1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 26 #include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h" 27 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 28 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 29 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 30 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 31 #include "llvm/CodeGen/LowLevelType.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineFrameInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/MachineModuleInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/RuntimeLibcalls.h" 41 #include "llvm/CodeGen/StackProtector.h" 42 #include "llvm/CodeGen/SwitchLoweringUtils.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSubtargetInfo.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/CFG.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/DiagnosticInfo.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GetElementPtrTypeIterator.h" 58 #include "llvm/IR/InlineAsm.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Statepoint.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/InitializePasses.h" 71 #include "llvm/MC/MCContext.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/CodeGen.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/ErrorHandling.h" 77 #include "llvm/Support/LowLevelTypeImpl.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Target/TargetIntrinsicInfo.h" 81 #include "llvm/Target/TargetMachine.h" 82 #include "llvm/Transforms/Utils/MemoryOpRemark.h" 83 #include <algorithm> 84 #include <cassert> 85 #include <cstdint> 86 #include <iterator> 87 #include <optional> 88 #include <string> 89 #include <utility> 90 #include <vector> 91 92 #define DEBUG_TYPE "irtranslator" 93 94 using namespace llvm; 95 96 static cl::opt<bool> 97 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 98 cl::desc("Should enable CSE in irtranslator"), 99 cl::Optional, cl::init(false)); 100 char IRTranslator::ID = 0; 101 102 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 103 false, false) 104 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 105 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 106 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 107 INITIALIZE_PASS_DEPENDENCY(StackProtector) 108 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 109 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 110 false, false) 111 112 static void reportTranslationError(MachineFunction &MF, 113 const TargetPassConfig &TPC, 114 OptimizationRemarkEmitter &ORE, 115 OptimizationRemarkMissed &R) { 116 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 117 118 // Print the function name explicitly if we don't have a debug location (which 119 // makes the diagnostic less useful) or if we're going to emit a raw error. 120 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 121 R << (" (in function: " + MF.getName() + ")").str(); 122 123 if (TPC.isGlobalISelAbortEnabled()) 124 report_fatal_error(Twine(R.getMsg())); 125 else 126 ORE.emit(R); 127 } 128 129 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel) 130 : MachineFunctionPass(ID), OptLevel(optlevel) {} 131 132 #ifndef NDEBUG 133 namespace { 134 /// Verify that every instruction created has the same DILocation as the 135 /// instruction being translated. 136 class DILocationVerifier : public GISelChangeObserver { 137 const Instruction *CurrInst = nullptr; 138 139 public: 140 DILocationVerifier() = default; 141 ~DILocationVerifier() = default; 142 143 const Instruction *getCurrentInst() const { return CurrInst; } 144 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 145 146 void erasingInstr(MachineInstr &MI) override {} 147 void changingInstr(MachineInstr &MI) override {} 148 void changedInstr(MachineInstr &MI) override {} 149 150 void createdInstr(MachineInstr &MI) override { 151 assert(getCurrentInst() && "Inserted instruction without a current MI"); 152 153 // Only print the check message if we're actually checking it. 154 #ifndef NDEBUG 155 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 156 << " was copied to " << MI); 157 #endif 158 // We allow insts in the entry block to have no debug loc because 159 // they could have originated from constants, and we don't want a jumpy 160 // debug experience. 161 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 162 (MI.getParent()->isEntryBlock() && !MI.getDebugLoc())) && 163 "Line info was not transferred to all instructions"); 164 } 165 }; 166 } // namespace 167 #endif // ifndef NDEBUG 168 169 170 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 171 AU.addRequired<StackProtector>(); 172 AU.addRequired<TargetPassConfig>(); 173 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 174 AU.addRequired<AssumptionCacheTracker>(); 175 if (OptLevel != CodeGenOpt::None) { 176 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 177 AU.addRequired<AAResultsWrapperPass>(); 178 } 179 AU.addRequired<TargetLibraryInfoWrapperPass>(); 180 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 181 getSelectionDAGFallbackAnalysisUsage(AU); 182 MachineFunctionPass::getAnalysisUsage(AU); 183 } 184 185 IRTranslator::ValueToVRegInfo::VRegListT & 186 IRTranslator::allocateVRegs(const Value &Val) { 187 auto VRegsIt = VMap.findVRegs(Val); 188 if (VRegsIt != VMap.vregs_end()) 189 return *VRegsIt->second; 190 auto *Regs = VMap.getVRegs(Val); 191 auto *Offsets = VMap.getOffsets(Val); 192 SmallVector<LLT, 4> SplitTys; 193 computeValueLLTs(*DL, *Val.getType(), SplitTys, 194 Offsets->empty() ? Offsets : nullptr); 195 for (unsigned i = 0; i < SplitTys.size(); ++i) 196 Regs->push_back(0); 197 return *Regs; 198 } 199 200 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 201 auto VRegsIt = VMap.findVRegs(Val); 202 if (VRegsIt != VMap.vregs_end()) 203 return *VRegsIt->second; 204 205 if (Val.getType()->isVoidTy()) 206 return *VMap.getVRegs(Val); 207 208 // Create entry for this type. 209 auto *VRegs = VMap.getVRegs(Val); 210 auto *Offsets = VMap.getOffsets(Val); 211 212 assert(Val.getType()->isSized() && 213 "Don't know how to create an empty vreg"); 214 215 SmallVector<LLT, 4> SplitTys; 216 computeValueLLTs(*DL, *Val.getType(), SplitTys, 217 Offsets->empty() ? Offsets : nullptr); 218 219 if (!isa<Constant>(Val)) { 220 for (auto Ty : SplitTys) 221 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 222 return *VRegs; 223 } 224 225 if (Val.getType()->isAggregateType()) { 226 // UndefValue, ConstantAggregateZero 227 auto &C = cast<Constant>(Val); 228 unsigned Idx = 0; 229 while (auto Elt = C.getAggregateElement(Idx++)) { 230 auto EltRegs = getOrCreateVRegs(*Elt); 231 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 232 } 233 } else { 234 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 235 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 236 bool Success = translate(cast<Constant>(Val), VRegs->front()); 237 if (!Success) { 238 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 239 MF->getFunction().getSubprogram(), 240 &MF->getFunction().getEntryBlock()); 241 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 242 reportTranslationError(*MF, *TPC, *ORE, R); 243 return *VRegs; 244 } 245 } 246 247 return *VRegs; 248 } 249 250 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 251 auto MapEntry = FrameIndices.find(&AI); 252 if (MapEntry != FrameIndices.end()) 253 return MapEntry->second; 254 255 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 256 uint64_t Size = 257 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 258 259 // Always allocate at least one byte. 260 Size = std::max<uint64_t>(Size, 1u); 261 262 int &FI = FrameIndices[&AI]; 263 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI); 264 return FI; 265 } 266 267 Align IRTranslator::getMemOpAlign(const Instruction &I) { 268 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) 269 return SI->getAlign(); 270 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) 271 return LI->getAlign(); 272 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 273 return AI->getAlign(); 274 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) 275 return AI->getAlign(); 276 277 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 278 R << "unable to translate memop: " << ore::NV("Opcode", &I); 279 reportTranslationError(*MF, *TPC, *ORE, R); 280 return Align(1); 281 } 282 283 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 284 MachineBasicBlock *&MBB = BBToMBB[&BB]; 285 assert(MBB && "BasicBlock was not encountered before"); 286 return *MBB; 287 } 288 289 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 290 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 291 MachinePreds[Edge].push_back(NewPred); 292 } 293 294 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 295 MachineIRBuilder &MIRBuilder) { 296 // Get or create a virtual register for each value. 297 // Unless the value is a Constant => loadimm cst? 298 // or inline constant each time? 299 // Creation of a virtual register needs to have a size. 300 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 301 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 302 Register Res = getOrCreateVReg(U); 303 uint16_t Flags = 0; 304 if (isa<Instruction>(U)) { 305 const Instruction &I = cast<Instruction>(U); 306 Flags = MachineInstr::copyFlagsFromInstruction(I); 307 } 308 309 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 310 return true; 311 } 312 313 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U, 314 MachineIRBuilder &MIRBuilder) { 315 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 316 Register Res = getOrCreateVReg(U); 317 uint16_t Flags = 0; 318 if (isa<Instruction>(U)) { 319 const Instruction &I = cast<Instruction>(U); 320 Flags = MachineInstr::copyFlagsFromInstruction(I); 321 } 322 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags); 323 return true; 324 } 325 326 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 327 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder); 328 } 329 330 bool IRTranslator::translateCompare(const User &U, 331 MachineIRBuilder &MIRBuilder) { 332 auto *CI = dyn_cast<CmpInst>(&U); 333 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 334 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 335 Register Res = getOrCreateVReg(U); 336 CmpInst::Predicate Pred = 337 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 338 cast<ConstantExpr>(U).getPredicate()); 339 if (CmpInst::isIntPredicate(Pred)) 340 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 341 else if (Pred == CmpInst::FCMP_FALSE) 342 MIRBuilder.buildCopy( 343 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 344 else if (Pred == CmpInst::FCMP_TRUE) 345 MIRBuilder.buildCopy( 346 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 347 else { 348 uint16_t Flags = 0; 349 if (CI) 350 Flags = MachineInstr::copyFlagsFromInstruction(*CI); 351 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags); 352 } 353 354 return true; 355 } 356 357 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 358 const ReturnInst &RI = cast<ReturnInst>(U); 359 const Value *Ret = RI.getReturnValue(); 360 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 361 Ret = nullptr; 362 363 ArrayRef<Register> VRegs; 364 if (Ret) 365 VRegs = getOrCreateVRegs(*Ret); 366 367 Register SwiftErrorVReg = 0; 368 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 369 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 370 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 371 } 372 373 // The target may mess up with the insertion point, but 374 // this is not important as a return is the last instruction 375 // of the block anyway. 376 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg); 377 } 378 379 void IRTranslator::emitBranchForMergedCondition( 380 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 381 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 382 BranchProbability TProb, BranchProbability FProb, bool InvertCond) { 383 // If the leaf of the tree is a comparison, merge the condition into 384 // the caseblock. 385 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 386 CmpInst::Predicate Condition; 387 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 388 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 389 } else { 390 const FCmpInst *FC = cast<FCmpInst>(Cond); 391 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 392 } 393 394 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0), 395 BOp->getOperand(1), nullptr, TBB, FBB, CurBB, 396 CurBuilder->getDebugLoc(), TProb, FProb); 397 SL->SwitchCases.push_back(CB); 398 return; 399 } 400 401 // Create a CaseBlock record representing this branch. 402 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 403 SwitchCG::CaseBlock CB( 404 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()), 405 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb); 406 SL->SwitchCases.push_back(CB); 407 } 408 409 static bool isValInBlock(const Value *V, const BasicBlock *BB) { 410 if (const Instruction *I = dyn_cast<Instruction>(V)) 411 return I->getParent() == BB; 412 return true; 413 } 414 415 void IRTranslator::findMergedConditions( 416 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 417 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 418 Instruction::BinaryOps Opc, BranchProbability TProb, 419 BranchProbability FProb, bool InvertCond) { 420 using namespace PatternMatch; 421 assert((Opc == Instruction::And || Opc == Instruction::Or) && 422 "Expected Opc to be AND/OR"); 423 // Skip over not part of the tree and remember to invert op and operands at 424 // next level. 425 Value *NotCond; 426 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 427 isValInBlock(NotCond, CurBB->getBasicBlock())) { 428 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 429 !InvertCond); 430 return; 431 } 432 433 const Instruction *BOp = dyn_cast<Instruction>(Cond); 434 const Value *BOpOp0, *BOpOp1; 435 // Compute the effective opcode for Cond, taking into account whether it needs 436 // to be inverted, e.g. 437 // and (not (or A, B)), C 438 // gets lowered as 439 // and (and (not A, not B), C) 440 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 441 if (BOp) { 442 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 443 ? Instruction::And 444 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 445 ? Instruction::Or 446 : (Instruction::BinaryOps)0); 447 if (InvertCond) { 448 if (BOpc == Instruction::And) 449 BOpc = Instruction::Or; 450 else if (BOpc == Instruction::Or) 451 BOpc = Instruction::And; 452 } 453 } 454 455 // If this node is not part of the or/and tree, emit it as a branch. 456 // Note that all nodes in the tree should have same opcode. 457 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 458 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 459 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) || 460 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) { 461 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb, 462 InvertCond); 463 return; 464 } 465 466 // Create TmpBB after CurBB. 467 MachineFunction::iterator BBI(CurBB); 468 MachineBasicBlock *TmpBB = 469 MF->CreateMachineBasicBlock(CurBB->getBasicBlock()); 470 CurBB->getParent()->insert(++BBI, TmpBB); 471 472 if (Opc == Instruction::Or) { 473 // Codegen X | Y as: 474 // BB1: 475 // jmp_if_X TBB 476 // jmp TmpBB 477 // TmpBB: 478 // jmp_if_Y TBB 479 // jmp FBB 480 // 481 482 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 483 // The requirement is that 484 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 485 // = TrueProb for original BB. 486 // Assuming the original probabilities are A and B, one choice is to set 487 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 488 // A/(1+B) and 2B/(1+B). This choice assumes that 489 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 490 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 491 // TmpBB, but the math is more complicated. 492 493 auto NewTrueProb = TProb / 2; 494 auto NewFalseProb = TProb / 2 + FProb; 495 // Emit the LHS condition. 496 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 497 NewFalseProb, InvertCond); 498 499 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 500 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 501 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 502 // Emit the RHS condition into TmpBB. 