1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 25 #include "llvm/CodeGen/LowLevelType.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/StackProtector.h" 34 #include "llvm/CodeGen/TargetFrameLowering.h" 35 #include "llvm/CodeGen/TargetInstrInfo.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfo.h" 46 #include "llvm/IR/DerivedTypes.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/GetElementPtrTypeIterator.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/InitializePasses.h" 60 #include "llvm/MC/MCContext.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CodeGen.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/LowLevelTypeImpl.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetIntrinsicInfo.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 #define DEBUG_TYPE "irtranslator" 80 81 using namespace llvm; 82 83 static cl::opt<bool> 84 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 85 cl::desc("Should enable CSE in irtranslator"), 86 cl::Optional, cl::init(false)); 87 char IRTranslator::ID = 0; 88 89 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 90 false, false) 91 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 92 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 93 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 94 false, false) 95 96 static void reportTranslationError(MachineFunction &MF, 97 const TargetPassConfig &TPC, 98 OptimizationRemarkEmitter &ORE, 99 OptimizationRemarkMissed &R) { 100 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 101 102 // Print the function name explicitly if we don't have a debug location (which 103 // makes the diagnostic less useful) or if we're going to emit a raw error. 104 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 105 R << (" (in function: " + MF.getName() + ")").str(); 106 107 if (TPC.isGlobalISelAbortEnabled()) 108 report_fatal_error(R.getMsg()); 109 else 110 ORE.emit(R); 111 } 112 113 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { } 114 115 #ifndef NDEBUG 116 namespace { 117 /// Verify that every instruction created has the same DILocation as the 118 /// instruction being translated. 119 class DILocationVerifier : public GISelChangeObserver { 120 const Instruction *CurrInst = nullptr; 121 122 public: 123 DILocationVerifier() = default; 124 ~DILocationVerifier() = default; 125 126 const Instruction *getCurrentInst() const { return CurrInst; } 127 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 128 129 void erasingInstr(MachineInstr &MI) override {} 130 void changingInstr(MachineInstr &MI) override {} 131 void changedInstr(MachineInstr &MI) override {} 132 133 void createdInstr(MachineInstr &MI) override { 134 assert(getCurrentInst() && "Inserted instruction without a current MI"); 135 136 // Only print the check message if we're actually checking it. 137 #ifndef NDEBUG 138 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 139 << " was copied to " << MI); 140 #endif 141 // We allow insts in the entry block to have a debug loc line of 0 because 142 // they could have originated from constants, and we don't want a jumpy 143 // debug experience. 144 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 145 MI.getDebugLoc().getLine() == 0) && 146 "Line info was not transferred to all instructions"); 147 } 148 }; 149 } // namespace 150 #endif // ifndef NDEBUG 151 152 153 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 154 AU.addRequired<StackProtector>(); 155 AU.addRequired<TargetPassConfig>(); 156 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 157 getSelectionDAGFallbackAnalysisUsage(AU); 158 MachineFunctionPass::getAnalysisUsage(AU); 159 } 160 161 IRTranslator::ValueToVRegInfo::VRegListT & 162 IRTranslator::allocateVRegs(const Value &Val) { 163 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 164 auto *Regs = VMap.getVRegs(Val); 165 auto *Offsets = VMap.getOffsets(Val); 166 SmallVector<LLT, 4> SplitTys; 167 computeValueLLTs(*DL, *Val.getType(), SplitTys, 168 Offsets->empty() ? Offsets : nullptr); 169 for (unsigned i = 0; i < SplitTys.size(); ++i) 170 Regs->push_back(0); 171 return *Regs; 172 } 173 174 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 175 auto VRegsIt = VMap.findVRegs(Val); 176 if (VRegsIt != VMap.vregs_end()) 177 return *VRegsIt->second; 178 179 if (Val.getType()->isVoidTy()) 180 return *VMap.getVRegs(Val); 181 182 // Create entry for this type. 183 auto *VRegs = VMap.getVRegs(Val); 184 auto *Offsets = VMap.getOffsets(Val); 185 186 assert(Val.getType()->isSized() && 187 "Don't know how to create an empty vreg"); 188 189 SmallVector<LLT, 4> SplitTys; 190 computeValueLLTs(*DL, *Val.getType(), SplitTys, 191 Offsets->empty() ? Offsets : nullptr); 192 193 if (!isa<Constant>(Val)) { 194 for (auto Ty : SplitTys) 195 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 196 return *VRegs; 197 } 198 199 if (Val.getType()->isAggregateType()) { 200 // UndefValue, ConstantAggregateZero 201 auto &C = cast<Constant>(Val); 202 unsigned Idx = 0; 203 while (auto Elt = C.getAggregateElement(Idx++)) { 204 auto EltRegs = getOrCreateVRegs(*Elt); 205 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 206 } 207 } else { 208 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 209 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 210 bool Success = translate(cast<Constant>(Val), VRegs->front()); 211 if (!Success) { 212 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 213 MF->getFunction().getSubprogram(), 214 &MF->getFunction().getEntryBlock()); 215 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 216 reportTranslationError(*MF, *TPC, *ORE, R); 217 return *VRegs; 218 } 219 } 220 221 return *VRegs; 222 } 223 224 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 225 if (FrameIndices.find(&AI) != FrameIndices.end()) 226 return FrameIndices[&AI]; 227 228 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 229 uint64_t Size = 230 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 231 232 // Always allocate at least one byte. 233 Size = std::max<uint64_t>(Size, 1u); 234 235 unsigned Alignment = AI.getAlignment(); 236 if (!Alignment) 237 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 238 239 int &FI = FrameIndices[&AI]; 240 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 241 return FI; 242 } 243 244 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 245 unsigned Alignment = 0; 246 Type *ValTy = nullptr; 247 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 248 Alignment = SI->getAlignment(); 249 ValTy = SI->getValueOperand()->getType(); 250 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 251 Alignment = LI->getAlignment(); 252 ValTy = LI->getType(); 253 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 254 // TODO(PR27168): This instruction has no alignment attribute, but unlike 255 // the default alignment for load/store, the default here is to assume 256 // it has NATURAL alignment, not DataLayout-specified alignment. 257 const DataLayout &DL = AI->getModule()->getDataLayout(); 258 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 259 ValTy = AI->getCompareOperand()->getType(); 260 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 261 // TODO(PR27168): This instruction has no alignment attribute, but unlike 262 // the default alignment for load/store, the default here is to assume 263 // it has NATURAL alignment, not DataLayout-specified alignment. 264 const DataLayout &DL = AI->getModule()->getDataLayout(); 265 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 266 ValTy = AI->getType(); 267 } else { 268 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 269 R << "unable to translate memop: " << ore::NV("Opcode", &I); 270 reportTranslationError(*MF, *TPC, *ORE, R); 271 return 1; 272 } 273 274 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 275 } 276 277 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 278 MachineBasicBlock *&MBB = BBToMBB[&BB]; 279 assert(MBB && "BasicBlock was not encountered before"); 280 return *MBB; 281 } 282 283 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 284 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 285 MachinePreds[Edge].push_back(NewPred); 286 } 287 288 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 289 MachineIRBuilder &MIRBuilder) { 290 // Get or create a virtual register for each value. 291 // Unless the value is a Constant => loadimm cst? 292 // or inline constant each time? 293 // Creation of a virtual register needs to have a size. 294 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 295 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 296 Register Res = getOrCreateVReg(U); 297 uint16_t Flags = 0; 298 if (isa<Instruction>(U)) { 299 const Instruction &I = cast<Instruction>(U); 300 Flags = MachineInstr::copyFlagsFromInstruction(I); 301 } 302 303 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 304 return true; 305 } 306 307 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 308 // -0.0 - X --> G_FNEG 309 if (isa<Constant>(U.getOperand(0)) && 310 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 311 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 312 Register Res = getOrCreateVReg(U); 313 uint16_t Flags = 0; 314 if (isa<Instruction>(U)) { 315 const Instruction &I = cast<Instruction>(U); 316 Flags = MachineInstr::copyFlagsFromInstruction(I); 317 } 318 // Negate the last operand of the FSUB 319 MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op1}, Flags); 320 return true; 321 } 322 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 323 } 324 325 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 326 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 327 Register Res = getOrCreateVReg(U); 328 uint16_t Flags = 0; 329 if (isa<Instruction>(U)) { 330 const Instruction &I = cast<Instruction>(U); 331 Flags = MachineInstr::copyFlagsFromInstruction(I); 332 } 333 MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op0}, Flags); 334 return true; 335 } 336 337 bool IRTranslator::translateCompare(const User &U, 338 MachineIRBuilder &MIRBuilder) { 339 auto *CI = dyn_cast<CmpInst>(&U); 340 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 341 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 342 Register Res = getOrCreateVReg(U); 343 CmpInst::Predicate Pred = 344 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 345 cast<ConstantExpr>(U).getPredicate()); 346 if (CmpInst::isIntPredicate(Pred)) 347 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 348 else if (Pred == CmpInst::FCMP_FALSE) 349 MIRBuilder.buildCopy( 350 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 351 else if (Pred == CmpInst::FCMP_TRUE) 352 MIRBuilder.buildCopy( 353 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 354 else { 355 assert(CI && "Instruction should be CmpInst"); 356 MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1}, 357 MachineInstr::copyFlagsFromInstruction(*CI)); 358 } 359 360 return true; 361 } 362 363 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 364 const ReturnInst &RI = cast<ReturnInst>(U); 365 const Value *Ret = RI.getReturnValue(); 366 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 367 Ret = nullptr; 368 369 ArrayRef<Register> VRegs; 370 if (Ret) 371 VRegs = getOrCreateVRegs(*Ret); 372 373 Register SwiftErrorVReg = 0; 374 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 375 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 376 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 377 } 378 379 // The target may mess up with the insertion point, but 380 // this is not important as a return is the last instruction 381 // of the block anyway. 