1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 26 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 27 #include "llvm/CodeGen/LowLevelType.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/RuntimeLibcalls.h" 37 #include "llvm/CodeGen/StackProtector.h" 38 #include "llvm/CodeGen/SwitchLoweringUtils.h" 39 #include "llvm/CodeGen/TargetFrameLowering.h" 40 #include "llvm/CodeGen/TargetInstrInfo.h" 41 #include "llvm/CodeGen/TargetLowering.h" 42 #include "llvm/CodeGen/TargetPassConfig.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CFG.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfo.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/DiagnosticInfo.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/InlineAsm.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/Metadata.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/InitializePasses.h" 67 #include "llvm/MC/MCContext.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CodeGen.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/ErrorHandling.h" 73 #include "llvm/Support/LowLevelTypeImpl.h" 74 #include "llvm/Support/MathExtras.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Target/TargetIntrinsicInfo.h" 77 #include "llvm/Target/TargetMachine.h" 78 #include "llvm/Transforms/Utils/MemoryOpRemark.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <string> 85 #include <utility> 86 #include <vector> 87 88 #define DEBUG_TYPE "irtranslator" 89 90 using namespace llvm; 91 92 static cl::opt<bool> 93 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 94 cl::desc("Should enable CSE in irtranslator"), 95 cl::Optional, cl::init(false)); 96 char IRTranslator::ID = 0; 97 98 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 99 false, false) 100 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 101 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 102 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 103 INITIALIZE_PASS_DEPENDENCY(StackProtector) 104 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 105 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 106 false, false) 107 108 static void reportTranslationError(MachineFunction &MF, 109 const TargetPassConfig &TPC, 110 OptimizationRemarkEmitter &ORE, 111 OptimizationRemarkMissed &R) { 112 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 113 114 // Print the function name explicitly if we don't have a debug location (which 115 // makes the diagnostic less useful) or if we're going to emit a raw error. 116 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 117 R << (" (in function: " + MF.getName() + ")").str(); 118 119 if (TPC.isGlobalISelAbortEnabled()) 120 report_fatal_error(Twine(R.getMsg())); 121 else 122 ORE.emit(R); 123 } 124 125 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel) 126 : MachineFunctionPass(ID), OptLevel(optlevel) {} 127 128 #ifndef NDEBUG 129 namespace { 130 /// Verify that every instruction created has the same DILocation as the 131 /// instruction being translated. 132 class DILocationVerifier : public GISelChangeObserver { 133 const Instruction *CurrInst = nullptr; 134 135 public: 136 DILocationVerifier() = default; 137 ~DILocationVerifier() = default; 138 139 const Instruction *getCurrentInst() const { return CurrInst; } 140 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 141 142 void erasingInstr(MachineInstr &MI) override {} 143 void changingInstr(MachineInstr &MI) override {} 144 void changedInstr(MachineInstr &MI) override {} 145 146 void createdInstr(MachineInstr &MI) override { 147 assert(getCurrentInst() && "Inserted instruction without a current MI"); 148 149 // Only print the check message if we're actually checking it. 150 #ifndef NDEBUG 151 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 152 << " was copied to " << MI); 153 #endif 154 // We allow insts in the entry block to have a debug loc line of 0 because 155 // they could have originated from constants, and we don't want a jumpy 156 // debug experience. 157 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 158 MI.getDebugLoc().getLine() == 0) && 159 "Line info was not transferred to all instructions"); 160 } 161 }; 162 } // namespace 163 #endif // ifndef NDEBUG 164 165 166 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 167 AU.addRequired<StackProtector>(); 168 AU.addRequired<TargetPassConfig>(); 169 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 170 if (OptLevel != CodeGenOpt::None) 171 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 172 AU.addRequired<TargetLibraryInfoWrapperPass>(); 173 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 174 getSelectionDAGFallbackAnalysisUsage(AU); 175 MachineFunctionPass::getAnalysisUsage(AU); 176 } 177 178 IRTranslator::ValueToVRegInfo::VRegListT & 179 IRTranslator::allocateVRegs(const Value &Val) { 180 auto VRegsIt = VMap.findVRegs(Val); 181 if (VRegsIt != VMap.vregs_end()) 182 return *VRegsIt->second; 183 auto *Regs = VMap.getVRegs(Val); 184 auto *Offsets = VMap.getOffsets(Val); 185 SmallVector<LLT, 4> SplitTys; 186 computeValueLLTs(*DL, *Val.getType(), SplitTys, 187 Offsets->empty() ? Offsets : nullptr); 188 for (unsigned i = 0; i < SplitTys.size(); ++i) 189 Regs->push_back(0); 190 return *Regs; 191 } 192 193 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 194 auto VRegsIt = VMap.findVRegs(Val); 195 if (VRegsIt != VMap.vregs_end()) 196 return *VRegsIt->second; 197 198 if (Val.getType()->isVoidTy()) 199 return *VMap.getVRegs(Val); 200 201 // Create entry for this type. 202 auto *VRegs = VMap.getVRegs(Val); 203 auto *Offsets = VMap.getOffsets(Val); 204 205 assert(Val.getType()->isSized() && 206 "Don't know how to create an empty vreg"); 207 208 SmallVector<LLT, 4> SplitTys; 209 computeValueLLTs(*DL, *Val.getType(), SplitTys, 210 Offsets->empty() ? Offsets : nullptr); 211 212 if (!isa<Constant>(Val)) { 213 for (auto Ty : SplitTys) 214 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 215 return *VRegs; 216 } 217 218 if (Val.getType()->isAggregateType()) { 219 // UndefValue, ConstantAggregateZero 220 auto &C = cast<Constant>(Val); 221 unsigned Idx = 0; 222 while (auto Elt = C.getAggregateElement(Idx++)) { 223 auto EltRegs = getOrCreateVRegs(*Elt); 224 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 225 } 226 } else { 227 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 228 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 229 bool Success = translate(cast<Constant>(Val), VRegs->front()); 230 if (!Success) { 231 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 232 MF->getFunction().getSubprogram(), 233 &MF->getFunction().getEntryBlock()); 234 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 235 reportTranslationError(*MF, *TPC, *ORE, R); 236 return *VRegs; 237 } 238 } 239 240 return *VRegs; 241 } 242 243 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 244 auto MapEntry = FrameIndices.find(&AI); 245 if (MapEntry != FrameIndices.end()) 246 return MapEntry->second; 247 248 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 249 uint64_t Size = 250 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 251 252 // Always allocate at least one byte. 253 Size = std::max<uint64_t>(Size, 1u); 254 255 int &FI = FrameIndices[&AI]; 256 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI); 257 return FI; 258 } 259 260 Align IRTranslator::getMemOpAlign(const Instruction &I) { 261 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) 262 return SI->getAlign(); 263 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) 264 return LI->getAlign(); 265 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 266 return AI->getAlign(); 267 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) 268 return AI->getAlign(); 269 270 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 271 R << "unable to translate memop: " << ore::NV("Opcode", &I); 272 reportTranslationError(*MF, *TPC, *ORE, R); 273 return Align(1); 274 } 275 276 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 277 MachineBasicBlock *&MBB = BBToMBB[&BB]; 278 assert(MBB && "BasicBlock was not encountered before"); 279 return *MBB; 280 } 281 282 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 283 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 284 MachinePreds[Edge].push_back(NewPred); 285 } 286 287 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 288 MachineIRBuilder &MIRBuilder) { 289 // Get or create a virtual register for each value. 290 // Unless the value is a Constant => loadimm cst? 291 // or inline constant each time? 292 // Creation of a virtual register needs to have a size. 293 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 294 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 295 Register Res = getOrCreateVReg(U); 296 uint16_t Flags = 0; 297 if (isa<Instruction>(U)) { 298 const Instruction &I = cast<Instruction>(U); 299 Flags = MachineInstr::copyFlagsFromInstruction(I); 300 } 301 302 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 303 return true; 304 } 305 306 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U, 307 MachineIRBuilder &MIRBuilder) { 308 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 309 Register Res = getOrCreateVReg(U); 310 uint16_t Flags = 0; 311 if (isa<Instruction>(U)) { 312 const Instruction &I = cast<Instruction>(U); 313 Flags = MachineInstr::copyFlagsFromInstruction(I); 314 } 315 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags); 316 return true; 317 } 318 319 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 320 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder); 321 } 322 323 bool IRTranslator::translateCompare(const User &U, 324 MachineIRBuilder &MIRBuilder) { 325 auto *CI = dyn_cast<CmpInst>(&U); 326 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 327 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 328 Register Res = getOrCreateVReg(U); 329 CmpInst::Predicate Pred = 330 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 331 cast<ConstantExpr>(U).getPredicate()); 332 if (CmpInst::isIntPredicate(Pred)) 333 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 334 else if (Pred == CmpInst::FCMP_FALSE) 335 MIRBuilder.buildCopy( 336 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 337 else if (Pred == CmpInst::FCMP_TRUE) 338 MIRBuilder.buildCopy( 339 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 340 else { 341 uint16_t Flags = 0; 342 if (CI) 343 Flags = MachineInstr::copyFlagsFromInstruction(*CI); 344 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags); 345 } 346 347 return true; 348 } 349 350 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 351 const ReturnInst &RI = cast<ReturnInst>(U); 352 const Value *Ret = RI.getReturnValue(); 353 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 354 Ret = nullptr; 355 356 ArrayRef<Register> VRegs; 357 if (Ret) 358 VRegs = getOrCreateVRegs(*Ret); 359 360 Register SwiftErrorVReg = 0; 361 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 362 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 363 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 364 } 365 366 // The target may mess up with the insertion point, but 367 // this is not important as a return is the last instruction 368 // of the block anyway. 369 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg); 370 } 371 372 void IRTranslator::emitBranchForMergedCondition( 373 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 374 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 375 BranchProbability TProb, BranchProbability FProb, bool InvertCond) { 376 // If the leaf of the tree is a comparison, merge the condition into 377 // the caseblock. 378 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 379 CmpInst::Predicate Condition; 380 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 381 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 382 } else { 383 const FCmpInst *FC = cast<FCmpInst>(Cond); 384 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 385 } 386 387 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0), 388 BOp->getOperand(1), nullptr, TBB, FBB, CurBB, 389 CurBuilder->getDebugLoc(), TProb, FProb); 390 SL->SwitchCases.push_back(CB); 391 return; 392 } 393 394 // Create a CaseBlock record representing this branch. 395 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 396 SwitchCG::CaseBlock CB( 397 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()), 398 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb); 399 SL->SwitchCases.push_back(CB); 400 } 401 402 static bool isValInBlock(const Value *V, const BasicBlock *BB) { 403 if (const Instruction *I = dyn_cast<Instruction>(V)) 404 return I->getParent() == BB; 405 return true; 406 } 407 408 void IRTranslator::findMergedConditions( 409 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 410 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 411 Instruction::BinaryOps Opc, BranchProbability TProb, 412 BranchProbability FProb, bool InvertCond) { 413 using namespace PatternMatch; 414 assert((Opc == Instruction::And || Opc == Instruction::Or) && 415 "Expected Opc to be AND/OR"); 416 // Skip over not part of the tree and remember to invert op and operands at 417 // next level. 418 Value *NotCond; 419 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 420 isValInBlock(NotCond, CurBB->getBasicBlock())) { 421 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 422 !InvertCond); 423 return; 424 } 425 426 const Instruction *BOp = dyn_cast<Instruction>(Cond); 427 const Value *BOpOp0, *BOpOp1; 428 // Compute the effective opcode for Cond, taking into account whether it needs 429 // to be inverted, e.g. 430 // and (not (or A, B)), C 431 // gets lowered as 432 // and (and (not A, not B), C) 433 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 434 if (BOp) { 435 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 436 ? Instruction::And 437 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 438 ? Instruction::Or 439 : (Instruction::BinaryOps)0); 440 if (InvertCond) { 441 if (BOpc == Instruction::And) 442 BOpc = Instruction::Or; 443 else if (BOpc == Instruction::Or) 444 BOpc = Instruction::And; 445 } 446 } 447 448 // If this node is not part of the or/and tree, emit it as a branch. 449 // Note that all nodes in the tree should have same opcode. 450 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 451 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 452 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) || 453 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) { 454 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb, 455 InvertCond); 456 return; 457 } 458 459 // Create TmpBB after CurBB. 460 MachineFunction::iterator BBI(CurBB); 461 MachineBasicBlock *TmpBB = 462 MF->CreateMachineBasicBlock(CurBB->getBasicBlock()); 463 CurBB->getParent()->insert(++BBI, TmpBB); 464 465 if (Opc == Instruction::Or) { 466 // Codegen X | Y as: 467 // BB1: 468 // jmp_if_X TBB 469 // jmp TmpBB 470 // TmpBB: 471 // jmp_if_Y TBB 472 // jmp FBB 473 // 474 475 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 476 // The requirement is that 477 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 478 // = TrueProb for original BB. 479 // Assuming the original probabilities are A and B, one choice is to set 480 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 481 // A/(1+B) and 2B/(1+B). This choice assumes that 482 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 483 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 484 // TmpBB, but the math is more complicated. 485 486 auto NewTrueProb = TProb / 2; 487 auto NewFalseProb = TProb / 2 + FProb; 488 // Emit the LHS condition. 489 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 490 NewFalseProb, InvertCond); 491 492 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 493 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 494 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 495 // Emit the RHS condition into TmpBB. 