1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 26 #include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h" 27 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 28 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 29 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 30 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 31 #include "llvm/CodeGen/LowLevelType.h" 32 #include "llvm/CodeGen/LowLevelTypeUtils.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineModuleInfo.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/RuntimeLibcalls.h" 42 #include "llvm/CodeGen/StackProtector.h" 43 #include "llvm/CodeGen/SwitchLoweringUtils.h" 44 #include "llvm/CodeGen/TargetFrameLowering.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetOpcodes.h" 48 #include "llvm/CodeGen/TargetPassConfig.h" 49 #include "llvm/CodeGen/TargetRegisterInfo.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/CFG.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/DiagnosticInfo.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/GetElementPtrTypeIterator.h" 60 #include "llvm/IR/InlineAsm.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/IntrinsicsAMDGPU.h" 66 #include "llvm/IR/LLVMContext.h" 67 #include "llvm/IR/Metadata.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CodeGen.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/Target/TargetIntrinsicInfo.h" 83 #include "llvm/Target/TargetMachine.h" 84 #include "llvm/Transforms/Utils/Local.h" 85 #include "llvm/Transforms/Utils/MemoryOpRemark.h" 86 #include <algorithm> 87 #include <cassert> 88 #include <cstdint> 89 #include <iterator> 90 #include <optional> 91 #include <string> 92 #include <utility> 93 #include <vector> 94 95 #define DEBUG_TYPE "irtranslator" 96 97 using namespace llvm; 98 99 static cl::opt<bool> 100 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 101 cl::desc("Should enable CSE in irtranslator"), 102 cl::Optional, cl::init(false)); 103 char IRTranslator::ID = 0; 104 105 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 106 false, false) 107 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 108 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 109 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 110 INITIALIZE_PASS_DEPENDENCY(StackProtector) 111 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 112 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 113 false, false) 114 115 static void reportTranslationError(MachineFunction &MF, 116 const TargetPassConfig &TPC, 117 OptimizationRemarkEmitter &ORE, 118 OptimizationRemarkMissed &R) { 119 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 120 121 // Print the function name explicitly if we don't have a debug location (which 122 // makes the diagnostic less useful) or if we're going to emit a raw error. 123 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 124 R << (" (in function: " + MF.getName() + ")").str(); 125 126 if (TPC.isGlobalISelAbortEnabled()) 127 report_fatal_error(Twine(R.getMsg())); 128 else 129 ORE.emit(R); 130 } 131 132 IRTranslator::IRTranslator(CodeGenOptLevel optlevel) 133 : MachineFunctionPass(ID), OptLevel(optlevel) {} 134 135 #ifndef NDEBUG 136 namespace { 137 /// Verify that every instruction created has the same DILocation as the 138 /// instruction being translated. 139 class DILocationVerifier : public GISelChangeObserver { 140 const Instruction *CurrInst = nullptr; 141 142 public: 143 DILocationVerifier() = default; 144 ~DILocationVerifier() = default; 145 146 const Instruction *getCurrentInst() const { return CurrInst; } 147 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 148 149 void erasingInstr(MachineInstr &MI) override {} 150 void changingInstr(MachineInstr &MI) override {} 151 void changedInstr(MachineInstr &MI) override {} 152 153 void createdInstr(MachineInstr &MI) override { 154 assert(getCurrentInst() && "Inserted instruction without a current MI"); 155 156 // Only print the check message if we're actually checking it. 157 #ifndef NDEBUG 158 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 159 << " was copied to " << MI); 160 #endif 161 // We allow insts in the entry block to have no debug loc because 162 // they could have originated from constants, and we don't want a jumpy 163 // debug experience. 164 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 165 (MI.getParent()->isEntryBlock() && !MI.getDebugLoc()) || 166 (MI.isDebugInstr())) && 167 "Line info was not transferred to all instructions"); 168 } 169 }; 170 } // namespace 171 #endif // ifndef NDEBUG 172 173 174 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 175 AU.addRequired<StackProtector>(); 176 AU.addRequired<TargetPassConfig>(); 177 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 178 AU.addRequired<AssumptionCacheTracker>(); 179 if (OptLevel != CodeGenOptLevel::None) { 180 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 181 AU.addRequired<AAResultsWrapperPass>(); 182 } 183 AU.addRequired<TargetLibraryInfoWrapperPass>(); 184 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 185 getSelectionDAGFallbackAnalysisUsage(AU); 186 MachineFunctionPass::getAnalysisUsage(AU); 187 } 188 189 IRTranslator::ValueToVRegInfo::VRegListT & 190 IRTranslator::allocateVRegs(const Value &Val) { 191 auto VRegsIt = VMap.findVRegs(Val); 192 if (VRegsIt != VMap.vregs_end()) 193 return *VRegsIt->second; 194 auto *Regs = VMap.getVRegs(Val); 195 auto *Offsets = VMap.getOffsets(Val); 196 SmallVector<LLT, 4> SplitTys; 197 computeValueLLTs(*DL, *Val.getType(), SplitTys, 198 Offsets->empty() ? Offsets : nullptr); 199 for (unsigned i = 0; i < SplitTys.size(); ++i) 200 Regs->push_back(0); 201 return *Regs; 202 } 203 204 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 205 auto VRegsIt = VMap.findVRegs(Val); 206 if (VRegsIt != VMap.vregs_end()) 207 return *VRegsIt->second; 208 209 if (Val.getType()->isVoidTy()) 210 return *VMap.getVRegs(Val); 211 212 // Create entry for this type. 213 auto *VRegs = VMap.getVRegs(Val); 214 auto *Offsets = VMap.getOffsets(Val); 215 216 assert(Val.getType()->isSized() && 217 "Don't know how to create an empty vreg"); 218 219 SmallVector<LLT, 4> SplitTys; 220 computeValueLLTs(*DL, *Val.getType(), SplitTys, 221 Offsets->empty() ? Offsets : nullptr); 222 223 if (!isa<Constant>(Val)) { 224 for (auto Ty : SplitTys) 225 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 226 return *VRegs; 227 } 228 229 if (Val.getType()->isAggregateType()) { 230 // UndefValue, ConstantAggregateZero 231 auto &C = cast<Constant>(Val); 232 unsigned Idx = 0; 233 while (auto Elt = C.getAggregateElement(Idx++)) { 234 auto EltRegs = getOrCreateVRegs(*Elt); 235 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 236 } 237 } else { 238 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 239 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 240 bool Success = translate(cast<Constant>(Val), VRegs->front()); 241 if (!Success) { 242 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 243 MF->getFunction().getSubprogram(), 244 &MF->getFunction().getEntryBlock()); 245 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 246 reportTranslationError(*MF, *TPC, *ORE, R); 247 return *VRegs; 248 } 249 } 250 251 return *VRegs; 252 } 253 254 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 255 auto MapEntry = FrameIndices.find(&AI); 256 if (MapEntry != FrameIndices.end()) 257 return MapEntry->second; 258 259 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 260 uint64_t Size = 261 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 262 263 // Always allocate at least one byte. 264 Size = std::max<uint64_t>(Size, 1u); 265 266 int &FI = FrameIndices[&AI]; 267 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI); 268 return FI; 269 } 270 271 Align IRTranslator::getMemOpAlign(const Instruction &I) { 272 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) 273 return SI->getAlign(); 274 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) 275 return LI->getAlign(); 276 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 277 return AI->getAlign(); 278 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) 279 return AI->getAlign(); 280 281 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 282 R << "unable to translate memop: " << ore::NV("Opcode", &I); 283 reportTranslationError(*MF, *TPC, *ORE, R); 284 return Align(1); 285 } 286 287 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 288 MachineBasicBlock *&MBB = BBToMBB[&BB]; 289 assert(MBB && "BasicBlock was not encountered before"); 290 return *MBB; 291 } 292 293 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 294 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 295 MachinePreds[Edge].push_back(NewPred); 296 } 297 298 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 299 MachineIRBuilder &MIRBuilder) { 300 // Get or create a virtual register for each value. 301 // Unless the value is a Constant => loadimm cst? 302 // or inline constant each time? 303 // Creation of a virtual register needs to have a size. 304 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 305 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 306 Register Res = getOrCreateVReg(U); 307 uint32_t Flags = 0; 308 if (isa<Instruction>(U)) { 309 const Instruction &I = cast<Instruction>(U); 310 Flags = MachineInstr::copyFlagsFromInstruction(I); 311 } 312 313 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 314 return true; 315 } 316 317 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U, 318 MachineIRBuilder &MIRBuilder) { 319 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 320 Register Res = getOrCreateVReg(U); 321 uint32_t Flags = 0; 322 if (isa<Instruction>(U)) { 323 const Instruction &I = cast<Instruction>(U); 324 Flags = MachineInstr::copyFlagsFromInstruction(I); 325 } 326 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags); 327 return true; 328 } 329 330 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 331 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder); 332 } 333 334 bool IRTranslator::translateCompare(const User &U, 335 MachineIRBuilder &MIRBuilder) { 336 auto *CI = dyn_cast<CmpInst>(&U); 337 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 338 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 339 Register Res = getOrCreateVReg(U); 340 CmpInst::Predicate Pred = 341 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 342 cast<ConstantExpr>(U).getPredicate()); 343 if (CmpInst::isIntPredicate(Pred)) 344 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 345 else if (Pred == CmpInst::FCMP_FALSE) 346 MIRBuilder.buildCopy( 347 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 348 else if (Pred == CmpInst::FCMP_TRUE) 349 MIRBuilder.buildCopy( 350 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 351 else { 352 uint32_t Flags = 0; 353 if (CI) 354 Flags = MachineInstr::copyFlagsFromInstruction(*CI); 355 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags); 356 } 357 358 return true; 359 } 360 361 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 362 const ReturnInst &RI = cast<ReturnInst>(U); 363 const Value *Ret = RI.getReturnValue(); 364 if (Ret && DL->getTypeStoreSize(Ret->getType()).isZero()) 365 Ret = nullptr; 366 367 ArrayRef<Register> VRegs; 368 if (Ret) 369 VRegs = getOrCreateVRegs(*Ret); 370 371 Register SwiftErrorVReg = 0; 372 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 373 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 374 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 375 } 376 377 // The target may mess up with the insertion point, but 378 // this is not important as a return is the last instruction 379 // of the block anyway. 380 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg); 381 } 382 383 void IRTranslator::emitBranchForMergedCondition( 384 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 385 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 386 BranchProbability TProb, BranchProbability FProb, bool InvertCond) { 387 // If the leaf of the tree is a comparison, merge the condition into 388 // the caseblock. 389 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 390 CmpInst::Predicate Condition; 391 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 392 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 393 } else { 394 const FCmpInst *FC = cast<FCmpInst>(Cond); 395 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 396 } 397 398 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0), 399 BOp->getOperand(1), nullptr, TBB, FBB, CurBB, 400 CurBuilder->getDebugLoc(), TProb, FProb); 401 SL->SwitchCases.push_back(CB); 402 return; 403 } 404 405 // Create a CaseBlock record representing this branch. 406 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 407 SwitchCG::CaseBlock CB( 408 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()), 409 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb); 410 SL->SwitchCases.push_back(CB); 411 } 412 413 static bool isValInBlock(const Value *V, const BasicBlock *BB) { 414 if (const Instruction *I = dyn_cast<Instruction>(V)) 415 return I->getParent() == BB; 416 return true; 417 } 418 419 void IRTranslator::findMergedConditions( 420 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 421 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 422 Instruction::BinaryOps Opc, BranchProbability TProb, 423 BranchProbability FProb, bool InvertCond) { 424 using namespace PatternMatch; 425 assert((Opc == Instruction::And || Opc == Instruction::Or) && 426 "Expected Opc to be AND/OR"); 427 // Skip over not part of the tree and remember to invert op and operands at 428 // next level. 429 Value *NotCond; 430 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 431 isValInBlock(NotCond, CurBB->getBasicBlock())) { 432 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 433 !InvertCond); 434 return; 435 } 436 437 const Instruction *BOp = dyn_cast<Instruction>(Cond); 438 const Value *BOpOp0, *BOpOp1; 439 // Compute the effective opcode for Cond, taking into account whether it needs 440 // to be inverted, e.g. 441 // and (not (or A, B)), C 442 // gets lowered as 443 // and (and (not A, not B), C) 444 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 445 if (BOp) { 446 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 447 ? Instruction::And 448 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 449 ? Instruction::Or 450 : (Instruction::BinaryOps)0); 451 if (InvertCond) { 452 if (BOpc == Instruction::And) 453 BOpc = Instruction::Or; 454 else if (BOpc == Instruction::Or) 455 BOpc = Instruction::And; 456 } 457 } 458 459 // If this node is not part of the or/and tree, emit it as a branch. 460 // Note that all nodes in the tree should have same opcode. 461 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 462 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 463 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) || 464 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) { 465 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb, 466 InvertCond); 467 return; 468 } 469 470 // Create TmpBB after CurBB. 471 MachineFunction::iterator BBI(CurBB); 472 MachineBasicBlock *TmpBB = 473 MF->CreateMachineBasicBlock(CurBB->getBasicBlock()); 474 CurBB->getParent()->insert(++BBI, TmpBB); 475 476 if (Opc == Instruction::Or) { 477 // Codegen X | Y as: 478 // BB1: 479 // jmp_if_X TBB 480 // jmp TmpBB 481 // TmpBB: 482 // jmp_if_Y TBB 483 // jmp FBB 484 // 485 486 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 487 // The requirement is that 488 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 489 // = TrueProb for original BB. 490 // Assuming the original probabilities are A and B, one choice is to set 491 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 492 // A/(1+B) and 2B/(1+B). This choice assumes that 493 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 494 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 495 // TmpBB, but the math is more complicated. 496 497 auto NewTrueProb = TProb / 2; 498 auto NewFalseProb = TProb / 2 + FProb; 499 // Emit the LHS condition. 500 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 501 NewFalseProb, InvertCond); 502 503 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 504 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 505 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 506 // Emit the RHS condition into TmpBB. 507 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 508 Probs[1], InvertCond); 509 } else { 510 assert(Opc == Instruction::And && "Unknown merge op!"); 511 // Codegen X & Y as: 512 // BB1: 513 // jmp_if_X TmpBB 514 // jmp FBB 515 // TmpBB: 516 // jmp_if_Y TBB 517 // jmp FBB 518 // 519 // This requires creation of TmpBB after CurBB. 520 521 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 522 // The requirement is that 523 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 524 // = FalseProb for original BB. 525 // Assuming the original probabilities are A and B, one choice is to set 526 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 527 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 528 // TrueProb for BB1 * FalseProb for TmpBB. 529 530 auto NewTrueProb = TProb + FProb / 2; 531 auto NewFalseProb = FProb / 2; 532 // Emit the LHS condition. 533 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 534 NewFalseProb, InvertCond); 535 536 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 537 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 538 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 539 // Emit the RHS condition into TmpBB. 