1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 26 #include "llvm/CodeGen/LowLevelType.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/StackProtector.h" 36 #include "llvm/CodeGen/SwitchLoweringUtils.h" 37 #include "llvm/CodeGen/TargetFrameLowering.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/CFG.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfo.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GetElementPtrTypeIterator.h" 52 #include "llvm/IR/InlineAsm.h" 53 #include "llvm/IR/InstrTypes.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/Intrinsics.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/MCContext.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CodeGen.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetIntrinsicInfo.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 #define DEBUG_TYPE "irtranslator" 85 86 using namespace llvm; 87 88 static cl::opt<bool> 89 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 90 cl::desc("Should enable CSE in irtranslator"), 91 cl::Optional, cl::init(false)); 92 char IRTranslator::ID = 0; 93 94 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 95 false, false) 96 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 97 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 98 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 99 INITIALIZE_PASS_DEPENDENCY(StackProtector) 100 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 101 false, false) 102 103 static void reportTranslationError(MachineFunction &MF, 104 const TargetPassConfig &TPC, 105 OptimizationRemarkEmitter &ORE, 106 OptimizationRemarkMissed &R) { 107 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 108 109 // Print the function name explicitly if we don't have a debug location (which 110 // makes the diagnostic less useful) or if we're going to emit a raw error. 111 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 112 R << (" (in function: " + MF.getName() + ")").str(); 113 114 if (TPC.isGlobalISelAbortEnabled()) 115 report_fatal_error(R.getMsg()); 116 else 117 ORE.emit(R); 118 } 119 120 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel) 121 : MachineFunctionPass(ID), OptLevel(optlevel) {} 122 123 #ifndef NDEBUG 124 namespace { 125 /// Verify that every instruction created has the same DILocation as the 126 /// instruction being translated. 127 class DILocationVerifier : public GISelChangeObserver { 128 const Instruction *CurrInst = nullptr; 129 130 public: 131 DILocationVerifier() = default; 132 ~DILocationVerifier() = default; 133 134 const Instruction *getCurrentInst() const { return CurrInst; } 135 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 136 137 void erasingInstr(MachineInstr &MI) override {} 138 void changingInstr(MachineInstr &MI) override {} 139 void changedInstr(MachineInstr &MI) override {} 140 141 void createdInstr(MachineInstr &MI) override { 142 assert(getCurrentInst() && "Inserted instruction without a current MI"); 143 144 // Only print the check message if we're actually checking it. 145 #ifndef NDEBUG 146 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 147 << " was copied to " << MI); 148 #endif 149 // We allow insts in the entry block to have a debug loc line of 0 because 150 // they could have originated from constants, and we don't want a jumpy 151 // debug experience. 152 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 153 MI.getDebugLoc().getLine() == 0) && 154 "Line info was not transferred to all instructions"); 155 } 156 }; 157 } // namespace 158 #endif // ifndef NDEBUG 159 160 161 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 162 AU.addRequired<StackProtector>(); 163 AU.addRequired<TargetPassConfig>(); 164 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 165 if (OptLevel != CodeGenOpt::None) 166 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 167 getSelectionDAGFallbackAnalysisUsage(AU); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 } 170 171 IRTranslator::ValueToVRegInfo::VRegListT & 172 IRTranslator::allocateVRegs(const Value &Val) { 173 auto VRegsIt = VMap.findVRegs(Val); 174 if (VRegsIt != VMap.vregs_end()) 175 return *VRegsIt->second; 176 auto *Regs = VMap.getVRegs(Val); 177 auto *Offsets = VMap.getOffsets(Val); 178 SmallVector<LLT, 4> SplitTys; 179 computeValueLLTs(*DL, *Val.getType(), SplitTys, 180 Offsets->empty() ? Offsets : nullptr); 181 for (unsigned i = 0; i < SplitTys.size(); ++i) 182 Regs->push_back(0); 183 return *Regs; 184 } 185 186 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 187 auto VRegsIt = VMap.findVRegs(Val); 188 if (VRegsIt != VMap.vregs_end()) 189 return *VRegsIt->second; 190 191 if (Val.getType()->isVoidTy()) 192 return *VMap.getVRegs(Val); 193 194 // Create entry for this type. 195 auto *VRegs = VMap.getVRegs(Val); 196 auto *Offsets = VMap.getOffsets(Val); 197 198 assert(Val.getType()->isSized() && 199 "Don't know how to create an empty vreg"); 200 201 SmallVector<LLT, 4> SplitTys; 202 computeValueLLTs(*DL, *Val.getType(), SplitTys, 203 Offsets->empty() ? Offsets : nullptr); 204 205 if (!isa<Constant>(Val)) { 206 for (auto Ty : SplitTys) 207 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 208 return *VRegs; 209 } 210 211 if (Val.getType()->isAggregateType()) { 212 // UndefValue, ConstantAggregateZero 213 auto &C = cast<Constant>(Val); 214 unsigned Idx = 0; 215 while (auto Elt = C.getAggregateElement(Idx++)) { 216 auto EltRegs = getOrCreateVRegs(*Elt); 217 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 218 } 219 } else { 220 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 221 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 222 bool Success = translate(cast<Constant>(Val), VRegs->front()); 223 if (!Success) { 224 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 225 MF->getFunction().getSubprogram(), 226 &MF->getFunction().getEntryBlock()); 227 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 228 reportTranslationError(*MF, *TPC, *ORE, R); 229 return *VRegs; 230 } 231 } 232 233 return *VRegs; 234 } 235 236 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 237 auto MapEntry = FrameIndices.find(&AI); 238 if (MapEntry != FrameIndices.end()) 239 return MapEntry->second; 240 241 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 242 uint64_t Size = 243 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 244 245 // Always allocate at least one byte. 246 Size = std::max<uint64_t>(Size, 1u); 247 248 int &FI = FrameIndices[&AI]; 249 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI); 250 return FI; 251 } 252 253 Align IRTranslator::getMemOpAlign(const Instruction &I) { 254 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) 255 return SI->getAlign(); 256 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 257 return LI->getAlign(); 258 } 259 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 260 // TODO(PR27168): This instruction has no alignment attribute, but unlike 261 // the default alignment for load/store, the default here is to assume 262 // it has NATURAL alignment, not DataLayout-specified alignment. 263 const DataLayout &DL = AI->getModule()->getDataLayout(); 264 return Align(DL.getTypeStoreSize(AI->getCompareOperand()->getType())); 265 } 266 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 267 // TODO(PR27168): This instruction has no alignment attribute, but unlike 268 // the default alignment for load/store, the default here is to assume 269 // it has NATURAL alignment, not DataLayout-specified alignment. 270 const DataLayout &DL = AI->getModule()->getDataLayout(); 271 return Align(DL.getTypeStoreSize(AI->getValOperand()->getType())); 272 } 273 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 274 R << "unable to translate memop: " << ore::NV("Opcode", &I); 275 reportTranslationError(*MF, *TPC, *ORE, R); 276 return Align(1); 277 } 278 279 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 280 MachineBasicBlock *&MBB = BBToMBB[&BB]; 281 assert(MBB && "BasicBlock was not encountered before"); 282 return *MBB; 283 } 284 285 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 286 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 287 MachinePreds[Edge].push_back(NewPred); 288 } 289 290 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 291 MachineIRBuilder &MIRBuilder) { 292 // Get or create a virtual register for each value. 293 // Unless the value is a Constant => loadimm cst? 294 // or inline constant each time? 295 // Creation of a virtual register needs to have a size. 296 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 297 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 298 Register Res = getOrCreateVReg(U); 299 uint16_t Flags = 0; 300 if (isa<Instruction>(U)) { 301 const Instruction &I = cast<Instruction>(U); 302 Flags = MachineInstr::copyFlagsFromInstruction(I); 303 } 304 305 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 306 return true; 307 } 308 309 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U, 310 MachineIRBuilder &MIRBuilder) { 311 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 312 Register Res = getOrCreateVReg(U); 313 uint16_t Flags = 0; 314 if (isa<Instruction>(U)) { 315 const Instruction &I = cast<Instruction>(U); 316 Flags = MachineInstr::copyFlagsFromInstruction(I); 317 } 318 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags); 319 return true; 320 } 321 322 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 323 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder); 324 } 325 326 bool IRTranslator::translateCompare(const User &U, 327 MachineIRBuilder &MIRBuilder) { 328 auto *CI = dyn_cast<CmpInst>(&U); 329 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 330 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 331 Register Res = getOrCreateVReg(U); 332 CmpInst::Predicate Pred = 333 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 334 cast<ConstantExpr>(U).getPredicate()); 335 if (CmpInst::isIntPredicate(Pred)) 336 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 337 else if (Pred == CmpInst::FCMP_FALSE) 338 MIRBuilder.buildCopy( 339 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 340 else if (Pred == CmpInst::FCMP_TRUE) 341 MIRBuilder.buildCopy( 342 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 343 else { 344 assert(CI && "Instruction should be CmpInst"); 345 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, 346 MachineInstr::copyFlagsFromInstruction(*CI)); 347 } 348 349 return true; 350 } 351 352 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 353 const ReturnInst &RI = cast<ReturnInst>(U); 354 const Value *Ret = RI.getReturnValue(); 355 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 356 Ret = nullptr; 357 358 ArrayRef<Register> VRegs; 359 if (Ret) 360 VRegs = getOrCreateVRegs(*Ret); 361 362 Register SwiftErrorVReg = 0; 363 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 364 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 365 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 366 } 367 368 // The target may mess up with the insertion point, but 369 // this is not important as a return is the last instruction 370 // of the block anyway. 371 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg); 372 } 373 374 void IRTranslator::emitBranchForMergedCondition( 375 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 376 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 377 BranchProbability TProb, BranchProbability FProb, bool InvertCond) { 378 // If the leaf of the tree is a comparison, merge the condition into 379 // the caseblock. 380 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 381 CmpInst::Predicate Condition; 382 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 383 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 384 } else { 385 const FCmpInst *FC = cast<FCmpInst>(Cond); 386 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 387 } 388 389 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0), 390 BOp->getOperand(1), nullptr, TBB, FBB, CurBB, 391 CurBuilder->getDebugLoc(), TProb, FProb); 392 SL->SwitchCases.push_back(CB); 393 return; 394 } 395 396 // Create a CaseBlock record representing this branch. 397 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 398 SwitchCG::CaseBlock CB( 399 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()), 400 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb); 401 SL->SwitchCases.push_back(CB); 402 } 403 404 static bool isValInBlock(const Value *V, const BasicBlock *BB) { 405 if (const Instruction *I = dyn_cast<Instruction>(V)) 406 return I->getParent() == BB; 407 return true; 408 } 409 410 void IRTranslator::findMergedConditions( 411 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 412 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 413 Instruction::BinaryOps Opc, BranchProbability TProb, 414 BranchProbability FProb, bool InvertCond) { 415 using namespace PatternMatch; 416 assert((Opc == Instruction::And || Opc == Instruction::Or) && 417 "Expected Opc to be AND/OR"); 418 // Skip over not part of the tree and remember to invert op and operands at 419 // next level. 420 Value *NotCond; 421 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 422 isValInBlock(NotCond, CurBB->getBasicBlock())) { 423 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 424 !InvertCond); 425 return; 426 } 427 428 const Instruction *BOp = dyn_cast<Instruction>(Cond); 429 const Value *BOpOp0, *BOpOp1; 430 // Compute the effective opcode for Cond, taking into account whether it needs 431 // to be inverted, e.g. 432 // and (not (or A, B)), C 433 // gets lowered as 434 // and (and (not A, not B), C) 435 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 436 if (BOp) { 437 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 438 ? Instruction::And 439 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 440 ? Instruction::Or 441 : (Instruction::BinaryOps)0); 442 if (InvertCond) { 443 if (BOpc == Instruction::And) 444 BOpc = Instruction::Or; 445 else if (BOpc == Instruction::Or) 446 BOpc = Instruction::And; 447 } 448 } 449 450 // If this node is not part of the or/and tree, emit it as a branch. 451 // Note that all nodes in the tree should have same opcode. 452 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 453 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 454 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) || 455 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) { 456 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb, 457 InvertCond); 458 return; 459 } 460 461 // Create TmpBB after CurBB. 