRMWInst::Min: 2917 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2918 break; 2919 case AtomicRMWInst::UMax: 2920 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2921 break; 2922 case AtomicRMWInst::UMin: 2923 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2924 break; 2925 case AtomicRMWInst::FAdd: 2926 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2927 break; 2928 case AtomicRMWInst::FSub: 2929 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2930 break; 2931 case AtomicRMWInst::FMax: 2932 Opcode = TargetOpcode::G_ATOMICRMW_FMAX; 2933 break; 2934 case AtomicRMWInst::FMin: 2935 Opcode = TargetOpcode::G_ATOMICRMW_FMIN; 2936 break; 2937 } 2938 2939 MIRBuilder.buildAtomicRMW( 2940 Opcode, Res, Addr, Val, 2941 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2942 Flags, MRI->getType(Val), getMemOpAlign(I), 2943 I.getAAMetadata(), nullptr, I.getSyncScopeID(), 2944 I.getOrdering())); 2945 return true; 2946 } 2947 2948 bool IRTranslator::translateFence(const User &U, 2949 MachineIRBuilder &MIRBuilder) { 2950 const FenceInst &Fence = cast<FenceInst>(U); 2951 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2952 Fence.getSyncScopeID()); 2953 return true; 2954 } 2955 2956 bool IRTranslator::translateFreeze(const User &U, 2957 MachineIRBuilder &MIRBuilder) { 2958 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 2959 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 2960 2961 assert(DstRegs.size() == SrcRegs.size() && 2962 "Freeze with different source and destination type?"); 2963 2964 for (unsigned I = 0; I < DstRegs.size(); ++I) { 2965 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 2966 } 2967 2968 return true; 2969 } 2970 2971 void IRTranslator::finishPendingPhis() { 2972 #ifndef NDEBUG 2973 DILocationVerifier Verifier; 2974 GISelObserverWrapper WrapperObserver(&Verifier); 2975 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2976 #endif // ifndef NDEBUG 2977 for (auto &Phi : PendingPHIs) { 2978 const PHINode *PI = Phi.first; 2979 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2980 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2981 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2982 #ifndef NDEBUG 2983 Verifier.setCurrentInst(PI); 2984 #endif // ifndef NDEBUG 2985 2986 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2987 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2988 auto IRPred = PI->getIncomingBlock(i); 2989 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2990 for (auto *Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2991 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2992 continue; 2993 SeenPreds.insert(Pred); 2994 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2995 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2996 MIB.addUse(ValRegs[j]); 2997 MIB.addMBB(Pred); 2998 } 2999 } 3000 } 3001 } 3002 } 3003 3004 bool IRTranslator::translate(const Instruction &Inst) { 3005 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 3006 3007 auto &TLI = *MF->getSubtarget().getTargetLowering(); 3008 if (TLI.fallBackToDAGISel(Inst)) 3009 return false; 3010 3011 switch (Inst.getOpcode()) { 3012 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 3013 case Instruction::OPCODE: \ 3014 return translate##OPCODE(Inst, *CurBuilder.get()); 3015 #include "llvm/IR/Instruction.def" 3016 default: 3017 return false; 3018 } 3019 } 3020 3021 bool IRTranslator::translate(const Constant &C, Register Reg) { 3022 // We only emit constants into the entry block from here. To prevent jumpy 3023 // debug behaviour remove debug line. 3024 if (auto CurrInstDL = CurBuilder->getDL()) 3025 EntryBuilder->setDebugLoc(DebugLoc()); 3026 3027 if (auto CI = dyn_cast<ConstantInt>(&C)) 3028 EntryBuilder->buildConstant(Reg, *CI); 3029 else if (auto CF = dyn_cast<ConstantFP>(&C)) 3030 EntryBuilder->buildFConstant(Reg, *CF); 3031 else if (isa<UndefValue>(C)) 3032 EntryBuilder->buildUndef(Reg); 3033 else if (isa<ConstantPointerNull>(C)) 3034 EntryBuilder->buildConstant(Reg, 0); 3035 else if (auto GV = dyn_cast<GlobalValue>(&C)) 3036 EntryBuilder->buildGlobalValue(Reg, GV); 3037 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 3038 if (!isa<FixedVectorType>(CAZ->getType())) 3039 return false; 3040 // Return the scalar if it is a <1 x Ty> vector. 