540 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 541 Probs[1], InvertCond); 542 } 543 } 544 545 bool IRTranslator::shouldEmitAsBranches( 546 const std::vector<SwitchCG::CaseBlock> &Cases) { 547 // For multiple cases, it's better to emit as branches. 548 if (Cases.size() != 2) 549 return true; 550 551 // If this is two comparisons of the same values or'd or and'd together, they 552 // will get folded into a single comparison, so don't emit two blocks. 553 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 554 Cases[0].CmpRHS == Cases[1].CmpRHS) || 555 (Cases[0].CmpRHS == Cases[1].CmpLHS && 556 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 557 return false; 558 } 559 560 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 561 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 562 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 563 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred && 564 isa<Constant>(Cases[0].CmpRHS) && 565 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 566 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ && 567 Cases[0].TrueBB == Cases[1].ThisBB) 568 return false; 569 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE && 570 Cases[0].FalseBB == Cases[1].ThisBB) 571 return false; 572 } 573 574 return true; 575 } 576 577 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 578 const BranchInst &BrInst = cast<BranchInst>(U); 579 auto &CurMBB = MIRBuilder.getMBB(); 580 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0)); 581 582 if (BrInst.isUnconditional()) { 583 // If the unconditional target is the layout successor, fallthrough. 584 if (OptLevel == CodeGenOptLevel::None || 585 !CurMBB.isLayoutSuccessor(Succ0MBB)) 586 MIRBuilder.buildBr(*Succ0MBB); 587 588 // Link successors. 589 for (const BasicBlock *Succ : successors(&BrInst)) 590 CurMBB.addSuccessor(&getMBB(*Succ)); 591 return true; 592 } 593 594 // If this condition is one of the special cases we handle, do special stuff 595 // now. 596 const Value *CondVal = BrInst.getCondition(); 597 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1)); 598 599 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 600 601 // If this is a series of conditions that are or'd or and'd together, emit 602 // this as a sequence of branches instead of setcc's with and/or operations. 603 // As long as jumps are not expensive (exceptions for multi-use logic ops, 604 // unpredictable branches, and vector extracts because those jumps are likely 605 // expensive for any target), this should improve performance. 606 // For example, instead of something like: 607 // cmp A, B 608 // C = seteq 609 // cmp D, E 610 // F = setle 611 // or C, F 612 // jnz foo 613 // Emit: 614 // cmp A, B 615 // je foo 616 // cmp D, E 617 // jle foo 618 using namespace PatternMatch; 619 const Instruction *CondI = dyn_cast<Instruction>(CondVal); 620 if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() && 621 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) { 622 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 623 Value *Vec; 624 const Value *BOp0, *BOp1; 625 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 626 Opcode = Instruction::And; 627 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 628 Opcode = Instruction::Or; 629 630 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 631 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 632 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode, 633 getEdgeProbability(&CurMBB, Succ0MBB), 634 getEdgeProbability(&CurMBB, Succ1MBB), 635 /*InvertCond=*/false); 636 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!"); 637 638 // Allow some cases to be rejected. 639 if (shouldEmitAsBranches(SL->SwitchCases)) { 640 // Emit the branch for this block. 641 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder); 642 SL->SwitchCases.erase(SL->SwitchCases.begin()); 643 return true; 644 } 645 646 // Okay, we decided not to do this, remove any inserted MBB's and clear 647 // SwitchCases. 648 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I) 649 MF->erase(SL->SwitchCases[I].ThisBB); 650 651 SL->SwitchCases.clear(); 652 } 653 } 654 655 // Create a CaseBlock record representing this branch. 656 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal, 657 ConstantInt::getTrue(MF->getFunction().getContext()), 658 nullptr, Succ0MBB, Succ1MBB, &CurMBB, 659 CurBuilder->getDebugLoc()); 660 661 // Use emitSwitchCase to actually insert the fast branch sequence for this 662 // cond branch. 663 emitSwitchCase(CB, &CurMBB, *CurBuilder); 664 return true; 665 } 666 667 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 668 MachineBasicBlock *Dst, 669 BranchProbability Prob) { 670 if (!FuncInfo.BPI) { 671 Src->addSuccessorWithoutProb(Dst); 672 return; 673 } 674 if (Prob.isUnknown()) 675 Prob = getEdgeProbability(Src, Dst); 676 Src->addSuccessor(Dst, Prob); 677 } 678 679 BranchProbability 680 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 681 const MachineBasicBlock *Dst) const { 682 const BasicBlock *SrcBB = Src->getBasicBlock(); 683 const BasicBlock *DstBB = Dst->getBasicBlock(); 684 if (!FuncInfo.BPI) { 685 // If BPI is not available, set the default probability as 1 / N, where N is 686 // the number of successors. 687 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 688 return BranchProbability(1, SuccSize); 689 } 690 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 691 } 692 693 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 694 using namespace SwitchCG; 695 // Extract cases from the switch. 696 const SwitchInst &SI = cast<SwitchInst>(U); 697 BranchProbabilityInfo *BPI = FuncInfo.BPI; 698 CaseClusterVector Clusters; 699 Clusters.reserve(SI.getNumCases()); 700 for (const auto &I : SI.cases()) { 701 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 702 assert(Succ && "Could not find successor mbb in mapping"); 703 const ConstantInt *CaseVal = I.getCaseValue(); 704 BranchProbability Prob = 705 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 706 : BranchProbability(1, SI.getNumCases() + 1); 707 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 708 } 709 710 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 711 712 // Cluster adjacent cases with the same destination. We do this at all 713 // optimization levels because it's cheap to do and will make codegen faster 714 // if there are many clusters. 715 sortAndRangeify(Clusters); 716 717 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 718 719 // If there is only the default destination, jump there directly. 720 if (Clusters.empty()) { 721 SwitchMBB->addSuccessor(DefaultMBB); 722 if (DefaultMBB != SwitchMBB->getNextNode()) 723 MIB.buildBr(*DefaultMBB); 724 return true; 725 } 726 727 SL->findJumpTables(Clusters, &SI, std::nullopt, DefaultMBB, nullptr, nullptr); 728 SL->findBitTestClusters(Clusters, &SI); 729 730 LLVM_DEBUG({ 731 dbgs() << "Case clusters: "; 732 for (const CaseCluster &C : Clusters) { 733 if (C.Kind == CC_JumpTable) 734 dbgs() << "JT:"; 735 if (C.Kind == CC_BitTests) 736 dbgs() << "BT:"; 737 738 C.Low->getValue().print(dbgs(), true); 739 if (C.Low != C.High) { 740 dbgs() << '-'; 741 C.High->getValue().print(dbgs(), true); 742 } 743 dbgs() << ' '; 744 } 745 dbgs() << '\n'; 746 }); 747 748 assert(!Clusters.empty()); 749 SwitchWorkList WorkList; 750 CaseClusterIt First = Clusters.begin(); 751 CaseClusterIt Last = Clusters.end() - 1; 752 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 753 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 754 755 while (!WorkList.empty()) { 756 SwitchWorkListItem W = WorkList.pop_back_val(); 757 758 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 759 // For optimized builds, lower large range as a balanced binary tree. 760 if (NumClusters > 3 && 761 MF->getTarget().getOptLevel() != CodeGenOptLevel::None && 762 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 763 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB, MIB); 764 continue; 765 } 766 767 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 768 return false; 769 } 770 return true; 771 } 772 773 void IRTranslator::splitWorkItem(SwitchCG::SwitchWorkList &WorkList, 774 const SwitchCG::SwitchWorkListItem &W, 775 Value *Cond, MachineBasicBlock *SwitchMBB, 776 MachineIRBuilder &MIB) { 777 using namespace SwitchCG; 778 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 779 "Clusters not sorted?"); 780 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 781 782 auto [LastLeft, FirstRight, LeftProb, RightProb] = 783 SL->computeSplitWorkItemInfo(W); 784 785 // Use the first element on the right as pivot since we will make less-than 786 // comparisons against it. 787 CaseClusterIt PivotCluster = FirstRight; 788 assert(PivotCluster > W.FirstCluster); 789 assert(PivotCluster <= W.LastCluster); 790 791 CaseClusterIt FirstLeft = W.FirstCluster; 792 CaseClusterIt LastRight = W.LastCluster; 793 794 const ConstantInt *Pivot = PivotCluster->Low; 795 796 // New blocks will be inserted immediately after the current one. 797 MachineFunction::iterator BBI(W.MBB); 798 ++BBI; 799 800 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 801 // we can branch to its destination directly if it's squeezed exactly in 802 // between the known lower bound and Pivot - 1. 803 MachineBasicBlock *LeftMBB; 804 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 805 FirstLeft->Low == W.GE && 806 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 807 LeftMBB = FirstLeft->MBB; 808 } else { 809 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 810 FuncInfo.MF->insert(BBI, LeftMBB); 811 WorkList.push_back( 812 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 813 } 814 815 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 816 // single cluster, RHS.Low == Pivot, and we can branch to its destination 817 // directly if RHS.High equals the current upper bound. 818 MachineBasicBlock *RightMBB; 819 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && W.LT && 820 (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 821 RightMBB = FirstRight->MBB; 822 } else { 823 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 824 FuncInfo.MF->insert(BBI, RightMBB); 825 WorkList.push_back( 826 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 827 } 828 829 // Create the CaseBlock record that will be used to lower the branch. 830 CaseBlock CB(ICmpInst::Predicate::ICMP_SLT, false, Cond, Pivot, nullptr, 831 LeftMBB, RightMBB, W.MBB, MIB.getDebugLoc(), LeftProb, 832 RightProb); 833 834 if (W.MBB == SwitchMBB) 835 emitSwitchCase(CB, SwitchMBB, MIB); 836 else 837 SL->SwitchCases.push_back(CB); 838 } 839 840 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 841 MachineBasicBlock *MBB) { 842 // Emit the code for the jump table 843 assert(JT.Reg != -1U && "Should lower JT Header first!"); 844 MachineIRBuilder MIB(*MBB->getParent()); 845 MIB.setMBB(*MBB); 846 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 847 848 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext()); 849 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 850 851 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 852 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 853 } 854 855 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 856 SwitchCG::JumpTableHeader &JTH, 857 MachineBasicBlock *HeaderBB) { 858 MachineIRBuilder MIB(*HeaderBB->getParent()); 859 MIB.setMBB(*HeaderBB); 860 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 861 862 const Value &SValue = *JTH.SValue; 863 // Subtract the lowest switch case value from the value being switched on. 864 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 865 Register SwitchOpReg = getOrCreateVReg(SValue); 866 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 867 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 868 869 // This value may be smaller or larger than the target's pointer type, and 870 // therefore require extension or truncating. 871 auto *PtrIRTy = PointerType::getUnqual(SValue.getContext()); 872 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 873 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 874 875 JT.Reg = Sub.getReg(0); 876 877 if (JTH.FallthroughUnreachable) { 878 if (JT.MBB != HeaderBB->getNextNode()) 879 MIB.buildBr(*JT.MBB); 880 return true; 881 } 882 883 // Emit the range check for the jump table, and branch to the default block 884 // for the switch statement if the value being switched on exceeds the 885 // largest case in the switch. 886 auto Cst = getOrCreateVReg( 887 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 888 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 889 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 890 891 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 892 893 // Avoid emitting unnecessary branches to the next block. 894 if (JT.MBB != HeaderBB->getNextNode()) 895 BrCond = MIB.buildBr(*JT.MBB); 896 return true; 897 } 898 899 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 900 MachineBasicBlock *SwitchBB, 901 MachineIRBuilder &MIB) { 902 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 903 Register Cond; 904 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 905 MIB.setDebugLoc(CB.DbgLoc); 906 MIB.setMBB(*CB.ThisBB); 907 908 if (CB.PredInfo.NoCmp) { 909 // Branch or fall through to TrueBB. 910 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 911 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 912 CB.ThisBB); 913 CB.ThisBB->normalizeSuccProbs(); 914 if (CB.TrueBB != CB.ThisBB->getNextNode()) 915 MIB.buildBr(*CB.TrueBB); 916 MIB.setDebugLoc(OldDbgLoc); 917 return; 918 } 919 920 const LLT i1Ty = LLT::scalar(1); 921 // Build the compare. 922 if (!CB.CmpMHS) { 923 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS); 924 // For conditional branch lowering, we might try to do something silly like 925 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so, 926 // just re-use the existing condition vreg. 927 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && CI->isOne() && 928 CB.PredInfo.Pred == CmpInst::ICMP_EQ) { 929 Cond = CondLHS; 930 } else { 931 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 932 if (CmpInst::isFPPredicate(CB.PredInfo.Pred)) 933 Cond = 934 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 935 else 936 Cond = 937 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 938 } 939 } else { 940 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 941 "Can only handle SLE ranges"); 942 943 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 944 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 945 946 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 947 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 948 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 949 Cond = 950 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 951 } else { 952 const LLT CmpTy = MRI->getType(CmpOpReg); 953 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 954 auto Diff = MIB.buildConstant(CmpTy, High - Low); 955 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 956 } 957 } 958 959 // Update successor info 960 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 961 962 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 963 CB.ThisBB); 964 965 // TrueBB and FalseBB are always different unless the incoming IR is 966 // degenerate. This only happens when running llc on weird IR. 967 if (CB.TrueBB != CB.FalseBB) 968 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 969 CB.ThisBB->normalizeSuccProbs(); 970 971 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 972 CB.ThisBB); 973 974 MIB.buildBrCond(Cond, *CB.TrueBB); 975 MIB.buildBr(*CB.FalseBB); 976 MIB.setDebugLoc(OldDbgLoc); 977 } 978 979 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 980 MachineBasicBlock *SwitchMBB, 981 MachineBasicBlock *CurMBB, 982 MachineBasicBlock *DefaultMBB, 983 MachineIRBuilder &MIB, 984 MachineFunction::iterator BBI, 985 BranchProbability UnhandledProbs, 986 SwitchCG::CaseClusterIt I, 987 MachineBasicBlock *Fallthrough, 988 bool FallthroughUnreachable) { 989 using namespace SwitchCG; 990 MachineFunction *CurMF = SwitchMBB->getParent(); 991 // FIXME: Optimize away range check based on pivot comparisons. 992 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 993 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 994 BranchProbability DefaultProb = W.DefaultProb; 995 996 // The jump block hasn't been inserted yet; insert it here. 997 MachineBasicBlock *JumpMBB = JT->MBB; 998 CurMF->insert(BBI, JumpMBB); 999 1000 // Since the jump table block is separate from the switch block, we need 1001 // to keep track of it as a machine predecessor to the default block, 1002 // otherwise we lose the phi edges. 1003 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 1004 CurMBB); 1005 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 1006 JumpMBB); 1007 1008 auto JumpProb = I->Prob; 1009 auto FallthroughProb = UnhandledProbs; 1010 1011 // If the default statement is a target of the jump table, we evenly 1012 // distribute the default probability to successors of CurMBB. Also 1013 // update the probability on the edge from JumpMBB to Fallthrough. 