503 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 504 Probs[1], InvertCond); 505 } else { 506 assert(Opc == Instruction::And && "Unknown merge op!"); 507 // Codegen X & Y as: 508 // BB1: 509 // jmp_if_X TmpBB 510 // jmp FBB 511 // TmpBB: 512 // jmp_if_Y TBB 513 // jmp FBB 514 // 515 // This requires creation of TmpBB after CurBB. 516 517 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 518 // The requirement is that 519 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 520 // = FalseProb for original BB. 521 // Assuming the original probabilities are A and B, one choice is to set 522 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 523 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 524 // TrueProb for BB1 * FalseProb for TmpBB. 525 526 auto NewTrueProb = TProb + FProb / 2; 527 auto NewFalseProb = FProb / 2; 528 // Emit the LHS condition. 529 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 530 NewFalseProb, InvertCond); 531 532 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 533 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 534 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 535 // Emit the RHS condition into TmpBB. 536 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 537 Probs[1], InvertCond); 538 } 539 } 540 541 bool IRTranslator::shouldEmitAsBranches( 542 const std::vector<SwitchCG::CaseBlock> &Cases) { 543 // For multiple cases, it's better to emit as branches. 544 if (Cases.size() != 2) 545 return true; 546 547 // If this is two comparisons of the same values or'd or and'd together, they 548 // will get folded into a single comparison, so don't emit two blocks. 549 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 550 Cases[0].CmpRHS == Cases[1].CmpRHS) || 551 (Cases[0].CmpRHS == Cases[1].CmpLHS && 552 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 553 return false; 554 } 555 556 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 557 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 558 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 559 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred && 560 isa<Constant>(Cases[0].CmpRHS) && 561 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 562 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ && 563 Cases[0].TrueBB == Cases[1].ThisBB) 564 return false; 565 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE && 566 Cases[0].FalseBB == Cases[1].ThisBB) 567 return false; 568 } 569 570 return true; 571 } 572 573 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 574 const BranchInst &BrInst = cast<BranchInst>(U); 575 auto &CurMBB = MIRBuilder.getMBB(); 576 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0)); 577 578 if (BrInst.isUnconditional()) { 579 // If the unconditional target is the layout successor, fallthrough. 580 if (OptLevel == CodeGenOpt::None || !CurMBB.isLayoutSuccessor(Succ0MBB)) 581 MIRBuilder.buildBr(*Succ0MBB); 582 583 // Link successors. 584 for (const BasicBlock *Succ : successors(&BrInst)) 585 CurMBB.addSuccessor(&getMBB(*Succ)); 586 return true; 587 } 588 589 // If this condition is one of the special cases we handle, do special stuff 590 // now. 591 const Value *CondVal = BrInst.getCondition(); 592 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1)); 593 594 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 595 596 // If this is a series of conditions that are or'd or and'd together, emit 597 // this as a sequence of branches instead of setcc's with and/or operations. 598 // As long as jumps are not expensive (exceptions for multi-use logic ops, 599 // unpredictable branches, and vector extracts because those jumps are likely 600 // expensive for any target), this should improve performance. 601 // For example, instead of something like: 602 // cmp A, B 603 // C = seteq 604 // cmp D, E 605 // F = setle 606 // or C, F 607 // jnz foo 608 // Emit: 609 // cmp A, B 610 // je foo 611 // cmp D, E 612 // jle foo 613 using namespace PatternMatch; 614 const Instruction *CondI = dyn_cast<Instruction>(CondVal); 615 if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() && 616 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) { 617 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 618 Value *Vec; 619 const Value *BOp0, *BOp1; 620 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 621 Opcode = Instruction::And; 622 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 623 Opcode = Instruction::Or; 624 625 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 626 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 627 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode, 628 getEdgeProbability(&CurMBB, Succ0MBB), 629 getEdgeProbability(&CurMBB, Succ1MBB), 630 /*InvertCond=*/false); 631 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!"); 632 633 // Allow some cases to be rejected. 634 if (shouldEmitAsBranches(SL->SwitchCases)) { 635 // Emit the branch for this block. 636 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder); 637 SL->SwitchCases.erase(SL->SwitchCases.begin()); 638 return true; 639 } 640 641 // Okay, we decided not to do this, remove any inserted MBB's and clear 642 // SwitchCases. 643 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I) 644 MF->erase(SL->SwitchCases[I].ThisBB); 645 646 SL->SwitchCases.clear(); 647 } 648 } 649 650 // Create a CaseBlock record representing this branch. 651 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal, 652 ConstantInt::getTrue(MF->getFunction().getContext()), 653 nullptr, Succ0MBB, Succ1MBB, &CurMBB, 654 CurBuilder->getDebugLoc()); 655 656 // Use emitSwitchCase to actually insert the fast branch sequence for this 657 // cond branch. 658 emitSwitchCase(CB, &CurMBB, *CurBuilder); 659 return true; 660 } 661 662 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 663 MachineBasicBlock *Dst, 664 BranchProbability Prob) { 665 if (!FuncInfo.BPI) { 666 Src->addSuccessorWithoutProb(Dst); 667 return; 668 } 669 if (Prob.isUnknown()) 670 Prob = getEdgeProbability(Src, Dst); 671 Src->addSuccessor(Dst, Prob); 672 } 673 674 BranchProbability 675 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 676 const MachineBasicBlock *Dst) const { 677 const BasicBlock *SrcBB = Src->getBasicBlock(); 678 const BasicBlock *DstBB = Dst->getBasicBlock(); 679 if (!FuncInfo.BPI) { 680 // If BPI is not available, set the default probability as 1 / N, where N is 681 // the number of successors. 682 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 683 return BranchProbability(1, SuccSize); 684 } 685 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 686 } 687 688 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 689 using namespace SwitchCG; 690 // Extract cases from the switch. 691 const SwitchInst &SI = cast<SwitchInst>(U); 692 BranchProbabilityInfo *BPI = FuncInfo.BPI; 693 CaseClusterVector Clusters; 694 Clusters.reserve(SI.getNumCases()); 695 for (const auto &I : SI.cases()) { 696 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 697 assert(Succ && "Could not find successor mbb in mapping"); 698 const ConstantInt *CaseVal = I.getCaseValue(); 699 BranchProbability Prob = 700 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 701 : BranchProbability(1, SI.getNumCases() + 1); 702 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 703 } 704 705 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 706 707 // Cluster adjacent cases with the same destination. We do this at all 708 // optimization levels because it's cheap to do and will make codegen faster 709 // if there are many clusters. 710 sortAndRangeify(Clusters); 711 712 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 713 714 // If there is only the default destination, jump there directly. 715 if (Clusters.empty()) { 716 SwitchMBB->addSuccessor(DefaultMBB); 717 if (DefaultMBB != SwitchMBB->getNextNode()) 718 MIB.buildBr(*DefaultMBB); 719 return true; 720 } 721 722 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 723 SL->findBitTestClusters(Clusters, &SI); 724 725 LLVM_DEBUG({ 726 dbgs() << "Case clusters: "; 727 for (const CaseCluster &C : Clusters) { 728 if (C.Kind == CC_JumpTable) 729 dbgs() << "JT:"; 730 if (C.Kind == CC_BitTests) 731 dbgs() << "BT:"; 732 733 C.Low->getValue().print(dbgs(), true); 734 if (C.Low != C.High) { 735 dbgs() << '-'; 736 C.High->getValue().print(dbgs(), true); 737 } 738 dbgs() << ' '; 739 } 740 dbgs() << '\n'; 741 }); 742 743 assert(!Clusters.empty()); 744 SwitchWorkList WorkList; 745 CaseClusterIt First = Clusters.begin(); 746 CaseClusterIt Last = Clusters.end() - 1; 747 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 748 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 749 750 // FIXME: At the moment we don't do any splitting optimizations here like 751 // SelectionDAG does, so this worklist only has one entry. 752 while (!WorkList.empty()) { 753 SwitchWorkListItem W = WorkList.pop_back_val(); 754 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 755 return false; 756 } 757 return true; 758 } 759 760 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 761 MachineBasicBlock *MBB) { 762 // Emit the code for the jump table 763 assert(JT.Reg != -1U && "Should lower JT Header first!"); 764 MachineIRBuilder MIB(*MBB->getParent()); 765 MIB.setMBB(*MBB); 766 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 767 768 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 769 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 770 771 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 772 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 773 } 774 775 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 776 SwitchCG::JumpTableHeader &JTH, 777 MachineBasicBlock *HeaderBB) { 778 MachineIRBuilder MIB(*HeaderBB->getParent()); 779 MIB.setMBB(*HeaderBB); 780 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 781 782 const Value &SValue = *JTH.SValue; 783 // Subtract the lowest switch case value from the value being switched on. 784 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 785 Register SwitchOpReg = getOrCreateVReg(SValue); 786 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 787 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 788 789 // This value may be smaller or larger than the target's pointer type, and 790 // therefore require extension or truncating. 791 Type *PtrIRTy = SValue.getType()->getPointerTo(); 792 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 793 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 794 795 JT.Reg = Sub.getReg(0); 796 797 if (JTH.FallthroughUnreachable) { 798 if (JT.MBB != HeaderBB->getNextNode()) 799 MIB.buildBr(*JT.MBB); 800 return true; 801 } 802 803 // Emit the range check for the jump table, and branch to the default block 804 // for the switch statement if the value being switched on exceeds the 805 // largest case in the switch. 806 auto Cst = getOrCreateVReg( 807 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 808 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 809 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 810 811 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 812 813 // Avoid emitting unnecessary branches to the next block. 814 if (JT.MBB != HeaderBB->getNextNode()) 815 BrCond = MIB.buildBr(*JT.MBB); 816 return true; 817 } 818 819 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 820 MachineBasicBlock *SwitchBB, 821 MachineIRBuilder &MIB) { 822 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 823 Register Cond; 824 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 825 MIB.setDebugLoc(CB.DbgLoc); 826 MIB.setMBB(*CB.ThisBB); 827 828 if (CB.PredInfo.NoCmp) { 829 // Branch or fall through to TrueBB. 830 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 831 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 832 CB.ThisBB); 833 CB.ThisBB->normalizeSuccProbs(); 834 if (CB.TrueBB != CB.ThisBB->getNextNode()) 835 MIB.buildBr(*CB.TrueBB); 836 MIB.setDebugLoc(OldDbgLoc); 837 return; 838 } 839 840 const LLT i1Ty = LLT::scalar(1); 841 // Build the compare. 842 if (!CB.CmpMHS) { 843 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS); 844 // For conditional branch lowering, we might try to do something silly like 845 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so, 846 // just re-use the existing condition vreg. 847 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && 848 CI->getZExtValue() == 1 && CB.PredInfo.Pred == CmpInst::ICMP_EQ) { 849 Cond = CondLHS; 850 } else { 851 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 852 if (CmpInst::isFPPredicate(CB.PredInfo.Pred)) 853 Cond = 854 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 855 else 856 Cond = 857 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 858 } 859 } else { 860 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 861 "Can only handle SLE ranges"); 862 863 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 864 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 865 866 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 867 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 868 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 869 Cond = 870 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 871 } else { 872 const LLT CmpTy = MRI->getType(CmpOpReg); 873 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 874 auto Diff = MIB.buildConstant(CmpTy, High - Low); 875 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 876 } 877 } 878 879 // Update successor info 880 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 881 882 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 883 CB.ThisBB); 884 885 // TrueBB and FalseBB are always different unless the incoming IR is 886 // degenerate. This only happens when running llc on weird IR. 887 if (CB.TrueBB != CB.FalseBB) 888 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 889 CB.ThisBB->normalizeSuccProbs(); 890 891 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 892 CB.ThisBB); 893 894 MIB.buildBrCond(Cond, *CB.TrueBB); 895 MIB.buildBr(*CB.FalseBB); 896 MIB.setDebugLoc(OldDbgLoc); 897 } 898 899 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 900 MachineBasicBlock *SwitchMBB, 901 MachineBasicBlock *CurMBB, 902 MachineBasicBlock *DefaultMBB, 903 MachineIRBuilder &MIB, 904 MachineFunction::iterator BBI, 905 BranchProbability UnhandledProbs, 906 SwitchCG::CaseClusterIt I, 907 MachineBasicBlock *Fallthrough, 908 bool FallthroughUnreachable) { 909 using namespace SwitchCG; 910 MachineFunction *CurMF = SwitchMBB->getParent(); 911 // FIXME: Optimize away range check based on pivot comparisons. 912 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 913 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 914 BranchProbability DefaultProb = W.DefaultProb; 915 916 // The jump block hasn't been inserted yet; insert it here. 917 MachineBasicBlock *JumpMBB = JT->MBB; 918 CurMF->insert(BBI, JumpMBB); 919 920 // Since the jump table block is separate from the switch block, we need 921 // to keep track of it as a machine predecessor to the default block, 922 // otherwise we lose the phi edges. 923 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 924 CurMBB); 925 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 926 JumpMBB); 927 928 auto JumpProb = I->Prob; 929 auto FallthroughProb = UnhandledProbs; 930 931 // If the default statement is a target of the jump table, we evenly 932 // distribute the default probability to successors of CurMBB. Also 933 // update the probability on the edge from JumpMBB to Fallthrough. 934 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 935 SE = JumpMBB->succ_end(); 936 SI != SE; ++SI) { 937 if (*SI == DefaultMBB) { 938 JumpProb += DefaultProb / 2; 939 FallthroughProb -= DefaultProb / 2; 940 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 941 JumpMBB->normalizeSuccProbs(); 942 } else { 943 // Also record edges from the jump table block to it's successors. 944 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 945 JumpMBB); 946 } 947 } 948 949 if (FallthroughUnreachable) 950 JTH->FallthroughUnreachable = true; 951 952 if (!JTH->FallthroughUnreachable) 953 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 954 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 955 CurMBB->normalizeSuccProbs(); 956 957 // The jump table header will be inserted in our current block, do the 958 // range check, and fall through to our fallthrough block. 