3041 unsigned NumElts = CAZ->getElementCount().getFixedValue(); 3042 if (NumElts == 1) 3043 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder); 3044 SmallVector<Register, 4> Ops; 3045 for (unsigned I = 0; I < NumElts; ++I) { 3046 Constant &Elt = *CAZ->getElementValue(I); 3047 Ops.push_back(getOrCreateVReg(Elt)); 3048 } 3049 EntryBuilder->buildBuildVector(Reg, Ops); 3050 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 3051 // Return the scalar if it is a <1 x Ty> vector. 3052 if (CV->getNumElements() == 1) 3053 return translateCopy(C, *CV->getElementAsConstant(0), *EntryBuilder); 3054 SmallVector<Register, 4> Ops; 3055 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 3056 Constant &Elt = *CV->getElementAsConstant(i); 3057 Ops.push_back(getOrCreateVReg(Elt)); 3058 } 3059 EntryBuilder->buildBuildVector(Reg, Ops); 3060 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 3061 switch(CE->getOpcode()) { 3062 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 3063 case Instruction::OPCODE: \ 3064 return translate##OPCODE(*CE, *EntryBuilder.get()); 3065 #include "llvm/IR/Instruction.def" 3066 default: 3067 return false; 3068 } 3069 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 3070 if (CV->getNumOperands() == 1) 3071 return translateCopy(C, *CV->getOperand(0), *EntryBuilder); 3072 SmallVector<Register, 4> Ops; 3073 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 3074 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 3075 } 3076 EntryBuilder->buildBuildVector(Reg, Ops); 3077 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 3078 EntryBuilder->buildBlockAddress(Reg, BA); 3079 } else 3080 return false; 3081 3082 return true; 3083 } 3084 3085 bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB, 3086 MachineBasicBlock &MBB) { 3087 for (auto &BTB : SL->BitTestCases) { 3088 // Emit header first, if it wasn't already emitted. 3089 if (!BTB.Emitted) 3090 emitBitTestHeader(BTB, BTB.Parent); 3091 3092 BranchProbability UnhandledProb = BTB.Prob; 3093 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 3094 UnhandledProb -= BTB.Cases[j].ExtraProb; 3095 // Set the current basic block to the mbb we wish to insert the code into 3096 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB; 3097 // If all cases cover a contiguous range, it is not necessary to jump to 3098 // the default block after the last bit test fails. This is because the 3099 // range check during bit test header creation has guaranteed that every 3100 // case here doesn't go outside the range. In this case, there is no need 3101 // to perform the last bit test, as it will always be true. Instead, make 3102 // the second-to-last bit-test fall through to the target of the last bit 3103 // test, and delete the last bit test. 3104 3105 MachineBasicBlock *NextMBB; 3106 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3107 // Second-to-last bit-test with contiguous range: fall through to the 3108 // target of the final bit test. 3109 NextMBB = BTB.Cases[j + 1].TargetBB; 3110 } else if (j + 1 == ej) { 3111 // For the last bit test, fall through to Default. 3112 NextMBB = BTB.Default; 3113 } else { 3114 // Otherwise, fall through to the next bit test. 3115 NextMBB = BTB.Cases[j + 1].ThisBB; 3116 } 3117 3118 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB); 3119 3120 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3121 // We need to record the replacement phi edge here that normally 3122 // happens in emitBitTestCase before we delete the case, otherwise the 3123 // phi edge will be lost. 3124 addMachineCFGPred({BTB.Parent->getBasicBlock(), 3125 BTB.Cases[ej - 1].TargetBB->getBasicBlock()}, 3126 MBB); 3127 // Since we're not going to use the final bit test, remove it. 3128 BTB.Cases.pop_back(); 3129 break; 3130 } 3131 } 3132 // This is "default" BB. We have two jumps to it. From "header" BB and from 3133 // last "case" BB, unless the latter was skipped. 