1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 27 #include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h" 28 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 29 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 30 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 31 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 32 #include "llvm/CodeGen/LowLevelTypeUtils.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineModuleInfo.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 42 #include "llvm/CodeGen/StackProtector.h" 43 #include "llvm/CodeGen/SwitchLoweringUtils.h" 44 #include "llvm/CodeGen/TargetFrameLowering.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetOpcodes.h" 48 #include "llvm/CodeGen/TargetPassConfig.h" 49 #include "llvm/CodeGen/TargetRegisterInfo.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/CodeGenTypes/LowLevelType.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/CFG.h" 54 #include "llvm/IR/Constant.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/DiagnosticInfo.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/GetElementPtrTypeIterator.h" 61 #include "llvm/IR/InlineAsm.h" 62 #include "llvm/IR/InstrTypes.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/IntrinsicsAMDGPU.h" 67 #include "llvm/IR/LLVMContext.h" 68 #include "llvm/IR/Metadata.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Statepoint.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/InitializePasses.h" 75 #include "llvm/MC/MCContext.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CodeGen.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/MathExtras.h" 82 #include "llvm/Support/raw_ostream.h" 83 #include "llvm/Target/TargetIntrinsicInfo.h" 84 #include "llvm/Target/TargetMachine.h" 85 #include "llvm/Transforms/Utils/Local.h" 86 #include "llvm/Transforms/Utils/MemoryOpRemark.h" 87 #include <algorithm> 88 #include <cassert> 89 #include <cstdint> 90 #include <iterator> 91 #include <optional> 92 #include <string> 93 #include <utility> 94 #include <vector> 95 96 #define DEBUG_TYPE "irtranslator" 97 98 using namespace llvm; 99 100 static cl::opt<bool> 101 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 102 cl::desc("Should enable CSE in irtranslator"), 103 cl::Optional, cl::init(false)); 104 char IRTranslator::ID = 0; 105 106 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 107 false, false) 108 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 109 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 110 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 111 INITIALIZE_PASS_DEPENDENCY(StackProtector) 112 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 113 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 114 false, false) 115 116 static void reportTranslationError(MachineFunction &MF, 117 const TargetPassConfig &TPC, 118 OptimizationRemarkEmitter &ORE, 119 OptimizationRemarkMissed &R) { 120 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 121 122 // Print the function name explicitly if we don't have a debug location (which 123 // makes the diagnostic less useful) or if we're going to emit a raw error. 124 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 125 R << (" (in function: " + MF.getName() + ")").str(); 126 127 if (TPC.isGlobalISelAbortEnabled()) 128 report_fatal_error(Twine(R.getMsg())); 129 else 130 ORE.emit(R); 131 } 132 133 IRTranslator::IRTranslator(CodeGenOptLevel optlevel) 134 : MachineFunctionPass(ID), OptLevel(optlevel) {} 135 136 #ifndef NDEBUG 137 namespace { 138 /// Verify that every instruction created has the same DILocation as the 139 /// instruction being translated. 140 class DILocationVerifier : public GISelChangeObserver { 141 const Instruction *CurrInst = nullptr; 142 143 public: 144 DILocationVerifier() = default; 145 ~DILocationVerifier() = default; 146 147 const Instruction *getCurrentInst() const { return CurrInst; } 148 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 149 150 void erasingInstr(MachineInstr &MI) override {} 151 void changingInstr(MachineInstr &MI) override {} 152 void changedInstr(MachineInstr &MI) override {} 153 154 void createdInstr(MachineInstr &MI) override { 155 assert(getCurrentInst() && "Inserted instruction without a current MI"); 156 157 // Only print the check message if we're actually checking it. 158 #ifndef NDEBUG 159 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 160 << " was copied to " << MI); 161 #endif 162 // We allow insts in the entry block to have no debug loc because 163 // they could have originated from constants, and we don't want a jumpy 164 // debug experience. 165 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 166 (MI.getParent()->isEntryBlock() && !MI.getDebugLoc()) || 167 (MI.isDebugInstr())) && 168 "Line info was not transferred to all instructions"); 169 } 170 }; 171 } // namespace 172 #endif // ifndef NDEBUG 173 174 175 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 176 AU.addRequired<StackProtector>(); 177 AU.addRequired<TargetPassConfig>(); 178 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 179 AU.addRequired<AssumptionCacheTracker>(); 180 if (OptLevel != CodeGenOptLevel::None) { 181 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 182 AU.addRequired<AAResultsWrapperPass>(); 183 } 184 AU.addRequired<TargetLibraryInfoWrapperPass>(); 185 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 186 getSelectionDAGFallbackAnalysisUsage(AU); 187 MachineFunctionPass::getAnalysisUsage(AU); 188 } 189 190 IRTranslator::ValueToVRegInfo::VRegListT & 191 IRTranslator::allocateVRegs(const Value &Val) { 192 auto VRegsIt = VMap.findVRegs(Val); 193 if (VRegsIt != VMap.vregs_end()) 194 return *VRegsIt->second; 195 auto *Regs = VMap.getVRegs(Val); 196 auto *Offsets = VMap.getOffsets(Val); 197 SmallVector<LLT, 4> SplitTys; 198 computeValueLLTs(*DL, *Val.getType(), SplitTys, 199 Offsets->empty() ? Offsets : nullptr); 200 for (unsigned i = 0; i < SplitTys.size(); ++i) 201 Regs->push_back(0); 202 return *Regs; 203 } 204 205 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 206 auto VRegsIt = VMap.findVRegs(Val); 207 if (VRegsIt != VMap.vregs_end()) 208 return *VRegsIt->second; 209 210 if (Val.getType()->isVoidTy()) 211 return *VMap.getVRegs(Val); 212 213 // Create entry for this type. 214 auto *VRegs = VMap.getVRegs(Val); 215 auto *Offsets = VMap.getOffsets(Val); 216 217 if (!Val.getType()->isTokenTy()) 218 assert(Val.getType()->isSized() && 219 "Don't know how to create an empty vreg"); 220 221 SmallVector<LLT, 4> SplitTys; 222 computeValueLLTs(*DL, *Val.getType(), SplitTys, 223 Offsets->empty() ? Offsets : nullptr); 224 225 if (!isa<Constant>(Val)) { 226 for (auto Ty : SplitTys) 227 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 228 return *VRegs; 229 } 230 231 if (Val.getType()->isAggregateType()) { 232 // UndefValue, ConstantAggregateZero 233 auto &C = cast<Constant>(Val); 234 unsigned Idx = 0; 235 while (auto Elt = C.getAggregateElement(Idx++)) { 236 auto EltRegs = getOrCreateVRegs(*Elt); 237 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 238 } 239 } else { 240 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 241 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 242 bool Success = translate(cast<Constant>(Val), VRegs->front()); 243 if (!Success) { 244 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 245 MF->getFunction().getSubprogram(), 246 &MF->getFunction().getEntryBlock()); 247 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 248 reportTranslationError(*MF, *TPC, *ORE, R); 249 return *VRegs; 250 } 251 } 252 253 return *VRegs; 254 } 255 256 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 257 auto MapEntry = FrameIndices.find(&AI); 258 if (MapEntry != FrameIndices.end()) 259 return MapEntry->second; 260 261 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 262 uint64_t Size = 263 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 264 265 // Always allocate at least one byte. 266 Size = std::max<uint64_t>(Size, 1u); 267 268 int &FI = FrameIndices[&AI]; 269 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI); 270 return FI; 271 } 272 273 Align IRTranslator::getMemOpAlign(const Instruction &I) { 274 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) 275 return SI->getAlign(); 276 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) 277 return LI->getAlign(); 278 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 279 return AI->getAlign(); 280 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) 281 return AI->getAlign(); 282 283 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 284 R << "unable to translate memop: " << ore::NV("Opcode", &I); 285 reportTranslationError(*MF, *TPC, *ORE, R); 286 return Align(1); 287 } 288 289 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 290 MachineBasicBlock *&MBB = BBToMBB[&BB]; 291 assert(MBB && "BasicBlock was not encountered before"); 292 return *MBB; 293 } 294 295 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 296 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 297 MachinePreds[Edge].push_back(NewPred); 298 } 299 300 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 301 MachineIRBuilder &MIRBuilder) { 302 // Get or create a virtual register for each value. 303 // Unless the value is a Constant => loadimm cst? 304 // or inline constant each time? 305 // Creation of a virtual register needs to have a size. 306 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 307 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 308 Register Res = getOrCreateVReg(U); 309 uint32_t Flags = 0; 310 if (isa<Instruction>(U)) { 311 const Instruction &I = cast<Instruction>(U); 312 Flags = MachineInstr::copyFlagsFromInstruction(I); 313 } 314 315 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 316 return true; 317 } 318 319 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U, 320 MachineIRBuilder &MIRBuilder) { 321 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 322 Register Res = getOrCreateVReg(U); 323 uint32_t Flags = 0; 324 if (isa<Instruction>(U)) { 325 const Instruction &I = cast<Instruction>(U); 326 Flags = MachineInstr::copyFlagsFromInstruction(I); 327 } 328 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags); 329 return true; 330 } 331 332 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 333 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder); 334 } 335 336 bool IRTranslator::translateCompare(const User &U, 337 MachineIRBuilder &MIRBuilder) { 338 auto *CI = cast<CmpInst>(&U); 339 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 340 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 341 Register Res = getOrCreateVReg(U); 342 CmpInst::Predicate Pred = CI->getPredicate(); 343 if (CmpInst::isIntPredicate(Pred)) 344 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 345 else if (Pred == CmpInst::FCMP_FALSE) 346 MIRBuilder.buildCopy( 347 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 348 else if (Pred == CmpInst::FCMP_TRUE) 349 MIRBuilder.buildCopy( 350 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 351 else { 352 uint32_t Flags = 0; 353 if (CI) 354 Flags = MachineInstr::copyFlagsFromInstruction(*CI); 355 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags); 356 } 357 358 return true; 359 } 360 361 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 362 const ReturnInst &RI = cast<ReturnInst>(U); 363 const Value *Ret = RI.getReturnValue(); 364 if (Ret && DL->getTypeStoreSize(Ret->getType()).isZero()) 365 Ret = nullptr; 366 367 ArrayRef<Register> VRegs; 368 if (Ret) 369 VRegs = getOrCreateVRegs(*Ret); 370 371 Register SwiftErrorVReg = 0; 372 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 373 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 374 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 375 } 376 377 // The target may mess up with the insertion point, but 378 // this is not important as a return is the last instruction 379 // of the block anyway. 380 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg); 381 } 382 383 void IRTranslator::emitBranchForMergedCondition( 384 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 385 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 386 BranchProbability TProb, BranchProbability FProb, bool InvertCond) { 387 // If the leaf of the tree is a comparison, merge the condition into 388 // the caseblock. 389 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 390 CmpInst::Predicate Condition; 391 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 392 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 393 } else { 394 const FCmpInst *FC = cast<FCmpInst>(Cond); 395 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 396 } 397 398 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0), 399 BOp->getOperand(1), nullptr, TBB, FBB, CurBB, 400 CurBuilder->getDebugLoc(), TProb, FProb); 401 SL->SwitchCases.push_back(CB); 402 return; 403 } 404 405 // Create a CaseBlock record representing this branch. 406 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 407 SwitchCG::CaseBlock CB( 408 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()), 409 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb); 410 SL->SwitchCases.push_back(CB); 411 } 412 413 static bool isValInBlock(const Value *V, const BasicBlock *BB) { 414 if (const Instruction *I = dyn_cast<Instruction>(V)) 415 return I->getParent() == BB; 416 return true; 417 } 418 419 void IRTranslator::findMergedConditions( 420 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 421 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 422 Instruction::BinaryOps Opc, BranchProbability TProb, 423 BranchProbability FProb, bool InvertCond) { 424 using namespace PatternMatch; 425 assert((Opc == Instruction::And || Opc == Instruction::Or) && 426 "Expected Opc to be AND/OR"); 427 // Skip over not part of the tree and remember to invert op and operands at 428 // next level. 429 Value *NotCond; 430 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 431 isValInBlock(NotCond, CurBB->getBasicBlock())) { 432 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 433 !InvertCond); 434 return; 435 } 436 437 const Instruction *BOp = dyn_cast<Instruction>(Cond); 438 const Value *BOpOp0, *BOpOp1; 439 // Compute the effective opcode for Cond, taking into account whether it needs 440 // to be inverted, e.g. 441 // and (not (or A, B)), C 442 // gets lowered as 443 // and (and (not A, not B), C) 444 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 445 if (BOp) { 446 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 447 ? Instruction::And 448 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 449 ? Instruction::Or 450 : (Instruction::BinaryOps)0); 451 if (InvertCond) { 452 if (BOpc == Instruction::And) 453 BOpc = Instruction::Or; 454 else if (BOpc == Instruction::Or) 455 BOpc = Instruction::And; 456 } 457 } 458 459 // If this node is not part of the or/and tree, emit it as a branch. 460 // Note that all nodes in the tree should have same opcode. 461 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 462 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 463 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) || 464 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) { 465 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb, 466 InvertCond); 467 return; 468 } 469 470 // Create TmpBB after CurBB. 471 MachineFunction::iterator BBI(CurBB); 472 MachineBasicBlock *TmpBB = 473 MF->CreateMachineBasicBlock(CurBB->getBasicBlock()); 474 CurBB->getParent()->insert(++BBI, TmpBB); 475 476 if (Opc == Instruction::Or) { 477 // Codegen X | Y as: 478 // BB1: 479 // jmp_if_X TBB 480 // jmp TmpBB 481 // TmpBB: 482 // jmp_if_Y TBB 483 // jmp FBB 484 // 485 486 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 487 // The requirement is that 488 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 489 // = TrueProb for original BB. 490 // Assuming the original probabilities are A and B, one choice is to set 491 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 492 // A/(1+B) and 2B/(1+B). This choice assumes that 493 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 494 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 495 // TmpBB, but the math is more complicated. 496 497 auto NewTrueProb = TProb / 2; 498 auto NewFalseProb = TProb / 2 + FProb; 499 // Emit the LHS condition. 500 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 501 NewFalseProb, InvertCond); 502 503 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 504 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 505 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 506 // Emit the RHS condition into TmpBB. 507 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 508 Probs[1], InvertCond); 509 } else { 510 assert(Opc == Instruction::And && "Unknown merge op!"); 511 // Codegen X & Y as: 512 // BB1: 513 // jmp_if_X TmpBB 514 // jmp FBB 515 // TmpBB: 516 // jmp_if_Y TBB 517 // jmp FBB 518 // 519 // This requires creation of TmpBB after CurBB. 520 521 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 522 // The requirement is that 523 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 524 // = FalseProb for original BB. 525 // Assuming the original probabilities are A and B, one choice is to set 526 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 527 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 528 // TrueProb for BB1 * FalseProb for TmpBB. 529 530 auto NewTrueProb = TProb + FProb / 2; 531 auto NewFalseProb = FProb / 2; 532 // Emit the LHS condition. 533 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 534 NewFalseProb, InvertCond); 535 536 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 537 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 538 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 539 // Emit the RHS condition into TmpBB. 540 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 541 Probs[1], InvertCond); 542 } 543 } 544 545 bool IRTranslator::shouldEmitAsBranches( 546 const std::vector<SwitchCG::CaseBlock> &Cases) { 547 // For multiple cases, it's better to emit as branches. 548 if (Cases.size() != 2) 549 return true; 550 551 // If this is two comparisons of the same values or'd or and'd together, they 552 // will get folded into a single comparison, so don't emit two blocks. 