959 JTH->HeaderBB = CurMBB; 960 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 961 962 // If we're in the right place, emit the jump table header right now. 963 if (CurMBB == SwitchMBB) { 964 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 965 return false; 966 JTH->Emitted = true; 967 } 968 return true; 969 } 970 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 971 Value *Cond, 972 MachineBasicBlock *Fallthrough, 973 bool FallthroughUnreachable, 974 BranchProbability UnhandledProbs, 975 MachineBasicBlock *CurMBB, 976 MachineIRBuilder &MIB, 977 MachineBasicBlock *SwitchMBB) { 978 using namespace SwitchCG; 979 const Value *RHS, *LHS, *MHS; 980 CmpInst::Predicate Pred; 981 if (I->Low == I->High) { 982 // Check Cond == I->Low. 983 Pred = CmpInst::ICMP_EQ; 984 LHS = Cond; 985 RHS = I->Low; 986 MHS = nullptr; 987 } else { 988 // Check I->Low <= Cond <= I->High. 989 Pred = CmpInst::ICMP_SLE; 990 LHS = I->Low; 991 MHS = Cond; 992 RHS = I->High; 993 } 994 995 // If Fallthrough is unreachable, fold away the comparison. 996 // The false probability is the sum of all unhandled cases. 997 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 998 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 999 1000 emitSwitchCase(CB, SwitchMBB, MIB); 1001 return true; 1002 } 1003 1004 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B, 1005 MachineBasicBlock *SwitchBB) { 1006 MachineIRBuilder &MIB = *CurBuilder; 1007 MIB.setMBB(*SwitchBB); 1008 1009 // Subtract the minimum value. 1010 Register SwitchOpReg = getOrCreateVReg(*B.SValue); 1011 1012 LLT SwitchOpTy = MRI->getType(SwitchOpReg); 1013 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0); 1014 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg); 1015 1016 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 1017 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1018 1019 LLT MaskTy = SwitchOpTy; 1020 if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() || 1021 !isPowerOf2_32(MaskTy.getSizeInBits())) 1022 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1023 else { 1024 // Ensure that the type will fit the mask value. 1025 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) { 1026 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) { 1027 // Switch table case range are encoded into series of masks. 1028 // Just use pointer type, it's guaranteed to fit. 1029 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1030 break; 1031 } 1032 } 1033 } 1034 Register SubReg = RangeSub.getReg(0); 1035 if (SwitchOpTy != MaskTy) 1036 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0); 1037 1038 B.RegVT = getMVTForLLT(MaskTy); 1039 B.Reg = SubReg; 1040 1041 MachineBasicBlock *MBB = B.Cases[0].ThisBB; 1042 1043 if (!B.FallthroughUnreachable) 1044 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 1045 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 1046 1047 SwitchBB->normalizeSuccProbs(); 1048 1049 if (!B.FallthroughUnreachable) { 1050 // Conditional branch to the default block. 1051 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range); 1052 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1), 1053 RangeSub, RangeCst); 1054 MIB.buildBrCond(RangeCmp, *B.Default); 1055 } 1056 1057 // Avoid emitting unnecessary branches to the next block. 1058 if (MBB != SwitchBB->getNextNode()) 1059 MIB.buildBr(*MBB); 1060 } 1061 1062 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB, 1063 MachineBasicBlock *NextMBB, 1064 BranchProbability BranchProbToNext, 1065 Register Reg, SwitchCG::BitTestCase &B, 1066 MachineBasicBlock *SwitchBB) { 1067 MachineIRBuilder &MIB = *CurBuilder; 1068 MIB.setMBB(*SwitchBB); 1069 1070 LLT SwitchTy = getLLTForMVT(BB.RegVT); 1071 Register Cmp; 1072 unsigned PopCount = llvm::popcount(B.Mask); 1073 if (PopCount == 1) { 1074 // Testing for a single bit; just compare the shift count with what it 1075 // would need to be to shift a 1 bit in that position. 1076 auto MaskTrailingZeros = 1077 MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask)); 1078 Cmp = 1079 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros) 1080 .getReg(0); 1081 } else if (PopCount == BB.Range) { 1082 // There is only one zero bit in the range, test for it directly. 1083 auto MaskTrailingOnes = 1084 MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask)); 1085 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes) 1086 .getReg(0); 1087 } else { 1088 // Make desired shift. 1089 auto CstOne = MIB.buildConstant(SwitchTy, 1); 1090 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg); 1091 1092 // Emit bit tests and jumps. 1093 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask); 1094 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask); 1095 auto CstZero = MIB.buildConstant(SwitchTy, 0); 1096 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero) 1097 .getReg(0); 1098 } 1099 1100 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 1101 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 1102 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 1103 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 1104 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 1105 // one as they are relative probabilities (and thus work more like weights), 1106 // and hence we need to normalize them to let the sum of them become one. 1107 SwitchBB->normalizeSuccProbs(); 1108 1109 // Record the fact that the IR edge from the header to the bit test target 1110 // will go through our new block. Neeeded for PHIs to have nodes added. 1111 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()}, 1112 SwitchBB); 1113 1114 MIB.buildBrCond(Cmp, *B.TargetBB); 1115 1116 // Avoid emitting unnecessary branches to the next block. 1117 if (NextMBB != SwitchBB->getNextNode()) 1118 MIB.buildBr(*NextMBB); 1119 } 1120 1121 bool IRTranslator::lowerBitTestWorkItem( 1122 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB, 1123 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB, 1124 MachineIRBuilder &MIB, MachineFunction::iterator BBI, 1125 BranchProbability DefaultProb, BranchProbability UnhandledProbs, 1126 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough, 1127 bool FallthroughUnreachable) { 1128 using namespace SwitchCG; 1129 MachineFunction *CurMF = SwitchMBB->getParent(); 1130 // FIXME: Optimize away range check based on pivot comparisons. 1131 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 1132 // The bit test blocks haven't been inserted yet; insert them here. 1133 for (BitTestCase &BTC : BTB->Cases) 1134 CurMF->insert(BBI, BTC.ThisBB); 1135 1136 // Fill in fields of the BitTestBlock. 1137 BTB->Parent = CurMBB; 1138 BTB->Default = Fallthrough; 1139 1140 BTB->DefaultProb = UnhandledProbs; 1141 // If the cases in bit test don't form a contiguous range, we evenly 1142 // distribute the probability on the edge to Fallthrough to two 1143 // successors of CurMBB. 1144 if (!BTB->ContiguousRange) { 1145 BTB->Prob += DefaultProb / 2; 1146 BTB->DefaultProb -= DefaultProb / 2; 1147 } 1148 1149 if (FallthroughUnreachable) 1150 BTB->FallthroughUnreachable = true; 1151 1152 // If we're in the right place, emit the bit test header right now. 1153 if (CurMBB == SwitchMBB) { 1154 emitBitTestHeader(*BTB, SwitchMBB); 1155 BTB->Emitted = true; 1156 } 1157 return true; 1158 } 1159 1160 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 1161 Value *Cond, 1162 MachineBasicBlock *SwitchMBB, 1163 MachineBasicBlock *DefaultMBB, 1164 MachineIRBuilder &MIB) { 1165 using namespace SwitchCG; 1166 MachineFunction *CurMF = FuncInfo.MF; 1167 MachineBasicBlock *NextMBB = nullptr; 1168 MachineFunction::iterator BBI(W.MBB); 1169 if (++BBI != FuncInfo.MF->end()) 1170 NextMBB = &*BBI; 1171 1172 if (EnableOpts) { 1173 // Here, we order cases by probability so the most likely case will be 1174 // checked first. However, two clusters can have the same probability in 1175 // which case their relative ordering is non-deterministic. So we use Low 1176 // as a tie-breaker as clusters are guaranteed to never overlap. 1177 llvm::sort(W.FirstCluster, W.LastCluster + 1, 1178 [](const CaseCluster &a, const CaseCluster &b) { 1179 return a.Prob != b.Prob 1180 ? a.Prob > b.Prob 1181 : a.Low->getValue().slt(b.Low->getValue()); 1182 }); 1183 1184 // Rearrange the case blocks so that the last one falls through if possible 1185 // without changing the order of probabilities. 1186 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 1187 --I; 1188 if (I->Prob > W.LastCluster->Prob) 1189 break; 1190 if (I->Kind == CC_Range && I->MBB == NextMBB) { 1191 std::swap(*I, *W.LastCluster); 1192 break; 1193 } 1194 } 1195 } 1196 1197 // Compute total probability. 1198 BranchProbability DefaultProb = W.DefaultProb; 1199 BranchProbability UnhandledProbs = DefaultProb; 1200 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 1201 UnhandledProbs += I->Prob; 1202 1203 MachineBasicBlock *CurMBB = W.MBB; 1204 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 1205 bool FallthroughUnreachable = false; 1206 MachineBasicBlock *Fallthrough; 1207 if (I == W.LastCluster) { 1208 // For the last cluster, fall through to the default destination. 1209 Fallthrough = DefaultMBB; 1210 FallthroughUnreachable = isa<UnreachableInst>( 1211 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 1212 } else { 1213 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 1214 CurMF->insert(BBI, Fallthrough); 1215 } 1216 UnhandledProbs -= I->Prob; 1217 1218 switch (I->Kind) { 1219 case CC_BitTests: { 1220 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1221 DefaultProb, UnhandledProbs, I, Fallthrough, 1222 FallthroughUnreachable)) { 1223 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch"); 1224 return false; 1225 } 1226 break; 1227 } 1228 1229 case CC_JumpTable: { 1230 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1231 UnhandledProbs, I, Fallthrough, 1232 FallthroughUnreachable)) { 1233 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 1234 return false; 1235 } 1236 break; 1237 } 1238 case CC_Range: { 1239 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 1240 FallthroughUnreachable, UnhandledProbs, 1241 CurMBB, MIB, SwitchMBB)) { 1242 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 1243 return false; 1244 } 1245 break; 1246 } 1247 } 1248 CurMBB = Fallthrough; 1249 } 1250 1251 return true; 1252 } 1253 1254 bool IRTranslator::translateIndirectBr(const User &U, 1255 MachineIRBuilder &MIRBuilder) { 1256 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 1257 1258 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 1259 MIRBuilder.buildBrIndirect(Tgt); 1260 1261 // Link successors. 1262 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 1263 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 1264 for (const BasicBlock *Succ : successors(&BrInst)) { 1265 // It's legal for indirectbr instructions to have duplicate blocks in the 1266 // destination list. We don't allow this in MIR. Skip anything that's 1267 // already a successor. 1268 if (!AddedSuccessors.insert(Succ).second) 1269 continue; 1270 CurBB.addSuccessor(&getMBB(*Succ)); 1271 } 1272 1273 return true; 1274 } 1275 1276 static bool isSwiftError(const Value *V) { 1277 if (auto Arg = dyn_cast<Argument>(V)) 1278 return Arg->hasSwiftErrorAttr(); 1279 if (auto AI = dyn_cast<AllocaInst>(V)) 1280 return AI->isSwiftError(); 1281 return false; 1282 } 1283 1284 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 1285 const LoadInst &LI = cast<LoadInst>(U); 1286 1287 unsigned StoreSize = DL->getTypeStoreSize(LI.getType()); 1288 if (StoreSize == 0) 1289 return true; 1290 1291 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 1292 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 1293 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 1294 AAMDNodes AAInfo = LI.getAAMetadata(); 1295 1296 const Value *Ptr = LI.getPointerOperand(); 1297 Type *OffsetIRTy = DL->getIntPtrType(Ptr->getType()); 1298 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1299 1300 if (CLI->supportSwiftError() && isSwiftError(Ptr)) { 1301 assert(Regs.size() == 1 && "swifterror should be single pointer"); 1302 Register VReg = 1303 SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), Ptr); 1304 MIRBuilder.buildCopy(Regs[0], VReg); 1305 return true; 1306 } 1307 1308 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1309 MachineMemOperand::Flags Flags = 1310 TLI.getLoadMemOperandFlags(LI, *DL, AC, LibInfo); 1311 if (AA && !(Flags & MachineMemOperand::MOInvariant)) { 1312 if (AA->pointsToConstantMemory( 1313 MemoryLocation(Ptr, LocationSize::precise(StoreSize), AAInfo))) { 1314 Flags |= MachineMemOperand::MOInvariant; 1315 } 1316 } 1317 1318 const MDNode *Ranges = 1319 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 1320 for (unsigned i = 0; i < Regs.size(); ++i) { 1321 Register Addr; 1322 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1323 1324 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 1325 Align BaseAlign = getMemOpAlign(LI); 1326 auto MMO = MF->getMachineMemOperand( 1327 Ptr, Flags, MRI->getType(Regs[i]), 1328 commonAlignment(BaseAlign, Offsets[i] / 8), AAInfo, Ranges, 1329 LI.getSyncScopeID(), LI.getOrdering()); 1330 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 1331 } 1332 1333 return true; 1334 } 1335 1336 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 1337 const StoreInst &SI = cast<StoreInst>(U); 1338 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 1339 return true; 1340 1341 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 1342 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 1343 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 1344 1345 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 1346 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1347 1348 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 1349 assert(Vals.size() == 1 && "swifterror should be single pointer"); 1350 1351 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 1352 SI.getPointerOperand()); 1353 MIRBuilder.buildCopy(VReg, Vals[0]); 1354 return true; 1355 } 1356 1357 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1358 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 1359 1360 for (unsigned i = 0; i < Vals.size(); ++i) { 1361 Register Addr; 1362 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1363 1364 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 1365 Align BaseAlign = getMemOpAlign(SI); 1366 auto MMO = MF->getMachineMemOperand( 1367 Ptr, Flags, MRI->getType(Vals[i]), 1368 commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr, 1369 SI.getSyncScopeID(), SI.getOrdering()); 1370 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 1371 } 1372 return true; 1373 } 1374 1375 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 1376 const Value *Src = U.getOperand(0); 1377 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 1378 1379 // getIndexedOffsetInType is designed for GEPs, so the first index is the 1380 // usual array element rather than looking into the actual aggregate. 