496 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 497 Probs[1], InvertCond); 498 } else { 499 assert(Opc == Instruction::And && "Unknown merge op!"); 500 // Codegen X & Y as: 501 // BB1: 502 // jmp_if_X TmpBB 503 // jmp FBB 504 // TmpBB: 505 // jmp_if_Y TBB 506 // jmp FBB 507 // 508 // This requires creation of TmpBB after CurBB. 509 510 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 511 // The requirement is that 512 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 513 // = FalseProb for original BB. 514 // Assuming the original probabilities are A and B, one choice is to set 515 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 516 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 517 // TrueProb for BB1 * FalseProb for TmpBB. 518 519 auto NewTrueProb = TProb + FProb / 2; 520 auto NewFalseProb = FProb / 2; 521 // Emit the LHS condition. 522 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 523 NewFalseProb, InvertCond); 524 525 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 526 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 527 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 528 // Emit the RHS condition into TmpBB. 529 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 530 Probs[1], InvertCond); 531 } 532 } 533 534 bool IRTranslator::shouldEmitAsBranches( 535 const std::vector<SwitchCG::CaseBlock> &Cases) { 536 // For multiple cases, it's better to emit as branches. 537 if (Cases.size() != 2) 538 return true; 539 540 // If this is two comparisons of the same values or'd or and'd together, they 541 // will get folded into a single comparison, so don't emit two blocks. 542 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 543 Cases[0].CmpRHS == Cases[1].CmpRHS) || 544 (Cases[0].CmpRHS == Cases[1].CmpLHS && 545 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 546 return false; 547 } 548 549 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 550 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 551 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 552 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred && 553 isa<Constant>(Cases[0].CmpRHS) && 554 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 555 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ && 556 Cases[0].TrueBB == Cases[1].ThisBB) 557 return false; 558 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE && 559 Cases[0].FalseBB == Cases[1].ThisBB) 560 return false; 561 } 562 563 return true; 564 } 565 566 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 567 const BranchInst &BrInst = cast<BranchInst>(U); 568 auto &CurMBB = MIRBuilder.getMBB(); 569 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0)); 570 571 if (BrInst.isUnconditional()) { 572 // If the unconditional target is the layout successor, fallthrough. 573 if (OptLevel == CodeGenOpt::None || !CurMBB.isLayoutSuccessor(Succ0MBB)) 574 MIRBuilder.buildBr(*Succ0MBB); 575 576 // Link successors. 577 for (const BasicBlock *Succ : successors(&BrInst)) 578 CurMBB.addSuccessor(&getMBB(*Succ)); 579 return true; 580 } 581 582 // If this condition is one of the special cases we handle, do special stuff 583 // now. 584 const Value *CondVal = BrInst.getCondition(); 585 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1)); 586 587 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 588 589 // If this is a series of conditions that are or'd or and'd together, emit 590 // this as a sequence of branches instead of setcc's with and/or operations. 591 // As long as jumps are not expensive (exceptions for multi-use logic ops, 592 // unpredictable branches, and vector extracts because those jumps are likely 593 // expensive for any target), this should improve performance. 594 // For example, instead of something like: 595 // cmp A, B 596 // C = seteq 597 // cmp D, E 598 // F = setle 599 // or C, F 600 // jnz foo 601 // Emit: 602 // cmp A, B 603 // je foo 604 // cmp D, E 605 // jle foo 606 using namespace PatternMatch; 607 const Instruction *CondI = dyn_cast<Instruction>(CondVal); 608 if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() && 609 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) { 610 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 611 Value *Vec; 612 const Value *BOp0, *BOp1; 613 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 614 Opcode = Instruction::And; 615 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 616 Opcode = Instruction::Or; 617 618 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 619 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 620 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode, 621 getEdgeProbability(&CurMBB, Succ0MBB), 622 getEdgeProbability(&CurMBB, Succ1MBB), 623 /*InvertCond=*/false); 624 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!"); 625 626 // Allow some cases to be rejected. 627 if (shouldEmitAsBranches(SL->SwitchCases)) { 628 // Emit the branch for this block. 629 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder); 630 SL->SwitchCases.erase(SL->SwitchCases.begin()); 631 return true; 632 } 633 634 // Okay, we decided not to do this, remove any inserted MBB's and clear 635 // SwitchCases. 636 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I) 637 MF->erase(SL->SwitchCases[I].ThisBB); 638 639 SL->SwitchCases.clear(); 640 } 641 } 642 643 // Create a CaseBlock record representing this branch. 644 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal, 645 ConstantInt::getTrue(MF->getFunction().getContext()), 646 nullptr, Succ0MBB, Succ1MBB, &CurMBB, 647 CurBuilder->getDebugLoc()); 648 649 // Use emitSwitchCase to actually insert the fast branch sequence for this 650 // cond branch. 651 emitSwitchCase(CB, &CurMBB, *CurBuilder); 652 return true; 653 } 654 655 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 656 MachineBasicBlock *Dst, 657 BranchProbability Prob) { 658 if (!FuncInfo.BPI) { 659 Src->addSuccessorWithoutProb(Dst); 660 return; 661 } 662 if (Prob.isUnknown()) 663 Prob = getEdgeProbability(Src, Dst); 664 Src->addSuccessor(Dst, Prob); 665 } 666 667 BranchProbability 668 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 669 const MachineBasicBlock *Dst) const { 670 const BasicBlock *SrcBB = Src->getBasicBlock(); 671 const BasicBlock *DstBB = Dst->getBasicBlock(); 672 if (!FuncInfo.BPI) { 673 // If BPI is not available, set the default probability as 1 / N, where N is 674 // the number of successors. 675 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 676 return BranchProbability(1, SuccSize); 677 } 678 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 679 } 680 681 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 682 using namespace SwitchCG; 683 // Extract cases from the switch. 684 const SwitchInst &SI = cast<SwitchInst>(U); 685 BranchProbabilityInfo *BPI = FuncInfo.BPI; 686 CaseClusterVector Clusters; 687 Clusters.reserve(SI.getNumCases()); 688 for (auto &I : SI.cases()) { 689 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 690 assert(Succ && "Could not find successor mbb in mapping"); 691 const ConstantInt *CaseVal = I.getCaseValue(); 692 BranchProbability Prob = 693 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 694 : BranchProbability(1, SI.getNumCases() + 1); 695 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 696 } 697 698 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 699 700 // Cluster adjacent cases with the same destination. We do this at all 701 // optimization levels because it's cheap to do and will make codegen faster 702 // if there are many clusters. 703 sortAndRangeify(Clusters); 704 705 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 706 707 // If there is only the default destination, jump there directly. 708 if (Clusters.empty()) { 709 SwitchMBB->addSuccessor(DefaultMBB); 710 if (DefaultMBB != SwitchMBB->getNextNode()) 711 MIB.buildBr(*DefaultMBB); 712 return true; 713 } 714 715 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 716 SL->findBitTestClusters(Clusters, &SI); 717 718 LLVM_DEBUG({ 719 dbgs() << "Case clusters: "; 720 for (const CaseCluster &C : Clusters) { 721 if (C.Kind == CC_JumpTable) 722 dbgs() << "JT:"; 723 if (C.Kind == CC_BitTests) 724 dbgs() << "BT:"; 725 726 C.Low->getValue().print(dbgs(), true); 727 if (C.Low != C.High) { 728 dbgs() << '-'; 729 C.High->getValue().print(dbgs(), true); 730 } 731 dbgs() << ' '; 732 } 733 dbgs() << '\n'; 734 }); 735 736 assert(!Clusters.empty()); 737 SwitchWorkList WorkList; 738 CaseClusterIt First = Clusters.begin(); 739 CaseClusterIt Last = Clusters.end() - 1; 740 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 741 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 742 743 // FIXME: At the moment we don't do any splitting optimizations here like 744 // SelectionDAG does, so this worklist only has one entry. 745 while (!WorkList.empty()) { 746 SwitchWorkListItem W = WorkList.pop_back_val(); 747 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 748 return false; 749 } 750 return true; 751 } 752 753 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 754 MachineBasicBlock *MBB) { 755 // Emit the code for the jump table 756 assert(JT.Reg != -1U && "Should lower JT Header first!"); 757 MachineIRBuilder MIB(*MBB->getParent()); 758 MIB.setMBB(*MBB); 759 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 760 761 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 762 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 763 764 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 765 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 766 } 767 768 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 769 SwitchCG::JumpTableHeader &JTH, 770 MachineBasicBlock *HeaderBB) { 771 MachineIRBuilder MIB(*HeaderBB->getParent()); 772 MIB.setMBB(*HeaderBB); 773 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 774 775 const Value &SValue = *JTH.SValue; 776 // Subtract the lowest switch case value from the value being switched on. 777 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 778 Register SwitchOpReg = getOrCreateVReg(SValue); 779 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 780 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 781 782 // This value may be smaller or larger than the target's pointer type, and 783 // therefore require extension or truncating. 784 Type *PtrIRTy = SValue.getType()->getPointerTo(); 785 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 786 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 787 788 JT.Reg = Sub.getReg(0); 789 790 if (JTH.FallthroughUnreachable) { 791 if (JT.MBB != HeaderBB->getNextNode()) 792 MIB.buildBr(*JT.MBB); 793 return true; 794 } 795 796 // Emit the range check for the jump table, and branch to the default block 797 // for the switch statement if the value being switched on exceeds the 798 // largest case in the switch. 799 auto Cst = getOrCreateVReg( 800 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 801 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 802 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 803 804 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 805 806 // Avoid emitting unnecessary branches to the next block. 807 if (JT.MBB != HeaderBB->getNextNode()) 808 BrCond = MIB.buildBr(*JT.MBB); 809 return true; 810 } 811 812 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 813 MachineBasicBlock *SwitchBB, 814 MachineIRBuilder &MIB) { 815 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 816 Register Cond; 817 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 818 MIB.setDebugLoc(CB.DbgLoc); 819 MIB.setMBB(*CB.ThisBB); 820 821 if (CB.PredInfo.NoCmp) { 822 // Branch or fall through to TrueBB. 823 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 824 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 825 CB.ThisBB); 826 CB.ThisBB->normalizeSuccProbs(); 827 if (CB.TrueBB != CB.ThisBB->getNextNode()) 828 MIB.buildBr(*CB.TrueBB); 829 MIB.setDebugLoc(OldDbgLoc); 830 return; 831 } 832 833 const LLT i1Ty = LLT::scalar(1); 834 // Build the compare. 835 if (!CB.CmpMHS) { 836 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS); 837 // For conditional branch lowering, we might try to do something silly like 838 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so, 839 // just re-use the existing condition vreg. 840 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && 841 CI->getZExtValue() == 1 && CB.PredInfo.Pred == CmpInst::ICMP_EQ) { 842 Cond = CondLHS; 843 } else { 844 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 845 if (CmpInst::isFPPredicate(CB.PredInfo.Pred)) 846 Cond = 847 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 848 else 849 Cond = 850 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 851 } 852 } else { 853 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 854 "Can only handle SLE ranges"); 855 856 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 857 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 858 859 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 860 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 861 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 862 Cond = 863 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 864 } else { 865 const LLT CmpTy = MRI->getType(CmpOpReg); 866 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 867 auto Diff = MIB.buildConstant(CmpTy, High - Low); 868 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 869 } 870 } 871 872 // Update successor info 873 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 874 875 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 876 CB.ThisBB); 877 878 // TrueBB and FalseBB are always different unless the incoming IR is 879 // degenerate. This only happens when running llc on weird IR. 880 if (CB.TrueBB != CB.FalseBB) 881 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 882 CB.ThisBB->normalizeSuccProbs(); 883 884 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 885 CB.ThisBB); 886 887 MIB.buildBrCond(Cond, *CB.TrueBB); 888 MIB.buildBr(*CB.FalseBB); 889 MIB.setDebugLoc(OldDbgLoc); 890 } 891 892 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 893 MachineBasicBlock *SwitchMBB, 894 MachineBasicBlock *CurMBB, 895 MachineBasicBlock *DefaultMBB, 896 MachineIRBuilder &MIB, 897 MachineFunction::iterator BBI, 898 BranchProbability UnhandledProbs, 899 SwitchCG::CaseClusterIt I, 900 MachineBasicBlock *Fallthrough, 901 bool FallthroughUnreachable) { 902 using namespace SwitchCG; 903 MachineFunction *CurMF = SwitchMBB->getParent(); 904 // FIXME: Optimize away range check based on pivot comparisons. 905 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 906 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 907 BranchProbability DefaultProb = W.DefaultProb; 908 909 // The jump block hasn't been inserted yet; insert it here. 910 MachineBasicBlock *JumpMBB = JT->MBB; 911 CurMF->insert(BBI, JumpMBB); 912 913 // Since the jump table block is separate from the switch block, we need 914 // to keep track of it as a machine predecessor to the default block, 915 // otherwise we lose the phi edges. 916 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 917 CurMBB); 918 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 919 JumpMBB); 920 921 auto JumpProb = I->Prob; 922 auto FallthroughProb = UnhandledProbs; 923 924 // If the default statement is a target of the jump table, we evenly 925 // distribute the default probability to successors of CurMBB. Also 926 // update the probability on the edge from JumpMBB to Fallthrough. 927 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 928 SE = JumpMBB->succ_end(); 929 SI != SE; ++SI) { 930 if (*SI == DefaultMBB) { 931 JumpProb += DefaultProb / 2; 932 FallthroughProb -= DefaultProb / 2; 933 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 934 JumpMBB->normalizeSuccProbs(); 935 } else { 936 // Also record edges from the jump table block to it's successors. 