xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp (revision 5c8e8e82aeaf3aa788acdd6cfca30ef09094230d)
1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BranchProbabilityInfo.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
26 #include "llvm/CodeGen/LowLevelType.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/StackProtector.h"
36 #include "llvm/CodeGen/SwitchLoweringUtils.h"
37 #include "llvm/CodeGen/TargetFrameLowering.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/CFG.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfo.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GetElementPtrTypeIterator.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/User.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/MC/MCContext.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CodeGen.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetIntrinsicInfo.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <string>
81 #include <utility>
82 #include <vector>
83 
84 #define DEBUG_TYPE "irtranslator"
85 
86 using namespace llvm;
87 
88 static cl::opt<bool>
89     EnableCSEInIRTranslator("enable-cse-in-irtranslator",
90                             cl::desc("Should enable CSE in irtranslator"),
91                             cl::Optional, cl::init(false));
92 char IRTranslator::ID = 0;
93 
94 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
95                 false, false)
96 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
97 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
98 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
99 INITIALIZE_PASS_DEPENDENCY(StackProtector)
100 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
101                 false, false)
102 
103 static void reportTranslationError(MachineFunction &MF,
104                                    const TargetPassConfig &TPC,
105                                    OptimizationRemarkEmitter &ORE,
106                                    OptimizationRemarkMissed &R) {
107   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
108 
109   // Print the function name explicitly if we don't have a debug location (which
110   // makes the diagnostic less useful) or if we're going to emit a raw error.
111   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
112     R << (" (in function: " + MF.getName() + ")").str();
113 
114   if (TPC.isGlobalISelAbortEnabled())
115     report_fatal_error(R.getMsg());
116   else
117     ORE.emit(R);
118 }
119 
120 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel)
121     : MachineFunctionPass(ID), OptLevel(optlevel) {}
122 
123 #ifndef NDEBUG
124 namespace {
125 /// Verify that every instruction created has the same DILocation as the
126 /// instruction being translated.
127 class DILocationVerifier : public GISelChangeObserver {
128   const Instruction *CurrInst = nullptr;
129 
130 public:
131   DILocationVerifier() = default;
132   ~DILocationVerifier() = default;
133 
134   const Instruction *getCurrentInst() const { return CurrInst; }
135   void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
136 
137   void erasingInstr(MachineInstr &MI) override {}
138   void changingInstr(MachineInstr &MI) override {}
139   void changedInstr(MachineInstr &MI) override {}
140 
141   void createdInstr(MachineInstr &MI) override {
142     assert(getCurrentInst() && "Inserted instruction without a current MI");
143 
144     // Only print the check message if we're actually checking it.
145 #ifndef NDEBUG
146     LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
147                       << " was copied to " << MI);
148 #endif
149     // We allow insts in the entry block to have a debug loc line of 0 because
150     // they could have originated from constants, and we don't want a jumpy
151     // debug experience.
152     assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
153             MI.getDebugLoc().getLine() == 0) &&
154            "Line info was not transferred to all instructions");
155   }
156 };
157 } // namespace
158 #endif // ifndef NDEBUG
159 
160 
161 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
162   AU.addRequired<StackProtector>();
163   AU.addRequired<TargetPassConfig>();
164   AU.addRequired<GISelCSEAnalysisWrapperPass>();
165   if (OptLevel != CodeGenOpt::None)
166     AU.addRequired<BranchProbabilityInfoWrapperPass>();
167   getSelectionDAGFallbackAnalysisUsage(AU);
168   MachineFunctionPass::getAnalysisUsage(AU);
169 }
170 
171 IRTranslator::ValueToVRegInfo::VRegListT &
172 IRTranslator::allocateVRegs(const Value &Val) {
173   auto VRegsIt = VMap.findVRegs(Val);
174   if (VRegsIt != VMap.vregs_end())
175     return *VRegsIt->second;
176   auto *Regs = VMap.getVRegs(Val);
177   auto *Offsets = VMap.getOffsets(Val);
178   SmallVector<LLT, 4> SplitTys;
179   computeValueLLTs(*DL, *Val.getType(), SplitTys,
180                    Offsets->empty() ? Offsets : nullptr);
181   for (unsigned i = 0; i < SplitTys.size(); ++i)
182     Regs->push_back(0);
183   return *Regs;
184 }
185 
186 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
187   auto VRegsIt = VMap.findVRegs(Val);
188   if (VRegsIt != VMap.vregs_end())
189     return *VRegsIt->second;
190 
191   if (Val.getType()->isVoidTy())
192     return *VMap.getVRegs(Val);
193 
194   // Create entry for this type.