462 MachineFunction::iterator BBI(CurBB); 463 MachineBasicBlock *TmpBB = 464 MF->CreateMachineBasicBlock(CurBB->getBasicBlock()); 465 CurBB->getParent()->insert(++BBI, TmpBB); 466 467 if (Opc == Instruction::Or) { 468 // Codegen X | Y as: 469 // BB1: 470 // jmp_if_X TBB 471 // jmp TmpBB 472 // TmpBB: 473 // jmp_if_Y TBB 474 // jmp FBB 475 // 476 477 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 478 // The requirement is that 479 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 480 // = TrueProb for original BB. 481 // Assuming the original probabilities are A and B, one choice is to set 482 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 483 // A/(1+B) and 2B/(1+B). This choice assumes that 484 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 485 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 486 // TmpBB, but the math is more complicated. 487 488 auto NewTrueProb = TProb / 2; 489 auto NewFalseProb = TProb / 2 + FProb; 490 // Emit the LHS condition. 491 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 492 NewFalseProb, InvertCond); 493 494 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 495 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 496 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 497 // Emit the RHS condition into TmpBB. 498 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 499 Probs[1], InvertCond); 500 } else { 501 assert(Opc == Instruction::And && "Unknown merge op!"); 502 // Codegen X & Y as: 503 // BB1: 504 // jmp_if_X TmpBB 505 // jmp FBB 506 // TmpBB: 507 // jmp_if_Y TBB 508 // jmp FBB 509 // 510 // This requires creation of TmpBB after CurBB. 511 512 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 513 // The requirement is that 514 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 515 // = FalseProb for original BB. 516 // Assuming the original probabilities are A and B, one choice is to set 517 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 518 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 519 // TrueProb for BB1 * FalseProb for TmpBB. 520 521 auto NewTrueProb = TProb + FProb / 2; 522 auto NewFalseProb = FProb / 2; 523 // Emit the LHS condition. 524 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 525 NewFalseProb, InvertCond); 526 527 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 528 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 529 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 530 // Emit the RHS condition into TmpBB. 531 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 532 Probs[1], InvertCond); 533 } 534 } 535 536 bool IRTranslator::shouldEmitAsBranches( 537 const std::vector<SwitchCG::CaseBlock> &Cases) { 538 // For multiple cases, it's better to emit as branches. 539 if (Cases.size() != 2) 540 return true; 541 542 // If this is two comparisons of the same values or'd or and'd together, they 543 // will get folded into a single comparison, so don't emit two blocks. 544 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 545 Cases[0].CmpRHS == Cases[1].CmpRHS) || 546 (Cases[0].CmpRHS == Cases[1].CmpLHS && 547 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 548 return false; 549 } 550 551 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 552 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 553 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 554 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred && 555 isa<Constant>(Cases[0].CmpRHS) && 556 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 557 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ && 558 Cases[0].TrueBB == Cases[1].ThisBB) 559 return false; 560 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE && 561 Cases[0].FalseBB == Cases[1].ThisBB) 562 return false; 563 } 564 565 return true; 566 } 567 568 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 569 const BranchInst &BrInst = cast<BranchInst>(U); 570 auto &CurMBB = MIRBuilder.getMBB(); 571 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0)); 572 573 if (BrInst.isUnconditional()) { 574 // If the unconditional target is the layout successor, fallthrough. 575 if (!CurMBB.isLayoutSuccessor(Succ0MBB)) 576 MIRBuilder.buildBr(*Succ0MBB); 577 578 // Link successors. 579 for (const BasicBlock *Succ : successors(&BrInst)) 580 CurMBB.addSuccessor(&getMBB(*Succ)); 581 return true; 582 } 583 584 // If this condition is one of the special cases we handle, do special stuff 585 // now. 586 const Value *CondVal = BrInst.getCondition(); 587 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1)); 588 589 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 590 591 // If this is a series of conditions that are or'd or and'd together, emit 592 // this as a sequence of branches instead of setcc's with and/or operations. 593 // As long as jumps are not expensive (exceptions for multi-use logic ops, 594 // unpredictable branches, and vector extracts because those jumps are likely 595 // expensive for any target), this should improve performance. 596 // For example, instead of something like: 597 // cmp A, B 598 // C = seteq 599 // cmp D, E 600 // F = setle 601 // or C, F 602 // jnz foo 603 // Emit: 604 // cmp A, B 605 // je foo 606 // cmp D, E 607 // jle foo 608 using namespace PatternMatch; 609 const Instruction *CondI = dyn_cast<Instruction>(CondVal); 610 if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() && 611 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) { 612 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 613 Value *Vec; 614 const Value *BOp0, *BOp1; 615 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 616 Opcode = Instruction::And; 617 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 618 Opcode = Instruction::Or; 619 620 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 621 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 622 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode, 623 getEdgeProbability(&CurMBB, Succ0MBB), 624 getEdgeProbability(&CurMBB, Succ1MBB), 625 /*InvertCond=*/false); 626 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!"); 627 628 // Allow some cases to be rejected. 629 if (shouldEmitAsBranches(SL->SwitchCases)) { 630 // Emit the branch for this block. 631 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder); 632 SL->SwitchCases.erase(SL->SwitchCases.begin()); 633 return true; 634 } 635 636 // Okay, we decided not to do this, remove any inserted MBB's and clear 637 // SwitchCases. 638 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I) 639 MF->erase(SL->SwitchCases[I].ThisBB); 640 641 SL->SwitchCases.clear(); 642 } 643 } 644 645 // Create a CaseBlock record representing this branch. 646 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal, 647 ConstantInt::getTrue(MF->getFunction().getContext()), 648 nullptr, Succ0MBB, Succ1MBB, &CurMBB, 649 CurBuilder->getDebugLoc()); 650 651 // Use emitSwitchCase to actually insert the fast branch sequence for this 652 // cond branch. 653 emitSwitchCase(CB, &CurMBB, *CurBuilder); 654 return true; 655 } 656 657 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 658 MachineBasicBlock *Dst, 659 BranchProbability Prob) { 660 if (!FuncInfo.BPI) { 661 Src->addSuccessorWithoutProb(Dst); 662 return; 663 } 664 if (Prob.isUnknown()) 665 Prob = getEdgeProbability(Src, Dst); 666 Src->addSuccessor(Dst, Prob); 667 } 668 669 BranchProbability 670 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 671 const MachineBasicBlock *Dst) const { 672 const BasicBlock *SrcBB = Src->getBasicBlock(); 673 const BasicBlock *DstBB = Dst->getBasicBlock(); 674 if (!FuncInfo.BPI) { 675 // If BPI is not available, set the default probability as 1 / N, where N is 676 // the number of successors. 677 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 678 return BranchProbability(1, SuccSize); 679 } 680 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 681 } 682 683 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 684 using namespace SwitchCG; 685 // Extract cases from the switch. 686 const SwitchInst &SI = cast<SwitchInst>(U); 687 BranchProbabilityInfo *BPI = FuncInfo.BPI; 688 CaseClusterVector Clusters; 689 Clusters.reserve(SI.getNumCases()); 690 for (auto &I : SI.cases()) { 691 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 692 assert(Succ && "Could not find successor mbb in mapping"); 693 const ConstantInt *CaseVal = I.getCaseValue(); 694 BranchProbability Prob = 695 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 696 : BranchProbability(1, SI.getNumCases() + 1); 697 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 698 } 699 700 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 701 702 // Cluster adjacent cases with the same destination. We do this at all 703 // optimization levels because it's cheap to do and will make codegen faster 704 // if there are many clusters. 705 sortAndRangeify(Clusters); 706 707 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 708 709 // If there is only the default destination, jump there directly. 710 if (Clusters.empty()) { 711 SwitchMBB->addSuccessor(DefaultMBB); 712 if (DefaultMBB != SwitchMBB->getNextNode()) 713 MIB.buildBr(*DefaultMBB); 714 return true; 715 } 716 717 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 718 SL->findBitTestClusters(Clusters, &SI); 719 720 LLVM_DEBUG({ 721 dbgs() << "Case clusters: "; 722 for (const CaseCluster &C : Clusters) { 723 if (C.Kind == CC_JumpTable) 724 dbgs() << "JT:"; 725 if (C.Kind == CC_BitTests) 726 dbgs() << "BT:"; 727 728 C.Low->getValue().print(dbgs(), true); 729 if (C.Low != C.High) { 730 dbgs() << '-'; 731 C.High->getValue().print(dbgs(), true); 732 } 733 dbgs() << ' '; 734 } 735 dbgs() << '\n'; 736 }); 737 738 assert(!Clusters.empty()); 739 SwitchWorkList WorkList; 740 CaseClusterIt First = Clusters.begin(); 741 CaseClusterIt Last = Clusters.end() - 1; 742 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 743 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 744 745 // FIXME: At the moment we don't do any splitting optimizations here like 746 // SelectionDAG does, so this worklist only has one entry. 747 while (!WorkList.empty()) { 748 SwitchWorkListItem W = WorkList.back(); 749 WorkList.pop_back(); 750 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 751 return false; 752 } 753 return true; 754 } 755 756 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 757 MachineBasicBlock *MBB) { 758 // Emit the code for the jump table 759 assert(JT.Reg != -1U && "Should lower JT Header first!"); 760 MachineIRBuilder MIB(*MBB->getParent()); 761 MIB.setMBB(*MBB); 762 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 763 764 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 765 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 766 767 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 768 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 769 } 770 771 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 772 SwitchCG::JumpTableHeader &JTH, 773 MachineBasicBlock *HeaderBB) { 774 MachineIRBuilder MIB(*HeaderBB->getParent()); 775 MIB.setMBB(*HeaderBB); 776 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 777 778 const Value &SValue = *JTH.SValue; 779 // Subtract the lowest switch case value from the value being switched on. 780 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 781 Register SwitchOpReg = getOrCreateVReg(SValue); 782 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 783 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 784 785 // This value may be smaller or larger than the target's pointer type, and 786 // therefore require extension or truncating. 787 Type *PtrIRTy = SValue.getType()->getPointerTo(); 788 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 789 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 790 791 JT.Reg = Sub.getReg(0); 792 793 if (JTH.OmitRangeCheck) { 794 if (JT.MBB != HeaderBB->getNextNode()) 795 MIB.buildBr(*JT.MBB); 796 return true; 797 } 798 799 // Emit the range check for the jump table, and branch to the default block 800 // for the switch statement if the value being switched on exceeds the 801 // largest case in the switch. 802 auto Cst = getOrCreateVReg( 803 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 804 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 805 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 806 807 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 808 809 // Avoid emitting unnecessary branches to the next block. 810 if (JT.MBB != HeaderBB->getNextNode()) 811 BrCond = MIB.buildBr(*JT.MBB); 812 return true; 813 } 814 815 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 816 MachineBasicBlock *SwitchBB, 817 MachineIRBuilder &MIB) { 818 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 819 Register Cond; 820 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 821 MIB.setDebugLoc(CB.DbgLoc); 822 MIB.setMBB(*CB.ThisBB); 823 824 if (CB.PredInfo.NoCmp) { 825 // Branch or fall through to TrueBB. 826 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 827 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 828 CB.ThisBB); 829 CB.ThisBB->normalizeSuccProbs(); 830 if (CB.TrueBB != CB.ThisBB->getNextNode()) 831 MIB.buildBr(*CB.TrueBB); 832 MIB.setDebugLoc(OldDbgLoc); 833 return; 834 } 835 836 const LLT i1Ty = LLT::scalar(1); 837 // Build the compare. 