3134 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(), 3135 BTB.Default->getBasicBlock()}; 3136 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent); 3137 if (!BTB.ContiguousRange) { 3138 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB); 3139 } 3140 } 3141 SL->BitTestCases.clear(); 3142 3143 for (auto &JTCase : SL->JTCases) { 3144 // Emit header first, if it wasn't already emitted. 3145 if (!JTCase.first.Emitted) 3146 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 3147 3148 emitJumpTable(JTCase.second, JTCase.second.MBB); 3149 } 3150 SL->JTCases.clear(); 3151 3152 for (auto &SwCase : SL->SwitchCases) 3153 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder); 3154 SL->SwitchCases.clear(); 3155 3156 // Check if we need to generate stack-protector guard checks. 3157 StackProtector &SP = getAnalysis<StackProtector>(); 3158 if (SP.shouldEmitSDCheck(BB)) { 3159 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3160 bool FunctionBasedInstrumentation = 3161 TLI.getSSPStackGuardCheck(*MF->getFunction().getParent()); 3162 SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation); 3163 } 3164 // Handle stack protector. 3165 if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 3166 LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n"); 3167 return false; 3168 } else if (SPDescriptor.shouldEmitStackProtector()) { 3169 MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB(); 3170 MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB(); 3171 3172 // Find the split point to split the parent mbb. At the same time copy all 3173 // physical registers used in the tail of parent mbb into virtual registers 3174 // before the split point and back into physical registers after the split 3175 // point. This prevents us needing to deal with Live-ins and many other 3176 // register allocation issues caused by us splitting the parent mbb. The 3177 // register allocator will clean up said virtual copies later on. 3178 MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector( 3179 ParentMBB, *MF->getSubtarget().getInstrInfo()); 3180 3181 // Splice the terminator of ParentMBB into SuccessMBB. 3182 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint, 3183 ParentMBB->end()); 3184 3185 // Add compare/jump on neq/jump to the parent BB. 3186 if (!emitSPDescriptorParent(SPDescriptor, ParentMBB)) 3187 return false; 3188 3189 // CodeGen Failure MBB if we have not codegened it yet. 3190 MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB(); 3191 if (FailureMBB->empty()) { 3192 if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB)) 3193 return false; 3194 } 3195 3196 // Clear the Per-BB State. 3197 SPDescriptor.resetPerBBState(); 3198 } 3199 return true; 3200 } 3201 3202 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD, 3203 MachineBasicBlock *ParentBB) { 3204 CurBuilder->setInsertPt(*ParentBB, ParentBB->end()); 3205 // First create the loads to the guard/stack slot for the comparison. 3206 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3207 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 3208 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 3209 LLT PtrMemTy = getLLTForMVT(TLI.getPointerMemTy(*DL)); 3210 3211 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3212 int FI = MFI.getStackProtectorIndex(); 3213 3214 Register Guard; 3215 Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0); 3216 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3217 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 3218 3219 // Generate code to load the content of the guard slot. 3220 Register GuardVal = 3221 CurBuilder 3222 ->buildLoad(PtrMemTy, StackSlotPtr, 3223 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3224 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile) 3225 .getReg(0); 3226 3227 if (TLI.useStackGuardXorFP()) { 3228 LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented"); 3229 return false; 3230 } 3231 3232 // Retrieve guard check function, nullptr if instrumentation is inlined. 3233 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3234 // This path is currently untestable on GlobalISel, since the only platform 3235 // that needs this seems to be Windows, and we fall back on that currently. 3236 // The code still lives here in case that changes. 