553 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 554 Cases[0].CmpRHS == Cases[1].CmpRHS) || 555 (Cases[0].CmpRHS == Cases[1].CmpLHS && 556 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 557 return false; 558 } 559 560 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 561 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 562 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 563 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred && 564 isa<Constant>(Cases[0].CmpRHS) && 565 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 566 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ && 567 Cases[0].TrueBB == Cases[1].ThisBB) 568 return false; 569 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE && 570 Cases[0].FalseBB == Cases[1].ThisBB) 571 return false; 572 } 573 574 return true; 575 } 576 577 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 578 const BranchInst &BrInst = cast<BranchInst>(U); 579 auto &CurMBB = MIRBuilder.getMBB(); 580 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0)); 581 582 if (BrInst.isUnconditional()) { 583 // If the unconditional target is the layout successor, fallthrough. 584 if (OptLevel == CodeGenOptLevel::None || 585 !CurMBB.isLayoutSuccessor(Succ0MBB)) 586 MIRBuilder.buildBr(*Succ0MBB); 587 588 // Link successors. 589 for (const BasicBlock *Succ : successors(&BrInst)) 590 CurMBB.addSuccessor(&getMBB(*Succ)); 591 return true; 592 } 593 594 // If this condition is one of the special cases we handle, do special stuff 595 // now. 596 const Value *CondVal = BrInst.getCondition(); 597 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1)); 598 599 // If this is a series of conditions that are or'd or and'd together, emit 600 // this as a sequence of branches instead of setcc's with and/or operations. 601 // As long as jumps are not expensive (exceptions for multi-use logic ops, 602 // unpredictable branches, and vector extracts because those jumps are likely 603 // expensive for any target), this should improve performance. 604 // For example, instead of something like: 605 // cmp A, B 606 // C = seteq 607 // cmp D, E 608 // F = setle 609 // or C, F 610 // jnz foo 611 // Emit: 612 // cmp A, B 613 // je foo 614 // cmp D, E 615 // jle foo 616 using namespace PatternMatch; 617 const Instruction *CondI = dyn_cast<Instruction>(CondVal); 618 if (!TLI->isJumpExpensive() && CondI && CondI->hasOneUse() && 619 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) { 620 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 621 Value *Vec; 622 const Value *BOp0, *BOp1; 623 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 624 Opcode = Instruction::And; 625 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 626 Opcode = Instruction::Or; 627 628 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 629 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 630 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode, 631 getEdgeProbability(&CurMBB, Succ0MBB), 632 getEdgeProbability(&CurMBB, Succ1MBB), 633 /*InvertCond=*/false); 634 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!"); 635 636 // Allow some cases to be rejected. 637 if (shouldEmitAsBranches(SL->SwitchCases)) { 638 // Emit the branch for this block. 639 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder); 640 SL->SwitchCases.erase(SL->SwitchCases.begin()); 641 return true; 642 } 643 644 // Okay, we decided not to do this, remove any inserted MBB's and clear 645 // SwitchCases. 646 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I) 647 MF->erase(SL->SwitchCases[I].ThisBB); 648 649 SL->SwitchCases.clear(); 650 } 651 } 652 653 // Create a CaseBlock record representing this branch. 654 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal, 655 ConstantInt::getTrue(MF->getFunction().getContext()), 656 nullptr, Succ0MBB, Succ1MBB, &CurMBB, 657 CurBuilder->getDebugLoc()); 658 659 // Use emitSwitchCase to actually insert the fast branch sequence for this 660 // cond branch. 661 emitSwitchCase(CB, &CurMBB, *CurBuilder); 662 return true; 663 } 664 665 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 666 MachineBasicBlock *Dst, 667 BranchProbability Prob) { 668 if (!FuncInfo.BPI) { 669 Src->addSuccessorWithoutProb(Dst); 670 return; 671 } 672 if (Prob.isUnknown()) 673 Prob = getEdgeProbability(Src, Dst); 674 Src->addSuccessor(Dst, Prob); 675 } 676 677 BranchProbability 678 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 679 const MachineBasicBlock *Dst) const { 680 const BasicBlock *SrcBB = Src->getBasicBlock(); 681 const BasicBlock *DstBB = Dst->getBasicBlock(); 682 if (!FuncInfo.BPI) { 683 // If BPI is not available, set the default probability as 1 / N, where N is 684 // the number of successors. 685 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 686 return BranchProbability(1, SuccSize); 687 } 688 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 689 } 690 691 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 692 using namespace SwitchCG; 693 // Extract cases from the switch. 694 const SwitchInst &SI = cast<SwitchInst>(U); 695 BranchProbabilityInfo *BPI = FuncInfo.BPI; 696 CaseClusterVector Clusters; 697 Clusters.reserve(SI.getNumCases()); 698 for (const auto &I : SI.cases()) { 699 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 700 assert(Succ && "Could not find successor mbb in mapping"); 701 const ConstantInt *CaseVal = I.getCaseValue(); 702 BranchProbability Prob = 703 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 704 : BranchProbability(1, SI.getNumCases() + 1); 705 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 706 } 707 708 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 709 710 // Cluster adjacent cases with the same destination. We do this at all 711 // optimization levels because it's cheap to do and will make codegen faster 712 // if there are many clusters. 713 sortAndRangeify(Clusters); 714 715 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 716 717 // If there is only the default destination, jump there directly. 718 if (Clusters.empty()) { 719 SwitchMBB->addSuccessor(DefaultMBB); 720 if (DefaultMBB != SwitchMBB->getNextNode()) 721 MIB.buildBr(*DefaultMBB); 722 return true; 723 } 724 725 SL->findJumpTables(Clusters, &SI, std::nullopt, DefaultMBB, nullptr, nullptr); 726 SL->findBitTestClusters(Clusters, &SI); 727 728 LLVM_DEBUG({ 729 dbgs() << "Case clusters: "; 730 for (const CaseCluster &C : Clusters) { 731 if (C.Kind == CC_JumpTable) 732 dbgs() << "JT:"; 733 if (C.Kind == CC_BitTests) 734 dbgs() << "BT:"; 735 736 C.Low->getValue().print(dbgs(), true); 737 if (C.Low != C.High) { 738 dbgs() << '-'; 739 C.High->getValue().print(dbgs(), true); 740 } 741 dbgs() << ' '; 742 } 743 dbgs() << '\n'; 744 }); 745 746 assert(!Clusters.empty()); 747 SwitchWorkList WorkList; 748 CaseClusterIt First = Clusters.begin(); 749 CaseClusterIt Last = Clusters.end() - 1; 750 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 751 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 752 753 while (!WorkList.empty()) { 754 SwitchWorkListItem W = WorkList.pop_back_val(); 755 756 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 757 // For optimized builds, lower large range as a balanced binary tree. 758 if (NumClusters > 3 && 759 MF->getTarget().getOptLevel() != CodeGenOptLevel::None && 760 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 761 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB, MIB); 762 continue; 763 } 764 765 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 766 return false; 767 } 768 return true; 769 } 770 771 void IRTranslator::splitWorkItem(SwitchCG::SwitchWorkList &WorkList, 772 const SwitchCG::SwitchWorkListItem &W, 773 Value *Cond, MachineBasicBlock *SwitchMBB, 774 MachineIRBuilder &MIB) { 775 using namespace SwitchCG; 776 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 777 "Clusters not sorted?"); 778 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 779 780 auto [LastLeft, FirstRight, LeftProb, RightProb] = 781 SL->computeSplitWorkItemInfo(W); 782 783 // Use the first element on the right as pivot since we will make less-than 784 // comparisons against it. 785 CaseClusterIt PivotCluster = FirstRight; 786 assert(PivotCluster > W.FirstCluster); 787 assert(PivotCluster <= W.LastCluster); 788 789 CaseClusterIt FirstLeft = W.FirstCluster; 790 CaseClusterIt LastRight = W.LastCluster; 791 792 const ConstantInt *Pivot = PivotCluster->Low; 793 794 // New blocks will be inserted immediately after the current one. 795 MachineFunction::iterator BBI(W.MBB); 796 ++BBI; 797 798 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 799 // we can branch to its destination directly if it's squeezed exactly in 800 // between the known lower bound and Pivot - 1. 801 MachineBasicBlock *LeftMBB; 802 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 803 FirstLeft->Low == W.GE && 804 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 805 LeftMBB = FirstLeft->MBB; 806 } else { 807 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 808 FuncInfo.MF->insert(BBI, LeftMBB); 809 WorkList.push_back( 810 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 811 } 812 813 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 814 // single cluster, RHS.Low == Pivot, and we can branch to its destination 815 // directly if RHS.High equals the current upper bound. 816 MachineBasicBlock *RightMBB; 817 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && W.LT && 818 (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 819 RightMBB = FirstRight->MBB; 820 } else { 821 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 822 FuncInfo.MF->insert(BBI, RightMBB); 823 WorkList.push_back( 824 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 825 } 826 827 // Create the CaseBlock record that will be used to lower the branch. 828 CaseBlock CB(ICmpInst::Predicate::ICMP_SLT, false, Cond, Pivot, nullptr, 829 LeftMBB, RightMBB, W.MBB, MIB.getDebugLoc(), LeftProb, 830 RightProb); 831 832 if (W.MBB == SwitchMBB) 833 emitSwitchCase(CB, SwitchMBB, MIB); 834 else 835 SL->SwitchCases.push_back(CB); 836 } 837 838 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 839 MachineBasicBlock *MBB) { 840 // Emit the code for the jump table 841 assert(JT.Reg != -1U && "Should lower JT Header first!"); 842 MachineIRBuilder MIB(*MBB->getParent()); 843 MIB.setMBB(*MBB); 844 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 845 846 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext()); 847 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 848 849 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 850 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 851 } 852 853 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 854 SwitchCG::JumpTableHeader &JTH, 855 MachineBasicBlock *HeaderBB) { 856 MachineIRBuilder MIB(*HeaderBB->getParent()); 857 MIB.setMBB(*HeaderBB); 858 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 859 860 const Value &SValue = *JTH.SValue; 861 // Subtract the lowest switch case value from the value being switched on. 862 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 863 Register SwitchOpReg = getOrCreateVReg(SValue); 864 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 865 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 866 867 // This value may be smaller or larger than the target's pointer type, and 868 // therefore require extension or truncating. 869 auto *PtrIRTy = PointerType::getUnqual(SValue.getContext()); 870 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 871 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 872 873 JT.Reg = Sub.getReg(0); 874 875 if (JTH.FallthroughUnreachable) { 876 if (JT.MBB != HeaderBB->getNextNode()) 877 MIB.buildBr(*JT.MBB); 878 return true; 879 } 880 881 // Emit the range check for the jump table, and branch to the default block 882 // for the switch statement if the value being switched on exceeds the 883 // largest case in the switch. 884 auto Cst = getOrCreateVReg( 885 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 886 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 887 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 888 889 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 890 891 // Avoid emitting unnecessary branches to the next block. 892 if (JT.MBB != HeaderBB->getNextNode()) 893 BrCond = MIB.buildBr(*JT.MBB); 894 return true; 895 } 896 897 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 898 MachineBasicBlock *SwitchBB, 899 MachineIRBuilder &MIB) { 900 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 901 Register Cond; 902 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 903 MIB.setDebugLoc(CB.DbgLoc); 904 MIB.setMBB(*CB.ThisBB); 905 906 if (CB.PredInfo.NoCmp) { 907 // Branch or fall through to TrueBB. 908 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 909 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 910 CB.ThisBB); 911 CB.ThisBB->normalizeSuccProbs(); 912 if (CB.TrueBB != CB.ThisBB->getNextNode()) 913 MIB.buildBr(*CB.TrueBB); 914 MIB.setDebugLoc(OldDbgLoc); 915 return; 916 } 917 918 const LLT i1Ty = LLT::scalar(1); 919 // Build the compare. 920 if (!CB.CmpMHS) { 921 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS); 922 // For conditional branch lowering, we might try to do something silly like 923 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so, 924 // just re-use the existing condition vreg. 925 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && CI->isOne() && 926 CB.PredInfo.Pred == CmpInst::ICMP_EQ) { 927 Cond = CondLHS; 928 } else { 929 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 930 if (CmpInst::isFPPredicate(CB.PredInfo.Pred)) 931 Cond = 932 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 933 else 934 Cond = 935 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 936 } 937 } else { 938 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 939 "Can only handle SLE ranges"); 940 941 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 942 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 943 944 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 945 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 946 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 947 Cond = 948 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 949 } else { 950 const LLT CmpTy = MRI->getType(CmpOpReg); 951 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 952 auto Diff = MIB.buildConstant(CmpTy, High - Low); 953 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 954 } 955 } 956 957 // Update successor info 958 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 959 960 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 961 CB.ThisBB); 962 963 // TrueBB and FalseBB are always different unless the incoming IR is 964 // degenerate. This only happens when running llc on weird IR. 965 if (CB.TrueBB != CB.FalseBB) 966 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 967 CB.ThisBB->normalizeSuccProbs(); 968 969 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 970 CB.ThisBB); 971 972 MIB.buildBrCond(Cond, *CB.TrueBB); 973 MIB.buildBr(*CB.FalseBB); 974 MIB.setDebugLoc(OldDbgLoc); 975 } 976 977 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 978 MachineBasicBlock *SwitchMBB, 979 MachineBasicBlock *CurMBB, 980 MachineBasicBlock *DefaultMBB, 981 MachineIRBuilder &MIB, 982 MachineFunction::iterator BBI, 983 BranchProbability UnhandledProbs, 984 SwitchCG::CaseClusterIt I, 985 MachineBasicBlock *Fallthrough, 986 bool FallthroughUnreachable) { 987 using namespace SwitchCG; 988 MachineFunction *CurMF = SwitchMBB->getParent(); 989 // FIXME: Optimize away range check based on pivot comparisons. 990 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 991 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 992 BranchProbability DefaultProb = W.DefaultProb; 993 994 // The jump block hasn't been inserted yet; insert it here. 995 MachineBasicBlock *JumpMBB = JT->MBB; 996 CurMF->insert(BBI, JumpMBB); 997 998 // Since the jump table block is separate from the switch block, we need 999 // to keep track of it as a machine predecessor to the default block, 1000 // otherwise we lose the phi edges. 1001 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 1002 CurMBB); 1003 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 1004 JumpMBB); 1005 1006 auto JumpProb = I->Prob; 1007 auto FallthroughProb = UnhandledProbs; 1008 1009 // If the default statement is a target of the jump table, we evenly 1010 // distribute the default probability to successors of CurMBB. Also 1011 // update the probability on the edge from JumpMBB to Fallthrough. 1012 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 1013 SE = JumpMBB->succ_end(); 1014 SI != SE; ++SI) { 1015 if (*SI == DefaultMBB) { 1016 JumpProb += DefaultProb / 2; 1017 FallthroughProb -= DefaultProb / 2; 1018 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 1019 JumpMBB->normalizeSuccProbs(); 1020 } else { 1021 // Also record edges from the jump table block to it's successors. 1022 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 1023 JumpMBB); 1024 } 1025 } 1026 1027 if (FallthroughUnreachable) 1028 JTH->FallthroughUnreachable = true; 1029 1030 if (!JTH->FallthroughUnreachable) 1031 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 1032 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 1033 CurMBB->normalizeSuccProbs(); 1034 1035 // The jump table header will be inserted in our current block, do the 1036 // range check, and fall through to our fallthrough block. 1037 JTH->HeaderBB = CurMBB; 1038 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 1039 1040 // If we're in the right place, emit the jump table header right now. 1041 if (CurMBB == SwitchMBB) { 1042 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 1043 return false; 1044 JTH->Emitted = true; 1045 } 1046 return true; 1047 } 1048 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 1049 Value *Cond, 1050 MachineBasicBlock *Fallthrough, 1051 bool FallthroughUnreachable, 1052 BranchProbability UnhandledProbs, 1053 MachineBasicBlock *CurMBB, 1054 MachineIRBuilder &MIB, 1055 MachineBasicBlock *SwitchMBB) { 1056 using namespace SwitchCG; 1057 const Value *RHS, *LHS, *MHS; 1058 CmpInst::Predicate Pred; 1059 if (I->Low == I->High) { 1060 // Check Cond == I->Low. 1061 Pred = CmpInst::ICMP_EQ; 1062 LHS = Cond; 1063 RHS = I->Low; 1064 MHS = nullptr; 1065 } else { 1066 // Check I->Low <= Cond <= I->High. 1067 Pred = CmpInst::ICMP_SLE; 1068 LHS = I->Low; 1069 MHS = Cond; 1070 RHS = I->High; 1071 } 1072 1073 // If Fallthrough is unreachable, fold away the comparison. 