382 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); 383 } 384 385 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 386 const BranchInst &BrInst = cast<BranchInst>(U); 387 unsigned Succ = 0; 388 if (!BrInst.isUnconditional()) { 389 // We want a G_BRCOND to the true BB followed by an unconditional branch. 390 Register Tst = getOrCreateVReg(*BrInst.getCondition()); 391 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 392 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 393 MIRBuilder.buildBrCond(Tst, TrueBB); 394 } 395 396 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 397 MachineBasicBlock &TgtBB = getMBB(BrTgt); 398 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 399 400 // If the unconditional target is the layout successor, fallthrough. 401 if (!CurBB.isLayoutSuccessor(&TgtBB)) 402 MIRBuilder.buildBr(TgtBB); 403 404 // Link successors. 405 for (const BasicBlock *Succ : successors(&BrInst)) 406 CurBB.addSuccessor(&getMBB(*Succ)); 407 return true; 408 } 409 410 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 411 MachineBasicBlock *Dst, 412 BranchProbability Prob) { 413 if (!FuncInfo.BPI) { 414 Src->addSuccessorWithoutProb(Dst); 415 return; 416 } 417 if (Prob.isUnknown()) 418 Prob = getEdgeProbability(Src, Dst); 419 Src->addSuccessor(Dst, Prob); 420 } 421 422 BranchProbability 423 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 424 const MachineBasicBlock *Dst) const { 425 const BasicBlock *SrcBB = Src->getBasicBlock(); 426 const BasicBlock *DstBB = Dst->getBasicBlock(); 427 if (!FuncInfo.BPI) { 428 // If BPI is not available, set the default probability as 1 / N, where N is 429 // the number of successors. 430 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 431 return BranchProbability(1, SuccSize); 432 } 433 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 434 } 435 436 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 437 using namespace SwitchCG; 438 // Extract cases from the switch. 439 const SwitchInst &SI = cast<SwitchInst>(U); 440 BranchProbabilityInfo *BPI = FuncInfo.BPI; 441 CaseClusterVector Clusters; 442 Clusters.reserve(SI.getNumCases()); 443 for (auto &I : SI.cases()) { 444 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 445 assert(Succ && "Could not find successor mbb in mapping"); 446 const ConstantInt *CaseVal = I.getCaseValue(); 447 BranchProbability Prob = 448 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 449 : BranchProbability(1, SI.getNumCases() + 1); 450 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 451 } 452 453 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 454 455 // Cluster adjacent cases with the same destination. We do this at all 456 // optimization levels because it's cheap to do and will make codegen faster 457 // if there are many clusters. 458 sortAndRangeify(Clusters); 459 460 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 461 462 // If there is only the default destination, jump there directly. 463 if (Clusters.empty()) { 464 SwitchMBB->addSuccessor(DefaultMBB); 465 if (DefaultMBB != SwitchMBB->getNextNode()) 466 MIB.buildBr(*DefaultMBB); 467 return true; 468 } 469 470 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 471 472 LLVM_DEBUG({ 473 dbgs() << "Case clusters: "; 474 for (const CaseCluster &C : Clusters) { 475 if (C.Kind == CC_JumpTable) 476 dbgs() << "JT:"; 477 if (C.Kind == CC_BitTests) 478 dbgs() << "BT:"; 479 480 C.Low->getValue().print(dbgs(), true); 481 if (C.Low != C.High) { 482 dbgs() << '-'; 483 C.High->getValue().print(dbgs(), true); 484 } 485 dbgs() << ' '; 486 } 487 dbgs() << '\n'; 488 }); 489 490 assert(!Clusters.empty()); 491 SwitchWorkList WorkList; 492 CaseClusterIt First = Clusters.begin(); 493 CaseClusterIt Last = Clusters.end() - 1; 494 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 495 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 496 497 // FIXME: At the moment we don't do any splitting optimizations here like 498 // SelectionDAG does, so this worklist only has one entry. 499 while (!WorkList.empty()) { 500 SwitchWorkListItem W = WorkList.back(); 501 WorkList.pop_back(); 502 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 503 return false; 504 } 505 return true; 506 } 507 508 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 509 MachineBasicBlock *MBB) { 510 // Emit the code for the jump table 511 assert(JT.Reg != -1U && "Should lower JT Header first!"); 512 MachineIRBuilder MIB(*MBB->getParent()); 513 MIB.setMBB(*MBB); 514 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 515 516 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 517 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 518 519 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 520 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 521 } 522 523 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 524 SwitchCG::JumpTableHeader &JTH, 525 MachineBasicBlock *HeaderBB) { 526 MachineIRBuilder MIB(*HeaderBB->getParent()); 527 MIB.setMBB(*HeaderBB); 528 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 529 530 const Value &SValue = *JTH.SValue; 531 // Subtract the lowest switch case value from the value being switched on. 532 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 533 Register SwitchOpReg = getOrCreateVReg(SValue); 534 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 535 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 536 537 // This value may be smaller or larger than the target's pointer type, and 538 // therefore require extension or truncating. 539 Type *PtrIRTy = SValue.getType()->getPointerTo(); 540 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 541 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 542 543 JT.Reg = Sub.getReg(0); 544 545 if (JTH.OmitRangeCheck) { 546 if (JT.MBB != HeaderBB->getNextNode()) 547 MIB.buildBr(*JT.MBB); 548 return true; 549 } 550 551 // Emit the range check for the jump table, and branch to the default block 552 // for the switch statement if the value being switched on exceeds the 553 // largest case in the switch. 554 auto Cst = getOrCreateVReg( 555 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 556 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 557 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 558 559 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 560 561 // Avoid emitting unnecessary branches to the next block. 562 if (JT.MBB != HeaderBB->getNextNode()) 563 BrCond = MIB.buildBr(*JT.MBB); 564 return true; 565 } 566 567 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 568 MachineBasicBlock *SwitchBB, 569 MachineIRBuilder &MIB) { 570 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 571 Register Cond; 572 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 573 MIB.setDebugLoc(CB.DbgLoc); 574 MIB.setMBB(*CB.ThisBB); 575 576 if (CB.PredInfo.NoCmp) { 577 // Branch or fall through to TrueBB. 578 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 579 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 580 CB.ThisBB); 581 CB.ThisBB->normalizeSuccProbs(); 582 if (CB.TrueBB != CB.ThisBB->getNextNode()) 583 MIB.buildBr(*CB.TrueBB); 584 MIB.setDebugLoc(OldDbgLoc); 585 return; 586 } 587 588 const LLT i1Ty = LLT::scalar(1); 589 // Build the compare. 590 if (!CB.CmpMHS) { 591 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 592 Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 593 } else { 594 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 595 "Can only handle SLE ranges"); 596 597 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 598 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 599 600 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 601 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 602 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 603 Cond = 604 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 605 } else { 606 const LLT &CmpTy = MRI->getType(CmpOpReg); 607 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 608 auto Diff = MIB.buildConstant(CmpTy, High - Low); 609 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 610 } 611 } 612 613 // Update successor info 614 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 615 616 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 617 CB.ThisBB); 618 619 // TrueBB and FalseBB are always different unless the incoming IR is 620 // degenerate. This only happens when running llc on weird IR. 621 if (CB.TrueBB != CB.FalseBB) 622 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 623 CB.ThisBB->normalizeSuccProbs(); 624 625 // if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock()) 626 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 627 CB.ThisBB); 628 629 // If the lhs block is the next block, invert the condition so that we can 630 // fall through to the lhs instead of the rhs block. 631 if (CB.TrueBB == CB.ThisBB->getNextNode()) { 632 std::swap(CB.TrueBB, CB.FalseBB); 633 auto True = MIB.buildConstant(i1Ty, 1); 634 Cond = MIB.buildInstr(TargetOpcode::G_XOR, {i1Ty}, {Cond, True}, None) 635 .getReg(0); 636 } 637 638 MIB.buildBrCond(Cond, *CB.TrueBB); 639 MIB.buildBr(*CB.FalseBB); 640 MIB.setDebugLoc(OldDbgLoc); 641 } 642 643 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 644 MachineBasicBlock *SwitchMBB, 645 MachineBasicBlock *CurMBB, 646 MachineBasicBlock *DefaultMBB, 647 MachineIRBuilder &MIB, 648 MachineFunction::iterator BBI, 649 BranchProbability UnhandledProbs, 650 SwitchCG::CaseClusterIt I, 651 MachineBasicBlock *Fallthrough, 652 bool FallthroughUnreachable) { 653 using namespace SwitchCG; 654 MachineFunction *CurMF = SwitchMBB->getParent(); 655 // FIXME: Optimize away range check based on pivot comparisons. 