838 if (!CB.CmpMHS) { 839 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS); 840 // For conditional branch lowering, we might try to do something silly like 841 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so, 842 // just re-use the existing condition vreg. 843 if (CI && CI->getZExtValue() == 1 && 844 MRI->getType(CondLHS).getSizeInBits() == 1 && 845 CB.PredInfo.Pred == CmpInst::ICMP_EQ) { 846 Cond = CondLHS; 847 } else { 848 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 849 if (CmpInst::isFPPredicate(CB.PredInfo.Pred)) 850 Cond = 851 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 852 else 853 Cond = 854 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 855 } 856 } else { 857 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 858 "Can only handle SLE ranges"); 859 860 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 861 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 862 863 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 864 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 865 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 866 Cond = 867 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 868 } else { 869 const LLT CmpTy = MRI->getType(CmpOpReg); 870 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 871 auto Diff = MIB.buildConstant(CmpTy, High - Low); 872 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 873 } 874 } 875 876 // Update successor info 877 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 878 879 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 880 CB.ThisBB); 881 882 // TrueBB and FalseBB are always different unless the incoming IR is 883 // degenerate. This only happens when running llc on weird IR. 884 if (CB.TrueBB != CB.FalseBB) 885 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 886 CB.ThisBB->normalizeSuccProbs(); 887 888 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 889 CB.ThisBB); 890 891 MIB.buildBrCond(Cond, *CB.TrueBB); 892 MIB.buildBr(*CB.FalseBB); 893 MIB.setDebugLoc(OldDbgLoc); 894 } 895 896 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 897 MachineBasicBlock *SwitchMBB, 898 MachineBasicBlock *CurMBB, 899 MachineBasicBlock *DefaultMBB, 900 MachineIRBuilder &MIB, 901 MachineFunction::iterator BBI, 902 BranchProbability UnhandledProbs, 903 SwitchCG::CaseClusterIt I, 904 MachineBasicBlock *Fallthrough, 905 bool FallthroughUnreachable) { 906 using namespace SwitchCG; 907 MachineFunction *CurMF = SwitchMBB->getParent(); 908 // FIXME: Optimize away range check based on pivot comparisons. 909 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 910 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 911 BranchProbability DefaultProb = W.DefaultProb; 912 913 // The jump block hasn't been inserted yet; insert it here. 914 MachineBasicBlock *JumpMBB = JT->MBB; 915 CurMF->insert(BBI, JumpMBB); 916 917 // Since the jump table block is separate from the switch block, we need 918 // to keep track of it as a machine predecessor to the default block, 919 // otherwise we lose the phi edges. 920 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 921 CurMBB); 922 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 923 JumpMBB); 924 925 auto JumpProb = I->Prob; 926 auto FallthroughProb = UnhandledProbs; 927 928 // If the default statement is a target of the jump table, we evenly 929 // distribute the default probability to successors of CurMBB. Also 930 // update the probability on the edge from JumpMBB to Fallthrough. 931 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 932 SE = JumpMBB->succ_end(); 933 SI != SE; ++SI) { 934 if (*SI == DefaultMBB) { 935 JumpProb += DefaultProb / 2; 936 FallthroughProb -= DefaultProb / 2; 937 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 938 JumpMBB->normalizeSuccProbs(); 939 } else { 940 // Also record edges from the jump table block to it's successors. 941 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 942 JumpMBB); 943 } 944 } 945 946 // Skip the range check if the fallthrough block is unreachable. 947 if (FallthroughUnreachable) 948 JTH->OmitRangeCheck = true; 949 950 if (!JTH->OmitRangeCheck) 951 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 952 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 953 CurMBB->normalizeSuccProbs(); 954 955 // The jump table header will be inserted in our current block, do the 956 // range check, and fall through to our fallthrough block. 957 JTH->HeaderBB = CurMBB; 958 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 959 960 // If we're in the right place, emit the jump table header right now. 961 if (CurMBB == SwitchMBB) { 962 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 963 return false; 964 JTH->Emitted = true; 965 } 966 return true; 967 } 968 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 969 Value *Cond, 970 MachineBasicBlock *Fallthrough, 971 bool FallthroughUnreachable, 972 BranchProbability UnhandledProbs, 973 MachineBasicBlock *CurMBB, 974 MachineIRBuilder &MIB, 975 MachineBasicBlock *SwitchMBB) { 976 using namespace SwitchCG; 977 const Value *RHS, *LHS, *MHS; 978 CmpInst::Predicate Pred; 979 if (I->Low == I->High) { 980 // Check Cond == I->Low. 981 Pred = CmpInst::ICMP_EQ; 982 LHS = Cond; 983 RHS = I->Low; 984 MHS = nullptr; 985 } else { 986 // Check I->Low <= Cond <= I->High. 987 Pred = CmpInst::ICMP_SLE; 988 LHS = I->Low; 989 MHS = Cond; 990 RHS = I->High; 991 } 992 993 // If Fallthrough is unreachable, fold away the comparison. 994 // The false probability is the sum of all unhandled cases. 995 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 996 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 997 998 emitSwitchCase(CB, SwitchMBB, MIB); 999 return true; 1000 } 1001 1002 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B, 1003 MachineBasicBlock *SwitchBB) { 1004 MachineIRBuilder &MIB = *CurBuilder; 1005 MIB.setMBB(*SwitchBB); 1006 1007 // Subtract the minimum value. 1008 Register SwitchOpReg = getOrCreateVReg(*B.SValue); 1009 1010 LLT SwitchOpTy = MRI->getType(SwitchOpReg); 1011 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0); 1012 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg); 1013 1014 // Ensure that the type will fit the mask value. 1015 LLT MaskTy = SwitchOpTy; 1016 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) { 1017 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) { 1018 // Switch table case range are encoded into series of masks. 1019 // Just use pointer type, it's guaranteed to fit. 1020 MaskTy = LLT::scalar(64); 1021 break; 1022 } 1023 } 1024 Register SubReg = RangeSub.getReg(0); 1025 if (SwitchOpTy != MaskTy) 1026 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0); 1027 1028 B.RegVT = getMVTForLLT(MaskTy); 1029 B.Reg = SubReg; 1030 1031 MachineBasicBlock *MBB = B.Cases[0].ThisBB; 1032 1033 if (!B.OmitRangeCheck) 1034 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 1035 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 1036 1037 SwitchBB->normalizeSuccProbs(); 1038 1039 if (!B.OmitRangeCheck) { 1040 // Conditional branch to the default block. 1041 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range); 1042 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1), 1043 RangeSub, RangeCst); 1044 MIB.buildBrCond(RangeCmp, *B.Default); 1045 } 1046 1047 // Avoid emitting unnecessary branches to the next block. 1048 if (MBB != SwitchBB->getNextNode()) 1049 MIB.buildBr(*MBB); 1050 } 1051 1052 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB, 1053 MachineBasicBlock *NextMBB, 1054 BranchProbability BranchProbToNext, 1055 Register Reg, SwitchCG::BitTestCase &B, 1056 MachineBasicBlock *SwitchBB) { 1057 MachineIRBuilder &MIB = *CurBuilder; 1058 MIB.setMBB(*SwitchBB); 1059 1060 LLT SwitchTy = getLLTForMVT(BB.RegVT); 1061 Register Cmp; 1062 unsigned PopCount = countPopulation(B.Mask); 1063 if (PopCount == 1) { 1064 // Testing for a single bit; just compare the shift count with what it 1065 // would need to be to shift a 1 bit in that position. 1066 auto MaskTrailingZeros = 1067 MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask)); 1068 Cmp = 1069 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros) 1070 .getReg(0); 1071 } else if (PopCount == BB.Range) { 1072 // There is only one zero bit in the range, test for it directly. 1073 auto MaskTrailingOnes = 1074 MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask)); 1075 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes) 1076 .getReg(0); 1077 } else { 1078 // Make desired shift. 1079 auto CstOne = MIB.buildConstant(SwitchTy, 1); 1080 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg); 1081 1082 // Emit bit tests and jumps. 1083 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask); 1084 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask); 1085 auto CstZero = MIB.buildConstant(SwitchTy, 0); 1086 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero) 1087 .getReg(0); 1088 } 1089 1090 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 1091 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 1092 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 1093 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 1094 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 1095 // one as they are relative probabilities (and thus work more like weights), 1096 // and hence we need to normalize them to let the sum of them become one. 1097 SwitchBB->normalizeSuccProbs(); 1098 1099 // Record the fact that the IR edge from the header to the bit test target 1100 // will go through our new block. Neeeded for PHIs to have nodes added. 1101 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()}, 1102 SwitchBB); 1103 1104 MIB.buildBrCond(Cmp, *B.TargetBB); 1105 1106 // Avoid emitting unnecessary branches to the next block. 1107 if (NextMBB != SwitchBB->getNextNode()) 1108 MIB.buildBr(*NextMBB); 1109 } 1110 1111 bool IRTranslator::lowerBitTestWorkItem( 1112 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB, 1113 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB, 1114 MachineIRBuilder &MIB, MachineFunction::iterator BBI, 1115 BranchProbability DefaultProb, BranchProbability UnhandledProbs, 1116 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough, 1117 bool FallthroughUnreachable) { 1118 using namespace SwitchCG; 1119 MachineFunction *CurMF = SwitchMBB->getParent(); 1120 // FIXME: Optimize away range check based on pivot comparisons. 1121 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 1122 // The bit test blocks haven't been inserted yet; insert them here. 1123 for (BitTestCase &BTC : BTB->Cases) 1124 CurMF->insert(BBI, BTC.ThisBB); 1125 1126 // Fill in fields of the BitTestBlock. 1127 BTB->Parent = CurMBB; 1128 BTB->Default = Fallthrough; 1129 1130 BTB->DefaultProb = UnhandledProbs; 1131 // If the cases in bit test don't form a contiguous range, we evenly 1132 // distribute the probability on the edge to Fallthrough to two 1133 // successors of CurMBB. 1134 if (!BTB->ContiguousRange) { 1135 BTB->Prob += DefaultProb / 2; 1136 BTB->DefaultProb -= DefaultProb / 2; 1137 } 1138 1139 if (FallthroughUnreachable) { 1140 // Skip the range check if the fallthrough block is unreachable. 1141 BTB->OmitRangeCheck = true; 1142 } 1143 1144 // If we're in the right place, emit the bit test header right now. 1145 if (CurMBB == SwitchMBB) { 1146 emitBitTestHeader(*BTB, SwitchMBB); 1147 BTB->Emitted = true; 1148 } 1149 return true; 1150 } 1151 1152 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 1153 Value *Cond, 1154 MachineBasicBlock *SwitchMBB, 1155 MachineBasicBlock *DefaultMBB, 1156 MachineIRBuilder &MIB) { 1157 using namespace SwitchCG; 1158 MachineFunction *CurMF = FuncInfo.MF; 1159 MachineBasicBlock *NextMBB = nullptr; 1160 MachineFunction::iterator BBI(W.MBB); 1161 if (++BBI != FuncInfo.MF->end()) 1162 NextMBB = &*BBI; 1163 1164 if (EnableOpts) { 1165 // Here, we order cases by probability so the most likely case will be 1166 // checked first. However, two clusters can have the same probability in 1167 // which case their relative ordering is non-deterministic. So we use Low 1168 // as a tie-breaker as clusters are guaranteed to never overlap. 1169 llvm::sort(W.FirstCluster, W.LastCluster + 1, 1170 [](const CaseCluster &a, const CaseCluster &b) { 1171 return a.Prob != b.Prob 1172 ? a.Prob > b.Prob 1173 : a.Low->getValue().slt(b.Low->getValue()); 1174 }); 1175 1176 // Rearrange the case blocks so that the last one falls through if possible 1177 // without changing the order of probabilities. 1178 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 1179 --I; 1180 if (I->Prob > W.LastCluster->Prob) 1181 break; 1182 if (I->Kind == CC_Range && I->MBB == NextMBB) { 1183 std::swap(*I, *W.LastCluster); 1184 break; 1185 } 1186 } 1187 } 1188 1189 // Compute total probability. 1190 BranchProbability DefaultProb = W.DefaultProb; 1191 BranchProbability UnhandledProbs = DefaultProb; 1192 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 1193 UnhandledProbs += I->Prob; 1194 1195 MachineBasicBlock *CurMBB = W.MBB; 1196 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 1197 bool FallthroughUnreachable = false; 1198 MachineBasicBlock *Fallthrough; 1199 if (I == W.LastCluster) { 1200 // For the last cluster, fall through to the default destination. 1201 Fallthrough = DefaultMBB; 1202 FallthroughUnreachable = isa<UnreachableInst>( 1203 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 1204 } else { 1205 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 1206 CurMF->insert(BBI, Fallthrough); 1207 } 1208 UnhandledProbs -= I->Prob; 1209 1210 switch (I->Kind) { 1211 case CC_BitTests: { 1212 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1213 DefaultProb, UnhandledProbs, I, Fallthrough, 1214 FallthroughUnreachable)) { 1215 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch"); 1216 return false; 1217 } 1218 break; 1219 } 1220 1221 case CC_JumpTable: { 1222 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1223 UnhandledProbs, I, Fallthrough, 1224 FallthroughUnreachable)) { 1225 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 1226 return false; 1227 } 1228 break; 1229 } 1230 case CC_Range: { 1231 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 1232 FallthroughUnreachable, UnhandledProbs, 1233 CurMBB, MIB, SwitchMBB)) { 1234 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 1235 return false; 1236 } 1237 break; 1238 } 1239 } 1240 CurMBB = Fallthrough; 1241 } 1242 1243 return true; 1244 } 1245 1246 bool IRTranslator::translateIndirectBr(const User &U, 1247 MachineIRBuilder &MIRBuilder) { 1248 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 1249 1250 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 1251 MIRBuilder.buildBrIndirect(Tgt); 1252 1253 // Link successors. 1254 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 1255 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 1256 for (const BasicBlock *Succ : successors(&BrInst)) { 1257 // It's legal for indirectbr instructions to have duplicate blocks in the 1258 // destination list. We don't allow this in MIR. Skip anything that's 1259 // already a successor. 