1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 25 #include "llvm/CodeGen/LowLevelType.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/StackProtector.h" 34 #include "llvm/CodeGen/TargetFrameLowering.h" 35 #include "llvm/CodeGen/TargetInstrInfo.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfo.h" 46 #include "llvm/IR/DerivedTypes.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/GetElementPtrTypeIterator.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/MC/MCContext.h" 60 #include "llvm/Pass.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CodeGen.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/LowLevelTypeImpl.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetIntrinsicInfo.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <iterator> 74 #include <string> 75 #include <utility> 76 #include <vector> 77 78 #define DEBUG_TYPE "irtranslator" 79 80 using namespace llvm; 81 82 static cl::opt<bool> 83 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 84 cl::desc("Should enable CSE in irtranslator"), 85 cl::Optional, cl::init(false)); 86 char IRTranslator::ID = 0; 87 88 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 89 false, false) 90 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 91 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 92 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 93 false, false) 94 95 static void reportTranslationError(MachineFunction &MF, 96 const TargetPassConfig &TPC, 97 OptimizationRemarkEmitter &ORE, 98 OptimizationRemarkMissed &R) { 99 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 100 101 // Print the function name explicitly if we don't have a debug location (which 102 // makes the diagnostic less useful) or if we're going to emit a raw error. 103 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 104 R << (" (in function: " + MF.getName() + ")").str(); 105 106 if (TPC.isGlobalISelAbortEnabled()) 107 report_fatal_error(R.getMsg()); 108 else 109 ORE.emit(R); 110 } 111 112 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { } 113 114 #ifndef NDEBUG 115 namespace { 116 /// Verify that every instruction created has the same DILocation as the 117 /// instruction being translated. 118 class DILocationVerifier : public GISelChangeObserver { 119 const Instruction *CurrInst = nullptr; 120 121 public: 122 DILocationVerifier() = default; 123 ~DILocationVerifier() = default; 124 125 const Instruction *getCurrentInst() const { return CurrInst; } 126 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 127 128 void erasingInstr(MachineInstr &MI) override {} 129 void changingInstr(MachineInstr &MI) override {} 130 void changedInstr(MachineInstr &MI) override {} 131 132 void createdInstr(MachineInstr &MI) override { 133 assert(getCurrentInst() && "Inserted instruction without a current MI"); 134 135 // Only print the check message if we're actually checking it. 136 #ifndef NDEBUG 137 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 138 << " was copied to " << MI); 139 #endif 140 // We allow insts in the entry block to have a debug loc line of 0 because 141 // they could have originated from constants, and we don't want a jumpy 142 // debug experience. 143 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 144 MI.getDebugLoc().getLine() == 0) && 145 "Line info was not transferred to all instructions"); 146 } 147 }; 148 } // namespace 149 #endif // ifndef NDEBUG 150 151 152 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 153 AU.addRequired<StackProtector>(); 154 AU.addRequired<TargetPassConfig>(); 155 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 156 getSelectionDAGFallbackAnalysisUsage(AU); 157 MachineFunctionPass::getAnalysisUsage(AU); 158 } 159 160 IRTranslator::ValueToVRegInfo::VRegListT & 161 IRTranslator::allocateVRegs(const Value &Val) { 162 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 163 auto *Regs = VMap.getVRegs(Val); 164 auto *Offsets = VMap.getOffsets(Val); 165 SmallVector<LLT, 4> SplitTys; 166 computeValueLLTs(*DL, *Val.getType(), SplitTys, 167 Offsets->empty() ? Offsets : nullptr); 168 for (unsigned i = 0; i < SplitTys.size(); ++i) 169 Regs->push_back(0); 170 return *Regs; 171 } 172 173 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 174 auto VRegsIt = VMap.findVRegs(Val); 175 if (VRegsIt != VMap.vregs_end()) 176 return *VRegsIt->second; 177 178 if (Val.getType()->isVoidTy()) 179 return *VMap.getVRegs(Val); 180 181 // Create entry for this type. 182 auto *VRegs = VMap.getVRegs(Val); 183 auto *Offsets = VMap.getOffsets(Val); 184 185 assert(Val.getType()->isSized() && 186 "Don't know how to create an empty vreg"); 187 188 SmallVector<LLT, 4> SplitTys; 189 computeValueLLTs(*DL, *Val.getType(), SplitTys, 190 Offsets->empty() ? Offsets : nullptr); 191 192 if (!isa<Constant>(Val)) { 193 for (auto Ty : SplitTys) 194 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 195 return *VRegs; 196 } 197 198 if (Val.getType()->isAggregateType()) { 199 // UndefValue, ConstantAggregateZero 200 auto &C = cast<Constant>(Val); 201 unsigned Idx = 0; 202 while (auto Elt = C.getAggregateElement(Idx++)) { 203 auto EltRegs = getOrCreateVRegs(*Elt); 204 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 205 } 206 } else { 207 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 208 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 209 bool Success = translate(cast<Constant>(Val), VRegs->front()); 210 if (!Success) { 211 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 212 MF->getFunction().getSubprogram(), 213 &MF->getFunction().getEntryBlock()); 214 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 215 reportTranslationError(*MF, *TPC, *ORE, R); 216 return *VRegs; 217 } 218 } 219 220 return *VRegs; 221 } 222 223 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 224 if (FrameIndices.find(&AI) != FrameIndices.end()) 225 return FrameIndices[&AI]; 226 227 unsigned ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 228 unsigned Size = 229 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 230 231 // Always allocate at least one byte. 232 Size = std::max(Size, 1u); 233 234 unsigned Alignment = AI.getAlignment(); 235 if (!Alignment) 236 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 237 238 int &FI = FrameIndices[&AI]; 239 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 240 return FI; 241 } 242 243 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 244 unsigned Alignment = 0; 245 Type *ValTy = nullptr; 246 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 247 Alignment = SI->getAlignment(); 248 ValTy = SI->getValueOperand()->getType(); 249 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 250 Alignment = LI->getAlignment(); 251 ValTy = LI->getType(); 252 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 253 // TODO(PR27168): This instruction has no alignment attribute, but unlike 254 // the default alignment for load/store, the default here is to assume 255 // it has NATURAL alignment, not DataLayout-specified alignment. 256 const DataLayout &DL = AI->getModule()->getDataLayout(); 257 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 258 ValTy = AI->getCompareOperand()->getType(); 259 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 260 // TODO(PR27168): This instruction has no alignment attribute, but unlike 261 // the default alignment for load/store, the default here is to assume 262 // it has NATURAL alignment, not DataLayout-specified alignment. 263 const DataLayout &DL = AI->getModule()->getDataLayout(); 264 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 265 ValTy = AI->getType(); 266 } else { 267 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 268 R << "unable to translate memop: " << ore::NV("Opcode", &I); 269 reportTranslationError(*MF, *TPC, *ORE, R); 270 return 1; 271 } 272 273 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 274 } 275 276 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 277 MachineBasicBlock *&MBB = BBToMBB[&BB]; 278 assert(MBB && "BasicBlock was not encountered before"); 279 return *MBB; 280 } 281 282 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 283 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 284 MachinePreds[Edge].push_back(NewPred); 285 } 286 287 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 288 MachineIRBuilder &MIRBuilder) { 289 // Get or create a virtual register for each value. 290 // Unless the value is a Constant => loadimm cst? 291 // or inline constant each time? 292 // Creation of a virtual register needs to have a size. 293 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 294 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 295 Register Res = getOrCreateVReg(U); 296 uint16_t Flags = 0; 297 if (isa<Instruction>(U)) { 298 const Instruction &I = cast<Instruction>(U); 299 Flags = MachineInstr::copyFlagsFromInstruction(I); 300 } 301 302 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 303 return true; 304 } 305 306 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 307 // -0.0 - X --> G_FNEG 308 if (isa<Constant>(U.getOperand(0)) && 309 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 310 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 311 Register Res = getOrCreateVReg(U); 312 uint16_t Flags = 0; 313 if (isa<Instruction>(U)) { 314 const Instruction &I = cast<Instruction>(U); 315 Flags = MachineInstr::copyFlagsFromInstruction(I); 316 } 317 // Negate the last operand of the FSUB 318 MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op1}, Flags); 319 return true; 320 } 321 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 322 } 323 324 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 325 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 326 Register Res = getOrCreateVReg(U); 327 uint16_t Flags = 0; 328 if (isa<Instruction>(U)) { 329 const Instruction &I = cast<Instruction>(U); 330 Flags = MachineInstr::copyFlagsFromInstruction(I); 331 } 332 MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op0}, Flags); 333 return true; 334 } 335 336 bool IRTranslator::translateCompare(const User &U, 337 MachineIRBuilder &MIRBuilder) { 338 auto *CI = dyn_cast<CmpInst>(&U); 339 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 340 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 341 Register Res = getOrCreateVReg(U); 342 CmpInst::Predicate Pred = 343 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 344 cast<ConstantExpr>(U).getPredicate()); 345 if (CmpInst::isIntPredicate(Pred)) 346 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 347 else if (Pred == CmpInst::FCMP_FALSE) 348 MIRBuilder.buildCopy( 349 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 350 else if (Pred == CmpInst::FCMP_TRUE) 351 MIRBuilder.buildCopy( 352 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 353 else { 354 assert(CI && "Instruction should be CmpInst"); 355 MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1}, 356 MachineInstr::copyFlagsFromInstruction(*CI)); 357 } 358 359 return true; 360 } 361 362 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 363 const ReturnInst &RI = cast<ReturnInst>(U); 364 const Value *Ret = RI.getReturnValue(); 365 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 366 Ret = nullptr; 367 368 ArrayRef<Register> VRegs; 369 if (Ret) 370 VRegs = getOrCreateVRegs(*Ret); 371 372 Register SwiftErrorVReg = 0; 373 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 374 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 375 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 376 } 377 378 // The target may mess up with the insertion point, but 379 // this is not important as a return is the last instruction 380 // of the block anyway. 