656 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 657 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 658 BranchProbability DefaultProb = W.DefaultProb; 659 660 // The jump block hasn't been inserted yet; insert it here. 661 MachineBasicBlock *JumpMBB = JT->MBB; 662 CurMF->insert(BBI, JumpMBB); 663 664 // Since the jump table block is separate from the switch block, we need 665 // to keep track of it as a machine predecessor to the default block, 666 // otherwise we lose the phi edges. 667 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 668 CurMBB); 669 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 670 JumpMBB); 671 672 auto JumpProb = I->Prob; 673 auto FallthroughProb = UnhandledProbs; 674 675 // If the default statement is a target of the jump table, we evenly 676 // distribute the default probability to successors of CurMBB. Also 677 // update the probability on the edge from JumpMBB to Fallthrough. 678 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 679 SE = JumpMBB->succ_end(); 680 SI != SE; ++SI) { 681 if (*SI == DefaultMBB) { 682 JumpProb += DefaultProb / 2; 683 FallthroughProb -= DefaultProb / 2; 684 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 685 JumpMBB->normalizeSuccProbs(); 686 } else { 687 // Also record edges from the jump table block to it's successors. 688 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 689 JumpMBB); 690 } 691 } 692 693 // Skip the range check if the fallthrough block is unreachable. 694 if (FallthroughUnreachable) 695 JTH->OmitRangeCheck = true; 696 697 if (!JTH->OmitRangeCheck) 698 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 699 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 700 CurMBB->normalizeSuccProbs(); 701 702 // The jump table header will be inserted in our current block, do the 703 // range check, and fall through to our fallthrough block. 704 JTH->HeaderBB = CurMBB; 705 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 706 707 // If we're in the right place, emit the jump table header right now. 708 if (CurMBB == SwitchMBB) { 709 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 710 return false; 711 JTH->Emitted = true; 712 } 713 return true; 714 } 715 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 716 Value *Cond, 717 MachineBasicBlock *Fallthrough, 718 bool FallthroughUnreachable, 719 BranchProbability UnhandledProbs, 720 MachineBasicBlock *CurMBB, 721 MachineIRBuilder &MIB, 722 MachineBasicBlock *SwitchMBB) { 723 using namespace SwitchCG; 724 const Value *RHS, *LHS, *MHS; 725 CmpInst::Predicate Pred; 726 if (I->Low == I->High) { 727 // Check Cond == I->Low. 728 Pred = CmpInst::ICMP_EQ; 729 LHS = Cond; 730 RHS = I->Low; 731 MHS = nullptr; 732 } else { 733 // Check I->Low <= Cond <= I->High. 734 Pred = CmpInst::ICMP_SLE; 735 LHS = I->Low; 736 MHS = Cond; 737 RHS = I->High; 738 } 739 740 // If Fallthrough is unreachable, fold away the comparison. 741 // The false probability is the sum of all unhandled cases. 742 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 743 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 744 745 emitSwitchCase(CB, SwitchMBB, MIB); 746 return true; 747 } 748 749 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 750 Value *Cond, 751 MachineBasicBlock *SwitchMBB, 752 MachineBasicBlock *DefaultMBB, 753 MachineIRBuilder &MIB) { 754 using namespace SwitchCG; 755 MachineFunction *CurMF = FuncInfo.MF; 756 MachineBasicBlock *NextMBB = nullptr; 757 MachineFunction::iterator BBI(W.MBB); 758 if (++BBI != FuncInfo.MF->end()) 759 NextMBB = &*BBI; 760 761 if (EnableOpts) { 762 // Here, we order cases by probability so the most likely case will be 763 // checked first. However, two clusters can have the same probability in 764 // which case their relative ordering is non-deterministic. So we use Low 765 // as a tie-breaker as clusters are guaranteed to never overlap. 766 llvm::sort(W.FirstCluster, W.LastCluster + 1, 767 [](const CaseCluster &a, const CaseCluster &b) { 768 return a.Prob != b.Prob 769 ? a.Prob > b.Prob 770 : a.Low->getValue().slt(b.Low->getValue()); 771 }); 772 773 // Rearrange the case blocks so that the last one falls through if possible 774 // without changing the order of probabilities. 775 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 776 --I; 777 if (I->Prob > W.LastCluster->Prob) 778 break; 779 if (I->Kind == CC_Range && I->MBB == NextMBB) { 780 std::swap(*I, *W.LastCluster); 781 break; 782 } 783 } 784 } 785 786 // Compute total probability. 787 BranchProbability DefaultProb = W.DefaultProb; 788 BranchProbability UnhandledProbs = DefaultProb; 789 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 790 UnhandledProbs += I->Prob; 791 792 MachineBasicBlock *CurMBB = W.MBB; 793 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 794 bool FallthroughUnreachable = false; 795 MachineBasicBlock *Fallthrough; 796 if (I == W.LastCluster) { 797 // For the last cluster, fall through to the default destination. 798 Fallthrough = DefaultMBB; 799 FallthroughUnreachable = isa<UnreachableInst>( 800 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 801 } else { 802 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 803 CurMF->insert(BBI, Fallthrough); 804 } 805 UnhandledProbs -= I->Prob; 806 807 switch (I->Kind) { 808 case CC_BitTests: { 809 LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented"); 810 return false; // Bit tests currently unimplemented. 811 } 812 case CC_JumpTable: { 813 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 814 UnhandledProbs, I, Fallthrough, 815 FallthroughUnreachable)) { 816 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 817 return false; 818 } 819 break; 820 } 821 case CC_Range: { 822 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 823 FallthroughUnreachable, UnhandledProbs, 824 CurMBB, MIB, SwitchMBB)) { 825 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 826 return false; 827 } 828 break; 829 } 830 } 831 CurMBB = Fallthrough; 832 } 833 834 return true; 835 } 836 837 bool IRTranslator::translateIndirectBr(const User &U, 838 MachineIRBuilder &MIRBuilder) { 839 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 840 841 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 842 MIRBuilder.buildBrIndirect(Tgt); 843 844 // Link successors. 845 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 846 for (const BasicBlock *Succ : successors(&BrInst)) 847 CurBB.addSuccessor(&getMBB(*Succ)); 848 849 return true; 850 } 851 852 static bool isSwiftError(const Value *V) { 853 if (auto Arg = dyn_cast<Argument>(V)) 854 return Arg->hasSwiftErrorAttr(); 855 if (auto AI = dyn_cast<AllocaInst>(V)) 856 return AI->isSwiftError(); 857 return false; 858 } 859 860 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 861 const LoadInst &LI = cast<LoadInst>(U); 862 863 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 864 : MachineMemOperand::MONone; 865 Flags |= MachineMemOperand::MOLoad; 866 867 if (DL->getTypeStoreSize(LI.getType()) == 0) 868 return true; 869 870 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 871 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 872 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 873 874 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 875 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 876 877 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 878 assert(Regs.size() == 1 && "swifterror should be single pointer"); 879 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 880 LI.getPointerOperand()); 881 MIRBuilder.buildCopy(Regs[0], VReg); 882 return true; 883 } 884 885 const MDNode *Ranges = 886 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 887 for (unsigned i = 0; i < Regs.size(); ++i) { 888 Register Addr; 889 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 890 891 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 892 unsigned BaseAlign = getMemOpAlignment(LI); 893 AAMDNodes AAMetadata; 894 LI.getAAMetadata(AAMetadata); 895 auto MMO = MF->getMachineMemOperand( 896 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 897 MinAlign(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges, 898 LI.getSyncScopeID(), LI.getOrdering()); 899 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 900 } 901 902 return true; 903 } 904 905 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 906 const StoreInst &SI = cast<StoreInst>(U); 907 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 908 : MachineMemOperand::MONone; 909 Flags |= MachineMemOperand::MOStore; 910 911 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 912 return true; 913 914 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 915 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 916 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 917 918 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 919 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 920 921 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 922 assert(Vals.size() == 1 && "swifterror should be single pointer"); 923 924 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 925 SI.getPointerOperand()); 926 MIRBuilder.buildCopy(VReg, Vals[0]); 927 return true; 928 } 929 930 for (unsigned i = 0; i < Vals.size(); ++i) { 931 Register Addr; 932 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 933 934 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 935 unsigned BaseAlign = getMemOpAlignment(SI); 936 AAMDNodes AAMetadata; 937 SI.getAAMetadata(AAMetadata); 938 auto MMO = MF->getMachineMemOperand( 939 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 940 MinAlign(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr, 941 SI.getSyncScopeID(), SI.getOrdering()); 942 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 943 } 944 return true; 945 } 946 947 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 948 const Value *Src = U.getOperand(0); 949 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 950 951 // getIndexedOffsetInType is designed for GEPs, so the first index is the 952 // usual array element rather than looking into the actual aggregate. 