1014 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 1015 SE = JumpMBB->succ_end(); 1016 SI != SE; ++SI) { 1017 if (*SI == DefaultMBB) { 1018 JumpProb += DefaultProb / 2; 1019 FallthroughProb -= DefaultProb / 2; 1020 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 1021 JumpMBB->normalizeSuccProbs(); 1022 } else { 1023 // Also record edges from the jump table block to it's successors. 1024 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 1025 JumpMBB); 1026 } 1027 } 1028 1029 if (FallthroughUnreachable) 1030 JTH->FallthroughUnreachable = true; 1031 1032 if (!JTH->FallthroughUnreachable) 1033 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 1034 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 1035 CurMBB->normalizeSuccProbs(); 1036 1037 // The jump table header will be inserted in our current block, do the 1038 // range check, and fall through to our fallthrough block. 1039 JTH->HeaderBB = CurMBB; 1040 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 1041 1042 // If we're in the right place, emit the jump table header right now. 1043 if (CurMBB == SwitchMBB) { 1044 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 1045 return false; 1046 JTH->Emitted = true; 1047 } 1048 return true; 1049 } 1050 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 1051 Value *Cond, 1052 MachineBasicBlock *Fallthrough, 1053 bool FallthroughUnreachable, 1054 BranchProbability UnhandledProbs, 1055 MachineBasicBlock *CurMBB, 1056 MachineIRBuilder &MIB, 1057 MachineBasicBlock *SwitchMBB) { 1058 using namespace SwitchCG; 1059 const Value *RHS, *LHS, *MHS; 1060 CmpInst::Predicate Pred; 1061 if (I->Low == I->High) { 1062 // Check Cond == I->Low. 1063 Pred = CmpInst::ICMP_EQ; 1064 LHS = Cond; 1065 RHS = I->Low; 1066 MHS = nullptr; 1067 } else { 1068 // Check I->Low <= Cond <= I->High. 1069 Pred = CmpInst::ICMP_SLE; 1070 LHS = I->Low; 1071 MHS = Cond; 1072 RHS = I->High; 1073 } 1074 1075 // If Fallthrough is unreachable, fold away the comparison. 1076 // The false probability is the sum of all unhandled cases. 1077 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 1078 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 1079 1080 emitSwitchCase(CB, SwitchMBB, MIB); 1081 return true; 1082 } 1083 1084 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B, 1085 MachineBasicBlock *SwitchBB) { 1086 MachineIRBuilder &MIB = *CurBuilder; 1087 MIB.setMBB(*SwitchBB); 1088 1089 // Subtract the minimum value. 1090 Register SwitchOpReg = getOrCreateVReg(*B.SValue); 1091 1092 LLT SwitchOpTy = MRI->getType(SwitchOpReg); 1093 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0); 1094 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg); 1095 1096 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext()); 1097 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1098 1099 LLT MaskTy = SwitchOpTy; 1100 if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() || 1101 !llvm::has_single_bit<uint32_t>(MaskTy.getSizeInBits())) 1102 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1103 else { 1104 // Ensure that the type will fit the mask value. 1105 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) { 1106 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) { 1107 // Switch table case range are encoded into series of masks. 1108 // Just use pointer type, it's guaranteed to fit. 1109 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1110 break; 1111 } 1112 } 1113 } 1114 Register SubReg = RangeSub.getReg(0); 1115 if (SwitchOpTy != MaskTy) 1116 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0); 1117 1118 B.RegVT = getMVTForLLT(MaskTy); 1119 B.Reg = SubReg; 1120 1121 MachineBasicBlock *MBB = B.Cases[0].ThisBB; 1122 1123 if (!B.FallthroughUnreachable) 1124 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 1125 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 1126 1127 SwitchBB->normalizeSuccProbs(); 1128 1129 if (!B.FallthroughUnreachable) { 1130 // Conditional branch to the default block. 1131 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range); 1132 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1), 1133 RangeSub, RangeCst); 1134 MIB.buildBrCond(RangeCmp, *B.Default); 1135 } 1136 1137 // Avoid emitting unnecessary branches to the next block. 1138 if (MBB != SwitchBB->getNextNode()) 1139 MIB.buildBr(*MBB); 1140 } 1141 1142 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB, 1143 MachineBasicBlock *NextMBB, 1144 BranchProbability BranchProbToNext, 1145 Register Reg, SwitchCG::BitTestCase &B, 1146 MachineBasicBlock *SwitchBB) { 1147 MachineIRBuilder &MIB = *CurBuilder; 1148 MIB.setMBB(*SwitchBB); 1149 1150 LLT SwitchTy = getLLTForMVT(BB.RegVT); 1151 Register Cmp; 1152 unsigned PopCount = llvm::popcount(B.Mask); 1153 if (PopCount == 1) { 1154 // Testing for a single bit; just compare the shift count with what it 1155 // would need to be to shift a 1 bit in that position. 1156 auto MaskTrailingZeros = 1157 MIB.buildConstant(SwitchTy, llvm::countr_zero(B.Mask)); 1158 Cmp = 1159 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros) 1160 .getReg(0); 1161 } else if (PopCount == BB.Range) { 1162 // There is only one zero bit in the range, test for it directly. 1163 auto MaskTrailingOnes = 1164 MIB.buildConstant(SwitchTy, llvm::countr_one(B.Mask)); 1165 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes) 1166 .getReg(0); 1167 } else { 1168 // Make desired shift. 1169 auto CstOne = MIB.buildConstant(SwitchTy, 1); 1170 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg); 1171 1172 // Emit bit tests and jumps. 1173 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask); 1174 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask); 1175 auto CstZero = MIB.buildConstant(SwitchTy, 0); 1176 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero) 1177 .getReg(0); 1178 } 1179 1180 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 1181 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 1182 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 1183 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 1184 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 1185 // one as they are relative probabilities (and thus work more like weights), 1186 // and hence we need to normalize them to let the sum of them become one. 1187 SwitchBB->normalizeSuccProbs(); 1188 1189 // Record the fact that the IR edge from the header to the bit test target 1190 // will go through our new block. Neeeded for PHIs to have nodes added. 1191 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()}, 1192 SwitchBB); 1193 1194 MIB.buildBrCond(Cmp, *B.TargetBB); 1195 1196 // Avoid emitting unnecessary branches to the next block. 1197 if (NextMBB != SwitchBB->getNextNode()) 1198 MIB.buildBr(*NextMBB); 1199 } 1200 1201 bool IRTranslator::lowerBitTestWorkItem( 1202 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB, 1203 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB, 1204 MachineIRBuilder &MIB, MachineFunction::iterator BBI, 1205 BranchProbability DefaultProb, BranchProbability UnhandledProbs, 1206 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough, 1207 bool FallthroughUnreachable) { 1208 using namespace SwitchCG; 1209 MachineFunction *CurMF = SwitchMBB->getParent(); 1210 // FIXME: Optimize away range check based on pivot comparisons. 1211 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 1212 // The bit test blocks haven't been inserted yet; insert them here. 1213 for (BitTestCase &BTC : BTB->Cases) 1214 CurMF->insert(BBI, BTC.ThisBB); 1215 1216 // Fill in fields of the BitTestBlock. 1217 BTB->Parent = CurMBB; 1218 BTB->Default = Fallthrough; 1219 1220 BTB->DefaultProb = UnhandledProbs; 1221 // If the cases in bit test don't form a contiguous range, we evenly 1222 // distribute the probability on the edge to Fallthrough to two 1223 // successors of CurMBB. 1224 if (!BTB->ContiguousRange) { 1225 BTB->Prob += DefaultProb / 2; 1226 BTB->DefaultProb -= DefaultProb / 2; 1227 } 1228 1229 if (FallthroughUnreachable) 1230 BTB->FallthroughUnreachable = true; 1231 1232 // If we're in the right place, emit the bit test header right now. 1233 if (CurMBB == SwitchMBB) { 1234 emitBitTestHeader(*BTB, SwitchMBB); 1235 BTB->Emitted = true; 1236 } 1237 return true; 1238 } 1239 1240 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 1241 Value *Cond, 1242 MachineBasicBlock *SwitchMBB, 1243 MachineBasicBlock *DefaultMBB, 1244 MachineIRBuilder &MIB) { 1245 using namespace SwitchCG; 1246 MachineFunction *CurMF = FuncInfo.MF; 1247 MachineBasicBlock *NextMBB = nullptr; 1248 MachineFunction::iterator BBI(W.MBB); 1249 if (++BBI != FuncInfo.MF->end()) 1250 NextMBB = &*BBI; 1251 1252 if (EnableOpts) { 1253 // Here, we order cases by probability so the most likely case will be 1254 // checked first. However, two clusters can have the same probability in 1255 // which case their relative ordering is non-deterministic. So we use Low 1256 // as a tie-breaker as clusters are guaranteed to never overlap. 1257 llvm::sort(W.FirstCluster, W.LastCluster + 1, 1258 [](const CaseCluster &a, const CaseCluster &b) { 1259 return a.Prob != b.Prob 1260 ? a.Prob > b.Prob 1261 : a.Low->getValue().slt(b.Low->getValue()); 1262 }); 1263 1264 // Rearrange the case blocks so that the last one falls through if possible 1265 // without changing the order of probabilities. 1266 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 1267 --I; 1268 if (I->Prob > W.LastCluster->Prob) 1269 break; 1270 if (I->Kind == CC_Range && I->MBB == NextMBB) { 1271 std::swap(*I, *W.LastCluster); 1272 break; 1273 } 1274 } 1275 } 1276 1277 // Compute total probability. 1278 BranchProbability DefaultProb = W.DefaultProb; 1279 BranchProbability UnhandledProbs = DefaultProb; 1280 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 1281 UnhandledProbs += I->Prob; 1282 1283 MachineBasicBlock *CurMBB = W.MBB; 1284 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 1285 bool FallthroughUnreachable = false; 1286 MachineBasicBlock *Fallthrough; 1287 if (I == W.LastCluster) { 1288 // For the last cluster, fall through to the default destination. 1289 Fallthrough = DefaultMBB; 1290 FallthroughUnreachable = isa<UnreachableInst>( 1291 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 1292 } else { 1293 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 1294 CurMF->insert(BBI, Fallthrough); 1295 } 1296 UnhandledProbs -= I->Prob; 1297 1298 switch (I->Kind) { 1299 case CC_BitTests: { 1300 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1301 DefaultProb, UnhandledProbs, I, Fallthrough, 1302 FallthroughUnreachable)) { 1303 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch"); 1304 return false; 1305 } 1306 break; 1307 } 1308 1309 case CC_JumpTable: { 1310 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1311 UnhandledProbs, I, Fallthrough, 1312 FallthroughUnreachable)) { 1313 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 1314 return false; 1315 } 1316 break; 1317 } 1318 case CC_Range: { 1319 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 1320 FallthroughUnreachable, UnhandledProbs, 1321 CurMBB, MIB, SwitchMBB)) { 1322 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 1323 return false; 1324 } 1325 break; 1326 } 1327 } 1328 CurMBB = Fallthrough; 1329 } 1330 1331 return true; 1332 } 1333 1334 bool IRTranslator::translateIndirectBr(const User &U, 1335 MachineIRBuilder &MIRBuilder) { 1336 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 1337 1338 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 1339 MIRBuilder.buildBrIndirect(Tgt); 1340 1341 // Link successors. 1342 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 1343 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 1344 for (const BasicBlock *Succ : successors(&BrInst)) { 1345 // It's legal for indirectbr instructions to have duplicate blocks in the 1346 // destination list. We don't allow this in MIR. Skip anything that's 1347 // already a successor. 1348 if (!AddedSuccessors.insert(Succ).second) 1349 continue; 1350 CurBB.addSuccessor(&getMBB(*Succ)); 1351 } 1352 1353 return true; 1354 } 1355 1356 static bool isSwiftError(const Value *V) { 1357 if (auto Arg = dyn_cast<Argument>(V)) 1358 return Arg->hasSwiftErrorAttr(); 1359 if (auto AI = dyn_cast<AllocaInst>(V)) 1360 return AI->isSwiftError(); 1361 return false; 1362 } 1363 1364 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 1365 const LoadInst &LI = cast<LoadInst>(U); 1366 1367 unsigned StoreSize = DL->getTypeStoreSize(LI.getType()); 1368 if (StoreSize == 0) 1369 return true; 1370 1371 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 1372 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 1373 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 1374 AAMDNodes AAInfo = LI.getAAMetadata(); 1375 1376 const Value *Ptr = LI.getPointerOperand(); 1377 Type *OffsetIRTy = DL->getIndexType(Ptr->getType()); 1378 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1379 1380 if (CLI->supportSwiftError() && isSwiftError(Ptr)) { 1381 assert(Regs.size() == 1 && "swifterror should be single pointer"); 1382 Register VReg = 1383 SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), Ptr); 1384 MIRBuilder.buildCopy(Regs[0], VReg); 1385 return true; 1386 } 1387 1388 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1389 MachineMemOperand::Flags Flags = 1390 TLI.getLoadMemOperandFlags(LI, *DL, AC, LibInfo); 1391 if (AA && !(Flags & MachineMemOperand::MOInvariant)) { 1392 if (AA->pointsToConstantMemory( 1393 MemoryLocation(Ptr, LocationSize::precise(StoreSize), AAInfo))) { 1394 Flags |= MachineMemOperand::MOInvariant; 1395 } 1396 } 1397 1398 const MDNode *Ranges = 1399 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 1400 for (unsigned i = 0; i < Regs.size(); ++i) { 1401 Register Addr; 1402 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1403 1404 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 1405 Align BaseAlign = getMemOpAlign(LI); 1406 auto MMO = MF->getMachineMemOperand( 1407 Ptr, Flags, MRI->getType(Regs[i]), 1408 commonAlignment(BaseAlign, Offsets[i] / 8), AAInfo, Ranges, 1409 LI.getSyncScopeID(), LI.getOrdering()); 1410 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 1411 } 1412 1413 return true; 1414 } 1415 1416 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 1417 const StoreInst &SI = cast<StoreInst>(U); 1418 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 1419 return true; 1420 1421 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 1422 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 1423 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 1424 1425 Type *OffsetIRTy = DL->getIndexType(SI.getPointerOperandType()); 1426 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1427 1428 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 1429 assert(Vals.size() == 1 && "swifterror should be single pointer"); 1430 1431 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 1432 SI.getPointerOperand()); 1433 MIRBuilder.buildCopy(VReg, Vals[0]); 1434 return true; 1435 } 1436 1437 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1438 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 1439 1440 for (unsigned i = 0; i < Vals.size(); ++i) { 1441 Register Addr; 1442 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1443 1444 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 1445 Align BaseAlign = getMemOpAlign(SI); 1446 auto MMO = MF->getMachineMemOperand( 1447 Ptr, Flags, MRI->getType(Vals[i]), 1448 commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr, 1449 SI.getSyncScopeID(), SI.getOrdering()); 1450 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 1451 } 1452 return true; 1453 } 1454 1455 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 1456 const Value *Src = U.getOperand(0); 1457 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 1458 1459 // getIndexedOffsetInType is designed for GEPs, so the first index is the 1460 // usual array element rather than looking into the actual aggregate. 1461 SmallVector<Value *, 1> Indices; 1462 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 1463 1464 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 1465 for (auto Idx : EVI->indices()) 1466 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1467 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 1468 for (auto Idx : IVI->indices()) 1469 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1470 } else { 1471 for (unsigned i = 1; i < U.getNumOperands(); ++i) 1472 Indices.push_back(U.getOperand(i)); 1473 } 1474 1475 return 8 * static_cast<uint64_t>( 1476 DL.getIndexedOffsetInType(Src->getType(), Indices)); 1477 } 1478 1479 bool IRTranslator::translateExtractValue(const User &U, 1480 MachineIRBuilder &MIRBuilder) { 1481 const Value *Src = U.getOperand(0); 1482 uint64_t Offset = getOffsetFromIndices(U, *DL); 1483 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1484 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 1485 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 1486 auto &DstRegs = allocateVRegs(U); 1487 1488 for (unsigned i = 0; i < DstRegs.size(); ++i) 1489 DstRegs[i] = SrcRegs[Idx++]; 1490 1491 return true; 1492 } 1493 1494 bool IRTranslator::translateInsertValue(const User &U, 1495 MachineIRBuilder &MIRBuilder) { 1496 const Value *Src = U.getOperand(0); 1497 uint64_t Offset = getOffsetFromIndices(U, *DL); 1498 auto &DstRegs = allocateVRegs(U); 1499 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 1500 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1501 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 1502 auto *InsertedIt = InsertedRegs.begin(); 1503 1504 for (unsigned i = 0; i < DstRegs.size(); ++i) { 1505 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 1506 DstRegs[i] = *InsertedIt++; 1507 else 1508 DstRegs[i] = SrcRegs[i]; 1509 } 1510 1511 return true; 1512 } 1513 1514 bool IRTranslator::translateSelect(const User &U, 1515 MachineIRBuilder &MIRBuilder) { 1516 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1517 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1518 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1519 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1520 1521 uint32_t Flags = 0; 1522 if (const SelectInst *SI = dyn_cast<SelectInst>(&U)) 1523 Flags = MachineInstr::copyFlagsFromInstruction(*SI); 1524 1525 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1526 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1527 } 1528 1529 return true; 1530 } 1531 1532 bool IRTranslator::translateCopy(const User &U, const Value &V, 1533 MachineIRBuilder &MIRBuilder) { 1534 Register Src = getOrCreateVReg(V); 1535 auto &Regs = *VMap.getVRegs(U); 1536 if (Regs.empty()) { 1537 Regs.push_back(Src); 1538 VMap.getOffsets(U)->push_back(0); 1539 } else { 1540 // If we already assigned a vreg for this instruction, we can't change that. 1541 // Emit a copy to satisfy the users we already emitted. 