937 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 938 JumpMBB); 939 } 940 } 941 942 if (FallthroughUnreachable) 943 JTH->FallthroughUnreachable = true; 944 945 if (!JTH->FallthroughUnreachable) 946 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 947 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 948 CurMBB->normalizeSuccProbs(); 949 950 // The jump table header will be inserted in our current block, do the 951 // range check, and fall through to our fallthrough block. 952 JTH->HeaderBB = CurMBB; 953 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 954 955 // If we're in the right place, emit the jump table header right now. 956 if (CurMBB == SwitchMBB) { 957 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 958 return false; 959 JTH->Emitted = true; 960 } 961 return true; 962 } 963 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 964 Value *Cond, 965 MachineBasicBlock *Fallthrough, 966 bool FallthroughUnreachable, 967 BranchProbability UnhandledProbs, 968 MachineBasicBlock *CurMBB, 969 MachineIRBuilder &MIB, 970 MachineBasicBlock *SwitchMBB) { 971 using namespace SwitchCG; 972 const Value *RHS, *LHS, *MHS; 973 CmpInst::Predicate Pred; 974 if (I->Low == I->High) { 975 // Check Cond == I->Low. 976 Pred = CmpInst::ICMP_EQ; 977 LHS = Cond; 978 RHS = I->Low; 979 MHS = nullptr; 980 } else { 981 // Check I->Low <= Cond <= I->High. 982 Pred = CmpInst::ICMP_SLE; 983 LHS = I->Low; 984 MHS = Cond; 985 RHS = I->High; 986 } 987 988 // If Fallthrough is unreachable, fold away the comparison. 989 // The false probability is the sum of all unhandled cases. 990 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 991 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 992 993 emitSwitchCase(CB, SwitchMBB, MIB); 994 return true; 995 } 996 997 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B, 998 MachineBasicBlock *SwitchBB) { 999 MachineIRBuilder &MIB = *CurBuilder; 1000 MIB.setMBB(*SwitchBB); 1001 1002 // Subtract the minimum value. 1003 Register SwitchOpReg = getOrCreateVReg(*B.SValue); 1004 1005 LLT SwitchOpTy = MRI->getType(SwitchOpReg); 1006 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0); 1007 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg); 1008 1009 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 1010 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1011 1012 LLT MaskTy = SwitchOpTy; 1013 if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() || 1014 !isPowerOf2_32(MaskTy.getSizeInBits())) 1015 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1016 else { 1017 // Ensure that the type will fit the mask value. 1018 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) { 1019 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) { 1020 // Switch table case range are encoded into series of masks. 1021 // Just use pointer type, it's guaranteed to fit. 1022 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1023 break; 1024 } 1025 } 1026 } 1027 Register SubReg = RangeSub.getReg(0); 1028 if (SwitchOpTy != MaskTy) 1029 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0); 1030 1031 B.RegVT = getMVTForLLT(MaskTy); 1032 B.Reg = SubReg; 1033 1034 MachineBasicBlock *MBB = B.Cases[0].ThisBB; 1035 1036 if (!B.FallthroughUnreachable) 1037 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 1038 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 1039 1040 SwitchBB->normalizeSuccProbs(); 1041 1042 if (!B.FallthroughUnreachable) { 1043 // Conditional branch to the default block. 1044 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range); 1045 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1), 1046 RangeSub, RangeCst); 1047 MIB.buildBrCond(RangeCmp, *B.Default); 1048 } 1049 1050 // Avoid emitting unnecessary branches to the next block. 1051 if (MBB != SwitchBB->getNextNode()) 1052 MIB.buildBr(*MBB); 1053 } 1054 1055 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB, 1056 MachineBasicBlock *NextMBB, 1057 BranchProbability BranchProbToNext, 1058 Register Reg, SwitchCG::BitTestCase &B, 1059 MachineBasicBlock *SwitchBB) { 1060 MachineIRBuilder &MIB = *CurBuilder; 1061 MIB.setMBB(*SwitchBB); 1062 1063 LLT SwitchTy = getLLTForMVT(BB.RegVT); 1064 Register Cmp; 1065 unsigned PopCount = countPopulation(B.Mask); 1066 if (PopCount == 1) { 1067 // Testing for a single bit; just compare the shift count with what it 1068 // would need to be to shift a 1 bit in that position. 1069 auto MaskTrailingZeros = 1070 MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask)); 1071 Cmp = 1072 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros) 1073 .getReg(0); 1074 } else if (PopCount == BB.Range) { 1075 // There is only one zero bit in the range, test for it directly. 1076 auto MaskTrailingOnes = 1077 MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask)); 1078 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes) 1079 .getReg(0); 1080 } else { 1081 // Make desired shift. 1082 auto CstOne = MIB.buildConstant(SwitchTy, 1); 1083 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg); 1084 1085 // Emit bit tests and jumps. 1086 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask); 1087 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask); 1088 auto CstZero = MIB.buildConstant(SwitchTy, 0); 1089 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero) 1090 .getReg(0); 1091 } 1092 1093 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 1094 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 1095 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 1096 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 1097 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 1098 // one as they are relative probabilities (and thus work more like weights), 1099 // and hence we need to normalize them to let the sum of them become one. 1100 SwitchBB->normalizeSuccProbs(); 1101 1102 // Record the fact that the IR edge from the header to the bit test target 1103 // will go through our new block. Neeeded for PHIs to have nodes added. 1104 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()}, 1105 SwitchBB); 1106 1107 MIB.buildBrCond(Cmp, *B.TargetBB); 1108 1109 // Avoid emitting unnecessary branches to the next block. 1110 if (NextMBB != SwitchBB->getNextNode()) 1111 MIB.buildBr(*NextMBB); 1112 } 1113 1114 bool IRTranslator::lowerBitTestWorkItem( 1115 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB, 1116 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB, 1117 MachineIRBuilder &MIB, MachineFunction::iterator BBI, 1118 BranchProbability DefaultProb, BranchProbability UnhandledProbs, 1119 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough, 1120 bool FallthroughUnreachable) { 1121 using namespace SwitchCG; 1122 MachineFunction *CurMF = SwitchMBB->getParent(); 1123 // FIXME: Optimize away range check based on pivot comparisons. 1124 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 1125 // The bit test blocks haven't been inserted yet; insert them here. 1126 for (BitTestCase &BTC : BTB->Cases) 1127 CurMF->insert(BBI, BTC.ThisBB); 1128 1129 // Fill in fields of the BitTestBlock. 1130 BTB->Parent = CurMBB; 1131 BTB->Default = Fallthrough; 1132 1133 BTB->DefaultProb = UnhandledProbs; 1134 // If the cases in bit test don't form a contiguous range, we evenly 1135 // distribute the probability on the edge to Fallthrough to two 1136 // successors of CurMBB. 1137 if (!BTB->ContiguousRange) { 1138 BTB->Prob += DefaultProb / 2; 1139 BTB->DefaultProb -= DefaultProb / 2; 1140 } 1141 1142 if (FallthroughUnreachable) 1143 BTB->FallthroughUnreachable = true; 1144 1145 // If we're in the right place, emit the bit test header right now. 1146 if (CurMBB == SwitchMBB) { 1147 emitBitTestHeader(*BTB, SwitchMBB); 1148 BTB->Emitted = true; 1149 } 1150 return true; 1151 } 1152 1153 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 1154 Value *Cond, 1155 MachineBasicBlock *SwitchMBB, 1156 MachineBasicBlock *DefaultMBB, 1157 MachineIRBuilder &MIB) { 1158 using namespace SwitchCG; 1159 MachineFunction *CurMF = FuncInfo.MF; 1160 MachineBasicBlock *NextMBB = nullptr; 1161 MachineFunction::iterator BBI(W.MBB); 1162 if (++BBI != FuncInfo.MF->end()) 1163 NextMBB = &*BBI; 1164 1165 if (EnableOpts) { 1166 // Here, we order cases by probability so the most likely case will be 1167 // checked first. However, two clusters can have the same probability in 1168 // which case their relative ordering is non-deterministic. So we use Low 1169 // as a tie-breaker as clusters are guaranteed to never overlap. 1170 llvm::sort(W.FirstCluster, W.LastCluster + 1, 1171 [](const CaseCluster &a, const CaseCluster &b) { 1172 return a.Prob != b.Prob 1173 ? a.Prob > b.Prob 1174 : a.Low->getValue().slt(b.Low->getValue()); 1175 }); 1176 1177 // Rearrange the case blocks so that the last one falls through if possible 1178 // without changing the order of probabilities. 1179 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 1180 --I; 1181 if (I->Prob > W.LastCluster->Prob) 1182 break; 1183 if (I->Kind == CC_Range && I->MBB == NextMBB) { 1184 std::swap(*I, *W.LastCluster); 1185 break; 1186 } 1187 } 1188 } 1189 1190 // Compute total probability. 1191 BranchProbability DefaultProb = W.DefaultProb; 1192 BranchProbability UnhandledProbs = DefaultProb; 1193 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 1194 UnhandledProbs += I->Prob; 1195 1196 MachineBasicBlock *CurMBB = W.MBB; 1197 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 1198 bool FallthroughUnreachable = false; 1199 MachineBasicBlock *Fallthrough; 1200 if (I == W.LastCluster) { 1201 // For the last cluster, fall through to the default destination. 1202 Fallthrough = DefaultMBB; 1203 FallthroughUnreachable = isa<UnreachableInst>( 1204 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 1205 } else { 1206 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 1207 CurMF->insert(BBI, Fallthrough); 1208 } 1209 UnhandledProbs -= I->Prob; 1210 1211 switch (I->Kind) { 1212 case CC_BitTests: { 1213 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1214 DefaultProb, UnhandledProbs, I, Fallthrough, 1215 FallthroughUnreachable)) { 1216 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch"); 1217 return false; 1218 } 1219 break; 1220 } 1221 1222 case CC_JumpTable: { 1223 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1224 UnhandledProbs, I, Fallthrough, 1225 FallthroughUnreachable)) { 1226 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 1227 return false; 1228 } 1229 break; 1230 } 1231 case CC_Range: { 1232 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 1233 FallthroughUnreachable, UnhandledProbs, 1234 CurMBB, MIB, SwitchMBB)) { 1235 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 1236 return false; 1237 } 1238 break; 1239 } 1240 } 1241 CurMBB = Fallthrough; 1242 } 1243 1244 return true; 1245 } 1246 1247 bool IRTranslator::translateIndirectBr(const User &U, 1248 MachineIRBuilder &MIRBuilder) { 1249 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 1250 1251 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 1252 MIRBuilder.buildBrIndirect(Tgt); 1253 1254 // Link successors. 1255 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 1256 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 1257 for (const BasicBlock *Succ : successors(&BrInst)) { 1258 // It's legal for indirectbr instructions to have duplicate blocks in the 1259 // destination list. We don't allow this in MIR. Skip anything that's 1260 // already a successor. 1261 if (!AddedSuccessors.insert(Succ).second) 1262 continue; 1263 CurBB.addSuccessor(&getMBB(*Succ)); 1264 } 1265 1266 return true; 1267 } 1268 1269 static bool isSwiftError(const Value *V) { 1270 if (auto Arg = dyn_cast<Argument>(V)) 1271 return Arg->hasSwiftErrorAttr(); 1272 if (auto AI = dyn_cast<AllocaInst>(V)) 1273 return AI->isSwiftError(); 1274 return false; 1275 } 1276 1277 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 1278 const LoadInst &LI = cast<LoadInst>(U); 1279 if (DL->getTypeStoreSize(LI.getType()) == 0) 1280 return true; 1281 1282 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 1283 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 1284 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 1285 1286 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 1287 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1288 1289 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 1290 assert(Regs.size() == 1 && "swifterror should be single pointer"); 1291 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 1292 LI.getPointerOperand()); 1293 MIRBuilder.buildCopy(Regs[0], VReg); 1294 return true; 1295 } 1296 1297 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1298 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL); 1299 1300 const MDNode *Ranges = 1301 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 1302 for (unsigned i = 0; i < Regs.size(); ++i) { 1303 Register Addr; 1304 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1305 1306 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 1307 Align BaseAlign = getMemOpAlign(LI); 1308 auto MMO = MF->getMachineMemOperand( 1309 Ptr, Flags, MRI->getType(Regs[i]), 1310 commonAlignment(BaseAlign, Offsets[i] / 8), LI.getAAMetadata(), Ranges, 1311 LI.getSyncScopeID(), LI.getOrdering()); 1312 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 1313 } 1314 1315 return true; 1316 } 1317 1318 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 1319 const StoreInst &SI = cast<StoreInst>(U); 1320 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 1321 return true; 1322 1323 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 1324 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 1325 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 1326 1327 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 1328 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1329 1330 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 1331 assert(Vals.size() == 1 && "swifterror should be single pointer"); 1332 1333 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 1334 SI.getPointerOperand()); 1335 MIRBuilder.buildCopy(VReg, Vals[0]); 1336 return true; 1337 } 1338 1339 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1340 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 1341 1342 for (unsigned i = 0; i < Vals.size(); ++i) { 1343 Register Addr; 1344 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1345 1346 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 1347 Align BaseAlign = getMemOpAlign(SI); 1348 auto MMO = MF->getMachineMemOperand( 1349 Ptr, Flags, MRI->getType(Vals[i]), 1350 commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr, 1351 SI.getSyncScopeID(), SI.getOrdering()); 1352 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 1353 } 1354 return true; 1355 } 1356 1357 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 1358 const Value *Src = U.getOperand(0); 1359 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 1360 1361 // getIndexedOffsetInType is designed for GEPs, so the first index is the 1362 // usual array element rather than looking into the actual aggregate. 