953 SmallVector<Value *, 1> Indices; 954 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 955 956 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 957 for (auto Idx : EVI->indices()) 958 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 959 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 960 for (auto Idx : IVI->indices()) 961 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 962 } else { 963 for (unsigned i = 1; i < U.getNumOperands(); ++i) 964 Indices.push_back(U.getOperand(i)); 965 } 966 967 return 8 * static_cast<uint64_t>( 968 DL.getIndexedOffsetInType(Src->getType(), Indices)); 969 } 970 971 bool IRTranslator::translateExtractValue(const User &U, 972 MachineIRBuilder &MIRBuilder) { 973 const Value *Src = U.getOperand(0); 974 uint64_t Offset = getOffsetFromIndices(U, *DL); 975 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 976 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 977 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 978 auto &DstRegs = allocateVRegs(U); 979 980 for (unsigned i = 0; i < DstRegs.size(); ++i) 981 DstRegs[i] = SrcRegs[Idx++]; 982 983 return true; 984 } 985 986 bool IRTranslator::translateInsertValue(const User &U, 987 MachineIRBuilder &MIRBuilder) { 988 const Value *Src = U.getOperand(0); 989 uint64_t Offset = getOffsetFromIndices(U, *DL); 990 auto &DstRegs = allocateVRegs(U); 991 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 992 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 993 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 994 auto InsertedIt = InsertedRegs.begin(); 995 996 for (unsigned i = 0; i < DstRegs.size(); ++i) { 997 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 998 DstRegs[i] = *InsertedIt++; 999 else 1000 DstRegs[i] = SrcRegs[i]; 1001 } 1002 1003 return true; 1004 } 1005 1006 bool IRTranslator::translateSelect(const User &U, 1007 MachineIRBuilder &MIRBuilder) { 1008 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1009 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1010 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1011 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1012 1013 const SelectInst &SI = cast<SelectInst>(U); 1014 uint16_t Flags = 0; 1015 if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) 1016 Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); 1017 1018 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1019 MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]}, 1020 {Tst, Op0Regs[i], Op1Regs[i]}, Flags); 1021 } 1022 1023 return true; 1024 } 1025 1026 bool IRTranslator::translateBitCast(const User &U, 1027 MachineIRBuilder &MIRBuilder) { 1028 // If we're bitcasting to the source type, we can reuse the source vreg. 1029 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1030 getLLTForType(*U.getType(), *DL)) { 1031 Register SrcReg = getOrCreateVReg(*U.getOperand(0)); 1032 auto &Regs = *VMap.getVRegs(U); 1033 // If we already assigned a vreg for this bitcast, we can't change that. 1034 // Emit a copy to satisfy the users we already emitted. 1035 if (!Regs.empty()) 1036 MIRBuilder.buildCopy(Regs[0], SrcReg); 1037 else { 1038 Regs.push_back(SrcReg); 1039 VMap.getOffsets(U)->push_back(0); 1040 } 1041 return true; 1042 } 1043 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1044 } 1045 1046 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1047 MachineIRBuilder &MIRBuilder) { 1048 Register Op = getOrCreateVReg(*U.getOperand(0)); 1049 Register Res = getOrCreateVReg(U); 1050 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1051 return true; 1052 } 1053 1054 bool IRTranslator::translateGetElementPtr(const User &U, 1055 MachineIRBuilder &MIRBuilder) { 1056 // FIXME: support vector GEPs. 1057 if (U.getType()->isVectorTy()) 1058 return false; 1059 1060 Value &Op0 = *U.getOperand(0); 1061 Register BaseReg = getOrCreateVReg(Op0); 1062 Type *PtrIRTy = Op0.getType(); 1063 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1064 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1065 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1066 1067 int64_t Offset = 0; 1068 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1069 GTI != E; ++GTI) { 1070 const Value *Idx = GTI.getOperand(); 1071 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1072 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1073 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1074 continue; 1075 } else { 1076 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1077 1078 // If this is a scalar constant or a splat vector of constants, 1079 // handle it quickly. 1080 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1081 Offset += ElementSize * CI->getSExtValue(); 1082 continue; 1083 } 1084 1085 if (Offset != 0) { 1086 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1087 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1088 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1089 .getReg(0); 1090 Offset = 0; 1091 } 1092 1093 Register IdxReg = getOrCreateVReg(*Idx); 1094 if (MRI->getType(IdxReg) != OffsetTy) 1095 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1096 1097 // N = N + Idx * ElementSize; 1098 // Avoid doing it for ElementSize of 1. 1099 Register GepOffsetReg; 1100 if (ElementSize != 1) { 1101 auto ElementSizeMIB = MIRBuilder.buildConstant( 1102 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1103 GepOffsetReg = 1104 MIRBuilder.buildMul(OffsetTy, ElementSizeMIB, IdxReg).getReg(0); 1105 } else 1106 GepOffsetReg = IdxReg; 1107 1108 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1109 } 1110 } 1111 1112 if (Offset != 0) { 1113 auto OffsetMIB = 1114 MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset); 1115 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1116 return true; 1117 } 1118 1119 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1120 return true; 1121 } 1122 1123 bool IRTranslator::translateMemFunc(const CallInst &CI, 1124 MachineIRBuilder &MIRBuilder, 1125 Intrinsic::ID ID) { 1126 1127 // If the source is undef, then just emit a nop. 1128 if (isa<UndefValue>(CI.getArgOperand(1))) 1129 return true; 1130 1131 ArrayRef<Register> Res; 1132 auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true); 1133 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) 1134 ICall.addUse(getOrCreateVReg(**AI)); 1135 1136 unsigned DstAlign = 0, SrcAlign = 0; 1137 unsigned IsVol = 1138 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) 1139 ->getZExtValue(); 1140 1141 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1142 DstAlign = std::max<unsigned>(MCI->getDestAlignment(), 1); 1143 SrcAlign = std::max<unsigned>(MCI->getSourceAlignment(), 1); 1144 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1145 DstAlign = std::max<unsigned>(MMI->getDestAlignment(), 1); 1146 SrcAlign = std::max<unsigned>(MMI->getSourceAlignment(), 1); 1147 } else { 1148 auto *MSI = cast<MemSetInst>(&CI); 1149 DstAlign = std::max<unsigned>(MSI->getDestAlignment(), 1); 1150 } 1151 1152 // We need to propagate the tail call flag from the IR inst as an argument. 1153 // Otherwise, we have to pessimize and assume later that we cannot tail call 1154 // any memory intrinsics. 1155 ICall.addImm(CI.isTailCall() ? 1 : 0); 1156 1157 // Create mem operands to store the alignment and volatile info. 1158 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1159 ICall.addMemOperand(MF->getMachineMemOperand( 1160 MachinePointerInfo(CI.getArgOperand(0)), 1161 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1162 if (ID != Intrinsic::memset) 1163 ICall.addMemOperand(MF->getMachineMemOperand( 1164 MachinePointerInfo(CI.getArgOperand(1)), 1165 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1166 1167 return true; 1168 } 1169 1170 void IRTranslator::getStackGuard(Register DstReg, 1171 MachineIRBuilder &MIRBuilder) { 1172 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1173 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1174 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 1175 MIB.addDef(DstReg); 1176 1177 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1178 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1179 if (!Global) 1180 return; 1181 1182 MachinePointerInfo MPInfo(Global); 1183 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1184 MachineMemOperand::MODereferenceable; 1185 MachineMemOperand *MemRef = 1186 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 1187 DL->getPointerABIAlignment(0).value()); 1188 MIB.setMemRefs({MemRef}); 1189 } 1190 1191 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1192 MachineIRBuilder &MIRBuilder) { 1193 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1194 MIRBuilder.buildInstr(Op) 1195 .addDef(ResRegs[0]) 1196 .addDef(ResRegs[1]) 1197 .addUse(getOrCreateVReg(*CI.getOperand(0))) 1198 .addUse(getOrCreateVReg(*CI.getOperand(1))); 1199 1200 return true; 1201 } 1202 1203 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1204 switch (ID) { 1205 default: 1206 break; 1207 case Intrinsic::bswap: 1208 return TargetOpcode::G_BSWAP; 1209 case Intrinsic::bitreverse: 1210 return TargetOpcode::G_BITREVERSE; 1211 case Intrinsic::ceil: 1212 return TargetOpcode::G_FCEIL; 1213 case Intrinsic::cos: 1214 return TargetOpcode::G_FCOS; 1215 case Intrinsic::ctpop: 1216 return TargetOpcode::G_CTPOP; 1217 case Intrinsic::exp: 1218 return TargetOpcode::G_FEXP; 1219 case Intrinsic::exp2: 1220 return TargetOpcode::G_FEXP2; 1221 case Intrinsic::fabs: 1222 return TargetOpcode::G_FABS; 1223 case Intrinsic::copysign: 1224 return TargetOpcode::G_FCOPYSIGN; 1225 case Intrinsic::minnum: 1226 return TargetOpcode::G_FMINNUM; 1227 case Intrinsic::maxnum: 1228 return TargetOpcode::G_FMAXNUM; 1229 case Intrinsic::minimum: 1230 return TargetOpcode::G_FMINIMUM; 1231 case Intrinsic::maximum: 1232 return TargetOpcode::G_FMAXIMUM; 1233 case Intrinsic::canonicalize: 1234 return TargetOpcode::G_FCANONICALIZE; 1235 case Intrinsic::floor: 1236 return TargetOpcode::G_FFLOOR; 1237 case Intrinsic::fma: 1238 return TargetOpcode::G_FMA; 1239 case Intrinsic::log: 1240 return TargetOpcode::G_FLOG; 1241 case Intrinsic::log2: 1242 return TargetOpcode::G_FLOG2; 1243 case Intrinsic::log10: 1244 return TargetOpcode::G_FLOG10; 1245 case Intrinsic::nearbyint: 1246 return TargetOpcode::G_FNEARBYINT; 1247 case Intrinsic::pow: 1248 return TargetOpcode::G_FPOW; 1249 case Intrinsic::rint: 1250 return TargetOpcode::G_FRINT; 1251 case Intrinsic::round: 1252 return TargetOpcode::G_INTRINSIC_ROUND; 1253 case Intrinsic::sin: 1254 return TargetOpcode::G_FSIN; 1255 case Intrinsic::sqrt: 1256 return TargetOpcode::G_FSQRT; 1257 case Intrinsic::trunc: 1258 return TargetOpcode::G_INTRINSIC_TRUNC; 1259 case Intrinsic::readcyclecounter: 1260 return TargetOpcode::G_READCYCLECOUNTER; 1261 } 1262 return Intrinsic::not_intrinsic; 1263 } 1264 1265 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1266 Intrinsic::ID ID, 1267 MachineIRBuilder &MIRBuilder) { 1268 1269 unsigned Op = getSimpleIntrinsicOpcode(ID); 1270 1271 // Is this a simple intrinsic? 