1381 SmallVector<Value *, 1> Indices; 1382 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 1383 1384 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 1385 for (auto Idx : EVI->indices()) 1386 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1387 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 1388 for (auto Idx : IVI->indices()) 1389 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1390 } else { 1391 for (unsigned i = 1; i < U.getNumOperands(); ++i) 1392 Indices.push_back(U.getOperand(i)); 1393 } 1394 1395 return 8 * static_cast<uint64_t>( 1396 DL.getIndexedOffsetInType(Src->getType(), Indices)); 1397 } 1398 1399 bool IRTranslator::translateExtractValue(const User &U, 1400 MachineIRBuilder &MIRBuilder) { 1401 const Value *Src = U.getOperand(0); 1402 uint64_t Offset = getOffsetFromIndices(U, *DL); 1403 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1404 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 1405 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 1406 auto &DstRegs = allocateVRegs(U); 1407 1408 for (unsigned i = 0; i < DstRegs.size(); ++i) 1409 DstRegs[i] = SrcRegs[Idx++]; 1410 1411 return true; 1412 } 1413 1414 bool IRTranslator::translateInsertValue(const User &U, 1415 MachineIRBuilder &MIRBuilder) { 1416 const Value *Src = U.getOperand(0); 1417 uint64_t Offset = getOffsetFromIndices(U, *DL); 1418 auto &DstRegs = allocateVRegs(U); 1419 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 1420 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1421 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 1422 auto *InsertedIt = InsertedRegs.begin(); 1423 1424 for (unsigned i = 0; i < DstRegs.size(); ++i) { 1425 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 1426 DstRegs[i] = *InsertedIt++; 1427 else 1428 DstRegs[i] = SrcRegs[i]; 1429 } 1430 1431 return true; 1432 } 1433 1434 bool IRTranslator::translateSelect(const User &U, 1435 MachineIRBuilder &MIRBuilder) { 1436 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1437 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1438 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1439 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1440 1441 uint16_t Flags = 0; 1442 if (const SelectInst *SI = dyn_cast<SelectInst>(&U)) 1443 Flags = MachineInstr::copyFlagsFromInstruction(*SI); 1444 1445 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1446 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1447 } 1448 1449 return true; 1450 } 1451 1452 bool IRTranslator::translateCopy(const User &U, const Value &V, 1453 MachineIRBuilder &MIRBuilder) { 1454 Register Src = getOrCreateVReg(V); 1455 auto &Regs = *VMap.getVRegs(U); 1456 if (Regs.empty()) { 1457 Regs.push_back(Src); 1458 VMap.getOffsets(U)->push_back(0); 1459 } else { 1460 // If we already assigned a vreg for this instruction, we can't change that. 1461 // Emit a copy to satisfy the users we already emitted. 1462 MIRBuilder.buildCopy(Regs[0], Src); 1463 } 1464 return true; 1465 } 1466 1467 bool IRTranslator::translateBitCast(const User &U, 1468 MachineIRBuilder &MIRBuilder) { 1469 // If we're bitcasting to the source type, we can reuse the source vreg. 1470 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1471 getLLTForType(*U.getType(), *DL)) 1472 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1473 1474 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1475 } 1476 1477 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1478 MachineIRBuilder &MIRBuilder) { 1479 Register Op = getOrCreateVReg(*U.getOperand(0)); 1480 Register Res = getOrCreateVReg(U); 1481 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1482 return true; 1483 } 1484 1485 bool IRTranslator::translateGetElementPtr(const User &U, 1486 MachineIRBuilder &MIRBuilder) { 1487 Value &Op0 = *U.getOperand(0); 1488 Register BaseReg = getOrCreateVReg(Op0); 1489 Type *PtrIRTy = Op0.getType(); 1490 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1491 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1492 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1493 1494 // Normalize Vector GEP - all scalar operands should be converted to the 1495 // splat vector. 1496 unsigned VectorWidth = 0; 1497 1498 // True if we should use a splat vector; using VectorWidth alone is not 1499 // sufficient. 1500 bool WantSplatVector = false; 1501 if (auto *VT = dyn_cast<VectorType>(U.getType())) { 1502 VectorWidth = cast<FixedVectorType>(VT)->getNumElements(); 1503 // We don't produce 1 x N vectors; those are treated as scalars. 1504 WantSplatVector = VectorWidth > 1; 1505 } 1506 1507 // We might need to splat the base pointer into a vector if the offsets 1508 // are vectors. 1509 if (WantSplatVector && !PtrTy.isVector()) { 1510 BaseReg = 1511 MIRBuilder 1512 .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg) 1513 .getReg(0); 1514 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth); 1515 PtrTy = getLLTForType(*PtrIRTy, *DL); 1516 OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1517 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1518 } 1519 1520 int64_t Offset = 0; 1521 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1522 GTI != E; ++GTI) { 1523 const Value *Idx = GTI.getOperand(); 1524 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1525 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1526 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1527 continue; 1528 } else { 1529 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1530 1531 // If this is a scalar constant or a splat vector of constants, 1532 // handle it quickly. 1533 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1534 Offset += ElementSize * CI->getSExtValue(); 1535 continue; 1536 } 1537 1538 if (Offset != 0) { 1539 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1540 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1541 .getReg(0); 1542 Offset = 0; 1543 } 1544 1545 Register IdxReg = getOrCreateVReg(*Idx); 1546 LLT IdxTy = MRI->getType(IdxReg); 1547 if (IdxTy != OffsetTy) { 1548 if (!IdxTy.isVector() && WantSplatVector) { 1549 IdxReg = MIRBuilder.buildSplatVector( 1550 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1551 } 1552 1553 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1554 } 1555 1556 // N = N + Idx * ElementSize; 1557 // Avoid doing it for ElementSize of 1. 1558 Register GepOffsetReg; 1559 if (ElementSize != 1) { 1560 auto ElementSizeMIB = MIRBuilder.buildConstant( 1561 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1562 GepOffsetReg = 1563 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1564 } else 1565 GepOffsetReg = IdxReg; 1566 1567 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1568 } 1569 } 1570 1571 if (Offset != 0) { 1572 auto OffsetMIB = 1573 MIRBuilder.buildConstant(OffsetTy, Offset); 1574 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1575 return true; 1576 } 1577 1578 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1579 return true; 1580 } 1581 1582 bool IRTranslator::translateMemFunc(const CallInst &CI, 1583 MachineIRBuilder &MIRBuilder, 1584 unsigned Opcode) { 1585 const Value *SrcPtr = CI.getArgOperand(1); 1586 // If the source is undef, then just emit a nop. 1587 if (isa<UndefValue>(SrcPtr)) 1588 return true; 1589 1590 SmallVector<Register, 3> SrcRegs; 1591 1592 unsigned MinPtrSize = UINT_MAX; 1593 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) { 1594 Register SrcReg = getOrCreateVReg(**AI); 1595 LLT SrcTy = MRI->getType(SrcReg); 1596 if (SrcTy.isPointer()) 1597 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize); 1598 SrcRegs.push_back(SrcReg); 1599 } 1600 1601 LLT SizeTy = LLT::scalar(MinPtrSize); 1602 1603 // The size operand should be the minimum of the pointer sizes. 1604 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1]; 1605 if (MRI->getType(SizeOpReg) != SizeTy) 1606 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0); 1607 1608 auto ICall = MIRBuilder.buildInstr(Opcode); 1609 for (Register SrcReg : SrcRegs) 1610 ICall.addUse(SrcReg); 1611 1612 Align DstAlign; 1613 Align SrcAlign; 1614 unsigned IsVol = 1615 cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue(); 1616 1617 ConstantInt *CopySize = nullptr; 1618 1619 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1620 DstAlign = MCI->getDestAlign().valueOrOne(); 1621 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1622 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2)); 1623 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) { 1624 DstAlign = MCI->getDestAlign().valueOrOne(); 1625 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1626 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2)); 1627 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1628 DstAlign = MMI->getDestAlign().valueOrOne(); 1629 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1630 CopySize = dyn_cast<ConstantInt>(MMI->getArgOperand(2)); 1631 } else { 1632 auto *MSI = cast<MemSetInst>(&CI); 1633 DstAlign = MSI->getDestAlign().valueOrOne(); 1634 } 1635 1636 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) { 1637 // We need to propagate the tail call flag from the IR inst as an argument. 1638 // Otherwise, we have to pessimize and assume later that we cannot tail call 1639 // any memory intrinsics. 1640 ICall.addImm(CI.isTailCall() ? 1 : 0); 1641 } 1642 1643 // Create mem operands to store the alignment and volatile info. 1644 MachineMemOperand::Flags LoadFlags = MachineMemOperand::MOLoad; 1645 MachineMemOperand::Flags StoreFlags = MachineMemOperand::MOStore; 1646 if (IsVol) { 1647 LoadFlags |= MachineMemOperand::MOVolatile; 1648 StoreFlags |= MachineMemOperand::MOVolatile; 1649 } 1650 1651 AAMDNodes AAInfo = CI.getAAMetadata(); 1652 if (AA && CopySize && 1653 AA->pointsToConstantMemory(MemoryLocation( 1654 SrcPtr, LocationSize::precise(CopySize->getZExtValue()), AAInfo))) { 1655 LoadFlags |= MachineMemOperand::MOInvariant; 1656 1657 // FIXME: pointsToConstantMemory probably does not imply dereferenceable, 1658 // but the previous usage implied it did. Probably should check 1659 // isDereferenceableAndAlignedPointer. 1660 LoadFlags |= MachineMemOperand::MODereferenceable; 1661 } 1662 1663 ICall.addMemOperand( 1664 MF->getMachineMemOperand(MachinePointerInfo(CI.getArgOperand(0)), 1665 StoreFlags, 1, DstAlign, AAInfo)); 1666 if (Opcode != TargetOpcode::G_MEMSET) 1667 ICall.addMemOperand(MF->getMachineMemOperand( 1668 MachinePointerInfo(SrcPtr), LoadFlags, 1, SrcAlign, AAInfo)); 1669 1670 return true; 1671 } 1672 1673 void IRTranslator::getStackGuard(Register DstReg, 1674 MachineIRBuilder &MIRBuilder) { 1675 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1676 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1677 auto MIB = 1678 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1679 1680 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1681 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1682 if (!Global) 1683 return; 1684 1685 unsigned AddrSpace = Global->getType()->getPointerAddressSpace(); 1686 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace)); 1687 1688 MachinePointerInfo MPInfo(Global); 1689 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1690 MachineMemOperand::MODereferenceable; 1691 MachineMemOperand *MemRef = MF->getMachineMemOperand( 1692 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace)); 1693 MIB.setMemRefs({MemRef}); 1694 } 1695 1696 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1697 MachineIRBuilder &MIRBuilder) { 1698 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1699 MIRBuilder.buildInstr( 1700 Op, {ResRegs[0], ResRegs[1]}, 1701 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1702 1703 return true; 1704 } 1705 1706 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI, 1707 MachineIRBuilder &MIRBuilder) { 1708 Register Dst = getOrCreateVReg(CI); 1709 Register Src0 = getOrCreateVReg(*CI.getOperand(0)); 1710 Register Src1 = getOrCreateVReg(*CI.getOperand(1)); 1711 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 1712 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale }); 1713 return true; 1714 } 1715 1716 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1717 switch (ID) { 1718 default: 1719 break; 1720 case Intrinsic::bswap: 1721 return TargetOpcode::G_BSWAP; 1722 case Intrinsic::bitreverse: 1723 return TargetOpcode::G_BITREVERSE; 1724 case Intrinsic::fshl: 1725 return TargetOpcode::G_FSHL; 1726 case Intrinsic::fshr: 1727 return TargetOpcode::G_FSHR; 1728 case Intrinsic::ceil: 1729 return TargetOpcode::G_FCEIL; 1730 case Intrinsic::cos: 1731 return TargetOpcode::G_FCOS; 1732 case Intrinsic::ctpop: 1733 return TargetOpcode::G_CTPOP; 1734 case Intrinsic::exp: 1735 return TargetOpcode::G_FEXP; 1736 case Intrinsic::exp2: 1737 return TargetOpcode::G_FEXP2; 1738 case Intrinsic::fabs: 1739 return TargetOpcode::G_FABS; 1740 case Intrinsic::copysign: 1741 return TargetOpcode::G_FCOPYSIGN; 1742 case Intrinsic::minnum: 1743 return TargetOpcode::G_FMINNUM; 1744 case Intrinsic::maxnum: 1745 return TargetOpcode::G_FMAXNUM; 1746 case Intrinsic::minimum: 1747 return TargetOpcode::G_FMINIMUM; 1748 case Intrinsic::maximum: 1749 return TargetOpcode::G_FMAXIMUM; 1750 case Intrinsic::canonicalize: 1751 return TargetOpcode::G_FCANONICALIZE; 1752 case Intrinsic::floor: 1753 return TargetOpcode::G_FFLOOR; 1754 case Intrinsic::fma: 1755 return TargetOpcode::G_FMA; 1756 case Intrinsic::log: 1757 return TargetOpcode::G_FLOG; 1758 case Intrinsic::log2: 1759 return TargetOpcode::G_FLOG2; 1760 case Intrinsic::log10: 1761 return TargetOpcode::G_FLOG10; 1762 case Intrinsic::nearbyint: 1763 return TargetOpcode::G_FNEARBYINT; 1764 case Intrinsic::pow: 1765 return TargetOpcode::G_FPOW; 1766 case Intrinsic::powi: 1767 return TargetOpcode::G_FPOWI; 1768 case Intrinsic::rint: 1769 return TargetOpcode::G_FRINT; 1770 case Intrinsic::round: 1771 return TargetOpcode::G_INTRINSIC_ROUND; 1772 case Intrinsic::roundeven: 1773 return TargetOpcode::G_INTRINSIC_ROUNDEVEN; 1774 case Intrinsic::sin: 1775 return TargetOpcode::G_FSIN; 1776 case Intrinsic::sqrt: 1777 return TargetOpcode::G_FSQRT; 1778 case Intrinsic::trunc: 1779 return TargetOpcode::G_INTRINSIC_TRUNC; 1780 case Intrinsic::readcyclecounter: 1781 return TargetOpcode::G_READCYCLECOUNTER; 1782 case Intrinsic::ptrmask: 1783 return TargetOpcode::G_PTRMASK; 1784 case Intrinsic::lrint: 1785 return TargetOpcode::G_INTRINSIC_LRINT; 1786 // FADD/FMUL require checking the FMF, so are handled elsewhere. 1787 case Intrinsic::vector_reduce_fmin: 1788 return TargetOpcode::G_VECREDUCE_FMIN; 1789 case Intrinsic::vector_reduce_fmax: 1790 return TargetOpcode::G_VECREDUCE_FMAX; 1791 case Intrinsic::vector_reduce_add: 1792 return TargetOpcode::G_VECREDUCE_ADD; 1793 case Intrinsic::vector_reduce_mul: 1794 return TargetOpcode::G_VECREDUCE_MUL; 1795 case Intrinsic::vector_reduce_and: 1796 return TargetOpcode::G_VECREDUCE_AND; 1797 case Intrinsic::vector_reduce_or: 1798 return TargetOpcode::G_VECREDUCE_OR; 1799 case Intrinsic::vector_reduce_xor: 1800 return TargetOpcode::G_VECREDUCE_XOR; 1801 case Intrinsic::vector_reduce_smax: 1802 return TargetOpcode::G_VECREDUCE_SMAX; 1803 case Intrinsic::vector_reduce_smin: 1804 return TargetOpcode::G_VECREDUCE_SMIN; 1805 case Intrinsic::vector_reduce_umax: 1806 return TargetOpcode::G_VECREDUCE_UMAX; 1807 case Intrinsic::vector_reduce_umin: 1808 return TargetOpcode::G_VECREDUCE_UMIN; 1809 case Intrinsic::lround: 1810 return TargetOpcode::G_LROUND; 1811 case Intrinsic::llround: 1812 return TargetOpcode::G_LLROUND; 1813 } 1814 return Intrinsic::not_intrinsic; 1815 } 1816 1817 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1818 Intrinsic::ID ID, 1819 MachineIRBuilder &MIRBuilder) { 1820 1821 unsigned Op = getSimpleIntrinsicOpcode(ID); 1822 1823 // Is this a simple intrinsic? 1824 if (Op == Intrinsic::not_intrinsic) 1825 return false; 1826 1827 // Yes. Let's translate it. 1828 SmallVector<llvm::SrcOp, 4> VRegs; 1829 for (const auto &Arg : CI.args()) 1830 VRegs.push_back(getOrCreateVReg(*Arg)); 1831 1832 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1833 MachineInstr::copyFlagsFromInstruction(CI)); 1834 return true; 1835 } 1836 1837 // TODO: Include ConstainedOps.def when all strict instructions are defined. 