1363 SmallVector<Value *, 1> Indices; 1364 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 1365 1366 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 1367 for (auto Idx : EVI->indices()) 1368 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1369 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 1370 for (auto Idx : IVI->indices()) 1371 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1372 } else { 1373 for (unsigned i = 1; i < U.getNumOperands(); ++i) 1374 Indices.push_back(U.getOperand(i)); 1375 } 1376 1377 return 8 * static_cast<uint64_t>( 1378 DL.getIndexedOffsetInType(Src->getType(), Indices)); 1379 } 1380 1381 bool IRTranslator::translateExtractValue(const User &U, 1382 MachineIRBuilder &MIRBuilder) { 1383 const Value *Src = U.getOperand(0); 1384 uint64_t Offset = getOffsetFromIndices(U, *DL); 1385 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1386 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 1387 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 1388 auto &DstRegs = allocateVRegs(U); 1389 1390 for (unsigned i = 0; i < DstRegs.size(); ++i) 1391 DstRegs[i] = SrcRegs[Idx++]; 1392 1393 return true; 1394 } 1395 1396 bool IRTranslator::translateInsertValue(const User &U, 1397 MachineIRBuilder &MIRBuilder) { 1398 const Value *Src = U.getOperand(0); 1399 uint64_t Offset = getOffsetFromIndices(U, *DL); 1400 auto &DstRegs = allocateVRegs(U); 1401 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 1402 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1403 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 1404 auto InsertedIt = InsertedRegs.begin(); 1405 1406 for (unsigned i = 0; i < DstRegs.size(); ++i) { 1407 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 1408 DstRegs[i] = *InsertedIt++; 1409 else 1410 DstRegs[i] = SrcRegs[i]; 1411 } 1412 1413 return true; 1414 } 1415 1416 bool IRTranslator::translateSelect(const User &U, 1417 MachineIRBuilder &MIRBuilder) { 1418 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1419 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1420 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1421 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1422 1423 uint16_t Flags = 0; 1424 if (const SelectInst *SI = dyn_cast<SelectInst>(&U)) 1425 Flags = MachineInstr::copyFlagsFromInstruction(*SI); 1426 1427 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1428 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1429 } 1430 1431 return true; 1432 } 1433 1434 bool IRTranslator::translateCopy(const User &U, const Value &V, 1435 MachineIRBuilder &MIRBuilder) { 1436 Register Src = getOrCreateVReg(V); 1437 auto &Regs = *VMap.getVRegs(U); 1438 if (Regs.empty()) { 1439 Regs.push_back(Src); 1440 VMap.getOffsets(U)->push_back(0); 1441 } else { 1442 // If we already assigned a vreg for this instruction, we can't change that. 1443 // Emit a copy to satisfy the users we already emitted. 1444 MIRBuilder.buildCopy(Regs[0], Src); 1445 } 1446 return true; 1447 } 1448 1449 bool IRTranslator::translateBitCast(const User &U, 1450 MachineIRBuilder &MIRBuilder) { 1451 // If we're bitcasting to the source type, we can reuse the source vreg. 1452 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1453 getLLTForType(*U.getType(), *DL)) 1454 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1455 1456 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1457 } 1458 1459 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1460 MachineIRBuilder &MIRBuilder) { 1461 Register Op = getOrCreateVReg(*U.getOperand(0)); 1462 Register Res = getOrCreateVReg(U); 1463 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1464 return true; 1465 } 1466 1467 bool IRTranslator::translateGetElementPtr(const User &U, 1468 MachineIRBuilder &MIRBuilder) { 1469 Value &Op0 = *U.getOperand(0); 1470 Register BaseReg = getOrCreateVReg(Op0); 1471 Type *PtrIRTy = Op0.getType(); 1472 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1473 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1474 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1475 1476 // Normalize Vector GEP - all scalar operands should be converted to the 1477 // splat vector. 1478 unsigned VectorWidth = 0; 1479 1480 // True if we should use a splat vector; using VectorWidth alone is not 1481 // sufficient. 1482 bool WantSplatVector = false; 1483 if (auto *VT = dyn_cast<VectorType>(U.getType())) { 1484 VectorWidth = cast<FixedVectorType>(VT)->getNumElements(); 1485 // We don't produce 1 x N vectors; those are treated as scalars. 1486 WantSplatVector = VectorWidth > 1; 1487 } 1488 1489 // We might need to splat the base pointer into a vector if the offsets 1490 // are vectors. 1491 if (WantSplatVector && !PtrTy.isVector()) { 1492 BaseReg = 1493 MIRBuilder 1494 .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg) 1495 .getReg(0); 1496 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth); 1497 PtrTy = getLLTForType(*PtrIRTy, *DL); 1498 OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1499 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1500 } 1501 1502 int64_t Offset = 0; 1503 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1504 GTI != E; ++GTI) { 1505 const Value *Idx = GTI.getOperand(); 1506 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1507 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1508 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1509 continue; 1510 } else { 1511 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1512 1513 // If this is a scalar constant or a splat vector of constants, 1514 // handle it quickly. 1515 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1516 Offset += ElementSize * CI->getSExtValue(); 1517 continue; 1518 } 1519 1520 if (Offset != 0) { 1521 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1522 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1523 .getReg(0); 1524 Offset = 0; 1525 } 1526 1527 Register IdxReg = getOrCreateVReg(*Idx); 1528 LLT IdxTy = MRI->getType(IdxReg); 1529 if (IdxTy != OffsetTy) { 1530 if (!IdxTy.isVector() && WantSplatVector) { 1531 IdxReg = MIRBuilder.buildSplatVector( 1532 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1533 } 1534 1535 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1536 } 1537 1538 // N = N + Idx * ElementSize; 1539 // Avoid doing it for ElementSize of 1. 1540 Register GepOffsetReg; 1541 if (ElementSize != 1) { 1542 auto ElementSizeMIB = MIRBuilder.buildConstant( 1543 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1544 GepOffsetReg = 1545 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1546 } else 1547 GepOffsetReg = IdxReg; 1548 1549 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1550 } 1551 } 1552 1553 if (Offset != 0) { 1554 auto OffsetMIB = 1555 MIRBuilder.buildConstant(OffsetTy, Offset); 1556 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1557 return true; 1558 } 1559 1560 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1561 return true; 1562 } 1563 1564 bool IRTranslator::translateMemFunc(const CallInst &CI, 1565 MachineIRBuilder &MIRBuilder, 1566 unsigned Opcode) { 1567 1568 // If the source is undef, then just emit a nop. 1569 if (isa<UndefValue>(CI.getArgOperand(1))) 1570 return true; 1571 1572 SmallVector<Register, 3> SrcRegs; 1573 1574 unsigned MinPtrSize = UINT_MAX; 1575 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) { 1576 Register SrcReg = getOrCreateVReg(**AI); 1577 LLT SrcTy = MRI->getType(SrcReg); 1578 if (SrcTy.isPointer()) 1579 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize); 1580 SrcRegs.push_back(SrcReg); 1581 } 1582 1583 LLT SizeTy = LLT::scalar(MinPtrSize); 1584 1585 // The size operand should be the minimum of the pointer sizes. 1586 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1]; 1587 if (MRI->getType(SizeOpReg) != SizeTy) 1588 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0); 1589 1590 auto ICall = MIRBuilder.buildInstr(Opcode); 1591 for (Register SrcReg : SrcRegs) 1592 ICall.addUse(SrcReg); 1593 1594 Align DstAlign; 1595 Align SrcAlign; 1596 unsigned IsVol = 1597 cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue(); 1598 1599 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1600 DstAlign = MCI->getDestAlign().valueOrOne(); 1601 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1602 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) { 1603 DstAlign = MCI->getDestAlign().valueOrOne(); 1604 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1605 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1606 DstAlign = MMI->getDestAlign().valueOrOne(); 1607 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1608 } else { 1609 auto *MSI = cast<MemSetInst>(&CI); 1610 DstAlign = MSI->getDestAlign().valueOrOne(); 1611 } 1612 1613 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) { 1614 // We need to propagate the tail call flag from the IR inst as an argument. 1615 // Otherwise, we have to pessimize and assume later that we cannot tail call 1616 // any memory intrinsics. 1617 ICall.addImm(CI.isTailCall() ? 1 : 0); 1618 } 1619 1620 // Create mem operands to store the alignment and volatile info. 1621 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1622 ICall.addMemOperand(MF->getMachineMemOperand( 1623 MachinePointerInfo(CI.getArgOperand(0)), 1624 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1625 if (Opcode != TargetOpcode::G_MEMSET) 1626 ICall.addMemOperand(MF->getMachineMemOperand( 1627 MachinePointerInfo(CI.getArgOperand(1)), 1628 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1629 1630 return true; 1631 } 1632 1633 void IRTranslator::getStackGuard(Register DstReg, 1634 MachineIRBuilder &MIRBuilder) { 1635 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1636 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1637 auto MIB = 1638 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1639 1640 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1641 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1642 if (!Global) 1643 return; 1644 1645 unsigned AddrSpace = Global->getType()->getPointerAddressSpace(); 1646 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace)); 1647 1648 MachinePointerInfo MPInfo(Global); 1649 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1650 MachineMemOperand::MODereferenceable; 1651 MachineMemOperand *MemRef = MF->getMachineMemOperand( 1652 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace)); 1653 MIB.setMemRefs({MemRef}); 1654 } 1655 1656 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1657 MachineIRBuilder &MIRBuilder) { 1658 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1659 MIRBuilder.buildInstr( 1660 Op, {ResRegs[0], ResRegs[1]}, 1661 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1662 1663 return true; 1664 } 1665 1666 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI, 1667 MachineIRBuilder &MIRBuilder) { 1668 Register Dst = getOrCreateVReg(CI); 1669 Register Src0 = getOrCreateVReg(*CI.getOperand(0)); 1670 Register Src1 = getOrCreateVReg(*CI.getOperand(1)); 1671 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 1672 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale }); 1673 return true; 1674 } 1675 1676 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1677 switch (ID) { 1678 default: 1679 break; 1680 case Intrinsic::bswap: 1681 return TargetOpcode::G_BSWAP; 1682 case Intrinsic::bitreverse: 1683 return TargetOpcode::G_BITREVERSE; 1684 case Intrinsic::fshl: 1685 return TargetOpcode::G_FSHL; 1686 case Intrinsic::fshr: 1687 return TargetOpcode::G_FSHR; 1688 case Intrinsic::ceil: 1689 return TargetOpcode::G_FCEIL; 1690 case Intrinsic::cos: 1691 return TargetOpcode::G_FCOS; 1692 case Intrinsic::ctpop: 1693 return TargetOpcode::G_CTPOP; 1694 case Intrinsic::exp: 1695 return TargetOpcode::G_FEXP; 1696 case Intrinsic::exp2: 1697 return TargetOpcode::G_FEXP2; 1698 case Intrinsic::fabs: 1699 return TargetOpcode::G_FABS; 1700 case Intrinsic::copysign: 1701 return TargetOpcode::G_FCOPYSIGN; 1702 case Intrinsic::minnum: 1703 return TargetOpcode::G_FMINNUM; 1704 case Intrinsic::maxnum: 1705 return TargetOpcode::G_FMAXNUM; 1706 case Intrinsic::minimum: 1707 return TargetOpcode::G_FMINIMUM; 1708 case Intrinsic::maximum: 1709 return TargetOpcode::G_FMAXIMUM; 1710 case Intrinsic::canonicalize: 1711 return TargetOpcode::G_FCANONICALIZE; 1712 case Intrinsic::floor: 1713 return TargetOpcode::G_FFLOOR; 1714 case Intrinsic::fma: 1715 return TargetOpcode::G_FMA; 1716 case Intrinsic::log: 1717 return TargetOpcode::G_FLOG; 1718 case Intrinsic::log2: 1719 return TargetOpcode::G_FLOG2; 1720 case Intrinsic::log10: 1721 return TargetOpcode::G_FLOG10; 1722 case Intrinsic::nearbyint: 1723 return TargetOpcode::G_FNEARBYINT; 1724 case Intrinsic::pow: 1725 return TargetOpcode::G_FPOW; 1726 case Intrinsic::powi: 1727 return TargetOpcode::G_FPOWI; 1728 case Intrinsic::rint: 1729 return TargetOpcode::G_FRINT; 1730 case Intrinsic::round: 1731 return TargetOpcode::G_INTRINSIC_ROUND; 1732 case Intrinsic::roundeven: 1733 return TargetOpcode::G_INTRINSIC_ROUNDEVEN; 1734 case Intrinsic::sin: 1735 return TargetOpcode::G_FSIN; 1736 case Intrinsic::sqrt: 1737 return TargetOpcode::G_FSQRT; 1738 case Intrinsic::trunc: 1739 return TargetOpcode::G_INTRINSIC_TRUNC; 1740 case Intrinsic::readcyclecounter: 1741 return TargetOpcode::G_READCYCLECOUNTER; 1742 case Intrinsic::ptrmask: 1743 return TargetOpcode::G_PTRMASK; 1744 case Intrinsic::lrint: 1745 return TargetOpcode::G_INTRINSIC_LRINT; 1746 // FADD/FMUL require checking the FMF, so are handled elsewhere. 1747 case Intrinsic::vector_reduce_fmin: 1748 return TargetOpcode::G_VECREDUCE_FMIN; 1749 case Intrinsic::vector_reduce_fmax: 1750 return TargetOpcode::G_VECREDUCE_FMAX; 1751 case Intrinsic::vector_reduce_add: 1752 return TargetOpcode::G_VECREDUCE_ADD; 1753 case Intrinsic::vector_reduce_mul: 1754 return TargetOpcode::G_VECREDUCE_MUL; 1755 case Intrinsic::vector_reduce_and: 1756 return TargetOpcode::G_VECREDUCE_AND; 1757 case Intrinsic::vector_reduce_or: 1758 return TargetOpcode::G_VECREDUCE_OR; 1759 case Intrinsic::vector_reduce_xor: 1760 return TargetOpcode::G_VECREDUCE_XOR; 1761 case Intrinsic::vector_reduce_smax: 1762 return TargetOpcode::G_VECREDUCE_SMAX; 1763 case Intrinsic::vector_reduce_smin: 1764 return TargetOpcode::G_VECREDUCE_SMIN; 1765 case Intrinsic::vector_reduce_umax: 1766 return TargetOpcode::G_VECREDUCE_UMAX; 1767 case Intrinsic::vector_reduce_umin: 1768 return TargetOpcode::G_VECREDUCE_UMIN; 1769 case Intrinsic::lround: 1770 return TargetOpcode::G_LROUND; 1771 case Intrinsic::llround: 1772 return TargetOpcode::G_LLROUND; 1773 } 1774 return Intrinsic::not_intrinsic; 1775 } 1776 1777 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1778 Intrinsic::ID ID, 1779 MachineIRBuilder &MIRBuilder) { 1780 1781 unsigned Op = getSimpleIntrinsicOpcode(ID); 1782 1783 // Is this a simple intrinsic? 1784 if (Op == Intrinsic::not_intrinsic) 1785 return false; 1786 1787 // Yes. Let's translate it. 1788 SmallVector<llvm::SrcOp, 4> VRegs; 1789 for (auto &Arg : CI.args()) 1790 VRegs.push_back(getOrCreateVReg(*Arg)); 1791 1792 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1793 MachineInstr::copyFlagsFromInstruction(CI)); 1794 return true; 1795 } 1796 1797 // TODO: Include ConstainedOps.def when all strict instructions are defined. 