1074 // The false probability is the sum of all unhandled cases. 1075 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 1076 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 1077 1078 emitSwitchCase(CB, SwitchMBB, MIB); 1079 return true; 1080 } 1081 1082 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B, 1083 MachineBasicBlock *SwitchBB) { 1084 MachineIRBuilder &MIB = *CurBuilder; 1085 MIB.setMBB(*SwitchBB); 1086 1087 // Subtract the minimum value. 1088 Register SwitchOpReg = getOrCreateVReg(*B.SValue); 1089 1090 LLT SwitchOpTy = MRI->getType(SwitchOpReg); 1091 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0); 1092 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg); 1093 1094 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext()); 1095 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1096 1097 LLT MaskTy = SwitchOpTy; 1098 if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() || 1099 !llvm::has_single_bit<uint32_t>(MaskTy.getSizeInBits())) 1100 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1101 else { 1102 // Ensure that the type will fit the mask value. 1103 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) { 1104 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) { 1105 // Switch table case range are encoded into series of masks. 1106 // Just use pointer type, it's guaranteed to fit. 1107 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1108 break; 1109 } 1110 } 1111 } 1112 Register SubReg = RangeSub.getReg(0); 1113 if (SwitchOpTy != MaskTy) 1114 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0); 1115 1116 B.RegVT = getMVTForLLT(MaskTy); 1117 B.Reg = SubReg; 1118 1119 MachineBasicBlock *MBB = B.Cases[0].ThisBB; 1120 1121 if (!B.FallthroughUnreachable) 1122 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 1123 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 1124 1125 SwitchBB->normalizeSuccProbs(); 1126 1127 if (!B.FallthroughUnreachable) { 1128 // Conditional branch to the default block. 1129 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range); 1130 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1), 1131 RangeSub, RangeCst); 1132 MIB.buildBrCond(RangeCmp, *B.Default); 1133 } 1134 1135 // Avoid emitting unnecessary branches to the next block. 1136 if (MBB != SwitchBB->getNextNode()) 1137 MIB.buildBr(*MBB); 1138 } 1139 1140 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB, 1141 MachineBasicBlock *NextMBB, 1142 BranchProbability BranchProbToNext, 1143 Register Reg, SwitchCG::BitTestCase &B, 1144 MachineBasicBlock *SwitchBB) { 1145 MachineIRBuilder &MIB = *CurBuilder; 1146 MIB.setMBB(*SwitchBB); 1147 1148 LLT SwitchTy = getLLTForMVT(BB.RegVT); 1149 Register Cmp; 1150 unsigned PopCount = llvm::popcount(B.Mask); 1151 if (PopCount == 1) { 1152 // Testing for a single bit; just compare the shift count with what it 1153 // would need to be to shift a 1 bit in that position. 1154 auto MaskTrailingZeros = 1155 MIB.buildConstant(SwitchTy, llvm::countr_zero(B.Mask)); 1156 Cmp = 1157 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros) 1158 .getReg(0); 1159 } else if (PopCount == BB.Range) { 1160 // There is only one zero bit in the range, test for it directly. 1161 auto MaskTrailingOnes = 1162 MIB.buildConstant(SwitchTy, llvm::countr_one(B.Mask)); 1163 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes) 1164 .getReg(0); 1165 } else { 1166 // Make desired shift. 1167 auto CstOne = MIB.buildConstant(SwitchTy, 1); 1168 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg); 1169 1170 // Emit bit tests and jumps. 1171 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask); 1172 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask); 1173 auto CstZero = MIB.buildConstant(SwitchTy, 0); 1174 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero) 1175 .getReg(0); 1176 } 1177 1178 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 1179 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 1180 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 1181 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 1182 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 1183 // one as they are relative probabilities (and thus work more like weights), 1184 // and hence we need to normalize them to let the sum of them become one. 1185 SwitchBB->normalizeSuccProbs(); 1186 1187 // Record the fact that the IR edge from the header to the bit test target 1188 // will go through our new block. Neeeded for PHIs to have nodes added. 1189 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()}, 1190 SwitchBB); 1191 1192 MIB.buildBrCond(Cmp, *B.TargetBB); 1193 1194 // Avoid emitting unnecessary branches to the next block. 1195 if (NextMBB != SwitchBB->getNextNode()) 1196 MIB.buildBr(*NextMBB); 1197 } 1198 1199 bool IRTranslator::lowerBitTestWorkItem( 1200 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB, 1201 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB, 1202 MachineIRBuilder &MIB, MachineFunction::iterator BBI, 1203 BranchProbability DefaultProb, BranchProbability UnhandledProbs, 1204 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough, 1205 bool FallthroughUnreachable) { 1206 using namespace SwitchCG; 1207 MachineFunction *CurMF = SwitchMBB->getParent(); 1208 // FIXME: Optimize away range check based on pivot comparisons. 1209 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 1210 // The bit test blocks haven't been inserted yet; insert them here. 1211 for (BitTestCase &BTC : BTB->Cases) 1212 CurMF->insert(BBI, BTC.ThisBB); 1213 1214 // Fill in fields of the BitTestBlock. 1215 BTB->Parent = CurMBB; 1216 BTB->Default = Fallthrough; 1217 1218 BTB->DefaultProb = UnhandledProbs; 1219 // If the cases in bit test don't form a contiguous range, we evenly 1220 // distribute the probability on the edge to Fallthrough to two 1221 // successors of CurMBB. 1222 if (!BTB->ContiguousRange) { 1223 BTB->Prob += DefaultProb / 2; 1224 BTB->DefaultProb -= DefaultProb / 2; 1225 } 1226 1227 if (FallthroughUnreachable) 1228 BTB->FallthroughUnreachable = true; 1229 1230 // If we're in the right place, emit the bit test header right now. 1231 if (CurMBB == SwitchMBB) { 1232 emitBitTestHeader(*BTB, SwitchMBB); 1233 BTB->Emitted = true; 1234 } 1235 return true; 1236 } 1237 1238 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 1239 Value *Cond, 1240 MachineBasicBlock *SwitchMBB, 1241 MachineBasicBlock *DefaultMBB, 1242 MachineIRBuilder &MIB) { 1243 using namespace SwitchCG; 1244 MachineFunction *CurMF = FuncInfo.MF; 1245 MachineBasicBlock *NextMBB = nullptr; 1246 MachineFunction::iterator BBI(W.MBB); 1247 if (++BBI != FuncInfo.MF->end()) 1248 NextMBB = &*BBI; 1249 1250 if (EnableOpts) { 1251 // Here, we order cases by probability so the most likely case will be 1252 // checked first. However, two clusters can have the same probability in 1253 // which case their relative ordering is non-deterministic. So we use Low 1254 // as a tie-breaker as clusters are guaranteed to never overlap. 1255 llvm::sort(W.FirstCluster, W.LastCluster + 1, 1256 [](const CaseCluster &a, const CaseCluster &b) { 1257 return a.Prob != b.Prob 1258 ? a.Prob > b.Prob 1259 : a.Low->getValue().slt(b.Low->getValue()); 1260 }); 1261 1262 // Rearrange the case blocks so that the last one falls through if possible 1263 // without changing the order of probabilities. 1264 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 1265 --I; 1266 if (I->Prob > W.LastCluster->Prob) 1267 break; 1268 if (I->Kind == CC_Range && I->MBB == NextMBB) { 1269 std::swap(*I, *W.LastCluster); 1270 break; 1271 } 1272 } 1273 } 1274 1275 // Compute total probability. 1276 BranchProbability DefaultProb = W.DefaultProb; 1277 BranchProbability UnhandledProbs = DefaultProb; 1278 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 1279 UnhandledProbs += I->Prob; 1280 1281 MachineBasicBlock *CurMBB = W.MBB; 1282 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 1283 bool FallthroughUnreachable = false; 1284 MachineBasicBlock *Fallthrough; 1285 if (I == W.LastCluster) { 1286 // For the last cluster, fall through to the default destination. 1287 Fallthrough = DefaultMBB; 1288 FallthroughUnreachable = isa<UnreachableInst>( 1289 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 1290 } else { 1291 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 1292 CurMF->insert(BBI, Fallthrough); 1293 } 1294 UnhandledProbs -= I->Prob; 1295 1296 switch (I->Kind) { 1297 case CC_BitTests: { 1298 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1299 DefaultProb, UnhandledProbs, I, Fallthrough, 1300 FallthroughUnreachable)) { 1301 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch"); 1302 return false; 1303 } 1304 break; 1305 } 1306 1307 case CC_JumpTable: { 1308 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1309 UnhandledProbs, I, Fallthrough, 1310 FallthroughUnreachable)) { 1311 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 1312 return false; 1313 } 1314 break; 1315 } 1316 case CC_Range: { 1317 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 1318 FallthroughUnreachable, UnhandledProbs, 1319 CurMBB, MIB, SwitchMBB)) { 1320 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 1321 return false; 1322 } 1323 break; 1324 } 1325 } 1326 CurMBB = Fallthrough; 1327 } 1328 1329 return true; 1330 } 1331 1332 bool IRTranslator::translateIndirectBr(const User &U, 1333 MachineIRBuilder &MIRBuilder) { 1334 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 1335 1336 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 1337 MIRBuilder.buildBrIndirect(Tgt); 1338 1339 // Link successors. 1340 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 1341 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 1342 for (const BasicBlock *Succ : successors(&BrInst)) { 1343 // It's legal for indirectbr instructions to have duplicate blocks in the 1344 // destination list. We don't allow this in MIR. Skip anything that's 1345 // already a successor. 1346 if (!AddedSuccessors.insert(Succ).second) 1347 continue; 1348 CurBB.addSuccessor(&getMBB(*Succ)); 1349 } 1350 1351 return true; 1352 } 1353 1354 static bool isSwiftError(const Value *V) { 1355 if (auto Arg = dyn_cast<Argument>(V)) 1356 return Arg->hasSwiftErrorAttr(); 1357 if (auto AI = dyn_cast<AllocaInst>(V)) 1358 return AI->isSwiftError(); 1359 return false; 1360 } 1361 1362 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 1363 const LoadInst &LI = cast<LoadInst>(U); 1364 TypeSize StoreSize = DL->getTypeStoreSize(LI.getType()); 1365 if (StoreSize.isZero()) 1366 return true; 1367 1368 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 1369 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 1370 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 1371 AAMDNodes AAInfo = LI.getAAMetadata(); 1372 1373 const Value *Ptr = LI.getPointerOperand(); 1374 Type *OffsetIRTy = DL->getIndexType(Ptr->getType()); 1375 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1376 1377 if (CLI->supportSwiftError() && isSwiftError(Ptr)) { 1378 assert(Regs.size() == 1 && "swifterror should be single pointer"); 1379 Register VReg = 1380 SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), Ptr); 1381 MIRBuilder.buildCopy(Regs[0], VReg); 1382 return true; 1383 } 1384 1385 MachineMemOperand::Flags Flags = 1386 TLI->getLoadMemOperandFlags(LI, *DL, AC, LibInfo); 1387 if (AA && !(Flags & MachineMemOperand::MOInvariant)) { 1388 if (AA->pointsToConstantMemory( 1389 MemoryLocation(Ptr, LocationSize::precise(StoreSize), AAInfo))) { 1390 Flags |= MachineMemOperand::MOInvariant; 1391 } 1392 } 1393 1394 const MDNode *Ranges = 1395 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 1396 for (unsigned i = 0; i < Regs.size(); ++i) { 1397 Register Addr; 1398 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1399 1400 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 1401 Align BaseAlign = getMemOpAlign(LI); 1402 auto MMO = MF->getMachineMemOperand( 1403 Ptr, Flags, MRI->getType(Regs[i]), 1404 commonAlignment(BaseAlign, Offsets[i] / 8), AAInfo, Ranges, 1405 LI.getSyncScopeID(), LI.getOrdering()); 1406 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 1407 } 1408 1409 return true; 1410 } 1411 1412 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 1413 const StoreInst &SI = cast<StoreInst>(U); 1414 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()).isZero()) 1415 return true; 1416 1417 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 1418 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 1419 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 1420 1421 Type *OffsetIRTy = DL->getIndexType(SI.getPointerOperandType()); 1422 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1423 1424 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 1425 assert(Vals.size() == 1 && "swifterror should be single pointer"); 1426 1427 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 1428 SI.getPointerOperand()); 1429 MIRBuilder.buildCopy(VReg, Vals[0]); 1430 return true; 1431 } 1432 1433 MachineMemOperand::Flags Flags = TLI->getStoreMemOperandFlags(SI, *DL); 1434 1435 for (unsigned i = 0; i < Vals.size(); ++i) { 1436 Register Addr; 1437 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1438 1439 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 1440 Align BaseAlign = getMemOpAlign(SI); 1441 auto MMO = MF->getMachineMemOperand( 1442 Ptr, Flags, MRI->getType(Vals[i]), 1443 commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr, 1444 SI.getSyncScopeID(), SI.getOrdering()); 1445 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 1446 } 1447 return true; 1448 } 1449 1450 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 1451 const Value *Src = U.getOperand(0); 1452 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 1453 1454 // getIndexedOffsetInType is designed for GEPs, so the first index is the 1455 // usual array element rather than looking into the actual aggregate. 1456 SmallVector<Value *, 1> Indices; 1457 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 1458 1459 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 1460 for (auto Idx : EVI->indices()) 1461 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1462 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 1463 for (auto Idx : IVI->indices()) 1464 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1465 } else { 1466 for (unsigned i = 1; i < U.getNumOperands(); ++i) 1467 Indices.push_back(U.getOperand(i)); 1468 } 1469 1470 return 8 * static_cast<uint64_t>( 1471 DL.getIndexedOffsetInType(Src->getType(), Indices)); 1472 } 1473 1474 bool IRTranslator::translateExtractValue(const User &U, 1475 MachineIRBuilder &MIRBuilder) { 1476 const Value *Src = U.getOperand(0); 1477 uint64_t Offset = getOffsetFromIndices(U, *DL); 1478 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1479 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 1480 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 1481 auto &DstRegs = allocateVRegs(U); 1482 1483 for (unsigned i = 0; i < DstRegs.size(); ++i) 1484 DstRegs[i] = SrcRegs[Idx++]; 1485 1486 return true; 1487 } 1488 1489 bool IRTranslator::translateInsertValue(const User &U, 1490 MachineIRBuilder &MIRBuilder) { 1491 const Value *Src = U.getOperand(0); 1492 uint64_t Offset = getOffsetFromIndices(U, *DL); 1493 auto &DstRegs = allocateVRegs(U); 1494 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 1495 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1496 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 1497 auto *InsertedIt = InsertedRegs.begin(); 1498 1499 for (unsigned i = 0; i < DstRegs.size(); ++i) { 1500 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 1501 DstRegs[i] = *InsertedIt++; 1502 else 1503 DstRegs[i] = SrcRegs[i]; 1504 } 1505 1506 return true; 1507 } 1508 1509 bool IRTranslator::translateSelect(const User &U, 1510 MachineIRBuilder &MIRBuilder) { 1511 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1512 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1513 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1514 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1515 1516 uint32_t Flags = 0; 1517 if (const SelectInst *SI = dyn_cast<SelectInst>(&U)) 1518 Flags = MachineInstr::copyFlagsFromInstruction(*SI); 1519 1520 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1521 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1522 } 1523 1524 return true; 1525 } 1526 1527 bool IRTranslator::translateCopy(const User &U, const Value &V, 1528 MachineIRBuilder &MIRBuilder) { 1529 Register Src = getOrCreateVReg(V); 1530 auto &Regs = *VMap.getVRegs(U); 1531 if (Regs.empty()) { 1532 Regs.push_back(Src); 1533 VMap.getOffsets(U)->push_back(0); 1534 } else { 1535 // If we already assigned a vreg for this instruction, we can't change that. 1536 // Emit a copy to satisfy the users we already emitted. 1537 MIRBuilder.buildCopy(Regs[0], Src); 1538 } 1539 return true; 1540 } 1541 1542 bool IRTranslator::translateBitCast(const User &U, 1543 MachineIRBuilder &MIRBuilder) { 1544 // If we're bitcasting to the source type, we can reuse the source vreg. 1545 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1546 getLLTForType(*U.getType(), *DL)) { 1547 // If the source is a ConstantInt then it was probably created by 1548 // ConstantHoisting and we should leave it alone. 1549 if (isa<ConstantInt>(U.getOperand(0))) 1550 return translateCast(TargetOpcode::G_CONSTANT_FOLD_BARRIER, U, 1551 MIRBuilder); 1552 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1553 } 1554 1555 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1556 } 1557 1558 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1559 MachineIRBuilder &MIRBuilder) { 1560 if (U.getType()->getScalarType()->isBFloatTy() || 1561 U.getOperand(0)->getType()->getScalarType()->isBFloatTy()) 1562 return false; 1563 1564 uint32_t Flags = 0; 1565 if (const Instruction *I = dyn_cast<Instruction>(&U)) 1566 Flags = MachineInstr::copyFlagsFromInstruction(*I); 1567 1568 Register Op = getOrCreateVReg(*U.getOperand(0)); 1569 Register Res = getOrCreateVReg(U); 1570 MIRBuilder.buildInstr(Opcode, {Res}, {Op}, Flags); 1571 return true; 1572 } 1573 1574 bool IRTranslator::translateGetElementPtr(const User &U, 1575 MachineIRBuilder &MIRBuilder) { 1576 Value &Op0 = *U.getOperand(0); 1577 Register BaseReg = getOrCreateVReg(Op0); 1578 Type *PtrIRTy = Op0.getType(); 1579 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1580 Type *OffsetIRTy = DL->getIndexType(PtrIRTy); 1581 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1582 1583 uint32_t Flags = 0; 1584 if (const Instruction *I = dyn_cast<Instruction>(&U)) 1585 Flags = MachineInstr::copyFlagsFromInstruction(*I); 1586 1587 // Normalize Vector GEP - all scalar operands should be converted to the 1588 // splat vector. 