1260 if (!AddedSuccessors.insert(Succ).second) 1261 continue; 1262 CurBB.addSuccessor(&getMBB(*Succ)); 1263 } 1264 1265 return true; 1266 } 1267 1268 static bool isSwiftError(const Value *V) { 1269 if (auto Arg = dyn_cast<Argument>(V)) 1270 return Arg->hasSwiftErrorAttr(); 1271 if (auto AI = dyn_cast<AllocaInst>(V)) 1272 return AI->isSwiftError(); 1273 return false; 1274 } 1275 1276 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 1277 const LoadInst &LI = cast<LoadInst>(U); 1278 if (DL->getTypeStoreSize(LI.getType()) == 0) 1279 return true; 1280 1281 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 1282 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 1283 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 1284 1285 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 1286 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1287 1288 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 1289 assert(Regs.size() == 1 && "swifterror should be single pointer"); 1290 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 1291 LI.getPointerOperand()); 1292 MIRBuilder.buildCopy(Regs[0], VReg); 1293 return true; 1294 } 1295 1296 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1297 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL); 1298 1299 const MDNode *Ranges = 1300 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 1301 for (unsigned i = 0; i < Regs.size(); ++i) { 1302 Register Addr; 1303 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1304 1305 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 1306 Align BaseAlign = getMemOpAlign(LI); 1307 AAMDNodes AAMetadata; 1308 LI.getAAMetadata(AAMetadata); 1309 auto MMO = MF->getMachineMemOperand( 1310 Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(), 1311 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges, 1312 LI.getSyncScopeID(), LI.getOrdering()); 1313 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 1314 } 1315 1316 return true; 1317 } 1318 1319 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 1320 const StoreInst &SI = cast<StoreInst>(U); 1321 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 1322 return true; 1323 1324 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 1325 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 1326 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 1327 1328 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 1329 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1330 1331 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 1332 assert(Vals.size() == 1 && "swifterror should be single pointer"); 1333 1334 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 1335 SI.getPointerOperand()); 1336 MIRBuilder.buildCopy(VReg, Vals[0]); 1337 return true; 1338 } 1339 1340 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1341 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 1342 1343 for (unsigned i = 0; i < Vals.size(); ++i) { 1344 Register Addr; 1345 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1346 1347 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 1348 Align BaseAlign = getMemOpAlign(SI); 1349 AAMDNodes AAMetadata; 1350 SI.getAAMetadata(AAMetadata); 1351 auto MMO = MF->getMachineMemOperand( 1352 Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(), 1353 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr, 1354 SI.getSyncScopeID(), SI.getOrdering()); 1355 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 1356 } 1357 return true; 1358 } 1359 1360 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 1361 const Value *Src = U.getOperand(0); 1362 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 1363 1364 // getIndexedOffsetInType is designed for GEPs, so the first index is the 1365 // usual array element rather than looking into the actual aggregate. 1366 SmallVector<Value *, 1> Indices; 1367 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 1368 1369 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 1370 for (auto Idx : EVI->indices()) 1371 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1372 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 1373 for (auto Idx : IVI->indices()) 1374 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1375 } else { 1376 for (unsigned i = 1; i < U.getNumOperands(); ++i) 1377 Indices.push_back(U.getOperand(i)); 1378 } 1379 1380 return 8 * static_cast<uint64_t>( 1381 DL.getIndexedOffsetInType(Src->getType(), Indices)); 1382 } 1383 1384 bool IRTranslator::translateExtractValue(const User &U, 1385 MachineIRBuilder &MIRBuilder) { 1386 const Value *Src = U.getOperand(0); 1387 uint64_t Offset = getOffsetFromIndices(U, *DL); 1388 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1389 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 1390 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 1391 auto &DstRegs = allocateVRegs(U); 1392 1393 for (unsigned i = 0; i < DstRegs.size(); ++i) 1394 DstRegs[i] = SrcRegs[Idx++]; 1395 1396 return true; 1397 } 1398 1399 bool IRTranslator::translateInsertValue(const User &U, 1400 MachineIRBuilder &MIRBuilder) { 1401 const Value *Src = U.getOperand(0); 1402 uint64_t Offset = getOffsetFromIndices(U, *DL); 1403 auto &DstRegs = allocateVRegs(U); 1404 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 1405 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1406 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 1407 auto InsertedIt = InsertedRegs.begin(); 1408 1409 for (unsigned i = 0; i < DstRegs.size(); ++i) { 1410 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 1411 DstRegs[i] = *InsertedIt++; 1412 else 1413 DstRegs[i] = SrcRegs[i]; 1414 } 1415 1416 return true; 1417 } 1418 1419 bool IRTranslator::translateSelect(const User &U, 1420 MachineIRBuilder &MIRBuilder) { 1421 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1422 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1423 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1424 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1425 1426 uint16_t Flags = 0; 1427 if (const SelectInst *SI = dyn_cast<SelectInst>(&U)) 1428 Flags = MachineInstr::copyFlagsFromInstruction(*SI); 1429 1430 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1431 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1432 } 1433 1434 return true; 1435 } 1436 1437 bool IRTranslator::translateCopy(const User &U, const Value &V, 1438 MachineIRBuilder &MIRBuilder) { 1439 Register Src = getOrCreateVReg(V); 1440 auto &Regs = *VMap.getVRegs(U); 1441 if (Regs.empty()) { 1442 Regs.push_back(Src); 1443 VMap.getOffsets(U)->push_back(0); 1444 } else { 1445 // If we already assigned a vreg for this instruction, we can't change that. 1446 // Emit a copy to satisfy the users we already emitted. 1447 MIRBuilder.buildCopy(Regs[0], Src); 1448 } 1449 return true; 1450 } 1451 1452 bool IRTranslator::translateBitCast(const User &U, 1453 MachineIRBuilder &MIRBuilder) { 1454 // If we're bitcasting to the source type, we can reuse the source vreg. 1455 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1456 getLLTForType(*U.getType(), *DL)) 1457 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1458 1459 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1460 } 1461 1462 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1463 MachineIRBuilder &MIRBuilder) { 1464 Register Op = getOrCreateVReg(*U.getOperand(0)); 1465 Register Res = getOrCreateVReg(U); 1466 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1467 return true; 1468 } 1469 1470 bool IRTranslator::translateGetElementPtr(const User &U, 1471 MachineIRBuilder &MIRBuilder) { 1472 Value &Op0 = *U.getOperand(0); 1473 Register BaseReg = getOrCreateVReg(Op0); 1474 Type *PtrIRTy = Op0.getType(); 1475 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1476 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1477 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1478 1479 // Normalize Vector GEP - all scalar operands should be converted to the 1480 // splat vector. 1481 unsigned VectorWidth = 0; 1482 if (auto *VT = dyn_cast<VectorType>(U.getType())) 1483 VectorWidth = cast<FixedVectorType>(VT)->getNumElements(); 1484 1485 // We might need to splat the base pointer into a vector if the offsets 1486 // are vectors. 1487 if (VectorWidth && !PtrTy.isVector()) { 1488 BaseReg = 1489 MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg) 1490 .getReg(0); 1491 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth); 1492 PtrTy = getLLTForType(*PtrIRTy, *DL); 1493 OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1494 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1495 } 1496 1497 int64_t Offset = 0; 1498 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1499 GTI != E; ++GTI) { 1500 const Value *Idx = GTI.getOperand(); 1501 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1502 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1503 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1504 continue; 1505 } else { 1506 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1507 1508 // If this is a scalar constant or a splat vector of constants, 1509 // handle it quickly. 1510 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1511 Offset += ElementSize * CI->getSExtValue(); 1512 continue; 1513 } 1514 1515 if (Offset != 0) { 1516 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1517 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1518 .getReg(0); 1519 Offset = 0; 1520 } 1521 1522 Register IdxReg = getOrCreateVReg(*Idx); 1523 LLT IdxTy = MRI->getType(IdxReg); 1524 if (IdxTy != OffsetTy) { 1525 if (!IdxTy.isVector() && VectorWidth) { 1526 IdxReg = MIRBuilder.buildSplatVector( 1527 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1528 } 1529 1530 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1531 } 1532 1533 // N = N + Idx * ElementSize; 1534 // Avoid doing it for ElementSize of 1. 1535 Register GepOffsetReg; 1536 if (ElementSize != 1) { 1537 auto ElementSizeMIB = MIRBuilder.buildConstant( 1538 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1539 GepOffsetReg = 1540 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1541 } else 1542 GepOffsetReg = IdxReg; 1543 1544 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1545 } 1546 } 1547 1548 if (Offset != 0) { 1549 auto OffsetMIB = 1550 MIRBuilder.buildConstant(OffsetTy, Offset); 1551 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1552 return true; 1553 } 1554 1555 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1556 return true; 1557 } 1558 1559 bool IRTranslator::translateMemFunc(const CallInst &CI, 1560 MachineIRBuilder &MIRBuilder, 1561 unsigned Opcode) { 1562 1563 // If the source is undef, then just emit a nop. 1564 if (isa<UndefValue>(CI.getArgOperand(1))) 1565 return true; 1566 1567 SmallVector<Register, 3> SrcRegs; 1568 1569 unsigned MinPtrSize = UINT_MAX; 1570 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) { 1571 Register SrcReg = getOrCreateVReg(**AI); 1572 LLT SrcTy = MRI->getType(SrcReg); 1573 if (SrcTy.isPointer()) 1574 MinPtrSize = std::min(SrcTy.getSizeInBits(), MinPtrSize); 1575 SrcRegs.push_back(SrcReg); 1576 } 1577 1578 LLT SizeTy = LLT::scalar(MinPtrSize); 1579 1580 // The size operand should be the minimum of the pointer sizes. 1581 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1]; 1582 if (MRI->getType(SizeOpReg) != SizeTy) 1583 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0); 1584 1585 auto ICall = MIRBuilder.buildInstr(Opcode); 1586 for (Register SrcReg : SrcRegs) 1587 ICall.addUse(SrcReg); 1588 1589 Align DstAlign; 1590 Align SrcAlign; 1591 unsigned IsVol = 1592 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) 1593 ->getZExtValue(); 1594 1595 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1596 DstAlign = MCI->getDestAlign().valueOrOne(); 1597 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1598 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1599 DstAlign = MMI->getDestAlign().valueOrOne(); 1600 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1601 } else { 1602 auto *MSI = cast<MemSetInst>(&CI); 1603 DstAlign = MSI->getDestAlign().valueOrOne(); 1604 } 1605 1606 // We need to propagate the tail call flag from the IR inst as an argument. 1607 // Otherwise, we have to pessimize and assume later that we cannot tail call 1608 // any memory intrinsics. 1609 ICall.addImm(CI.isTailCall() ? 1 : 0); 1610 1611 // Create mem operands to store the alignment and volatile info. 1612 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1613 ICall.addMemOperand(MF->getMachineMemOperand( 1614 MachinePointerInfo(CI.getArgOperand(0)), 1615 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1616 if (Opcode != TargetOpcode::G_MEMSET) 1617 ICall.addMemOperand(MF->getMachineMemOperand( 1618 MachinePointerInfo(CI.getArgOperand(1)), 1619 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1620 1621 return true; 1622 } 1623 1624 void IRTranslator::getStackGuard(Register DstReg, 1625 MachineIRBuilder &MIRBuilder) { 1626 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1627 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1628 auto MIB = 1629 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1630 1631 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1632 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1633 if (!Global) 1634 return; 1635 1636 MachinePointerInfo MPInfo(Global); 1637 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1638 MachineMemOperand::MODereferenceable; 1639 MachineMemOperand *MemRef = 1640 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 1641 DL->getPointerABIAlignment(0)); 1642 MIB.setMemRefs({MemRef}); 1643 } 1644 1645 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1646 MachineIRBuilder &MIRBuilder) { 1647 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1648 MIRBuilder.buildInstr( 1649 Op, {ResRegs[0], ResRegs[1]}, 1650 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1651 1652 return true; 1653 } 1654 1655 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI, 1656 MachineIRBuilder &MIRBuilder) { 1657 Register Dst = getOrCreateVReg(CI); 1658 Register Src0 = getOrCreateVReg(*CI.getOperand(0)); 1659 Register Src1 = getOrCreateVReg(*CI.getOperand(1)); 1660 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 1661 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale }); 1662 return true; 1663 } 1664 1665 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1666 switch (ID) { 1667 default: 1668 break; 1669 case Intrinsic::bswap: 1670 return TargetOpcode::G_BSWAP; 1671 case Intrinsic::bitreverse: 1672 return TargetOpcode::G_BITREVERSE; 1673 case Intrinsic::fshl: 1674 return TargetOpcode::G_FSHL; 1675 case Intrinsic::fshr: 1676 return TargetOpcode::G_FSHR; 1677 case Intrinsic::ceil: 1678 return TargetOpcode::G_FCEIL; 1679 case Intrinsic::cos: 1680 return TargetOpcode::G_FCOS; 1681 case Intrinsic::ctpop: 1682 return TargetOpcode::G_CTPOP; 1683 case Intrinsic::exp: 1684 return TargetOpcode::G_FEXP; 1685 case Intrinsic::exp2: 1686 return TargetOpcode::G_FEXP2; 1687 case Intrinsic::fabs: 1688 return TargetOpcode::G_FABS; 1689 case Intrinsic::copysign: 1690 return TargetOpcode::G_FCOPYSIGN; 1691 case Intrinsic::minnum: 1692 return TargetOpcode::G_FMINNUM; 1693 case Intrinsic::maxnum: 1694 return TargetOpcode::G_FMAXNUM; 1695 case Intrinsic::minimum: 1696 return TargetOpcode::G_FMINIMUM; 1697 case Intrinsic::maximum: 1698 return TargetOpcode::G_FMAXIMUM; 1699 case Intrinsic::canonicalize: 1700 return TargetOpcode::G_FCANONICALIZE; 1701 case Intrinsic::floor: 1702 return TargetOpcode::G_FFLOOR; 1703 case Intrinsic::fma: 1704 return TargetOpcode::G_FMA; 1705 case Intrinsic::log: 1706 return TargetOpcode::G_FLOG; 1707 case Intrinsic::log2: 1708 return TargetOpcode::G_FLOG2; 1709 case Intrinsic::log10: 1710 return TargetOpcode::G_FLOG10; 1711 case Intrinsic::nearbyint: 1712 return TargetOpcode::G_FNEARBYINT; 1713 case Intrinsic::pow: 1714 return TargetOpcode::G_FPOW; 1715 case Intrinsic::powi: 1716 return TargetOpcode::G_FPOWI; 1717 case Intrinsic::rint: 1718 return TargetOpcode::G_FRINT; 1719 case Intrinsic::round: 1720 return TargetOpcode::G_INTRINSIC_ROUND; 1721 case Intrinsic::roundeven: 1722 return TargetOpcode::G_INTRINSIC_ROUNDEVEN; 1723 case Intrinsic::sin: 1724 return TargetOpcode::G_FSIN; 1725 case Intrinsic::sqrt: 1726 return TargetOpcode::G_FSQRT; 1727 case Intrinsic::trunc: 1728 return TargetOpcode::G_INTRINSIC_TRUNC; 1729 case Intrinsic::readcyclecounter: 1730 return TargetOpcode::G_READCYCLECOUNTER; 1731 case Intrinsic::ptrmask: 1732 return TargetOpcode::G_PTRMASK; 1733 case Intrinsic::lrint: 1734 return TargetOpcode::G_INTRINSIC_LRINT; 1735 // FADD/FMUL require checking the FMF, so are handled elsewhere. 