1798 static unsigned getConstrainedOpcode(Intrinsic::ID ID) { 1799 switch (ID) { 1800 case Intrinsic::experimental_constrained_fadd: 1801 return TargetOpcode::G_STRICT_FADD; 1802 case Intrinsic::experimental_constrained_fsub: 1803 return TargetOpcode::G_STRICT_FSUB; 1804 case Intrinsic::experimental_constrained_fmul: 1805 return TargetOpcode::G_STRICT_FMUL; 1806 case Intrinsic::experimental_constrained_fdiv: 1807 return TargetOpcode::G_STRICT_FDIV; 1808 case Intrinsic::experimental_constrained_frem: 1809 return TargetOpcode::G_STRICT_FREM; 1810 case Intrinsic::experimental_constrained_fma: 1811 return TargetOpcode::G_STRICT_FMA; 1812 case Intrinsic::experimental_constrained_sqrt: 1813 return TargetOpcode::G_STRICT_FSQRT; 1814 default: 1815 return 0; 1816 } 1817 } 1818 1819 bool IRTranslator::translateConstrainedFPIntrinsic( 1820 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) { 1821 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 1822 1823 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID()); 1824 if (!Opcode) 1825 return false; 1826 1827 unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI); 1828 if (EB == fp::ExceptionBehavior::ebIgnore) 1829 Flags |= MachineInstr::NoFPExcept; 1830 1831 SmallVector<llvm::SrcOp, 4> VRegs; 1832 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0))); 1833 if (!FPI.isUnaryOp()) 1834 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1))); 1835 if (FPI.isTernaryOp()) 1836 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2))); 1837 1838 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags); 1839 return true; 1840 } 1841 1842 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1843 MachineIRBuilder &MIRBuilder) { 1844 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) { 1845 if (ORE->enabled()) { 1846 const Function &F = *MI->getParent()->getParent(); 1847 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1848 if (MemoryOpRemark::canHandle(MI, TLI)) { 1849 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI); 1850 R.visit(MI); 1851 } 1852 } 1853 } 1854 1855 // If this is a simple intrinsic (that is, we just need to add a def of 1856 // a vreg, and uses for each arg operand, then translate it. 1857 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1858 return true; 1859 1860 switch (ID) { 1861 default: 1862 break; 1863 case Intrinsic::lifetime_start: 1864 case Intrinsic::lifetime_end: { 1865 // No stack colouring in O0, discard region information. 1866 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1867 return true; 1868 1869 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1870 : TargetOpcode::LIFETIME_END; 1871 1872 // Get the underlying objects for the location passed on the lifetime 1873 // marker. 1874 SmallVector<const Value *, 4> Allocas; 1875 getUnderlyingObjects(CI.getArgOperand(1), Allocas); 1876 1877 // Iterate over each underlying object, creating lifetime markers for each 1878 // static alloca. Quit if we find a non-static alloca. 1879 for (const Value *V : Allocas) { 1880 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1881 if (!AI) 1882 continue; 1883 1884 if (!AI->isStaticAlloca()) 1885 return true; 1886 1887 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1888 } 1889 return true; 1890 } 1891 case Intrinsic::dbg_declare: { 1892 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1893 assert(DI.getVariable() && "Missing variable"); 1894 1895 const Value *Address = DI.getAddress(); 1896 if (!Address || isa<UndefValue>(Address)) { 1897 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1898 return true; 1899 } 1900 1901 assert(DI.getVariable()->isValidLocationForIntrinsic( 1902 MIRBuilder.getDebugLoc()) && 1903 "Expected inlined-at fields to agree"); 1904 auto AI = dyn_cast<AllocaInst>(Address); 1905 if (AI && AI->isStaticAlloca()) { 1906 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1907 // instructions (in fact, they get ignored if they *do* exist). 1908 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1909 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1910 } else { 1911 // A dbg.declare describes the address of a source variable, so lower it 1912 // into an indirect DBG_VALUE. 1913 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1914 DI.getVariable(), DI.getExpression()); 1915 } 1916 return true; 1917 } 1918 case Intrinsic::dbg_label: { 1919 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1920 assert(DI.getLabel() && "Missing label"); 1921 1922 assert(DI.getLabel()->isValidLocationForIntrinsic( 1923 MIRBuilder.getDebugLoc()) && 1924 "Expected inlined-at fields to agree"); 1925 1926 MIRBuilder.buildDbgLabel(DI.getLabel()); 1927 return true; 1928 } 1929 case Intrinsic::vaend: 1930 // No target I know of cares about va_end. Certainly no in-tree target 1931 // does. Simplest intrinsic ever! 1932 return true; 1933 case Intrinsic::vastart: { 1934 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1935 Value *Ptr = CI.getArgOperand(0); 1936 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1937 1938 // FIXME: Get alignment 1939 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 1940 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 1941 MachineMemOperand::MOStore, 1942 ListSize, Align(1))); 1943 return true; 1944 } 1945 case Intrinsic::dbg_value: { 1946 // This form of DBG_VALUE is target-independent. 1947 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1948 const Value *V = DI.getValue(); 1949 assert(DI.getVariable()->isValidLocationForIntrinsic( 1950 MIRBuilder.getDebugLoc()) && 1951 "Expected inlined-at fields to agree"); 1952 if (!V || DI.hasArgList()) { 1953 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to 1954 // terminate any prior location. 1955 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1956 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1957 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1958 } else { 1959 for (Register Reg : getOrCreateVRegs(*V)) { 1960 // FIXME: This does not handle register-indirect values at offset 0. The 1961 // direct/indirect thing shouldn't really be handled by something as 1962 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1963 // pretty baked in right now. 1964 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1965 } 1966 } 1967 return true; 1968 } 1969 case Intrinsic::uadd_with_overflow: 1970 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1971 case Intrinsic::sadd_with_overflow: 1972 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1973 case Intrinsic::usub_with_overflow: 1974 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1975 case Intrinsic::ssub_with_overflow: 1976 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1977 case Intrinsic::umul_with_overflow: 1978 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1979 case Intrinsic::smul_with_overflow: 1980 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1981 case Intrinsic::uadd_sat: 1982 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 1983 case Intrinsic::sadd_sat: 1984 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 1985 case Intrinsic::usub_sat: 1986 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 1987 case Intrinsic::ssub_sat: 1988 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 1989 case Intrinsic::ushl_sat: 1990 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder); 1991 case Intrinsic::sshl_sat: 1992 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder); 1993 case Intrinsic::umin: 1994 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder); 1995 case Intrinsic::umax: 1996 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder); 1997 case Intrinsic::smin: 1998 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder); 1999 case Intrinsic::smax: 2000 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder); 2001 case Intrinsic::abs: 2002 // TODO: Preserve "int min is poison" arg in GMIR? 2003 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder); 2004 case Intrinsic::smul_fix: 2005 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder); 2006 case Intrinsic::umul_fix: 2007 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder); 2008 case Intrinsic::smul_fix_sat: 2009 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder); 2010 case Intrinsic::umul_fix_sat: 2011 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder); 2012 case Intrinsic::sdiv_fix: 2013 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder); 2014 case Intrinsic::udiv_fix: 2015 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder); 2016 case Intrinsic::sdiv_fix_sat: 2017 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder); 2018 case Intrinsic::udiv_fix_sat: 2019 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder); 2020 case Intrinsic::fmuladd: { 2021 const TargetMachine &TM = MF->getTarget(); 2022 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2023 Register Dst = getOrCreateVReg(CI); 2024 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 2025 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 2026 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 2027 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 2028 TLI.isFMAFasterThanFMulAndFAdd(*MF, 2029 TLI.getValueType(*DL, CI.getType()))) { 2030 // TODO: Revisit this to see if we should move this part of the 2031 // lowering to the combiner. 2032 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 2033 MachineInstr::copyFlagsFromInstruction(CI)); 2034 } else { 2035 LLT Ty = getLLTForType(*CI.getType(), *DL); 2036 auto FMul = MIRBuilder.buildFMul( 2037 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 2038 MIRBuilder.buildFAdd(Dst, FMul, Op2, 2039 MachineInstr::copyFlagsFromInstruction(CI)); 2040 } 2041 return true; 2042 } 2043 case Intrinsic::convert_from_fp16: 2044 // FIXME: This intrinsic should probably be removed from the IR. 2045 MIRBuilder.buildFPExt(getOrCreateVReg(CI), 2046 getOrCreateVReg(*CI.getArgOperand(0)), 2047 MachineInstr::copyFlagsFromInstruction(CI)); 2048 return true; 2049 case Intrinsic::convert_to_fp16: 2050 // FIXME: This intrinsic should probably be removed from the IR. 2051 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI), 2052 getOrCreateVReg(*CI.getArgOperand(0)), 2053 MachineInstr::copyFlagsFromInstruction(CI)); 2054 return true; 2055 case Intrinsic::memcpy_inline: 2056 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE); 2057 case Intrinsic::memcpy: 2058 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY); 2059 case Intrinsic::memmove: 2060 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE); 2061 case Intrinsic::memset: 2062 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET); 2063 case Intrinsic::eh_typeid_for: { 2064 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 2065 Register Reg = getOrCreateVReg(CI); 2066 unsigned TypeID = MF->getTypeIDFor(GV); 2067 MIRBuilder.buildConstant(Reg, TypeID); 2068 return true; 2069 } 2070 case Intrinsic::objectsize: 2071 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2072 2073 case Intrinsic::is_constant: 2074 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2075 2076 case Intrinsic::stackguard: 2077 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 2078 return true; 2079 case Intrinsic::stackprotector: { 2080 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2081 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 2082 getStackGuard(GuardVal, MIRBuilder); 2083 2084 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 2085 int FI = getOrCreateFrameIndex(*Slot); 2086 MF->getFrameInfo().setStackProtectorIndex(FI); 2087 2088 MIRBuilder.buildStore( 2089 GuardVal, getOrCreateVReg(*Slot), 2090 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 2091 MachineMemOperand::MOStore | 2092 MachineMemOperand::MOVolatile, 2093 PtrTy, Align(8))); 2094 return true; 2095 } 2096 case Intrinsic::stacksave: { 2097 // Save the stack pointer to the location provided by the intrinsic. 2098 Register Reg = getOrCreateVReg(CI); 2099 Register StackPtr = MF->getSubtarget() 2100 .getTargetLowering() 2101 ->getStackPointerRegisterToSaveRestore(); 2102 2103 // If the target doesn't specify a stack pointer, then fall back. 2104 if (!StackPtr) 2105 return false; 2106 2107 MIRBuilder.buildCopy(Reg, StackPtr); 2108 return true; 2109 } 2110 case Intrinsic::stackrestore: { 2111 // Restore the stack pointer from the location provided by the intrinsic. 2112 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 2113 Register StackPtr = MF->getSubtarget() 2114 .getTargetLowering() 2115 ->getStackPointerRegisterToSaveRestore(); 2116 2117 // If the target doesn't specify a stack pointer, then fall back. 2118 if (!StackPtr) 2119 return false; 2120 2121 MIRBuilder.buildCopy(StackPtr, Reg); 2122 return true; 2123 } 2124 case Intrinsic::cttz: 2125 case Intrinsic::ctlz: { 2126 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 2127 bool isTrailing = ID == Intrinsic::cttz; 2128 unsigned Opcode = isTrailing 2129 ? Cst->isZero() ? TargetOpcode::G_CTTZ 2130 : TargetOpcode::G_CTTZ_ZERO_UNDEF 2131 : Cst->isZero() ? TargetOpcode::G_CTLZ 2132 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 2133 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 2134 {getOrCreateVReg(*CI.getArgOperand(0))}); 2135 return true; 2136 } 2137 case Intrinsic::invariant_start: { 2138 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2139 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 2140 MIRBuilder.buildUndef(Undef); 2141 return true; 2142 } 2143 case Intrinsic::invariant_end: 2144 return true; 2145 case Intrinsic::expect: 2146 case Intrinsic::annotation: 2147 case Intrinsic::ptr_annotation: 2148 case Intrinsic::launder_invariant_group: 2149 case Intrinsic::strip_invariant_group: { 2150 // Drop the intrinsic, but forward the value. 2151 MIRBuilder.buildCopy(getOrCreateVReg(CI), 2152 getOrCreateVReg(*CI.getArgOperand(0))); 2153 return true; 2154 } 2155 case Intrinsic::assume: 2156 case Intrinsic::experimental_noalias_scope_decl: 2157 case Intrinsic::var_annotation: 2158 case Intrinsic::sideeffect: 2159 // Discard annotate attributes, assumptions, and artificial side-effects. 2160 return true; 2161 case Intrinsic::read_volatile_register: 2162 case Intrinsic::read_register: { 2163 Value *Arg = CI.getArgOperand(0); 2164 MIRBuilder 2165 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 2166 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 2167 return true; 2168 } 2169 case Intrinsic::write_register: { 2170 Value *Arg = CI.getArgOperand(0); 2171 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 2172 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 2173 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 2174 return true; 2175 } 2176 case Intrinsic::localescape: { 2177 MachineBasicBlock &EntryMBB = MF->front(); 2178 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName()); 2179 2180 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 2181 // is the same on all targets. 2182 for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) { 2183 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts(); 2184 if (isa<ConstantPointerNull>(Arg)) 2185 continue; // Skip null pointers. They represent a hole in index space. 2186 2187 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg)); 2188 MCSymbol *FrameAllocSym = 2189 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName, 2190 Idx); 2191 2192 // This should be inserted at the start of the entry block. 2193 auto LocalEscape = 2194 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE) 2195 .addSym(FrameAllocSym) 2196 .addFrameIndex(FI); 2197 2198 EntryMBB.insert(EntryMBB.begin(), LocalEscape); 2199 } 2200 2201 return true; 2202 } 2203 case Intrinsic::vector_reduce_fadd: 2204 case Intrinsic::vector_reduce_fmul: { 2205 // Need to check for the reassoc flag to decide whether we want a 2206 // sequential reduction opcode or not. 2207 Register Dst = getOrCreateVReg(CI); 2208 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0)); 2209 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1)); 2210 unsigned Opc = 0; 2211 if (!CI.hasAllowReassoc()) { 2212 // The sequential ordering case. 2213 Opc = ID == Intrinsic::vector_reduce_fadd 2214 ? TargetOpcode::G_VECREDUCE_SEQ_FADD 2215 : TargetOpcode::G_VECREDUCE_SEQ_FMUL; 2216 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc}, 2217 MachineInstr::copyFlagsFromInstruction(CI)); 2218 return true; 2219 } 2220 // We split the operation into a separate G_FADD/G_FMUL + the reduce, 2221 // since the associativity doesn't matter. 2222 unsigned ScalarOpc; 2223 if (ID == Intrinsic::vector_reduce_fadd) { 2224 Opc = TargetOpcode::G_VECREDUCE_FADD; 2225 ScalarOpc = TargetOpcode::G_FADD; 2226 } else { 2227 Opc = TargetOpcode::G_VECREDUCE_FMUL; 2228 ScalarOpc = TargetOpcode::G_FMUL; 2229 } 2230 LLT DstTy = MRI->getType(Dst); 2231 auto Rdx = MIRBuilder.buildInstr( 2232 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI)); 2233 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx}, 2234 MachineInstr::copyFlagsFromInstruction(CI)); 2235 2236 return true; 2237 } 2238 case Intrinsic::trap: 2239 case Intrinsic::debugtrap: 2240 case Intrinsic::ubsantrap: { 2241 StringRef TrapFuncName = 2242 CI.