1589 unsigned VectorWidth = 0; 1590 1591 // True if we should use a splat vector; using VectorWidth alone is not 1592 // sufficient. 1593 bool WantSplatVector = false; 1594 if (auto *VT = dyn_cast<VectorType>(U.getType())) { 1595 VectorWidth = cast<FixedVectorType>(VT)->getNumElements(); 1596 // We don't produce 1 x N vectors; those are treated as scalars. 1597 WantSplatVector = VectorWidth > 1; 1598 } 1599 1600 // We might need to splat the base pointer into a vector if the offsets 1601 // are vectors. 1602 if (WantSplatVector && !PtrTy.isVector()) { 1603 BaseReg = MIRBuilder 1604 .buildSplatBuildVector(LLT::fixed_vector(VectorWidth, PtrTy), 1605 BaseReg) 1606 .getReg(0); 1607 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth); 1608 PtrTy = getLLTForType(*PtrIRTy, *DL); 1609 OffsetIRTy = DL->getIndexType(PtrIRTy); 1610 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1611 } 1612 1613 int64_t Offset = 0; 1614 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1615 GTI != E; ++GTI) { 1616 const Value *Idx = GTI.getOperand(); 1617 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1618 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1619 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1620 continue; 1621 } else { 1622 uint64_t ElementSize = GTI.getSequentialElementStride(*DL); 1623 1624 // If this is a scalar constant or a splat vector of constants, 1625 // handle it quickly. 1626 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1627 if (std::optional<int64_t> Val = CI->getValue().trySExtValue()) { 1628 Offset += ElementSize * *Val; 1629 continue; 1630 } 1631 } 1632 1633 if (Offset != 0) { 1634 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1635 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1636 .getReg(0); 1637 Offset = 0; 1638 } 1639 1640 Register IdxReg = getOrCreateVReg(*Idx); 1641 LLT IdxTy = MRI->getType(IdxReg); 1642 if (IdxTy != OffsetTy) { 1643 if (!IdxTy.isVector() && WantSplatVector) { 1644 IdxReg = MIRBuilder 1645 .buildSplatBuildVector(OffsetTy.changeElementType(IdxTy), 1646 IdxReg) 1647 .getReg(0); 1648 } 1649 1650 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1651 } 1652 1653 // N = N + Idx * ElementSize; 1654 // Avoid doing it for ElementSize of 1. 1655 Register GepOffsetReg; 1656 if (ElementSize != 1) { 1657 auto ElementSizeMIB = MIRBuilder.buildConstant( 1658 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1659 GepOffsetReg = 1660 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1661 } else 1662 GepOffsetReg = IdxReg; 1663 1664 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1665 } 1666 } 1667 1668 if (Offset != 0) { 1669 auto OffsetMIB = 1670 MIRBuilder.buildConstant(OffsetTy, Offset); 1671 1672 if (int64_t(Offset) >= 0 && cast<GEPOperator>(U).isInBounds()) 1673 Flags |= MachineInstr::MIFlag::NoUWrap; 1674 1675 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0), 1676 Flags); 1677 return true; 1678 } 1679 1680 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1681 return true; 1682 } 1683 1684 bool IRTranslator::translateMemFunc(const CallInst &CI, 1685 MachineIRBuilder &MIRBuilder, 1686 unsigned Opcode) { 1687 const Value *SrcPtr = CI.getArgOperand(1); 1688 // If the source is undef, then just emit a nop. 1689 if (isa<UndefValue>(SrcPtr)) 1690 return true; 1691 1692 SmallVector<Register, 3> SrcRegs; 1693 1694 unsigned MinPtrSize = UINT_MAX; 1695 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) { 1696 Register SrcReg = getOrCreateVReg(**AI); 1697 LLT SrcTy = MRI->getType(SrcReg); 1698 if (SrcTy.isPointer()) 1699 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize); 1700 SrcRegs.push_back(SrcReg); 1701 } 1702 1703 LLT SizeTy = LLT::scalar(MinPtrSize); 1704 1705 // The size operand should be the minimum of the pointer sizes. 1706 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1]; 1707 if (MRI->getType(SizeOpReg) != SizeTy) 1708 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0); 1709 1710 auto ICall = MIRBuilder.buildInstr(Opcode); 1711 for (Register SrcReg : SrcRegs) 1712 ICall.addUse(SrcReg); 1713 1714 Align DstAlign; 1715 Align SrcAlign; 1716 unsigned IsVol = 1717 cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue(); 1718 1719 ConstantInt *CopySize = nullptr; 1720 1721 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1722 DstAlign = MCI->getDestAlign().valueOrOne(); 1723 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1724 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2)); 1725 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) { 1726 DstAlign = MCI->getDestAlign().valueOrOne(); 1727 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1728 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2)); 1729 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1730 DstAlign = MMI->getDestAlign().valueOrOne(); 1731 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1732 CopySize = dyn_cast<ConstantInt>(MMI->getArgOperand(2)); 1733 } else { 1734 auto *MSI = cast<MemSetInst>(&CI); 1735 DstAlign = MSI->getDestAlign().valueOrOne(); 1736 } 1737 1738 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) { 1739 // We need to propagate the tail call flag from the IR inst as an argument. 1740 // Otherwise, we have to pessimize and assume later that we cannot tail call 1741 // any memory intrinsics. 1742 ICall.addImm(CI.isTailCall() ? 1 : 0); 1743 } 1744 1745 // Create mem operands to store the alignment and volatile info. 1746 MachineMemOperand::Flags LoadFlags = MachineMemOperand::MOLoad; 1747 MachineMemOperand::Flags StoreFlags = MachineMemOperand::MOStore; 1748 if (IsVol) { 1749 LoadFlags |= MachineMemOperand::MOVolatile; 1750 StoreFlags |= MachineMemOperand::MOVolatile; 1751 } 1752 1753 AAMDNodes AAInfo = CI.getAAMetadata(); 1754 if (AA && CopySize && 1755 AA->pointsToConstantMemory(MemoryLocation( 1756 SrcPtr, LocationSize::precise(CopySize->getZExtValue()), AAInfo))) { 1757 LoadFlags |= MachineMemOperand::MOInvariant; 1758 1759 // FIXME: pointsToConstantMemory probably does not imply dereferenceable, 1760 // but the previous usage implied it did. Probably should check 1761 // isDereferenceableAndAlignedPointer. 1762 LoadFlags |= MachineMemOperand::MODereferenceable; 1763 } 1764 1765 ICall.addMemOperand( 1766 MF->getMachineMemOperand(MachinePointerInfo(CI.getArgOperand(0)), 1767 StoreFlags, 1, DstAlign, AAInfo)); 1768 if (Opcode != TargetOpcode::G_MEMSET) 1769 ICall.addMemOperand(MF->getMachineMemOperand( 1770 MachinePointerInfo(SrcPtr), LoadFlags, 1, SrcAlign, AAInfo)); 1771 1772 return true; 1773 } 1774 1775 bool IRTranslator::translateTrap(const CallInst &CI, 1776 MachineIRBuilder &MIRBuilder, 1777 unsigned Opcode) { 1778 StringRef TrapFuncName = 1779 CI.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 1780 if (TrapFuncName.empty()) { 1781 if (Opcode == TargetOpcode::G_UBSANTRAP) { 1782 uint64_t Code = cast<ConstantInt>(CI.getOperand(0))->getZExtValue(); 1783 MIRBuilder.buildInstr(Opcode, {}, ArrayRef<llvm::SrcOp>{Code}); 1784 } else { 1785 MIRBuilder.buildInstr(Opcode); 1786 } 1787 return true; 1788 } 1789 1790 CallLowering::CallLoweringInfo Info; 1791 if (Opcode == TargetOpcode::G_UBSANTRAP) 1792 Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)), 1793 CI.getArgOperand(0)->getType(), 0}); 1794 1795 Info.Callee = MachineOperand::CreateES(TrapFuncName.data()); 1796 Info.CB = &CI; 1797 Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0}; 1798 return CLI->lowerCall(MIRBuilder, Info); 1799 } 1800 1801 bool IRTranslator::translateVectorInterleave2Intrinsic( 1802 const CallInst &CI, MachineIRBuilder &MIRBuilder) { 1803 assert(CI.getIntrinsicID() == Intrinsic::vector_interleave2 && 1804 "This function can only be called on the interleave2 intrinsic!"); 1805 // Canonicalize interleave2 to G_SHUFFLE_VECTOR (similar to SelectionDAG). 1806 Register Op0 = getOrCreateVReg(*CI.getOperand(0)); 1807 Register Op1 = getOrCreateVReg(*CI.getOperand(1)); 1808 Register Res = getOrCreateVReg(CI); 1809 1810 LLT OpTy = MRI->getType(Op0); 1811 MIRBuilder.buildShuffleVector(Res, Op0, Op1, 1812 createInterleaveMask(OpTy.getNumElements(), 2)); 1813 1814 return true; 1815 } 1816 1817 bool IRTranslator::translateVectorDeinterleave2Intrinsic( 1818 const CallInst &CI, MachineIRBuilder &MIRBuilder) { 1819 assert(CI.getIntrinsicID() == Intrinsic::vector_deinterleave2 && 1820 "This function can only be called on the deinterleave2 intrinsic!"); 1821 // Canonicalize deinterleave2 to shuffles that extract sub-vectors (similar to 1822 // SelectionDAG). 1823 Register Op = getOrCreateVReg(*CI.getOperand(0)); 1824 auto Undef = MIRBuilder.buildUndef(MRI->getType(Op)); 1825 ArrayRef<Register> Res = getOrCreateVRegs(CI); 1826 1827 LLT ResTy = MRI->getType(Res[0]); 1828 MIRBuilder.buildShuffleVector(Res[0], Op, Undef, 1829 createStrideMask(0, 2, ResTy.getNumElements())); 1830 MIRBuilder.buildShuffleVector(Res[1], Op, Undef, 1831 createStrideMask(1, 2, ResTy.getNumElements())); 1832 1833 return true; 1834 } 1835 1836 void IRTranslator::getStackGuard(Register DstReg, 1837 MachineIRBuilder &MIRBuilder) { 1838 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1839 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1840 auto MIB = 1841 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1842 1843 Value *Global = TLI->getSDagStackGuard(*MF->getFunction().getParent()); 1844 if (!Global) 1845 return; 1846 1847 unsigned AddrSpace = Global->getType()->getPointerAddressSpace(); 1848 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace)); 1849 1850 MachinePointerInfo MPInfo(Global); 1851 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1852 MachineMemOperand::MODereferenceable; 1853 MachineMemOperand *MemRef = MF->getMachineMemOperand( 1854 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace)); 1855 MIB.setMemRefs({MemRef}); 1856 } 1857 1858 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1859 MachineIRBuilder &MIRBuilder) { 1860 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1861 MIRBuilder.buildInstr( 1862 Op, {ResRegs[0], ResRegs[1]}, 1863 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1864 1865 return true; 1866 } 1867 1868 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI, 1869 MachineIRBuilder &MIRBuilder) { 1870 Register Dst = getOrCreateVReg(CI); 1871 Register Src0 = getOrCreateVReg(*CI.getOperand(0)); 1872 Register Src1 = getOrCreateVReg(*CI.getOperand(1)); 1873 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 1874 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale }); 1875 return true; 1876 } 1877 1878 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1879 switch (ID) { 1880 default: 1881 break; 1882 case Intrinsic::acos: 1883 return TargetOpcode::G_FACOS; 1884 case Intrinsic::asin: 1885 return TargetOpcode::G_FASIN; 1886 case Intrinsic::atan: 1887 return TargetOpcode::G_FATAN; 1888 case Intrinsic::bswap: 1889 return TargetOpcode::G_BSWAP; 1890 case Intrinsic::bitreverse: 1891 return TargetOpcode::G_BITREVERSE; 1892 case Intrinsic::fshl: 1893 return TargetOpcode::G_FSHL; 1894 case Intrinsic::fshr: 1895 return TargetOpcode::G_FSHR; 1896 case Intrinsic::ceil: 1897 return TargetOpcode::G_FCEIL; 1898 case Intrinsic::cos: 1899 return TargetOpcode::G_FCOS; 1900 case Intrinsic::cosh: 1901 return TargetOpcode::G_FCOSH; 1902 case Intrinsic::ctpop: 1903 return TargetOpcode::G_CTPOP; 1904 case Intrinsic::exp: 1905 return TargetOpcode::G_FEXP; 1906 case Intrinsic::exp2: 1907 return TargetOpcode::G_FEXP2; 1908 case Intrinsic::exp10: 1909 return TargetOpcode::G_FEXP10; 1910 case Intrinsic::fabs: 1911 return TargetOpcode::G_FABS; 1912 case Intrinsic::copysign: 1913 return TargetOpcode::G_FCOPYSIGN; 1914 case Intrinsic::minnum: 1915 return TargetOpcode::G_FMINNUM; 1916 case Intrinsic::maxnum: 1917 return TargetOpcode::G_FMAXNUM; 1918 case Intrinsic::minimum: 1919 return TargetOpcode::G_FMINIMUM; 1920 case Intrinsic::maximum: 1921 return TargetOpcode::G_FMAXIMUM; 1922 case Intrinsic::canonicalize: 1923 return TargetOpcode::G_FCANONICALIZE; 1924 case Intrinsic::floor: 1925 return TargetOpcode::G_FFLOOR; 1926 case Intrinsic::fma: 1927 return TargetOpcode::G_FMA; 1928 case Intrinsic::log: 1929 return TargetOpcode::G_FLOG; 1930 case Intrinsic::log2: 1931 return TargetOpcode::G_FLOG2; 1932 case Intrinsic::log10: 1933 return TargetOpcode::G_FLOG10; 1934 case Intrinsic::ldexp: 1935 return TargetOpcode::G_FLDEXP; 1936 case Intrinsic::nearbyint: 1937 return TargetOpcode::G_FNEARBYINT; 1938 case Intrinsic::pow: 1939 return TargetOpcode::G_FPOW; 1940 case Intrinsic::powi: 1941 return TargetOpcode::G_FPOWI; 1942 case Intrinsic::rint: 1943 return TargetOpcode::G_FRINT; 1944 case Intrinsic::round: 1945 return TargetOpcode::G_INTRINSIC_ROUND; 1946 case Intrinsic::roundeven: 1947 return TargetOpcode::G_INTRINSIC_ROUNDEVEN; 1948 case Intrinsic::sin: 1949 return TargetOpcode::G_FSIN; 1950 case Intrinsic::sinh: 1951 return TargetOpcode::G_FSINH; 1952 case Intrinsic::sqrt: 1953 return TargetOpcode::G_FSQRT; 1954 case Intrinsic::tan: 1955 return TargetOpcode::G_FTAN; 1956 case Intrinsic::tanh: 1957 return TargetOpcode::G_FTANH; 1958 case Intrinsic::trunc: 1959 return TargetOpcode::G_INTRINSIC_TRUNC; 1960 case Intrinsic::readcyclecounter: 1961 return TargetOpcode::G_READCYCLECOUNTER; 1962 case Intrinsic::readsteadycounter: 1963 return TargetOpcode::G_READSTEADYCOUNTER; 1964 case Intrinsic::ptrmask: 1965 return TargetOpcode::G_PTRMASK; 1966 case Intrinsic::lrint: 1967 return TargetOpcode::G_INTRINSIC_LRINT; 1968 case Intrinsic::llrint: 1969 return TargetOpcode::G_INTRINSIC_LLRINT; 1970 // FADD/FMUL require checking the FMF, so are handled elsewhere. 1971 case Intrinsic::vector_reduce_fmin: 1972 return TargetOpcode::G_VECREDUCE_FMIN; 1973 case Intrinsic::vector_reduce_fmax: 1974 return TargetOpcode::G_VECREDUCE_FMAX; 1975 case Intrinsic::vector_reduce_fminimum: 1976 return TargetOpcode::G_VECREDUCE_FMINIMUM; 1977 case Intrinsic::vector_reduce_fmaximum: 1978 return TargetOpcode::G_VECREDUCE_FMAXIMUM; 1979 case Intrinsic::vector_reduce_add: 1980 return TargetOpcode::G_VECREDUCE_ADD; 1981 case Intrinsic::vector_reduce_mul: 1982 return TargetOpcode::G_VECREDUCE_MUL; 1983 case Intrinsic::vector_reduce_and: 1984 return TargetOpcode::G_VECREDUCE_AND; 1985 case Intrinsic::vector_reduce_or: 1986 return TargetOpcode::G_VECREDUCE_OR; 1987 case Intrinsic::vector_reduce_xor: 1988 return TargetOpcode::G_VECREDUCE_XOR; 1989 case Intrinsic::vector_reduce_smax: 1990 return TargetOpcode::G_VECREDUCE_SMAX; 1991 case Intrinsic::vector_reduce_smin: 1992 return TargetOpcode::G_VECREDUCE_SMIN; 1993 case Intrinsic::vector_reduce_umax: 1994 return TargetOpcode::G_VECREDUCE_UMAX; 1995 case Intrinsic::vector_reduce_umin: 1996 return TargetOpcode::G_VECREDUCE_UMIN; 1997 case Intrinsic::experimental_vector_compress: 1998 return TargetOpcode::G_VECTOR_COMPRESS; 1999 case Intrinsic::lround: 2000 return TargetOpcode::G_LROUND; 2001 case Intrinsic::llround: 2002 return TargetOpcode::G_LLROUND; 2003 case Intrinsic::get_fpenv: 2004 return TargetOpcode::G_GET_FPENV; 2005 case Intrinsic::get_fpmode: 2006 return TargetOpcode::G_GET_FPMODE; 2007 } 2008 return Intrinsic::not_intrinsic; 2009 } 2010 2011 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 2012 Intrinsic::ID ID, 2013 MachineIRBuilder &MIRBuilder) { 2014 2015 unsigned Op = getSimpleIntrinsicOpcode(ID); 2016 2017 // Is this a simple intrinsic? 2018 if (Op == Intrinsic::not_intrinsic) 2019 return false; 2020 2021 // Yes. Let's translate it. 2022 SmallVector<llvm::SrcOp, 4> VRegs; 2023 for (const auto &Arg : CI.args()) 2024 VRegs.push_back(getOrCreateVReg(*Arg)); 2025 2026 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 2027 MachineInstr::copyFlagsFromInstruction(CI)); 2028 return true; 2029 } 2030 2031 // TODO: Include ConstainedOps.def when all strict instructions are defined. 2032 static unsigned getConstrainedOpcode(Intrinsic::ID ID) { 2033 switch (ID) { 2034 case Intrinsic::experimental_constrained_fadd: 2035 return TargetOpcode::G_STRICT_FADD; 2036 case Intrinsic::experimental_constrained_fsub: 2037 return TargetOpcode::G_STRICT_FSUB; 2038 case Intrinsic::experimental_constrained_fmul: 2039 return TargetOpcode::G_STRICT_FMUL; 2040 case Intrinsic::experimental_constrained_fdiv: 2041 return TargetOpcode::G_STRICT_FDIV; 2042 case Intrinsic::experimental_constrained_frem: 2043 return TargetOpcode::G_STRICT_FREM; 2044 case Intrinsic::experimental_constrained_fma: 2045 return TargetOpcode::G_STRICT_FMA; 2046 case Intrinsic::experimental_constrained_sqrt: 2047 return TargetOpcode::G_STRICT_FSQRT; 2048 case Intrinsic::experimental_constrained_ldexp: 2049 return TargetOpcode::G_STRICT_FLDEXP; 2050 default: 2051 return 0; 2052 } 2053 } 2054 2055 bool IRTranslator::translateConstrainedFPIntrinsic( 2056 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) { 2057 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 2058 2059 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID()); 2060 if (!Opcode) 2061 return false; 2062 2063 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(FPI); 2064 if (EB == fp::ExceptionBehavior::ebIgnore) 2065 Flags |= MachineInstr::NoFPExcept; 2066 2067 SmallVector<llvm::SrcOp, 4> VRegs; 2068 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 2069 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(I))); 2070 2071 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags); 2072 return true; 2073 } 2074 2075 std::optional<MCRegister> IRTranslator::getArgPhysReg(Argument &Arg) { 2076 auto VRegs = getOrCreateVRegs(Arg); 2077 if (VRegs.size() != 1) 2078 return std::nullopt; 2079 2080 // Arguments are lowered as a copy of a livein physical register. 2081 auto *VRegDef = MF->getRegInfo().getVRegDef(VRegs[0]); 2082 if (!VRegDef || !VRegDef->isCopy()) 2083 return std::nullopt; 2084 return VRegDef->getOperand(1).getReg().asMCReg(); 2085 } 2086 2087 bool IRTranslator::translateIfEntryValueArgument(bool isDeclare, Value *Val, 2088 const DILocalVariable *Var, 2089 const DIExpression *Expr, 2090 const DebugLoc &DL, 2091 MachineIRBuilder &MIRBuilder) { 2092 auto *Arg = dyn_cast<Argument>(Val); 2093 if (!Arg) 2094 return false; 2095 2096 if (!Expr->isEntryValue()) 2097 return false; 2098 2099 std::optional<MCRegister> PhysReg = getArgPhysReg(*Arg); 2100 if (!PhysReg) { 2101 LLVM_DEBUG(dbgs() << "Dropping dbg." << (isDeclare ? "declare" : "value") 2102 << ": expression is entry_value but " 2103 << "couldn't find a physical register\n"); 2104 LLVM_DEBUG(dbgs() << *Var << "\n"); 2105 return true; 2106 } 2107 2108 if (isDeclare) { 2109 // Append an op deref to account for the fact that this is a dbg_declare. 