1542 MIRBuilder.buildCopy(Regs[0], Src); 1543 } 1544 return true; 1545 } 1546 1547 bool IRTranslator::translateBitCast(const User &U, 1548 MachineIRBuilder &MIRBuilder) { 1549 // If we're bitcasting to the source type, we can reuse the source vreg. 1550 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1551 getLLTForType(*U.getType(), *DL)) { 1552 // If the source is a ConstantInt then it was probably created by 1553 // ConstantHoisting and we should leave it alone. 1554 if (isa<ConstantInt>(U.getOperand(0))) 1555 return translateCast(TargetOpcode::G_CONSTANT_FOLD_BARRIER, U, 1556 MIRBuilder); 1557 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1558 } 1559 1560 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1561 } 1562 1563 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1564 MachineIRBuilder &MIRBuilder) { 1565 if (U.getType()->getScalarType()->isBFloatTy() || 1566 U.getOperand(0)->getType()->getScalarType()->isBFloatTy()) 1567 return false; 1568 Register Op = getOrCreateVReg(*U.getOperand(0)); 1569 Register Res = getOrCreateVReg(U); 1570 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1571 return true; 1572 } 1573 1574 bool IRTranslator::translateGetElementPtr(const User &U, 1575 MachineIRBuilder &MIRBuilder) { 1576 Value &Op0 = *U.getOperand(0); 1577 Register BaseReg = getOrCreateVReg(Op0); 1578 Type *PtrIRTy = Op0.getType(); 1579 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1580 Type *OffsetIRTy = DL->getIndexType(PtrIRTy); 1581 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1582 1583 uint32_t Flags = 0; 1584 if (isa<Instruction>(U)) { 1585 const Instruction &I = cast<Instruction>(U); 1586 Flags = MachineInstr::copyFlagsFromInstruction(I); 1587 } 1588 1589 // Normalize Vector GEP - all scalar operands should be converted to the 1590 // splat vector. 1591 unsigned VectorWidth = 0; 1592 1593 // True if we should use a splat vector; using VectorWidth alone is not 1594 // sufficient. 1595 bool WantSplatVector = false; 1596 if (auto *VT = dyn_cast<VectorType>(U.getType())) { 1597 VectorWidth = cast<FixedVectorType>(VT)->getNumElements(); 1598 // We don't produce 1 x N vectors; those are treated as scalars. 1599 WantSplatVector = VectorWidth > 1; 1600 } 1601 1602 // We might need to splat the base pointer into a vector if the offsets 1603 // are vectors. 1604 if (WantSplatVector && !PtrTy.isVector()) { 1605 BaseReg = 1606 MIRBuilder 1607 .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg) 1608 .getReg(0); 1609 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth); 1610 PtrTy = getLLTForType(*PtrIRTy, *DL); 1611 OffsetIRTy = DL->getIndexType(PtrIRTy); 1612 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1613 } 1614 1615 int64_t Offset = 0; 1616 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1617 GTI != E; ++GTI) { 1618 const Value *Idx = GTI.getOperand(); 1619 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1620 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1621 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1622 continue; 1623 } else { 1624 uint64_t ElementSize = GTI.getSequentialElementStride(*DL); 1625 1626 // If this is a scalar constant or a splat vector of constants, 1627 // handle it quickly. 1628 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1629 if (std::optional<int64_t> Val = CI->getValue().trySExtValue()) { 1630 Offset += ElementSize * *Val; 1631 continue; 1632 } 1633 } 1634 1635 if (Offset != 0) { 1636 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1637 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1638 .getReg(0); 1639 Offset = 0; 1640 } 1641 1642 Register IdxReg = getOrCreateVReg(*Idx); 1643 LLT IdxTy = MRI->getType(IdxReg); 1644 if (IdxTy != OffsetTy) { 1645 if (!IdxTy.isVector() && WantSplatVector) { 1646 IdxReg = MIRBuilder.buildSplatVector( 1647 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1648 } 1649 1650 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1651 } 1652 1653 // N = N + Idx * ElementSize; 1654 // Avoid doing it for ElementSize of 1. 1655 Register GepOffsetReg; 1656 if (ElementSize != 1) { 1657 auto ElementSizeMIB = MIRBuilder.buildConstant( 1658 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1659 GepOffsetReg = 1660 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1661 } else 1662 GepOffsetReg = IdxReg; 1663 1664 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1665 } 1666 } 1667 1668 if (Offset != 0) { 1669 auto OffsetMIB = 1670 MIRBuilder.buildConstant(OffsetTy, Offset); 1671 1672 if (int64_t(Offset) >= 0 && cast<GEPOperator>(U).isInBounds()) 1673 Flags |= MachineInstr::MIFlag::NoUWrap; 1674 1675 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0), 1676 Flags); 1677 return true; 1678 } 1679 1680 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1681 return true; 1682 } 1683 1684 bool IRTranslator::translateMemFunc(const CallInst &CI, 1685 MachineIRBuilder &MIRBuilder, 1686 unsigned Opcode) { 1687 const Value *SrcPtr = CI.getArgOperand(1); 1688 // If the source is undef, then just emit a nop. 1689 if (isa<UndefValue>(SrcPtr)) 1690 return true; 1691 1692 SmallVector<Register, 3> SrcRegs; 1693 1694 unsigned MinPtrSize = UINT_MAX; 1695 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) { 1696 Register SrcReg = getOrCreateVReg(**AI); 1697 LLT SrcTy = MRI->getType(SrcReg); 1698 if (SrcTy.isPointer()) 1699 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize); 1700 SrcRegs.push_back(SrcReg); 1701 } 1702 1703 LLT SizeTy = LLT::scalar(MinPtrSize); 1704 1705 // The size operand should be the minimum of the pointer sizes. 1706 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1]; 1707 if (MRI->getType(SizeOpReg) != SizeTy) 1708 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0); 1709 1710 auto ICall = MIRBuilder.buildInstr(Opcode); 1711 for (Register SrcReg : SrcRegs) 1712 ICall.addUse(SrcReg); 1713 1714 Align DstAlign; 1715 Align SrcAlign; 1716 unsigned IsVol = 1717 cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue(); 1718 1719 ConstantInt *CopySize = nullptr; 1720 1721 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1722 DstAlign = MCI->getDestAlign().valueOrOne(); 1723 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1724 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2)); 1725 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) { 1726 DstAlign = MCI->getDestAlign().valueOrOne(); 1727 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1728 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2)); 1729 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1730 DstAlign = MMI->getDestAlign().valueOrOne(); 1731 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1732 CopySize = dyn_cast<ConstantInt>(MMI->getArgOperand(2)); 1733 } else { 1734 auto *MSI = cast<MemSetInst>(&CI); 1735 DstAlign = MSI->getDestAlign().valueOrOne(); 1736 } 1737 1738 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) { 1739 // We need to propagate the tail call flag from the IR inst as an argument. 1740 // Otherwise, we have to pessimize and assume later that we cannot tail call 1741 // any memory intrinsics. 1742 ICall.addImm(CI.isTailCall() ? 1 : 0); 1743 } 1744 1745 // Create mem operands to store the alignment and volatile info. 1746 MachineMemOperand::Flags LoadFlags = MachineMemOperand::MOLoad; 1747 MachineMemOperand::Flags StoreFlags = MachineMemOperand::MOStore; 1748 if (IsVol) { 1749 LoadFlags |= MachineMemOperand::MOVolatile; 1750 StoreFlags |= MachineMemOperand::MOVolatile; 1751 } 1752 1753 AAMDNodes AAInfo = CI.getAAMetadata(); 1754 if (AA && CopySize && 1755 AA->pointsToConstantMemory(MemoryLocation( 1756 SrcPtr, LocationSize::precise(CopySize->getZExtValue()), AAInfo))) { 1757 LoadFlags |= MachineMemOperand::MOInvariant; 1758 1759 // FIXME: pointsToConstantMemory probably does not imply dereferenceable, 1760 // but the previous usage implied it did. Probably should check 1761 // isDereferenceableAndAlignedPointer. 1762 LoadFlags |= MachineMemOperand::MODereferenceable; 1763 } 1764 1765 ICall.addMemOperand( 1766 MF->getMachineMemOperand(MachinePointerInfo(CI.getArgOperand(0)), 1767 StoreFlags, 1, DstAlign, AAInfo)); 1768 if (Opcode != TargetOpcode::G_MEMSET) 1769 ICall.addMemOperand(MF->getMachineMemOperand( 1770 MachinePointerInfo(SrcPtr), LoadFlags, 1, SrcAlign, AAInfo)); 1771 1772 return true; 1773 } 1774 1775 void IRTranslator::getStackGuard(Register DstReg, 1776 MachineIRBuilder &MIRBuilder) { 1777 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1778 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1779 auto MIB = 1780 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1781 1782 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1783 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1784 if (!Global) 1785 return; 1786 1787 unsigned AddrSpace = Global->getType()->getPointerAddressSpace(); 1788 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace)); 1789 1790 MachinePointerInfo MPInfo(Global); 1791 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1792 MachineMemOperand::MODereferenceable; 1793 MachineMemOperand *MemRef = MF->getMachineMemOperand( 1794 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace)); 1795 MIB.setMemRefs({MemRef}); 1796 } 1797 1798 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1799 MachineIRBuilder &MIRBuilder) { 1800 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1801 MIRBuilder.buildInstr( 1802 Op, {ResRegs[0], ResRegs[1]}, 1803 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1804 1805 return true; 1806 } 1807 1808 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI, 1809 MachineIRBuilder &MIRBuilder) { 1810 Register Dst = getOrCreateVReg(CI); 1811 Register Src0 = getOrCreateVReg(*CI.getOperand(0)); 1812 Register Src1 = getOrCreateVReg(*CI.getOperand(1)); 1813 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 1814 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale }); 1815 return true; 1816 } 1817 1818 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1819 switch (ID) { 1820 default: 1821 break; 1822 case Intrinsic::bswap: 1823 return TargetOpcode::G_BSWAP; 1824 case Intrinsic::bitreverse: 1825 return TargetOpcode::G_BITREVERSE; 1826 case Intrinsic::fshl: 1827 return TargetOpcode::G_FSHL; 1828 case Intrinsic::fshr: 1829 return TargetOpcode::G_FSHR; 1830 case Intrinsic::ceil: 1831 return TargetOpcode::G_FCEIL; 1832 case Intrinsic::cos: 1833 return TargetOpcode::G_FCOS; 1834 case Intrinsic::ctpop: 1835 return TargetOpcode::G_CTPOP; 1836 case Intrinsic::exp: 1837 return TargetOpcode::G_FEXP; 1838 case Intrinsic::exp2: 1839 return TargetOpcode::G_FEXP2; 1840 case Intrinsic::exp10: 1841 return TargetOpcode::G_FEXP10; 1842 case Intrinsic::fabs: 1843 return TargetOpcode::G_FABS; 1844 case Intrinsic::copysign: 1845 return TargetOpcode::G_FCOPYSIGN; 1846 case Intrinsic::minnum: 1847 return TargetOpcode::G_FMINNUM; 1848 case Intrinsic::maxnum: 1849 return TargetOpcode::G_FMAXNUM; 1850 case Intrinsic::minimum: 1851 return TargetOpcode::G_FMINIMUM; 1852 case Intrinsic::maximum: 1853 return TargetOpcode::G_FMAXIMUM; 1854 case Intrinsic::canonicalize: 1855 return TargetOpcode::G_FCANONICALIZE; 1856 case Intrinsic::floor: 1857 return TargetOpcode::G_FFLOOR; 1858 case Intrinsic::fma: 1859 return TargetOpcode::G_FMA; 1860 case Intrinsic::log: 1861 return TargetOpcode::G_FLOG; 1862 case Intrinsic::log2: 1863 return TargetOpcode::G_FLOG2; 1864 case Intrinsic::log10: 1865 return TargetOpcode::G_FLOG10; 1866 case Intrinsic::ldexp: 1867 return TargetOpcode::G_FLDEXP; 1868 case Intrinsic::nearbyint: 1869 return TargetOpcode::G_FNEARBYINT; 1870 case Intrinsic::pow: 1871 return TargetOpcode::G_FPOW; 1872 case Intrinsic::powi: 1873 return TargetOpcode::G_FPOWI; 1874 case Intrinsic::rint: 1875 return TargetOpcode::G_FRINT; 1876 case Intrinsic::round: 1877 return TargetOpcode::G_INTRINSIC_ROUND; 1878 case Intrinsic::roundeven: 1879 return TargetOpcode::G_INTRINSIC_ROUNDEVEN; 1880 case Intrinsic::sin: 1881 return TargetOpcode::G_FSIN; 1882 case Intrinsic::sqrt: 1883 return TargetOpcode::G_FSQRT; 1884 case Intrinsic::trunc: 1885 return TargetOpcode::G_INTRINSIC_TRUNC; 1886 case Intrinsic::readcyclecounter: 1887 return TargetOpcode::G_READCYCLECOUNTER; 1888 case Intrinsic::ptrmask: 1889 return TargetOpcode::G_PTRMASK; 1890 case Intrinsic::lrint: 1891 return TargetOpcode::G_INTRINSIC_LRINT; 1892 // FADD/FMUL require checking the FMF, so are handled elsewhere. 1893 case Intrinsic::vector_reduce_fmin: 1894 return TargetOpcode::G_VECREDUCE_FMIN; 1895 case Intrinsic::vector_reduce_fmax: 1896 return TargetOpcode::G_VECREDUCE_FMAX; 1897 case Intrinsic::vector_reduce_fminimum: 1898 return TargetOpcode::G_VECREDUCE_FMINIMUM; 1899 case Intrinsic::vector_reduce_fmaximum: 1900 return TargetOpcode::G_VECREDUCE_FMAXIMUM; 1901 case Intrinsic::vector_reduce_add: 1902 return TargetOpcode::G_VECREDUCE_ADD; 1903 case Intrinsic::vector_reduce_mul: 1904 return TargetOpcode::G_VECREDUCE_MUL; 1905 case Intrinsic::vector_reduce_and: 1906 return TargetOpcode::G_VECREDUCE_AND; 1907 case Intrinsic::vector_reduce_or: 1908 return TargetOpcode::G_VECREDUCE_OR; 1909 case Intrinsic::vector_reduce_xor: 1910 return TargetOpcode::G_VECREDUCE_XOR; 1911 case Intrinsic::vector_reduce_smax: 1912 return TargetOpcode::G_VECREDUCE_SMAX; 1913 case Intrinsic::vector_reduce_smin: 1914 return TargetOpcode::G_VECREDUCE_SMIN; 1915 case Intrinsic::vector_reduce_umax: 1916 return TargetOpcode::G_VECREDUCE_UMAX; 1917 case Intrinsic::vector_reduce_umin: 1918 return TargetOpcode::G_VECREDUCE_UMIN; 1919 case Intrinsic::lround: 1920 return TargetOpcode::G_LROUND; 1921 case Intrinsic::llround: 1922 return TargetOpcode::G_LLROUND; 1923 case Intrinsic::get_fpenv: 1924 return TargetOpcode::G_GET_FPENV; 1925 case Intrinsic::get_fpmode: 1926 return TargetOpcode::G_GET_FPMODE; 1927 } 1928 return Intrinsic::not_intrinsic; 1929 } 1930 1931 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1932 Intrinsic::ID ID, 1933 MachineIRBuilder &MIRBuilder) { 1934 1935 unsigned Op = getSimpleIntrinsicOpcode(ID); 1936 1937 // Is this a simple intrinsic? 1938 if (Op == Intrinsic::not_intrinsic) 1939 return false; 1940 1941 // Yes. Let's translate it. 1942 SmallVector<llvm::SrcOp, 4> VRegs; 1943 for (const auto &Arg : CI.args()) 1944 VRegs.push_back(getOrCreateVReg(*Arg)); 1945 1946 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1947 MachineInstr::copyFlagsFromInstruction(CI)); 1948 return true; 1949 } 1950 1951 // TODO: Include ConstainedOps.def when all strict instructions are defined. 1952 static unsigned getConstrainedOpcode(Intrinsic::ID ID) { 1953 switch (ID) { 1954 case Intrinsic::experimental_constrained_fadd: 1955 return TargetOpcode::G_STRICT_FADD; 1956 case Intrinsic::experimental_constrained_fsub: 1957 return TargetOpcode::G_STRICT_FSUB; 1958 case Intrinsic::experimental_constrained_fmul: 1959 return TargetOpcode::G_STRICT_FMUL; 1960 case Intrinsic::experimental_constrained_fdiv: 1961 return TargetOpcode::G_STRICT_FDIV; 1962 case Intrinsic::experimental_constrained_frem: 1963 return TargetOpcode::G_STRICT_FREM; 1964 case Intrinsic::experimental_constrained_fma: 1965 return TargetOpcode::G_STRICT_FMA; 1966 case Intrinsic::experimental_constrained_sqrt: 1967 return TargetOpcode::G_STRICT_FSQRT; 1968 case Intrinsic::experimental_constrained_ldexp: 1969 return TargetOpcode::G_STRICT_FLDEXP; 1970 default: 1971 return 0; 1972 } 1973 } 1974 1975 bool IRTranslator::translateConstrainedFPIntrinsic( 1976 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) { 1977 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 1978 1979 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID()); 1980 if (!Opcode) 1981 return false; 1982 1983 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(FPI); 1984 if (EB == fp::ExceptionBehavior::ebIgnore) 1985 Flags |= MachineInstr::NoFPExcept; 1986 1987 SmallVector<llvm::SrcOp, 4> VRegs; 1988 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0))); 1989 if (!FPI.isUnaryOp()) 1990 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1))); 1991 if (FPI.isTernaryOp()) 1992 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2))); 1993 1994 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags); 1995 return true; 1996 } 1997 1998 std::optional<MCRegister> IRTranslator::getArgPhysReg(Argument &Arg) { 1999 auto VRegs = getOrCreateVRegs(Arg); 2000 if (VRegs.size() != 1) 2001 return std::nullopt; 2002 2003 // Arguments are lowered as a copy of a livein physical register. 