381 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); 382 } 383 384 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 385 const BranchInst &BrInst = cast<BranchInst>(U); 386 unsigned Succ = 0; 387 if (!BrInst.isUnconditional()) { 388 // We want a G_BRCOND to the true BB followed by an unconditional branch. 389 Register Tst = getOrCreateVReg(*BrInst.getCondition()); 390 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 391 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 392 MIRBuilder.buildBrCond(Tst, TrueBB); 393 } 394 395 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 396 MachineBasicBlock &TgtBB = getMBB(BrTgt); 397 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 398 399 // If the unconditional target is the layout successor, fallthrough. 400 if (!CurBB.isLayoutSuccessor(&TgtBB)) 401 MIRBuilder.buildBr(TgtBB); 402 403 // Link successors. 404 for (const BasicBlock *Succ : successors(&BrInst)) 405 CurBB.addSuccessor(&getMBB(*Succ)); 406 return true; 407 } 408 409 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 410 MachineBasicBlock *Dst, 411 BranchProbability Prob) { 412 if (!FuncInfo.BPI) { 413 Src->addSuccessorWithoutProb(Dst); 414 return; 415 } 416 if (Prob.isUnknown()) 417 Prob = getEdgeProbability(Src, Dst); 418 Src->addSuccessor(Dst, Prob); 419 } 420 421 BranchProbability 422 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 423 const MachineBasicBlock *Dst) const { 424 const BasicBlock *SrcBB = Src->getBasicBlock(); 425 const BasicBlock *DstBB = Dst->getBasicBlock(); 426 if (!FuncInfo.BPI) { 427 // If BPI is not available, set the default probability as 1 / N, where N is 428 // the number of successors. 429 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 430 return BranchProbability(1, SuccSize); 431 } 432 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 433 } 434 435 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 436 using namespace SwitchCG; 437 // Extract cases from the switch. 438 const SwitchInst &SI = cast<SwitchInst>(U); 439 BranchProbabilityInfo *BPI = FuncInfo.BPI; 440 CaseClusterVector Clusters; 441 Clusters.reserve(SI.getNumCases()); 442 for (auto &I : SI.cases()) { 443 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 444 assert(Succ && "Could not find successor mbb in mapping"); 445 const ConstantInt *CaseVal = I.getCaseValue(); 446 BranchProbability Prob = 447 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 448 : BranchProbability(1, SI.getNumCases() + 1); 449 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 450 } 451 452 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 453 454 // Cluster adjacent cases with the same destination. We do this at all 455 // optimization levels because it's cheap to do and will make codegen faster 456 // if there are many clusters. 457 sortAndRangeify(Clusters); 458 459 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 460 461 // If there is only the default destination, jump there directly. 462 if (Clusters.empty()) { 463 SwitchMBB->addSuccessor(DefaultMBB); 464 if (DefaultMBB != SwitchMBB->getNextNode()) 465 MIB.buildBr(*DefaultMBB); 466 return true; 467 } 468 469 SL->findJumpTables(Clusters, &SI, DefaultMBB); 470 471 LLVM_DEBUG({ 472 dbgs() << "Case clusters: "; 473 for (const CaseCluster &C : Clusters) { 474 if (C.Kind == CC_JumpTable) 475 dbgs() << "JT:"; 476 if (C.Kind == CC_BitTests) 477 dbgs() << "BT:"; 478 479 C.Low->getValue().print(dbgs(), true); 480 if (C.Low != C.High) { 481 dbgs() << '-'; 482 C.High->getValue().print(dbgs(), true); 483 } 484 dbgs() << ' '; 485 } 486 dbgs() << '\n'; 487 }); 488 489 assert(!Clusters.empty()); 490 SwitchWorkList WorkList; 491 CaseClusterIt First = Clusters.begin(); 492 CaseClusterIt Last = Clusters.end() - 1; 493 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 494 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 495 496 // FIXME: At the moment we don't do any splitting optimizations here like 497 // SelectionDAG does, so this worklist only has one entry. 498 while (!WorkList.empty()) { 499 SwitchWorkListItem W = WorkList.back(); 500 WorkList.pop_back(); 501 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 502 return false; 503 } 504 return true; 505 } 506 507 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 508 MachineBasicBlock *MBB) { 509 // Emit the code for the jump table 510 assert(JT.Reg != -1U && "Should lower JT Header first!"); 511 MachineIRBuilder MIB(*MBB->getParent()); 512 MIB.setMBB(*MBB); 513 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 514 515 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 516 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 517 518 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 519 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 520 } 521 522 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 523 SwitchCG::JumpTableHeader &JTH, 524 MachineBasicBlock *HeaderBB) { 525 MachineIRBuilder MIB(*HeaderBB->getParent()); 526 MIB.setMBB(*HeaderBB); 527 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 528 529 const Value &SValue = *JTH.SValue; 530 // Subtract the lowest switch case value from the value being switched on. 531 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 532 Register SwitchOpReg = getOrCreateVReg(SValue); 533 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 534 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 535 536 // This value may be smaller or larger than the target's pointer type, and 537 // therefore require extension or truncating. 538 Type *PtrIRTy = SValue.getType()->getPointerTo(); 539 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 540 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 541 542 JT.Reg = Sub.getReg(0); 543 544 if (JTH.OmitRangeCheck) { 545 if (JT.MBB != HeaderBB->getNextNode()) 546 MIB.buildBr(*JT.MBB); 547 return true; 548 } 549 550 // Emit the range check for the jump table, and branch to the default block 551 // for the switch statement if the value being switched on exceeds the 552 // largest case in the switch. 553 auto Cst = getOrCreateVReg( 554 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 555 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 556 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 557 558 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 559 560 // Avoid emitting unnecessary branches to the next block. 561 if (JT.MBB != HeaderBB->getNextNode()) 562 BrCond = MIB.buildBr(*JT.MBB); 563 return true; 564 } 565 566 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 567 MachineBasicBlock *SwitchBB, 568 MachineIRBuilder &MIB) { 569 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 570 Register Cond; 571 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 572 MIB.setDebugLoc(CB.DbgLoc); 573 MIB.setMBB(*CB.ThisBB); 574 575 if (CB.PredInfo.NoCmp) { 576 // Branch or fall through to TrueBB. 577 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 578 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 579 CB.ThisBB); 580 CB.ThisBB->normalizeSuccProbs(); 581 if (CB.TrueBB != CB.ThisBB->getNextNode()) 582 MIB.buildBr(*CB.TrueBB); 583 MIB.setDebugLoc(OldDbgLoc); 584 return; 585 } 586 587 const LLT i1Ty = LLT::scalar(1); 588 // Build the compare. 589 if (!CB.CmpMHS) { 590 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 591 Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 592 } else { 593 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 594 "Can only handle SLE ranges"); 595 596 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 597 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 598 599 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 600 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 601 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 602 Cond = 603 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 604 } else { 605 const LLT &CmpTy = MRI->getType(CmpOpReg); 606 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 607 auto Diff = MIB.buildConstant(CmpTy, High - Low); 608 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 609 } 610 } 611 612 // Update successor info 613 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 614 615 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 616 CB.ThisBB); 617 618 // TrueBB and FalseBB are always different unless the incoming IR is 619 // degenerate. This only happens when running llc on weird IR. 620 if (CB.TrueBB != CB.FalseBB) 621 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 622 CB.ThisBB->normalizeSuccProbs(); 623 624 // if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock()) 625 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 626 CB.ThisBB); 627 628 // If the lhs block is the next block, invert the condition so that we can 629 // fall through to the lhs instead of the rhs block. 