2110 Expr = DIExpression::append(Expr, dwarf::DW_OP_deref); 2111 MF->setVariableDbgInfo(Var, Expr, *PhysReg, DL); 2112 } else { 2113 MIRBuilder.buildDirectDbgValue(*PhysReg, Var, Expr); 2114 } 2115 2116 return true; 2117 } 2118 2119 static unsigned getConvOpcode(Intrinsic::ID ID) { 2120 switch (ID) { 2121 default: 2122 llvm_unreachable("Unexpected intrinsic"); 2123 case Intrinsic::experimental_convergence_anchor: 2124 return TargetOpcode::CONVERGENCECTRL_ANCHOR; 2125 case Intrinsic::experimental_convergence_entry: 2126 return TargetOpcode::CONVERGENCECTRL_ENTRY; 2127 case Intrinsic::experimental_convergence_loop: 2128 return TargetOpcode::CONVERGENCECTRL_LOOP; 2129 } 2130 } 2131 2132 bool IRTranslator::translateConvergenceControlIntrinsic( 2133 const CallInst &CI, Intrinsic::ID ID, MachineIRBuilder &MIRBuilder) { 2134 MachineInstrBuilder MIB = MIRBuilder.buildInstr(getConvOpcode(ID)); 2135 Register OutputReg = getOrCreateConvergenceTokenVReg(CI); 2136 MIB.addDef(OutputReg); 2137 2138 if (ID == Intrinsic::experimental_convergence_loop) { 2139 auto Bundle = CI.getOperandBundle(LLVMContext::OB_convergencectrl); 2140 assert(Bundle && "Expected a convergence control token."); 2141 Register InputReg = 2142 getOrCreateConvergenceTokenVReg(*Bundle->Inputs[0].get()); 2143 MIB.addUse(InputReg); 2144 } 2145 2146 return true; 2147 } 2148 2149 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 2150 MachineIRBuilder &MIRBuilder) { 2151 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) { 2152 if (ORE->enabled()) { 2153 if (MemoryOpRemark::canHandle(MI, *LibInfo)) { 2154 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo); 2155 R.visit(MI); 2156 } 2157 } 2158 } 2159 2160 // If this is a simple intrinsic (that is, we just need to add a def of 2161 // a vreg, and uses for each arg operand, then translate it. 2162 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 2163 return true; 2164 2165 switch (ID) { 2166 default: 2167 break; 2168 case Intrinsic::lifetime_start: 2169 case Intrinsic::lifetime_end: { 2170 // No stack colouring in O0, discard region information. 2171 if (MF->getTarget().getOptLevel() == CodeGenOptLevel::None) 2172 return true; 2173 2174 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 2175 : TargetOpcode::LIFETIME_END; 2176 2177 // Get the underlying objects for the location passed on the lifetime 2178 // marker. 2179 SmallVector<const Value *, 4> Allocas; 2180 getUnderlyingObjects(CI.getArgOperand(1), Allocas); 2181 2182 // Iterate over each underlying object, creating lifetime markers for each 2183 // static alloca. Quit if we find a non-static alloca. 2184 for (const Value *V : Allocas) { 2185 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 2186 if (!AI) 2187 continue; 2188 2189 if (!AI->isStaticAlloca()) 2190 return true; 2191 2192 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 2193 } 2194 return true; 2195 } 2196 case Intrinsic::dbg_declare: { 2197 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 2198 assert(DI.getVariable() && "Missing variable"); 2199 translateDbgDeclareRecord(DI.getAddress(), DI.hasArgList(), DI.getVariable(), 2200 DI.getExpression(), DI.getDebugLoc(), MIRBuilder); 2201 return true; 2202 } 2203 case Intrinsic::dbg_label: { 2204 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 2205 assert(DI.getLabel() && "Missing label"); 2206 2207 assert(DI.getLabel()->isValidLocationForIntrinsic( 2208 MIRBuilder.getDebugLoc()) && 2209 "Expected inlined-at fields to agree"); 2210 2211 MIRBuilder.buildDbgLabel(DI.getLabel()); 2212 return true; 2213 } 2214 case Intrinsic::vaend: 2215 // No target I know of cares about va_end. Certainly no in-tree target 2216 // does. Simplest intrinsic ever! 2217 return true; 2218 case Intrinsic::vastart: { 2219 Value *Ptr = CI.getArgOperand(0); 2220 unsigned ListSize = TLI->getVaListSizeInBits(*DL) / 8; 2221 Align Alignment = getKnownAlignment(Ptr, *DL); 2222 2223 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 2224 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 2225 MachineMemOperand::MOStore, 2226 ListSize, Alignment)); 2227 return true; 2228 } 2229 case Intrinsic::dbg_assign: 2230 // A dbg.assign is a dbg.value with more information about stack locations, 2231 // typically produced during optimisation of variables with leaked 2232 // addresses. We can treat it like a normal dbg_value intrinsic here; to 2233 // benefit from the full analysis of stack/SSA locations, GlobalISel would 2234 // need to register for and use the AssignmentTrackingAnalysis pass. 2235 [[fallthrough]]; 2236 case Intrinsic::dbg_value: { 2237 // This form of DBG_VALUE is target-independent. 2238 const DbgValueInst &DI = cast<DbgValueInst>(CI); 2239 translateDbgValueRecord(DI.getValue(), DI.hasArgList(), DI.getVariable(), 2240 DI.getExpression(), DI.getDebugLoc(), MIRBuilder); 2241 return true; 2242 } 2243 case Intrinsic::uadd_with_overflow: 2244 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 2245 case Intrinsic::sadd_with_overflow: 2246 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 2247 case Intrinsic::usub_with_overflow: 2248 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 2249 case Intrinsic::ssub_with_overflow: 2250 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 2251 case Intrinsic::umul_with_overflow: 2252 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 2253 case Intrinsic::smul_with_overflow: 2254 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 2255 case Intrinsic::uadd_sat: 2256 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 2257 case Intrinsic::sadd_sat: 2258 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 2259 case Intrinsic::usub_sat: 2260 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 2261 case Intrinsic::ssub_sat: 2262 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 2263 case Intrinsic::ushl_sat: 2264 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder); 2265 case Intrinsic::sshl_sat: 2266 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder); 2267 case Intrinsic::umin: 2268 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder); 2269 case Intrinsic::umax: 2270 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder); 2271 case Intrinsic::smin: 2272 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder); 2273 case Intrinsic::smax: 2274 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder); 2275 case Intrinsic::abs: 2276 // TODO: Preserve "int min is poison" arg in GMIR? 2277 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder); 2278 case Intrinsic::smul_fix: 2279 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder); 2280 case Intrinsic::umul_fix: 2281 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder); 2282 case Intrinsic::smul_fix_sat: 2283 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder); 2284 case Intrinsic::umul_fix_sat: 2285 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder); 2286 case Intrinsic::sdiv_fix: 2287 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder); 2288 case Intrinsic::udiv_fix: 2289 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder); 2290 case Intrinsic::sdiv_fix_sat: 2291 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder); 2292 case Intrinsic::udiv_fix_sat: 2293 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder); 2294 case Intrinsic::fmuladd: { 2295 const TargetMachine &TM = MF->getTarget(); 2296 Register Dst = getOrCreateVReg(CI); 2297 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 2298 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 2299 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 2300 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 2301 TLI->isFMAFasterThanFMulAndFAdd(*MF, 2302 TLI->getValueType(*DL, CI.getType()))) { 2303 // TODO: Revisit this to see if we should move this part of the 2304 // lowering to the combiner. 2305 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 2306 MachineInstr::copyFlagsFromInstruction(CI)); 2307 } else { 2308 LLT Ty = getLLTForType(*CI.getType(), *DL); 2309 auto FMul = MIRBuilder.buildFMul( 2310 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 2311 MIRBuilder.buildFAdd(Dst, FMul, Op2, 2312 MachineInstr::copyFlagsFromInstruction(CI)); 2313 } 2314 return true; 2315 } 2316 case Intrinsic::convert_from_fp16: 2317 // FIXME: This intrinsic should probably be removed from the IR. 2318 MIRBuilder.buildFPExt(getOrCreateVReg(CI), 2319 getOrCreateVReg(*CI.getArgOperand(0)), 2320 MachineInstr::copyFlagsFromInstruction(CI)); 2321 return true; 2322 case Intrinsic::convert_to_fp16: 2323 // FIXME: This intrinsic should probably be removed from the IR. 2324 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI), 2325 getOrCreateVReg(*CI.getArgOperand(0)), 2326 MachineInstr::copyFlagsFromInstruction(CI)); 2327 return true; 2328 case Intrinsic::frexp: { 2329 ArrayRef<Register> VRegs = getOrCreateVRegs(CI); 2330 MIRBuilder.buildFFrexp(VRegs[0], VRegs[1], 2331 getOrCreateVReg(*CI.getArgOperand(0)), 2332 MachineInstr::copyFlagsFromInstruction(CI)); 2333 return true; 2334 } 2335 case Intrinsic::memcpy_inline: 2336 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE); 2337 case Intrinsic::memcpy: 2338 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY); 2339 case Intrinsic::memmove: 2340 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE); 2341 case Intrinsic::memset: 2342 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET); 2343 case Intrinsic::eh_typeid_for: { 2344 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 2345 Register Reg = getOrCreateVReg(CI); 2346 unsigned TypeID = MF->getTypeIDFor(GV); 2347 MIRBuilder.buildConstant(Reg, TypeID); 2348 return true; 2349 } 2350 case Intrinsic::objectsize: 2351 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2352 2353 case Intrinsic::is_constant: 2354 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2355 2356 case Intrinsic::stackguard: 2357 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 2358 return true; 2359 case Intrinsic::stackprotector: { 2360 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2361 Register GuardVal; 2362 if (TLI->useLoadStackGuardNode()) { 2363 GuardVal = MRI->createGenericVirtualRegister(PtrTy); 2364 getStackGuard(GuardVal, MIRBuilder); 2365 } else 2366 GuardVal = getOrCreateVReg(*CI.getArgOperand(0)); // The guard's value. 2367 2368 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 2369 int FI = getOrCreateFrameIndex(*Slot); 2370 MF->getFrameInfo().setStackProtectorIndex(FI); 2371 2372 MIRBuilder.buildStore( 2373 GuardVal, getOrCreateVReg(*Slot), 2374 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 2375 MachineMemOperand::MOStore | 2376 MachineMemOperand::MOVolatile, 2377 PtrTy, Align(8))); 2378 return true; 2379 } 2380 case Intrinsic::stacksave: { 2381 MIRBuilder.buildInstr(TargetOpcode::G_STACKSAVE, {getOrCreateVReg(CI)}, {}); 2382 return true; 2383 } 2384 case Intrinsic::stackrestore: { 2385 MIRBuilder.buildInstr(TargetOpcode::G_STACKRESTORE, {}, 2386 {getOrCreateVReg(*CI.getArgOperand(0))}); 2387 return true; 2388 } 2389 case Intrinsic::cttz: 2390 case Intrinsic::ctlz: { 2391 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 2392 bool isTrailing = ID == Intrinsic::cttz; 2393 unsigned Opcode = isTrailing 2394 ? Cst->isZero() ? TargetOpcode::G_CTTZ 2395 : TargetOpcode::G_CTTZ_ZERO_UNDEF 2396 : Cst->isZero() ? TargetOpcode::G_CTLZ 2397 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 2398 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 2399 {getOrCreateVReg(*CI.getArgOperand(0))}); 2400 return true; 2401 } 2402 case Intrinsic::invariant_start: { 2403 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2404 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 2405 MIRBuilder.buildUndef(Undef); 2406 return true; 2407 } 2408 case Intrinsic::invariant_end: 2409 return true; 2410 case Intrinsic::expect: 2411 case Intrinsic::annotation: 2412 case Intrinsic::ptr_annotation: 2413 case Intrinsic::launder_invariant_group: 2414 case Intrinsic::strip_invariant_group: { 2415 // Drop the intrinsic, but forward the value. 2416 MIRBuilder.buildCopy(getOrCreateVReg(CI), 2417 getOrCreateVReg(*CI.getArgOperand(0))); 2418 return true; 2419 } 2420 case Intrinsic::assume: 2421 case Intrinsic::experimental_noalias_scope_decl: 2422 case Intrinsic::var_annotation: 2423 case Intrinsic::sideeffect: 2424 // Discard annotate attributes, assumptions, and artificial side-effects. 2425 return true; 2426 case Intrinsic::read_volatile_register: 2427 case Intrinsic::read_register: { 2428 Value *Arg = CI.getArgOperand(0); 2429 MIRBuilder 2430 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 2431 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 2432 return true; 2433 } 2434 case Intrinsic::write_register: { 2435 Value *Arg = CI.getArgOperand(0); 2436 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 2437 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 2438 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 2439 return true; 2440 } 2441 case Intrinsic::localescape: { 2442 MachineBasicBlock &EntryMBB = MF->front(); 2443 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName()); 2444 2445 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 2446 // is the same on all targets. 2447 for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) { 2448 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts(); 2449 if (isa<ConstantPointerNull>(Arg)) 2450 continue; // Skip null pointers. They represent a hole in index space. 2451 2452 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg)); 2453 MCSymbol *FrameAllocSym = 2454 MF->getContext().getOrCreateFrameAllocSymbol(EscapedName, Idx); 2455 2456 // This should be inserted at the start of the entry block. 2457 auto LocalEscape = 2458 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE) 2459 .addSym(FrameAllocSym) 2460 .addFrameIndex(FI); 2461 2462 EntryMBB.insert(EntryMBB.begin(), LocalEscape); 2463 } 2464 2465 return true; 2466 } 2467 case Intrinsic::vector_reduce_fadd: 2468 case Intrinsic::vector_reduce_fmul: { 2469 // Need to check for the reassoc flag to decide whether we want a 2470 // sequential reduction opcode or not. 2471 Register Dst = getOrCreateVReg(CI); 2472 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0)); 2473 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1)); 2474 unsigned Opc = 0; 2475 if (!CI.hasAllowReassoc()) { 2476 // The sequential ordering case. 2477 Opc = ID == Intrinsic::vector_reduce_fadd 2478 ? TargetOpcode::G_VECREDUCE_SEQ_FADD 2479 : TargetOpcode::G_VECREDUCE_SEQ_FMUL; 2480 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc}, 2481 MachineInstr::copyFlagsFromInstruction(CI)); 2482 return true; 2483 } 2484 // We split the operation into a separate G_FADD/G_FMUL + the reduce, 2485 // since the associativity doesn't matter. 2486 unsigned ScalarOpc; 2487 if (ID == Intrinsic::vector_reduce_fadd) { 2488 Opc = TargetOpcode::G_VECREDUCE_FADD; 2489 ScalarOpc = TargetOpcode::G_FADD; 2490 } else { 2491 Opc = TargetOpcode::G_VECREDUCE_FMUL; 2492 ScalarOpc = TargetOpcode::G_FMUL; 2493 } 2494 LLT DstTy = MRI->getType(Dst); 2495 auto Rdx = MIRBuilder.buildInstr( 2496 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI)); 2497 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx}, 2498 MachineInstr::copyFlagsFromInstruction(CI)); 2499 2500 return true; 2501 } 2502 case Intrinsic::trap: 2503 return translateTrap(CI, MIRBuilder, TargetOpcode::G_TRAP); 2504 case Intrinsic::debugtrap: 2505 return translateTrap(CI, MIRBuilder, TargetOpcode::G_DEBUGTRAP); 2506 case Intrinsic::ubsantrap: 2507 return translateTrap(CI, MIRBuilder, TargetOpcode::G_UBSANTRAP); 2508 case Intrinsic::allow_runtime_check: 2509 case Intrinsic::allow_ubsan_check: 2510 MIRBuilder.buildCopy(getOrCreateVReg(CI), 2511 getOrCreateVReg(*ConstantInt::getTrue(CI.getType()))); 2512 return true; 2513 case Intrinsic::amdgcn_cs_chain: 2514 return translateCallBase(CI, MIRBuilder); 2515 case Intrinsic::fptrunc_round: { 2516 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(CI); 2517 2518 // Convert the metadata argument to a constant integer 2519 Metadata *MD = cast<MetadataAsValue>(CI.getArgOperand(1))->getMetadata(); 2520 std::optional<RoundingMode> RoundMode = 2521 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 2522 2523 // Add the Rounding mode as an integer 2524 MIRBuilder 2525 .buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND, 2526 {getOrCreateVReg(CI)}, 2527 {getOrCreateVReg(*CI.getArgOperand(0))}, Flags) 2528 .addImm((int)*RoundMode); 2529 2530 return true; 2531 } 2532 case Intrinsic::is_fpclass: { 2533 Value *FpValue = CI.getOperand(0); 2534 ConstantInt *TestMaskValue = cast<ConstantInt>(CI.getOperand(1)); 2535 2536 MIRBuilder 2537 .buildInstr(TargetOpcode::G_IS_FPCLASS, {getOrCreateVReg(CI)}, 2538 {getOrCreateVReg(*FpValue)}) 2539 .addImm(TestMaskValue->getZExtValue()); 2540 2541 return true; 2542 } 2543 case Intrinsic::set_fpenv: { 2544 Value *FPEnv = CI.getOperand(0); 2545 MIRBuilder.buildSetFPEnv(getOrCreateVReg(*FPEnv)); 2546 return true; 2547 } 2548 case Intrinsic::reset_fpenv: 2549 MIRBuilder.buildResetFPEnv(); 2550 return true; 2551 case Intrinsic::set_fpmode: { 2552 Value *FPState = CI.getOperand(0); 2553 MIRBuilder.buildSetFPMode(getOrCreateVReg(*FPState)); 2554 return true; 2555 } 2556 case Intrinsic::reset_fpmode: 2557 MIRBuilder.buildResetFPMode(); 2558 return true; 2559 case Intrinsic::vscale: { 2560 MIRBuilder.buildVScale(getOrCreateVReg(CI), 1); 2561 return true; 2562 } 2563 case Intrinsic::scmp: 2564 MIRBuilder.buildSCmp(getOrCreateVReg(CI), 2565 getOrCreateVReg(*CI.getOperand(0)), 2566 getOrCreateVReg(*CI.getOperand(1))); 2567 return true; 2568 case Intrinsic::ucmp: 2569 MIRBuilder.buildUCmp(getOrCreateVReg(CI), 2570 getOrCreateVReg(*CI.getOperand(0)), 2571 getOrCreateVReg(*CI.getOperand(1))); 2572 return true; 2573 case Intrinsic::prefetch: { 2574 Value *Addr = CI.getOperand(0); 2575 unsigned RW = cast<ConstantInt>(CI.getOperand(1))->getZExtValue(); 2576 unsigned Locality = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 2577 unsigned CacheType = cast<ConstantInt>(CI.getOperand(3))->getZExtValue(); 2578 2579 auto Flags = RW ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad; 2580 auto &MMO = *MF->getMachineMemOperand(MachinePointerInfo(Addr), Flags, 2581 LLT(), Align()); 2582 2583 MIRBuilder.buildPrefetch(getOrCreateVReg(*Addr), RW, Locality, CacheType, 2584 MMO); 2585 2586 return true; 2587 } 2588 2589 case Intrinsic::vector_interleave2: 2590 case Intrinsic::vector_deinterleave2: { 2591 // Both intrinsics have at least one operand. 