3237 // Silence warning about unused variable until the code below that uses 3238 // 'GuardCheckFn' is enabled. 3239 (void)GuardCheckFn; 3240 return false; 3241 #if 0 3242 // The target provides a guard check function to validate the guard value. 3243 // Generate a call to that function with the content of the guard slot as 3244 // argument. 3245 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3246 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3247 ISD::ArgFlagsTy Flags; 3248 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 3249 Flags.setInReg(); 3250 CallLowering::ArgInfo GuardArgInfo( 3251 {GuardVal, FnTy->getParamType(0), {Flags}}); 3252 3253 CallLowering::CallLoweringInfo Info; 3254 Info.OrigArgs.push_back(GuardArgInfo); 3255 Info.CallConv = GuardCheckFn->getCallingConv(); 3256 Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0); 3257 Info.OrigRet = {Register(), FnTy->getReturnType()}; 3258 if (!CLI->lowerCall(MIRBuilder, Info)) { 3259 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n"); 3260 return false; 3261 } 3262 return true; 3263 #endif 3264 } 3265 3266 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3267 // Otherwise, emit a volatile load to retrieve the stack guard value. 3268 if (TLI.useLoadStackGuardNode()) { 3269 Guard = 3270 MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits())); 3271 getStackGuard(Guard, *CurBuilder); 3272 } else { 3273 // TODO: test using android subtarget when we support @llvm.thread.pointer. 3274 const Value *IRGuard = TLI.getSDagStackGuard(M); 3275 Register GuardPtr = getOrCreateVReg(*IRGuard); 3276 3277 Guard = CurBuilder 3278 ->buildLoad(PtrMemTy, GuardPtr, 3279 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3280 MachineMemOperand::MOLoad | 3281 MachineMemOperand::MOVolatile) 3282 .getReg(0); 3283 } 3284 3285 // Perform the comparison. 3286 auto Cmp = 3287 CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal); 3288 // If the guard/stackslot do not equal, branch to failure MBB. 3289 CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB()); 3290 // Otherwise branch to success MBB. 3291 CurBuilder->buildBr(*SPD.getSuccessMBB()); 3292 return true; 3293 } 3294 3295 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD, 3296 MachineBasicBlock *FailureBB) { 3297 CurBuilder->setInsertPt(*FailureBB, FailureBB->end()); 3298 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3299 3300 const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL; 3301 const char *Name = TLI.getLibcallName(Libcall); 3302 3303 CallLowering::CallLoweringInfo Info; 3304 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 3305 Info.Callee = MachineOperand::CreateES(Name); 3306 Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()), 3307 0}; 3308 if (!CLI->lowerCall(*CurBuilder, Info)) { 3309 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n"); 3310 return false; 3311 } 3312 3313 // On PS4/PS5, the "return address" must still be within the calling 3314 // function, even if it's at the very end, so emit an explicit TRAP here. 3315 // WebAssembly needs an unreachable instruction after a non-returning call, 3316 // because the function return type can be different from __stack_chk_fail's 3317 // return type (void). 3318 const TargetMachine &TM = MF->getTarget(); 3319 if (TM.getTargetTriple().isPS() || TM.getTargetTriple().isWasm()) { 3320 LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n"); 3321 return false; 3322 } 3323 return true; 3324 } 3325 3326 void IRTranslator::finalizeFunction() { 3327 // Release the memory used by the different maps we 3328 // needed during the translation. 3329 PendingPHIs.clear(); 3330 VMap.reset(); 3331 FrameIndices.clear(); 3332 MachinePreds.clear(); 3333 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 3334 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 3335 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 3336 EntryBuilder.reset(); 3337 CurBuilder.reset(); 3338 FuncInfo.clear(); 3339 SPDescriptor.resetPerFunctionState(); 3340 } 3341 3342 /// Returns true if a BasicBlock \p BB within a variadic function contains a 3343 /// variadic musttail call. 3344 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 3345 if (!IsVarArg) 3346 return false; 3347 3348 // Walk the block backwards, because tail calls usually only appear at the end 3349 // of a block. 