630 if (CB.TrueBB == CB.ThisBB->getNextNode()) { 631 std::swap(CB.TrueBB, CB.FalseBB); 632 auto True = MIB.buildConstant(i1Ty, 1); 633 Cond = MIB.buildInstr(TargetOpcode::G_XOR, {i1Ty}, {Cond, True}, None) 634 .getReg(0); 635 } 636 637 MIB.buildBrCond(Cond, *CB.TrueBB); 638 MIB.buildBr(*CB.FalseBB); 639 MIB.setDebugLoc(OldDbgLoc); 640 } 641 642 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 643 MachineBasicBlock *SwitchMBB, 644 MachineBasicBlock *CurMBB, 645 MachineBasicBlock *DefaultMBB, 646 MachineIRBuilder &MIB, 647 MachineFunction::iterator BBI, 648 BranchProbability UnhandledProbs, 649 SwitchCG::CaseClusterIt I, 650 MachineBasicBlock *Fallthrough, 651 bool FallthroughUnreachable) { 652 using namespace SwitchCG; 653 MachineFunction *CurMF = SwitchMBB->getParent(); 654 // FIXME: Optimize away range check based on pivot comparisons. 655 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 656 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 657 BranchProbability DefaultProb = W.DefaultProb; 658 659 // The jump block hasn't been inserted yet; insert it here. 660 MachineBasicBlock *JumpMBB = JT->MBB; 661 CurMF->insert(BBI, JumpMBB); 662 663 // Since the jump table block is separate from the switch block, we need 664 // to keep track of it as a machine predecessor to the default block, 665 // otherwise we lose the phi edges. 666 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 667 CurMBB); 668 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 669 JumpMBB); 670 671 auto JumpProb = I->Prob; 672 auto FallthroughProb = UnhandledProbs; 673 674 // If the default statement is a target of the jump table, we evenly 675 // distribute the default probability to successors of CurMBB. Also 676 // update the probability on the edge from JumpMBB to Fallthrough. 677 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 678 SE = JumpMBB->succ_end(); 679 SI != SE; ++SI) { 680 if (*SI == DefaultMBB) { 681 JumpProb += DefaultProb / 2; 682 FallthroughProb -= DefaultProb / 2; 683 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 684 JumpMBB->normalizeSuccProbs(); 685 } else { 686 // Also record edges from the jump table block to it's successors. 687 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 688 JumpMBB); 689 } 690 } 691 692 // Skip the range check if the fallthrough block is unreachable. 693 if (FallthroughUnreachable) 694 JTH->OmitRangeCheck = true; 695 696 if (!JTH->OmitRangeCheck) 697 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 698 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 699 CurMBB->normalizeSuccProbs(); 700 701 // The jump table header will be inserted in our current block, do the 702 // range check, and fall through to our fallthrough block. 703 JTH->HeaderBB = CurMBB; 704 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 705 706 // If we're in the right place, emit the jump table header right now. 707 if (CurMBB == SwitchMBB) { 708 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 709 return false; 710 JTH->Emitted = true; 711 } 712 return true; 713 } 714 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 715 Value *Cond, 716 MachineBasicBlock *Fallthrough, 717 bool FallthroughUnreachable, 718 BranchProbability UnhandledProbs, 719 MachineBasicBlock *CurMBB, 720 MachineIRBuilder &MIB, 721 MachineBasicBlock *SwitchMBB) { 722 using namespace SwitchCG; 723 const Value *RHS, *LHS, *MHS; 724 CmpInst::Predicate Pred; 725 if (I->Low == I->High) { 726 // Check Cond == I->Low. 727 Pred = CmpInst::ICMP_EQ; 728 LHS = Cond; 729 RHS = I->Low; 730 MHS = nullptr; 731 } else { 732 // Check I->Low <= Cond <= I->High. 733 Pred = CmpInst::ICMP_SLE; 734 LHS = I->Low; 735 MHS = Cond; 736 RHS = I->High; 737 } 738 739 // If Fallthrough is unreachable, fold away the comparison. 740 // The false probability is the sum of all unhandled cases. 741 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 742 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 743 744 emitSwitchCase(CB, SwitchMBB, MIB); 745 return true; 746 } 747 748 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 749 Value *Cond, 750 MachineBasicBlock *SwitchMBB, 751 MachineBasicBlock *DefaultMBB, 752 MachineIRBuilder &MIB) { 753 using namespace SwitchCG; 754 MachineFunction *CurMF = FuncInfo.MF; 755 MachineBasicBlock *NextMBB = nullptr; 756 MachineFunction::iterator BBI(W.MBB); 757 if (++BBI != FuncInfo.MF->end()) 758 NextMBB = &*BBI; 759 760 if (EnableOpts) { 761 // Here, we order cases by probability so the most likely case will be 762 // checked first. However, two clusters can have the same probability in 763 // which case their relative ordering is non-deterministic. So we use Low 764 // as a tie-breaker as clusters are guaranteed to never overlap. 765 llvm::sort(W.FirstCluster, W.LastCluster + 1, 766 [](const CaseCluster &a, const CaseCluster &b) { 767 return a.Prob != b.Prob 768 ? a.Prob > b.Prob 769 : a.Low->getValue().slt(b.Low->getValue()); 770 }); 771 772 // Rearrange the case blocks so that the last one falls through if possible 773 // without changing the order of probabilities. 774 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 775 --I; 776 if (I->Prob > W.LastCluster->Prob) 777 break; 778 if (I->Kind == CC_Range && I->MBB == NextMBB) { 779 std::swap(*I, *W.LastCluster); 780 break; 781 } 782 } 783 } 784 785 // Compute total probability. 786 BranchProbability DefaultProb = W.DefaultProb; 787 BranchProbability UnhandledProbs = DefaultProb; 788 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 789 UnhandledProbs += I->Prob; 790 791 MachineBasicBlock *CurMBB = W.MBB; 792 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 793 bool FallthroughUnreachable = false; 794 MachineBasicBlock *Fallthrough; 795 if (I == W.LastCluster) { 796 // For the last cluster, fall through to the default destination. 797 Fallthrough = DefaultMBB; 798 FallthroughUnreachable = isa<UnreachableInst>( 799 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 800 } else { 801 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 802 CurMF->insert(BBI, Fallthrough); 803 } 804 UnhandledProbs -= I->Prob; 805 806 switch (I->Kind) { 807 case CC_BitTests: { 808 LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented"); 809 return false; // Bit tests currently unimplemented. 810 } 811 case CC_JumpTable: { 812 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 813 UnhandledProbs, I, Fallthrough, 814 FallthroughUnreachable)) { 815 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 816 return false; 817 } 818 break; 819 } 820 case CC_Range: { 821 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 822 FallthroughUnreachable, UnhandledProbs, 823 CurMBB, MIB, SwitchMBB)) { 824 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 825 return false; 826 } 827 break; 828 } 829 } 830 CurMBB = Fallthrough; 831 } 832 833 return true; 834 } 835 836 bool IRTranslator::translateIndirectBr(const User &U, 837 MachineIRBuilder &MIRBuilder) { 838 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 839 840 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 841 MIRBuilder.buildBrIndirect(Tgt); 842 843 // Link successors. 844 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 845 for (const BasicBlock *Succ : successors(&BrInst)) 846 CurBB.addSuccessor(&getMBB(*Succ)); 847 848 return true; 849 } 850 851 static bool isSwiftError(const Value *V) { 852 if (auto Arg = dyn_cast<Argument>(V)) 853 return Arg->hasSwiftErrorAttr(); 854 if (auto AI = dyn_cast<AllocaInst>(V)) 855 return AI->isSwiftError(); 856 return false; 857 } 858 859 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 860 const LoadInst &LI = cast<LoadInst>(U); 861 862 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 863 : MachineMemOperand::MONone; 864 Flags |= MachineMemOperand::MOLoad; 865 866 if (DL->getTypeStoreSize(LI.getType()) == 0) 867 return true; 868 869 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 870 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 871 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 872 873 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 874 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 875 876 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 877 assert(Regs.size() == 1 && "swifterror should be single pointer"); 878 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 879 LI.getPointerOperand()); 880 MIRBuilder.buildCopy(Regs[0], VReg); 881 return true; 882 } 883 884 const MDNode *Ranges = 885 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 886 for (unsigned i = 0; i < Regs.size(); ++i) { 887 Register Addr; 888 MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); 889 890 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 891 unsigned BaseAlign = getMemOpAlignment(LI); 892 auto MMO = MF->getMachineMemOperand( 893 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 894 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), Ranges, 895 LI.getSyncScopeID(), LI.getOrdering()); 896 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 897 } 898 899 return true; 900 } 901 902 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 903 const StoreInst &SI = cast<StoreInst>(U); 904 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 905 : MachineMemOperand::MONone; 906 Flags |= MachineMemOperand::MOStore; 907 908 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 909 return true; 910 911 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 912 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 913 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 914 915 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 916 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 917 918 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 919 assert(Vals.size() == 1 && "swifterror should be single pointer"); 920 921 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 922 SI.getPointerOperand()); 923 MIRBuilder.buildCopy(VReg, Vals[0]); 924 return true; 925 } 926 927 for (unsigned i = 0; i < Vals.size(); ++i) { 928 Register Addr; 929 MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); 930 931 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 932 unsigned BaseAlign = getMemOpAlignment(SI); 933 auto MMO = MF->getMachineMemOperand( 934 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 935 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 936 SI.getSyncScopeID(), SI.getOrdering()); 937 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 938 } 939 return true; 940 } 941 942 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 943 const Value *Src = U.getOperand(0); 944 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 945 946 // getIndexedOffsetInType is designed for GEPs, so the first index is the 947 // usual array element rather than looking into the actual aggregate. 