1838 static unsigned getConstrainedOpcode(Intrinsic::ID ID) { 1839 switch (ID) { 1840 case Intrinsic::experimental_constrained_fadd: 1841 return TargetOpcode::G_STRICT_FADD; 1842 case Intrinsic::experimental_constrained_fsub: 1843 return TargetOpcode::G_STRICT_FSUB; 1844 case Intrinsic::experimental_constrained_fmul: 1845 return TargetOpcode::G_STRICT_FMUL; 1846 case Intrinsic::experimental_constrained_fdiv: 1847 return TargetOpcode::G_STRICT_FDIV; 1848 case Intrinsic::experimental_constrained_frem: 1849 return TargetOpcode::G_STRICT_FREM; 1850 case Intrinsic::experimental_constrained_fma: 1851 return TargetOpcode::G_STRICT_FMA; 1852 case Intrinsic::experimental_constrained_sqrt: 1853 return TargetOpcode::G_STRICT_FSQRT; 1854 default: 1855 return 0; 1856 } 1857 } 1858 1859 bool IRTranslator::translateConstrainedFPIntrinsic( 1860 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) { 1861 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 1862 1863 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID()); 1864 if (!Opcode) 1865 return false; 1866 1867 unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI); 1868 if (EB == fp::ExceptionBehavior::ebIgnore) 1869 Flags |= MachineInstr::NoFPExcept; 1870 1871 SmallVector<llvm::SrcOp, 4> VRegs; 1872 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0))); 1873 if (!FPI.isUnaryOp()) 1874 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1))); 1875 if (FPI.isTernaryOp()) 1876 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2))); 1877 1878 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags); 1879 return true; 1880 } 1881 1882 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1883 MachineIRBuilder &MIRBuilder) { 1884 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) { 1885 if (ORE->enabled()) { 1886 if (MemoryOpRemark::canHandle(MI, *LibInfo)) { 1887 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo); 1888 R.visit(MI); 1889 } 1890 } 1891 } 1892 1893 // If this is a simple intrinsic (that is, we just need to add a def of 1894 // a vreg, and uses for each arg operand, then translate it. 1895 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1896 return true; 1897 1898 switch (ID) { 1899 default: 1900 break; 1901 case Intrinsic::lifetime_start: 1902 case Intrinsic::lifetime_end: { 1903 // No stack colouring in O0, discard region information. 1904 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1905 return true; 1906 1907 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1908 : TargetOpcode::LIFETIME_END; 1909 1910 // Get the underlying objects for the location passed on the lifetime 1911 // marker. 1912 SmallVector<const Value *, 4> Allocas; 1913 getUnderlyingObjects(CI.getArgOperand(1), Allocas); 1914 1915 // Iterate over each underlying object, creating lifetime markers for each 1916 // static alloca. Quit if we find a non-static alloca. 1917 for (const Value *V : Allocas) { 1918 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1919 if (!AI) 1920 continue; 1921 1922 if (!AI->isStaticAlloca()) 1923 return true; 1924 1925 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1926 } 1927 return true; 1928 } 1929 case Intrinsic::dbg_declare: { 1930 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1931 assert(DI.getVariable() && "Missing variable"); 1932 1933 const Value *Address = DI.getAddress(); 1934 if (!Address || isa<UndefValue>(Address)) { 1935 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1936 return true; 1937 } 1938 1939 assert(DI.getVariable()->isValidLocationForIntrinsic( 1940 MIRBuilder.getDebugLoc()) && 1941 "Expected inlined-at fields to agree"); 1942 auto AI = dyn_cast<AllocaInst>(Address); 1943 if (AI && AI->isStaticAlloca()) { 1944 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1945 // instructions (in fact, they get ignored if they *do* exist). 1946 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1947 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1948 } else { 1949 // A dbg.declare describes the address of a source variable, so lower it 1950 // into an indirect DBG_VALUE. 1951 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1952 DI.getVariable(), DI.getExpression()); 1953 } 1954 return true; 1955 } 1956 case Intrinsic::dbg_label: { 1957 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1958 assert(DI.getLabel() && "Missing label"); 1959 1960 assert(DI.getLabel()->isValidLocationForIntrinsic( 1961 MIRBuilder.getDebugLoc()) && 1962 "Expected inlined-at fields to agree"); 1963 1964 MIRBuilder.buildDbgLabel(DI.getLabel()); 1965 return true; 1966 } 1967 case Intrinsic::vaend: 1968 // No target I know of cares about va_end. Certainly no in-tree target 1969 // does. Simplest intrinsic ever! 1970 return true; 1971 case Intrinsic::vastart: { 1972 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1973 Value *Ptr = CI.getArgOperand(0); 1974 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1975 1976 // FIXME: Get alignment 1977 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 1978 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 1979 MachineMemOperand::MOStore, 1980 ListSize, Align(1))); 1981 return true; 1982 } 1983 case Intrinsic::dbg_value: { 1984 // This form of DBG_VALUE is target-independent. 1985 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1986 const Value *V = DI.getValue(); 1987 assert(DI.getVariable()->isValidLocationForIntrinsic( 1988 MIRBuilder.getDebugLoc()) && 1989 "Expected inlined-at fields to agree"); 1990 if (!V || DI.hasArgList()) { 1991 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to 1992 // terminate any prior location. 1993 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1994 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1995 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1996 } else { 1997 for (Register Reg : getOrCreateVRegs(*V)) { 1998 // FIXME: This does not handle register-indirect values at offset 0. The 1999 // direct/indirect thing shouldn't really be handled by something as 2000 // implicit as reg+noreg vs reg+imm in the first place, but it seems 2001 // pretty baked in right now. 2002 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 2003 } 2004 } 2005 return true; 2006 } 2007 case Intrinsic::uadd_with_overflow: 2008 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 2009 case Intrinsic::sadd_with_overflow: 2010 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 2011 case Intrinsic::usub_with_overflow: 2012 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 2013 case Intrinsic::ssub_with_overflow: 2014 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 2015 case Intrinsic::umul_with_overflow: 2016 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 2017 case Intrinsic::smul_with_overflow: 2018 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 2019 case Intrinsic::uadd_sat: 2020 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 2021 case Intrinsic::sadd_sat: 2022 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 2023 case Intrinsic::usub_sat: 2024 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 2025 case Intrinsic::ssub_sat: 2026 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 2027 case Intrinsic::ushl_sat: 2028 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder); 2029 case Intrinsic::sshl_sat: 2030 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder); 2031 case Intrinsic::umin: 2032 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder); 2033 case Intrinsic::umax: 2034 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder); 2035 case Intrinsic::smin: 2036 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder); 2037 case Intrinsic::smax: 2038 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder); 2039 case Intrinsic::abs: 2040 // TODO: Preserve "int min is poison" arg in GMIR? 2041 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder); 2042 case Intrinsic::smul_fix: 2043 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder); 2044 case Intrinsic::umul_fix: 2045 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder); 2046 case Intrinsic::smul_fix_sat: 2047 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder); 2048 case Intrinsic::umul_fix_sat: 2049 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder); 2050 case Intrinsic::sdiv_fix: 2051 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder); 2052 case Intrinsic::udiv_fix: 2053 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder); 2054 case Intrinsic::sdiv_fix_sat: 2055 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder); 2056 case Intrinsic::udiv_fix_sat: 2057 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder); 2058 case Intrinsic::fmuladd: { 2059 const TargetMachine &TM = MF->getTarget(); 2060 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2061 Register Dst = getOrCreateVReg(CI); 2062 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 2063 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 2064 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 2065 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 2066 TLI.isFMAFasterThanFMulAndFAdd(*MF, 2067 TLI.getValueType(*DL, CI.getType()))) { 2068 // TODO: Revisit this to see if we should move this part of the 2069 // lowering to the combiner. 2070 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 2071 MachineInstr::copyFlagsFromInstruction(CI)); 2072 } else { 2073 LLT Ty = getLLTForType(*CI.getType(), *DL); 2074 auto FMul = MIRBuilder.buildFMul( 2075 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 2076 MIRBuilder.buildFAdd(Dst, FMul, Op2, 2077 MachineInstr::copyFlagsFromInstruction(CI)); 2078 } 2079 return true; 2080 } 2081 case Intrinsic::convert_from_fp16: 2082 // FIXME: This intrinsic should probably be removed from the IR. 2083 MIRBuilder.buildFPExt(getOrCreateVReg(CI), 2084 getOrCreateVReg(*CI.getArgOperand(0)), 2085 MachineInstr::copyFlagsFromInstruction(CI)); 2086 return true; 2087 case Intrinsic::convert_to_fp16: 2088 // FIXME: This intrinsic should probably be removed from the IR. 2089 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI), 2090 getOrCreateVReg(*CI.getArgOperand(0)), 2091 MachineInstr::copyFlagsFromInstruction(CI)); 2092 return true; 2093 case Intrinsic::memcpy_inline: 2094 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE); 2095 case Intrinsic::memcpy: 2096 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY); 2097 case Intrinsic::memmove: 2098 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE); 2099 case Intrinsic::memset: 2100 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET); 2101 case Intrinsic::eh_typeid_for: { 2102 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 2103 Register Reg = getOrCreateVReg(CI); 2104 unsigned TypeID = MF->getTypeIDFor(GV); 2105 MIRBuilder.buildConstant(Reg, TypeID); 2106 return true; 2107 } 2108 case Intrinsic::objectsize: 2109 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2110 2111 case Intrinsic::is_constant: 2112 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2113 2114 case Intrinsic::stackguard: 2115 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 2116 return true; 2117 case Intrinsic::stackprotector: { 2118 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2119 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2120 Register GuardVal; 2121 if (TLI.useLoadStackGuardNode()) { 2122 GuardVal = MRI->createGenericVirtualRegister(PtrTy); 2123 getStackGuard(GuardVal, MIRBuilder); 2124 } else 2125 GuardVal = getOrCreateVReg(*CI.getArgOperand(0)); // The guard's value. 2126 2127 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 2128 int FI = getOrCreateFrameIndex(*Slot); 2129 MF->getFrameInfo().setStackProtectorIndex(FI); 2130 2131 MIRBuilder.buildStore( 2132 GuardVal, getOrCreateVReg(*Slot), 2133 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 2134 MachineMemOperand::MOStore | 2135 MachineMemOperand::MOVolatile, 2136 PtrTy, Align(8))); 2137 return true; 2138 } 2139 case Intrinsic::stacksave: { 2140 // Save the stack pointer to the location provided by the intrinsic. 2141 Register Reg = getOrCreateVReg(CI); 2142 Register StackPtr = MF->getSubtarget() 2143 .getTargetLowering() 2144 ->getStackPointerRegisterToSaveRestore(); 2145 2146 // If the target doesn't specify a stack pointer, then fall back. 2147 if (!StackPtr) 2148 return false; 2149 2150 MIRBuilder.buildCopy(Reg, StackPtr); 2151 return true; 2152 } 2153 case Intrinsic::stackrestore: { 2154 // Restore the stack pointer from the location provided by the intrinsic. 2155 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 2156 Register StackPtr = MF->getSubtarget() 2157 .getTargetLowering() 2158 ->getStackPointerRegisterToSaveRestore(); 2159 2160 // If the target doesn't specify a stack pointer, then fall back. 2161 if (!StackPtr) 2162 return false; 2163 2164 MIRBuilder.buildCopy(StackPtr, Reg); 2165 return true; 2166 } 2167 case Intrinsic::cttz: 2168 case Intrinsic::ctlz: { 2169 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 2170 bool isTrailing = ID == Intrinsic::cttz; 2171 unsigned Opcode = isTrailing 2172 ? Cst->isZero() ? TargetOpcode::G_CTTZ 2173 : TargetOpcode::G_CTTZ_ZERO_UNDEF 2174 : Cst->isZero() ? TargetOpcode::G_CTLZ 2175 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 2176 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 2177 {getOrCreateVReg(*CI.getArgOperand(0))}); 2178 return true; 2179 } 2180 case Intrinsic::invariant_start: { 2181 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2182 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 2183 MIRBuilder.buildUndef(Undef); 2184 return true; 2185 } 2186 case Intrinsic::invariant_end: 2187 return true; 2188 case Intrinsic::expect: 2189 case Intrinsic::annotation: 2190 case Intrinsic::ptr_annotation: 2191 case Intrinsic::launder_invariant_group: 2192 case Intrinsic::strip_invariant_group: { 2193 // Drop the intrinsic, but forward the value. 2194 MIRBuilder.buildCopy(getOrCreateVReg(CI), 2195 getOrCreateVReg(*CI.getArgOperand(0))); 2196 return true; 2197 } 2198 case Intrinsic::assume: 2199 case Intrinsic::experimental_noalias_scope_decl: 2200 case Intrinsic::var_annotation: 2201 case Intrinsic::sideeffect: 2202 // Discard annotate attributes, assumptions, and artificial side-effects. 2203 return true; 2204 case Intrinsic::read_volatile_register: 2205 case Intrinsic::read_register: { 2206 Value *Arg = CI.getArgOperand(0); 2207 MIRBuilder 2208 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 2209 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 2210 return true; 2211 } 2212 case Intrinsic::write_register: { 2213 Value *Arg = CI.getArgOperand(0); 2214 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 2215 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 2216 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 2217 return true; 2218 } 2219 case Intrinsic::localescape: { 2220 MachineBasicBlock &EntryMBB = MF->front(); 2221 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName()); 2222 2223 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 2224 // is the same on all targets. 2225 for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) { 2226 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts(); 2227 if (isa<ConstantPointerNull>(Arg)) 2228 continue; // Skip null pointers. They represent a hole in index space. 2229 2230 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg)); 2231 MCSymbol *FrameAllocSym = 2232 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName, 2233 Idx); 2234 2235 // This should be inserted at the start of the entry block. 2236 auto LocalEscape = 2237 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE) 2238 .addSym(FrameAllocSym) 2239 .addFrameIndex(FI); 2240 2241 EntryMBB.insert(EntryMBB.begin(), LocalEscape); 2242 } 2243 2244 return true; 2245 } 2246 case Intrinsic::vector_reduce_fadd: 2247 case Intrinsic::vector_reduce_fmul: { 2248 // Need to check for the reassoc flag to decide whether we want a 2249 // sequential reduction opcode or not. 2250 Register Dst = getOrCreateVReg(CI); 2251 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0)); 2252 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1)); 2253 unsigned Opc = 0; 2254 if (!CI.hasAllowReassoc()) { 2255 // The sequential ordering case. 2256 Opc = ID == Intrinsic::vector_reduce_fadd 2257 ? TargetOpcode::G_VECREDUCE_SEQ_FADD 2258 : TargetOpcode::G_VECREDUCE_SEQ_FMUL; 2259 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc}, 2260 MachineInstr::copyFlagsFromInstruction(CI)); 2261 return true; 2262 } 2263 // We split the operation into a separate G_FADD/G_FMUL + the reduce, 2264 // since the associativity doesn't matter. 2265 unsigned ScalarOpc; 2266 if (ID == Intrinsic::vector_reduce_fadd) { 2267 Opc = TargetOpcode::G_VECREDUCE_FADD; 2268 ScalarOpc = TargetOpcode::G_FADD; 2269 } else { 2270 Opc = TargetOpcode::G_VECREDUCE_FMUL; 2271 ScalarOpc = TargetOpcode::G_FMUL; 2272 } 2273 LLT DstTy = MRI->getType(Dst); 2274 auto Rdx = MIRBuilder.buildInstr( 2275 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI)); 2276 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx}, 2277 MachineInstr::copyFlagsFromInstruction(CI)); 2278 2279 return true; 2280 } 2281 case Intrinsic::trap: 2282 case Intrinsic::debugtrap: 2283 case Intrinsic::ubsantrap: { 2284 StringRef TrapFuncName = 2285 CI.