2592 Value *Op0 = CI.getOperand(0); 2593 LLT ResTy = getLLTForType(*Op0->getType(), MIRBuilder.getDataLayout()); 2594 if (!ResTy.isFixedVector()) 2595 return false; 2596 2597 if (CI.getIntrinsicID() == Intrinsic::vector_interleave2) 2598 return translateVectorInterleave2Intrinsic(CI, MIRBuilder); 2599 2600 return translateVectorDeinterleave2Intrinsic(CI, MIRBuilder); 2601 } 2602 2603 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 2604 case Intrinsic::INTRINSIC: 2605 #include "llvm/IR/ConstrainedOps.def" 2606 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI), 2607 MIRBuilder); 2608 case Intrinsic::experimental_convergence_anchor: 2609 case Intrinsic::experimental_convergence_entry: 2610 case Intrinsic::experimental_convergence_loop: 2611 return translateConvergenceControlIntrinsic(CI, ID, MIRBuilder); 2612 } 2613 return false; 2614 } 2615 2616 bool IRTranslator::translateInlineAsm(const CallBase &CB, 2617 MachineIRBuilder &MIRBuilder) { 2618 2619 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 2620 2621 if (!ALI) { 2622 LLVM_DEBUG( 2623 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 2624 return false; 2625 } 2626 2627 return ALI->lowerInlineAsm( 2628 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 2629 } 2630 2631 bool IRTranslator::translateCallBase(const CallBase &CB, 2632 MachineIRBuilder &MIRBuilder) { 2633 ArrayRef<Register> Res = getOrCreateVRegs(CB); 2634 2635 SmallVector<ArrayRef<Register>, 8> Args; 2636 Register SwiftInVReg = 0; 2637 Register SwiftErrorVReg = 0; 2638 for (const auto &Arg : CB.args()) { 2639 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 2640 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 2641 LLT Ty = getLLTForType(*Arg->getType(), *DL); 2642 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 2643 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 2644 &CB, &MIRBuilder.getMBB(), Arg)); 2645 Args.emplace_back(ArrayRef(SwiftInVReg)); 2646 SwiftErrorVReg = 2647 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 2648 continue; 2649 } 2650 Args.push_back(getOrCreateVRegs(*Arg)); 2651 } 2652 2653 if (auto *CI = dyn_cast<CallInst>(&CB)) { 2654 if (ORE->enabled()) { 2655 if (MemoryOpRemark::canHandle(CI, *LibInfo)) { 2656 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo); 2657 R.visit(CI); 2658 } 2659 } 2660 } 2661 2662 std::optional<CallLowering::PtrAuthInfo> PAI; 2663 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_ptrauth)) { 2664 // Functions should never be ptrauth-called directly. 2665 assert(!CB.getCalledFunction() && "invalid direct ptrauth call"); 2666 2667 const Value *Key = Bundle->Inputs[0]; 2668 const Value *Discriminator = Bundle->Inputs[1]; 2669 2670 // Look through ptrauth constants to try to eliminate the matching bundle 2671 // and turn this into a direct call with no ptrauth. 2672 // CallLowering will use the raw pointer if it doesn't find the PAI. 2673 const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CB.getCalledOperand()); 2674 if (!CalleeCPA || !isa<Function>(CalleeCPA->getPointer()) || 2675 !CalleeCPA->isKnownCompatibleWith(Key, Discriminator, *DL)) { 2676 // If we can't make it direct, package the bundle into PAI. 2677 Register DiscReg = getOrCreateVReg(*Discriminator); 2678 PAI = CallLowering::PtrAuthInfo{cast<ConstantInt>(Key)->getZExtValue(), 2679 DiscReg}; 2680 } 2681 } 2682 2683 Register ConvergenceCtrlToken = 0; 2684 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 2685 const auto &Token = *Bundle->Inputs[0].get(); 2686 ConvergenceCtrlToken = getOrCreateConvergenceTokenVReg(Token); 2687 } 2688 2689 // We don't set HasCalls on MFI here yet because call lowering may decide to 2690 // optimize into tail calls. Instead, we defer that to selection where a final 2691 // scan is done to check if any instructions are calls. 2692 bool Success = CLI->lowerCall( 2693 MIRBuilder, CB, Res, Args, SwiftErrorVReg, PAI, ConvergenceCtrlToken, 2694 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 2695 2696 // Check if we just inserted a tail call. 2697 if (Success) { 2698 assert(!HasTailCall && "Can't tail call return twice from block?"); 2699 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 2700 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 2701 } 2702 2703 return Success; 2704 } 2705 2706 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 2707 const CallInst &CI = cast<CallInst>(U); 2708 auto TII = MF->getTarget().getIntrinsicInfo(); 2709 const Function *F = CI.getCalledFunction(); 2710 2711 // FIXME: support Windows dllimport function calls and calls through 2712 // weak symbols. 2713 if (F && (F->hasDLLImportStorageClass() || 2714 (MF->getTarget().getTargetTriple().isOSWindows() && 2715 F->hasExternalWeakLinkage()))) 2716 return false; 2717 2718 // FIXME: support control flow guard targets. 2719 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2720 return false; 2721 2722 // FIXME: support statepoints and related. 2723 if (isa<GCStatepointInst, GCRelocateInst, GCResultInst>(U)) 2724 return false; 2725 2726 if (CI.isInlineAsm()) 2727 return translateInlineAsm(CI, MIRBuilder); 2728 2729 diagnoseDontCall(CI); 2730 2731 Intrinsic::ID ID = Intrinsic::not_intrinsic; 2732 if (F && F->isIntrinsic()) { 2733 ID = F->getIntrinsicID(); 2734 if (TII && ID == Intrinsic::not_intrinsic) 2735 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 2736 } 2737 2738 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 2739 return translateCallBase(CI, MIRBuilder); 2740 2741 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 2742 2743 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 2744 return true; 2745 2746 ArrayRef<Register> ResultRegs; 2747 if (!CI.getType()->isVoidTy()) 2748 ResultRegs = getOrCreateVRegs(CI); 2749 2750 // Ignore the callsite attributes. Backend code is most likely not expecting 2751 // an intrinsic to sometimes have side effects and sometimes not. 2752 MachineInstrBuilder MIB = MIRBuilder.buildIntrinsic(ID, ResultRegs); 2753 if (isa<FPMathOperator>(CI)) 2754 MIB->copyIRFlags(CI); 2755 2756 for (const auto &Arg : enumerate(CI.args())) { 2757 // If this is required to be an immediate, don't materialize it in a 2758 // register. 2759 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 2760 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 2761 // imm arguments are more convenient than cimm (and realistically 2762 // probably sufficient), so use them. 2763 assert(CI->getBitWidth() <= 64 && 2764 "large intrinsic immediates not handled"); 2765 MIB.addImm(CI->getSExtValue()); 2766 } else { 2767 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 2768 } 2769 } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) { 2770 auto *MD = MDVal->getMetadata(); 2771 auto *MDN = dyn_cast<MDNode>(MD); 2772 if (!MDN) { 2773 if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD)) 2774 MDN = MDNode::get(MF->getFunction().getContext(), ConstMD); 2775 else // This was probably an MDString. 2776 return false; 2777 } 2778 MIB.addMetadata(MDN); 2779 } else { 2780 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 2781 if (VRegs.size() > 1) 2782 return false; 2783 MIB.addUse(VRegs[0]); 2784 } 2785 } 2786 2787 // Add a MachineMemOperand if it is a target mem intrinsic. 2788 TargetLowering::IntrinsicInfo Info; 2789 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 2790 if (TLI->getTgtMemIntrinsic(Info, CI, *MF, ID)) { 2791 Align Alignment = Info.align.value_or( 2792 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 2793 LLT MemTy = Info.memVT.isSimple() 2794 ? getLLTForMVT(Info.memVT.getSimpleVT()) 2795 : LLT::scalar(Info.memVT.getStoreSizeInBits()); 2796 2797 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 2798 // didn't yield anything useful. 2799 MachinePointerInfo MPI; 2800 if (Info.ptrVal) 2801 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 2802 else if (Info.fallbackAddressSpace) 2803 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 2804 MIB.addMemOperand( 2805 MF->getMachineMemOperand(MPI, Info.flags, MemTy, Alignment, CI.getAAMetadata())); 2806 } 2807 2808 if (CI.isConvergent()) { 2809 if (auto Bundle = CI.getOperandBundle(LLVMContext::OB_convergencectrl)) { 2810 auto *Token = Bundle->Inputs[0].get(); 2811 Register TokenReg = getOrCreateVReg(*Token); 2812 MIB.addUse(TokenReg, RegState::Implicit); 2813 } 2814 } 2815 2816 return true; 2817 } 2818 2819 bool IRTranslator::findUnwindDestinations( 2820 const BasicBlock *EHPadBB, 2821 BranchProbability Prob, 2822 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2823 &UnwindDests) { 2824 EHPersonality Personality = classifyEHPersonality( 2825 EHPadBB->getParent()->getFunction().getPersonalityFn()); 2826 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2827 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2828 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2829 bool IsSEH = isAsynchronousEHPersonality(Personality); 2830 2831 if (IsWasmCXX) { 2832 // Ignore this for now. 2833 return false; 2834 } 2835 2836 while (EHPadBB) { 2837 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2838 BasicBlock *NewEHPadBB = nullptr; 2839 if (isa<LandingPadInst>(Pad)) { 2840 // Stop on landingpads. They are not funclets. 2841 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2842 break; 2843 } 2844 if (isa<CleanupPadInst>(Pad)) { 2845 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2846 // personalities. 2847 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2848 UnwindDests.back().first->setIsEHScopeEntry(); 2849 UnwindDests.back().first->setIsEHFuncletEntry(); 2850 break; 2851 } 2852 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2853 // Add the catchpad handlers to the possible destinations. 2854 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2855 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob); 2856 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2857 if (IsMSVCCXX || IsCoreCLR) 2858 UnwindDests.back().first->setIsEHFuncletEntry(); 2859 if (!IsSEH) 2860 UnwindDests.back().first->setIsEHScopeEntry(); 2861 } 2862 NewEHPadBB = CatchSwitch->getUnwindDest(); 2863 } else { 2864 continue; 2865 } 2866 2867 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2868 if (BPI && NewEHPadBB) 2869 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2870 EHPadBB = NewEHPadBB; 2871 } 2872 return true; 2873 } 2874 2875 bool IRTranslator::translateInvoke(const User &U, 2876 MachineIRBuilder &MIRBuilder) { 2877 const InvokeInst &I = cast<InvokeInst>(U); 2878 MCContext &Context = MF->getContext(); 2879 2880 const BasicBlock *ReturnBB = I.getSuccessor(0); 2881 const BasicBlock *EHPadBB = I.getSuccessor(1); 2882 2883 const Function *Fn = I.getCalledFunction(); 2884 2885 // FIXME: support invoking patchpoint and statepoint intrinsics. 2886 if (Fn && Fn->isIntrinsic()) 2887 return false; 2888 2889 // FIXME: support whatever these are. 2890 if (I.hasDeoptState()) 2891 return false; 2892 2893 // FIXME: support control flow guard targets. 2894 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2895 return false; 2896 2897 // FIXME: support Windows exception handling. 2898 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI())) 2899 return false; 2900 2901 // FIXME: support Windows dllimport function calls and calls through 2902 // weak symbols. 2903 if (Fn && (Fn->hasDLLImportStorageClass() || 2904 (MF->getTarget().getTargetTriple().isOSWindows() && 2905 Fn->hasExternalWeakLinkage()))) 2906 return false; 2907 2908 bool LowerInlineAsm = I.isInlineAsm(); 2909 bool NeedEHLabel = true; 2910 2911 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 2912 // the region covered by the try. 2913 MCSymbol *BeginSymbol = nullptr; 2914 if (NeedEHLabel) { 2915 MIRBuilder.buildInstr(TargetOpcode::G_INVOKE_REGION_START); 2916 BeginSymbol = Context.createTempSymbol(); 2917 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 2918 } 2919 2920 if (LowerInlineAsm) { 2921 if (!translateInlineAsm(I, MIRBuilder)) 2922 return false; 2923 } else if (!translateCallBase(I, MIRBuilder)) 2924 return false; 2925 2926 MCSymbol *EndSymbol = nullptr; 2927 if (NeedEHLabel) { 2928 EndSymbol = Context.createTempSymbol(); 2929 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 2930 } 2931 2932 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2933 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2934 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(); 2935 BranchProbability EHPadBBProb = 2936 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2937 : BranchProbability::getZero(); 2938 2939 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests)) 2940 return false; 2941 2942 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 2943 &ReturnMBB = getMBB(*ReturnBB); 2944 // Update successor info. 2945 addSuccessorWithProb(InvokeMBB, &ReturnMBB); 2946 for (auto &UnwindDest : UnwindDests) { 2947 UnwindDest.first->setIsEHPad(); 2948 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2949 } 2950 InvokeMBB->normalizeSuccProbs(); 2951 2952 if (NeedEHLabel) { 2953 assert(BeginSymbol && "Expected a begin symbol!"); 2954 assert(EndSymbol && "Expected an end symbol!"); 2955 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 2956 } 2957 2958 MIRBuilder.buildBr(ReturnMBB); 2959 return true; 2960 } 2961 2962 bool IRTranslator::translateCallBr(const User &U, 2963 MachineIRBuilder &MIRBuilder) { 2964 // FIXME: Implement this. 2965 return false; 2966 } 2967 2968 bool IRTranslator::translateLandingPad(const User &U, 2969 MachineIRBuilder &MIRBuilder) { 2970 const LandingPadInst &LP = cast<LandingPadInst>(U); 2971 2972 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 2973 2974 MBB.setIsEHPad(); 2975 2976 // If there aren't registers to copy the values into (e.g., during SjLj 2977 // exceptions), then don't bother. 2978 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 2979 if (TLI->getExceptionPointerRegister(PersonalityFn) == 0 && 2980 TLI->getExceptionSelectorRegister(PersonalityFn) == 0) 2981 return true; 2982 2983 // If landingpad's return type is token type, we don't create DAG nodes 2984 // for its exception pointer and selector value. The extraction of exception 2985 // pointer or selector value from token type landingpads is not currently 2986 // supported. 2987 if (LP.getType()->isTokenTy()) 2988 return true; 2989 2990 // Add a label to mark the beginning of the landing pad. Deletion of the 2991 // landing pad can thus be detected via the MachineModuleInfo. 2992 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 2993 .addSym(MF->addLandingPad(&MBB)); 2994 2995 // If the unwinder does not preserve all registers, ensure that the 2996 // function marks the clobbered registers as used. 2997 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 2998 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 2999 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 3000 3001 LLT Ty = getLLTForType(*LP.getType(), *DL); 3002 Register Undef = MRI->createGenericVirtualRegister(Ty); 3003 MIRBuilder.buildUndef(Undef); 3004 3005 SmallVector<LLT, 2> Tys; 3006 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 3007 Tys.push_back(getLLTForType(*Ty, *DL)); 3008 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 3009 3010 // Mark exception register as live in. 3011 Register ExceptionReg = TLI->getExceptionPointerRegister(PersonalityFn); 3012 if (!ExceptionReg) 3013 return false; 3014 3015 MBB.addLiveIn(ExceptionReg); 3016 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 3017 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 3018 3019 Register SelectorReg = TLI->getExceptionSelectorRegister(PersonalityFn); 3020 if (!SelectorReg) 3021 return false; 3022 3023 MBB.addLiveIn(SelectorReg); 3024 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 3025 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 3026 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 3027 3028 return true; 3029 } 3030 3031 bool IRTranslator::translateAlloca(const User &U, 3032 MachineIRBuilder &MIRBuilder) { 3033 auto &AI = cast<AllocaInst>(U); 3034 3035 if (AI.isSwiftError()) 3036 return true; 3037 3038 if (AI.isStaticAlloca()) { 3039 Register Res = getOrCreateVReg(AI); 3040 int FI = getOrCreateFrameIndex(AI); 3041 MIRBuilder.buildFrameIndex(Res, FI); 3042 return true; 3043 } 3044 3045 // FIXME: support stack probing for Windows. 3046 if (MF->getTarget().getTargetTriple().isOSWindows()) 3047 return false; 3048 3049 // Now we're in the harder dynamic case. 3050 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 3051 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 3052 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 3053 if (MRI->getType(NumElts) != IntPtrTy) { 3054 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 3055 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 3056 NumElts = ExtElts; 3057 } 3058 3059 Type *Ty = AI.getAllocatedType(); 3060 3061 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 3062 Register TySize = 3063 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 3064 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 3065 3066 // Round the size of the allocation up to the stack alignment size 3067 // by add SA-1 to the size. This doesn't overflow because we're computing 3068 // an address inside an alloca. 3069 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 3070 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 3071 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 3072 MachineInstr::NoUWrap); 3073 auto AlignCst = 3074 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 3075 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 3076 3077 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 3078 if (Alignment <= StackAlign) 3079 Alignment = Align(1); 3080 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 3081 3082 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 3083 assert(MF->getFrameInfo().hasVarSizedObjects()); 3084 return true; 3085 } 3086 3087 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 3088 // FIXME: We may need more info about the type. Because of how LLT works, 3089 // we're completely discarding the i64/double distinction here (amongst 3090 // others). Fortunately the ABIs I know of where that matters don't use va_arg 3091 // anyway but that's not guaranteed. 