948 SmallVector<Value *, 1> Indices; 949 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 950 951 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 952 for (auto Idx : EVI->indices()) 953 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 954 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 955 for (auto Idx : IVI->indices()) 956 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 957 } else { 958 for (unsigned i = 1; i < U.getNumOperands(); ++i) 959 Indices.push_back(U.getOperand(i)); 960 } 961 962 return 8 * static_cast<uint64_t>( 963 DL.getIndexedOffsetInType(Src->getType(), Indices)); 964 } 965 966 bool IRTranslator::translateExtractValue(const User &U, 967 MachineIRBuilder &MIRBuilder) { 968 const Value *Src = U.getOperand(0); 969 uint64_t Offset = getOffsetFromIndices(U, *DL); 970 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 971 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 972 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 973 auto &DstRegs = allocateVRegs(U); 974 975 for (unsigned i = 0; i < DstRegs.size(); ++i) 976 DstRegs[i] = SrcRegs[Idx++]; 977 978 return true; 979 } 980 981 bool IRTranslator::translateInsertValue(const User &U, 982 MachineIRBuilder &MIRBuilder) { 983 const Value *Src = U.getOperand(0); 984 uint64_t Offset = getOffsetFromIndices(U, *DL); 985 auto &DstRegs = allocateVRegs(U); 986 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 987 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 988 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 989 auto InsertedIt = InsertedRegs.begin(); 990 991 for (unsigned i = 0; i < DstRegs.size(); ++i) { 992 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 993 DstRegs[i] = *InsertedIt++; 994 else 995 DstRegs[i] = SrcRegs[i]; 996 } 997 998 return true; 999 } 1000 1001 bool IRTranslator::translateSelect(const User &U, 1002 MachineIRBuilder &MIRBuilder) { 1003 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1004 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1005 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1006 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1007 1008 const SelectInst &SI = cast<SelectInst>(U); 1009 uint16_t Flags = 0; 1010 if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) 1011 Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); 1012 1013 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1014 MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]}, 1015 {Tst, Op0Regs[i], Op1Regs[i]}, Flags); 1016 } 1017 1018 return true; 1019 } 1020 1021 bool IRTranslator::translateBitCast(const User &U, 1022 MachineIRBuilder &MIRBuilder) { 1023 // If we're bitcasting to the source type, we can reuse the source vreg. 1024 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1025 getLLTForType(*U.getType(), *DL)) { 1026 Register SrcReg = getOrCreateVReg(*U.getOperand(0)); 1027 auto &Regs = *VMap.getVRegs(U); 1028 // If we already assigned a vreg for this bitcast, we can't change that. 1029 // Emit a copy to satisfy the users we already emitted. 1030 if (!Regs.empty()) 1031 MIRBuilder.buildCopy(Regs[0], SrcReg); 1032 else { 1033 Regs.push_back(SrcReg); 1034 VMap.getOffsets(U)->push_back(0); 1035 } 1036 return true; 1037 } 1038 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1039 } 1040 1041 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1042 MachineIRBuilder &MIRBuilder) { 1043 Register Op = getOrCreateVReg(*U.getOperand(0)); 1044 Register Res = getOrCreateVReg(U); 1045 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1046 return true; 1047 } 1048 1049 bool IRTranslator::translateGetElementPtr(const User &U, 1050 MachineIRBuilder &MIRBuilder) { 1051 // FIXME: support vector GEPs. 1052 if (U.getType()->isVectorTy()) 1053 return false; 1054 1055 Value &Op0 = *U.getOperand(0); 1056 Register BaseReg = getOrCreateVReg(Op0); 1057 Type *PtrIRTy = Op0.getType(); 1058 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1059 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1060 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1061 1062 int64_t Offset = 0; 1063 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1064 GTI != E; ++GTI) { 1065 const Value *Idx = GTI.getOperand(); 1066 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1067 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1068 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1069 continue; 1070 } else { 1071 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1072 1073 // If this is a scalar constant or a splat vector of constants, 1074 // handle it quickly. 1075 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1076 Offset += ElementSize * CI->getSExtValue(); 1077 continue; 1078 } 1079 1080 if (Offset != 0) { 1081 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1082 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1083 BaseReg = 1084 MIRBuilder.buildGEP(PtrTy, BaseReg, OffsetMIB.getReg(0)).getReg(0); 1085 Offset = 0; 1086 } 1087 1088 Register IdxReg = getOrCreateVReg(*Idx); 1089 if (MRI->getType(IdxReg) != OffsetTy) 1090 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1091 1092 // N = N + Idx * ElementSize; 1093 // Avoid doing it for ElementSize of 1. 1094 Register GepOffsetReg; 1095 if (ElementSize != 1) { 1096 auto ElementSizeMIB = MIRBuilder.buildConstant( 1097 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1098 GepOffsetReg = 1099 MIRBuilder.buildMul(OffsetTy, ElementSizeMIB, IdxReg).getReg(0); 1100 } else 1101 GepOffsetReg = IdxReg; 1102 1103 BaseReg = MIRBuilder.buildGEP(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1104 } 1105 } 1106 1107 if (Offset != 0) { 1108 auto OffsetMIB = 1109 MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset); 1110 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1111 return true; 1112 } 1113 1114 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1115 return true; 1116 } 1117 1118 bool IRTranslator::translateMemFunc(const CallInst &CI, 1119 MachineIRBuilder &MIRBuilder, 1120 Intrinsic::ID ID) { 1121 1122 // If the source is undef, then just emit a nop. 1123 if (isa<UndefValue>(CI.getArgOperand(1))) 1124 return true; 1125 1126 ArrayRef<Register> Res; 1127 auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true); 1128 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) 1129 ICall.addUse(getOrCreateVReg(**AI)); 1130 1131 unsigned DstAlign = 0, SrcAlign = 0; 1132 unsigned IsVol = 1133 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) 1134 ->getZExtValue(); 1135 1136 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1137 DstAlign = std::max<unsigned>(MCI->getDestAlignment(), 1); 1138 SrcAlign = std::max<unsigned>(MCI->getSourceAlignment(), 1); 1139 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1140 DstAlign = std::max<unsigned>(MMI->getDestAlignment(), 1); 1141 SrcAlign = std::max<unsigned>(MMI->getSourceAlignment(), 1); 1142 } else { 1143 auto *MSI = cast<MemSetInst>(&CI); 1144 DstAlign = std::max<unsigned>(MSI->getDestAlignment(), 1); 1145 } 1146 1147 // We need to propagate the tail call flag from the IR inst as an argument. 1148 // Otherwise, we have to pessimize and assume later that we cannot tail call 1149 // any memory intrinsics. 1150 ICall.addImm(CI.isTailCall() ? 1 : 0); 1151 1152 // Create mem operands to store the alignment and volatile info. 1153 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1154 ICall.addMemOperand(MF->getMachineMemOperand( 1155 MachinePointerInfo(CI.getArgOperand(0)), 1156 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1157 if (ID != Intrinsic::memset) 1158 ICall.addMemOperand(MF->getMachineMemOperand( 1159 MachinePointerInfo(CI.getArgOperand(1)), 1160 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1161 1162 return true; 1163 } 1164 1165 void IRTranslator::getStackGuard(Register DstReg, 1166 MachineIRBuilder &MIRBuilder) { 1167 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1168 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1169 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 1170 MIB.addDef(DstReg); 1171 1172 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1173 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1174 if (!Global) 1175 return; 1176 1177 MachinePointerInfo MPInfo(Global); 1178 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1179 MachineMemOperand::MODereferenceable; 1180 MachineMemOperand *MemRef = 1181 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 1182 DL->getPointerABIAlignment(0).value()); 1183 MIB.setMemRefs({MemRef}); 1184 } 1185 1186 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1187 MachineIRBuilder &MIRBuilder) { 1188 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1189 MIRBuilder.buildInstr(Op) 1190 .addDef(ResRegs[0]) 1191 .addDef(ResRegs[1]) 1192 .addUse(getOrCreateVReg(*CI.getOperand(0))) 1193 .addUse(getOrCreateVReg(*CI.getOperand(1))); 1194 1195 return true; 1196 } 1197 1198 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1199 switch (ID) { 1200 default: 1201 break; 1202 case Intrinsic::bswap: 1203 return TargetOpcode::G_BSWAP; 1204 case Intrinsic::bitreverse: 1205 return TargetOpcode::G_BITREVERSE; 1206 case Intrinsic::ceil: 1207 return TargetOpcode::G_FCEIL; 1208 case Intrinsic::cos: 1209 return TargetOpcode::G_FCOS; 1210 case Intrinsic::ctpop: 1211 return TargetOpcode::G_CTPOP; 1212 case Intrinsic::exp: 1213 return TargetOpcode::G_FEXP; 1214 case Intrinsic::exp2: 1215 return TargetOpcode::G_FEXP2; 1216 case Intrinsic::fabs: 1217 return TargetOpcode::G_FABS; 1218 case Intrinsic::copysign: 1219 return TargetOpcode::G_FCOPYSIGN; 1220 case Intrinsic::minnum: 1221 return TargetOpcode::G_FMINNUM; 1222 case Intrinsic::maxnum: 1223 return TargetOpcode::G_FMAXNUM; 1224 case Intrinsic::minimum: 1225 return TargetOpcode::G_FMINIMUM; 1226 case Intrinsic::maximum: 1227 return TargetOpcode::G_FMAXIMUM; 1228 case Intrinsic::canonicalize: 1229 return TargetOpcode::G_FCANONICALIZE; 1230 case Intrinsic::floor: 1231 return TargetOpcode::G_FFLOOR; 1232 case Intrinsic::fma: 1233 return TargetOpcode::G_FMA; 1234 case Intrinsic::log: 1235 return TargetOpcode::G_FLOG; 1236 case Intrinsic::log2: 1237 return TargetOpcode::G_FLOG2; 1238 case Intrinsic::log10: 1239 return TargetOpcode::G_FLOG10; 1240 case Intrinsic::nearbyint: 1241 return TargetOpcode::G_FNEARBYINT; 1242 case Intrinsic::pow: 1243 return TargetOpcode::G_FPOW; 1244 case Intrinsic::rint: 1245 return TargetOpcode::G_FRINT; 1246 case Intrinsic::round: 1247 return TargetOpcode::G_INTRINSIC_ROUND; 1248 case Intrinsic::sin: 1249 return TargetOpcode::G_FSIN; 1250 case Intrinsic::sqrt: 1251 return TargetOpcode::G_FSQRT; 1252 case Intrinsic::trunc: 1253 return TargetOpcode::G_INTRINSIC_TRUNC; 1254 } 1255 return Intrinsic::not_intrinsic; 1256 } 1257 1258 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1259 Intrinsic::ID ID, 1260 MachineIRBuilder &MIRBuilder) { 1261 1262 unsigned Op = getSimpleIntrinsicOpcode(ID); 1263 1264 // Is this a simple intrinsic? 