1272 if (Op == Intrinsic::not_intrinsic) 1273 return false; 1274 1275 // Yes. Let's translate it. 1276 SmallVector<llvm::SrcOp, 4> VRegs; 1277 for (auto &Arg : CI.arg_operands()) 1278 VRegs.push_back(getOrCreateVReg(*Arg)); 1279 1280 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1281 MachineInstr::copyFlagsFromInstruction(CI)); 1282 return true; 1283 } 1284 1285 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1286 MachineIRBuilder &MIRBuilder) { 1287 1288 // If this is a simple intrinsic (that is, we just need to add a def of 1289 // a vreg, and uses for each arg operand, then translate it. 1290 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1291 return true; 1292 1293 switch (ID) { 1294 default: 1295 break; 1296 case Intrinsic::lifetime_start: 1297 case Intrinsic::lifetime_end: { 1298 // No stack colouring in O0, discard region information. 1299 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1300 return true; 1301 1302 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1303 : TargetOpcode::LIFETIME_END; 1304 1305 // Get the underlying objects for the location passed on the lifetime 1306 // marker. 1307 SmallVector<const Value *, 4> Allocas; 1308 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 1309 1310 // Iterate over each underlying object, creating lifetime markers for each 1311 // static alloca. Quit if we find a non-static alloca. 1312 for (const Value *V : Allocas) { 1313 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1314 if (!AI) 1315 continue; 1316 1317 if (!AI->isStaticAlloca()) 1318 return true; 1319 1320 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1321 } 1322 return true; 1323 } 1324 case Intrinsic::dbg_declare: { 1325 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1326 assert(DI.getVariable() && "Missing variable"); 1327 1328 const Value *Address = DI.getAddress(); 1329 if (!Address || isa<UndefValue>(Address)) { 1330 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1331 return true; 1332 } 1333 1334 assert(DI.getVariable()->isValidLocationForIntrinsic( 1335 MIRBuilder.getDebugLoc()) && 1336 "Expected inlined-at fields to agree"); 1337 auto AI = dyn_cast<AllocaInst>(Address); 1338 if (AI && AI->isStaticAlloca()) { 1339 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1340 // instructions (in fact, they get ignored if they *do* exist). 1341 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1342 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1343 } else { 1344 // A dbg.declare describes the address of a source variable, so lower it 1345 // into an indirect DBG_VALUE. 1346 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1347 DI.getVariable(), DI.getExpression()); 1348 } 1349 return true; 1350 } 1351 case Intrinsic::dbg_label: { 1352 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1353 assert(DI.getLabel() && "Missing label"); 1354 1355 assert(DI.getLabel()->isValidLocationForIntrinsic( 1356 MIRBuilder.getDebugLoc()) && 1357 "Expected inlined-at fields to agree"); 1358 1359 MIRBuilder.buildDbgLabel(DI.getLabel()); 1360 return true; 1361 } 1362 case Intrinsic::vaend: 1363 // No target I know of cares about va_end. Certainly no in-tree target 1364 // does. Simplest intrinsic ever! 1365 return true; 1366 case Intrinsic::vastart: { 1367 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1368 Value *Ptr = CI.getArgOperand(0); 1369 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1370 1371 // FIXME: Get alignment 1372 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 1373 .addUse(getOrCreateVReg(*Ptr)) 1374 .addMemOperand(MF->getMachineMemOperand( 1375 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1)); 1376 return true; 1377 } 1378 case Intrinsic::dbg_value: { 1379 // This form of DBG_VALUE is target-independent. 1380 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1381 const Value *V = DI.getValue(); 1382 assert(DI.getVariable()->isValidLocationForIntrinsic( 1383 MIRBuilder.getDebugLoc()) && 1384 "Expected inlined-at fields to agree"); 1385 if (!V) { 1386 // Currently the optimizer can produce this; insert an undef to 1387 // help debugging. Probably the optimizer should not do this. 1388 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1389 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1390 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1391 } else { 1392 for (Register Reg : getOrCreateVRegs(*V)) { 1393 // FIXME: This does not handle register-indirect values at offset 0. The 1394 // direct/indirect thing shouldn't really be handled by something as 1395 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1396 // pretty baked in right now. 1397 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1398 } 1399 } 1400 return true; 1401 } 1402 case Intrinsic::uadd_with_overflow: 1403 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1404 case Intrinsic::sadd_with_overflow: 1405 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1406 case Intrinsic::usub_with_overflow: 1407 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1408 case Intrinsic::ssub_with_overflow: 1409 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1410 case Intrinsic::umul_with_overflow: 1411 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1412 case Intrinsic::smul_with_overflow: 1413 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1414 case Intrinsic::fmuladd: { 1415 const TargetMachine &TM = MF->getTarget(); 1416 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1417 Register Dst = getOrCreateVReg(CI); 1418 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 1419 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 1420 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 1421 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 1422 TLI.isFMAFasterThanFMulAndFAdd(*MF, 1423 TLI.getValueType(*DL, CI.getType()))) { 1424 // TODO: Revisit this to see if we should move this part of the 1425 // lowering to the combiner. 1426 MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2}, 1427 MachineInstr::copyFlagsFromInstruction(CI)); 1428 } else { 1429 LLT Ty = getLLTForType(*CI.getType(), *DL); 1430 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1}, 1431 MachineInstr::copyFlagsFromInstruction(CI)); 1432 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2}, 1433 MachineInstr::copyFlagsFromInstruction(CI)); 1434 } 1435 return true; 1436 } 1437 case Intrinsic::memcpy: 1438 case Intrinsic::memmove: 1439 case Intrinsic::memset: 1440 return translateMemFunc(CI, MIRBuilder, ID); 1441 case Intrinsic::eh_typeid_for: { 1442 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1443 Register Reg = getOrCreateVReg(CI); 1444 unsigned TypeID = MF->getTypeIDFor(GV); 1445 MIRBuilder.buildConstant(Reg, TypeID); 1446 return true; 1447 } 1448 case Intrinsic::objectsize: 1449 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1450 1451 case Intrinsic::is_constant: 1452 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1453 1454 case Intrinsic::stackguard: 1455 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1456 return true; 1457 case Intrinsic::stackprotector: { 1458 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1459 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1460 getStackGuard(GuardVal, MIRBuilder); 1461 1462 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1463 int FI = getOrCreateFrameIndex(*Slot); 1464 MF->getFrameInfo().setStackProtectorIndex(FI); 1465 1466 MIRBuilder.buildStore( 1467 GuardVal, getOrCreateVReg(*Slot), 1468 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1469 MachineMemOperand::MOStore | 1470 MachineMemOperand::MOVolatile, 1471 PtrTy.getSizeInBits() / 8, 8)); 1472 return true; 1473 } 1474 case Intrinsic::stacksave: { 1475 // Save the stack pointer to the location provided by the intrinsic. 1476 Register Reg = getOrCreateVReg(CI); 1477 Register StackPtr = MF->getSubtarget() 1478 .getTargetLowering() 1479 ->getStackPointerRegisterToSaveRestore(); 1480 1481 // If the target doesn't specify a stack pointer, then fall back. 1482 if (!StackPtr) 1483 return false; 1484 1485 MIRBuilder.buildCopy(Reg, StackPtr); 1486 return true; 1487 } 1488 case Intrinsic::stackrestore: { 1489 // Restore the stack pointer from the location provided by the intrinsic. 1490 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1491 Register StackPtr = MF->getSubtarget() 1492 .getTargetLowering() 1493 ->getStackPointerRegisterToSaveRestore(); 1494 1495 // If the target doesn't specify a stack pointer, then fall back. 1496 if (!StackPtr) 1497 return false; 1498 1499 MIRBuilder.buildCopy(StackPtr, Reg); 1500 return true; 1501 } 1502 case Intrinsic::cttz: 1503 case Intrinsic::ctlz: { 1504 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1505 bool isTrailing = ID == Intrinsic::cttz; 1506 unsigned Opcode = isTrailing 1507 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1508 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1509 : Cst->isZero() ? TargetOpcode::G_CTLZ 1510 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1511 MIRBuilder.buildInstr(Opcode) 1512 .addDef(getOrCreateVReg(CI)) 1513 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 1514 return true; 1515 } 1516 case Intrinsic::invariant_start: { 1517 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1518 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 1519 MIRBuilder.buildUndef(Undef); 1520 return true; 1521 } 1522 case Intrinsic::invariant_end: 1523 return true; 1524 case Intrinsic::assume: 1525 case Intrinsic::var_annotation: 1526 case Intrinsic::sideeffect: 1527 // Discard annotate attributes, assumptions, and artificial side-effects. 