3092 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 3093 {getOrCreateVReg(*U.getOperand(0)), 3094 DL->getABITypeAlign(U.getType()).value()}); 3095 return true; 3096 } 3097 3098 bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) { 3099 if (!MF->getTarget().Options.TrapUnreachable) 3100 return true; 3101 3102 auto &UI = cast<UnreachableInst>(U); 3103 3104 // We may be able to ignore unreachable behind a noreturn call. 3105 if (const CallInst *Call = dyn_cast_or_null<CallInst>(UI.getPrevNode()); 3106 Call && Call->doesNotReturn()) { 3107 if (MF->getTarget().Options.NoTrapAfterNoreturn) 3108 return true; 3109 // Do not emit an additional trap instruction. 3110 if (Call->isNonContinuableTrap()) 3111 return true; 3112 } 3113 3114 MIRBuilder.buildTrap(); 3115 return true; 3116 } 3117 3118 bool IRTranslator::translateInsertElement(const User &U, 3119 MachineIRBuilder &MIRBuilder) { 3120 // If it is a <1 x Ty> vector, use the scalar as it is 3121 // not a legal vector type in LLT. 3122 if (auto *FVT = dyn_cast<FixedVectorType>(U.getType()); 3123 FVT && FVT->getNumElements() == 1) 3124 return translateCopy(U, *U.getOperand(1), MIRBuilder); 3125 3126 Register Res = getOrCreateVReg(U); 3127 Register Val = getOrCreateVReg(*U.getOperand(0)); 3128 Register Elt = getOrCreateVReg(*U.getOperand(1)); 3129 unsigned PreferredVecIdxWidth = TLI->getVectorIdxTy(*DL).getSizeInBits(); 3130 Register Idx; 3131 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(2))) { 3132 if (CI->getBitWidth() != PreferredVecIdxWidth) { 3133 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth); 3134 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 3135 Idx = getOrCreateVReg(*NewIdxCI); 3136 } 3137 } 3138 if (!Idx) 3139 Idx = getOrCreateVReg(*U.getOperand(2)); 3140 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 3141 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 3142 Idx = MIRBuilder.buildZExtOrTrunc(VecIdxTy, Idx).getReg(0); 3143 } 3144 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 3145 return true; 3146 } 3147 3148 bool IRTranslator::translateExtractElement(const User &U, 3149 MachineIRBuilder &MIRBuilder) { 3150 // If it is a <1 x Ty> vector, use the scalar as it is 3151 // not a legal vector type in LLT. 3152 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1) 3153 return translateCopy(U, *U.getOperand(0), MIRBuilder); 3154 3155 Register Res = getOrCreateVReg(U); 3156 Register Val = getOrCreateVReg(*U.getOperand(0)); 3157 unsigned PreferredVecIdxWidth = TLI->getVectorIdxTy(*DL).getSizeInBits(); 3158 Register Idx; 3159 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 3160 if (CI->getBitWidth() != PreferredVecIdxWidth) { 3161 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth); 3162 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 3163 Idx = getOrCreateVReg(*NewIdxCI); 3164 } 3165 } 3166 if (!Idx) 3167 Idx = getOrCreateVReg(*U.getOperand(1)); 3168 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 3169 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 3170 Idx = MIRBuilder.buildZExtOrTrunc(VecIdxTy, Idx).getReg(0); 3171 } 3172 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 3173 return true; 3174 } 3175 3176 bool IRTranslator::translateShuffleVector(const User &U, 3177 MachineIRBuilder &MIRBuilder) { 3178 // A ShuffleVector that has operates on scalable vectors is a splat vector 3179 // where the value of the splat vector is the 0th element of the first 3180 // operand, since the index mask operand is the zeroinitializer (undef and 3181 // poison are treated as zeroinitializer here). 3182 if (U.getOperand(0)->getType()->isScalableTy()) { 3183 Value *Op0 = U.getOperand(0); 3184 auto SplatVal = MIRBuilder.buildExtractVectorElementConstant( 3185 LLT::scalar(Op0->getType()->getScalarSizeInBits()), 3186 getOrCreateVReg(*Op0), 0); 3187 MIRBuilder.buildSplatVector(getOrCreateVReg(U), SplatVal); 3188 return true; 3189 } 3190 3191 ArrayRef<int> Mask; 3192 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 3193 Mask = SVI->getShuffleMask(); 3194 else 3195 Mask = cast<ConstantExpr>(U).getShuffleMask(); 3196 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 3197 MIRBuilder 3198 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 3199 {getOrCreateVReg(*U.getOperand(0)), 3200 getOrCreateVReg(*U.getOperand(1))}) 3201 .addShuffleMask(MaskAlloc); 3202 return true; 3203 } 3204 3205 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 3206 const PHINode &PI = cast<PHINode>(U); 3207 3208 SmallVector<MachineInstr *, 4> Insts; 3209 for (auto Reg : getOrCreateVRegs(PI)) { 3210 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 3211 Insts.push_back(MIB.getInstr()); 3212 } 3213 3214 PendingPHIs.emplace_back(&PI, std::move(Insts)); 3215 return true; 3216 } 3217 3218 bool IRTranslator::translateAtomicCmpXchg(const User &U, 3219 MachineIRBuilder &MIRBuilder) { 3220 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 3221 3222 auto Flags = TLI->getAtomicMemOperandFlags(I, *DL); 3223 3224 auto Res = getOrCreateVRegs(I); 3225 Register OldValRes = Res[0]; 3226 Register SuccessRes = Res[1]; 3227 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 3228 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 3229 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 3230 3231 MIRBuilder.buildAtomicCmpXchgWithSuccess( 3232 OldValRes, SuccessRes, Addr, Cmp, NewVal, 3233 *MF->getMachineMemOperand( 3234 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp), 3235 getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(), 3236 I.getSuccessOrdering(), I.getFailureOrdering())); 3237 return true; 3238 } 3239 3240 bool IRTranslator::translateAtomicRMW(const User &U, 3241 MachineIRBuilder &MIRBuilder) { 3242 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 3243 auto Flags = TLI->getAtomicMemOperandFlags(I, *DL); 3244 3245 Register Res = getOrCreateVReg(I); 3246 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 3247 Register Val = getOrCreateVReg(*I.getValOperand()); 3248 3249 unsigned Opcode = 0; 3250 switch (I.getOperation()) { 3251 default: 3252 return false; 3253 case AtomicRMWInst::Xchg: 3254 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 3255 break; 3256 case AtomicRMWInst::Add: 3257 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 3258 break; 3259 case AtomicRMWInst::Sub: 3260 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 3261 break; 3262 case AtomicRMWInst::And: 3263 Opcode = TargetOpcode::G_ATOMICRMW_AND; 3264 break; 3265 case AtomicRMWInst::Nand: 3266 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 3267 break; 3268 case AtomicRMWInst::Or: 3269 Opcode = TargetOpcode::G_ATOMICRMW_OR; 3270 break; 3271 case AtomicRMWInst::Xor: 3272 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 3273 break; 3274 case AtomicRMWInst::Max: 3275 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 3276 break; 3277 case AtomicRMWInst::Min: 3278 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 3279 break; 3280 case AtomicRMWInst::UMax: 3281 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 3282 break; 3283 case AtomicRMWInst::UMin: 3284 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 3285 break; 3286 case AtomicRMWInst::FAdd: 3287 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 3288 break; 3289 case AtomicRMWInst::FSub: 3290 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 3291 break; 3292 case AtomicRMWInst::FMax: 3293 Opcode = TargetOpcode::G_ATOMICRMW_FMAX; 3294 break; 3295 case AtomicRMWInst::FMin: 3296 Opcode = TargetOpcode::G_ATOMICRMW_FMIN; 3297 break; 3298 case AtomicRMWInst::UIncWrap: 3299 Opcode = TargetOpcode::G_ATOMICRMW_UINC_WRAP; 3300 break; 3301 case AtomicRMWInst::UDecWrap: 3302 Opcode = TargetOpcode::G_ATOMICRMW_UDEC_WRAP; 3303 break; 3304 } 3305 3306 MIRBuilder.buildAtomicRMW( 3307 Opcode, Res, Addr, Val, 3308 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3309 Flags, MRI->getType(Val), getMemOpAlign(I), 3310 I.getAAMetadata(), nullptr, I.getSyncScopeID(), 3311 I.getOrdering())); 3312 return true; 3313 } 3314 3315 bool IRTranslator::translateFence(const User &U, 3316 MachineIRBuilder &MIRBuilder) { 3317 const FenceInst &Fence = cast<FenceInst>(U); 3318 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 3319 Fence.getSyncScopeID()); 3320 return true; 3321 } 3322 3323 bool IRTranslator::translateFreeze(const User &U, 3324 MachineIRBuilder &MIRBuilder) { 3325 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 3326 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 3327 3328 assert(DstRegs.size() == SrcRegs.size() && 3329 "Freeze with different source and destination type?"); 3330 3331 for (unsigned I = 0; I < DstRegs.size(); ++I) { 3332 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 3333 } 3334 3335 return true; 3336 } 3337 3338 void IRTranslator::finishPendingPhis() { 3339 #ifndef NDEBUG 3340 DILocationVerifier Verifier; 3341 GISelObserverWrapper WrapperObserver(&Verifier); 3342 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 3343 #endif // ifndef NDEBUG 3344 for (auto &Phi : PendingPHIs) { 3345 const PHINode *PI = Phi.first; 3346 if (PI->getType()->isEmptyTy()) 3347 continue; 3348 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 3349 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 3350 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 3351 #ifndef NDEBUG 3352 Verifier.setCurrentInst(PI); 3353 #endif // ifndef NDEBUG 3354 3355 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 3356 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 3357 auto IRPred = PI->getIncomingBlock(i); 3358 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 3359 for (auto *Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 3360 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 3361 continue; 3362 SeenPreds.insert(Pred); 3363 for (unsigned j = 0; j < ValRegs.size(); ++j) { 3364 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 3365 MIB.addUse(ValRegs[j]); 3366 MIB.addMBB(Pred); 3367 } 3368 } 3369 } 3370 } 3371 } 3372 3373 void IRTranslator::translateDbgValueRecord(Value *V, bool HasArgList, 3374 const DILocalVariable *Variable, 3375 const DIExpression *Expression, 3376 const DebugLoc &DL, 3377 MachineIRBuilder &MIRBuilder) { 3378 assert(Variable->isValidLocationForIntrinsic(DL) && 3379 "Expected inlined-at fields to agree"); 3380 // Act as if we're handling a debug intrinsic. 3381 MIRBuilder.setDebugLoc(DL); 3382 3383 if (!V || HasArgList) { 3384 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to 3385 // terminate any prior location. 3386 MIRBuilder.buildIndirectDbgValue(0, Variable, Expression); 3387 return; 3388 } 3389 3390 if (const auto *CI = dyn_cast<Constant>(V)) { 3391 MIRBuilder.buildConstDbgValue(*CI, Variable, Expression); 3392 return; 3393 } 3394 3395 if (auto *AI = dyn_cast<AllocaInst>(V); 3396 AI && AI->isStaticAlloca() && Expression->startsWithDeref()) { 3397 // If the value is an alloca and the expression starts with a 3398 // dereference, track a stack slot instead of a register, as registers 3399 // may be clobbered. 3400 auto ExprOperands = Expression->getElements(); 3401 auto *ExprDerefRemoved = 3402 DIExpression::get(AI->getContext(), ExprOperands.drop_front()); 3403 MIRBuilder.buildFIDbgValue(getOrCreateFrameIndex(*AI), Variable, 3404 ExprDerefRemoved); 3405 return; 3406 } 3407 if (translateIfEntryValueArgument(false, V, Variable, Expression, DL, 3408 MIRBuilder)) 3409 return; 3410 for (Register Reg : getOrCreateVRegs(*V)) { 3411 // FIXME: This does not handle register-indirect values at offset 0. The 3412 // direct/indirect thing shouldn't really be handled by something as 3413 // implicit as reg+noreg vs reg+imm in the first place, but it seems 3414 // pretty baked in right now. 3415 MIRBuilder.buildDirectDbgValue(Reg, Variable, Expression); 3416 } 3417 return; 3418 } 3419 3420 void IRTranslator::translateDbgDeclareRecord(Value *Address, bool HasArgList, 3421 const DILocalVariable *Variable, 3422 const DIExpression *Expression, 3423 const DebugLoc &DL, 3424 MachineIRBuilder &MIRBuilder) { 3425 if (!Address || isa<UndefValue>(Address)) { 3426 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *Variable << "\n"); 3427 return; 3428 } 3429 3430 assert(Variable->isValidLocationForIntrinsic(DL) && 3431 "Expected inlined-at fields to agree"); 3432 auto AI = dyn_cast<AllocaInst>(Address); 3433 if (AI && AI->isStaticAlloca()) { 3434 // Static allocas are tracked at the MF level, no need for DBG_VALUE 3435 // instructions (in fact, they get ignored if they *do* exist). 3436 MF->setVariableDbgInfo(Variable, Expression, 3437 getOrCreateFrameIndex(*AI), DL); 3438 return; 3439 } 3440 3441 if (translateIfEntryValueArgument(true, Address, Variable, 3442 Expression, DL, 3443 MIRBuilder)) 3444 return; 3445 3446 // A dbg.declare describes the address of a source variable, so lower it 3447 // into an indirect DBG_VALUE. 3448 MIRBuilder.setDebugLoc(DL); 3449 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 3450 Variable, Expression); 3451 return; 3452 } 3453 3454 void IRTranslator::translateDbgInfo(const Instruction &Inst, 3455 MachineIRBuilder &MIRBuilder) { 3456 for (DbgRecord &DR : Inst.getDbgRecordRange()) { 3457 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 3458 MIRBuilder.setDebugLoc(DLR->getDebugLoc()); 3459 assert(DLR->getLabel() && "Missing label"); 3460 assert(DLR->getLabel()->isValidLocationForIntrinsic( 3461 MIRBuilder.getDebugLoc()) && 3462 "Expected inlined-at fields to agree"); 3463 MIRBuilder.buildDbgLabel(DLR->getLabel()); 3464 continue; 3465 } 3466 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 3467 const DILocalVariable *Variable = DVR.getVariable(); 3468 const DIExpression *Expression = DVR.getExpression(); 3469 Value *V = DVR.getVariableLocationOp(0); 3470 if (DVR.isDbgDeclare()) 3471 translateDbgDeclareRecord(V, DVR.hasArgList(), Variable, Expression, 3472 DVR.getDebugLoc(), MIRBuilder); 3473 else 3474 translateDbgValueRecord(V, DVR.hasArgList(), Variable, Expression, 3475 DVR.getDebugLoc(), MIRBuilder); 3476 } 3477 } 3478 3479 bool IRTranslator::translate(const Instruction &Inst) { 3480 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 3481 CurBuilder->setPCSections(Inst.getMetadata(LLVMContext::MD_pcsections)); 3482 CurBuilder->setMMRAMetadata(Inst.getMetadata(LLVMContext::MD_mmra)); 3483 3484 if (TLI->fallBackToDAGISel(Inst)) 3485 return false; 3486 3487 switch (Inst.getOpcode()) { 3488 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 3489 case Instruction::OPCODE: \ 3490 return translate##OPCODE(Inst, *CurBuilder.get()); 3491 #include "llvm/IR/Instruction.def" 3492 default: 3493 return false; 3494 } 3495 } 3496 3497 bool IRTranslator::translate(const Constant &C, Register Reg) { 3498 // We only emit constants into the entry block from here. To prevent jumpy 3499 // debug behaviour remove debug line. 3500 if (auto CurrInstDL = CurBuilder->getDL()) 3501 EntryBuilder->setDebugLoc(DebugLoc()); 3502 3503 if (auto CI = dyn_cast<ConstantInt>(&C)) 3504 EntryBuilder->buildConstant(Reg, *CI); 3505 else if (auto CF = dyn_cast<ConstantFP>(&C)) 3506 EntryBuilder->buildFConstant(Reg, *CF); 3507 else if (isa<UndefValue>(C)) 3508 EntryBuilder->buildUndef(Reg); 3509 else if (isa<ConstantPointerNull>(C)) 3510 EntryBuilder->buildConstant(Reg, 0); 3511 else if (auto GV = dyn_cast<GlobalValue>(&C)) 3512 EntryBuilder->buildGlobalValue(Reg, GV); 3513 else if (auto CPA = dyn_cast<ConstantPtrAuth>(&C)) { 3514 Register Addr = getOrCreateVReg(*CPA->getPointer()); 3515 Register AddrDisc = getOrCreateVReg(*CPA->getAddrDiscriminator()); 3516 EntryBuilder->buildConstantPtrAuth(Reg, CPA, Addr, AddrDisc); 3517 } else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 3518 if (!isa<FixedVectorType>(CAZ->getType())) 3519 return false; 3520 // Return the scalar if it is a <1 x Ty> vector. 3521 unsigned NumElts = CAZ->getElementCount().getFixedValue(); 3522 if (NumElts == 1) 3523 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder); 3524 SmallVector<Register, 4> Ops; 3525 for (unsigned I = 0; I < NumElts; ++I) { 3526 Constant &Elt = *CAZ->getElementValue(I); 3527 Ops.push_back(getOrCreateVReg(Elt)); 3528 } 3529 EntryBuilder->buildBuildVector(Reg, Ops); 3530 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 3531 // Return the scalar if it is a <1 x Ty> vector. 3532 if (CV->getNumElements() == 1) 3533 return translateCopy(C, *CV->getElementAsConstant(0), *EntryBuilder); 3534 SmallVector<Register, 4> Ops; 3535 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 3536 Constant &Elt = *CV->getElementAsConstant(i); 3537 Ops.push_back(getOrCreateVReg(Elt)); 3538 } 3539 EntryBuilder->buildBuildVector(Reg, Ops); 3540 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 3541 switch(CE->getOpcode()) { 3542 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 3543 case Instruction::OPCODE: \ 3544 return translate##OPCODE(*CE, *EntryBuilder.get()); 3545 #include "llvm/IR/Instruction.def" 3546 default: 3547 return false; 3548 } 3549 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 3550 if (CV->getNumOperands() == 1) 3551 return translateCopy(C, *CV->getOperand(0), *EntryBuilder); 3552 SmallVector<Register, 4> Ops; 3553 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 3554 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 3555 } 3556 EntryBuilder->buildBuildVector(Reg, Ops); 3557 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 3558 EntryBuilder->buildBlockAddress(Reg, BA); 3559 } else 3560 return false; 3561 3562 return true; 3563 } 3564 3565 bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB, 3566 MachineBasicBlock &MBB) { 3567 for (auto &BTB : SL->BitTestCases) { 3568 // Emit header first, if it wasn't already emitted. 