1265 if (Op == Intrinsic::not_intrinsic) 1266 return false; 1267 1268 // Yes. Let's translate it. 1269 SmallVector<llvm::SrcOp, 4> VRegs; 1270 for (auto &Arg : CI.arg_operands()) 1271 VRegs.push_back(getOrCreateVReg(*Arg)); 1272 1273 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1274 MachineInstr::copyFlagsFromInstruction(CI)); 1275 return true; 1276 } 1277 1278 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1279 MachineIRBuilder &MIRBuilder) { 1280 1281 // If this is a simple intrinsic (that is, we just need to add a def of 1282 // a vreg, and uses for each arg operand, then translate it. 1283 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1284 return true; 1285 1286 switch (ID) { 1287 default: 1288 break; 1289 case Intrinsic::lifetime_start: 1290 case Intrinsic::lifetime_end: { 1291 // No stack colouring in O0, discard region information. 1292 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1293 return true; 1294 1295 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1296 : TargetOpcode::LIFETIME_END; 1297 1298 // Get the underlying objects for the location passed on the lifetime 1299 // marker. 1300 SmallVector<const Value *, 4> Allocas; 1301 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 1302 1303 // Iterate over each underlying object, creating lifetime markers for each 1304 // static alloca. Quit if we find a non-static alloca. 1305 for (const Value *V : Allocas) { 1306 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1307 if (!AI) 1308 continue; 1309 1310 if (!AI->isStaticAlloca()) 1311 return true; 1312 1313 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1314 } 1315 return true; 1316 } 1317 case Intrinsic::dbg_declare: { 1318 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1319 assert(DI.getVariable() && "Missing variable"); 1320 1321 const Value *Address = DI.getAddress(); 1322 if (!Address || isa<UndefValue>(Address)) { 1323 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1324 return true; 1325 } 1326 1327 assert(DI.getVariable()->isValidLocationForIntrinsic( 1328 MIRBuilder.getDebugLoc()) && 1329 "Expected inlined-at fields to agree"); 1330 auto AI = dyn_cast<AllocaInst>(Address); 1331 if (AI && AI->isStaticAlloca()) { 1332 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1333 // instructions (in fact, they get ignored if they *do* exist). 1334 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1335 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1336 } else { 1337 // A dbg.declare describes the address of a source variable, so lower it 1338 // into an indirect DBG_VALUE. 1339 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1340 DI.getVariable(), DI.getExpression()); 1341 } 1342 return true; 1343 } 1344 case Intrinsic::dbg_label: { 1345 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1346 assert(DI.getLabel() && "Missing label"); 1347 1348 assert(DI.getLabel()->isValidLocationForIntrinsic( 1349 MIRBuilder.getDebugLoc()) && 1350 "Expected inlined-at fields to agree"); 1351 1352 MIRBuilder.buildDbgLabel(DI.getLabel()); 1353 return true; 1354 } 1355 case Intrinsic::vaend: 1356 // No target I know of cares about va_end. Certainly no in-tree target 1357 // does. Simplest intrinsic ever! 1358 return true; 1359 case Intrinsic::vastart: { 1360 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1361 Value *Ptr = CI.getArgOperand(0); 1362 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1363 1364 // FIXME: Get alignment 1365 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 1366 .addUse(getOrCreateVReg(*Ptr)) 1367 .addMemOperand(MF->getMachineMemOperand( 1368 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1)); 1369 return true; 1370 } 1371 case Intrinsic::dbg_value: { 1372 // This form of DBG_VALUE is target-independent. 1373 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1374 const Value *V = DI.getValue(); 1375 assert(DI.getVariable()->isValidLocationForIntrinsic( 1376 MIRBuilder.getDebugLoc()) && 1377 "Expected inlined-at fields to agree"); 1378 if (!V) { 1379 // Currently the optimizer can produce this; insert an undef to 1380 // help debugging. Probably the optimizer should not do this. 1381 MIRBuilder.buildDirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1382 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1383 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1384 } else { 1385 for (Register Reg : getOrCreateVRegs(*V)) { 1386 // FIXME: This does not handle register-indirect values at offset 0. The 1387 // direct/indirect thing shouldn't really be handled by something as 1388 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1389 // pretty baked in right now. 1390 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1391 } 1392 } 1393 return true; 1394 } 1395 case Intrinsic::uadd_with_overflow: 1396 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1397 case Intrinsic::sadd_with_overflow: 1398 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1399 case Intrinsic::usub_with_overflow: 1400 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1401 case Intrinsic::ssub_with_overflow: 1402 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1403 case Intrinsic::umul_with_overflow: 1404 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1405 case Intrinsic::smul_with_overflow: 1406 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1407 case Intrinsic::fmuladd: { 1408 const TargetMachine &TM = MF->getTarget(); 1409 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1410 Register Dst = getOrCreateVReg(CI); 1411 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 1412 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 1413 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 1414 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 1415 TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { 1416 // TODO: Revisit this to see if we should move this part of the 1417 // lowering to the combiner. 1418 MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2}, 1419 MachineInstr::copyFlagsFromInstruction(CI)); 1420 } else { 1421 LLT Ty = getLLTForType(*CI.getType(), *DL); 1422 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1}, 1423 MachineInstr::copyFlagsFromInstruction(CI)); 1424 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2}, 1425 MachineInstr::copyFlagsFromInstruction(CI)); 1426 } 1427 return true; 1428 } 1429 case Intrinsic::memcpy: 1430 case Intrinsic::memmove: 1431 case Intrinsic::memset: 1432 return translateMemFunc(CI, MIRBuilder, ID); 1433 case Intrinsic::eh_typeid_for: { 1434 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1435 Register Reg = getOrCreateVReg(CI); 1436 unsigned TypeID = MF->getTypeIDFor(GV); 1437 MIRBuilder.buildConstant(Reg, TypeID); 1438 return true; 1439 } 1440 case Intrinsic::objectsize: 1441 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1442 1443 case Intrinsic::is_constant: 1444 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1445 1446 case Intrinsic::stackguard: 1447 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1448 return true; 1449 case Intrinsic::stackprotector: { 1450 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1451 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1452 getStackGuard(GuardVal, MIRBuilder); 1453 1454 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1455 int FI = getOrCreateFrameIndex(*Slot); 1456 MF->getFrameInfo().setStackProtectorIndex(FI); 1457 1458 MIRBuilder.buildStore( 1459 GuardVal, getOrCreateVReg(*Slot), 1460 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1461 MachineMemOperand::MOStore | 1462 MachineMemOperand::MOVolatile, 1463 PtrTy.getSizeInBits() / 8, 8)); 1464 return true; 1465 } 1466 case Intrinsic::stacksave: { 1467 // Save the stack pointer to the location provided by the intrinsic. 1468 Register Reg = getOrCreateVReg(CI); 1469 Register StackPtr = MF->getSubtarget() 1470 .getTargetLowering() 1471 ->getStackPointerRegisterToSaveRestore(); 1472 1473 // If the target doesn't specify a stack pointer, then fall back. 1474 if (!StackPtr) 1475 return false; 1476 1477 MIRBuilder.buildCopy(Reg, StackPtr); 1478 return true; 1479 } 1480 case Intrinsic::stackrestore: { 1481 // Restore the stack pointer from the location provided by the intrinsic. 1482 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1483 Register StackPtr = MF->getSubtarget() 1484 .getTargetLowering() 1485 ->getStackPointerRegisterToSaveRestore(); 1486 1487 // If the target doesn't specify a stack pointer, then fall back. 1488 if (!StackPtr) 1489 return false; 1490 1491 MIRBuilder.buildCopy(StackPtr, Reg); 1492 return true; 1493 } 1494 case Intrinsic::cttz: 1495 case Intrinsic::ctlz: { 1496 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1497 bool isTrailing = ID == Intrinsic::cttz; 1498 unsigned Opcode = isTrailing 1499 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1500 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1501 : Cst->isZero() ? TargetOpcode::G_CTLZ 1502 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1503 MIRBuilder.buildInstr(Opcode) 1504 .addDef(getOrCreateVReg(CI)) 1505 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 1506 return true; 1507 } 1508 case Intrinsic::invariant_start: { 1509 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1510 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 1511 MIRBuilder.buildUndef(Undef); 1512 return true; 1513 } 1514 case Intrinsic::invariant_end: 1515 return true; 1516 case Intrinsic::assume: 1517 case Intrinsic::var_annotation: 1518 case Intrinsic::sideeffect: 1519 // Discard annotate attributes, assumptions, and artificial side-effects. 