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 2286 if (TrapFuncName.empty()) 2287 break; // Use the default handling. 2288 CallLowering::CallLoweringInfo Info; 2289 if (ID == Intrinsic::ubsantrap) { 2290 Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)), 2291 CI.getArgOperand(0)->getType(), 0}); 2292 } 2293 Info.Callee = MachineOperand::CreateES(TrapFuncName.data()); 2294 Info.CB = &CI; 2295 Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0}; 2296 return CLI->lowerCall(MIRBuilder, Info); 2297 } 2298 case Intrinsic::fptrunc_round: { 2299 unsigned Flags = MachineInstr::copyFlagsFromInstruction(CI); 2300 2301 // Convert the metadata argument to a constant integer 2302 Metadata *MD = cast<MetadataAsValue>(CI.getArgOperand(1))->getMetadata(); 2303 std::optional<RoundingMode> RoundMode = 2304 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 2305 2306 // Add the Rounding mode as an integer 2307 MIRBuilder 2308 .buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND, 2309 {getOrCreateVReg(CI)}, 2310 {getOrCreateVReg(*CI.getArgOperand(0))}, Flags) 2311 .addImm((int)*RoundMode); 2312 2313 return true; 2314 } 2315 case Intrinsic::is_fpclass: { 2316 Value *FpValue = CI.getOperand(0); 2317 ConstantInt *TestMaskValue = cast<ConstantInt>(CI.getOperand(1)); 2318 2319 MIRBuilder 2320 .buildInstr(TargetOpcode::G_IS_FPCLASS, {getOrCreateVReg(CI)}, 2321 {getOrCreateVReg(*FpValue)}) 2322 .addImm(TestMaskValue->getZExtValue()); 2323 2324 return true; 2325 } 2326 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 2327 case Intrinsic::INTRINSIC: 2328 #include "llvm/IR/ConstrainedOps.def" 2329 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI), 2330 MIRBuilder); 2331 2332 } 2333 return false; 2334 } 2335 2336 bool IRTranslator::translateInlineAsm(const CallBase &CB, 2337 MachineIRBuilder &MIRBuilder) { 2338 2339 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 2340 2341 if (!ALI) { 2342 LLVM_DEBUG( 2343 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 2344 return false; 2345 } 2346 2347 return ALI->lowerInlineAsm( 2348 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 2349 } 2350 2351 bool IRTranslator::translateCallBase(const CallBase &CB, 2352 MachineIRBuilder &MIRBuilder) { 2353 ArrayRef<Register> Res = getOrCreateVRegs(CB); 2354 2355 SmallVector<ArrayRef<Register>, 8> Args; 2356 Register SwiftInVReg = 0; 2357 Register SwiftErrorVReg = 0; 2358 for (const auto &Arg : CB.args()) { 2359 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 2360 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 2361 LLT Ty = getLLTForType(*Arg->getType(), *DL); 2362 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 2363 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 2364 &CB, &MIRBuilder.getMBB(), Arg)); 2365 Args.emplace_back(ArrayRef(SwiftInVReg)); 2366 SwiftErrorVReg = 2367 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 2368 continue; 2369 } 2370 Args.push_back(getOrCreateVRegs(*Arg)); 2371 } 2372 2373 if (auto *CI = dyn_cast<CallInst>(&CB)) { 2374 if (ORE->enabled()) { 2375 if (MemoryOpRemark::canHandle(CI, *LibInfo)) { 2376 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo); 2377 R.visit(CI); 2378 } 2379 } 2380 } 2381 2382 // We don't set HasCalls on MFI here yet because call lowering may decide to 2383 // optimize into tail calls. Instead, we defer that to selection where a final 2384 // scan is done to check if any instructions are calls. 2385 bool Success = 2386 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg, 2387 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 2388 2389 // Check if we just inserted a tail call. 2390 if (Success) { 2391 assert(!HasTailCall && "Can't tail call return twice from block?"); 2392 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 2393 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 2394 } 2395 2396 return Success; 2397 } 2398 2399 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 2400 const CallInst &CI = cast<CallInst>(U); 2401 auto TII = MF->getTarget().getIntrinsicInfo(); 2402 const Function *F = CI.getCalledFunction(); 2403 2404 // FIXME: support Windows dllimport function calls. 2405 if (F && (F->hasDLLImportStorageClass() || 2406 (MF->getTarget().getTargetTriple().isOSWindows() && 2407 F->hasExternalWeakLinkage()))) 2408 return false; 2409 2410 // FIXME: support control flow guard targets. 2411 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2412 return false; 2413 2414 // FIXME: support statepoints and related. 2415 if (isa<GCStatepointInst, GCRelocateInst, GCResultInst>(U)) 2416 return false; 2417 2418 if (CI.isInlineAsm()) 2419 return translateInlineAsm(CI, MIRBuilder); 2420 2421 diagnoseDontCall(CI); 2422 2423 Intrinsic::ID ID = Intrinsic::not_intrinsic; 2424 if (F && F->isIntrinsic()) { 2425 ID = F->getIntrinsicID(); 2426 if (TII && ID == Intrinsic::not_intrinsic) 2427 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 2428 } 2429 2430 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 2431 return translateCallBase(CI, MIRBuilder); 2432 2433 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 2434 2435 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 2436 return true; 2437 2438 ArrayRef<Register> ResultRegs; 2439 if (!CI.getType()->isVoidTy()) 2440 ResultRegs = getOrCreateVRegs(CI); 2441 2442 // Ignore the callsite attributes. Backend code is most likely not expecting 2443 // an intrinsic to sometimes have side effects and sometimes not. 2444 MachineInstrBuilder MIB = 2445 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 2446 if (isa<FPMathOperator>(CI)) 2447 MIB->copyIRFlags(CI); 2448 2449 for (const auto &Arg : enumerate(CI.args())) { 2450 // If this is required to be an immediate, don't materialize it in a 2451 // register. 2452 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 2453 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 2454 // imm arguments are more convenient than cimm (and realistically 2455 // probably sufficient), so use them. 2456 assert(CI->getBitWidth() <= 64 && 2457 "large intrinsic immediates not handled"); 2458 MIB.addImm(CI->getSExtValue()); 2459 } else { 2460 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 2461 } 2462 } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) { 2463 auto *MD = MDVal->getMetadata(); 2464 auto *MDN = dyn_cast<MDNode>(MD); 2465 if (!MDN) { 2466 if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD)) 2467 MDN = MDNode::get(MF->getFunction().getContext(), ConstMD); 2468 else // This was probably an MDString. 2469 return false; 2470 } 2471 MIB.addMetadata(MDN); 2472 } else { 2473 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 2474 if (VRegs.size() > 1) 2475 return false; 2476 MIB.addUse(VRegs[0]); 2477 } 2478 } 2479 2480 // Add a MachineMemOperand if it is a target mem intrinsic. 2481 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2482 TargetLowering::IntrinsicInfo Info; 2483 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 2484 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 2485 Align Alignment = Info.align.value_or( 2486 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 2487 LLT MemTy = Info.memVT.isSimple() 2488 ? getLLTForMVT(Info.memVT.getSimpleVT()) 2489 : LLT::scalar(Info.memVT.getStoreSizeInBits()); 2490 2491 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 2492 // didn't yield anything useful. 2493 MachinePointerInfo MPI; 2494 if (Info.ptrVal) 2495 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 2496 else if (Info.fallbackAddressSpace) 2497 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 2498 MIB.addMemOperand( 2499 MF->getMachineMemOperand(MPI, Info.flags, MemTy, Alignment, CI.getAAMetadata())); 2500 } 2501 2502 return true; 2503 } 2504 2505 bool IRTranslator::findUnwindDestinations( 2506 const BasicBlock *EHPadBB, 2507 BranchProbability Prob, 2508 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2509 &UnwindDests) { 2510 EHPersonality Personality = classifyEHPersonality( 2511 EHPadBB->getParent()->getFunction().getPersonalityFn()); 2512 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2513 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2514 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2515 bool IsSEH = isAsynchronousEHPersonality(Personality); 2516 2517 if (IsWasmCXX) { 2518 // Ignore this for now. 2519 return false; 2520 } 2521 2522 while (EHPadBB) { 2523 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2524 BasicBlock *NewEHPadBB = nullptr; 2525 if (isa<LandingPadInst>(Pad)) { 2526 // Stop on landingpads. They are not funclets. 2527 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2528 break; 2529 } 2530 if (isa<CleanupPadInst>(Pad)) { 2531 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2532 // personalities. 2533 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2534 UnwindDests.back().first->setIsEHScopeEntry(); 2535 UnwindDests.back().first->setIsEHFuncletEntry(); 2536 break; 2537 } 2538 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2539 // Add the catchpad handlers to the possible destinations. 2540 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2541 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob); 2542 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2543 if (IsMSVCCXX || IsCoreCLR) 2544 UnwindDests.back().first->setIsEHFuncletEntry(); 2545 if (!IsSEH) 2546 UnwindDests.back().first->setIsEHScopeEntry(); 2547 } 2548 NewEHPadBB = CatchSwitch->getUnwindDest(); 2549 } else { 2550 continue; 2551 } 2552 2553 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2554 if (BPI && NewEHPadBB) 2555 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2556 EHPadBB = NewEHPadBB; 2557 } 2558 return true; 2559 } 2560 2561 bool IRTranslator::translateInvoke(const User &U, 2562 MachineIRBuilder &MIRBuilder) { 2563 const InvokeInst &I = cast<InvokeInst>(U); 2564 MCContext &Context = MF->getContext(); 2565 2566 const BasicBlock *ReturnBB = I.getSuccessor(0); 2567 const BasicBlock *EHPadBB = I.getSuccessor(1); 2568 2569 const Function *Fn = I.getCalledFunction(); 2570 2571 // FIXME: support invoking patchpoint and statepoint intrinsics. 2572 if (Fn && Fn->isIntrinsic()) 2573 return false; 2574 2575 // FIXME: support whatever these are. 2576 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 2577 return false; 2578 2579 // FIXME: support control flow guard targets. 2580 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2581 return false; 2582 2583 // FIXME: support Windows exception handling. 2584 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI())) 2585 return false; 2586 2587 bool LowerInlineAsm = I.isInlineAsm(); 2588 bool NeedEHLabel = true; 2589 2590 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 2591 // the region covered by the try. 2592 MCSymbol *BeginSymbol = nullptr; 2593 if (NeedEHLabel) { 2594 MIRBuilder.buildInstr(TargetOpcode::G_INVOKE_REGION_START); 2595 BeginSymbol = Context.createTempSymbol(); 2596 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 2597 } 2598 2599 if (LowerInlineAsm) { 2600 if (!translateInlineAsm(I, MIRBuilder)) 2601 return false; 2602 } else if (!translateCallBase(I, MIRBuilder)) 2603 return false; 2604 2605 MCSymbol *EndSymbol = nullptr; 2606 if (NeedEHLabel) { 2607 EndSymbol = Context.createTempSymbol(); 2608 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 2609 } 2610 2611 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2612 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2613 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(); 2614 BranchProbability EHPadBBProb = 2615 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2616 : BranchProbability::getZero(); 2617 2618 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests)) 2619 return false; 2620 2621 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 2622 &ReturnMBB = getMBB(*ReturnBB); 2623 // Update successor info. 2624 addSuccessorWithProb(InvokeMBB, &ReturnMBB); 2625 for (auto &UnwindDest : UnwindDests) { 2626 UnwindDest.first->setIsEHPad(); 2627 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2628 } 2629 InvokeMBB->normalizeSuccProbs(); 2630 2631 if (NeedEHLabel) { 2632 assert(BeginSymbol && "Expected a begin symbol!"); 2633 assert(EndSymbol && "Expected an end symbol!"); 2634 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 2635 } 2636 2637 MIRBuilder.buildBr(ReturnMBB); 2638 return true; 2639 } 2640 2641 bool IRTranslator::translateCallBr(const User &U, 2642 MachineIRBuilder &MIRBuilder) { 2643 // FIXME: Implement this. 2644 return false; 2645 } 2646 2647 bool IRTranslator::translateLandingPad(const User &U, 2648 MachineIRBuilder &MIRBuilder) { 2649 const LandingPadInst &LP = cast<LandingPadInst>(U); 2650 2651 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 2652 2653 MBB.setIsEHPad(); 2654 2655 // If there aren't registers to copy the values into (e.g., during SjLj 2656 // exceptions), then don't bother. 2657 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2658 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 2659 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2660 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2661 return true; 2662 2663 // If landingpad's return type is token type, we don't create DAG nodes 2664 // for its exception pointer and selector value. The extraction of exception 2665 // pointer or selector value from token type landingpads is not currently 2666 // supported. 2667 if (LP.getType()->isTokenTy()) 2668 return true; 2669 2670 // Add a label to mark the beginning of the landing pad. Deletion of the 2671 // landing pad can thus be detected via the MachineModuleInfo. 2672 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 2673 .addSym(MF->addLandingPad(&MBB)); 2674 2675 // If the unwinder does not preserve all registers, ensure that the 2676 // function marks the clobbered registers as used. 2677 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 2678 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 2679 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 2680 2681 LLT Ty = getLLTForType(*LP.getType(), *DL); 2682 Register Undef = MRI->createGenericVirtualRegister(Ty); 2683 MIRBuilder.buildUndef(Undef); 2684 2685 SmallVector<LLT, 2> Tys; 2686 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 2687 Tys.push_back(getLLTForType(*Ty, *DL)); 2688 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 2689 2690 // Mark exception register as live in. 2691 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 2692 if (!ExceptionReg) 2693 return false; 2694 2695 MBB.addLiveIn(ExceptionReg); 2696 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 2697 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 2698 2699 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 2700 if (!SelectorReg) 2701 return false; 2702 2703 MBB.addLiveIn(SelectorReg); 2704 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 2705 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 2706 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 2707 2708 return true; 2709 } 2710 2711 bool IRTranslator::translateAlloca(const User &U, 2712 MachineIRBuilder &MIRBuilder) { 2713 auto &AI = cast<AllocaInst>(U); 2714 2715 if (AI.isSwiftError()) 2716 return true; 2717 2718 if (AI.isStaticAlloca()) { 2719 Register Res = getOrCreateVReg(AI); 2720 int FI = getOrCreateFrameIndex(AI); 2721 MIRBuilder.buildFrameIndex(Res, FI); 2722 return true; 2723 } 2724 2725 // FIXME: support stack probing for Windows. 2726 if (MF->getTarget().getTargetTriple().isOSWindows()) 2727 return false; 2728 2729 // Now we're in the harder dynamic case. 2730 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 2731 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 2732 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 2733 if (MRI->getType(NumElts) != IntPtrTy) { 2734 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 2735 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 2736 NumElts = ExtElts; 2737 } 2738 2739 Type *Ty = AI.getAllocatedType(); 2740 2741 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 2742 Register TySize = 2743 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 2744 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 2745 2746 // Round the size of the allocation up to the stack alignment size 2747 // by add SA-1 to the size. This doesn't overflow because we're computing 2748 // an address inside an alloca. 