2004 auto *VRegDef = MF->getRegInfo().getVRegDef(VRegs[0]); 2005 if (!VRegDef || !VRegDef->isCopy()) 2006 return std::nullopt; 2007 return VRegDef->getOperand(1).getReg().asMCReg(); 2008 } 2009 2010 bool IRTranslator::translateIfEntryValueArgument(bool isDeclare, Value *Val, 2011 const DILocalVariable *Var, 2012 const DIExpression *Expr, 2013 const DebugLoc &DL, 2014 MachineIRBuilder &MIRBuilder) { 2015 auto *Arg = dyn_cast<Argument>(Val); 2016 if (!Arg) 2017 return false; 2018 2019 if (!Expr->isEntryValue()) 2020 return false; 2021 2022 std::optional<MCRegister> PhysReg = getArgPhysReg(*Arg); 2023 if (!PhysReg) { 2024 LLVM_DEBUG(dbgs() << "Dropping dbg." << (isDeclare ? "declare" : "value") 2025 << ": expression is entry_value but " 2026 << "couldn't find a physical register\n"); 2027 LLVM_DEBUG(dbgs() << *Var << "\n"); 2028 return true; 2029 } 2030 2031 if (isDeclare) { 2032 // Append an op deref to account for the fact that this is a dbg_declare. 2033 Expr = DIExpression::append(Expr, dwarf::DW_OP_deref); 2034 MF->setVariableDbgInfo(Var, Expr, *PhysReg, DL); 2035 } else { 2036 MIRBuilder.buildDirectDbgValue(*PhysReg, Var, Expr); 2037 } 2038 2039 return true; 2040 } 2041 2042 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 2043 MachineIRBuilder &MIRBuilder) { 2044 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) { 2045 if (ORE->enabled()) { 2046 if (MemoryOpRemark::canHandle(MI, *LibInfo)) { 2047 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo); 2048 R.visit(MI); 2049 } 2050 } 2051 } 2052 2053 // If this is a simple intrinsic (that is, we just need to add a def of 2054 // a vreg, and uses for each arg operand, then translate it. 2055 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 2056 return true; 2057 2058 switch (ID) { 2059 default: 2060 break; 2061 case Intrinsic::lifetime_start: 2062 case Intrinsic::lifetime_end: { 2063 // No stack colouring in O0, discard region information. 2064 if (MF->getTarget().getOptLevel() == CodeGenOptLevel::None) 2065 return true; 2066 2067 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 2068 : TargetOpcode::LIFETIME_END; 2069 2070 // Get the underlying objects for the location passed on the lifetime 2071 // marker. 2072 SmallVector<const Value *, 4> Allocas; 2073 getUnderlyingObjects(CI.getArgOperand(1), Allocas); 2074 2075 // Iterate over each underlying object, creating lifetime markers for each 2076 // static alloca. Quit if we find a non-static alloca. 2077 for (const Value *V : Allocas) { 2078 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 2079 if (!AI) 2080 continue; 2081 2082 if (!AI->isStaticAlloca()) 2083 return true; 2084 2085 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 2086 } 2087 return true; 2088 } 2089 case Intrinsic::dbg_declare: { 2090 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 2091 assert(DI.getVariable() && "Missing variable"); 2092 translateDbgDeclareRecord(DI.getAddress(), DI.hasArgList(), DI.getVariable(), 2093 DI.getExpression(), DI.getDebugLoc(), MIRBuilder); 2094 return true; 2095 } 2096 case Intrinsic::dbg_label: { 2097 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 2098 assert(DI.getLabel() && "Missing label"); 2099 2100 assert(DI.getLabel()->isValidLocationForIntrinsic( 2101 MIRBuilder.getDebugLoc()) && 2102 "Expected inlined-at fields to agree"); 2103 2104 MIRBuilder.buildDbgLabel(DI.getLabel()); 2105 return true; 2106 } 2107 case Intrinsic::vaend: 2108 // No target I know of cares about va_end. Certainly no in-tree target 2109 // does. Simplest intrinsic ever! 2110 return true; 2111 case Intrinsic::vastart: { 2112 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2113 Value *Ptr = CI.getArgOperand(0); 2114 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 2115 Align Alignment = getKnownAlignment(Ptr, *DL); 2116 2117 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 2118 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 2119 MachineMemOperand::MOStore, 2120 ListSize, Alignment)); 2121 return true; 2122 } 2123 case Intrinsic::dbg_value: { 2124 // This form of DBG_VALUE is target-independent. 2125 const DbgValueInst &DI = cast<DbgValueInst>(CI); 2126 translateDbgValueRecord(DI.getValue(), DI.hasArgList(), DI.getVariable(), 2127 DI.getExpression(), DI.getDebugLoc(), MIRBuilder); 2128 return true; 2129 } 2130 case Intrinsic::uadd_with_overflow: 2131 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 2132 case Intrinsic::sadd_with_overflow: 2133 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 2134 case Intrinsic::usub_with_overflow: 2135 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 2136 case Intrinsic::ssub_with_overflow: 2137 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 2138 case Intrinsic::umul_with_overflow: 2139 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 2140 case Intrinsic::smul_with_overflow: 2141 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 2142 case Intrinsic::uadd_sat: 2143 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 2144 case Intrinsic::sadd_sat: 2145 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 2146 case Intrinsic::usub_sat: 2147 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 2148 case Intrinsic::ssub_sat: 2149 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 2150 case Intrinsic::ushl_sat: 2151 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder); 2152 case Intrinsic::sshl_sat: 2153 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder); 2154 case Intrinsic::umin: 2155 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder); 2156 case Intrinsic::umax: 2157 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder); 2158 case Intrinsic::smin: 2159 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder); 2160 case Intrinsic::smax: 2161 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder); 2162 case Intrinsic::abs: 2163 // TODO: Preserve "int min is poison" arg in GMIR? 2164 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder); 2165 case Intrinsic::smul_fix: 2166 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder); 2167 case Intrinsic::umul_fix: 2168 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder); 2169 case Intrinsic::smul_fix_sat: 2170 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder); 2171 case Intrinsic::umul_fix_sat: 2172 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder); 2173 case Intrinsic::sdiv_fix: 2174 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder); 2175 case Intrinsic::udiv_fix: 2176 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder); 2177 case Intrinsic::sdiv_fix_sat: 2178 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder); 2179 case Intrinsic::udiv_fix_sat: 2180 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder); 2181 case Intrinsic::fmuladd: { 2182 const TargetMachine &TM = MF->getTarget(); 2183 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2184 Register Dst = getOrCreateVReg(CI); 2185 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 2186 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 2187 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 2188 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 2189 TLI.isFMAFasterThanFMulAndFAdd(*MF, 2190 TLI.getValueType(*DL, CI.getType()))) { 2191 // TODO: Revisit this to see if we should move this part of the 2192 // lowering to the combiner. 2193 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 2194 MachineInstr::copyFlagsFromInstruction(CI)); 2195 } else { 2196 LLT Ty = getLLTForType(*CI.getType(), *DL); 2197 auto FMul = MIRBuilder.buildFMul( 2198 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 2199 MIRBuilder.buildFAdd(Dst, FMul, Op2, 2200 MachineInstr::copyFlagsFromInstruction(CI)); 2201 } 2202 return true; 2203 } 2204 case Intrinsic::convert_from_fp16: 2205 // FIXME: This intrinsic should probably be removed from the IR. 2206 MIRBuilder.buildFPExt(getOrCreateVReg(CI), 2207 getOrCreateVReg(*CI.getArgOperand(0)), 2208 MachineInstr::copyFlagsFromInstruction(CI)); 2209 return true; 2210 case Intrinsic::convert_to_fp16: 2211 // FIXME: This intrinsic should probably be removed from the IR. 2212 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI), 2213 getOrCreateVReg(*CI.getArgOperand(0)), 2214 MachineInstr::copyFlagsFromInstruction(CI)); 2215 return true; 2216 case Intrinsic::frexp: { 2217 ArrayRef<Register> VRegs = getOrCreateVRegs(CI); 2218 MIRBuilder.buildFFrexp(VRegs[0], VRegs[1], 2219 getOrCreateVReg(*CI.getArgOperand(0)), 2220 MachineInstr::copyFlagsFromInstruction(CI)); 2221 return true; 2222 } 2223 case Intrinsic::memcpy_inline: 2224 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE); 2225 case Intrinsic::memcpy: 2226 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY); 2227 case Intrinsic::memmove: 2228 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE); 2229 case Intrinsic::memset: 2230 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET); 2231 case Intrinsic::eh_typeid_for: { 2232 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 2233 Register Reg = getOrCreateVReg(CI); 2234 unsigned TypeID = MF->getTypeIDFor(GV); 2235 MIRBuilder.buildConstant(Reg, TypeID); 2236 return true; 2237 } 2238 case Intrinsic::objectsize: 2239 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2240 2241 case Intrinsic::is_constant: 2242 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2243 2244 case Intrinsic::stackguard: 2245 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 2246 return true; 2247 case Intrinsic::stackprotector: { 2248 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2249 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2250 Register GuardVal; 2251 if (TLI.useLoadStackGuardNode()) { 2252 GuardVal = MRI->createGenericVirtualRegister(PtrTy); 2253 getStackGuard(GuardVal, MIRBuilder); 2254 } else 2255 GuardVal = getOrCreateVReg(*CI.getArgOperand(0)); // The guard's value. 2256 2257 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 2258 int FI = getOrCreateFrameIndex(*Slot); 2259 MF->getFrameInfo().setStackProtectorIndex(FI); 2260 2261 MIRBuilder.buildStore( 2262 GuardVal, getOrCreateVReg(*Slot), 2263 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 2264 MachineMemOperand::MOStore | 2265 MachineMemOperand::MOVolatile, 2266 PtrTy, Align(8))); 2267 return true; 2268 } 2269 case Intrinsic::stacksave: { 2270 MIRBuilder.buildInstr(TargetOpcode::G_STACKSAVE, {getOrCreateVReg(CI)}, {}); 2271 return true; 2272 } 2273 case Intrinsic::stackrestore: { 2274 MIRBuilder.buildInstr(TargetOpcode::G_STACKRESTORE, {}, 2275 {getOrCreateVReg(*CI.getArgOperand(0))}); 2276 return true; 2277 } 2278 case Intrinsic::cttz: 2279 case Intrinsic::ctlz: { 2280 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 2281 bool isTrailing = ID == Intrinsic::cttz; 2282 unsigned Opcode = isTrailing 2283 ? Cst->isZero() ? TargetOpcode::G_CTTZ 2284 : TargetOpcode::G_CTTZ_ZERO_UNDEF 2285 : Cst->isZero() ? TargetOpcode::G_CTLZ 2286 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 2287 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 2288 {getOrCreateVReg(*CI.getArgOperand(0))}); 2289 return true; 2290 } 2291 case Intrinsic::invariant_start: { 2292 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2293 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 2294 MIRBuilder.buildUndef(Undef); 2295 return true; 2296 } 2297 case Intrinsic::invariant_end: 2298 return true; 2299 case Intrinsic::expect: 2300 case Intrinsic::annotation: 2301 case Intrinsic::ptr_annotation: 2302 case Intrinsic::launder_invariant_group: 2303 case Intrinsic::strip_invariant_group: { 2304 // Drop the intrinsic, but forward the value. 2305 MIRBuilder.buildCopy(getOrCreateVReg(CI), 2306 getOrCreateVReg(*CI.getArgOperand(0))); 2307 return true; 2308 } 2309 case Intrinsic::assume: 2310 case Intrinsic::experimental_noalias_scope_decl: 2311 case Intrinsic::var_annotation: 2312 case Intrinsic::sideeffect: 2313 // Discard annotate attributes, assumptions, and artificial side-effects. 2314 return true; 2315 case Intrinsic::read_volatile_register: 2316 case Intrinsic::read_register: { 2317 Value *Arg = CI.getArgOperand(0); 2318 MIRBuilder 2319 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 2320 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 2321 return true; 2322 } 2323 case Intrinsic::write_register: { 2324 Value *Arg = CI.getArgOperand(0); 2325 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 2326 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 2327 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 2328 return true; 2329 } 2330 case Intrinsic::localescape: { 2331 MachineBasicBlock &EntryMBB = MF->front(); 2332 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName()); 2333 2334 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 2335 // is the same on all targets. 2336 for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) { 2337 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts(); 2338 if (isa<ConstantPointerNull>(Arg)) 2339 continue; // Skip null pointers. They represent a hole in index space. 2340 2341 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg)); 2342 MCSymbol *FrameAllocSym = 2343 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName, 2344 Idx); 2345 2346 // This should be inserted at the start of the entry block. 2347 auto LocalEscape = 2348 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE) 2349 .addSym(FrameAllocSym) 2350 .addFrameIndex(FI); 2351 2352 EntryMBB.insert(EntryMBB.begin(), LocalEscape); 2353 } 2354 2355 return true; 2356 } 2357 case Intrinsic::vector_reduce_fadd: 2358 case Intrinsic::vector_reduce_fmul: { 2359 // Need to check for the reassoc flag to decide whether we want a 2360 // sequential reduction opcode or not. 2361 Register Dst = getOrCreateVReg(CI); 2362 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0)); 2363 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1)); 2364 unsigned Opc = 0; 2365 if (!CI.hasAllowReassoc()) { 2366 // The sequential ordering case. 2367 Opc = ID == Intrinsic::vector_reduce_fadd 2368 ? TargetOpcode::G_VECREDUCE_SEQ_FADD 2369 : TargetOpcode::G_VECREDUCE_SEQ_FMUL; 2370 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc}, 2371 MachineInstr::copyFlagsFromInstruction(CI)); 2372 return true; 2373 } 2374 // We split the operation into a separate G_FADD/G_FMUL + the reduce, 2375 // since the associativity doesn't matter. 2376 unsigned ScalarOpc; 2377 if (ID == Intrinsic::vector_reduce_fadd) { 2378 Opc = TargetOpcode::G_VECREDUCE_FADD; 2379 ScalarOpc = TargetOpcode::G_FADD; 2380 } else { 2381 Opc = TargetOpcode::G_VECREDUCE_FMUL; 2382 ScalarOpc = TargetOpcode::G_FMUL; 2383 } 2384 LLT DstTy = MRI->getType(Dst); 2385 auto Rdx = MIRBuilder.buildInstr( 2386 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI)); 2387 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx}, 2388 MachineInstr::copyFlagsFromInstruction(CI)); 2389 2390 return true; 2391 } 2392 case Intrinsic::trap: 2393 case Intrinsic::debugtrap: 2394 case Intrinsic::ubsantrap: { 2395 StringRef TrapFuncName = 2396 CI.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 2397 if (TrapFuncName.empty()) 2398 break; // Use the default handling. 