1520 return true; 1521 } 1522 return false; 1523 } 1524 1525 bool IRTranslator::translateInlineAsm(const CallInst &CI, 1526 MachineIRBuilder &MIRBuilder) { 1527 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 1528 if (!IA.getConstraintString().empty()) 1529 return false; 1530 1531 unsigned ExtraInfo = 0; 1532 if (IA.hasSideEffects()) 1533 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1534 if (IA.getDialect() == InlineAsm::AD_Intel) 1535 ExtraInfo |= InlineAsm::Extra_AsmDialect; 1536 1537 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 1538 .addExternalSymbol(IA.getAsmString().c_str()) 1539 .addImm(ExtraInfo); 1540 1541 return true; 1542 } 1543 1544 bool IRTranslator::translateCallSite(const ImmutableCallSite &CS, 1545 MachineIRBuilder &MIRBuilder) { 1546 const Instruction &I = *CS.getInstruction(); 1547 ArrayRef<Register> Res = getOrCreateVRegs(I); 1548 1549 SmallVector<ArrayRef<Register>, 8> Args; 1550 Register SwiftInVReg = 0; 1551 Register SwiftErrorVReg = 0; 1552 for (auto &Arg : CS.args()) { 1553 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1554 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 1555 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1556 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 1557 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 1558 &I, &MIRBuilder.getMBB(), Arg)); 1559 Args.emplace_back(makeArrayRef(SwiftInVReg)); 1560 SwiftErrorVReg = 1561 SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg); 1562 continue; 1563 } 1564 Args.push_back(getOrCreateVRegs(*Arg)); 1565 } 1566 1567 // We don't set HasCalls on MFI here yet because call lowering may decide to 1568 // optimize into tail calls. Instead, we defer that to selection where a final 1569 // scan is done to check if any instructions are calls. 1570 bool Success = 1571 CLI->lowerCall(MIRBuilder, CS, Res, Args, SwiftErrorVReg, 1572 [&]() { return getOrCreateVReg(*CS.getCalledValue()); }); 1573 1574 // Check if we just inserted a tail call. 1575 if (Success) { 1576 assert(!HasTailCall && "Can't tail call return twice from block?"); 1577 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1578 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 1579 } 1580 1581 return Success; 1582 } 1583 1584 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1585 const CallInst &CI = cast<CallInst>(U); 1586 auto TII = MF->getTarget().getIntrinsicInfo(); 1587 const Function *F = CI.getCalledFunction(); 1588 1589 // FIXME: support Windows dllimport function calls. 1590 if (F && F->hasDLLImportStorageClass()) 1591 return false; 1592 1593 if (CI.isInlineAsm()) 1594 return translateInlineAsm(CI, MIRBuilder); 1595 1596 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1597 if (F && F->isIntrinsic()) { 1598 ID = F->getIntrinsicID(); 1599 if (TII && ID == Intrinsic::not_intrinsic) 1600 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1601 } 1602 1603 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 1604 return translateCallSite(&CI, MIRBuilder); 1605 1606 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1607 1608 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1609 return true; 1610 1611 ArrayRef<Register> ResultRegs; 1612 if (!CI.getType()->isVoidTy()) 1613 ResultRegs = getOrCreateVRegs(CI); 1614 1615 // Ignore the callsite attributes. Backend code is most likely not expecting 1616 // an intrinsic to sometimes have side effects and sometimes not. 1617 MachineInstrBuilder MIB = 1618 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 1619 if (isa<FPMathOperator>(CI)) 1620 MIB->copyIRFlags(CI); 1621 1622 for (auto &Arg : enumerate(CI.arg_operands())) { 1623 // Some intrinsics take metadata parameters. Reject them. 1624 if (isa<MetadataAsValue>(Arg.value())) 1625 return false; 1626 1627 // If this is required to be an immediate, don't materialize it in a 1628 // register. 1629 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 1630 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 1631 // imm arguments are more convenient than cimm (and realistically 1632 // probably sufficient), so use them. 1633 assert(CI->getBitWidth() <= 64 && 1634 "large intrinsic immediates not handled"); 1635 MIB.addImm(CI->getSExtValue()); 1636 } else { 1637 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 1638 } 1639 } else { 1640 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 1641 if (VRegs.size() > 1) 1642 return false; 1643 MIB.addUse(VRegs[0]); 1644 } 1645 } 1646 1647 // Add a MachineMemOperand if it is a target mem intrinsic. 1648 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1649 TargetLowering::IntrinsicInfo Info; 1650 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1651 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1652 MaybeAlign Align = Info.align; 1653 if (!Align) 1654 Align = MaybeAlign( 1655 DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext()))); 1656 1657 uint64_t Size = Info.memVT.getStoreSize(); 1658 MIB.addMemOperand(MF->getMachineMemOperand( 1659 MachinePointerInfo(Info.ptrVal), Info.flags, Size, Align->value())); 1660 } 1661 1662 return true; 1663 } 1664 1665 bool IRTranslator::translateInvoke(const User &U, 1666 MachineIRBuilder &MIRBuilder) { 1667 const InvokeInst &I = cast<InvokeInst>(U); 1668 MCContext &Context = MF->getContext(); 1669 1670 const BasicBlock *ReturnBB = I.getSuccessor(0); 1671 const BasicBlock *EHPadBB = I.getSuccessor(1); 1672 1673 const Value *Callee = I.getCalledValue(); 1674 const Function *Fn = dyn_cast<Function>(Callee); 1675 if (isa<InlineAsm>(Callee)) 1676 return false; 1677 1678 // FIXME: support invoking patchpoint and statepoint intrinsics. 1679 if (Fn && Fn->isIntrinsic()) 1680 return false; 1681 1682 // FIXME: support whatever these are. 1683 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1684 return false; 1685 1686 // FIXME: support Windows exception handling. 1687 if (!isa<LandingPadInst>(EHPadBB->front())) 1688 return false; 1689 1690 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1691 // the region covered by the try. 1692 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1693 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1694 1695 if (!translateCallSite(&I, MIRBuilder)) 1696 return false; 1697 1698 MCSymbol *EndSymbol = Context.createTempSymbol(); 1699 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1700 1701 // FIXME: track probabilities. 1702 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1703 &ReturnMBB = getMBB(*ReturnBB); 1704 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1705 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1706 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1707 MIRBuilder.buildBr(ReturnMBB); 1708 1709 return true; 1710 } 1711 1712 bool IRTranslator::translateCallBr(const User &U, 1713 MachineIRBuilder &MIRBuilder) { 1714 // FIXME: Implement this. 1715 return false; 1716 } 1717 1718 bool IRTranslator::translateLandingPad(const User &U, 1719 MachineIRBuilder &MIRBuilder) { 1720 const LandingPadInst &LP = cast<LandingPadInst>(U); 1721 1722 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1723 1724 MBB.setIsEHPad(); 1725 1726 // If there aren't registers to copy the values into (e.g., during SjLj 1727 // exceptions), then don't bother. 1728 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1729 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1730 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1731 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1732 return true; 1733 1734 // If landingpad's return type is token type, we don't create DAG nodes 1735 // for its exception pointer and selector value. The extraction of exception 1736 // pointer or selector value from token type landingpads is not currently 1737 // supported. 1738 if (LP.getType()->isTokenTy()) 1739 return true; 1740 1741 // Add a label to mark the beginning of the landing pad. Deletion of the 1742 // landing pad can thus be detected via the MachineModuleInfo. 1743 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1744 .addSym(MF->addLandingPad(&MBB)); 1745 1746 LLT Ty = getLLTForType(*LP.getType(), *DL); 1747 Register Undef = MRI->createGenericVirtualRegister(Ty); 1748 MIRBuilder.buildUndef(Undef); 1749 1750 SmallVector<LLT, 2> Tys; 1751 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1752 Tys.push_back(getLLTForType(*Ty, *DL)); 1753 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1754 1755 // Mark exception register as live in. 1756 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1757 if (!ExceptionReg) 1758 return false; 1759 1760 MBB.addLiveIn(ExceptionReg); 1761 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 1762 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1763 1764 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1765 if (!SelectorReg) 1766 return false; 1767 1768 MBB.addLiveIn(SelectorReg); 1769 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1770 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1771 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1772 1773 return true; 1774 } 1775 1776 bool IRTranslator::translateAlloca(const User &U, 1777 MachineIRBuilder &MIRBuilder) { 1778 auto &AI = cast<AllocaInst>(U); 1779 1780 if (AI.isSwiftError()) 1781 return true; 1782 1783 if (AI.isStaticAlloca()) { 1784 Register Res = getOrCreateVReg(AI); 1785 int FI = getOrCreateFrameIndex(AI); 1786 MIRBuilder.buildFrameIndex(Res, FI); 1787 return true; 1788 } 1789 1790 // FIXME: support stack probing for Windows. 1791 if (MF->getTarget().getTargetTriple().isOSWindows()) 1792 return false; 1793 1794 // Now we're in the harder dynamic case. 1795 Type *Ty = AI.getAllocatedType(); 1796 unsigned Align = 1797 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1798 1799 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 1800 1801 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1802 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1803 if (MRI->getType(NumElts) != IntPtrTy) { 1804 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1805 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1806 NumElts = ExtElts; 1807 } 1808 1809 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1810 Register TySize = 1811 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 1812 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1813 1814 unsigned StackAlign = 1815 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1816 if (Align <= StackAlign) 1817 Align = 0; 1818 1819 // Round the size of the allocation up to the stack alignment size 1820 // by add SA-1 to the size. This doesn't overflow because we're computing 1821 // an address inside an alloca. 