195   auto *VRegs = VMap.getVRegs(Val);
196   auto *Offsets = VMap.getOffsets(Val);
197 
198   assert(Val.getType()->isSized() &&
199          "Don't know how to create an empty vreg");
200 
201   SmallVector<LLT, 4> SplitTys;
202   computeValueLLTs(*DL, *Val.getType(), SplitTys,
203                    Offsets->empty() ? Offsets : nullptr);
204 
205   if (!isa<Constant>(Val)) {
206     for (auto Ty : SplitTys)
207       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
208     return *VRegs;
209   }
210 
211   if (Val.getType()->isAggregateType()) {
212     // UndefValue, ConstantAggregateZero
213     auto &C = cast<Constant>(Val);
214     unsigned Idx = 0;
215     while (auto Elt = C.getAggregateElement(Idx++)) {
216       auto EltRegs = getOrCreateVRegs(*Elt);
217       llvm::copy(EltRegs, std::back_inserter(*VRegs));
218     }
219   } else {
220     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
221     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
222     bool Success = translate(cast<Constant>(Val), VRegs->front());
223     if (!Success) {
224       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
225                                  MF->getFunction().getSubprogram(),
226                                  &MF->getFunction().getEntryBlock());
227       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
228       reportTranslationError(*MF, *TPC, *ORE, R);
229       return *VRegs;
230     }
231   }
232 
233   return *VRegs;
234 }
235 
236 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
237   auto MapEntry = FrameIndices.find(&AI);
238   if (MapEntry != FrameIndices.end())
239     return MapEntry->second;
240 
241   uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
242   uint64_t Size =
243       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
244 
245   // Always allocate at least one byte.
246   Size = std::max<uint64_t>(Size, 1u);
247 
248   int &FI = FrameIndices[&AI];
249   FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
250   return FI;
251 }
252 
253 Align IRTranslator::getMemOpAlign(const Instruction &I) {
254   if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
255     return SI->getAlign();
256   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
257     return LI->getAlign();
258   }
259   if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
260     // TODO(PR27168): This instruction has no alignment attribute, but unlike
261     // the default alignment for load/store, the default here is to assume
262     // it has NATURAL alignment, not DataLayout-specified alignment.
263     const DataLayout &DL = AI->getModule()->getDataLayout();
264     return Align(DL.getTypeStoreSize(AI->getCompareOperand()->getType()));
265   }
266   if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
267     // TODO(PR27168): This instruction has no alignment attribute, but unlike
268     // the default alignment for load/store, the default here is to assume
269     // it has NATURAL alignment, not DataLayout-specified alignment.
270     const DataLayout &DL = AI->getModule()->getDataLayout();
271     return Align(DL.getTypeStoreSize(AI->getValOperand()->getType()));
272   }
273   OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
274   R << "unable to translate memop: " << ore::NV("Opcode", &I);
275   reportTranslationError(*MF, *TPC, *ORE, R);
276   return Align(1);
277 }
278 
279 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
280   MachineBasicBlock *&MBB = BBToMBB[&BB];
281   assert(MBB && "BasicBlock was not encountered before");
282   return *MBB;
283 }
284 
285 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
286   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
287   MachinePreds[Edge].push_back(NewPred);
288 }
289 
290 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
291                                      MachineIRBuilder &MIRBuilder) {
292   // Get or create a virtual register for each value.
293   // Unless the value is a Constant => loadimm cst?
294   // or inline constant each time?
295   // Creation of a virtual register needs to have a size.