2749 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 2750 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 2751 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 2752 MachineInstr::NoUWrap); 2753 auto AlignCst = 2754 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 2755 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 2756 2757 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 2758 if (Alignment <= StackAlign) 2759 Alignment = Align(1); 2760 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 2761 2762 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 2763 assert(MF->getFrameInfo().hasVarSizedObjects()); 2764 return true; 2765 } 2766 2767 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 2768 // FIXME: We may need more info about the type. Because of how LLT works, 2769 // we're completely discarding the i64/double distinction here (amongst 2770 // others). Fortunately the ABIs I know of where that matters don't use va_arg 2771 // anyway but that's not guaranteed. 2772 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 2773 {getOrCreateVReg(*U.getOperand(0)), 2774 DL->getABITypeAlign(U.getType()).value()}); 2775 return true; 2776 } 2777 2778 bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) { 2779 if (!MF->getTarget().Options.TrapUnreachable) 2780 return true; 2781 2782 auto &UI = cast<UnreachableInst>(U); 2783 // We may be able to ignore unreachable behind a noreturn call. 2784 if (MF->getTarget().Options.NoTrapAfterNoreturn) { 2785 const BasicBlock &BB = *UI.getParent(); 2786 if (&UI != &BB.front()) { 2787 BasicBlock::const_iterator PredI = 2788 std::prev(BasicBlock::const_iterator(UI)); 2789 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2790 if (Call->doesNotReturn()) 2791 return true; 2792 } 2793 } 2794 } 2795 2796 MIRBuilder.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true); 2797 return true; 2798 } 2799 2800 bool IRTranslator::translateInsertElement(const User &U, 2801 MachineIRBuilder &MIRBuilder) { 2802 // If it is a <1 x Ty> vector, use the scalar as it is 2803 // not a legal vector type in LLT. 2804 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1) 2805 return translateCopy(U, *U.getOperand(1), MIRBuilder); 2806 2807 Register Res = getOrCreateVReg(U); 2808 Register Val = getOrCreateVReg(*U.getOperand(0)); 2809 Register Elt = getOrCreateVReg(*U.getOperand(1)); 2810 Register Idx = getOrCreateVReg(*U.getOperand(2)); 2811 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 2812 return true; 2813 } 2814 2815 bool IRTranslator::translateExtractElement(const User &U, 2816 MachineIRBuilder &MIRBuilder) { 2817 // If it is a <1 x Ty> vector, use the scalar as it is 2818 // not a legal vector type in LLT. 2819 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1) 2820 return translateCopy(U, *U.getOperand(0), MIRBuilder); 2821 2822 Register Res = getOrCreateVReg(U); 2823 Register Val = getOrCreateVReg(*U.getOperand(0)); 2824 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2825 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 2826 Register Idx; 2827 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 2828 if (CI->getBitWidth() != PreferredVecIdxWidth) { 2829 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth); 2830 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 2831 Idx = getOrCreateVReg(*NewIdxCI); 2832 } 2833 } 2834 if (!Idx) 2835 Idx = getOrCreateVReg(*U.getOperand(1)); 2836 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 2837 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 2838 Idx = MIRBuilder.buildZExtOrTrunc(VecIdxTy, Idx).getReg(0); 2839 } 2840 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 2841 return true; 2842 } 2843 2844 bool IRTranslator::translateShuffleVector(const User &U, 2845 MachineIRBuilder &MIRBuilder) { 2846 ArrayRef<int> Mask; 2847 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 2848 Mask = SVI->getShuffleMask(); 2849 else 2850 Mask = cast<ConstantExpr>(U).getShuffleMask(); 2851 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 2852 MIRBuilder 2853 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 2854 {getOrCreateVReg(*U.getOperand(0)), 2855 getOrCreateVReg(*U.getOperand(1))}) 2856 .addShuffleMask(MaskAlloc); 2857 return true; 2858 } 2859 2860 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 2861 const PHINode &PI = cast<PHINode>(U); 2862 2863 SmallVector<MachineInstr *, 4> Insts; 2864 for (auto Reg : getOrCreateVRegs(PI)) { 2865 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 2866 Insts.push_back(MIB.getInstr()); 2867 } 2868 2869 PendingPHIs.emplace_back(&PI, std::move(Insts)); 2870 return true; 2871 } 2872 2873 bool IRTranslator::translateAtomicCmpXchg(const User &U, 2874 MachineIRBuilder &MIRBuilder) { 2875 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 2876 2877 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2878 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2879 2880 auto Res = getOrCreateVRegs(I); 2881 Register OldValRes = Res[0]; 2882 Register SuccessRes = Res[1]; 2883 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2884 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 2885 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 2886 2887 MIRBuilder.buildAtomicCmpXchgWithSuccess( 2888 OldValRes, SuccessRes, Addr, Cmp, NewVal, 2889 *MF->getMachineMemOperand( 2890 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp), 2891 getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(), 2892 I.getSuccessOrdering(), I.getFailureOrdering())); 2893 return true; 2894 } 2895 2896 bool IRTranslator::translateAtomicRMW(const User &U, 2897 MachineIRBuilder &MIRBuilder) { 2898 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 2899 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2900 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2901 2902 Register Res = getOrCreateVReg(I); 2903 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2904 Register Val = getOrCreateVReg(*I.getValOperand()); 2905 2906 unsigned Opcode = 0; 2907 switch (I.getOperation()) { 2908 default: 2909 return false; 2910 case AtomicRMWInst::Xchg: 2911 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2912 break; 2913 case AtomicRMWInst::Add: 2914 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2915 break; 2916 case AtomicRMWInst::Sub: 2917 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2918 break; 2919 case AtomicRMWInst::And: 2920 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2921 break; 2922 case AtomicRMWInst::Nand: 2923 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2924 break; 2925 case AtomicRMWInst::Or: 2926 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2927 break; 2928 case AtomicRMWInst::Xor: 2929 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2930 break; 2931 case AtomicRMWInst::Max: 2932 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2933 break; 2934 case AtomicRMWInst::Min: 2935 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2936 break; 2937 case AtomicRMWInst::UMax: 2938 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2939 break; 2940 case AtomicRMWInst::UMin: 2941 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2942 break; 2943 case AtomicRMWInst::FAdd: 2944 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2945 break; 2946 case AtomicRMWInst::FSub: 2947 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2948 break; 2949 case AtomicRMWInst::FMax: 2950 Opcode = TargetOpcode::G_ATOMICRMW_FMAX; 2951 break; 2952 case AtomicRMWInst::FMin: 2953 Opcode = TargetOpcode::G_ATOMICRMW_FMIN; 2954 break; 2955 case AtomicRMWInst::UIncWrap: 2956 Opcode = TargetOpcode::G_ATOMICRMW_UINC_WRAP; 2957 break; 2958 case AtomicRMWInst::UDecWrap: 2959 Opcode = TargetOpcode::G_ATOMICRMW_UDEC_WRAP; 2960 break; 2961 } 2962 2963 MIRBuilder.buildAtomicRMW( 2964 Opcode, Res, Addr, Val, 2965 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2966 Flags, MRI->getType(Val), getMemOpAlign(I), 2967 I.getAAMetadata(), nullptr, I.getSyncScopeID(), 2968 I.getOrdering())); 2969 return true; 2970 } 2971 2972 bool IRTranslator::translateFence(const User &U, 2973 MachineIRBuilder &MIRBuilder) { 2974 const FenceInst &Fence = cast<FenceInst>(U); 2975 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2976 Fence.getSyncScopeID()); 2977 return true; 2978 } 2979 2980 bool IRTranslator::translateFreeze(const User &U, 2981 MachineIRBuilder &MIRBuilder) { 2982 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 2983 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 2984 2985 assert(DstRegs.size() == SrcRegs.size() && 2986 "Freeze with different source and destination type?"); 2987 2988 for (unsigned I = 0; I < DstRegs.size(); ++I) { 2989 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 2990 } 2991 2992 return true; 2993 } 2994 2995 void IRTranslator::finishPendingPhis() { 2996 #ifndef NDEBUG 2997 DILocationVerifier Verifier; 2998 GISelObserverWrapper WrapperObserver(&Verifier); 2999 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 3000 #endif // ifndef NDEBUG 3001 for (auto &Phi : PendingPHIs) { 3002 const PHINode *PI = Phi.first; 3003 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 3004 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 3005 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 3006 #ifndef NDEBUG 3007 Verifier.setCurrentInst(PI); 3008 #endif // ifndef NDEBUG 3009 3010 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 3011 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 3012 auto IRPred = PI->getIncomingBlock(i); 3013 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 3014 for (auto *Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 3015 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 3016 continue; 3017 SeenPreds.insert(Pred); 3018 for (unsigned j = 0; j < ValRegs.size(); ++j) { 3019 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 3020 MIB.addUse(ValRegs[j]); 3021 MIB.addMBB(Pred); 3022 } 3023 } 3024 } 3025 } 3026 } 3027 3028 bool IRTranslator::translate(const Instruction &Inst) { 3029 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 3030 CurBuilder->setPCSections(Inst.getMetadata(LLVMContext::MD_pcsections)); 3031 3032 auto &TLI = *MF->getSubtarget().getTargetLowering(); 3033 if (TLI.fallBackToDAGISel(Inst)) 3034 return false; 3035 3036 switch (Inst.getOpcode()) { 3037 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 3038 case Instruction::OPCODE: \ 3039 return translate##OPCODE(Inst, *CurBuilder.get()); 3040 #include "llvm/IR/Instruction.def" 3041 default: 3042 return false; 3043 } 3044 } 3045 3046 bool IRTranslator::translate(const Constant &C, Register Reg) { 3047 // We only emit constants into the entry block from here. To prevent jumpy 3048 // debug behaviour remove debug line. 3049 if (auto CurrInstDL = CurBuilder->getDL()) 3050 EntryBuilder->setDebugLoc(DebugLoc()); 3051 3052 if (auto CI = dyn_cast<ConstantInt>(&C)) 3053 EntryBuilder->buildConstant(Reg, *CI); 3054 else if (auto CF = dyn_cast<ConstantFP>(&C)) 3055 EntryBuilder->buildFConstant(Reg, *CF); 3056 else if (isa<UndefValue>(C)) 3057 EntryBuilder->buildUndef(Reg); 3058 else if (isa<ConstantPointerNull>(C)) 3059 EntryBuilder->buildConstant(Reg, 0); 3060 else if (auto GV = dyn_cast<GlobalValue>(&C)) 3061 EntryBuilder->buildGlobalValue(Reg, GV); 3062 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 3063 if (!isa<FixedVectorType>(CAZ->getType())) 3064 return false; 3065 // Return the scalar if it is a <1 x Ty> vector. 3066 unsigned NumElts = CAZ->getElementCount().getFixedValue(); 3067 if (NumElts == 1) 3068 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder); 3069 SmallVector<Register, 4> Ops; 3070 for (unsigned I = 0; I < NumElts; ++I) { 3071 Constant &Elt = *CAZ->getElementValue(I); 3072 Ops.push_back(getOrCreateVReg(Elt)); 3073 } 3074 EntryBuilder->buildBuildVector(Reg, Ops); 3075 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 3076 // Return the scalar if it is a <1 x Ty> vector. 3077 if (CV->getNumElements() == 1) 3078 return translateCopy(C, *CV->getElementAsConstant(0), *EntryBuilder); 3079 SmallVector<Register, 4> Ops; 3080 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 3081 Constant &Elt = *CV->getElementAsConstant(i); 3082 Ops.push_back(getOrCreateVReg(Elt)); 3083 } 3084 EntryBuilder->buildBuildVector(Reg, Ops); 3085 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 3086 switch(CE->getOpcode()) { 3087 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 3088 case Instruction::OPCODE: \ 3089 return translate##OPCODE(*CE, *EntryBuilder.get()); 3090 #include "llvm/IR/Instruction.def" 3091 default: 3092 return false; 3093 } 3094 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 3095 if (CV->getNumOperands() == 1) 3096 return translateCopy(C, *CV->getOperand(0), *EntryBuilder); 3097 SmallVector<Register, 4> Ops; 3098 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 3099 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 3100 } 3101 EntryBuilder->buildBuildVector(Reg, Ops); 3102 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 3103 EntryBuilder->buildBlockAddress(Reg, BA); 3104 } else 3105 return false; 3106 3107 return true; 3108 } 3109 3110 bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB, 3111 MachineBasicBlock &MBB) { 3112 for (auto &BTB : SL->BitTestCases) { 3113 // Emit header first, if it wasn't already emitted. 3114 if (!BTB.Emitted) 3115 emitBitTestHeader(BTB, BTB.Parent); 3116 3117 BranchProbability UnhandledProb = BTB.Prob; 3118 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 3119 UnhandledProb -= BTB.Cases[j].ExtraProb; 3120 // Set the current basic block to the mbb we wish to insert the code into 3121 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB; 3122 // If all cases cover a contiguous range, it is not necessary to jump to 3123 // the default block after the last bit test fails. This is because the 3124 // range check during bit test header creation has guaranteed that every 3125 // case here doesn't go outside the range. In this case, there is no need 3126 // to perform the last bit test, as it will always be true. Instead, make 3127 // the second-to-last bit-test fall through to the target of the last bit 3128 // test, and delete the last bit test. 3129 3130 MachineBasicBlock *NextMBB; 3131 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3132 // Second-to-last bit-test with contiguous range: fall through to the 3133 // target of the final bit test. 3134 NextMBB = BTB.Cases[j + 1].TargetBB; 3135 } else if (j + 1 == ej) { 3136 // For the last bit test, fall through to Default. 3137 NextMBB = BTB.Default; 3138 } else { 3139 // Otherwise, fall through to the next bit test. 3140 NextMBB = BTB.Cases[j + 1].ThisBB; 3141 } 3142 3143 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB); 3144 3145 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3146 // We need to record the replacement phi edge here that normally 3147 // happens in emitBitTestCase before we delete the case, otherwise the 3148 // phi edge will be lost. 3149 addMachineCFGPred({BTB.Parent->getBasicBlock(), 3150 BTB.Cases[ej - 1].TargetBB->getBasicBlock()}, 3151 MBB); 3152 // Since we're not going to use the final bit test, remove it. 3153 BTB.Cases.pop_back(); 3154 break; 3155 } 3156 } 3157 // This is "default" BB. We have two jumps to it. From "header" BB and from 3158 // last "case" BB, unless the latter was skipped. 3159 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(), 3160 BTB.Default->getBasicBlock()}; 3161 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent); 3162 if (!BTB.ContiguousRange) { 3163 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB); 3164 } 3165 } 3166 SL->BitTestCases.clear(); 3167 3168 for (auto &JTCase : SL->JTCases) { 3169 // Emit header first, if it wasn't already emitted. 3170 if (!JTCase.first.Emitted) 3171 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 3172 3173 emitJumpTable(JTCase.second, JTCase.second.MBB); 3174 } 3175 SL->JTCases.clear(); 3176 3177 for (auto &SwCase : SL->SwitchCases) 3178 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder); 3179 SL->SwitchCases.clear(); 3180 3181 // Check if we need to generate stack-protector guard checks. 