1528 return true; 1529 case Intrinsic::read_register: { 1530 Value *Arg = CI.getArgOperand(0); 1531 MIRBuilder.buildInstr(TargetOpcode::G_READ_REGISTER) 1532 .addDef(getOrCreateVReg(CI)) 1533 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 1534 return true; 1535 } 1536 } 1537 return false; 1538 } 1539 1540 bool IRTranslator::translateInlineAsm(const CallInst &CI, 1541 MachineIRBuilder &MIRBuilder) { 1542 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 1543 if (!IA.getConstraintString().empty()) 1544 return false; 1545 1546 unsigned ExtraInfo = 0; 1547 if (IA.hasSideEffects()) 1548 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1549 if (IA.getDialect() == InlineAsm::AD_Intel) 1550 ExtraInfo |= InlineAsm::Extra_AsmDialect; 1551 1552 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 1553 .addExternalSymbol(IA.getAsmString().c_str()) 1554 .addImm(ExtraInfo); 1555 1556 return true; 1557 } 1558 1559 bool IRTranslator::translateCallSite(const ImmutableCallSite &CS, 1560 MachineIRBuilder &MIRBuilder) { 1561 const Instruction &I = *CS.getInstruction(); 1562 ArrayRef<Register> Res = getOrCreateVRegs(I); 1563 1564 SmallVector<ArrayRef<Register>, 8> Args; 1565 Register SwiftInVReg = 0; 1566 Register SwiftErrorVReg = 0; 1567 for (auto &Arg : CS.args()) { 1568 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1569 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 1570 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1571 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 1572 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 1573 &I, &MIRBuilder.getMBB(), Arg)); 1574 Args.emplace_back(makeArrayRef(SwiftInVReg)); 1575 SwiftErrorVReg = 1576 SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg); 1577 continue; 1578 } 1579 Args.push_back(getOrCreateVRegs(*Arg)); 1580 } 1581 1582 // We don't set HasCalls on MFI here yet because call lowering may decide to 1583 // optimize into tail calls. Instead, we defer that to selection where a final 1584 // scan is done to check if any instructions are calls. 1585 bool Success = 1586 CLI->lowerCall(MIRBuilder, CS, Res, Args, SwiftErrorVReg, 1587 [&]() { return getOrCreateVReg(*CS.getCalledValue()); }); 1588 1589 // Check if we just inserted a tail call. 1590 if (Success) { 1591 assert(!HasTailCall && "Can't tail call return twice from block?"); 1592 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1593 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 1594 } 1595 1596 return Success; 1597 } 1598 1599 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1600 const CallInst &CI = cast<CallInst>(U); 1601 auto TII = MF->getTarget().getIntrinsicInfo(); 1602 const Function *F = CI.getCalledFunction(); 1603 1604 // FIXME: support Windows dllimport function calls. 1605 if (F && (F->hasDLLImportStorageClass() || 1606 (MF->getTarget().getTargetTriple().isOSWindows() && 1607 F->hasExternalWeakLinkage()))) 1608 return false; 1609 1610 // FIXME: support control flow guard targets. 1611 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1612 return false; 1613 1614 if (CI.isInlineAsm()) 1615 return translateInlineAsm(CI, MIRBuilder); 1616 1617 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1618 if (F && F->isIntrinsic()) { 1619 ID = F->getIntrinsicID(); 1620 if (TII && ID == Intrinsic::not_intrinsic) 1621 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1622 } 1623 1624 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 1625 return translateCallSite(&CI, MIRBuilder); 1626 1627 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1628 1629 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1630 return true; 1631 1632 ArrayRef<Register> ResultRegs; 1633 if (!CI.getType()->isVoidTy()) 1634 ResultRegs = getOrCreateVRegs(CI); 1635 1636 // Ignore the callsite attributes. Backend code is most likely not expecting 1637 // an intrinsic to sometimes have side effects and sometimes not. 1638 MachineInstrBuilder MIB = 1639 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 1640 if (isa<FPMathOperator>(CI)) 1641 MIB->copyIRFlags(CI); 1642 1643 for (auto &Arg : enumerate(CI.arg_operands())) { 1644 // Some intrinsics take metadata parameters. Reject them. 1645 if (isa<MetadataAsValue>(Arg.value())) 1646 return false; 1647 1648 // If this is required to be an immediate, don't materialize it in a 1649 // register. 1650 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 1651 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 1652 // imm arguments are more convenient than cimm (and realistically 1653 // probably sufficient), so use them. 1654 assert(CI->getBitWidth() <= 64 && 1655 "large intrinsic immediates not handled"); 1656 MIB.addImm(CI->getSExtValue()); 1657 } else { 1658 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 1659 } 1660 } else { 1661 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 1662 if (VRegs.size() > 1) 1663 return false; 1664 MIB.addUse(VRegs[0]); 1665 } 1666 } 1667 1668 // Add a MachineMemOperand if it is a target mem intrinsic. 1669 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1670 TargetLowering::IntrinsicInfo Info; 1671 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1672 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1673 MaybeAlign Align = Info.align; 1674 if (!Align) 1675 Align = MaybeAlign( 1676 DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext()))); 1677 1678 uint64_t Size = Info.memVT.getStoreSize(); 1679 MIB.addMemOperand(MF->getMachineMemOperand( 1680 MachinePointerInfo(Info.ptrVal), Info.flags, Size, Align->value())); 1681 } 1682 1683 return true; 1684 } 1685 1686 bool IRTranslator::translateInvoke(const User &U, 1687 MachineIRBuilder &MIRBuilder) { 1688 const InvokeInst &I = cast<InvokeInst>(U); 1689 MCContext &Context = MF->getContext(); 1690 1691 const BasicBlock *ReturnBB = I.getSuccessor(0); 1692 const BasicBlock *EHPadBB = I.getSuccessor(1); 1693 1694 const Value *Callee = I.getCalledValue(); 1695 const Function *Fn = dyn_cast<Function>(Callee); 1696 if (isa<InlineAsm>(Callee)) 1697 return false; 1698 1699 // FIXME: support invoking patchpoint and statepoint intrinsics. 1700 if (Fn && Fn->isIntrinsic()) 1701 return false; 1702 1703 // FIXME: support whatever these are. 1704 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1705 return false; 1706 1707 // FIXME: support control flow guard targets. 1708 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1709 return false; 1710 1711 // FIXME: support Windows exception handling. 1712 if (!isa<LandingPadInst>(EHPadBB->front())) 1713 return false; 1714 1715 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1716 // the region covered by the try. 1717 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1718 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1719 1720 if (!translateCallSite(&I, MIRBuilder)) 1721 return false; 1722 1723 MCSymbol *EndSymbol = Context.createTempSymbol(); 1724 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1725 1726 // FIXME: track probabilities. 1727 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1728 &ReturnMBB = getMBB(*ReturnBB); 1729 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1730 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1731 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1732 MIRBuilder.buildBr(ReturnMBB); 1733 1734 return true; 1735 } 1736 1737 bool IRTranslator::translateCallBr(const User &U, 1738 MachineIRBuilder &MIRBuilder) { 1739 // FIXME: Implement this. 1740 return false; 1741 } 1742 1743 bool IRTranslator::translateLandingPad(const User &U, 1744 MachineIRBuilder &MIRBuilder) { 1745 const LandingPadInst &LP = cast<LandingPadInst>(U); 1746 1747 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1748 1749 MBB.setIsEHPad(); 1750 1751 // If there aren't registers to copy the values into (e.g., during SjLj 1752 // exceptions), then don't bother. 1753 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1754 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1755 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1756 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1757 return true; 1758 1759 // If landingpad's return type is token type, we don't create DAG nodes 1760 // for its exception pointer and selector value. The extraction of exception 1761 // pointer or selector value from token type landingpads is not currently 1762 // supported. 1763 if (LP.getType()->isTokenTy()) 1764 return true; 1765 1766 // Add a label to mark the beginning of the landing pad. Deletion of the 1767 // landing pad can thus be detected via the MachineModuleInfo. 1768 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1769 .addSym(MF->addLandingPad(&MBB)); 1770 1771 LLT Ty = getLLTForType(*LP.getType(), *DL); 1772 Register Undef = MRI->createGenericVirtualRegister(Ty); 1773 MIRBuilder.buildUndef(Undef); 1774 1775 SmallVector<LLT, 2> Tys; 1776 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1777 Tys.push_back(getLLTForType(*Ty, *DL)); 1778 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1779 1780 // Mark exception register as live in. 1781 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1782 if (!ExceptionReg) 1783 return false; 1784 1785 MBB.addLiveIn(ExceptionReg); 1786 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 1787 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1788 1789 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1790 if (!SelectorReg) 1791 return false; 1792 1793 MBB.addLiveIn(SelectorReg); 1794 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1795 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1796 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1797 1798 return true; 1799 } 1800 1801 bool IRTranslator::translateAlloca(const User &U, 1802 MachineIRBuilder &MIRBuilder) { 1803 auto &AI = cast<AllocaInst>(U); 1804 1805 if (AI.isSwiftError()) 1806 return true; 1807 1808 if (AI.isStaticAlloca()) { 1809 Register Res = getOrCreateVReg(AI); 1810 int FI = getOrCreateFrameIndex(AI); 1811 MIRBuilder.buildFrameIndex(Res, FI); 1812 return true; 1813 } 1814 1815 // FIXME: support stack probing for Windows. 1816 if (MF->getTarget().getTargetTriple().isOSWindows()) 1817 return false; 1818 1819 // Now we're in the harder dynamic case. 1820 Type *Ty = AI.getAllocatedType(); 1821 unsigned Align = 1822 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1823 1824 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 1825 1826 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1827 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1828 if (MRI->getType(NumElts) != IntPtrTy) { 1829 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1830 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1831 NumElts = ExtElts; 1832 } 1833 1834 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1835 Register TySize = 1836 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 1837 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1838 1839 unsigned StackAlign = 1840 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1841 if (Align <= StackAlign) 1842 Align = 0; 1843 1844 // Round the size of the allocation up to the stack alignment size 1845 // by add SA-1 to the size. This doesn't overflow because we're computing 1846 // an address inside an alloca. 