3569 if (!BTB.Emitted) 3570 emitBitTestHeader(BTB, BTB.Parent); 3571 3572 BranchProbability UnhandledProb = BTB.Prob; 3573 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 3574 UnhandledProb -= BTB.Cases[j].ExtraProb; 3575 // Set the current basic block to the mbb we wish to insert the code into 3576 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB; 3577 // If all cases cover a contiguous range, it is not necessary to jump to 3578 // the default block after the last bit test fails. This is because the 3579 // range check during bit test header creation has guaranteed that every 3580 // case here doesn't go outside the range. In this case, there is no need 3581 // to perform the last bit test, as it will always be true. Instead, make 3582 // the second-to-last bit-test fall through to the target of the last bit 3583 // test, and delete the last bit test. 3584 3585 MachineBasicBlock *NextMBB; 3586 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3587 // Second-to-last bit-test with contiguous range: fall through to the 3588 // target of the final bit test. 3589 NextMBB = BTB.Cases[j + 1].TargetBB; 3590 } else if (j + 1 == ej) { 3591 // For the last bit test, fall through to Default. 3592 NextMBB = BTB.Default; 3593 } else { 3594 // Otherwise, fall through to the next bit test. 3595 NextMBB = BTB.Cases[j + 1].ThisBB; 3596 } 3597 3598 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB); 3599 3600 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3601 // We need to record the replacement phi edge here that normally 3602 // happens in emitBitTestCase before we delete the case, otherwise the 3603 // phi edge will be lost. 3604 addMachineCFGPred({BTB.Parent->getBasicBlock(), 3605 BTB.Cases[ej - 1].TargetBB->getBasicBlock()}, 3606 MBB); 3607 // Since we're not going to use the final bit test, remove it. 3608 BTB.Cases.pop_back(); 3609 break; 3610 } 3611 } 3612 // This is "default" BB. We have two jumps to it. From "header" BB and from 3613 // last "case" BB, unless the latter was skipped. 3614 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(), 3615 BTB.Default->getBasicBlock()}; 3616 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent); 3617 if (!BTB.ContiguousRange) { 3618 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB); 3619 } 3620 } 3621 SL->BitTestCases.clear(); 3622 3623 for (auto &JTCase : SL->JTCases) { 3624 // Emit header first, if it wasn't already emitted. 3625 if (!JTCase.first.Emitted) 3626 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 3627 3628 emitJumpTable(JTCase.second, JTCase.second.MBB); 3629 } 3630 SL->JTCases.clear(); 3631 3632 for (auto &SwCase : SL->SwitchCases) 3633 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder); 3634 SL->SwitchCases.clear(); 3635 3636 // Check if we need to generate stack-protector guard checks. 3637 StackProtector &SP = getAnalysis<StackProtector>(); 3638 if (SP.shouldEmitSDCheck(BB)) { 3639 bool FunctionBasedInstrumentation = 3640 TLI->getSSPStackGuardCheck(*MF->getFunction().getParent()); 3641 SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation); 3642 } 3643 // Handle stack protector. 3644 if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 3645 LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n"); 3646 return false; 3647 } else if (SPDescriptor.shouldEmitStackProtector()) { 3648 MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB(); 3649 MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB(); 3650 3651 // Find the split point to split the parent mbb. At the same time copy all 3652 // physical registers used in the tail of parent mbb into virtual registers 3653 // before the split point and back into physical registers after the split 3654 // point. This prevents us needing to deal with Live-ins and many other 3655 // register allocation issues caused by us splitting the parent mbb. The 3656 // register allocator will clean up said virtual copies later on. 3657 MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector( 3658 ParentMBB, *MF->getSubtarget().getInstrInfo()); 3659 3660 // Splice the terminator of ParentMBB into SuccessMBB. 3661 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint, 3662 ParentMBB->end()); 3663 3664 // Add compare/jump on neq/jump to the parent BB. 3665 if (!emitSPDescriptorParent(SPDescriptor, ParentMBB)) 3666 return false; 3667 3668 // CodeGen Failure MBB if we have not codegened it yet. 3669 MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB(); 3670 if (FailureMBB->empty()) { 3671 if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB)) 3672 return false; 3673 } 3674 3675 // Clear the Per-BB State. 3676 SPDescriptor.resetPerBBState(); 3677 } 3678 return true; 3679 } 3680 3681 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD, 3682 MachineBasicBlock *ParentBB) { 3683 CurBuilder->setInsertPt(*ParentBB, ParentBB->end()); 3684 // First create the loads to the guard/stack slot for the comparison. 3685 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext()); 3686 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 3687 LLT PtrMemTy = getLLTForMVT(TLI->getPointerMemTy(*DL)); 3688 3689 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3690 int FI = MFI.getStackProtectorIndex(); 3691 3692 Register Guard; 3693 Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0); 3694 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3695 Align Align = DL->getPrefTypeAlign(PointerType::getUnqual(M.getContext())); 3696 3697 // Generate code to load the content of the guard slot. 3698 Register GuardVal = 3699 CurBuilder 3700 ->buildLoad(PtrMemTy, StackSlotPtr, 3701 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3702 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile) 3703 .getReg(0); 3704 3705 if (TLI->useStackGuardXorFP()) { 3706 LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented"); 3707 return false; 3708 } 3709 3710 // Retrieve guard check function, nullptr if instrumentation is inlined. 3711 if (const Function *GuardCheckFn = TLI->getSSPStackGuardCheck(M)) { 3712 // This path is currently untestable on GlobalISel, since the only platform 3713 // that needs this seems to be Windows, and we fall back on that currently. 3714 // The code still lives here in case that changes. 3715 // Silence warning about unused variable until the code below that uses 3716 // 'GuardCheckFn' is enabled. 3717 (void)GuardCheckFn; 3718 return false; 3719 #if 0 3720 // The target provides a guard check function to validate the guard value. 3721 // Generate a call to that function with the content of the guard slot as 3722 // argument. 3723 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3724 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3725 ISD::ArgFlagsTy Flags; 3726 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 3727 Flags.setInReg(); 3728 CallLowering::ArgInfo GuardArgInfo( 3729 {GuardVal, FnTy->getParamType(0), {Flags}}); 3730 3731 CallLowering::CallLoweringInfo Info; 3732 Info.OrigArgs.push_back(GuardArgInfo); 3733 Info.CallConv = GuardCheckFn->getCallingConv(); 3734 Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0); 3735 Info.OrigRet = {Register(), FnTy->getReturnType()}; 3736 if (!CLI->lowerCall(MIRBuilder, Info)) { 3737 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n"); 3738 return false; 3739 } 3740 return true; 3741 #endif 3742 } 3743 3744 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3745 // Otherwise, emit a volatile load to retrieve the stack guard value. 3746 if (TLI->useLoadStackGuardNode()) { 3747 Guard = 3748 MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits())); 3749 getStackGuard(Guard, *CurBuilder); 3750 } else { 3751 // TODO: test using android subtarget when we support @llvm.thread.pointer. 3752 const Value *IRGuard = TLI->getSDagStackGuard(M); 3753 Register GuardPtr = getOrCreateVReg(*IRGuard); 3754 3755 Guard = CurBuilder 3756 ->buildLoad(PtrMemTy, GuardPtr, 3757 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3758 MachineMemOperand::MOLoad | 3759 MachineMemOperand::MOVolatile) 3760 .getReg(0); 3761 } 3762 3763 // Perform the comparison. 3764 auto Cmp = 3765 CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal); 3766 // If the guard/stackslot do not equal, branch to failure MBB. 3767 CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB()); 3768 // Otherwise branch to success MBB. 3769 CurBuilder->buildBr(*SPD.getSuccessMBB()); 3770 return true; 3771 } 3772 3773 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD, 3774 MachineBasicBlock *FailureBB) { 3775 CurBuilder->setInsertPt(*FailureBB, FailureBB->end()); 3776 3777 const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL; 3778 const char *Name = TLI->getLibcallName(Libcall); 3779 3780 CallLowering::CallLoweringInfo Info; 3781 Info.CallConv = TLI->getLibcallCallingConv(Libcall); 3782 Info.Callee = MachineOperand::CreateES(Name); 3783 Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()), 3784 0}; 3785 if (!CLI->lowerCall(*CurBuilder, Info)) { 3786 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n"); 3787 return false; 3788 } 3789 3790 // On PS4/PS5, the "return address" must still be within the calling 3791 // function, even if it's at the very end, so emit an explicit TRAP here. 3792 // WebAssembly needs an unreachable instruction after a non-returning call, 3793 // because the function return type can be different from __stack_chk_fail's 3794 // return type (void). 3795 const TargetMachine &TM = MF->getTarget(); 3796 if (TM.getTargetTriple().isPS() || TM.getTargetTriple().isWasm()) { 3797 LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n"); 3798 return false; 3799 } 3800 return true; 3801 } 3802 3803 void IRTranslator::finalizeFunction() { 3804 // Release the memory used by the different maps we 3805 // needed during the translation. 3806 PendingPHIs.clear(); 3807 VMap.reset(); 3808 FrameIndices.clear(); 3809 MachinePreds.clear(); 3810 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 3811 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 3812 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 3813 EntryBuilder.reset(); 3814 CurBuilder.reset(); 3815 FuncInfo.clear(); 3816 SPDescriptor.resetPerFunctionState(); 3817 } 3818 3819 /// Returns true if a BasicBlock \p BB within a variadic function contains a 3820 /// variadic musttail call. 3821 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 3822 if (!IsVarArg) 3823 return false; 3824 3825 // Walk the block backwards, because tail calls usually only appear at the end 3826 // of a block. 3827 return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) { 3828 const auto *CI = dyn_cast<CallInst>(&I); 3829 return CI && CI->isMustTailCall(); 3830 }); 3831 } 3832 3833 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 3834 MF = &CurMF; 3835 const Function &F = MF->getFunction(); 3836 GISelCSEAnalysisWrapper &Wrapper = 3837 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 3838 // Set the CSEConfig and run the analysis. 3839 GISelCSEInfo *CSEInfo = nullptr; 3840 TPC = &getAnalysis<TargetPassConfig>(); 3841 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 3842 ? EnableCSEInIRTranslator 3843 : TPC->isGISelCSEEnabled(); 3844 TLI = MF->getSubtarget().getTargetLowering(); 3845 3846 if (EnableCSE) { 3847 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3848 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 3849 EntryBuilder->setCSEInfo(CSEInfo); 3850 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3851 CurBuilder->setCSEInfo(CSEInfo); 3852 } else { 3853 EntryBuilder = std::make_unique<MachineIRBuilder>(); 3854 CurBuilder = std::make_unique<MachineIRBuilder>(); 3855 } 3856 CLI = MF->getSubtarget().getCallLowering(); 3857 CurBuilder->setMF(*MF); 3858 EntryBuilder->setMF(*MF); 3859 MRI = &MF->getRegInfo(); 3860 DL = &F.getDataLayout(); 3861 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 3862 const TargetMachine &TM = MF->getTarget(); 3863 TM.resetTargetOptions(F); 3864 EnableOpts = OptLevel != CodeGenOptLevel::None && !skipFunction(F); 3865 FuncInfo.MF = MF; 3866 if (EnableOpts) { 3867 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3868 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 3869 } else { 3870 AA = nullptr; 3871 FuncInfo.BPI = nullptr; 3872 } 3873 3874 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 3875 MF->getFunction()); 3876 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 3877 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF); 3878 3879 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 3880 SL->init(*TLI, TM, *DL); 3881 3882 assert(PendingPHIs.empty() && "stale PHIs"); 3883 3884 // Targets which want to use big endian can enable it using 3885 // enableBigEndian() 3886 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) { 3887 // Currently we don't properly handle big endian code. 3888 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3889 F.getSubprogram(), &F.getEntryBlock()); 3890 R << "unable to translate in big endian mode"; 3891 reportTranslationError(*MF, *TPC, *ORE, R); 3892 return false; 3893 } 3894 3895 // Release the per-function state when we return, whether we succeeded or not. 3896 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 3897 3898 // Setup a separate basic-block for the arguments and constants 3899 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 3900 MF->push_back(EntryBB); 3901 EntryBuilder->setMBB(*EntryBB); 3902 3903 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 3904 SwiftError.setFunction(CurMF); 3905 SwiftError.createEntriesInEntryBlock(DbgLoc); 3906 3907 bool IsVarArg = F.isVarArg(); 3908 bool HasMustTailInVarArgFn = false; 3909 3910 // Create all blocks, in IR order, to preserve the layout. 3911 for (const BasicBlock &BB: F) { 3912 auto *&MBB = BBToMBB[&BB]; 3913 3914 MBB = MF->CreateMachineBasicBlock(&BB); 3915 MF->push_back(MBB); 3916 3917 if (BB.hasAddressTaken()) 3918 MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB)); 3919 3920 if (!HasMustTailInVarArgFn) 3921 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 3922 } 3923 3924 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 3925 3926 // Make our arguments/constants entry block fallthrough to the IR entry block. 3927 EntryBB->addSuccessor(&getMBB(F.front())); 3928 3929 if (CLI->fallBackToDAGISel(*MF)) { 3930 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3931 F.getSubprogram(), &F.getEntryBlock()); 3932 R << "unable to lower function: " << ore::NV("Prototype", F.getType()); 3933 reportTranslationError(*MF, *TPC, *ORE, R); 3934 return false; 3935 } 3936 3937 // Lower the actual args into this basic block. 3938 SmallVector<ArrayRef<Register>, 8> VRegArgs; 3939 for (const Argument &Arg: F.args()) { 3940 if (DL->getTypeStoreSize(Arg.getType()).isZero()) 3941 continue; // Don't handle zero sized types. 3942 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 3943 VRegArgs.push_back(VRegs); 3944 3945 if (Arg.hasSwiftErrorAttr()) { 3946 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 3947 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 3948 } 3949 } 3950 3951 if (!CLI->lowerFormalArguments(*EntryBuilder, F, VRegArgs, FuncInfo)) { 3952 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3953 F.getSubprogram(), &F.getEntryBlock()); 3954 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 3955 reportTranslationError(*MF, *TPC, *ORE, R); 3956 return false; 3957 } 3958 3959 // Need to visit defs before uses when translating instructions. 3960 GISelObserverWrapper WrapperObserver; 3961 if (EnableCSE && CSEInfo) 3962 WrapperObserver.addObserver(CSEInfo); 3963 { 3964 ReversePostOrderTraversal<const Function *> RPOT(&F); 3965 #ifndef NDEBUG 3966 DILocationVerifier Verifier; 3967 WrapperObserver.addObserver(&Verifier); 3968 #endif // ifndef NDEBUG 3969 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 3970 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 3971 for (const BasicBlock *BB : RPOT) { 3972 MachineBasicBlock &MBB = getMBB(*BB); 3973 // Set the insertion point of all the following translations to 3974 // the end of this basic block. 3975 CurBuilder->setMBB(MBB); 3976 HasTailCall = false; 3977 for (const Instruction &Inst : *BB) { 3978 // If we translated a tail call in the last step, then we know 3979 // everything after the call is either a return, or something that is 3980 // handled by the call itself. (E.g. a lifetime marker or assume 3981 // intrinsic.) In this case, we should stop translating the block and 3982 // move on. 3983 if (HasTailCall) 3984 break; 3985 #ifndef NDEBUG 3986 Verifier.setCurrentInst(&Inst); 3987 #endif // ifndef NDEBUG 3988 3989 // Translate any debug-info attached to the instruction. 3990 translateDbgInfo(Inst, *CurBuilder); 3991 3992 if (translate(Inst)) 3993 continue; 3994 3995 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3996 Inst.getDebugLoc(), BB); 3997 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 3998 3999 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 4000 std::string InstStrStorage; 4001 raw_string_ostream InstStr(InstStrStorage); 4002 InstStr << Inst; 4003 4004 R << ": '" << InstStrStorage << "'"; 4005 } 4006 4007 reportTranslationError(*MF, *TPC, *ORE, R); 4008 return false; 4009 } 4010 4011 if (!finalizeBasicBlock(*BB, MBB)) { 4012 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 4013 BB->getTerminator()->getDebugLoc(), BB); 4014 R << "unable to translate basic block"; 4015 reportTranslationError(*MF, *TPC, *ORE, R); 4016 return false; 4017 } 4018 } 4019 #ifndef NDEBUG 4020 WrapperObserver.removeObserver(&Verifier); 4021 #endif 4022 } 4023 4024 finishPendingPhis(); 4025 4026 SwiftError.propagateVRegs(); 4027 4028 // Merge the argument lowering and constants block with its single 4029 // successor, the LLVM-IR entry block. We want the basic block to 4030 // be maximal. 4031 assert(EntryBB->succ_size() == 1 && 4032 "Custom BB used for lowering should have only one successor"); 4033 // Get the successor of the current entry block. 4034 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 4035 assert(NewEntryBB.pred_size() == 1 && 4036 "LLVM-IR entry block has a predecessor!?"); 4037 // Move all the instruction from the current entry block to the 4038 // new entry block. 4039 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 4040 EntryBB->end()); 4041 4042 // Update the live-in information for the new entry block. 4043 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 4044 NewEntryBB.addLiveIn(LiveIn); 4045 NewEntryBB.sortUniqueLiveIns(); 4046 4047 // Get rid of the now empty basic block. 4048 EntryBB->removeSuccessor(&NewEntryBB); 4049 MF->remove(EntryBB); 4050 MF->deleteMachineBasicBlock(EntryBB); 4051 4052 assert(&MF->front() == &NewEntryBB && 4053 "New entry wasn't next in the list of basic block!"); 4054 4055 // Initialize stack protector information. 4056 StackProtector &SP = getAnalysis<StackProtector>(); 4057 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 4058 4059 return false; 4060 } 4061