1736 case Intrinsic::vector_reduce_fmin: 1737 return TargetOpcode::G_VECREDUCE_FMIN; 1738 case Intrinsic::vector_reduce_fmax: 1739 return TargetOpcode::G_VECREDUCE_FMAX; 1740 case Intrinsic::vector_reduce_add: 1741 return TargetOpcode::G_VECREDUCE_ADD; 1742 case Intrinsic::vector_reduce_mul: 1743 return TargetOpcode::G_VECREDUCE_MUL; 1744 case Intrinsic::vector_reduce_and: 1745 return TargetOpcode::G_VECREDUCE_AND; 1746 case Intrinsic::vector_reduce_or: 1747 return TargetOpcode::G_VECREDUCE_OR; 1748 case Intrinsic::vector_reduce_xor: 1749 return TargetOpcode::G_VECREDUCE_XOR; 1750 case Intrinsic::vector_reduce_smax: 1751 return TargetOpcode::G_VECREDUCE_SMAX; 1752 case Intrinsic::vector_reduce_smin: 1753 return TargetOpcode::G_VECREDUCE_SMIN; 1754 case Intrinsic::vector_reduce_umax: 1755 return TargetOpcode::G_VECREDUCE_UMAX; 1756 case Intrinsic::vector_reduce_umin: 1757 return TargetOpcode::G_VECREDUCE_UMIN; 1758 } 1759 return Intrinsic::not_intrinsic; 1760 } 1761 1762 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1763 Intrinsic::ID ID, 1764 MachineIRBuilder &MIRBuilder) { 1765 1766 unsigned Op = getSimpleIntrinsicOpcode(ID); 1767 1768 // Is this a simple intrinsic? 1769 if (Op == Intrinsic::not_intrinsic) 1770 return false; 1771 1772 // Yes. Let's translate it. 1773 SmallVector<llvm::SrcOp, 4> VRegs; 1774 for (auto &Arg : CI.arg_operands()) 1775 VRegs.push_back(getOrCreateVReg(*Arg)); 1776 1777 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1778 MachineInstr::copyFlagsFromInstruction(CI)); 1779 return true; 1780 } 1781 1782 // TODO: Include ConstainedOps.def when all strict instructions are defined. 1783 static unsigned getConstrainedOpcode(Intrinsic::ID ID) { 1784 switch (ID) { 1785 case Intrinsic::experimental_constrained_fadd: 1786 return TargetOpcode::G_STRICT_FADD; 1787 case Intrinsic::experimental_constrained_fsub: 1788 return TargetOpcode::G_STRICT_FSUB; 1789 case Intrinsic::experimental_constrained_fmul: 1790 return TargetOpcode::G_STRICT_FMUL; 1791 case Intrinsic::experimental_constrained_fdiv: 1792 return TargetOpcode::G_STRICT_FDIV; 1793 case Intrinsic::experimental_constrained_frem: 1794 return TargetOpcode::G_STRICT_FREM; 1795 case Intrinsic::experimental_constrained_fma: 1796 return TargetOpcode::G_STRICT_FMA; 1797 case Intrinsic::experimental_constrained_sqrt: 1798 return TargetOpcode::G_STRICT_FSQRT; 1799 default: 1800 return 0; 1801 } 1802 } 1803 1804 bool IRTranslator::translateConstrainedFPIntrinsic( 1805 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) { 1806 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 1807 1808 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID()); 1809 if (!Opcode) 1810 return false; 1811 1812 unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI); 1813 if (EB == fp::ExceptionBehavior::ebIgnore) 1814 Flags |= MachineInstr::NoFPExcept; 1815 1816 SmallVector<llvm::SrcOp, 4> VRegs; 1817 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0))); 1818 if (!FPI.isUnaryOp()) 1819 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1))); 1820 if (FPI.isTernaryOp()) 1821 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2))); 1822 1823 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags); 1824 return true; 1825 } 1826 1827 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1828 MachineIRBuilder &MIRBuilder) { 1829 1830 // If this is a simple intrinsic (that is, we just need to add a def of 1831 // a vreg, and uses for each arg operand, then translate it. 1832 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1833 return true; 1834 1835 switch (ID) { 1836 default: 1837 break; 1838 case Intrinsic::lifetime_start: 1839 case Intrinsic::lifetime_end: { 1840 // No stack colouring in O0, discard region information. 1841 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1842 return true; 1843 1844 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1845 : TargetOpcode::LIFETIME_END; 1846 1847 // Get the underlying objects for the location passed on the lifetime 1848 // marker. 1849 SmallVector<const Value *, 4> Allocas; 1850 getUnderlyingObjects(CI.getArgOperand(1), Allocas); 1851 1852 // Iterate over each underlying object, creating lifetime markers for each 1853 // static alloca. Quit if we find a non-static alloca. 1854 for (const Value *V : Allocas) { 1855 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1856 if (!AI) 1857 continue; 1858 1859 if (!AI->isStaticAlloca()) 1860 return true; 1861 1862 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1863 } 1864 return true; 1865 } 1866 case Intrinsic::dbg_declare: { 1867 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1868 assert(DI.getVariable() && "Missing variable"); 1869 1870 const Value *Address = DI.getAddress(); 1871 if (!Address || isa<UndefValue>(Address)) { 1872 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1873 return true; 1874 } 1875 1876 assert(DI.getVariable()->isValidLocationForIntrinsic( 1877 MIRBuilder.getDebugLoc()) && 1878 "Expected inlined-at fields to agree"); 1879 auto AI = dyn_cast<AllocaInst>(Address); 1880 if (AI && AI->isStaticAlloca()) { 1881 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1882 // instructions (in fact, they get ignored if they *do* exist). 1883 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1884 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1885 } else { 1886 // A dbg.declare describes the address of a source variable, so lower it 1887 // into an indirect DBG_VALUE. 1888 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1889 DI.getVariable(), DI.getExpression()); 1890 } 1891 return true; 1892 } 1893 case Intrinsic::dbg_label: { 1894 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1895 assert(DI.getLabel() && "Missing label"); 1896 1897 assert(DI.getLabel()->isValidLocationForIntrinsic( 1898 MIRBuilder.getDebugLoc()) && 1899 "Expected inlined-at fields to agree"); 1900 1901 MIRBuilder.buildDbgLabel(DI.getLabel()); 1902 return true; 1903 } 1904 case Intrinsic::vaend: 1905 // No target I know of cares about va_end. Certainly no in-tree target 1906 // does. Simplest intrinsic ever! 1907 return true; 1908 case Intrinsic::vastart: { 1909 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1910 Value *Ptr = CI.getArgOperand(0); 1911 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1912 1913 // FIXME: Get alignment 1914 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 1915 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 1916 MachineMemOperand::MOStore, 1917 ListSize, Align(1))); 1918 return true; 1919 } 1920 case Intrinsic::dbg_value: { 1921 // This form of DBG_VALUE is target-independent. 1922 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1923 const Value *V = DI.getValue(); 1924 assert(DI.getVariable()->isValidLocationForIntrinsic( 1925 MIRBuilder.getDebugLoc()) && 1926 "Expected inlined-at fields to agree"); 1927 if (!V) { 1928 // Currently the optimizer can produce this; insert an undef to 1929 // help debugging. Probably the optimizer should not do this. 1930 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1931 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1932 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1933 } else { 1934 for (Register Reg : getOrCreateVRegs(*V)) { 1935 // FIXME: This does not handle register-indirect values at offset 0. The 1936 // direct/indirect thing shouldn't really be handled by something as 1937 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1938 // pretty baked in right now. 1939 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1940 } 1941 } 1942 return true; 1943 } 1944 case Intrinsic::uadd_with_overflow: 1945 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1946 case Intrinsic::sadd_with_overflow: 1947 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1948 case Intrinsic::usub_with_overflow: 1949 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1950 case Intrinsic::ssub_with_overflow: 1951 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1952 case Intrinsic::umul_with_overflow: 1953 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1954 case Intrinsic::smul_with_overflow: 1955 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1956 case Intrinsic::uadd_sat: 1957 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 1958 case Intrinsic::sadd_sat: 1959 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 1960 case Intrinsic::usub_sat: 1961 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 1962 case Intrinsic::ssub_sat: 1963 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 1964 case Intrinsic::ushl_sat: 1965 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder); 1966 case Intrinsic::sshl_sat: 1967 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder); 1968 case Intrinsic::umin: 1969 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder); 1970 case Intrinsic::umax: 1971 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder); 1972 case Intrinsic::smin: 1973 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder); 1974 case Intrinsic::smax: 1975 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder); 1976 case Intrinsic::abs: 1977 // TODO: Preserve "int min is poison" arg in GMIR? 1978 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder); 1979 case Intrinsic::smul_fix: 1980 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder); 1981 case Intrinsic::umul_fix: 1982 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder); 1983 case Intrinsic::smul_fix_sat: 1984 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder); 1985 case Intrinsic::umul_fix_sat: 1986 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder); 1987 case Intrinsic::sdiv_fix: 1988 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder); 1989 case Intrinsic::udiv_fix: 1990 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder); 1991 case Intrinsic::sdiv_fix_sat: 1992 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder); 1993 case Intrinsic::udiv_fix_sat: 1994 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder); 1995 case Intrinsic::fmuladd: { 1996 const TargetMachine &TM = MF->getTarget(); 1997 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1998 Register Dst = getOrCreateVReg(CI); 1999 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 2000 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 2001 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 2002 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 2003 TLI.isFMAFasterThanFMulAndFAdd(*MF, 2004 TLI.getValueType(*DL, CI.getType()))) { 2005 // TODO: Revisit this to see if we should move this part of the 2006 // lowering to the combiner. 2007 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 2008 MachineInstr::copyFlagsFromInstruction(CI)); 2009 } else { 2010 LLT Ty = getLLTForType(*CI.getType(), *DL); 2011 auto FMul = MIRBuilder.buildFMul( 2012 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 2013 MIRBuilder.buildFAdd(Dst, FMul, Op2, 2014 MachineInstr::copyFlagsFromInstruction(CI)); 2015 } 2016 return true; 2017 } 2018 case Intrinsic::convert_from_fp16: 2019 // FIXME: This intrinsic should probably be removed from the IR. 2020 MIRBuilder.buildFPExt(getOrCreateVReg(CI), 2021 getOrCreateVReg(*CI.getArgOperand(0)), 2022 MachineInstr::copyFlagsFromInstruction(CI)); 2023 return true; 2024 case Intrinsic::convert_to_fp16: 2025 // FIXME: This intrinsic should probably be removed from the IR. 2026 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI), 2027 getOrCreateVReg(*CI.getArgOperand(0)), 2028 MachineInstr::copyFlagsFromInstruction(CI)); 2029 return true; 2030 case Intrinsic::memcpy: 2031 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY); 2032 case Intrinsic::memmove: 2033 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE); 2034 case Intrinsic::memset: 2035 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET); 2036 case Intrinsic::eh_typeid_for: { 2037 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 2038 Register Reg = getOrCreateVReg(CI); 2039 unsigned TypeID = MF->getTypeIDFor(GV); 2040 MIRBuilder.buildConstant(Reg, TypeID); 2041 return true; 2042 } 2043 case Intrinsic::objectsize: 2044 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2045 2046 case Intrinsic::is_constant: 2047 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2048 2049 case Intrinsic::stackguard: 2050 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 2051 return true; 2052 case Intrinsic::stackprotector: { 2053 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2054 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 2055 getStackGuard(GuardVal, MIRBuilder); 2056 2057 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 2058 int FI = getOrCreateFrameIndex(*Slot); 2059 MF->getFrameInfo().setStackProtectorIndex(FI); 2060 2061 MIRBuilder.buildStore( 2062 GuardVal, getOrCreateVReg(*Slot), 2063 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 2064 MachineMemOperand::MOStore | 2065 MachineMemOperand::MOVolatile, 2066 PtrTy.getSizeInBits() / 8, Align(8))); 2067 return true; 2068 } 2069 case Intrinsic::stacksave: { 2070 // Save the stack pointer to the location provided by the intrinsic. 