1822 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign - 1); 1823 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 1824 MachineInstr::NoUWrap); 1825 auto AlignCst = 1826 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign - 1)); 1827 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 1828 1829 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Align); 1830 1831 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1832 assert(MF->getFrameInfo().hasVarSizedObjects()); 1833 return true; 1834 } 1835 1836 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1837 // FIXME: We may need more info about the type. Because of how LLT works, 1838 // we're completely discarding the i64/double distinction here (amongst 1839 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1840 // anyway but that's not guaranteed. 1841 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1842 .addDef(getOrCreateVReg(U)) 1843 .addUse(getOrCreateVReg(*U.getOperand(0))) 1844 .addImm(DL->getABITypeAlignment(U.getType())); 1845 return true; 1846 } 1847 1848 bool IRTranslator::translateInsertElement(const User &U, 1849 MachineIRBuilder &MIRBuilder) { 1850 // If it is a <1 x Ty> vector, use the scalar as it is 1851 // not a legal vector type in LLT. 1852 if (U.getType()->getVectorNumElements() == 1) { 1853 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1854 auto &Regs = *VMap.getVRegs(U); 1855 if (Regs.empty()) { 1856 Regs.push_back(Elt); 1857 VMap.getOffsets(U)->push_back(0); 1858 } else { 1859 MIRBuilder.buildCopy(Regs[0], Elt); 1860 } 1861 return true; 1862 } 1863 1864 Register Res = getOrCreateVReg(U); 1865 Register Val = getOrCreateVReg(*U.getOperand(0)); 1866 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1867 Register Idx = getOrCreateVReg(*U.getOperand(2)); 1868 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1869 return true; 1870 } 1871 1872 bool IRTranslator::translateExtractElement(const User &U, 1873 MachineIRBuilder &MIRBuilder) { 1874 // If it is a <1 x Ty> vector, use the scalar as it is 1875 // not a legal vector type in LLT. 1876 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1877 Register Elt = getOrCreateVReg(*U.getOperand(0)); 1878 auto &Regs = *VMap.getVRegs(U); 1879 if (Regs.empty()) { 1880 Regs.push_back(Elt); 1881 VMap.getOffsets(U)->push_back(0); 1882 } else { 1883 MIRBuilder.buildCopy(Regs[0], Elt); 1884 } 1885 return true; 1886 } 1887 Register Res = getOrCreateVReg(U); 1888 Register Val = getOrCreateVReg(*U.getOperand(0)); 1889 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1890 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1891 Register Idx; 1892 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1893 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1894 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1895 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1896 Idx = getOrCreateVReg(*NewIdxCI); 1897 } 1898 } 1899 if (!Idx) 1900 Idx = getOrCreateVReg(*U.getOperand(1)); 1901 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1902 const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1903 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg(); 1904 } 1905 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1906 return true; 1907 } 1908 1909 bool IRTranslator::translateShuffleVector(const User &U, 1910 MachineIRBuilder &MIRBuilder) { 1911 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1912 .addDef(getOrCreateVReg(U)) 1913 .addUse(getOrCreateVReg(*U.getOperand(0))) 1914 .addUse(getOrCreateVReg(*U.getOperand(1))) 1915 .addShuffleMask(cast<Constant>(U.getOperand(2))); 1916 return true; 1917 } 1918 1919 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1920 const PHINode &PI = cast<PHINode>(U); 1921 1922 SmallVector<MachineInstr *, 4> Insts; 1923 for (auto Reg : getOrCreateVRegs(PI)) { 1924 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 1925 Insts.push_back(MIB.getInstr()); 1926 } 1927 1928 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1929 return true; 1930 } 1931 1932 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1933 MachineIRBuilder &MIRBuilder) { 1934 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1935 1936 if (I.isWeak()) 1937 return false; 1938 1939 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1940 : MachineMemOperand::MONone; 1941 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1942 1943 Type *ResType = I.getType(); 1944 Type *ValType = ResType->Type::getStructElementType(0); 1945 1946 auto Res = getOrCreateVRegs(I); 1947 Register OldValRes = Res[0]; 1948 Register SuccessRes = Res[1]; 1949 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 1950 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 1951 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 1952 1953 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1954 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1955 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1956 Flags, DL->getTypeStoreSize(ValType), 1957 getMemOpAlignment(I), AAMDNodes(), nullptr, 1958 I.getSyncScopeID(), I.getSuccessOrdering(), 1959 I.getFailureOrdering())); 1960 return true; 1961 } 1962 1963 bool IRTranslator::translateAtomicRMW(const User &U, 1964 MachineIRBuilder &MIRBuilder) { 1965 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 1966 1967 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1968 : MachineMemOperand::MONone; 1969 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1970 1971 Type *ResType = I.getType(); 1972 1973 Register Res = getOrCreateVReg(I); 1974 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 1975 Register Val = getOrCreateVReg(*I.getValOperand()); 1976 1977 unsigned Opcode = 0; 1978 switch (I.getOperation()) { 1979 default: 1980 return false; 1981 case AtomicRMWInst::Xchg: 1982 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 1983 break; 1984 case AtomicRMWInst::Add: 1985 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 1986 break; 1987 case AtomicRMWInst::Sub: 1988 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 1989 break; 1990 case AtomicRMWInst::And: 1991 Opcode = TargetOpcode::G_ATOMICRMW_AND; 1992 break; 1993 case AtomicRMWInst::Nand: 1994 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 1995 break; 1996 case AtomicRMWInst::Or: 1997 Opcode = TargetOpcode::G_ATOMICRMW_OR; 1998 break; 1999 case AtomicRMWInst::Xor: 2000 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2001 break; 2002 case AtomicRMWInst::Max: 2003 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2004 break; 2005 case AtomicRMWInst::Min: 2006 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2007 break; 2008 case AtomicRMWInst::UMax: 2009 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2010 break; 2011 case AtomicRMWInst::UMin: 2012 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2013 break; 2014 case AtomicRMWInst::FAdd: 2015 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2016 break; 2017 case AtomicRMWInst::FSub: 2018 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2019 break; 2020 } 2021 2022 MIRBuilder.buildAtomicRMW( 2023 Opcode, Res, Addr, Val, 2024 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2025 Flags, DL->getTypeStoreSize(ResType), 2026 getMemOpAlignment(I), AAMDNodes(), nullptr, 2027 I.getSyncScopeID(), I.getOrdering())); 2028 return true; 2029 } 2030 2031 bool IRTranslator::translateFence(const User &U, 2032 MachineIRBuilder &MIRBuilder) { 2033 const FenceInst &Fence = cast<FenceInst>(U); 2034 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2035 Fence.getSyncScopeID()); 2036 return true; 2037 } 2038 2039 void IRTranslator::finishPendingPhis() { 2040 #ifndef NDEBUG 2041 DILocationVerifier Verifier; 2042 GISelObserverWrapper WrapperObserver(&Verifier); 2043 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2044 #endif // ifndef NDEBUG 2045 for (auto &Phi : PendingPHIs) { 2046 const PHINode *PI = Phi.first; 2047 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2048 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2049 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2050 #ifndef NDEBUG 2051 Verifier.setCurrentInst(PI); 2052 #endif // ifndef NDEBUG 2053 2054 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2055 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2056 auto IRPred = PI->getIncomingBlock(i); 2057 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2058 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2059 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2060 continue; 2061 SeenPreds.insert(Pred); 2062 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2063 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2064 MIB.addUse(ValRegs[j]); 2065 MIB.addMBB(Pred); 2066 } 2067 } 2068 } 2069 } 2070 } 2071 2072 bool IRTranslator::valueIsSplit(const Value &V, 2073 SmallVectorImpl<uint64_t> *Offsets) { 2074 SmallVector<LLT, 4> SplitTys; 2075 if (Offsets && !Offsets->empty()) 2076 Offsets->clear(); 2077 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2078 return SplitTys.size() > 1; 2079 } 2080 2081 bool IRTranslator::translate(const Instruction &Inst) { 2082 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2083 // We only emit constants into the entry block from here. To prevent jumpy 2084 // debug behaviour set the line to 0. 2085 if (const DebugLoc &DL = Inst.getDebugLoc()) 2086 EntryBuilder->setDebugLoc( 2087 DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 2088 else 2089 EntryBuilder->setDebugLoc(DebugLoc()); 2090 2091 switch (Inst.getOpcode()) { 2092 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2093 case Instruction::OPCODE: \ 2094 return translate##OPCODE(Inst, *CurBuilder.get()); 2095 #include "llvm/IR/Instruction.def" 2096 default: 2097 return false; 2098 } 2099 } 2100 2101 bool IRTranslator::translate(const Constant &C, Register Reg) { 2102 if (auto CI = dyn_cast<ConstantInt>(&C)) 2103 EntryBuilder->buildConstant(Reg, *CI); 2104 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2105 EntryBuilder->buildFConstant(Reg, *CF); 2106 else if (isa<UndefValue>(C)) 2107 EntryBuilder->buildUndef(Reg); 2108 else if (isa<ConstantPointerNull>(C)) { 2109 // As we are trying to build a constant val of 0 into a pointer, 2110 // insert a cast to make them correct with respect to types. 