1847 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign - 1); 1848 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 1849 MachineInstr::NoUWrap); 1850 auto AlignCst = 1851 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign - 1)); 1852 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 1853 1854 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Align); 1855 1856 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1857 assert(MF->getFrameInfo().hasVarSizedObjects()); 1858 return true; 1859 } 1860 1861 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1862 // FIXME: We may need more info about the type. Because of how LLT works, 1863 // we're completely discarding the i64/double distinction here (amongst 1864 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1865 // anyway but that's not guaranteed. 1866 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1867 .addDef(getOrCreateVReg(U)) 1868 .addUse(getOrCreateVReg(*U.getOperand(0))) 1869 .addImm(DL->getABITypeAlignment(U.getType())); 1870 return true; 1871 } 1872 1873 bool IRTranslator::translateInsertElement(const User &U, 1874 MachineIRBuilder &MIRBuilder) { 1875 // If it is a <1 x Ty> vector, use the scalar as it is 1876 // not a legal vector type in LLT. 1877 if (U.getType()->getVectorNumElements() == 1) { 1878 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1879 auto &Regs = *VMap.getVRegs(U); 1880 if (Regs.empty()) { 1881 Regs.push_back(Elt); 1882 VMap.getOffsets(U)->push_back(0); 1883 } else { 1884 MIRBuilder.buildCopy(Regs[0], Elt); 1885 } 1886 return true; 1887 } 1888 1889 Register Res = getOrCreateVReg(U); 1890 Register Val = getOrCreateVReg(*U.getOperand(0)); 1891 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1892 Register Idx = getOrCreateVReg(*U.getOperand(2)); 1893 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1894 return true; 1895 } 1896 1897 bool IRTranslator::translateExtractElement(const User &U, 1898 MachineIRBuilder &MIRBuilder) { 1899 // If it is a <1 x Ty> vector, use the scalar as it is 1900 // not a legal vector type in LLT. 1901 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1902 Register Elt = getOrCreateVReg(*U.getOperand(0)); 1903 auto &Regs = *VMap.getVRegs(U); 1904 if (Regs.empty()) { 1905 Regs.push_back(Elt); 1906 VMap.getOffsets(U)->push_back(0); 1907 } else { 1908 MIRBuilder.buildCopy(Regs[0], Elt); 1909 } 1910 return true; 1911 } 1912 Register Res = getOrCreateVReg(U); 1913 Register Val = getOrCreateVReg(*U.getOperand(0)); 1914 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1915 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1916 Register Idx; 1917 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1918 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1919 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1920 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1921 Idx = getOrCreateVReg(*NewIdxCI); 1922 } 1923 } 1924 if (!Idx) 1925 Idx = getOrCreateVReg(*U.getOperand(1)); 1926 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1927 const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1928 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg(); 1929 } 1930 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1931 return true; 1932 } 1933 1934 bool IRTranslator::translateShuffleVector(const User &U, 1935 MachineIRBuilder &MIRBuilder) { 1936 SmallVector<int, 8> Mask; 1937 ShuffleVectorInst::getShuffleMask(cast<Constant>(U.getOperand(2)), Mask); 1938 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 1939 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1940 .addDef(getOrCreateVReg(U)) 1941 .addUse(getOrCreateVReg(*U.getOperand(0))) 1942 .addUse(getOrCreateVReg(*U.getOperand(1))) 1943 .addShuffleMask(MaskAlloc); 1944 return true; 1945 } 1946 1947 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1948 const PHINode &PI = cast<PHINode>(U); 1949 1950 SmallVector<MachineInstr *, 4> Insts; 1951 for (auto Reg : getOrCreateVRegs(PI)) { 1952 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 1953 Insts.push_back(MIB.getInstr()); 1954 } 1955 1956 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1957 return true; 1958 } 1959 1960 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1961 MachineIRBuilder &MIRBuilder) { 1962 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1963 1964 if (I.isWeak()) 1965 return false; 1966 1967 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1968 : MachineMemOperand::MONone; 1969 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1970 1971 Type *ResType = I.getType(); 1972 Type *ValType = ResType->Type::getStructElementType(0); 1973 1974 auto Res = getOrCreateVRegs(I); 1975 Register OldValRes = Res[0]; 1976 Register SuccessRes = Res[1]; 1977 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 1978 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 1979 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 1980 1981 AAMDNodes AAMetadata; 1982 I.getAAMetadata(AAMetadata); 1983 1984 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1985 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1986 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1987 Flags, DL->getTypeStoreSize(ValType), 1988 getMemOpAlignment(I), AAMetadata, nullptr, 1989 I.getSyncScopeID(), I.getSuccessOrdering(), 1990 I.getFailureOrdering())); 1991 return true; 1992 } 1993 1994 bool IRTranslator::translateAtomicRMW(const User &U, 1995 MachineIRBuilder &MIRBuilder) { 1996 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 1997 1998 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1999 : MachineMemOperand::MONone; 2000 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 2001 2002 Type *ResType = I.getType(); 2003 2004 Register Res = getOrCreateVReg(I); 2005 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2006 Register Val = getOrCreateVReg(*I.getValOperand()); 2007 2008 unsigned Opcode = 0; 2009 switch (I.getOperation()) { 2010 default: 2011 return false; 2012 case AtomicRMWInst::Xchg: 2013 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2014 break; 2015 case AtomicRMWInst::Add: 2016 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2017 break; 2018 case AtomicRMWInst::Sub: 2019 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2020 break; 2021 case AtomicRMWInst::And: 2022 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2023 break; 2024 case AtomicRMWInst::Nand: 2025 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2026 break; 2027 case AtomicRMWInst::Or: 2028 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2029 break; 2030 case AtomicRMWInst::Xor: 2031 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2032 break; 2033 case AtomicRMWInst::Max: 2034 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2035 break; 2036 case AtomicRMWInst::Min: 2037 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2038 break; 2039 case AtomicRMWInst::UMax: 2040 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2041 break; 2042 case AtomicRMWInst::UMin: 2043 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2044 break; 2045 case AtomicRMWInst::FAdd: 2046 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2047 break; 2048 case AtomicRMWInst::FSub: 2049 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2050 break; 2051 } 2052 2053 AAMDNodes AAMetadata; 2054 I.getAAMetadata(AAMetadata); 2055 2056 MIRBuilder.buildAtomicRMW( 2057 Opcode, Res, Addr, Val, 2058 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2059 Flags, DL->getTypeStoreSize(ResType), 2060 getMemOpAlignment(I), AAMetadata, 2061 nullptr, I.getSyncScopeID(), I.getOrdering())); 2062 return true; 2063 } 2064 2065 bool IRTranslator::translateFence(const User &U, 2066 MachineIRBuilder &MIRBuilder) { 2067 const FenceInst &Fence = cast<FenceInst>(U); 2068 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2069 Fence.getSyncScopeID()); 2070 return true; 2071 } 2072 2073 void IRTranslator::finishPendingPhis() { 2074 #ifndef NDEBUG 2075 DILocationVerifier Verifier; 2076 GISelObserverWrapper WrapperObserver(&Verifier); 2077 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2078 #endif // ifndef NDEBUG 2079 for (auto &Phi : PendingPHIs) { 2080 const PHINode *PI = Phi.first; 2081 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2082 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2083 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2084 #ifndef NDEBUG 2085 Verifier.setCurrentInst(PI); 2086 #endif // ifndef NDEBUG 2087 2088 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2089 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2090 auto IRPred = PI->getIncomingBlock(i); 2091 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2092 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2093 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2094 continue; 2095 SeenPreds.insert(Pred); 2096 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2097 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2098 MIB.addUse(ValRegs[j]); 2099 MIB.addMBB(Pred); 2100 } 2101 } 2102 } 2103 } 2104 } 2105 2106 bool IRTranslator::valueIsSplit(const Value &V, 2107 SmallVectorImpl<uint64_t> *Offsets) { 2108 SmallVector<LLT, 4> SplitTys; 2109 if (Offsets && !Offsets->empty()) 2110 Offsets->clear(); 2111 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2112 return SplitTys.size() > 1; 2113 } 2114 2115 bool IRTranslator::translate(const Instruction &Inst) { 2116 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2117 // We only emit constants into the entry block from here. To prevent jumpy 2118 // debug behaviour set the line to 0. 2119 if (const DebugLoc &DL = Inst.getDebugLoc()) 2120 EntryBuilder->setDebugLoc( 2121 DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 2122 else 2123 EntryBuilder->setDebugLoc(DebugLoc()); 2124 2125 switch (Inst.getOpcode()) { 2126 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2127 case Instruction::OPCODE: \ 2128 return translate##OPCODE(Inst, *CurBuilder.get()); 2129 #include "llvm/IR/Instruction.def" 2130 default: 2131 return false; 2132 } 2133 } 2134 2135 bool IRTranslator::translate(const Constant &C, Register Reg) { 2136 if (auto CI = dyn_cast<ConstantInt>(&C)) 2137 EntryBuilder->buildConstant(Reg, *CI); 2138 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2139 EntryBuilder->buildFConstant(Reg, *CF); 2140 else if (isa<UndefValue>(C)) 2141 EntryBuilder->buildUndef(Reg); 2142 else if (isa<ConstantPointerNull>(C)) { 2143 // As we are trying to build a constant val of 0 into a pointer, 2144 // insert a cast to make them correct with respect to types. 