2071 Register Reg = getOrCreateVReg(CI); 2072 Register StackPtr = MF->getSubtarget() 2073 .getTargetLowering() 2074 ->getStackPointerRegisterToSaveRestore(); 2075 2076 // If the target doesn't specify a stack pointer, then fall back. 2077 if (!StackPtr) 2078 return false; 2079 2080 MIRBuilder.buildCopy(Reg, StackPtr); 2081 return true; 2082 } 2083 case Intrinsic::stackrestore: { 2084 // Restore the stack pointer from the location provided by the intrinsic. 2085 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 2086 Register StackPtr = MF->getSubtarget() 2087 .getTargetLowering() 2088 ->getStackPointerRegisterToSaveRestore(); 2089 2090 // If the target doesn't specify a stack pointer, then fall back. 2091 if (!StackPtr) 2092 return false; 2093 2094 MIRBuilder.buildCopy(StackPtr, Reg); 2095 return true; 2096 } 2097 case Intrinsic::cttz: 2098 case Intrinsic::ctlz: { 2099 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 2100 bool isTrailing = ID == Intrinsic::cttz; 2101 unsigned Opcode = isTrailing 2102 ? Cst->isZero() ? TargetOpcode::G_CTTZ 2103 : TargetOpcode::G_CTTZ_ZERO_UNDEF 2104 : Cst->isZero() ? TargetOpcode::G_CTLZ 2105 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 2106 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 2107 {getOrCreateVReg(*CI.getArgOperand(0))}); 2108 return true; 2109 } 2110 case Intrinsic::invariant_start: { 2111 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2112 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 2113 MIRBuilder.buildUndef(Undef); 2114 return true; 2115 } 2116 case Intrinsic::invariant_end: 2117 return true; 2118 case Intrinsic::expect: 2119 case Intrinsic::annotation: 2120 case Intrinsic::ptr_annotation: 2121 case Intrinsic::launder_invariant_group: 2122 case Intrinsic::strip_invariant_group: { 2123 // Drop the intrinsic, but forward the value. 2124 MIRBuilder.buildCopy(getOrCreateVReg(CI), 2125 getOrCreateVReg(*CI.getArgOperand(0))); 2126 return true; 2127 } 2128 case Intrinsic::assume: 2129 case Intrinsic::experimental_noalias_scope_decl: 2130 case Intrinsic::var_annotation: 2131 case Intrinsic::sideeffect: 2132 // Discard annotate attributes, assumptions, and artificial side-effects. 2133 return true; 2134 case Intrinsic::read_volatile_register: 2135 case Intrinsic::read_register: { 2136 Value *Arg = CI.getArgOperand(0); 2137 MIRBuilder 2138 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 2139 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 2140 return true; 2141 } 2142 case Intrinsic::write_register: { 2143 Value *Arg = CI.getArgOperand(0); 2144 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 2145 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 2146 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 2147 return true; 2148 } 2149 case Intrinsic::localescape: { 2150 MachineBasicBlock &EntryMBB = MF->front(); 2151 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName()); 2152 2153 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 2154 // is the same on all targets. 2155 for (unsigned Idx = 0, E = CI.getNumArgOperands(); Idx < E; ++Idx) { 2156 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts(); 2157 if (isa<ConstantPointerNull>(Arg)) 2158 continue; // Skip null pointers. They represent a hole in index space. 2159 2160 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg)); 2161 MCSymbol *FrameAllocSym = 2162 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName, 2163 Idx); 2164 2165 // This should be inserted at the start of the entry block. 2166 auto LocalEscape = 2167 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE) 2168 .addSym(FrameAllocSym) 2169 .addFrameIndex(FI); 2170 2171 EntryMBB.insert(EntryMBB.begin(), LocalEscape); 2172 } 2173 2174 return true; 2175 } 2176 case Intrinsic::vector_reduce_fadd: 2177 case Intrinsic::vector_reduce_fmul: { 2178 // Need to check for the reassoc flag to decide whether we want a 2179 // sequential reduction opcode or not. 2180 Register Dst = getOrCreateVReg(CI); 2181 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0)); 2182 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1)); 2183 unsigned Opc = 0; 2184 if (!CI.hasAllowReassoc()) { 2185 // The sequential ordering case. 2186 Opc = ID == Intrinsic::vector_reduce_fadd 2187 ? TargetOpcode::G_VECREDUCE_SEQ_FADD 2188 : TargetOpcode::G_VECREDUCE_SEQ_FMUL; 2189 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc}, 2190 MachineInstr::copyFlagsFromInstruction(CI)); 2191 return true; 2192 } 2193 // We split the operation into a separate G_FADD/G_FMUL + the reduce, 2194 // since the associativity doesn't matter. 2195 unsigned ScalarOpc; 2196 if (ID == Intrinsic::vector_reduce_fadd) { 2197 Opc = TargetOpcode::G_VECREDUCE_FADD; 2198 ScalarOpc = TargetOpcode::G_FADD; 2199 } else { 2200 Opc = TargetOpcode::G_VECREDUCE_FMUL; 2201 ScalarOpc = TargetOpcode::G_FMUL; 2202 } 2203 LLT DstTy = MRI->getType(Dst); 2204 auto Rdx = MIRBuilder.buildInstr( 2205 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI)); 2206 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx}, 2207 MachineInstr::copyFlagsFromInstruction(CI)); 2208 2209 return true; 2210 } 2211 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 2212 case Intrinsic::INTRINSIC: 2213 #include "llvm/IR/ConstrainedOps.def" 2214 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI), 2215 MIRBuilder); 2216 2217 } 2218 return false; 2219 } 2220 2221 bool IRTranslator::translateInlineAsm(const CallBase &CB, 2222 MachineIRBuilder &MIRBuilder) { 2223 2224 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 2225 2226 if (!ALI) { 2227 LLVM_DEBUG( 2228 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 2229 return false; 2230 } 2231 2232 return ALI->lowerInlineAsm( 2233 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 2234 } 2235 2236 bool IRTranslator::translateCallBase(const CallBase &CB, 2237 MachineIRBuilder &MIRBuilder) { 2238 ArrayRef<Register> Res = getOrCreateVRegs(CB); 2239 2240 SmallVector<ArrayRef<Register>, 8> Args; 2241 Register SwiftInVReg = 0; 2242 Register SwiftErrorVReg = 0; 2243 for (auto &Arg : CB.args()) { 2244 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 2245 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 2246 LLT Ty = getLLTForType(*Arg->getType(), *DL); 2247 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 2248 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 2249 &CB, &MIRBuilder.getMBB(), Arg)); 2250 Args.emplace_back(makeArrayRef(SwiftInVReg)); 2251 SwiftErrorVReg = 2252 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 2253 continue; 2254 } 2255 Args.push_back(getOrCreateVRegs(*Arg)); 2256 } 2257 2258 // We don't set HasCalls on MFI here yet because call lowering may decide to 2259 // optimize into tail calls. Instead, we defer that to selection where a final 2260 // scan is done to check if any instructions are calls. 2261 bool Success = 2262 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg, 2263 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 2264 2265 // Check if we just inserted a tail call. 2266 if (Success) { 2267 assert(!HasTailCall && "Can't tail call return twice from block?"); 2268 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 2269 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 2270 } 2271 2272 return Success; 2273 } 2274 2275 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 2276 const CallInst &CI = cast<CallInst>(U); 2277 auto TII = MF->getTarget().getIntrinsicInfo(); 2278 const Function *F = CI.getCalledFunction(); 2279 2280 // FIXME: support Windows dllimport function calls. 2281 if (F && (F->hasDLLImportStorageClass() || 2282 (MF->getTarget().getTargetTriple().isOSWindows() && 2283 F->hasExternalWeakLinkage()))) 2284 return false; 2285 2286 // FIXME: support control flow guard targets. 2287 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2288 return false; 2289 2290 if (CI.isInlineAsm()) 2291 return translateInlineAsm(CI, MIRBuilder); 2292 2293 Intrinsic::ID ID = Intrinsic::not_intrinsic; 2294 if (F && F->isIntrinsic()) { 2295 ID = F->getIntrinsicID(); 2296 if (TII && ID == Intrinsic::not_intrinsic) 2297 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 2298 } 2299 2300 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 2301 return translateCallBase(CI, MIRBuilder); 2302 2303 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 2304 2305 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 2306 return true; 2307 2308 ArrayRef<Register> ResultRegs; 2309 if (!CI.getType()->isVoidTy()) 2310 ResultRegs = getOrCreateVRegs(CI); 2311 2312 // Ignore the callsite attributes. Backend code is most likely not expecting 2313 // an intrinsic to sometimes have side effects and sometimes not. 2314 MachineInstrBuilder MIB = 2315 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 2316 if (isa<FPMathOperator>(CI)) 2317 MIB->copyIRFlags(CI); 2318 2319 for (auto &Arg : enumerate(CI.arg_operands())) { 2320 // If this is required to be an immediate, don't materialize it in a 2321 // register. 2322 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 2323 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 2324 // imm arguments are more convenient than cimm (and realistically 2325 // probably sufficient), so use them. 2326 assert(CI->getBitWidth() <= 64 && 2327 "large intrinsic immediates not handled"); 2328 MIB.addImm(CI->getSExtValue()); 2329 } else { 2330 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 2331 } 2332 } else if (auto MD = dyn_cast<MetadataAsValue>(Arg.value())) { 2333 auto *MDN = dyn_cast<MDNode>(MD->getMetadata()); 2334 if (!MDN) // This was probably an MDString. 2335 return false; 2336 MIB.addMetadata(MDN); 2337 } else { 2338 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 2339 if (VRegs.size() > 1) 2340 return false; 2341 MIB.addUse(VRegs[0]); 2342 } 2343 } 2344 2345 // Add a MachineMemOperand if it is a target mem intrinsic. 2346 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2347 TargetLowering::IntrinsicInfo Info; 2348 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 2349 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 2350 Align Alignment = Info.align.getValueOr( 2351 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 2352 2353 uint64_t Size = Info.memVT.getStoreSize(); 2354 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 2355 Info.flags, Size, Alignment)); 2356 } 2357 2358 return true; 2359 } 2360 2361 bool IRTranslator::findUnwindDestinations( 2362 const BasicBlock *EHPadBB, 2363 BranchProbability Prob, 2364 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2365 &UnwindDests) { 2366 EHPersonality Personality = classifyEHPersonality( 2367 EHPadBB->getParent()->getFunction().getPersonalityFn()); 2368 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2369 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2370 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2371 bool IsSEH = isAsynchronousEHPersonality(Personality); 2372 2373 if (IsWasmCXX) { 2374 // Ignore this for now. 2375 return false; 2376 } 2377 2378 while (EHPadBB) { 2379 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2380 BasicBlock *NewEHPadBB = nullptr; 2381 if (isa<LandingPadInst>(Pad)) { 2382 // Stop on landingpads. They are not funclets. 2383 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2384 break; 2385 } 2386 if (isa<CleanupPadInst>(Pad)) { 2387 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2388 // personalities. 2389 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2390 UnwindDests.back().first->setIsEHScopeEntry(); 2391 UnwindDests.back().first->setIsEHFuncletEntry(); 2392 break; 2393 } 2394 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2395 // Add the catchpad handlers to the possible destinations. 2396 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2397 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob); 2398 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2399 if (IsMSVCCXX || IsCoreCLR) 2400 UnwindDests.back().first->setIsEHFuncletEntry(); 2401 if (!IsSEH) 2402 UnwindDests.back().first->setIsEHScopeEntry(); 2403 } 2404 NewEHPadBB = CatchSwitch->getUnwindDest(); 2405 } else { 2406 continue; 2407 } 2408 2409 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2410 if (BPI && NewEHPadBB) 2411 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2412 EHPadBB = NewEHPadBB; 2413 } 2414 return true; 2415 } 2416 2417 bool IRTranslator::translateInvoke(const User &U, 2418 MachineIRBuilder &MIRBuilder) { 2419 const InvokeInst &I = cast<InvokeInst>(U); 2420 MCContext &Context = MF->getContext(); 2421 2422 const BasicBlock *ReturnBB = I.getSuccessor(0); 2423 const BasicBlock *EHPadBB = I.getSuccessor(1); 2424 2425 const Function *Fn = I.getCalledFunction(); 2426 if (I.isInlineAsm()) 2427 return false; 2428 2429 // FIXME: support invoking patchpoint and statepoint intrinsics. 2430 if (Fn && Fn->isIntrinsic()) 2431 return false; 2432 2433 // FIXME: support whatever these are. 2434 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 2435 return false; 2436 2437 // FIXME: support control flow guard targets. 2438 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2439 return false; 2440 2441 // FIXME: support Windows exception handling. 