2399 CallLowering::CallLoweringInfo Info; 2400 if (ID == Intrinsic::ubsantrap) { 2401 Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)), 2402 CI.getArgOperand(0)->getType(), 0}); 2403 } 2404 Info.Callee = MachineOperand::CreateES(TrapFuncName.data()); 2405 Info.CB = &CI; 2406 Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0}; 2407 return CLI->lowerCall(MIRBuilder, Info); 2408 } 2409 case Intrinsic::amdgcn_cs_chain: 2410 return translateCallBase(CI, MIRBuilder); 2411 case Intrinsic::fptrunc_round: { 2412 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(CI); 2413 2414 // Convert the metadata argument to a constant integer 2415 Metadata *MD = cast<MetadataAsValue>(CI.getArgOperand(1))->getMetadata(); 2416 std::optional<RoundingMode> RoundMode = 2417 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 2418 2419 // Add the Rounding mode as an integer 2420 MIRBuilder 2421 .buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND, 2422 {getOrCreateVReg(CI)}, 2423 {getOrCreateVReg(*CI.getArgOperand(0))}, Flags) 2424 .addImm((int)*RoundMode); 2425 2426 return true; 2427 } 2428 case Intrinsic::is_fpclass: { 2429 Value *FpValue = CI.getOperand(0); 2430 ConstantInt *TestMaskValue = cast<ConstantInt>(CI.getOperand(1)); 2431 2432 MIRBuilder 2433 .buildInstr(TargetOpcode::G_IS_FPCLASS, {getOrCreateVReg(CI)}, 2434 {getOrCreateVReg(*FpValue)}) 2435 .addImm(TestMaskValue->getZExtValue()); 2436 2437 return true; 2438 } 2439 case Intrinsic::set_fpenv: { 2440 Value *FPEnv = CI.getOperand(0); 2441 MIRBuilder.buildInstr(TargetOpcode::G_SET_FPENV, {}, 2442 {getOrCreateVReg(*FPEnv)}); 2443 return true; 2444 } 2445 case Intrinsic::reset_fpenv: { 2446 MIRBuilder.buildInstr(TargetOpcode::G_RESET_FPENV, {}, {}); 2447 return true; 2448 } 2449 case Intrinsic::set_fpmode: { 2450 Value *FPState = CI.getOperand(0); 2451 MIRBuilder.buildInstr(TargetOpcode::G_SET_FPMODE, {}, 2452 { getOrCreateVReg(*FPState) }); 2453 return true; 2454 } 2455 case Intrinsic::reset_fpmode: { 2456 MIRBuilder.buildInstr(TargetOpcode::G_RESET_FPMODE, {}, {}); 2457 return true; 2458 } 2459 case Intrinsic::prefetch: { 2460 Value *Addr = CI.getOperand(0); 2461 unsigned RW = cast<ConstantInt>(CI.getOperand(1))->getZExtValue(); 2462 unsigned Locality = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 2463 unsigned CacheType = cast<ConstantInt>(CI.getOperand(3))->getZExtValue(); 2464 2465 auto Flags = RW ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad; 2466 auto &MMO = *MF->getMachineMemOperand(MachinePointerInfo(Addr), Flags, 2467 LLT(), Align()); 2468 2469 MIRBuilder.buildPrefetch(getOrCreateVReg(*Addr), RW, Locality, CacheType, 2470 MMO); 2471 2472 return true; 2473 } 2474 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 2475 case Intrinsic::INTRINSIC: 2476 #include "llvm/IR/ConstrainedOps.def" 2477 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI), 2478 MIRBuilder); 2479 2480 } 2481 return false; 2482 } 2483 2484 bool IRTranslator::translateInlineAsm(const CallBase &CB, 2485 MachineIRBuilder &MIRBuilder) { 2486 2487 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 2488 2489 if (!ALI) { 2490 LLVM_DEBUG( 2491 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 2492 return false; 2493 } 2494 2495 return ALI->lowerInlineAsm( 2496 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 2497 } 2498 2499 bool IRTranslator::translateCallBase(const CallBase &CB, 2500 MachineIRBuilder &MIRBuilder) { 2501 ArrayRef<Register> Res = getOrCreateVRegs(CB); 2502 2503 SmallVector<ArrayRef<Register>, 8> Args; 2504 Register SwiftInVReg = 0; 2505 Register SwiftErrorVReg = 0; 2506 for (const auto &Arg : CB.args()) { 2507 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 2508 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 2509 LLT Ty = getLLTForType(*Arg->getType(), *DL); 2510 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 2511 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 2512 &CB, &MIRBuilder.getMBB(), Arg)); 2513 Args.emplace_back(ArrayRef(SwiftInVReg)); 2514 SwiftErrorVReg = 2515 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 2516 continue; 2517 } 2518 Args.push_back(getOrCreateVRegs(*Arg)); 2519 } 2520 2521 if (auto *CI = dyn_cast<CallInst>(&CB)) { 2522 if (ORE->enabled()) { 2523 if (MemoryOpRemark::canHandle(CI, *LibInfo)) { 2524 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo); 2525 R.visit(CI); 2526 } 2527 } 2528 } 2529 2530 // We don't set HasCalls on MFI here yet because call lowering may decide to 2531 // optimize into tail calls. Instead, we defer that to selection where a final 2532 // scan is done to check if any instructions are calls. 2533 bool Success = 2534 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg, 2535 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 2536 2537 // Check if we just inserted a tail call. 2538 if (Success) { 2539 assert(!HasTailCall && "Can't tail call return twice from block?"); 2540 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 2541 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 2542 } 2543 2544 return Success; 2545 } 2546 2547 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 2548 const CallInst &CI = cast<CallInst>(U); 2549 auto TII = MF->getTarget().getIntrinsicInfo(); 2550 const Function *F = CI.getCalledFunction(); 2551 2552 // FIXME: support Windows dllimport function calls and calls through 2553 // weak symbols. 2554 if (F && (F->hasDLLImportStorageClass() || 2555 (MF->getTarget().getTargetTriple().isOSWindows() && 2556 F->hasExternalWeakLinkage()))) 2557 return false; 2558 2559 // FIXME: support control flow guard targets. 2560 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2561 return false; 2562 2563 // FIXME: support statepoints and related. 2564 if (isa<GCStatepointInst, GCRelocateInst, GCResultInst>(U)) 2565 return false; 2566 2567 if (CI.isInlineAsm()) 2568 return translateInlineAsm(CI, MIRBuilder); 2569 2570 diagnoseDontCall(CI); 2571 2572 Intrinsic::ID ID = Intrinsic::not_intrinsic; 2573 if (F && F->isIntrinsic()) { 2574 ID = F->getIntrinsicID(); 2575 if (TII && ID == Intrinsic::not_intrinsic) 2576 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 2577 } 2578 2579 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 2580 return translateCallBase(CI, MIRBuilder); 2581 2582 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 2583 2584 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 2585 return true; 2586 2587 ArrayRef<Register> ResultRegs; 2588 if (!CI.getType()->isVoidTy()) 2589 ResultRegs = getOrCreateVRegs(CI); 2590 2591 // Ignore the callsite attributes. Backend code is most likely not expecting 2592 // an intrinsic to sometimes have side effects and sometimes not. 2593 MachineInstrBuilder MIB = MIRBuilder.buildIntrinsic(ID, ResultRegs); 2594 if (isa<FPMathOperator>(CI)) 2595 MIB->copyIRFlags(CI); 2596 2597 for (const auto &Arg : enumerate(CI.args())) { 2598 // If this is required to be an immediate, don't materialize it in a 2599 // register. 2600 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 2601 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 2602 // imm arguments are more convenient than cimm (and realistically 2603 // probably sufficient), so use them. 2604 assert(CI->getBitWidth() <= 64 && 2605 "large intrinsic immediates not handled"); 2606 MIB.addImm(CI->getSExtValue()); 2607 } else { 2608 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 2609 } 2610 } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) { 2611 auto *MD = MDVal->getMetadata(); 2612 auto *MDN = dyn_cast<MDNode>(MD); 2613 if (!MDN) { 2614 if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD)) 2615 MDN = MDNode::get(MF->getFunction().getContext(), ConstMD); 2616 else // This was probably an MDString. 2617 return false; 2618 } 2619 MIB.addMetadata(MDN); 2620 } else { 2621 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 2622 if (VRegs.size() > 1) 2623 return false; 2624 MIB.addUse(VRegs[0]); 2625 } 2626 } 2627 2628 // Add a MachineMemOperand if it is a target mem intrinsic. 2629 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2630 TargetLowering::IntrinsicInfo Info; 2631 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 2632 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 2633 Align Alignment = Info.align.value_or( 2634 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 2635 LLT MemTy = Info.memVT.isSimple() 2636 ? getLLTForMVT(Info.memVT.getSimpleVT()) 2637 : LLT::scalar(Info.memVT.getStoreSizeInBits()); 2638 2639 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 2640 // didn't yield anything useful. 2641 MachinePointerInfo MPI; 2642 if (Info.ptrVal) 2643 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 2644 else if (Info.fallbackAddressSpace) 2645 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 2646 MIB.addMemOperand( 2647 MF->getMachineMemOperand(MPI, Info.flags, MemTy, Alignment, CI.getAAMetadata())); 2648 } 2649 2650 return true; 2651 } 2652 2653 bool IRTranslator::findUnwindDestinations( 2654 const BasicBlock *EHPadBB, 2655 BranchProbability Prob, 2656 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2657 &UnwindDests) { 2658 EHPersonality Personality = classifyEHPersonality( 2659 EHPadBB->getParent()->getFunction().getPersonalityFn()); 2660 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2661 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2662 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2663 bool IsSEH = isAsynchronousEHPersonality(Personality); 2664 2665 if (IsWasmCXX) { 2666 // Ignore this for now. 2667 return false; 2668 } 2669 2670 while (EHPadBB) { 2671 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2672 BasicBlock *NewEHPadBB = nullptr; 2673 if (isa<LandingPadInst>(Pad)) { 2674 // Stop on landingpads. They are not funclets. 2675 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2676 break; 2677 } 2678 if (isa<CleanupPadInst>(Pad)) { 2679 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2680 // personalities. 2681 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2682 UnwindDests.back().first->setIsEHScopeEntry(); 2683 UnwindDests.back().first->setIsEHFuncletEntry(); 2684 break; 2685 } 2686 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2687 // Add the catchpad handlers to the possible destinations. 2688 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2689 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob); 2690 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2691 if (IsMSVCCXX || IsCoreCLR) 2692 UnwindDests.back().first->setIsEHFuncletEntry(); 2693 if (!IsSEH) 2694 UnwindDests.back().first->setIsEHScopeEntry(); 2695 } 2696 NewEHPadBB = CatchSwitch->getUnwindDest(); 2697 } else { 2698 continue; 2699 } 2700 2701 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2702 if (BPI && NewEHPadBB) 2703 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2704 EHPadBB = NewEHPadBB; 2705 } 2706 return true; 2707 } 2708 2709 bool IRTranslator::translateInvoke(const User &U, 2710 MachineIRBuilder &MIRBuilder) { 2711 const InvokeInst &I = cast<InvokeInst>(U); 2712 MCContext &Context = MF->getContext(); 2713 2714 const BasicBlock *ReturnBB = I.getSuccessor(0); 2715 const BasicBlock *EHPadBB = I.getSuccessor(1); 2716 2717 const Function *Fn = I.getCalledFunction(); 2718 2719 // FIXME: support invoking patchpoint and statepoint intrinsics. 2720 if (Fn && Fn->isIntrinsic()) 2721 return false; 2722 2723 // FIXME: support whatever these are. 2724 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 2725 return false; 2726 2727 // FIXME: support control flow guard targets. 2728 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2729 return false; 2730 2731 // FIXME: support Windows exception handling. 2732 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI())) 2733 return false; 2734 2735 // FIXME: support Windows dllimport function calls and calls through 2736 // weak symbols. 2737 if (Fn && (Fn->hasDLLImportStorageClass() || 2738 (MF->getTarget().getTargetTriple().isOSWindows() && 2739 Fn->hasExternalWeakLinkage()))) 2740 return false; 2741 2742 bool LowerInlineAsm = I.isInlineAsm(); 2743 bool NeedEHLabel = true; 2744 2745 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 2746 // the region covered by the try. 2747 MCSymbol *BeginSymbol = nullptr; 2748 if (NeedEHLabel) { 2749 MIRBuilder.buildInstr(TargetOpcode::G_INVOKE_REGION_START); 2750 BeginSymbol = Context.createTempSymbol(); 2751 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 2752 } 2753 2754 if (LowerInlineAsm) { 2755 if (!translateInlineAsm(I, MIRBuilder)) 2756 return false; 2757 } else if (!translateCallBase(I, MIRBuilder)) 2758 return false; 2759 2760 MCSymbol *EndSymbol = nullptr; 2761 if (NeedEHLabel) { 2762 EndSymbol = Context.createTempSymbol(); 2763 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 2764 } 2765 2766 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2767 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2768 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(); 2769 BranchProbability EHPadBBProb = 2770 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2771 : BranchProbability::getZero(); 2772 2773 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests)) 2774 return false; 2775 2776 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 2777 &ReturnMBB = getMBB(*ReturnBB); 2778 // Update successor info. 2779 addSuccessorWithProb(InvokeMBB, &ReturnMBB); 2780 for (auto &UnwindDest : UnwindDests) { 2781 UnwindDest.first->setIsEHPad(); 2782 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2783 } 2784 InvokeMBB->normalizeSuccProbs(); 2785 2786 if (NeedEHLabel) { 2787 assert(BeginSymbol && "Expected a begin symbol!"); 2788 assert(EndSymbol && "Expected an end symbol!"); 2789 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 2790 } 2791 2792 MIRBuilder.buildBr(ReturnMBB); 2793 return true; 2794 } 2795 2796 bool IRTranslator::translateCallBr(const User &U, 2797 MachineIRBuilder &MIRBuilder) { 2798 // FIXME: Implement this. 2799 return false; 2800 } 2801 2802 bool IRTranslator::translateLandingPad(const User &U, 2803 MachineIRBuilder &MIRBuilder) { 2804 const LandingPadInst &LP = cast<LandingPadInst>(U); 2805 2806 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 2807 2808 MBB.setIsEHPad(); 2809 2810 // If there aren't registers to copy the values into (e.g., during SjLj 2811 // exceptions), then don't bother. 2812 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2813 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 2814 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2815 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2816 return true; 2817 2818 // If landingpad's return type is token type, we don't create DAG nodes 2819 // for its exception pointer and selector value. The extraction of exception 2820 // pointer or selector value from token type landingpads is not currently 2821 // supported. 2822 if (LP.getType()->isTokenTy()) 2823 return true; 2824 2825 // Add a label to mark the beginning of the landing pad. Deletion of the 2826 // landing pad can thus be detected via the MachineModuleInfo. 2827 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 2828 .addSym(MF->addLandingPad(&MBB)); 2829 2830 // If the unwinder does not preserve all registers, ensure that the 2831 // function marks the clobbered registers as used. 2832 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 2833 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 2834 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 2835 2836 LLT Ty = getLLTForType(*LP.getType(), *DL); 2837 Register Undef = MRI->createGenericVirtualRegister(Ty); 2838 MIRBuilder.buildUndef(Undef); 2839 2840 SmallVector<LLT, 2> Tys; 2841 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 2842 Tys.push_back(getLLTForType(*Ty, *DL)); 2843 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 2844 2845 // Mark exception register as live in. 2846 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 2847 if (!ExceptionReg) 2848 return false; 2849 2850 MBB.addLiveIn(ExceptionReg); 2851 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 2852 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 2853 2854 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 2855 if (!SelectorReg) 2856 return false; 2857 2858 MBB.addLiveIn(SelectorReg); 2859 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 2860 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 2861 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 2862 2863 return true; 2864 } 2865 2866 bool IRTranslator::translateAlloca(const User &U, 2867 MachineIRBuilder &MIRBuilder) { 2868 auto &AI = cast<AllocaInst>(U); 2869 2870 if (AI.isSwiftError()) 2871 return true; 2872 2873 if (AI.isStaticAlloca()) { 2874 Register Res = getOrCreateVReg(AI); 2875 int FI = getOrCreateFrameIndex(AI); 2876 MIRBuilder.buildFrameIndex(Res, FI); 2877 return true; 2878 } 2879 2880 // FIXME: support stack probing for Windows. 2881 if (MF->getTarget().getTargetTriple().isOSWindows()) 2882 return false; 2883 2884 // Now we're in the harder dynamic case. 2885 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 2886 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 2887 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 2888 if (MRI->getType(NumElts) != IntPtrTy) { 2889 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 2890 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 2891 NumElts = ExtElts; 2892 } 2893 2894 Type *Ty = AI.getAllocatedType(); 2895 2896 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 2897 Register TySize = 2898 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 2899 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 2900 2901 // Round the size of the allocation up to the stack alignment size 2902 // by add SA-1 to the size. This doesn't overflow because we're computing 2903 // an address inside an alloca. 2904 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 2905 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 2906 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 2907 MachineInstr::NoUWrap); 2908 auto AlignCst = 2909 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 2910 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 2911 2912 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 2913 if (Alignment <= StackAlign) 2914 Alignment = Align(1); 2915 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 2916 2917 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 2918 assert(MF->getFrameInfo().hasVarSizedObjects()); 2919 return true; 2920 } 2921 2922 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 2923 // FIXME: We may need more info about the type. Because of how LLT works, 2924 // we're completely discarding the i64/double distinction here (amongst 2925 // others). Fortunately the ABIs I know of where that matters don't use va_arg 2926 // anyway but that's not guaranteed. 