2145 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 2146 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 2147 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 2148 Register ZeroReg = getOrCreateVReg(*ZeroVal); 2149 EntryBuilder->buildCast(Reg, ZeroReg); 2150 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 2151 EntryBuilder->buildGlobalValue(Reg, GV); 2152 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2153 if (!CAZ->getType()->isVectorTy()) 2154 return false; 2155 // Return the scalar if it is a <1 x Ty> vector. 2156 if (CAZ->getNumElements() == 1) 2157 return translate(*CAZ->getElementValue(0u), Reg); 2158 SmallVector<Register, 4> Ops; 2159 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 2160 Constant &Elt = *CAZ->getElementValue(i); 2161 Ops.push_back(getOrCreateVReg(Elt)); 2162 } 2163 EntryBuilder->buildBuildVector(Reg, Ops); 2164 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2165 // Return the scalar if it is a <1 x Ty> vector. 2166 if (CV->getNumElements() == 1) 2167 return translate(*CV->getElementAsConstant(0), Reg); 2168 SmallVector<Register, 4> Ops; 2169 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 2170 Constant &Elt = *CV->getElementAsConstant(i); 2171 Ops.push_back(getOrCreateVReg(Elt)); 2172 } 2173 EntryBuilder->buildBuildVector(Reg, Ops); 2174 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 2175 switch(CE->getOpcode()) { 2176 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2177 case Instruction::OPCODE: \ 2178 return translate##OPCODE(*CE, *EntryBuilder.get()); 2179 #include "llvm/IR/Instruction.def" 2180 default: 2181 return false; 2182 } 2183 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 2184 if (CV->getNumOperands() == 1) 2185 return translate(*CV->getOperand(0), Reg); 2186 SmallVector<Register, 4> Ops; 2187 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 2188 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 2189 } 2190 EntryBuilder->buildBuildVector(Reg, Ops); 2191 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 2192 EntryBuilder->buildBlockAddress(Reg, BA); 2193 } else 2194 return false; 2195 2196 return true; 2197 } 2198 2199 void IRTranslator::finalizeBasicBlock() { 2200 for (auto &JTCase : SL->JTCases) { 2201 // Emit header first, if it wasn't already emitted. 2202 if (!JTCase.first.Emitted) 2203 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 2204 2205 emitJumpTable(JTCase.second, JTCase.second.MBB); 2206 } 2207 SL->JTCases.clear(); 2208 } 2209 2210 void IRTranslator::finalizeFunction() { 2211 // Release the memory used by the different maps we 2212 // needed during the translation. 2213 PendingPHIs.clear(); 2214 VMap.reset(); 2215 FrameIndices.clear(); 2216 MachinePreds.clear(); 2217 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 2218 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 2219 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 2220 EntryBuilder.reset(); 2221 CurBuilder.reset(); 2222 FuncInfo.clear(); 2223 } 2224 2225 /// Returns true if a BasicBlock \p BB within a variadic function contains a 2226 /// variadic musttail call. 2227 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 2228 if (!IsVarArg) 2229 return false; 2230 2231 // Walk the block backwards, because tail calls usually only appear at the end 2232 // of a block. 2233 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { 2234 const auto *CI = dyn_cast<CallInst>(&I); 2235 return CI && CI->isMustTailCall(); 2236 }); 2237 } 2238 2239 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 2240 MF = &CurMF; 2241 const Function &F = MF->getFunction(); 2242 if (F.empty()) 2243 return false; 2244 GISelCSEAnalysisWrapper &Wrapper = 2245 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 2246 // Set the CSEConfig and run the analysis. 2247 GISelCSEInfo *CSEInfo = nullptr; 2248 TPC = &getAnalysis<TargetPassConfig>(); 2249 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 2250 ? EnableCSEInIRTranslator 2251 : TPC->isGISelCSEEnabled(); 2252 2253 if (EnableCSE) { 2254 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2255 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 2256 EntryBuilder->setCSEInfo(CSEInfo); 2257 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2258 CurBuilder->setCSEInfo(CSEInfo); 2259 } else { 2260 EntryBuilder = std::make_unique<MachineIRBuilder>(); 2261 CurBuilder = std::make_unique<MachineIRBuilder>(); 2262 } 2263 CLI = MF->getSubtarget().getCallLowering(); 2264 CurBuilder->setMF(*MF); 2265 EntryBuilder->setMF(*MF); 2266 MRI = &MF->getRegInfo(); 2267 DL = &F.getParent()->getDataLayout(); 2268 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2269 FuncInfo.MF = MF; 2270 FuncInfo.BPI = nullptr; 2271 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2272 const TargetMachine &TM = MF->getTarget(); 2273 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 2274 SL->init(TLI, TM, *DL); 2275 2276 EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F); 2277 2278 assert(PendingPHIs.empty() && "stale PHIs"); 2279 2280 if (!DL->isLittleEndian()) { 2281 // Currently we don't properly handle big endian code. 2282 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2283 F.getSubprogram(), &F.getEntryBlock()); 2284 R << "unable to translate in big endian mode"; 2285 reportTranslationError(*MF, *TPC, *ORE, R); 2286 } 2287 2288 // Release the per-function state when we return, whether we succeeded or not. 2289 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 2290 2291 // Setup a separate basic-block for the arguments and constants 2292 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 2293 MF->push_back(EntryBB); 2294 EntryBuilder->setMBB(*EntryBB); 2295 2296 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 2297 SwiftError.setFunction(CurMF); 2298 SwiftError.createEntriesInEntryBlock(DbgLoc); 2299 2300 bool IsVarArg = F.isVarArg(); 2301 bool HasMustTailInVarArgFn = false; 2302 2303 // Create all blocks, in IR order, to preserve the layout. 2304 for (const BasicBlock &BB: F) { 2305 auto *&MBB = BBToMBB[&BB]; 2306 2307 MBB = MF->CreateMachineBasicBlock(&BB); 2308 MF->push_back(MBB); 2309 2310 if (BB.hasAddressTaken()) 2311 MBB->setHasAddressTaken(); 2312 2313 if (!HasMustTailInVarArgFn) 2314 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 2315 } 2316 2317 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 2318 2319 // Make our arguments/constants entry block fallthrough to the IR entry block. 2320 EntryBB->addSuccessor(&getMBB(F.front())); 2321 2322 // Lower the actual args into this basic block. 2323 SmallVector<ArrayRef<Register>, 8> VRegArgs; 2324 for (const Argument &Arg: F.args()) { 2325 if (DL->getTypeStoreSize(Arg.getType()) == 0) 2326 continue; // Don't handle zero sized types. 2327 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 2328 VRegArgs.push_back(VRegs); 2329 2330 if (Arg.hasSwiftErrorAttr()) { 2331 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 2332 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 2333 } 2334 } 2335 2336 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 2337 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2338 F.getSubprogram(), &F.getEntryBlock()); 2339 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 2340 reportTranslationError(*MF, *TPC, *ORE, R); 2341 return false; 2342 } 2343 2344 // Need to visit defs before uses when translating instructions. 2345 GISelObserverWrapper WrapperObserver; 2346 if (EnableCSE && CSEInfo) 2347 WrapperObserver.addObserver(CSEInfo); 2348 { 2349 ReversePostOrderTraversal<const Function *> RPOT(&F); 2350 #ifndef NDEBUG 2351 DILocationVerifier Verifier; 2352 WrapperObserver.addObserver(&Verifier); 2353 #endif // ifndef NDEBUG 2354 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2355 for (const BasicBlock *BB : RPOT) { 2356 MachineBasicBlock &MBB = getMBB(*BB); 2357 // Set the insertion point of all the following translations to 2358 // the end of this basic block. 2359 CurBuilder->setMBB(MBB); 2360 HasTailCall = false; 2361 for (const Instruction &Inst : *BB) { 2362 // If we translated a tail call in the last step, then we know 2363 // everything after the call is either a return, or something that is 2364 // handled by the call itself. (E.g. a lifetime marker or assume 2365 // intrinsic.) In this case, we should stop translating the block and 2366 // move on. 2367 if (HasTailCall) 2368 break; 2369 #ifndef NDEBUG 2370 Verifier.setCurrentInst(&Inst); 2371 #endif // ifndef NDEBUG 2372 if (translate(Inst)) 2373 continue; 2374 2375 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2376 Inst.getDebugLoc(), BB); 2377 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 2378 2379 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 2380 std::string InstStrStorage; 2381 raw_string_ostream InstStr(InstStrStorage); 2382 InstStr << Inst; 2383 2384 R << ": '" << InstStr.str() << "'"; 2385 } 2386 2387 reportTranslationError(*MF, *TPC, *ORE, R); 2388 return false; 2389 } 2390 2391 finalizeBasicBlock(); 2392 } 2393 #ifndef NDEBUG 2394 WrapperObserver.removeObserver(&Verifier); 2395 #endif 2396 } 2397 2398 finishPendingPhis(); 2399 2400 SwiftError.propagateVRegs(); 2401 2402 // Merge the argument lowering and constants block with its single 2403 // successor, the LLVM-IR entry block. We want the basic block to 2404 // be maximal. 2405 assert(EntryBB->succ_size() == 1 && 2406 "Custom BB used for lowering should have only one successor"); 2407 // Get the successor of the current entry block. 2408 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 2409 assert(NewEntryBB.pred_size() == 1 && 2410 "LLVM-IR entry block has a predecessor!?"); 2411 // Move all the instruction from the current entry block to the 2412 // new entry block. 2413 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 2414 EntryBB->end()); 2415 2416 // Update the live-in information for the new entry block. 2417 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 2418 NewEntryBB.addLiveIn(LiveIn); 2419 NewEntryBB.sortUniqueLiveIns(); 2420 2421 // Get rid of the now empty basic block. 2422 EntryBB->removeSuccessor(&NewEntryBB); 2423 MF->remove(EntryBB); 2424 MF->DeleteMachineBasicBlock(EntryBB); 2425 2426 assert(&MF->front() == &NewEntryBB && 2427 "New entry wasn't next in the list of basic block!"); 2428 2429 // Initialize stack protector information. 2430 StackProtector &SP = getAnalysis<StackProtector>(); 2431 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 2432 2433 return false; 2434 } 2435