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 2243 if (TrapFuncName.empty()) 2244 break; // Use the default handling. 2245 CallLowering::CallLoweringInfo Info; 2246 if (ID == Intrinsic::ubsantrap) { 2247 Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)), 2248 CI.getArgOperand(0)->getType(), 0}); 2249 } 2250 Info.Callee = MachineOperand::CreateES(TrapFuncName.data()); 2251 Info.CB = &CI; 2252 Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0}; 2253 return CLI->lowerCall(MIRBuilder, Info); 2254 } 2255 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 2256 case Intrinsic::INTRINSIC: 2257 #include "llvm/IR/ConstrainedOps.def" 2258 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI), 2259 MIRBuilder); 2260 2261 } 2262 return false; 2263 } 2264 2265 bool IRTranslator::translateInlineAsm(const CallBase &CB, 2266 MachineIRBuilder &MIRBuilder) { 2267 2268 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 2269 2270 if (!ALI) { 2271 LLVM_DEBUG( 2272 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 2273 return false; 2274 } 2275 2276 return ALI->lowerInlineAsm( 2277 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 2278 } 2279 2280 bool IRTranslator::translateCallBase(const CallBase &CB, 2281 MachineIRBuilder &MIRBuilder) { 2282 ArrayRef<Register> Res = getOrCreateVRegs(CB); 2283 2284 SmallVector<ArrayRef<Register>, 8> Args; 2285 Register SwiftInVReg = 0; 2286 Register SwiftErrorVReg = 0; 2287 for (auto &Arg : CB.args()) { 2288 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 2289 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 2290 LLT Ty = getLLTForType(*Arg->getType(), *DL); 2291 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 2292 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 2293 &CB, &MIRBuilder.getMBB(), Arg)); 2294 Args.emplace_back(makeArrayRef(SwiftInVReg)); 2295 SwiftErrorVReg = 2296 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 2297 continue; 2298 } 2299 Args.push_back(getOrCreateVRegs(*Arg)); 2300 } 2301 2302 if (auto *CI = dyn_cast<CallInst>(&CB)) { 2303 if (ORE->enabled()) { 2304 const Function &F = *CI->getParent()->getParent(); 2305 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2306 if (MemoryOpRemark::canHandle(CI, TLI)) { 2307 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI); 2308 R.visit(CI); 2309 } 2310 } 2311 } 2312 2313 // We don't set HasCalls on MFI here yet because call lowering may decide to 2314 // optimize into tail calls. Instead, we defer that to selection where a final 2315 // scan is done to check if any instructions are calls. 2316 bool Success = 2317 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg, 2318 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 2319 2320 // Check if we just inserted a tail call. 2321 if (Success) { 2322 assert(!HasTailCall && "Can't tail call return twice from block?"); 2323 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 2324 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 2325 } 2326 2327 return Success; 2328 } 2329 2330 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 2331 const CallInst &CI = cast<CallInst>(U); 2332 auto TII = MF->getTarget().getIntrinsicInfo(); 2333 const Function *F = CI.getCalledFunction(); 2334 2335 // FIXME: support Windows dllimport function calls. 2336 if (F && (F->hasDLLImportStorageClass() || 2337 (MF->getTarget().getTargetTriple().isOSWindows() && 2338 F->hasExternalWeakLinkage()))) 2339 return false; 2340 2341 // FIXME: support control flow guard targets. 2342 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2343 return false; 2344 2345 if (CI.isInlineAsm()) 2346 return translateInlineAsm(CI, MIRBuilder); 2347 2348 diagnoseDontCall(CI); 2349 2350 Intrinsic::ID ID = Intrinsic::not_intrinsic; 2351 if (F && F->isIntrinsic()) { 2352 ID = F->getIntrinsicID(); 2353 if (TII && ID == Intrinsic::not_intrinsic) 2354 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 2355 } 2356 2357 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 2358 return translateCallBase(CI, MIRBuilder); 2359 2360 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 2361 2362 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 2363 return true; 2364 2365 ArrayRef<Register> ResultRegs; 2366 if (!CI.getType()->isVoidTy()) 2367 ResultRegs = getOrCreateVRegs(CI); 2368 2369 // Ignore the callsite attributes. Backend code is most likely not expecting 2370 // an intrinsic to sometimes have side effects and sometimes not. 2371 MachineInstrBuilder MIB = 2372 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 2373 if (isa<FPMathOperator>(CI)) 2374 MIB->copyIRFlags(CI); 2375 2376 for (auto &Arg : enumerate(CI.args())) { 2377 // If this is required to be an immediate, don't materialize it in a 2378 // register. 2379 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 2380 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 2381 // imm arguments are more convenient than cimm (and realistically 2382 // probably sufficient), so use them. 2383 assert(CI->getBitWidth() <= 64 && 2384 "large intrinsic immediates not handled"); 2385 MIB.addImm(CI->getSExtValue()); 2386 } else { 2387 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 2388 } 2389 } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) { 2390 auto *MD = MDVal->getMetadata(); 2391 auto *MDN = dyn_cast<MDNode>(MD); 2392 if (!MDN) { 2393 if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD)) 2394 MDN = MDNode::get(MF->getFunction().getContext(), ConstMD); 2395 else // This was probably an MDString. 2396 return false; 2397 } 2398 MIB.addMetadata(MDN); 2399 } else { 2400 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 2401 if (VRegs.size() > 1) 2402 return false; 2403 MIB.addUse(VRegs[0]); 2404 } 2405 } 2406 2407 // Add a MachineMemOperand if it is a target mem intrinsic. 2408 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2409 TargetLowering::IntrinsicInfo Info; 2410 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 2411 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 2412 Align Alignment = Info.align.getValueOr( 2413 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 2414 LLT MemTy = Info.memVT.isSimple() 2415 ? getLLTForMVT(Info.memVT.getSimpleVT()) 2416 : LLT::scalar(Info.memVT.getStoreSizeInBits()); 2417 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 2418 Info.flags, MemTy, Alignment)); 2419 } 2420 2421 return true; 2422 } 2423 2424 bool IRTranslator::findUnwindDestinations( 2425 const BasicBlock *EHPadBB, 2426 BranchProbability Prob, 2427 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2428 &UnwindDests) { 2429 EHPersonality Personality = classifyEHPersonality( 2430 EHPadBB->getParent()->getFunction().getPersonalityFn()); 2431 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2432 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2433 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2434 bool IsSEH = isAsynchronousEHPersonality(Personality); 2435 2436 if (IsWasmCXX) { 2437 // Ignore this for now. 2438 return false; 2439 } 2440 2441 while (EHPadBB) { 2442 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2443 BasicBlock *NewEHPadBB = nullptr; 2444 if (isa<LandingPadInst>(Pad)) { 2445 // Stop on landingpads. They are not funclets. 2446 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2447 break; 2448 } 2449 if (isa<CleanupPadInst>(Pad)) { 2450 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2451 // personalities. 2452 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2453 UnwindDests.back().first->setIsEHScopeEntry(); 2454 UnwindDests.back().first->setIsEHFuncletEntry(); 2455 break; 2456 } 2457 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2458 // Add the catchpad handlers to the possible destinations. 2459 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2460 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob); 2461 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2462 if (IsMSVCCXX || IsCoreCLR) 2463 UnwindDests.back().first->setIsEHFuncletEntry(); 2464 if (!IsSEH) 2465 UnwindDests.back().first->setIsEHScopeEntry(); 2466 } 2467 NewEHPadBB = CatchSwitch->getUnwindDest(); 2468 } else { 2469 continue; 2470 } 2471 2472 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2473 if (BPI && NewEHPadBB) 2474 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2475 EHPadBB = NewEHPadBB; 2476 } 2477 return true; 2478 } 2479 2480 bool IRTranslator::translateInvoke(const User &U, 2481 MachineIRBuilder &MIRBuilder) { 2482 const InvokeInst &I = cast<InvokeInst>(U); 2483 MCContext &Context = MF->getContext(); 2484 2485 const BasicBlock *ReturnBB = I.getSuccessor(0); 2486 const BasicBlock *EHPadBB = I.getSuccessor(1); 2487 2488 const Function *Fn = I.getCalledFunction(); 2489 2490 // FIXME: support invoking patchpoint and statepoint intrinsics. 2491 if (Fn && Fn->isIntrinsic()) 2492 return false; 2493 2494 // FIXME: support whatever these are. 2495 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 2496 return false; 2497 2498 // FIXME: support control flow guard targets. 2499 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2500 return false; 2501 2502 // FIXME: support Windows exception handling. 2503 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI())) 2504 return false; 2505 2506 bool LowerInlineAsm = I.isInlineAsm(); 2507 bool NeedEHLabel = true; 2508 // If it can't throw then use a fast-path without emitting EH labels. 2509 if (LowerInlineAsm) 2510 NeedEHLabel = (cast<InlineAsm>(I.getCalledOperand()))->canThrow(); 2511 2512 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 2513 // the region covered by the try. 2514 MCSymbol *BeginSymbol = nullptr; 2515 if (NeedEHLabel) { 2516 BeginSymbol = Context.createTempSymbol(); 2517 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 2518 } 2519 2520 if (LowerInlineAsm) { 2521 if (!translateInlineAsm(I, MIRBuilder)) 2522 return false; 2523 } else if (!translateCallBase(I, MIRBuilder)) 2524 return false; 2525 2526 MCSymbol *EndSymbol = nullptr; 2527 if (NeedEHLabel) { 2528 EndSymbol = Context.createTempSymbol(); 2529 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 2530 } 2531 2532 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2533 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2534 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(); 2535 BranchProbability EHPadBBProb = 2536 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2537 : BranchProbability::getZero(); 2538 2539 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests)) 2540 return false; 2541 2542 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 2543 &ReturnMBB = getMBB(*ReturnBB); 2544 // Update successor info. 2545 addSuccessorWithProb(InvokeMBB, &ReturnMBB); 2546 for (auto &UnwindDest : UnwindDests) { 2547 UnwindDest.first->setIsEHPad(); 2548 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2549 } 2550 InvokeMBB->normalizeSuccProbs(); 2551 2552 if (NeedEHLabel) { 2553 assert(BeginSymbol && "Expected a begin symbol!"); 2554 assert(EndSymbol && "Expected an end symbol!"); 2555 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 2556 } 2557 2558 MIRBuilder.buildBr(ReturnMBB); 2559 return true; 2560 } 2561 2562 bool IRTranslator::translateCallBr(const User &U, 2563 MachineIRBuilder &MIRBuilder) { 2564 // FIXME: Implement this. 2565 return false; 2566 } 2567 2568 bool IRTranslator::translateLandingPad(const User &U, 2569 MachineIRBuilder &MIRBuilder) { 2570 const LandingPadInst &LP = cast<LandingPadInst>(U); 2571 2572 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 2573 2574 MBB.setIsEHPad(); 2575 2576 // If there aren't registers to copy the values into (e.g., during SjLj 2577 // exceptions), then don't bother. 2578 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2579 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 2580 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2581 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2582 return true; 2583 2584 // If landingpad's return type is token type, we don't create DAG nodes 2585 // for its exception pointer and selector value. The extraction of exception 2586 // pointer or selector value from token type landingpads is not currently 2587 // supported. 2588 if (LP.getType()->isTokenTy()) 2589 return true; 2590 2591 // Add a label to mark the beginning of the landing pad. Deletion of the 2592 // landing pad can thus be detected via the MachineModuleInfo. 2593 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 2594 .addSym(MF->addLandingPad(&MBB)); 2595 2596 // If the unwinder does not preserve all registers, ensure that the 2597 // function marks the clobbered registers as used. 2598 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 2599 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 2600 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 2601 2602 LLT Ty = getLLTForType(*LP.getType(), *DL); 2603 Register Undef = MRI->createGenericVirtualRegister(Ty); 2604 MIRBuilder.buildUndef(Undef); 2605 2606 SmallVector<LLT, 2> Tys; 2607 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 2608 Tys.push_back(getLLTForType(*Ty, *DL)); 2609 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 2610 2611 // Mark exception register as live in. 2612 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 2613 if (!ExceptionReg) 2614 return false; 2615 2616 MBB.addLiveIn(ExceptionReg); 2617 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 2618 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 2619 2620 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 2621 if (!SelectorReg) 2622 return false; 2623 2624 MBB.addLiveIn(SelectorReg); 2625 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 2626 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 2627 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 2628 2629 return true; 2630 } 2631 2632 bool IRTranslator::translateAlloca(const User &U, 2633 MachineIRBuilder &MIRBuilder) { 2634 auto &AI = cast<AllocaInst>(U); 2635 2636 if (AI.isSwiftError()) 2637 return true; 2638 2639 if (AI.isStaticAlloca()) { 2640 Register Res = getOrCreateVReg(AI); 2641 int FI = getOrCreateFrameIndex(AI); 2642 MIRBuilder.buildFrameIndex(Res, FI); 2643 return true; 2644 } 2645 2646 // FIXME: support stack probing for Windows. 2647 if (MF->getTarget().getTargetTriple().isOSWindows()) 2648 return false; 2649 2650 // Now we're in the harder dynamic case. 2651 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 2652 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 2653 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 2654 if (MRI->getType(NumElts) != IntPtrTy) { 2655 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 2656 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 2657 NumElts = ExtElts; 2658 } 2659 2660 Type *Ty = AI.getAllocatedType(); 2661 2662 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 2663 Register TySize = 2664 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 2665 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 2666 2667 // Round the size of the allocation up to the stack alignment size 2668 // by add SA-1 to the size. This doesn't overflow because we're computing 2669 // an address inside an alloca. 