2111 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 2112 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 2113 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 2114 Register ZeroReg = getOrCreateVReg(*ZeroVal); 2115 EntryBuilder->buildCast(Reg, ZeroReg); 2116 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 2117 EntryBuilder->buildGlobalValue(Reg, GV); 2118 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2119 if (!CAZ->getType()->isVectorTy()) 2120 return false; 2121 // Return the scalar if it is a <1 x Ty> vector. 2122 if (CAZ->getNumElements() == 1) 2123 return translate(*CAZ->getElementValue(0u), Reg); 2124 SmallVector<Register, 4> Ops; 2125 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 2126 Constant &Elt = *CAZ->getElementValue(i); 2127 Ops.push_back(getOrCreateVReg(Elt)); 2128 } 2129 EntryBuilder->buildBuildVector(Reg, Ops); 2130 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2131 // Return the scalar if it is a <1 x Ty> vector. 2132 if (CV->getNumElements() == 1) 2133 return translate(*CV->getElementAsConstant(0), Reg); 2134 SmallVector<Register, 4> Ops; 2135 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 2136 Constant &Elt = *CV->getElementAsConstant(i); 2137 Ops.push_back(getOrCreateVReg(Elt)); 2138 } 2139 EntryBuilder->buildBuildVector(Reg, Ops); 2140 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 2141 switch(CE->getOpcode()) { 2142 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2143 case Instruction::OPCODE: \ 2144 return translate##OPCODE(*CE, *EntryBuilder.get()); 2145 #include "llvm/IR/Instruction.def" 2146 default: 2147 return false; 2148 } 2149 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 2150 if (CV->getNumOperands() == 1) 2151 return translate(*CV->getOperand(0), Reg); 2152 SmallVector<Register, 4> Ops; 2153 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 2154 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 2155 } 2156 EntryBuilder->buildBuildVector(Reg, Ops); 2157 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 2158 EntryBuilder->buildBlockAddress(Reg, BA); 2159 } else 2160 return false; 2161 2162 return true; 2163 } 2164 2165 void IRTranslator::finalizeBasicBlock() { 2166 for (auto &JTCase : SL->JTCases) { 2167 // Emit header first, if it wasn't already emitted. 2168 if (!JTCase.first.Emitted) 2169 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 2170 2171 emitJumpTable(JTCase.second, JTCase.second.MBB); 2172 } 2173 SL->JTCases.clear(); 2174 } 2175 2176 void IRTranslator::finalizeFunction() { 2177 // Release the memory used by the different maps we 2178 // needed during the translation. 2179 PendingPHIs.clear(); 2180 VMap.reset(); 2181 FrameIndices.clear(); 2182 MachinePreds.clear(); 2183 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 2184 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 2185 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 2186 EntryBuilder.reset(); 2187 CurBuilder.reset(); 2188 FuncInfo.clear(); 2189 } 2190 2191 /// Returns true if a BasicBlock \p BB within a variadic function contains a 2192 /// variadic musttail call. 2193 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 2194 if (!IsVarArg) 2195 return false; 2196 2197 // Walk the block backwards, because tail calls usually only appear at the end 2198 // of a block. 2199 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { 2200 const auto *CI = dyn_cast<CallInst>(&I); 2201 return CI && CI->isMustTailCall(); 2202 }); 2203 } 2204 2205 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 2206 MF = &CurMF; 2207 const Function &F = MF->getFunction(); 2208 if (F.empty()) 2209 return false; 2210 GISelCSEAnalysisWrapper &Wrapper = 2211 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 2212 // Set the CSEConfig and run the analysis. 2213 GISelCSEInfo *CSEInfo = nullptr; 2214 TPC = &getAnalysis<TargetPassConfig>(); 2215 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 2216 ? EnableCSEInIRTranslator 2217 : TPC->isGISelCSEEnabled(); 2218 2219 if (EnableCSE) { 2220 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2221 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 2222 EntryBuilder->setCSEInfo(CSEInfo); 2223 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2224 CurBuilder->setCSEInfo(CSEInfo); 2225 } else { 2226 EntryBuilder = std::make_unique<MachineIRBuilder>(); 2227 CurBuilder = std::make_unique<MachineIRBuilder>(); 2228 } 2229 CLI = MF->getSubtarget().getCallLowering(); 2230 CurBuilder->setMF(*MF); 2231 EntryBuilder->setMF(*MF); 2232 MRI = &MF->getRegInfo(); 2233 DL = &F.getParent()->getDataLayout(); 2234 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2235 FuncInfo.MF = MF; 2236 FuncInfo.BPI = nullptr; 2237 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2238 const TargetMachine &TM = MF->getTarget(); 2239 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 2240 SL->init(TLI, TM, *DL); 2241 2242 EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F); 2243 2244 assert(PendingPHIs.empty() && "stale PHIs"); 2245 2246 if (!DL->isLittleEndian()) { 2247 // Currently we don't properly handle big endian code. 2248 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2249 F.getSubprogram(), &F.getEntryBlock()); 2250 R << "unable to translate in big endian mode"; 2251 reportTranslationError(*MF, *TPC, *ORE, R); 2252 } 2253 2254 // Release the per-function state when we return, whether we succeeded or not. 2255 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 2256 2257 // Setup a separate basic-block for the arguments and constants 2258 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 2259 MF->push_back(EntryBB); 2260 EntryBuilder->setMBB(*EntryBB); 2261 2262 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 2263 SwiftError.setFunction(CurMF); 2264 SwiftError.createEntriesInEntryBlock(DbgLoc); 2265 2266 bool IsVarArg = F.isVarArg(); 2267 bool HasMustTailInVarArgFn = false; 2268 2269 // Create all blocks, in IR order, to preserve the layout. 2270 for (const BasicBlock &BB: F) { 2271 auto *&MBB = BBToMBB[&BB]; 2272 2273 MBB = MF->CreateMachineBasicBlock(&BB); 2274 MF->push_back(MBB); 2275 2276 if (BB.hasAddressTaken()) 2277 MBB->setHasAddressTaken(); 2278 2279 if (!HasMustTailInVarArgFn) 2280 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 2281 } 2282 2283 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 2284 2285 // Make our arguments/constants entry block fallthrough to the IR entry block. 2286 EntryBB->addSuccessor(&getMBB(F.front())); 2287 2288 // Lower the actual args into this basic block. 2289 SmallVector<ArrayRef<Register>, 8> VRegArgs; 2290 for (const Argument &Arg: F.args()) { 2291 if (DL->getTypeStoreSize(Arg.getType()) == 0) 2292 continue; // Don't handle zero sized types. 2293 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 2294 VRegArgs.push_back(VRegs); 2295 2296 if (Arg.hasSwiftErrorAttr()) { 2297 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 2298 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 2299 } 2300 } 2301 2302 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 2303 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2304 F.getSubprogram(), &F.getEntryBlock()); 2305 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 2306 reportTranslationError(*MF, *TPC, *ORE, R); 2307 return false; 2308 } 2309 2310 // Need to visit defs before uses when translating instructions. 2311 GISelObserverWrapper WrapperObserver; 2312 if (EnableCSE && CSEInfo) 2313 WrapperObserver.addObserver(CSEInfo); 2314 { 2315 ReversePostOrderTraversal<const Function *> RPOT(&F); 2316 #ifndef NDEBUG 2317 DILocationVerifier Verifier; 2318 WrapperObserver.addObserver(&Verifier); 2319 #endif // ifndef NDEBUG 2320 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2321 for (const BasicBlock *BB : RPOT) { 2322 MachineBasicBlock &MBB = getMBB(*BB); 2323 // Set the insertion point of all the following translations to 2324 // the end of this basic block. 2325 CurBuilder->setMBB(MBB); 2326 HasTailCall = false; 2327 for (const Instruction &Inst : *BB) { 2328 // If we translated a tail call in the last step, then we know 2329 // everything after the call is either a return, or something that is 2330 // handled by the call itself. (E.g. a lifetime marker or assume 2331 // intrinsic.) In this case, we should stop translating the block and 2332 // move on. 2333 if (HasTailCall) 2334 break; 2335 #ifndef NDEBUG 2336 Verifier.setCurrentInst(&Inst); 2337 #endif // ifndef NDEBUG 2338 if (translate(Inst)) 2339 continue; 2340 2341 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2342 Inst.getDebugLoc(), BB); 2343 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 2344 2345 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 2346 std::string InstStrStorage; 2347 raw_string_ostream InstStr(InstStrStorage); 2348 InstStr << Inst; 2349 2350 R << ": '" << InstStr.str() << "'"; 2351 } 2352 2353 reportTranslationError(*MF, *TPC, *ORE, R); 2354 return false; 2355 } 2356 2357 finalizeBasicBlock(); 2358 } 2359 #ifndef NDEBUG 2360 WrapperObserver.removeObserver(&Verifier); 2361 #endif 2362 } 2363 2364 finishPendingPhis(); 2365 2366 SwiftError.propagateVRegs(); 2367 2368 // Merge the argument lowering and constants block with its single 2369 // successor, the LLVM-IR entry block. We want the basic block to 2370 // be maximal. 2371 assert(EntryBB->succ_size() == 1 && 2372 "Custom BB used for lowering should have only one successor"); 2373 // Get the successor of the current entry block. 2374 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 2375 assert(NewEntryBB.pred_size() == 1 && 2376 "LLVM-IR entry block has a predecessor!?"); 2377 // Move all the instruction from the current entry block to the 2378 // new entry block. 2379 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 2380 EntryBB->end()); 2381 2382 // Update the live-in information for the new entry block. 2383 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 2384 NewEntryBB.addLiveIn(LiveIn); 2385 NewEntryBB.sortUniqueLiveIns(); 2386 2387 // Get rid of the now empty basic block. 2388 EntryBB->removeSuccessor(&NewEntryBB); 2389 MF->remove(EntryBB); 2390 MF->DeleteMachineBasicBlock(EntryBB); 2391 2392 assert(&MF->front() == &NewEntryBB && 2393 "New entry wasn't next in the list of basic block!"); 2394 2395 // Initialize stack protector information. 2396 StackProtector &SP = getAnalysis<StackProtector>(); 2397 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 2398 2399 return false; 2400 } 2401