2927 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 2928 {getOrCreateVReg(*U.getOperand(0)), 2929 DL->getABITypeAlign(U.getType()).value()}); 2930 return true; 2931 } 2932 2933 bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) { 2934 if (!MF->getTarget().Options.TrapUnreachable) 2935 return true; 2936 2937 auto &UI = cast<UnreachableInst>(U); 2938 // We may be able to ignore unreachable behind a noreturn call. 2939 if (MF->getTarget().Options.NoTrapAfterNoreturn) { 2940 const BasicBlock &BB = *UI.getParent(); 2941 if (&UI != &BB.front()) { 2942 BasicBlock::const_iterator PredI = 2943 std::prev(BasicBlock::const_iterator(UI)); 2944 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2945 if (Call->doesNotReturn()) 2946 return true; 2947 } 2948 } 2949 } 2950 2951 MIRBuilder.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>()); 2952 return true; 2953 } 2954 2955 bool IRTranslator::translateInsertElement(const User &U, 2956 MachineIRBuilder &MIRBuilder) { 2957 // If it is a <1 x Ty> vector, use the scalar as it is 2958 // not a legal vector type in LLT. 2959 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1) 2960 return translateCopy(U, *U.getOperand(1), MIRBuilder); 2961 2962 Register Res = getOrCreateVReg(U); 2963 Register Val = getOrCreateVReg(*U.getOperand(0)); 2964 Register Elt = getOrCreateVReg(*U.getOperand(1)); 2965 Register Idx = getOrCreateVReg(*U.getOperand(2)); 2966 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 2967 return true; 2968 } 2969 2970 bool IRTranslator::translateExtractElement(const User &U, 2971 MachineIRBuilder &MIRBuilder) { 2972 // If it is a <1 x Ty> vector, use the scalar as it is 2973 // not a legal vector type in LLT. 2974 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1) 2975 return translateCopy(U, *U.getOperand(0), MIRBuilder); 2976 2977 Register Res = getOrCreateVReg(U); 2978 Register Val = getOrCreateVReg(*U.getOperand(0)); 2979 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2980 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 2981 Register Idx; 2982 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 2983 if (CI->getBitWidth() != PreferredVecIdxWidth) { 2984 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth); 2985 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 2986 Idx = getOrCreateVReg(*NewIdxCI); 2987 } 2988 } 2989 if (!Idx) 2990 Idx = getOrCreateVReg(*U.getOperand(1)); 2991 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 2992 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 2993 Idx = MIRBuilder.buildZExtOrTrunc(VecIdxTy, Idx).getReg(0); 2994 } 2995 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 2996 return true; 2997 } 2998 2999 bool IRTranslator::translateShuffleVector(const User &U, 3000 MachineIRBuilder &MIRBuilder) { 3001 ArrayRef<int> Mask; 3002 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 3003 Mask = SVI->getShuffleMask(); 3004 else 3005 Mask = cast<ConstantExpr>(U).getShuffleMask(); 3006 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 3007 MIRBuilder 3008 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 3009 {getOrCreateVReg(*U.getOperand(0)), 3010 getOrCreateVReg(*U.getOperand(1))}) 3011 .addShuffleMask(MaskAlloc); 3012 return true; 3013 } 3014 3015 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 3016 const PHINode &PI = cast<PHINode>(U); 3017 3018 SmallVector<MachineInstr *, 4> Insts; 3019 for (auto Reg : getOrCreateVRegs(PI)) { 3020 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 3021 Insts.push_back(MIB.getInstr()); 3022 } 3023 3024 PendingPHIs.emplace_back(&PI, std::move(Insts)); 3025 return true; 3026 } 3027 3028 bool IRTranslator::translateAtomicCmpXchg(const User &U, 3029 MachineIRBuilder &MIRBuilder) { 3030 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 3031 3032 auto &TLI = *MF->getSubtarget().getTargetLowering(); 3033 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 3034 3035 auto Res = getOrCreateVRegs(I); 3036 Register OldValRes = Res[0]; 3037 Register SuccessRes = Res[1]; 3038 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 3039 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 3040 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 3041 3042 MIRBuilder.buildAtomicCmpXchgWithSuccess( 3043 OldValRes, SuccessRes, Addr, Cmp, NewVal, 3044 *MF->getMachineMemOperand( 3045 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp), 3046 getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(), 3047 I.getSuccessOrdering(), I.getFailureOrdering())); 3048 return true; 3049 } 3050 3051 bool IRTranslator::translateAtomicRMW(const User &U, 3052 MachineIRBuilder &MIRBuilder) { 3053 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 3054 auto &TLI = *MF->getSubtarget().getTargetLowering(); 3055 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 3056 3057 Register Res = getOrCreateVReg(I); 3058 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 3059 Register Val = getOrCreateVReg(*I.getValOperand()); 3060 3061 unsigned Opcode = 0; 3062 switch (I.getOperation()) { 3063 default: 3064 return false; 3065 case AtomicRMWInst::Xchg: 3066 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 3067 break; 3068 case AtomicRMWInst::Add: 3069 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 3070 break; 3071 case AtomicRMWInst::Sub: 3072 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 3073 break; 3074 case AtomicRMWInst::And: 3075 Opcode = TargetOpcode::G_ATOMICRMW_AND; 3076 break; 3077 case AtomicRMWInst::Nand: 3078 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 3079 break; 3080 case AtomicRMWInst::Or: 3081 Opcode = TargetOpcode::G_ATOMICRMW_OR; 3082 break; 3083 case AtomicRMWInst::Xor: 3084 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 3085 break; 3086 case AtomicRMWInst::Max: 3087 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 3088 break; 3089 case AtomicRMWInst::Min: 3090 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 3091 break; 3092 case AtomicRMWInst::UMax: 3093 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 3094 break; 3095 case AtomicRMWInst::UMin: 3096 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 3097 break; 3098 case AtomicRMWInst::FAdd: 3099 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 3100 break; 3101 case AtomicRMWInst::FSub: 3102 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 3103 break; 3104 case AtomicRMWInst::FMax: 3105 Opcode = TargetOpcode::G_ATOMICRMW_FMAX; 3106 break; 3107 case AtomicRMWInst::FMin: 3108 Opcode = TargetOpcode::G_ATOMICRMW_FMIN; 3109 break; 3110 case AtomicRMWInst::UIncWrap: 3111 Opcode = TargetOpcode::G_ATOMICRMW_UINC_WRAP; 3112 break; 3113 case AtomicRMWInst::UDecWrap: 3114 Opcode = TargetOpcode::G_ATOMICRMW_UDEC_WRAP; 3115 break; 3116 } 3117 3118 MIRBuilder.buildAtomicRMW( 3119 Opcode, Res, Addr, Val, 3120 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3121 Flags, MRI->getType(Val), getMemOpAlign(I), 3122 I.getAAMetadata(), nullptr, I.getSyncScopeID(), 3123 I.getOrdering())); 3124 return true; 3125 } 3126 3127 bool IRTranslator::translateFence(const User &U, 3128 MachineIRBuilder &MIRBuilder) { 3129 const FenceInst &Fence = cast<FenceInst>(U); 3130 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 3131 Fence.getSyncScopeID()); 3132 return true; 3133 } 3134 3135 bool IRTranslator::translateFreeze(const User &U, 3136 MachineIRBuilder &MIRBuilder) { 3137 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 3138 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 3139 3140 assert(DstRegs.size() == SrcRegs.size() && 3141 "Freeze with different source and destination type?"); 3142 3143 for (unsigned I = 0; I < DstRegs.size(); ++I) { 3144 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 3145 } 3146 3147 return true; 3148 } 3149 3150 void IRTranslator::finishPendingPhis() { 3151 #ifndef NDEBUG 3152 DILocationVerifier Verifier; 3153 GISelObserverWrapper WrapperObserver(&Verifier); 3154 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 3155 #endif // ifndef NDEBUG 3156 for (auto &Phi : PendingPHIs) { 3157 const PHINode *PI = Phi.first; 3158 if (PI->getType()->isEmptyTy()) 3159 continue; 3160 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 3161 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 3162 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 3163 #ifndef NDEBUG 3164 Verifier.setCurrentInst(PI); 3165 #endif // ifndef NDEBUG 3166 3167 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 3168 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 3169 auto IRPred = PI->getIncomingBlock(i); 3170 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 3171 for (auto *Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 3172 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 3173 continue; 3174 SeenPreds.insert(Pred); 3175 for (unsigned j = 0; j < ValRegs.size(); ++j) { 3176 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 3177 MIB.addUse(ValRegs[j]); 3178 MIB.addMBB(Pred); 3179 } 3180 } 3181 } 3182 } 3183 } 3184 3185 void IRTranslator::translateDbgValueRecord(Value *V, bool HasArgList, 3186 const DILocalVariable *Variable, 3187 const DIExpression *Expression, 3188 const DebugLoc &DL, 3189 MachineIRBuilder &MIRBuilder) { 3190 assert(Variable->isValidLocationForIntrinsic(DL) && 3191 "Expected inlined-at fields to agree"); 3192 // Act as if we're handling a debug intrinsic. 3193 MIRBuilder.setDebugLoc(DL); 3194 3195 if (!V || HasArgList) { 3196 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to 3197 // terminate any prior location. 3198 MIRBuilder.buildIndirectDbgValue(0, Variable, Expression); 3199 return; 3200 } 3201 3202 if (const auto *CI = dyn_cast<Constant>(V)) { 3203 MIRBuilder.buildConstDbgValue(*CI, Variable, Expression); 3204 return; 3205 } 3206 3207 if (auto *AI = dyn_cast<AllocaInst>(V); 3208 AI && AI->isStaticAlloca() && Expression->startsWithDeref()) { 3209 // If the value is an alloca and the expression starts with a 3210 // dereference, track a stack slot instead of a register, as registers 3211 // may be clobbered. 3212 auto ExprOperands = Expression->getElements(); 3213 auto *ExprDerefRemoved = 3214 DIExpression::get(AI->getContext(), ExprOperands.drop_front()); 3215 MIRBuilder.buildFIDbgValue(getOrCreateFrameIndex(*AI), Variable, 3216 ExprDerefRemoved); 3217 return; 3218 } 3219 if (translateIfEntryValueArgument(false, V, Variable, Expression, DL, 3220 MIRBuilder)) 3221 return; 3222 for (Register Reg : getOrCreateVRegs(*V)) { 3223 // FIXME: This does not handle register-indirect values at offset 0. The 3224 // direct/indirect thing shouldn't really be handled by something as 3225 // implicit as reg+noreg vs reg+imm in the first place, but it seems 3226 // pretty baked in right now. 3227 MIRBuilder.buildDirectDbgValue(Reg, Variable, Expression); 3228 } 3229 return; 3230 } 3231 3232 void IRTranslator::translateDbgDeclareRecord(Value *Address, bool HasArgList, 3233 const DILocalVariable *Variable, 3234 const DIExpression *Expression, 3235 const DebugLoc &DL, 3236 MachineIRBuilder &MIRBuilder) { 3237 if (!Address || isa<UndefValue>(Address)) { 3238 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *Variable << "\n"); 3239 return; 3240 } 3241 3242 assert(Variable->isValidLocationForIntrinsic(DL) && 3243 "Expected inlined-at fields to agree"); 3244 auto AI = dyn_cast<AllocaInst>(Address); 3245 if (AI && AI->isStaticAlloca()) { 3246 // Static allocas are tracked at the MF level, no need for DBG_VALUE 3247 // instructions (in fact, they get ignored if they *do* exist). 3248 MF->setVariableDbgInfo(Variable, Expression, 3249 getOrCreateFrameIndex(*AI), DL); 3250 return; 3251 } 3252 3253 if (translateIfEntryValueArgument(true, Address, Variable, 3254 Expression, DL, 3255 MIRBuilder)) 3256 return; 3257 3258 // A dbg.declare describes the address of a source variable, so lower it 3259 // into an indirect DBG_VALUE. 3260 MIRBuilder.setDebugLoc(DL); 3261 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 3262 Variable, Expression); 3263 return; 3264 } 3265 3266 void IRTranslator::translateDbgInfo(const Instruction &Inst, 3267 MachineIRBuilder &MIRBuilder) { 3268 for (DPValue &DPV : Inst.getDbgValueRange()) { 3269 const DILocalVariable *Variable = DPV.getVariable(); 3270 const DIExpression *Expression = DPV.getExpression(); 3271 Value *V = DPV.getVariableLocationOp(0); 3272 if (DPV.isDbgDeclare()) 3273 translateDbgDeclareRecord(V, DPV.hasArgList(), Variable, 3274 Expression, DPV.getDebugLoc(), MIRBuilder); 3275 else 3276 translateDbgValueRecord(V, DPV.hasArgList(), Variable, 3277 Expression, DPV.getDebugLoc(), MIRBuilder); 3278 } 3279 } 3280 3281 bool IRTranslator::translate(const Instruction &Inst) { 3282 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 3283 CurBuilder->setPCSections(Inst.getMetadata(LLVMContext::MD_pcsections)); 3284 3285 auto &TLI = *MF->getSubtarget().getTargetLowering(); 3286 if (TLI.fallBackToDAGISel(Inst)) 3287 return false; 3288 3289 switch (Inst.getOpcode()) { 3290 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 3291 case Instruction::OPCODE: \ 3292 return translate##OPCODE(Inst, *CurBuilder.get()); 3293 #include "llvm/IR/Instruction.def" 3294 default: 3295 return false; 3296 } 3297 } 3298 3299 bool IRTranslator::translate(const Constant &C, Register Reg) { 3300 // We only emit constants into the entry block from here. To prevent jumpy 3301 // debug behaviour remove debug line. 3302 if (auto CurrInstDL = CurBuilder->getDL()) 3303 EntryBuilder->setDebugLoc(DebugLoc()); 3304 3305 if (auto CI = dyn_cast<ConstantInt>(&C)) 3306 EntryBuilder->buildConstant(Reg, *CI); 3307 else if (auto CF = dyn_cast<ConstantFP>(&C)) 3308 EntryBuilder->buildFConstant(Reg, *CF); 3309 else if (isa<UndefValue>(C)) 3310 EntryBuilder->buildUndef(Reg); 3311 else if (isa<ConstantPointerNull>(C)) 3312 EntryBuilder->buildConstant(Reg, 0); 3313 else if (auto GV = dyn_cast<GlobalValue>(&C)) 3314 EntryBuilder->buildGlobalValue(Reg, GV); 3315 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 3316 if (!isa<FixedVectorType>(CAZ->getType())) 3317 return false; 3318 // Return the scalar if it is a <1 x Ty> vector. 3319 unsigned NumElts = CAZ->getElementCount().getFixedValue(); 3320 if (NumElts == 1) 3321 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder); 3322 SmallVector<Register, 4> Ops; 3323 for (unsigned I = 0; I < NumElts; ++I) { 3324 Constant &Elt = *CAZ->getElementValue(I); 3325 Ops.push_back(getOrCreateVReg(Elt)); 3326 } 3327 EntryBuilder->buildBuildVector(Reg, Ops); 3328 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 3329 // Return the scalar if it is a <1 x Ty> vector. 3330 if (CV->getNumElements() == 1) 3331 return translateCopy(C, *CV->getElementAsConstant(0), *EntryBuilder); 3332 SmallVector<Register, 4> Ops; 3333 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 3334 Constant &Elt = *CV->getElementAsConstant(i); 3335 Ops.push_back(getOrCreateVReg(Elt)); 3336 } 3337 EntryBuilder->buildBuildVector(Reg, Ops); 3338 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 3339 switch(CE->getOpcode()) { 3340 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 3341 case Instruction::OPCODE: \ 3342 return translate##OPCODE(*CE, *EntryBuilder.get()); 3343 #include "llvm/IR/Instruction.def" 3344 default: 3345 return false; 3346 } 3347 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 3348 if (CV->getNumOperands() == 1) 3349 return translateCopy(C, *CV->getOperand(0), *EntryBuilder); 3350 SmallVector<Register, 4> Ops; 3351 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 3352 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 3353 } 3354 EntryBuilder->buildBuildVector(Reg, Ops); 3355 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 3356 EntryBuilder->buildBlockAddress(Reg, BA); 3357 } else 3358 return false; 3359 3360 return true; 3361 } 3362 3363 bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB, 3364 MachineBasicBlock &MBB) { 3365 for (auto &BTB : SL->BitTestCases) { 3366 // Emit header first, if it wasn't already emitted. 3367 if (!BTB.Emitted) 3368 emitBitTestHeader(BTB, BTB.Parent); 3369 3370 BranchProbability UnhandledProb = BTB.Prob; 3371 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 3372 UnhandledProb -= BTB.Cases[j].ExtraProb; 3373 // Set the current basic block to the mbb we wish to insert the code into 3374 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB; 3375 // If all cases cover a contiguous range, it is not necessary to jump to 3376 // the default block after the last bit test fails. This is because the 3377 // range check during bit test header creation has guaranteed that every 3378 // case here doesn't go outside the range. In this case, there is no need 3379 // to perform the last bit test, as it will always be true. Instead, make 3380 // the second-to-last bit-test fall through to the target of the last bit 3381 // test, and delete the last bit test. 3382 3383 MachineBasicBlock *NextMBB; 3384 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3385 // Second-to-last bit-test with contiguous range: fall through to the 3386 // target of the final bit test. 3387 NextMBB = BTB.Cases[j + 1].TargetBB; 3388 } else if (j + 1 == ej) { 3389 // For the last bit test, fall through to Default. 3390 NextMBB = BTB.Default; 3391 } else { 3392 // Otherwise, fall through to the next bit test. 3393 NextMBB = BTB.Cases[j + 1].ThisBB; 3394 } 3395 3396 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB); 3397 3398 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3399 // We need to record the replacement phi edge here that normally 3400 // happens in emitBitTestCase before we delete the case, otherwise the 3401 // phi edge will be lost. 3402 addMachineCFGPred({BTB.Parent->getBasicBlock(), 3403 BTB.Cases[ej - 1].TargetBB->getBasicBlock()}, 3404 MBB); 3405 // Since we're not going to use the final bit test, remove it. 3406 BTB.Cases.pop_back(); 3407 break; 3408 } 3409 } 3410 // This is "default" BB. We have two jumps to it. From "header" BB and from 3411 // last "case" BB, unless the latter was skipped. 