2442 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI())) 2443 return false; 2444 2445 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 2446 // the region covered by the try. 2447 MCSymbol *BeginSymbol = Context.createTempSymbol(); 2448 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 2449 2450 if (!translateCallBase(I, MIRBuilder)) 2451 return false; 2452 2453 MCSymbol *EndSymbol = Context.createTempSymbol(); 2454 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 2455 2456 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2457 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2458 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(); 2459 BranchProbability EHPadBBProb = 2460 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2461 : BranchProbability::getZero(); 2462 2463 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests)) 2464 return false; 2465 2466 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 2467 &ReturnMBB = getMBB(*ReturnBB); 2468 // Update successor info. 2469 addSuccessorWithProb(InvokeMBB, &ReturnMBB); 2470 for (auto &UnwindDest : UnwindDests) { 2471 UnwindDest.first->setIsEHPad(); 2472 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2473 } 2474 InvokeMBB->normalizeSuccProbs(); 2475 2476 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 2477 MIRBuilder.buildBr(ReturnMBB); 2478 return true; 2479 } 2480 2481 bool IRTranslator::translateCallBr(const User &U, 2482 MachineIRBuilder &MIRBuilder) { 2483 // FIXME: Implement this. 2484 return false; 2485 } 2486 2487 bool IRTranslator::translateLandingPad(const User &U, 2488 MachineIRBuilder &MIRBuilder) { 2489 const LandingPadInst &LP = cast<LandingPadInst>(U); 2490 2491 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 2492 2493 MBB.setIsEHPad(); 2494 2495 // If there aren't registers to copy the values into (e.g., during SjLj 2496 // exceptions), then don't bother. 2497 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2498 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 2499 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2500 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2501 return true; 2502 2503 // If landingpad's return type is token type, we don't create DAG nodes 2504 // for its exception pointer and selector value. The extraction of exception 2505 // pointer or selector value from token type landingpads is not currently 2506 // supported. 2507 if (LP.getType()->isTokenTy()) 2508 return true; 2509 2510 // Add a label to mark the beginning of the landing pad. Deletion of the 2511 // landing pad can thus be detected via the MachineModuleInfo. 2512 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 2513 .addSym(MF->addLandingPad(&MBB)); 2514 2515 // If the unwinder does not preserve all registers, ensure that the 2516 // function marks the clobbered registers as used. 2517 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 2518 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 2519 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 2520 2521 LLT Ty = getLLTForType(*LP.getType(), *DL); 2522 Register Undef = MRI->createGenericVirtualRegister(Ty); 2523 MIRBuilder.buildUndef(Undef); 2524 2525 SmallVector<LLT, 2> Tys; 2526 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 2527 Tys.push_back(getLLTForType(*Ty, *DL)); 2528 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 2529 2530 // Mark exception register as live in. 2531 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 2532 if (!ExceptionReg) 2533 return false; 2534 2535 MBB.addLiveIn(ExceptionReg); 2536 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 2537 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 2538 2539 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 2540 if (!SelectorReg) 2541 return false; 2542 2543 MBB.addLiveIn(SelectorReg); 2544 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 2545 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 2546 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 2547 2548 return true; 2549 } 2550 2551 bool IRTranslator::translateAlloca(const User &U, 2552 MachineIRBuilder &MIRBuilder) { 2553 auto &AI = cast<AllocaInst>(U); 2554 2555 if (AI.isSwiftError()) 2556 return true; 2557 2558 if (AI.isStaticAlloca()) { 2559 Register Res = getOrCreateVReg(AI); 2560 int FI = getOrCreateFrameIndex(AI); 2561 MIRBuilder.buildFrameIndex(Res, FI); 2562 return true; 2563 } 2564 2565 // FIXME: support stack probing for Windows. 2566 if (MF->getTarget().getTargetTriple().isOSWindows()) 2567 return false; 2568 2569 // Now we're in the harder dynamic case. 2570 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 2571 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 2572 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 2573 if (MRI->getType(NumElts) != IntPtrTy) { 2574 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 2575 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 2576 NumElts = ExtElts; 2577 } 2578 2579 Type *Ty = AI.getAllocatedType(); 2580 2581 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 2582 Register TySize = 2583 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 2584 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 2585 2586 // Round the size of the allocation up to the stack alignment size 2587 // by add SA-1 to the size. This doesn't overflow because we're computing 2588 // an address inside an alloca. 2589 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 2590 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 2591 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 2592 MachineInstr::NoUWrap); 2593 auto AlignCst = 2594 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 2595 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 2596 2597 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 2598 if (Alignment <= StackAlign) 2599 Alignment = Align(1); 2600 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 2601 2602 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 2603 assert(MF->getFrameInfo().hasVarSizedObjects()); 2604 return true; 2605 } 2606 2607 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 2608 // FIXME: We may need more info about the type. Because of how LLT works, 2609 // we're completely discarding the i64/double distinction here (amongst 2610 // others). Fortunately the ABIs I know of where that matters don't use va_arg 2611 // anyway but that's not guaranteed. 2612 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 2613 {getOrCreateVReg(*U.getOperand(0)), 2614 DL->getABITypeAlign(U.getType()).value()}); 2615 return true; 2616 } 2617 2618 bool IRTranslator::translateInsertElement(const User &U, 2619 MachineIRBuilder &MIRBuilder) { 2620 // If it is a <1 x Ty> vector, use the scalar as it is 2621 // not a legal vector type in LLT. 2622 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1) 2623 return translateCopy(U, *U.getOperand(1), MIRBuilder); 2624 2625 Register Res = getOrCreateVReg(U); 2626 Register Val = getOrCreateVReg(*U.getOperand(0)); 2627 Register Elt = getOrCreateVReg(*U.getOperand(1)); 2628 Register Idx = getOrCreateVReg(*U.getOperand(2)); 2629 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 2630 return true; 2631 } 2632 2633 bool IRTranslator::translateExtractElement(const User &U, 2634 MachineIRBuilder &MIRBuilder) { 2635 // If it is a <1 x Ty> vector, use the scalar as it is 2636 // not a legal vector type in LLT. 2637 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1) 2638 return translateCopy(U, *U.getOperand(0), MIRBuilder); 2639 2640 Register Res = getOrCreateVReg(U); 2641 Register Val = getOrCreateVReg(*U.getOperand(0)); 2642 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2643 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 2644 Register Idx; 2645 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 2646 if (CI->getBitWidth() != PreferredVecIdxWidth) { 2647 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 2648 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 2649 Idx = getOrCreateVReg(*NewIdxCI); 2650 } 2651 } 2652 if (!Idx) 2653 Idx = getOrCreateVReg(*U.getOperand(1)); 2654 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 2655 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 2656 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0); 2657 } 2658 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 2659 return true; 2660 } 2661 2662 bool IRTranslator::translateShuffleVector(const User &U, 2663 MachineIRBuilder &MIRBuilder) { 2664 ArrayRef<int> Mask; 2665 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 2666 Mask = SVI->getShuffleMask(); 2667 else 2668 Mask = cast<ConstantExpr>(U).getShuffleMask(); 2669 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 2670 MIRBuilder 2671 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 2672 {getOrCreateVReg(*U.getOperand(0)), 2673 getOrCreateVReg(*U.getOperand(1))}) 2674 .addShuffleMask(MaskAlloc); 2675 return true; 2676 } 2677 2678 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 2679 const PHINode &PI = cast<PHINode>(U); 2680 2681 SmallVector<MachineInstr *, 4> Insts; 2682 for (auto Reg : getOrCreateVRegs(PI)) { 2683 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 2684 Insts.push_back(MIB.getInstr()); 2685 } 2686 2687 PendingPHIs.emplace_back(&PI, std::move(Insts)); 2688 return true; 2689 } 2690 2691 bool IRTranslator::translateAtomicCmpXchg(const User &U, 2692 MachineIRBuilder &MIRBuilder) { 2693 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 2694 2695 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2696 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2697 2698 Type *ResType = I.getType(); 2699 Type *ValType = ResType->Type::getStructElementType(0); 2700 2701 auto Res = getOrCreateVRegs(I); 2702 Register OldValRes = Res[0]; 2703 Register SuccessRes = Res[1]; 2704 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2705 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 2706 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 2707 2708 AAMDNodes AAMetadata; 2709 I.getAAMetadata(AAMetadata); 2710 2711 MIRBuilder.buildAtomicCmpXchgWithSuccess( 2712 OldValRes, SuccessRes, Addr, Cmp, NewVal, 2713 *MF->getMachineMemOperand( 2714 MachinePointerInfo(I.getPointerOperand()), Flags, 2715 DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr, 2716 I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering())); 2717 return true; 2718 } 2719 2720 bool IRTranslator::translateAtomicRMW(const User &U, 2721 MachineIRBuilder &MIRBuilder) { 2722 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 2723 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2724 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2725 2726 Type *ResType = I.getType(); 2727 2728 Register Res = getOrCreateVReg(I); 2729 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2730 Register Val = getOrCreateVReg(*I.getValOperand()); 2731 2732 unsigned Opcode = 0; 2733 switch (I.getOperation()) { 2734 default: 2735 return false; 2736 case AtomicRMWInst::Xchg: 2737 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2738 break; 2739 case AtomicRMWInst::Add: 2740 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2741 break; 2742 case AtomicRMWInst::Sub: 2743 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2744 break; 2745 case AtomicRMWInst::And: 2746 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2747 break; 2748 case AtomicRMWInst::Nand: 2749 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2750 break; 2751 case AtomicRMWInst::Or: 2752 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2753 break; 2754 case AtomicRMWInst::Xor: 2755 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2756 break; 2757 case AtomicRMWInst::Max: 2758 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2759 break; 2760 case AtomicRMWInst::Min: 2761 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2762 break; 2763 case AtomicRMWInst::UMax: 2764 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2765 break; 2766 case AtomicRMWInst::UMin: 2767 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2768 break; 2769 case AtomicRMWInst::FAdd: 2770 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2771 break; 2772 case AtomicRMWInst::FSub: 2773 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2774 break; 2775 } 2776 2777 AAMDNodes AAMetadata; 2778 I.getAAMetadata(AAMetadata); 2779 2780 MIRBuilder.buildAtomicRMW( 2781 Opcode, Res, Addr, Val, 2782 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2783 Flags, DL->getTypeStoreSize(ResType), 2784 getMemOpAlign(I), AAMetadata, nullptr, 2785 I.getSyncScopeID(), I.getOrdering())); 2786 return true; 2787 } 2788 2789 bool IRTranslator::translateFence(const User &U, 2790 MachineIRBuilder &MIRBuilder) { 2791 const FenceInst &Fence = cast<FenceInst>(U); 2792 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2793 Fence.getSyncScopeID()); 2794 return true; 2795 } 2796 2797 bool IRTranslator::translateFreeze(const User &U, 2798 MachineIRBuilder &MIRBuilder) { 2799 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 2800 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 2801 2802 assert(DstRegs.size() == SrcRegs.size() && 2803 "Freeze with different source and destination type?"); 2804 2805 for (unsigned I = 0; I < DstRegs.size(); ++I) { 2806 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 2807 } 2808 2809 return true; 2810 } 2811 2812 void IRTranslator::finishPendingPhis() { 2813 #ifndef NDEBUG 2814 DILocationVerifier Verifier; 2815 GISelObserverWrapper WrapperObserver(&Verifier); 2816 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2817 #endif // ifndef NDEBUG 2818 for (auto &Phi : PendingPHIs) { 2819 const PHINode *PI = Phi.first; 2820 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2821 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2822 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2823 #ifndef NDEBUG 2824 Verifier.setCurrentInst(PI); 2825 #endif // ifndef NDEBUG 2826 2827 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2828 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2829 auto IRPred = PI->getIncomingBlock(i); 2830 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2831 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2832 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2833 continue; 2834 SeenPreds.insert(Pred); 2835 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2836 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2837 MIB.addUse(ValRegs[j]); 2838 MIB.addMBB(Pred); 2839 } 2840 } 2841 } 2842 } 2843 } 2844 2845 bool IRTranslator::valueIsSplit(const Value &V, 2846 SmallVectorImpl<uint64_t> *Offsets) { 2847 SmallVector<LLT, 4> SplitTys; 2848 if (Offsets && !Offsets->empty()) 2849 Offsets->clear(); 2850 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2851 return SplitTys.size() > 1; 2852 } 2853 2854 bool IRTranslator::translate(const Instruction &Inst) { 2855 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2856 // We only emit constants into the entry block from here. To prevent jumpy 2857 // debug behaviour set the line to 0. 