3350 return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) { 3351 const auto *CI = dyn_cast<CallInst>(&I); 3352 return CI && CI->isMustTailCall(); 3353 }); 3354 } 3355 3356 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 3357 MF = &CurMF; 3358 const Function &F = MF->getFunction(); 3359 GISelCSEAnalysisWrapper &Wrapper = 3360 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 3361 // Set the CSEConfig and run the analysis. 3362 GISelCSEInfo *CSEInfo = nullptr; 3363 TPC = &getAnalysis<TargetPassConfig>(); 3364 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 3365 ? EnableCSEInIRTranslator 3366 : TPC->isGISelCSEEnabled(); 3367 3368 if (EnableCSE) { 3369 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3370 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 3371 EntryBuilder->setCSEInfo(CSEInfo); 3372 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3373 CurBuilder->setCSEInfo(CSEInfo); 3374 } else { 3375 EntryBuilder = std::make_unique<MachineIRBuilder>(); 3376 CurBuilder = std::make_unique<MachineIRBuilder>(); 3377 } 3378 CLI = MF->getSubtarget().getCallLowering(); 3379 CurBuilder->setMF(*MF); 3380 EntryBuilder->setMF(*MF); 3381 MRI = &MF->getRegInfo(); 3382 DL = &F.getParent()->getDataLayout(); 3383 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 3384 const TargetMachine &TM = MF->getTarget(); 3385 TM.resetTargetOptions(F); 3386 EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F); 3387 FuncInfo.MF = MF; 3388 if (EnableOpts) { 3389 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3390 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 3391 } else { 3392 AA = nullptr; 3393 FuncInfo.BPI = nullptr; 3394 } 3395 3396 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF); 3397 3398 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 3399 3400 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 3401 SL->init(TLI, TM, *DL); 3402 3403 3404 3405 assert(PendingPHIs.empty() && "stale PHIs"); 3406 3407 // Targets which want to use big endian can enable it using 3408 // enableBigEndian() 3409 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) { 3410 // Currently we don't properly handle big endian code. 3411 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3412 F.getSubprogram(), &F.getEntryBlock()); 3413 R << "unable to translate in big endian mode"; 3414 reportTranslationError(*MF, *TPC, *ORE, R); 3415 } 3416 3417 // Release the per-function state when we return, whether we succeeded or not. 3418 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 3419 3420 // Setup a separate basic-block for the arguments and constants 3421 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 3422 MF->push_back(EntryBB); 3423 EntryBuilder->setMBB(*EntryBB); 3424 3425 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 3426 SwiftError.setFunction(CurMF); 3427 SwiftError.createEntriesInEntryBlock(DbgLoc); 3428 3429 bool IsVarArg = F.isVarArg(); 3430 bool HasMustTailInVarArgFn = false; 3431 3432 // Create all blocks, in IR order, to preserve the layout. 3433 for (const BasicBlock &BB: F) { 3434 auto *&MBB = BBToMBB[&BB]; 3435 3436 MBB = MF->CreateMachineBasicBlock(&BB); 3437 MF->push_back(MBB); 3438 3439 if (BB.hasAddressTaken()) 3440 MBB->setHasAddressTaken(); 3441 3442 if (!HasMustTailInVarArgFn) 3443 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 3444 } 3445 3446 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 3447 3448 // Make our arguments/constants entry block fallthrough to the IR entry block. 3449 EntryBB->addSuccessor(&getMBB(F.front())); 3450 3451 if (CLI->fallBackToDAGISel(*MF)) { 3452 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3453 F.getSubprogram(), &F.getEntryBlock()); 3454 R << "unable to lower function: " << ore::NV("Prototype", F.getType()); 3455 reportTranslationError(*MF, *TPC, *ORE, R); 3456 return false; 3457 } 3458 3459 // Lower the actual args into this basic block. 