2670 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 2671 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 2672 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 2673 MachineInstr::NoUWrap); 2674 auto AlignCst = 2675 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 2676 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 2677 2678 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 2679 if (Alignment <= StackAlign) 2680 Alignment = Align(1); 2681 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 2682 2683 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 2684 assert(MF->getFrameInfo().hasVarSizedObjects()); 2685 return true; 2686 } 2687 2688 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 2689 // FIXME: We may need more info about the type. Because of how LLT works, 2690 // we're completely discarding the i64/double distinction here (amongst 2691 // others). Fortunately the ABIs I know of where that matters don't use va_arg 2692 // anyway but that's not guaranteed. 2693 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 2694 {getOrCreateVReg(*U.getOperand(0)), 2695 DL->getABITypeAlign(U.getType()).value()}); 2696 return true; 2697 } 2698 2699 bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) { 2700 if (!MF->getTarget().Options.TrapUnreachable) 2701 return true; 2702 2703 auto &UI = cast<UnreachableInst>(U); 2704 // We may be able to ignore unreachable behind a noreturn call. 2705 if (MF->getTarget().Options.NoTrapAfterNoreturn) { 2706 const BasicBlock &BB = *UI.getParent(); 2707 if (&UI != &BB.front()) { 2708 BasicBlock::const_iterator PredI = 2709 std::prev(BasicBlock::const_iterator(UI)); 2710 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2711 if (Call->doesNotReturn()) 2712 return true; 2713 } 2714 } 2715 } 2716 2717 MIRBuilder.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true); 2718 return true; 2719 } 2720 2721 bool IRTranslator::translateInsertElement(const User &U, 2722 MachineIRBuilder &MIRBuilder) { 2723 // If it is a <1 x Ty> vector, use the scalar as it is 2724 // not a legal vector type in LLT. 2725 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1) 2726 return translateCopy(U, *U.getOperand(1), MIRBuilder); 2727 2728 Register Res = getOrCreateVReg(U); 2729 Register Val = getOrCreateVReg(*U.getOperand(0)); 2730 Register Elt = getOrCreateVReg(*U.getOperand(1)); 2731 Register Idx = getOrCreateVReg(*U.getOperand(2)); 2732 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 2733 return true; 2734 } 2735 2736 bool IRTranslator::translateExtractElement(const User &U, 2737 MachineIRBuilder &MIRBuilder) { 2738 // If it is a <1 x Ty> vector, use the scalar as it is 2739 // not a legal vector type in LLT. 2740 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1) 2741 return translateCopy(U, *U.getOperand(0), MIRBuilder); 2742 2743 Register Res = getOrCreateVReg(U); 2744 Register Val = getOrCreateVReg(*U.getOperand(0)); 2745 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2746 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 2747 Register Idx; 2748 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 2749 if (CI->getBitWidth() != PreferredVecIdxWidth) { 2750 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 2751 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 2752 Idx = getOrCreateVReg(*NewIdxCI); 2753 } 2754 } 2755 if (!Idx) 2756 Idx = getOrCreateVReg(*U.getOperand(1)); 2757 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 2758 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 2759 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0); 2760 } 2761 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 2762 return true; 2763 } 2764 2765 bool IRTranslator::translateShuffleVector(const User &U, 2766 MachineIRBuilder &MIRBuilder) { 2767 ArrayRef<int> Mask; 2768 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 2769 Mask = SVI->getShuffleMask(); 2770 else 2771 Mask = cast<ConstantExpr>(U).getShuffleMask(); 2772 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 2773 MIRBuilder 2774 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 2775 {getOrCreateVReg(*U.getOperand(0)), 2776 getOrCreateVReg(*U.getOperand(1))}) 2777 .addShuffleMask(MaskAlloc); 2778 return true; 2779 } 2780 2781 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 2782 const PHINode &PI = cast<PHINode>(U); 2783 2784 SmallVector<MachineInstr *, 4> Insts; 2785 for (auto Reg : getOrCreateVRegs(PI)) { 2786 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 2787 Insts.push_back(MIB.getInstr()); 2788 } 2789 2790 PendingPHIs.emplace_back(&PI, std::move(Insts)); 2791 return true; 2792 } 2793 2794 bool IRTranslator::translateAtomicCmpXchg(const User &U, 2795 MachineIRBuilder &MIRBuilder) { 2796 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 2797 2798 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2799 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2800 2801 auto Res = getOrCreateVRegs(I); 2802 Register OldValRes = Res[0]; 2803 Register SuccessRes = Res[1]; 2804 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2805 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 2806 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 2807 2808 MIRBuilder.buildAtomicCmpXchgWithSuccess( 2809 OldValRes, SuccessRes, Addr, Cmp, NewVal, 2810 *MF->getMachineMemOperand( 2811 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp), 2812 getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(), 2813 I.getSuccessOrdering(), I.getFailureOrdering())); 2814 return true; 2815 } 2816 2817 bool IRTranslator::translateAtomicRMW(const User &U, 2818 MachineIRBuilder &MIRBuilder) { 2819 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 2820 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2821 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2822 2823 Register Res = getOrCreateVReg(I); 2824 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2825 Register Val = getOrCreateVReg(*I.getValOperand()); 2826 2827 unsigned Opcode = 0; 2828 switch (I.getOperation()) { 2829 default: 2830 return false; 2831 case AtomicRMWInst::Xchg: 2832 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2833 break; 2834 case AtomicRMWInst::Add: 2835 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2836 break; 2837 case AtomicRMWInst::Sub: 2838 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2839 break; 2840 case AtomicRMWInst::And: 2841 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2842 break; 2843 case AtomicRMWInst::Nand: 2844 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2845 break; 2846 case AtomicRMWInst::Or: 2847 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2848 break; 2849 case AtomicRMWInst::Xor: 2850 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2851 break; 2852 case AtomicRMWInst::Max: 2853 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2854 break; 2855 case AtomicRMWInst::Min: 2856 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2857 break; 2858 case AtomicRMWInst::UMax: 2859 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2860 break; 2861 case AtomicRMWInst::UMin: 2862 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2863 break; 2864 case AtomicRMWInst::FAdd: 2865 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2866 break; 2867 case AtomicRMWInst::FSub: 2868 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2869 break; 2870 } 2871 2872 MIRBuilder.buildAtomicRMW( 2873 Opcode, Res, Addr, Val, 2874 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2875 Flags, MRI->getType(Val), getMemOpAlign(I), 2876 I.getAAMetadata(), nullptr, I.getSyncScopeID(), 2877 I.getOrdering())); 2878 return true; 2879 } 2880 2881 bool IRTranslator::translateFence(const User &U, 2882 MachineIRBuilder &MIRBuilder) { 2883 const FenceInst &Fence = cast<FenceInst>(U); 2884 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2885 Fence.getSyncScopeID()); 2886 return true; 2887 } 2888 2889 bool IRTranslator::translateFreeze(const User &U, 2890 MachineIRBuilder &MIRBuilder) { 2891 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 2892 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 2893 2894 assert(DstRegs.size() == SrcRegs.size() && 2895 "Freeze with different source and destination type?"); 2896 2897 for (unsigned I = 0; I < DstRegs.size(); ++I) { 2898 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 2899 } 2900 2901 return true; 2902 } 2903 2904 void IRTranslator::finishPendingPhis() { 2905 #ifndef NDEBUG 2906 DILocationVerifier Verifier; 2907 GISelObserverWrapper WrapperObserver(&Verifier); 2908 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2909 #endif // ifndef NDEBUG 2910 for (auto &Phi : PendingPHIs) { 2911 const PHINode *PI = Phi.first; 2912 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2913 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2914 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2915 #ifndef NDEBUG 2916 Verifier.setCurrentInst(PI); 2917 #endif // ifndef NDEBUG 2918 2919 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2920 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2921 auto IRPred = PI->getIncomingBlock(i); 2922 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2923 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2924 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2925 continue; 2926 SeenPreds.insert(Pred); 2927 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2928 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2929 MIB.addUse(ValRegs[j]); 2930 MIB.addMBB(Pred); 2931 } 2932 } 2933 } 2934 } 2935 } 2936 2937 bool IRTranslator::valueIsSplit(const Value &V, 2938 SmallVectorImpl<uint64_t> *Offsets) { 2939 SmallVector<LLT, 4> SplitTys; 2940 if (Offsets && !Offsets->empty()) 2941 Offsets->clear(); 2942 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2943 return SplitTys.size() > 1; 2944 } 2945 2946 bool IRTranslator::translate(const Instruction &Inst) { 2947 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2948 2949 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2950 if (TLI.fallBackToDAGISel(Inst)) 2951 return false; 2952 2953 switch (Inst.getOpcode()) { 2954 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2955 case Instruction::OPCODE: \ 2956 return translate##OPCODE(Inst, *CurBuilder.get()); 2957 #include "llvm/IR/Instruction.def" 2958 default: 2959 return false; 2960 } 2961 } 2962 2963 bool IRTranslator::translate(const Constant &C, Register Reg) { 2964 // We only emit constants into the entry block from here. To prevent jumpy 2965 // debug behaviour set the line to 0. 2966 if (auto CurrInstDL = CurBuilder->getDL()) 2967 EntryBuilder->setDebugLoc(DILocation::get(C.getContext(), 0, 0, 2968 CurrInstDL.getScope(), 2969 CurrInstDL.getInlinedAt())); 2970 2971 if (auto CI = dyn_cast<ConstantInt>(&C)) 2972 EntryBuilder->buildConstant(Reg, *CI); 2973 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2974 EntryBuilder->buildFConstant(Reg, *CF); 2975 else if (isa<UndefValue>(C)) 2976 EntryBuilder->buildUndef(Reg); 2977 else if (isa<ConstantPointerNull>(C)) 2978 EntryBuilder->buildConstant(Reg, 0); 2979 else if (auto GV = dyn_cast<GlobalValue>(&C)) 2980 EntryBuilder->buildGlobalValue(Reg, GV); 2981 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2982 if (!isa<FixedVectorType>(CAZ->getType())) 2983 return false; 2984 // Return the scalar if it is a <1 x Ty> vector. 2985 unsigned NumElts = CAZ->getElementCount().getFixedValue(); 2986 if (NumElts == 1) 2987 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get()); 2988 SmallVector<Register, 4> Ops; 2989 for (unsigned I = 0; I < NumElts; ++I) { 2990 Constant &Elt = *CAZ->getElementValue(I); 2991 Ops.push_back(getOrCreateVReg(Elt)); 2992 } 2993 EntryBuilder->buildBuildVector(Reg, Ops); 2994 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2995 // Return the scalar if it is a <1 x Ty> vector. 2996 if (CV->getNumElements() == 1) 2997 return translateCopy(C, *CV->getElementAsConstant(0), 2998 *EntryBuilder.get()); 2999 SmallVector<Register, 4> Ops; 3000 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 3001 Constant &Elt = *CV->getElementAsConstant(i); 3002 Ops.push_back(getOrCreateVReg(Elt)); 3003 } 3004 EntryBuilder->buildBuildVector(Reg, Ops); 3005 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 3006 switch(CE->getOpcode()) { 3007 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 3008 case Instruction::OPCODE: \ 3009 return translate##OPCODE(*CE, *EntryBuilder.get()); 3010 #include "llvm/IR/Instruction.def" 3011 default: 3012 return false; 3013 } 3014 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 3015 if (CV->getNumOperands() == 1) 3016 return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get()); 3017 SmallVector<Register, 4> Ops; 3018 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 3019 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 3020 } 3021 EntryBuilder->buildBuildVector(Reg, Ops); 3022 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 3023 EntryBuilder->buildBlockAddress(Reg, BA); 3024 } else 3025 return false; 3026 3027 return true; 3028 } 3029 3030 bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB, 3031 MachineBasicBlock &MBB) { 3032 for (auto &BTB : SL->BitTestCases) { 3033 // Emit header first, if it wasn't already emitted. 3034 if (!BTB.Emitted) 3035 emitBitTestHeader(BTB, BTB.Parent); 3036 3037 BranchProbability UnhandledProb = BTB.Prob; 3038 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 3039 UnhandledProb -= BTB.Cases[j].ExtraProb; 3040 // Set the current basic block to the mbb we wish to insert the code into 3041 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB; 3042 // If all cases cover a contiguous range, it is not necessary to jump to 3043 // the default block after the last bit test fails. This is because the 3044 // range check during bit test header creation has guaranteed that every 3045 // case here doesn't go outside the range. In this case, there is no need 3046 // to perform the last bit test, as it will always be true. Instead, make 3047 // the second-to-last bit-test fall through to the target of the last bit 3048 // test, and delete the last bit test. 3049 3050 MachineBasicBlock *NextMBB; 3051 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3052 // Second-to-last bit-test with contiguous range: fall through to the 3053 // target of the final bit test. 3054 NextMBB = BTB.Cases[j + 1].TargetBB; 3055 } else if (j + 1 == ej) { 3056 // For the last bit test, fall through to Default. 3057 NextMBB = BTB.Default; 3058 } else { 3059 // Otherwise, fall through to the next bit test. 3060 NextMBB = BTB.Cases[j + 1].ThisBB; 3061 } 3062 3063 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB); 3064 3065 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3066 // We need to record the replacement phi edge here that normally 3067 // happens in emitBitTestCase before we delete the case, otherwise the 3068 // phi edge will be lost. 3069 addMachineCFGPred({BTB.Parent->getBasicBlock(), 3070 BTB.Cases[ej - 1].TargetBB->getBasicBlock()}, 3071 MBB); 3072 // Since we're not going to use the final bit test, remove it. 3073 BTB.Cases.pop_back(); 3074 break; 3075 } 3076 } 3077 // This is "default" BB. We have two jumps to it. From "header" BB and from 3078 // last "case" BB, unless the latter was skipped. 3079 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(), 3080 BTB.Default->getBasicBlock()}; 3081 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent); 3082 if (!BTB.ContiguousRange) { 3083 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB); 3084 } 3085 } 3086 SL->BitTestCases.clear(); 3087 3088 for (auto &JTCase : SL->JTCases) { 3089 // Emit header first, if it wasn't already emitted. 3090 if (!JTCase.first.Emitted) 3091 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 3092 3093 emitJumpTable(JTCase.second, JTCase.second.MBB); 3094 } 3095 SL->JTCases.clear(); 3096 3097 for (auto &SwCase : SL->SwitchCases) 3098 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder); 3099 SL->SwitchCases.clear(); 3100 3101 // Check if we need to generate stack-protector guard checks. 