296   Register Op0 = getOrCreateVReg(*U.getOperand(0));
297   Register Op1 = getOrCreateVReg(*U.getOperand(1));
298   Register Res = getOrCreateVReg(U);
299   uint16_t Flags = 0;
300   if (isa<Instruction>(U)) {
301     const Instruction &I = cast<Instruction>(U);
302     Flags = MachineInstr::copyFlagsFromInstruction(I);
303   }
304 
305   MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
306   return true;
307 }
308 
309 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
310                                     MachineIRBuilder &MIRBuilder) {
311   Register Op0 = getOrCreateVReg(*U.getOperand(0));
312   Register Res = getOrCreateVReg(U);
313   uint16_t Flags = 0;
314   if (isa<Instruction>(U)) {
315     const Instruction &I = cast<Instruction>(U);
316     Flags = MachineInstr::copyFlagsFromInstruction(I);
317   }
318   MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
319   return true;
320 }
321 
322 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
323   return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
324 }
325 
326 bool IRTranslator::translateCompare(const User &U,
327                                     MachineIRBuilder &MIRBuilder) {
328   auto *CI = dyn_cast<CmpInst>(&U);
329   Register Op0 = getOrCreateVReg(*U.getOperand(0));
330   Register Op1 = getOrCreateVReg(*U.getOperand(1));
331   Register Res = getOrCreateVReg(U);
332   CmpInst::Predicate Pred =
333       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
334                                     cast<ConstantExpr>(U).getPredicate());
335   if (CmpInst::isIntPredicate(Pred))
336     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
337   else if (Pred == CmpInst::FCMP_FALSE)
338     MIRBuilder.buildCopy(
339         Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
340   else if (Pred == CmpInst::FCMP_TRUE)
341     MIRBuilder.buildCopy(
342         Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
343   else {
344     assert(CI && "Instruction should be CmpInst");
345     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1,
346                          MachineInstr::copyFlagsFromInstruction(*CI));
347   }
348 
349   return true;
350 }
351 
352 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
353   const ReturnInst &RI = cast<ReturnInst>(U);
354   const Value *Ret = RI.getReturnValue();
355   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
356     Ret = nullptr;
357 
358   ArrayRef<Register> VRegs;
359   if (Ret)
360     VRegs = getOrCreateVRegs(*Ret);
361 
362   Register SwiftErrorVReg = 0;
363   if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
364     SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
365         &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
366   }
367 
368   // The target may mess up with the insertion point, but
369   // this is not important as a return is the last instruction
370   // of the block anyway.
371   return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
372 }
373 
374 void IRTranslator::emitBranchForMergedCondition(
375     const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
376     MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
377     BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
378   // If the leaf of the tree is a comparison, merge the condition into
379   // the caseblock.
380   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
381     CmpInst::Predicate Condition;
382     if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
383       Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
384     } else {
385       const FCmpInst *FC = cast<FCmpInst>(Cond);
386       Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
387     }
388 
389     SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
390                            BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
391                            CurBuilder->getDebugLoc(), TProb, FProb);
392     SL->SwitchCases.push_back(CB);
393     return;
394   }
395 
396   // Create a CaseBlock record representing this branch.
397   CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
398   SwitchCG::CaseBlock CB(
399       Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
400       nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
401   SL->SwitchCases.push_back(CB);
402 }
403 
404 static bool isValInBlock(const Value *V, const BasicBlock *BB) {
405   if (const Instruction *I = dyn_cast<Instruction>(V))
406     return I->getParent() == BB;
407   return true;
408 }
409 
410 void IRTranslator::findMergedConditions(
411     const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
412     MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
413     Instruction::BinaryOps Opc, BranchProbability TProb,
414     BranchProbability FProb, bool InvertCond) {
415   using namespace PatternMatch;
416   assert((Opc == Instruction::And || Opc == Instruction::Or) &&
417          "Expected Opc to be AND/OR");
418   // Skip over not part of the tree and remember to invert op and operands at
419   // next level.
420   Value *NotCond;
421   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
422       isValInBlock(NotCond, CurBB->getBasicBlock())) {
423     findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
424                          !InvertCond);
425     return;
426   }
427 
428   const Instruction *BOp = dyn_cast<Instruction>(Cond);
429   const Value *BOpOp0, *BOpOp1;
430   // Compute the effective opcode for Cond, taking into account whether it needs
431   // to be inverted, e.g.