3182 StackProtector &SP = getAnalysis<StackProtector>(); 3183 if (SP.shouldEmitSDCheck(BB)) { 3184 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3185 bool FunctionBasedInstrumentation = 3186 TLI.getSSPStackGuardCheck(*MF->getFunction().getParent()); 3187 SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation); 3188 } 3189 // Handle stack protector. 3190 if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 3191 LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n"); 3192 return false; 3193 } else if (SPDescriptor.shouldEmitStackProtector()) { 3194 MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB(); 3195 MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB(); 3196 3197 // Find the split point to split the parent mbb. At the same time copy all 3198 // physical registers used in the tail of parent mbb into virtual registers 3199 // before the split point and back into physical registers after the split 3200 // point. This prevents us needing to deal with Live-ins and many other 3201 // register allocation issues caused by us splitting the parent mbb. The 3202 // register allocator will clean up said virtual copies later on. 3203 MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector( 3204 ParentMBB, *MF->getSubtarget().getInstrInfo()); 3205 3206 // Splice the terminator of ParentMBB into SuccessMBB. 3207 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint, 3208 ParentMBB->end()); 3209 3210 // Add compare/jump on neq/jump to the parent BB. 3211 if (!emitSPDescriptorParent(SPDescriptor, ParentMBB)) 3212 return false; 3213 3214 // CodeGen Failure MBB if we have not codegened it yet. 3215 MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB(); 3216 if (FailureMBB->empty()) { 3217 if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB)) 3218 return false; 3219 } 3220 3221 // Clear the Per-BB State. 3222 SPDescriptor.resetPerBBState(); 3223 } 3224 return true; 3225 } 3226 3227 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD, 3228 MachineBasicBlock *ParentBB) { 3229 CurBuilder->setInsertPt(*ParentBB, ParentBB->end()); 3230 // First create the loads to the guard/stack slot for the comparison. 3231 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3232 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 3233 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 3234 LLT PtrMemTy = getLLTForMVT(TLI.getPointerMemTy(*DL)); 3235 3236 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3237 int FI = MFI.getStackProtectorIndex(); 3238 3239 Register Guard; 3240 Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0); 3241 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3242 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 3243 3244 // Generate code to load the content of the guard slot. 3245 Register GuardVal = 3246 CurBuilder 3247 ->buildLoad(PtrMemTy, StackSlotPtr, 3248 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3249 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile) 3250 .getReg(0); 3251 3252 if (TLI.useStackGuardXorFP()) { 3253 LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented"); 3254 return false; 3255 } 3256 3257 // Retrieve guard check function, nullptr if instrumentation is inlined. 3258 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3259 // This path is currently untestable on GlobalISel, since the only platform 3260 // that needs this seems to be Windows, and we fall back on that currently. 3261 // The code still lives here in case that changes. 3262 // Silence warning about unused variable until the code below that uses 3263 // 'GuardCheckFn' is enabled. 3264 (void)GuardCheckFn; 3265 return false; 3266 #if 0 3267 // The target provides a guard check function to validate the guard value. 3268 // Generate a call to that function with the content of the guard slot as 3269 // argument. 3270 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3271 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3272 ISD::ArgFlagsTy Flags; 3273 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 3274 Flags.setInReg(); 3275 CallLowering::ArgInfo GuardArgInfo( 3276 {GuardVal, FnTy->getParamType(0), {Flags}}); 3277 3278 CallLowering::CallLoweringInfo Info; 3279 Info.OrigArgs.push_back(GuardArgInfo); 3280 Info.CallConv = GuardCheckFn->getCallingConv(); 3281 Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0); 3282 Info.OrigRet = {Register(), FnTy->getReturnType()}; 3283 if (!CLI->lowerCall(MIRBuilder, Info)) { 3284 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n"); 3285 return false; 3286 } 3287 return true; 3288 #endif 3289 } 3290 3291 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3292 // Otherwise, emit a volatile load to retrieve the stack guard value. 3293 if (TLI.useLoadStackGuardNode()) { 3294 Guard = 3295 MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits())); 3296 getStackGuard(Guard, *CurBuilder); 3297 } else { 3298 // TODO: test using android subtarget when we support @llvm.thread.pointer. 3299 const Value *IRGuard = TLI.getSDagStackGuard(M); 3300 Register GuardPtr = getOrCreateVReg(*IRGuard); 3301 3302 Guard = CurBuilder 3303 ->buildLoad(PtrMemTy, GuardPtr, 3304 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3305 MachineMemOperand::MOLoad | 3306 MachineMemOperand::MOVolatile) 3307 .getReg(0); 3308 } 3309 3310 // Perform the comparison. 3311 auto Cmp = 3312 CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal); 3313 // If the guard/stackslot do not equal, branch to failure MBB. 3314 CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB()); 3315 // Otherwise branch to success MBB. 3316 CurBuilder->buildBr(*SPD.getSuccessMBB()); 3317 return true; 3318 } 3319 3320 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD, 3321 MachineBasicBlock *FailureBB) { 3322 CurBuilder->setInsertPt(*FailureBB, FailureBB->end()); 3323 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3324 3325 const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL; 3326 const char *Name = TLI.getLibcallName(Libcall); 3327 3328 CallLowering::CallLoweringInfo Info; 3329 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 3330 Info.Callee = MachineOperand::CreateES(Name); 3331 Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()), 3332 0}; 3333 if (!CLI->lowerCall(*CurBuilder, Info)) { 3334 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n"); 3335 return false; 3336 } 3337 3338 // On PS4/PS5, the "return address" must still be within the calling 3339 // function, even if it's at the very end, so emit an explicit TRAP here. 3340 // WebAssembly needs an unreachable instruction after a non-returning call, 3341 // because the function return type can be different from __stack_chk_fail's 3342 // return type (void). 3343 const TargetMachine &TM = MF->getTarget(); 3344 if (TM.getTargetTriple().isPS() || TM.getTargetTriple().isWasm()) { 3345 LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n"); 3346 return false; 3347 } 3348 return true; 3349 } 3350 3351 void IRTranslator::finalizeFunction() { 3352 // Release the memory used by the different maps we 3353 // needed during the translation. 3354 PendingPHIs.clear(); 3355 VMap.reset(); 3356 FrameIndices.clear(); 3357 MachinePreds.clear(); 3358 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 3359 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 3360 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 3361 EntryBuilder.reset(); 3362 CurBuilder.reset(); 3363 FuncInfo.clear(); 3364 SPDescriptor.resetPerFunctionState(); 3365 } 3366 3367 /// Returns true if a BasicBlock \p BB within a variadic function contains a 3368 /// variadic musttail call. 3369 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 3370 if (!IsVarArg) 3371 return false; 3372 3373 // Walk the block backwards, because tail calls usually only appear at the end 3374 // of a block. 3375 return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) { 3376 const auto *CI = dyn_cast<CallInst>(&I); 3377 return CI && CI->isMustTailCall(); 3378 }); 3379 } 3380 3381 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 3382 MF = &CurMF; 3383 const Function &F = MF->getFunction(); 3384 GISelCSEAnalysisWrapper &Wrapper = 3385 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 3386 // Set the CSEConfig and run the analysis. 3387 GISelCSEInfo *CSEInfo = nullptr; 3388 TPC = &getAnalysis<TargetPassConfig>(); 3389 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 3390 ? EnableCSEInIRTranslator 3391 : TPC->isGISelCSEEnabled(); 3392 3393 if (EnableCSE) { 3394 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3395 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 3396 EntryBuilder->setCSEInfo(CSEInfo); 3397 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3398 CurBuilder->setCSEInfo(CSEInfo); 3399 } else { 3400 EntryBuilder = std::make_unique<MachineIRBuilder>(); 3401 CurBuilder = std::make_unique<MachineIRBuilder>(); 3402 } 3403 CLI = MF->getSubtarget().getCallLowering(); 3404 CurBuilder->setMF(*MF); 3405 EntryBuilder->setMF(*MF); 3406 MRI = &MF->getRegInfo(); 3407 DL = &F.getParent()->getDataLayout(); 3408 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 3409 const TargetMachine &TM = MF->getTarget(); 3410 TM.resetTargetOptions(F); 3411 EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F); 3412 FuncInfo.MF = MF; 3413 if (EnableOpts) { 3414 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3415 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 3416 } else { 3417 AA = nullptr; 3418 FuncInfo.BPI = nullptr; 3419 } 3420 3421 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 3422 MF->getFunction()); 3423 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 3424 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF); 3425 3426 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 3427 3428 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 3429 SL->init(TLI, TM, *DL); 3430 3431 3432 3433 assert(PendingPHIs.empty() && "stale PHIs"); 3434 3435 // Targets which want to use big endian can enable it using 3436 // enableBigEndian() 3437 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) { 3438 // Currently we don't properly handle big endian code. 3439 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3440 F.getSubprogram(), &F.getEntryBlock()); 3441 R << "unable to translate in big endian mode"; 3442 reportTranslationError(*MF, *TPC, *ORE, R); 3443 } 3444 3445 // Release the per-function state when we return, whether we succeeded or not. 3446 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 3447 3448 // Setup a separate basic-block for the arguments and constants 3449 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 3450 MF->push_back(EntryBB); 3451 EntryBuilder->setMBB(*EntryBB); 3452 3453 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 3454 SwiftError.setFunction(CurMF); 3455 SwiftError.createEntriesInEntryBlock(DbgLoc); 3456 3457 bool IsVarArg = F.isVarArg(); 3458 bool HasMustTailInVarArgFn = false; 3459 3460 // Create all blocks, in IR order, to preserve the layout. 3461 for (const BasicBlock &BB: F) { 3462 auto *&MBB = BBToMBB[&BB]; 3463 3464 MBB = MF->CreateMachineBasicBlock(&BB); 3465 MF->push_back(MBB); 3466 3467 if (BB.hasAddressTaken()) 3468 MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB)); 3469 3470 if (!HasMustTailInVarArgFn) 3471 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 3472 } 3473 3474 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 3475 3476 // Make our arguments/constants entry block fallthrough to the IR entry block. 3477 EntryBB->addSuccessor(&getMBB(F.front())); 3478 3479 if (CLI->fallBackToDAGISel(*MF)) { 3480 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3481 F.getSubprogram(), &F.getEntryBlock()); 3482 R << "unable to lower function: " << ore::NV("Prototype", F.getType()); 3483 reportTranslationError(*MF, *TPC, *ORE, R); 3484 return false; 3485 } 3486 3487 // Lower the actual args into this basic block. 3488 SmallVector<ArrayRef<Register>, 8> VRegArgs; 3489 for (const Argument &Arg: F.args()) { 3490 if (DL->getTypeStoreSize(Arg.getType()).isZero()) 3491 continue; // Don't handle zero sized types. 3492 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 3493 VRegArgs.push_back(VRegs); 3494 3495 if (Arg.hasSwiftErrorAttr()) { 3496 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 3497 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 3498 } 3499 } 3500 3501 if (!CLI->lowerFormalArguments(*EntryBuilder, F, VRegArgs, FuncInfo)) { 3502 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3503 F.getSubprogram(), &F.getEntryBlock()); 3504 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 3505 reportTranslationError(*MF, *TPC, *ORE, R); 3506 return false; 3507 } 3508 3509 // Need to visit defs before uses when translating instructions. 3510 GISelObserverWrapper WrapperObserver; 3511 if (EnableCSE && CSEInfo) 3512 WrapperObserver.addObserver(CSEInfo); 3513 { 3514 ReversePostOrderTraversal<const Function *> RPOT(&F); 3515 #ifndef NDEBUG 3516 DILocationVerifier Verifier; 3517 WrapperObserver.addObserver(&Verifier); 3518 #endif // ifndef NDEBUG 3519 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 3520 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 3521 for (const BasicBlock *BB : RPOT) { 3522 MachineBasicBlock &MBB = getMBB(*BB); 3523 // Set the insertion point of all the following translations to 3524 // the end of this basic block. 3525 CurBuilder->setMBB(MBB); 3526 HasTailCall = false; 3527 for (const Instruction &Inst : *BB) { 3528 // If we translated a tail call in the last step, then we know 3529 // everything after the call is either a return, or something that is 3530 // handled by the call itself. (E.g. a lifetime marker or assume 3531 // intrinsic.) In this case, we should stop translating the block and 3532 // move on. 3533 if (HasTailCall) 3534 break; 3535 #ifndef NDEBUG 3536 Verifier.setCurrentInst(&Inst); 3537 #endif // ifndef NDEBUG 3538 if (translate(Inst)) 3539 continue; 3540 3541 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3542 Inst.getDebugLoc(), BB); 3543 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 3544 3545 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 3546 std::string InstStrStorage; 3547 raw_string_ostream InstStr(InstStrStorage); 3548 InstStr << Inst; 3549 3550 R << ": '" << InstStr.str() << "'"; 3551 } 3552 3553 reportTranslationError(*MF, *TPC, *ORE, R); 3554 return false; 3555 } 3556 3557 if (!finalizeBasicBlock(*BB, MBB)) { 3558 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3559 BB->getTerminator()->getDebugLoc(), BB); 3560 R << "unable to translate basic block"; 3561 reportTranslationError(*MF, *TPC, *ORE, R); 3562 return false; 3563 } 3564 } 3565 #ifndef NDEBUG 3566 WrapperObserver.removeObserver(&Verifier); 3567 #endif 3568 } 3569 3570 finishPendingPhis(); 3571 3572 SwiftError.propagateVRegs(); 3573 3574 // Merge the argument lowering and constants block with its single 3575 // successor, the LLVM-IR entry block. We want the basic block to 3576 // be maximal. 3577 assert(EntryBB->succ_size() == 1 && 3578 "Custom BB used for lowering should have only one successor"); 3579 // Get the successor of the current entry block. 3580 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 3581 assert(NewEntryBB.pred_size() == 1 && 3582 "LLVM-IR entry block has a predecessor!?"); 3583 // Move all the instruction from the current entry block to the 3584 // new entry block. 3585 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 3586 EntryBB->end()); 3587 3588 // Update the live-in information for the new entry block. 3589 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 3590 NewEntryBB.addLiveIn(LiveIn); 3591 NewEntryBB.sortUniqueLiveIns(); 3592 3593 // Get rid of the now empty basic block. 3594 EntryBB->removeSuccessor(&NewEntryBB); 3595 MF->remove(EntryBB); 3596 MF->deleteMachineBasicBlock(EntryBB); 3597 3598 assert(&MF->front() == &NewEntryBB && 3599 "New entry wasn't next in the list of basic block!"); 3600 3601 // Initialize stack protector information. 3602 StackProtector &SP = getAnalysis<StackProtector>(); 3603 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 3604 3605 return false; 3606 } 3607