3102 StackProtector &SP = getAnalysis<StackProtector>(); 3103 if (SP.shouldEmitSDCheck(BB)) { 3104 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3105 bool FunctionBasedInstrumentation = 3106 TLI.getSSPStackGuardCheck(*MF->getFunction().getParent()); 3107 SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation); 3108 } 3109 // Handle stack protector. 3110 if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 3111 LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n"); 3112 return false; 3113 } else if (SPDescriptor.shouldEmitStackProtector()) { 3114 MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB(); 3115 MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB(); 3116 3117 // Find the split point to split the parent mbb. At the same time copy all 3118 // physical registers used in the tail of parent mbb into virtual registers 3119 // before the split point and back into physical registers after the split 3120 // point. This prevents us needing to deal with Live-ins and many other 3121 // register allocation issues caused by us splitting the parent mbb. The 3122 // register allocator will clean up said virtual copies later on. 3123 MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector( 3124 ParentMBB, *MF->getSubtarget().getInstrInfo()); 3125 3126 // Splice the terminator of ParentMBB into SuccessMBB. 3127 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint, 3128 ParentMBB->end()); 3129 3130 // Add compare/jump on neq/jump to the parent BB. 3131 if (!emitSPDescriptorParent(SPDescriptor, ParentMBB)) 3132 return false; 3133 3134 // CodeGen Failure MBB if we have not codegened it yet. 3135 MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB(); 3136 if (FailureMBB->empty()) { 3137 if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB)) 3138 return false; 3139 } 3140 3141 // Clear the Per-BB State. 3142 SPDescriptor.resetPerBBState(); 3143 } 3144 return true; 3145 } 3146 3147 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD, 3148 MachineBasicBlock *ParentBB) { 3149 CurBuilder->setInsertPt(*ParentBB, ParentBB->end()); 3150 // First create the loads to the guard/stack slot for the comparison. 3151 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3152 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 3153 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 3154 LLT PtrMemTy = getLLTForMVT(TLI.getPointerMemTy(*DL)); 3155 3156 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3157 int FI = MFI.getStackProtectorIndex(); 3158 3159 Register Guard; 3160 Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0); 3161 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3162 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 3163 3164 // Generate code to load the content of the guard slot. 3165 Register GuardVal = 3166 CurBuilder 3167 ->buildLoad(PtrMemTy, StackSlotPtr, 3168 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3169 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile) 3170 .getReg(0); 3171 3172 if (TLI.useStackGuardXorFP()) { 3173 LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented"); 3174 return false; 3175 } 3176 3177 // Retrieve guard check function, nullptr if instrumentation is inlined. 3178 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3179 // This path is currently untestable on GlobalISel, since the only platform 3180 // that needs this seems to be Windows, and we fall back on that currently. 3181 // The code still lives here in case that changes. 3182 // Silence warning about unused variable until the code below that uses 3183 // 'GuardCheckFn' is enabled. 3184 (void)GuardCheckFn; 3185 return false; 3186 #if 0 3187 // The target provides a guard check function to validate the guard value. 3188 // Generate a call to that function with the content of the guard slot as 3189 // argument. 3190 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3191 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3192 ISD::ArgFlagsTy Flags; 3193 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 3194 Flags.setInReg(); 3195 CallLowering::ArgInfo GuardArgInfo( 3196 {GuardVal, FnTy->getParamType(0), {Flags}}); 3197 3198 CallLowering::CallLoweringInfo Info; 3199 Info.OrigArgs.push_back(GuardArgInfo); 3200 Info.CallConv = GuardCheckFn->getCallingConv(); 3201 Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0); 3202 Info.OrigRet = {Register(), FnTy->getReturnType()}; 3203 if (!CLI->lowerCall(MIRBuilder, Info)) { 3204 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n"); 3205 return false; 3206 } 3207 return true; 3208 #endif 3209 } 3210 3211 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3212 // Otherwise, emit a volatile load to retrieve the stack guard value. 3213 if (TLI.useLoadStackGuardNode()) { 3214 Guard = 3215 MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits())); 3216 getStackGuard(Guard, *CurBuilder); 3217 } else { 3218 // TODO: test using android subtarget when we support @llvm.thread.pointer. 3219 const Value *IRGuard = TLI.getSDagStackGuard(M); 3220 Register GuardPtr = getOrCreateVReg(*IRGuard); 3221 3222 Guard = CurBuilder 3223 ->buildLoad(PtrMemTy, GuardPtr, 3224 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3225 MachineMemOperand::MOLoad | 3226 MachineMemOperand::MOVolatile) 3227 .getReg(0); 3228 } 3229 3230 // Perform the comparison. 3231 auto Cmp = 3232 CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal); 3233 // If the guard/stackslot do not equal, branch to failure MBB. 3234 CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB()); 3235 // Otherwise branch to success MBB. 3236 CurBuilder->buildBr(*SPD.getSuccessMBB()); 3237 return true; 3238 } 3239 3240 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD, 3241 MachineBasicBlock *FailureBB) { 3242 CurBuilder->setInsertPt(*FailureBB, FailureBB->end()); 3243 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3244 3245 const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL; 3246 const char *Name = TLI.getLibcallName(Libcall); 3247 3248 CallLowering::CallLoweringInfo Info; 3249 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 3250 Info.Callee = MachineOperand::CreateES(Name); 3251 Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()), 3252 0}; 3253 if (!CLI->lowerCall(*CurBuilder, Info)) { 3254 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n"); 3255 return false; 3256 } 3257 3258 // On PS4, the "return address" must still be within the calling function, 3259 // even if it's at the very end, so emit an explicit TRAP here. 3260 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3261 // WebAssembly needs an unreachable instruction after a non-returning call, 3262 // because the function return type can be different from __stack_chk_fail's 3263 // return type (void). 3264 const TargetMachine &TM = MF->getTarget(); 3265 if (TM.getTargetTriple().isPS4CPU() || TM.getTargetTriple().isWasm()) { 3266 LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n"); 3267 return false; 3268 } 3269 return true; 3270 } 3271 3272 void IRTranslator::finalizeFunction() { 3273 // Release the memory used by the different maps we 3274 // needed during the translation. 3275 PendingPHIs.clear(); 3276 VMap.reset(); 3277 FrameIndices.clear(); 3278 MachinePreds.clear(); 3279 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 3280 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 3281 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 3282 EntryBuilder.reset(); 3283 CurBuilder.reset(); 3284 FuncInfo.clear(); 3285 SPDescriptor.resetPerFunctionState(); 3286 } 3287 3288 /// Returns true if a BasicBlock \p BB within a variadic function contains a 3289 /// variadic musttail call. 3290 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 3291 if (!IsVarArg) 3292 return false; 3293 3294 // Walk the block backwards, because tail calls usually only appear at the end 3295 // of a block. 3296 return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) { 3297 const auto *CI = dyn_cast<CallInst>(&I); 3298 return CI && CI->isMustTailCall(); 3299 }); 3300 } 3301 3302 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 3303 MF = &CurMF; 3304 const Function &F = MF->getFunction(); 3305 GISelCSEAnalysisWrapper &Wrapper = 3306 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 3307 // Set the CSEConfig and run the analysis. 3308 GISelCSEInfo *CSEInfo = nullptr; 3309 TPC = &getAnalysis<TargetPassConfig>(); 3310 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 3311 ? EnableCSEInIRTranslator 3312 : TPC->isGISelCSEEnabled(); 3313 3314 if (EnableCSE) { 3315 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3316 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 3317 EntryBuilder->setCSEInfo(CSEInfo); 3318 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3319 CurBuilder->setCSEInfo(CSEInfo); 3320 } else { 3321 EntryBuilder = std::make_unique<MachineIRBuilder>(); 3322 CurBuilder = std::make_unique<MachineIRBuilder>(); 3323 } 3324 CLI = MF->getSubtarget().getCallLowering(); 3325 CurBuilder->setMF(*MF); 3326 EntryBuilder->setMF(*MF); 3327 MRI = &MF->getRegInfo(); 3328 DL = &F.getParent()->getDataLayout(); 3329 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 3330 const TargetMachine &TM = MF->getTarget(); 3331 TM.resetTargetOptions(F); 3332 EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F); 3333 FuncInfo.MF = MF; 3334 if (EnableOpts) 3335 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 3336 else 3337 FuncInfo.BPI = nullptr; 3338 3339 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF); 3340 3341 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 3342 3343 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 3344 SL->init(TLI, TM, *DL); 3345 3346 3347 3348 assert(PendingPHIs.empty() && "stale PHIs"); 3349 3350 // Targets which want to use big endian can enable it using 3351 // enableBigEndian() 3352 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) { 3353 // Currently we don't properly handle big endian code. 3354 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3355 F.getSubprogram(), &F.getEntryBlock()); 3356 R << "unable to translate in big endian mode"; 3357 reportTranslationError(*MF, *TPC, *ORE, R); 3358 } 3359 3360 // Release the per-function state when we return, whether we succeeded or not. 3361 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 3362 3363 // Setup a separate basic-block for the arguments and constants 3364 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 3365 MF->push_back(EntryBB); 3366 EntryBuilder->setMBB(*EntryBB); 3367 3368 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 3369 SwiftError.setFunction(CurMF); 3370 SwiftError.createEntriesInEntryBlock(DbgLoc); 3371 3372 bool IsVarArg = F.isVarArg(); 3373 bool HasMustTailInVarArgFn = false; 3374 3375 // Create all blocks, in IR order, to preserve the layout. 3376 for (const BasicBlock &BB: F) { 3377 auto *&MBB = BBToMBB[&BB]; 3378 3379 MBB = MF->CreateMachineBasicBlock(&BB); 3380 MF->push_back(MBB); 3381 3382 if (BB.hasAddressTaken()) 3383 MBB->setHasAddressTaken(); 3384 3385 if (!HasMustTailInVarArgFn) 3386 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 3387 } 3388 3389 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 3390 3391 // Make our arguments/constants entry block fallthrough to the IR entry block. 3392 EntryBB->addSuccessor(&getMBB(F.front())); 3393 3394 if (CLI->fallBackToDAGISel(*MF)) { 3395 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3396 F.getSubprogram(), &F.getEntryBlock()); 3397 R << "unable to lower function: " << ore::NV("Prototype", F.getType()); 3398 reportTranslationError(*MF, *TPC, *ORE, R); 3399 return false; 3400 } 3401 3402 // Lower the actual args into this basic block. 3403 SmallVector<ArrayRef<Register>, 8> VRegArgs; 3404 for (const Argument &Arg: F.args()) { 3405 if (DL->getTypeStoreSize(Arg.getType()).isZero()) 3406 continue; // Don't handle zero sized types. 3407 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 3408 VRegArgs.push_back(VRegs); 3409 3410 if (Arg.hasSwiftErrorAttr()) { 3411 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 3412 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 3413 } 3414 } 3415 3416 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs, FuncInfo)) { 3417 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3418 F.getSubprogram(), &F.getEntryBlock()); 3419 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 3420 reportTranslationError(*MF, *TPC, *ORE, R); 3421 return false; 3422 } 3423 3424 // Need to visit defs before uses when translating instructions. 3425 GISelObserverWrapper WrapperObserver; 3426 if (EnableCSE && CSEInfo) 3427 WrapperObserver.addObserver(CSEInfo); 3428 { 3429 ReversePostOrderTraversal<const Function *> RPOT(&F); 3430 #ifndef NDEBUG 3431 DILocationVerifier Verifier; 3432 WrapperObserver.addObserver(&Verifier); 3433 #endif // ifndef NDEBUG 3434 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 3435 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 3436 for (const BasicBlock *BB : RPOT) { 3437 MachineBasicBlock &MBB = getMBB(*BB); 3438 // Set the insertion point of all the following translations to 3439 // the end of this basic block. 3440 CurBuilder->setMBB(MBB); 3441 HasTailCall = false; 3442 for (const Instruction &Inst : *BB) { 3443 // If we translated a tail call in the last step, then we know 3444 // everything after the call is either a return, or something that is 3445 // handled by the call itself. (E.g. a lifetime marker or assume 3446 // intrinsic.) In this case, we should stop translating the block and 3447 // move on. 3448 if (HasTailCall) 3449 break; 3450 #ifndef NDEBUG 3451 Verifier.setCurrentInst(&Inst); 3452 #endif // ifndef NDEBUG 3453 if (translate(Inst)) 3454 continue; 3455 3456 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3457 Inst.getDebugLoc(), BB); 3458 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 3459 3460 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 3461 std::string InstStrStorage; 3462 raw_string_ostream InstStr(InstStrStorage); 3463 InstStr << Inst; 3464 3465 R << ": '" << InstStr.str() << "'"; 3466 } 3467 3468 reportTranslationError(*MF, *TPC, *ORE, R); 3469 return false; 3470 } 3471 3472 if (!finalizeBasicBlock(*BB, MBB)) { 3473 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3474 BB->getTerminator()->getDebugLoc(), BB); 3475 R << "unable to translate basic block"; 3476 reportTranslationError(*MF, *TPC, *ORE, R); 3477 return false; 3478 } 3479 } 3480 #ifndef NDEBUG 3481 WrapperObserver.removeObserver(&Verifier); 3482 #endif 3483 } 3484 3485 finishPendingPhis(); 3486 3487 SwiftError.propagateVRegs(); 3488 3489 // Merge the argument lowering and constants block with its single 3490 // successor, the LLVM-IR entry block. We want the basic block to 3491 // be maximal. 3492 assert(EntryBB->succ_size() == 1 && 3493 "Custom BB used for lowering should have only one successor"); 3494 // Get the successor of the current entry block. 3495 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 3496 assert(NewEntryBB.pred_size() == 1 && 3497 "LLVM-IR entry block has a predecessor!?"); 3498 // Move all the instruction from the current entry block to the 3499 // new entry block. 3500 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 3501 EntryBB->end()); 3502 3503 // Update the live-in information for the new entry block. 3504 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 3505 NewEntryBB.addLiveIn(LiveIn); 3506 NewEntryBB.sortUniqueLiveIns(); 3507 3508 // Get rid of the now empty basic block. 3509 EntryBB->removeSuccessor(&NewEntryBB); 3510 MF->remove(EntryBB); 3511 MF->deleteMachineBasicBlock(EntryBB); 3512 3513 assert(&MF->front() == &NewEntryBB && 3514 "New entry wasn't next in the list of basic block!"); 3515 3516 // Initialize stack protector information. 3517 StackProtector &SP = getAnalysis<StackProtector>(); 3518 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 3519 3520 return false; 3521 } 3522