2858 if (const DebugLoc &DL = Inst.getDebugLoc()) 2859 EntryBuilder->setDebugLoc(DILocation::get( 2860 Inst.getContext(), 0, 0, DL.getScope(), DL.getInlinedAt())); 2861 else 2862 EntryBuilder->setDebugLoc(DebugLoc()); 2863 2864 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2865 if (TLI.fallBackToDAGISel(Inst)) 2866 return false; 2867 2868 switch (Inst.getOpcode()) { 2869 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2870 case Instruction::OPCODE: \ 2871 return translate##OPCODE(Inst, *CurBuilder.get()); 2872 #include "llvm/IR/Instruction.def" 2873 default: 2874 return false; 2875 } 2876 } 2877 2878 bool IRTranslator::translate(const Constant &C, Register Reg) { 2879 if (auto CI = dyn_cast<ConstantInt>(&C)) 2880 EntryBuilder->buildConstant(Reg, *CI); 2881 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2882 EntryBuilder->buildFConstant(Reg, *CF); 2883 else if (isa<UndefValue>(C)) 2884 EntryBuilder->buildUndef(Reg); 2885 else if (isa<ConstantPointerNull>(C)) 2886 EntryBuilder->buildConstant(Reg, 0); 2887 else if (auto GV = dyn_cast<GlobalValue>(&C)) 2888 EntryBuilder->buildGlobalValue(Reg, GV); 2889 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2890 if (!CAZ->getType()->isVectorTy()) 2891 return false; 2892 // Return the scalar if it is a <1 x Ty> vector. 2893 if (CAZ->getNumElements() == 1) 2894 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get()); 2895 SmallVector<Register, 4> Ops; 2896 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 2897 Constant &Elt = *CAZ->getElementValue(i); 2898 Ops.push_back(getOrCreateVReg(Elt)); 2899 } 2900 EntryBuilder->buildBuildVector(Reg, Ops); 2901 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2902 // Return the scalar if it is a <1 x Ty> vector. 2903 if (CV->getNumElements() == 1) 2904 return translateCopy(C, *CV->getElementAsConstant(0), 2905 *EntryBuilder.get()); 2906 SmallVector<Register, 4> Ops; 2907 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 2908 Constant &Elt = *CV->getElementAsConstant(i); 2909 Ops.push_back(getOrCreateVReg(Elt)); 2910 } 2911 EntryBuilder->buildBuildVector(Reg, Ops); 2912 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 2913 switch(CE->getOpcode()) { 2914 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2915 case Instruction::OPCODE: \ 2916 return translate##OPCODE(*CE, *EntryBuilder.get()); 2917 #include "llvm/IR/Instruction.def" 2918 default: 2919 return false; 2920 } 2921 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 2922 if (CV->getNumOperands() == 1) 2923 return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get()); 2924 SmallVector<Register, 4> Ops; 2925 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 2926 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 2927 } 2928 EntryBuilder->buildBuildVector(Reg, Ops); 2929 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 2930 EntryBuilder->buildBlockAddress(Reg, BA); 2931 } else 2932 return false; 2933 2934 return true; 2935 } 2936 2937 void IRTranslator::finalizeBasicBlock() { 2938 for (auto &BTB : SL->BitTestCases) { 2939 // Emit header first, if it wasn't already emitted. 2940 if (!BTB.Emitted) 2941 emitBitTestHeader(BTB, BTB.Parent); 2942 2943 BranchProbability UnhandledProb = BTB.Prob; 2944 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 2945 UnhandledProb -= BTB.Cases[j].ExtraProb; 2946 // Set the current basic block to the mbb we wish to insert the code into 2947 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB; 2948 // If all cases cover a contiguous range, it is not necessary to jump to 2949 // the default block after the last bit test fails. This is because the 2950 // range check during bit test header creation has guaranteed that every 2951 // case here doesn't go outside the range. In this case, there is no need 2952 // to perform the last bit test, as it will always be true. Instead, make 2953 // the second-to-last bit-test fall through to the target of the last bit 2954 // test, and delete the last bit test. 2955 2956 MachineBasicBlock *NextMBB; 2957 if (BTB.ContiguousRange && j + 2 == ej) { 2958 // Second-to-last bit-test with contiguous range: fall through to the 2959 // target of the final bit test. 2960 NextMBB = BTB.Cases[j + 1].TargetBB; 2961 } else if (j + 1 == ej) { 2962 // For the last bit test, fall through to Default. 2963 NextMBB = BTB.Default; 2964 } else { 2965 // Otherwise, fall through to the next bit test. 2966 NextMBB = BTB.Cases[j + 1].ThisBB; 2967 } 2968 2969 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB); 2970 2971 // FIXME delete this block below? 2972 if (BTB.ContiguousRange && j + 2 == ej) { 2973 // Since we're not going to use the final bit test, remove it. 2974 BTB.Cases.pop_back(); 2975 break; 2976 } 2977 } 2978 // This is "default" BB. We have two jumps to it. From "header" BB and from 2979 // last "case" BB, unless the latter was skipped. 2980 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(), 2981 BTB.Default->getBasicBlock()}; 2982 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent); 2983 if (!BTB.ContiguousRange) { 2984 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB); 2985 } 2986 } 2987 SL->BitTestCases.clear(); 2988 2989 for (auto &JTCase : SL->JTCases) { 2990 // Emit header first, if it wasn't already emitted. 2991 if (!JTCase.first.Emitted) 2992 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 2993 2994 emitJumpTable(JTCase.second, JTCase.second.MBB); 2995 } 2996 SL->JTCases.clear(); 2997 2998 for (auto &SwCase : SL->SwitchCases) 2999 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder); 3000 SL->SwitchCases.clear(); 3001 } 3002 3003 void IRTranslator::finalizeFunction() { 3004 // Release the memory used by the different maps we 3005 // needed during the translation. 3006 PendingPHIs.clear(); 3007 VMap.reset(); 3008 FrameIndices.clear(); 3009 MachinePreds.clear(); 3010 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 3011 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 3012 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 3013 EntryBuilder.reset(); 3014 CurBuilder.reset(); 3015 FuncInfo.clear(); 3016 } 3017 3018 /// Returns true if a BasicBlock \p BB within a variadic function contains a 3019 /// variadic musttail call. 3020 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 3021 if (!IsVarArg) 3022 return false; 3023 3024 // Walk the block backwards, because tail calls usually only appear at the end 3025 // of a block. 3026 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { 3027 const auto *CI = dyn_cast<CallInst>(&I); 3028 return CI && CI->isMustTailCall(); 3029 }); 3030 } 3031 3032 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 3033 MF = &CurMF; 3034 const Function &F = MF->getFunction(); 3035 if (F.empty()) 3036 return false; 3037 GISelCSEAnalysisWrapper &Wrapper = 3038 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 3039 // Set the CSEConfig and run the analysis. 3040 GISelCSEInfo *CSEInfo = nullptr; 3041 TPC = &getAnalysis<TargetPassConfig>(); 3042 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 3043 ? EnableCSEInIRTranslator 3044 : TPC->isGISelCSEEnabled(); 3045 3046 if (EnableCSE) { 3047 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3048 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 3049 EntryBuilder->setCSEInfo(CSEInfo); 3050 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3051 CurBuilder->setCSEInfo(CSEInfo); 3052 } else { 3053 EntryBuilder = std::make_unique<MachineIRBuilder>(); 3054 CurBuilder = std::make_unique<MachineIRBuilder>(); 3055 } 3056 CLI = MF->getSubtarget().getCallLowering(); 3057 CurBuilder->setMF(*MF); 3058 EntryBuilder->setMF(*MF); 3059 MRI = &MF->getRegInfo(); 3060 DL = &F.getParent()->getDataLayout(); 3061 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 3062 const TargetMachine &TM = MF->getTarget(); 3063 TM.resetTargetOptions(F); 3064 EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F); 3065 FuncInfo.MF = MF; 3066 if (EnableOpts) 3067 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 3068 else 3069 FuncInfo.BPI = nullptr; 3070 3071 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF); 3072 3073 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 3074 3075 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 3076 SL->init(TLI, TM, *DL); 3077 3078 3079 3080 assert(PendingPHIs.empty() && "stale PHIs"); 3081 3082 if (!DL->isLittleEndian()) { 3083 // Currently we don't properly handle big endian code. 3084 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3085 F.getSubprogram(), &F.getEntryBlock()); 3086 R << "unable to translate in big endian mode"; 3087 reportTranslationError(*MF, *TPC, *ORE, R); 3088 } 3089 3090 // Release the per-function state when we return, whether we succeeded or not. 3091 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 3092 3093 // Setup a separate basic-block for the arguments and constants 3094 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 3095 MF->push_back(EntryBB); 3096 EntryBuilder->setMBB(*EntryBB); 3097 3098 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 3099 SwiftError.setFunction(CurMF); 3100 SwiftError.createEntriesInEntryBlock(DbgLoc); 3101 3102 bool IsVarArg = F.isVarArg(); 3103 bool HasMustTailInVarArgFn = false; 3104 3105 // Create all blocks, in IR order, to preserve the layout. 3106 for (const BasicBlock &BB: F) { 3107 auto *&MBB = BBToMBB[&BB]; 3108 3109 MBB = MF->CreateMachineBasicBlock(&BB); 3110 MF->push_back(MBB); 3111 3112 if (BB.hasAddressTaken()) 3113 MBB->setHasAddressTaken(); 3114 3115 if (!HasMustTailInVarArgFn) 3116 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 3117 } 3118 3119 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 3120 3121 // Make our arguments/constants entry block fallthrough to the IR entry block. 3122 EntryBB->addSuccessor(&getMBB(F.front())); 3123 3124 if (CLI->fallBackToDAGISel(F)) { 3125 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3126 F.getSubprogram(), &F.getEntryBlock()); 3127 R << "unable to lower function: " << ore::NV("Prototype", F.getType()); 3128 reportTranslationError(*MF, *TPC, *ORE, R); 3129 return false; 3130 } 3131 3132 // Lower the actual args into this basic block. 3133 SmallVector<ArrayRef<Register>, 8> VRegArgs; 3134 for (const Argument &Arg: F.args()) { 3135 if (DL->getTypeStoreSize(Arg.getType()).isZero()) 3136 continue; // Don't handle zero sized types. 3137 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 3138 VRegArgs.push_back(VRegs); 3139 3140 if (Arg.hasSwiftErrorAttr()) { 3141 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 3142 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 3143 } 3144 } 3145 3146 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs, FuncInfo)) { 3147 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3148 F.getSubprogram(), &F.getEntryBlock()); 3149 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 3150 reportTranslationError(*MF, *TPC, *ORE, R); 3151 return false; 3152 } 3153 3154 // Need to visit defs before uses when translating instructions. 3155 GISelObserverWrapper WrapperObserver; 3156 if (EnableCSE && CSEInfo) 3157 WrapperObserver.addObserver(CSEInfo); 3158 { 3159 ReversePostOrderTraversal<const Function *> RPOT(&F); 3160 #ifndef NDEBUG 3161 DILocationVerifier Verifier; 3162 WrapperObserver.addObserver(&Verifier); 3163 #endif // ifndef NDEBUG 3164 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 3165 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 3166 for (const BasicBlock *BB : RPOT) { 3167 MachineBasicBlock &MBB = getMBB(*BB); 3168 // Set the insertion point of all the following translations to 3169 // the end of this basic block. 3170 CurBuilder->setMBB(MBB); 3171 HasTailCall = false; 3172 for (const Instruction &Inst : *BB) { 3173 // If we translated a tail call in the last step, then we know 3174 // everything after the call is either a return, or something that is 3175 // handled by the call itself. (E.g. a lifetime marker or assume 3176 // intrinsic.) In this case, we should stop translating the block and 3177 // move on. 3178 if (HasTailCall) 3179 break; 3180 #ifndef NDEBUG 3181 Verifier.setCurrentInst(&Inst); 3182 #endif // ifndef NDEBUG 3183 if (translate(Inst)) 3184 continue; 3185 3186 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3187 Inst.getDebugLoc(), BB); 3188 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 3189 3190 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 3191 std::string InstStrStorage; 3192 raw_string_ostream InstStr(InstStrStorage); 3193 InstStr << Inst; 3194 3195 R << ": '" << InstStr.str() << "'"; 3196 } 3197 3198 reportTranslationError(*MF, *TPC, *ORE, R); 3199 return false; 3200 } 3201 3202 finalizeBasicBlock(); 3203 } 3204 #ifndef NDEBUG 3205 WrapperObserver.removeObserver(&Verifier); 3206 #endif 3207 } 3208 3209 finishPendingPhis(); 3210 3211 SwiftError.propagateVRegs(); 3212 3213 // Merge the argument lowering and constants block with its single 3214 // successor, the LLVM-IR entry block. We want the basic block to 3215 // be maximal. 3216 assert(EntryBB->succ_size() == 1 && 3217 "Custom BB used for lowering should have only one successor"); 3218 // Get the successor of the current entry block. 3219 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 3220 assert(NewEntryBB.pred_size() == 1 && 3221 "LLVM-IR entry block has a predecessor!?"); 3222 // Move all the instruction from the current entry block to the 3223 // new entry block. 3224 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 3225 EntryBB->end()); 3226 3227 // Update the live-in information for the new entry block. 3228 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 3229 NewEntryBB.addLiveIn(LiveIn); 3230 NewEntryBB.sortUniqueLiveIns(); 3231 3232 // Get rid of the now empty basic block. 3233 EntryBB->removeSuccessor(&NewEntryBB); 3234 MF->remove(EntryBB); 3235 MF->DeleteMachineBasicBlock(EntryBB); 3236 3237 assert(&MF->front() == &NewEntryBB && 3238 "New entry wasn't next in the list of basic block!"); 3239 3240 // Initialize stack protector information. 3241 StackProtector &SP = getAnalysis<StackProtector>(); 3242 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 3243 3244 return false; 3245 } 3246