3412 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(), 3413 BTB.Default->getBasicBlock()}; 3414 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent); 3415 if (!BTB.ContiguousRange) { 3416 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB); 3417 } 3418 } 3419 SL->BitTestCases.clear(); 3420 3421 for (auto &JTCase : SL->JTCases) { 3422 // Emit header first, if it wasn't already emitted. 3423 if (!JTCase.first.Emitted) 3424 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 3425 3426 emitJumpTable(JTCase.second, JTCase.second.MBB); 3427 } 3428 SL->JTCases.clear(); 3429 3430 for (auto &SwCase : SL->SwitchCases) 3431 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder); 3432 SL->SwitchCases.clear(); 3433 3434 // Check if we need to generate stack-protector guard checks. 3435 StackProtector &SP = getAnalysis<StackProtector>(); 3436 if (SP.shouldEmitSDCheck(BB)) { 3437 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3438 bool FunctionBasedInstrumentation = 3439 TLI.getSSPStackGuardCheck(*MF->getFunction().getParent()); 3440 SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation); 3441 } 3442 // Handle stack protector. 3443 if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 3444 LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n"); 3445 return false; 3446 } else if (SPDescriptor.shouldEmitStackProtector()) { 3447 MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB(); 3448 MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB(); 3449 3450 // Find the split point to split the parent mbb. At the same time copy all 3451 // physical registers used in the tail of parent mbb into virtual registers 3452 // before the split point and back into physical registers after the split 3453 // point. This prevents us needing to deal with Live-ins and many other 3454 // register allocation issues caused by us splitting the parent mbb. The 3455 // register allocator will clean up said virtual copies later on. 3456 MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector( 3457 ParentMBB, *MF->getSubtarget().getInstrInfo()); 3458 3459 // Splice the terminator of ParentMBB into SuccessMBB. 3460 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint, 3461 ParentMBB->end()); 3462 3463 // Add compare/jump on neq/jump to the parent BB. 3464 if (!emitSPDescriptorParent(SPDescriptor, ParentMBB)) 3465 return false; 3466 3467 // CodeGen Failure MBB if we have not codegened it yet. 3468 MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB(); 3469 if (FailureMBB->empty()) { 3470 if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB)) 3471 return false; 3472 } 3473 3474 // Clear the Per-BB State. 3475 SPDescriptor.resetPerBBState(); 3476 } 3477 return true; 3478 } 3479 3480 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD, 3481 MachineBasicBlock *ParentBB) { 3482 CurBuilder->setInsertPt(*ParentBB, ParentBB->end()); 3483 // First create the loads to the guard/stack slot for the comparison. 3484 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3485 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext()); 3486 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 3487 LLT PtrMemTy = getLLTForMVT(TLI.getPointerMemTy(*DL)); 3488 3489 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3490 int FI = MFI.getStackProtectorIndex(); 3491 3492 Register Guard; 3493 Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0); 3494 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3495 Align Align = DL->getPrefTypeAlign(PointerType::getUnqual(M.getContext())); 3496 3497 // Generate code to load the content of the guard slot. 3498 Register GuardVal = 3499 CurBuilder 3500 ->buildLoad(PtrMemTy, StackSlotPtr, 3501 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3502 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile) 3503 .getReg(0); 3504 3505 if (TLI.useStackGuardXorFP()) { 3506 LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented"); 3507 return false; 3508 } 3509 3510 // Retrieve guard check function, nullptr if instrumentation is inlined. 3511 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3512 // This path is currently untestable on GlobalISel, since the only platform 3513 // that needs this seems to be Windows, and we fall back on that currently. 3514 // The code still lives here in case that changes. 3515 // Silence warning about unused variable until the code below that uses 3516 // 'GuardCheckFn' is enabled. 3517 (void)GuardCheckFn; 3518 return false; 3519 #if 0 3520 // The target provides a guard check function to validate the guard value. 3521 // Generate a call to that function with the content of the guard slot as 3522 // argument. 3523 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3524 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3525 ISD::ArgFlagsTy Flags; 3526 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 3527 Flags.setInReg(); 3528 CallLowering::ArgInfo GuardArgInfo( 3529 {GuardVal, FnTy->getParamType(0), {Flags}}); 3530 3531 CallLowering::CallLoweringInfo Info; 3532 Info.OrigArgs.push_back(GuardArgInfo); 3533 Info.CallConv = GuardCheckFn->getCallingConv(); 3534 Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0); 3535 Info.OrigRet = {Register(), FnTy->getReturnType()}; 3536 if (!CLI->lowerCall(MIRBuilder, Info)) { 3537 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n"); 3538 return false; 3539 } 3540 return true; 3541 #endif 3542 } 3543 3544 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3545 // Otherwise, emit a volatile load to retrieve the stack guard value. 3546 if (TLI.useLoadStackGuardNode()) { 3547 Guard = 3548 MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits())); 3549 getStackGuard(Guard, *CurBuilder); 3550 } else { 3551 // TODO: test using android subtarget when we support @llvm.thread.pointer. 3552 const Value *IRGuard = TLI.getSDagStackGuard(M); 3553 Register GuardPtr = getOrCreateVReg(*IRGuard); 3554 3555 Guard = CurBuilder 3556 ->buildLoad(PtrMemTy, GuardPtr, 3557 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3558 MachineMemOperand::MOLoad | 3559 MachineMemOperand::MOVolatile) 3560 .getReg(0); 3561 } 3562 3563 // Perform the comparison. 3564 auto Cmp = 3565 CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal); 3566 // If the guard/stackslot do not equal, branch to failure MBB. 3567 CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB()); 3568 // Otherwise branch to success MBB. 3569 CurBuilder->buildBr(*SPD.getSuccessMBB()); 3570 return true; 3571 } 3572 3573 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD, 3574 MachineBasicBlock *FailureBB) { 3575 CurBuilder->setInsertPt(*FailureBB, FailureBB->end()); 3576 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3577 3578 const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL; 3579 const char *Name = TLI.getLibcallName(Libcall); 3580 3581 CallLowering::CallLoweringInfo Info; 3582 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 3583 Info.Callee = MachineOperand::CreateES(Name); 3584 Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()), 3585 0}; 3586 if (!CLI->lowerCall(*CurBuilder, Info)) { 3587 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n"); 3588 return false; 3589 } 3590 3591 // On PS4/PS5, the "return address" must still be within the calling 3592 // function, even if it's at the very end, so emit an explicit TRAP here. 3593 // WebAssembly needs an unreachable instruction after a non-returning call, 3594 // because the function return type can be different from __stack_chk_fail's 3595 // return type (void). 3596 const TargetMachine &TM = MF->getTarget(); 3597 if (TM.getTargetTriple().isPS() || TM.getTargetTriple().isWasm()) { 3598 LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n"); 3599 return false; 3600 } 3601 return true; 3602 } 3603 3604 void IRTranslator::finalizeFunction() { 3605 // Release the memory used by the different maps we 3606 // needed during the translation. 3607 PendingPHIs.clear(); 3608 VMap.reset(); 3609 FrameIndices.clear(); 3610 MachinePreds.clear(); 3611 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 3612 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 3613 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 3614 EntryBuilder.reset(); 3615 CurBuilder.reset(); 3616 FuncInfo.clear(); 3617 SPDescriptor.resetPerFunctionState(); 3618 } 3619 3620 /// Returns true if a BasicBlock \p BB within a variadic function contains a 3621 /// variadic musttail call. 3622 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 3623 if (!IsVarArg) 3624 return false; 3625 3626 // Walk the block backwards, because tail calls usually only appear at the end 3627 // of a block. 3628 return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) { 3629 const auto *CI = dyn_cast<CallInst>(&I); 3630 return CI && CI->isMustTailCall(); 3631 }); 3632 } 3633 3634 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 3635 MF = &CurMF; 3636 const Function &F = MF->getFunction(); 3637 GISelCSEAnalysisWrapper &Wrapper = 3638 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 3639 // Set the CSEConfig and run the analysis. 3640 GISelCSEInfo *CSEInfo = nullptr; 3641 TPC = &getAnalysis<TargetPassConfig>(); 3642 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 3643 ? EnableCSEInIRTranslator 3644 : TPC->isGISelCSEEnabled(); 3645 3646 if (EnableCSE) { 3647 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3648 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 3649 EntryBuilder->setCSEInfo(CSEInfo); 3650 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3651 CurBuilder->setCSEInfo(CSEInfo); 3652 } else { 3653 EntryBuilder = std::make_unique<MachineIRBuilder>(); 3654 CurBuilder = std::make_unique<MachineIRBuilder>(); 3655 } 3656 CLI = MF->getSubtarget().getCallLowering(); 3657 CurBuilder->setMF(*MF); 3658 EntryBuilder->setMF(*MF); 3659 MRI = &MF->getRegInfo(); 3660 DL = &F.getParent()->getDataLayout(); 3661 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 3662 const TargetMachine &TM = MF->getTarget(); 3663 TM.resetTargetOptions(F); 3664 EnableOpts = OptLevel != CodeGenOptLevel::None && !skipFunction(F); 3665 FuncInfo.MF = MF; 3666 if (EnableOpts) { 3667 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3668 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 3669 } else { 3670 AA = nullptr; 3671 FuncInfo.BPI = nullptr; 3672 } 3673 3674 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 3675 MF->getFunction()); 3676 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 3677 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF); 3678 3679 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 3680 3681 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 3682 SL->init(TLI, TM, *DL); 3683 3684 3685 3686 assert(PendingPHIs.empty() && "stale PHIs"); 3687 3688 // Targets which want to use big endian can enable it using 3689 // enableBigEndian() 3690 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) { 3691 // Currently we don't properly handle big endian code. 3692 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3693 F.getSubprogram(), &F.getEntryBlock()); 3694 R << "unable to translate in big endian mode"; 3695 reportTranslationError(*MF, *TPC, *ORE, R); 3696 } 3697 3698 // Release the per-function state when we return, whether we succeeded or not. 3699 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 3700 3701 // Setup a separate basic-block for the arguments and constants 3702 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 3703 MF->push_back(EntryBB); 3704 EntryBuilder->setMBB(*EntryBB); 3705 3706 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 3707 SwiftError.setFunction(CurMF); 3708 SwiftError.createEntriesInEntryBlock(DbgLoc); 3709 3710 bool IsVarArg = F.isVarArg(); 3711 bool HasMustTailInVarArgFn = false; 3712 3713 // Create all blocks, in IR order, to preserve the layout. 3714 for (const BasicBlock &BB: F) { 3715 auto *&MBB = BBToMBB[&BB]; 3716 3717 MBB = MF->CreateMachineBasicBlock(&BB); 3718 MF->push_back(MBB); 3719 3720 if (BB.hasAddressTaken()) 3721 MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB)); 3722 3723 if (!HasMustTailInVarArgFn) 3724 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 3725 } 3726 3727 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 3728 3729 // Make our arguments/constants entry block fallthrough to the IR entry block. 3730 EntryBB->addSuccessor(&getMBB(F.front())); 3731 3732 if (CLI->fallBackToDAGISel(*MF)) { 3733 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3734 F.getSubprogram(), &F.getEntryBlock()); 3735 R << "unable to lower function: " << ore::NV("Prototype", F.getType()); 3736 reportTranslationError(*MF, *TPC, *ORE, R); 3737 return false; 3738 } 3739 3740 // Lower the actual args into this basic block. 3741 SmallVector<ArrayRef<Register>, 8> VRegArgs; 3742 for (const Argument &Arg: F.args()) { 3743 if (DL->getTypeStoreSize(Arg.getType()).isZero()) 3744 continue; // Don't handle zero sized types. 3745 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 3746 VRegArgs.push_back(VRegs); 3747 3748 if (Arg.hasSwiftErrorAttr()) { 3749 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 3750 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 3751 } 3752 } 3753 3754 if (!CLI->lowerFormalArguments(*EntryBuilder, F, VRegArgs, FuncInfo)) { 3755 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3756 F.getSubprogram(), &F.getEntryBlock()); 3757 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 3758 reportTranslationError(*MF, *TPC, *ORE, R); 3759 return false; 3760 } 3761 3762 // Need to visit defs before uses when translating instructions. 3763 GISelObserverWrapper WrapperObserver; 3764 if (EnableCSE && CSEInfo) 3765 WrapperObserver.addObserver(CSEInfo); 3766 { 3767 ReversePostOrderTraversal<const Function *> RPOT(&F); 3768 #ifndef NDEBUG 3769 DILocationVerifier Verifier; 3770 WrapperObserver.addObserver(&Verifier); 3771 #endif // ifndef NDEBUG 3772 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 3773 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 3774 for (const BasicBlock *BB : RPOT) { 3775 MachineBasicBlock &MBB = getMBB(*BB); 3776 // Set the insertion point of all the following translations to 3777 // the end of this basic block. 3778 CurBuilder->setMBB(MBB); 3779 HasTailCall = false; 3780 for (const Instruction &Inst : *BB) { 3781 // If we translated a tail call in the last step, then we know 3782 // everything after the call is either a return, or something that is 3783 // handled by the call itself. (E.g. a lifetime marker or assume 3784 // intrinsic.) In this case, we should stop translating the block and 3785 // move on. 3786 if (HasTailCall) 3787 break; 3788 #ifndef NDEBUG 3789 Verifier.setCurrentInst(&Inst); 3790 #endif // ifndef NDEBUG 3791 3792 // Translate any debug-info attached to the instruction. 3793 translateDbgInfo(Inst, *CurBuilder.get()); 3794 3795 if (translate(Inst)) 3796 continue; 3797 3798 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3799 Inst.getDebugLoc(), BB); 3800 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 3801 3802 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 3803 std::string InstStrStorage; 3804 raw_string_ostream InstStr(InstStrStorage); 3805 InstStr << Inst; 3806 3807 R << ": '" << InstStr.str() << "'"; 3808 } 3809 3810 reportTranslationError(*MF, *TPC, *ORE, R); 3811 return false; 3812 } 3813 3814 if (!finalizeBasicBlock(*BB, MBB)) { 3815 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3816 BB->getTerminator()->getDebugLoc(), BB); 3817 R << "unable to translate basic block"; 3818 reportTranslationError(*MF, *TPC, *ORE, R); 3819 return false; 3820 } 3821 } 3822 #ifndef NDEBUG 3823 WrapperObserver.removeObserver(&Verifier); 3824 #endif 3825 } 3826 3827 finishPendingPhis(); 3828 3829 SwiftError.propagateVRegs(); 3830 3831 // Merge the argument lowering and constants block with its single 3832 // successor, the LLVM-IR entry block. We want the basic block to 3833 // be maximal. 3834 assert(EntryBB->succ_size() == 1 && 3835 "Custom BB used for lowering should have only one successor"); 3836 // Get the successor of the current entry block. 3837 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 3838 assert(NewEntryBB.pred_size() == 1 && 3839 "LLVM-IR entry block has a predecessor!?"); 3840 // Move all the instruction from the current entry block to the 3841 // new entry block. 3842 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 3843 EntryBB->end()); 3844 3845 // Update the live-in information for the new entry block. 3846 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 3847 NewEntryBB.addLiveIn(LiveIn); 3848 NewEntryBB.sortUniqueLiveIns(); 3849 3850 // Get rid of the now empty basic block. 3851 EntryBB->removeSuccessor(&NewEntryBB); 3852 MF->remove(EntryBB); 3853 MF->deleteMachineBasicBlock(EntryBB); 3854 3855 assert(&MF->front() == &NewEntryBB && 3856 "New entry wasn't next in the list of basic block!"); 3857 3858 // Initialize stack protector information. 3859 StackProtector &SP = getAnalysis<StackProtector>(); 3860 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 3861 3862 return false; 3863 } 3864