3460 SmallVector<ArrayRef<Register>, 8> VRegArgs; 3461 for (const Argument &Arg: F.args()) { 3462 if (DL->getTypeStoreSize(Arg.getType()).isZero()) 3463 continue; // Don't handle zero sized types. 3464 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 3465 VRegArgs.push_back(VRegs); 3466 3467 if (Arg.hasSwiftErrorAttr()) { 3468 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 3469 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 3470 } 3471 } 3472 3473 if (!CLI->lowerFormalArguments(*EntryBuilder, F, VRegArgs, FuncInfo)) { 3474 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3475 F.getSubprogram(), &F.getEntryBlock()); 3476 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 3477 reportTranslationError(*MF, *TPC, *ORE, R); 3478 return false; 3479 } 3480 3481 // Need to visit defs before uses when translating instructions. 3482 GISelObserverWrapper WrapperObserver; 3483 if (EnableCSE && CSEInfo) 3484 WrapperObserver.addObserver(CSEInfo); 3485 { 3486 ReversePostOrderTraversal<const Function *> RPOT(&F); 3487 #ifndef NDEBUG 3488 DILocationVerifier Verifier; 3489 WrapperObserver.addObserver(&Verifier); 3490 #endif // ifndef NDEBUG 3491 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 3492 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 3493 for (const BasicBlock *BB : RPOT) { 3494 MachineBasicBlock &MBB = getMBB(*BB); 3495 // Set the insertion point of all the following translations to 3496 // the end of this basic block. 3497 CurBuilder->setMBB(MBB); 3498 HasTailCall = false; 3499 for (const Instruction &Inst : *BB) { 3500 // If we translated a tail call in the last step, then we know 3501 // everything after the call is either a return, or something that is 3502 // handled by the call itself. (E.g. a lifetime marker or assume 3503 // intrinsic.) In this case, we should stop translating the block and 3504 // move on. 3505 if (HasTailCall) 3506 break; 3507 #ifndef NDEBUG 3508 Verifier.setCurrentInst(&Inst); 3509 #endif // ifndef NDEBUG 3510 if (translate(Inst)) 3511 continue; 3512 3513 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3514 Inst.getDebugLoc(), BB); 3515 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 3516 3517 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 3518 std::string InstStrStorage; 3519 raw_string_ostream InstStr(InstStrStorage); 3520 InstStr << Inst; 3521 3522 R << ": '" << InstStr.str() << "'"; 3523 } 3524 3525 reportTranslationError(*MF, *TPC, *ORE, R); 3526 return false; 3527 } 3528 3529 if (!finalizeBasicBlock(*BB, MBB)) { 3530 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3531 BB->getTerminator()->getDebugLoc(), BB); 3532 R << "unable to translate basic block"; 3533 reportTranslationError(*MF, *TPC, *ORE, R); 3534 return false; 3535 } 3536 } 3537 #ifndef NDEBUG 3538 WrapperObserver.removeObserver(&Verifier); 3539 #endif 3540 } 3541 3542 finishPendingPhis(); 3543 3544 SwiftError.propagateVRegs(); 3545 3546 // Merge the argument lowering and constants block with its single 3547 // successor, the LLVM-IR entry block. We want the basic block to 3548 // be maximal. 3549 assert(EntryBB->succ_size() == 1 && 3550 "Custom BB used for lowering should have only one successor"); 3551 // Get the successor of the current entry block. 3552 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 3553 assert(NewEntryBB.pred_size() == 1 && 3554 "LLVM-IR entry block has a predecessor!?"); 3555 // Move all the instruction from the current entry block to the 3556 // new entry block. 3557 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 3558 EntryBB->end()); 3559 3560 // Update the live-in information for the new entry block. 3561 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 3562 NewEntryBB.addLiveIn(LiveIn); 3563 NewEntryBB.sortUniqueLiveIns(); 3564 3565 // Get rid of the now empty basic block. 3566 EntryBB->removeSuccessor(&NewEntryBB); 3567 MF->remove(EntryBB); 3568 MF->deleteMachineBasicBlock(EntryBB); 3569 3570 assert(&MF->front() == &NewEntryBB && 3571 "New entry wasn't next in the list of basic block!"); 3572 3573 // Initialize stack protector information. 3574 StackProtector &SP = getAnalysis<StackProtector>(); 3575 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 3576 3577 return false; 3578 } 3579