432   //   and (not (or A, B)), C
433   // gets lowered as
434   //   and (and (not A, not B), C)
435   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
436   if (BOp) {
437     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
438                ? Instruction::And
439                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
440                       ? Instruction::Or
441                       : (Instruction::BinaryOps)0);
442     if (InvertCond) {
443       if (BOpc == Instruction::And)
444         BOpc = Instruction::Or;
445       else if (BOpc == Instruction::Or)
446         BOpc = Instruction::And;
447     }
448   }
449 
450   // If this node is not part of the or/and tree, emit it as a branch.
451   // Note that all nodes in the tree should have same opcode.
452   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
453   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
454       !isValInBlock(BOpOp0, CurBB->getBasicBlock()) ||
455       !isValInBlock(BOpOp1, CurBB->getBasicBlock())) {
456     emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
457                                  InvertCond);
458     return;
459   }
460 
461   //  Create TmpBB after CurBB.
462   MachineFunction::iterator BBI(CurBB);
463   MachineBasicBlock *TmpBB =
464       MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
465   CurBB->getParent()->insert(++BBI, TmpBB);
466 
467   if (Opc == Instruction::Or) {
468     // Codegen X | Y as:
469     // BB1:
470     //   jmp_if_X TBB
471     //   jmp TmpBB
472     // TmpBB:
473     //   jmp_if_Y TBB
474     //   jmp FBB
475     //
476 
477     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
478     // The requirement is that
479     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
480     //     = TrueProb for original BB.
481     // Assuming the original probabilities are A and B, one choice is to set
482     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
483     // A/(1+B) and 2B/(1+B). This choice assumes that
484     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
485     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
486     // TmpBB, but the math is more complicated.
487 
488     auto NewTrueProb = TProb / 2;
489     auto NewFalseProb = TProb / 2 + FProb;
490     // Emit the LHS condition.
491     findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
492                          NewFalseProb, InvertCond);
493 
494     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
495     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
496     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
497     // Emit the RHS condition into TmpBB.
498     findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
499                          Probs[1], InvertCond);
500   } else {
501     assert(Opc == Instruction::And && "Unknown merge op!");
502     // Codegen X & Y as:
503     // BB1:
504     //   jmp_if_X TmpBB
505     //   jmp FBB
506     // TmpBB:
507     //   jmp_if_Y TBB
508     //   jmp FBB
509     //
510     //  This requires creation of TmpBB after CurBB.
511 
512     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
513     // The requirement is that
514     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
515     //     = FalseProb for original BB.
516     // Assuming the original probabilities are A and B, one choice is to set
517     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
518     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
519     // TrueProb for BB1 * FalseProb for TmpBB.
520 
521     auto NewTrueProb = TProb + FProb / 2;
522     auto NewFalseProb = FProb / 2;
523     // Emit the LHS condition.
524     findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
525                          NewFalseProb, InvertCond);
526 
527     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
528     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
529     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
530     // Emit the RHS condition into TmpBB.
531     findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
532                          Probs[1], InvertCond);
533   }
534 }
535 
536 bool IRTranslator::shouldEmitAsBranches(
537     const std::vector<SwitchCG::CaseBlock> &Cases) {
538   // For multiple cases, it's better to emit as branches.
539   if (Cases.size() != 2)
540     return true;
541 
542   // If this is two comparisons of the same values or'd or and'd together, they
543   // will get folded into a single comparison, so don't emit two blocks.
544   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
545        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
546       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
547        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
548     return false;
549   }
550 
551   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
552   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
553   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
554       Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
555       isa<Constant>(Cases[0].CmpRHS) &&
556       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
557     if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
558         Cases[0].TrueBB == Cases[1].ThisBB)
559       return false;
560     if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
561         Cases[0].FalseBB == Cases[1].ThisBB)
562       return false;
563   }
564 
565   return true;
566 }
567 
568 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
569   const BranchInst &BrInst = cast<BranchInst>(U);
570   auto &CurMBB = MIRBuilder.getMBB();
571   auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));
572 
573   if (BrInst.isUnconditional()) {
574     // If the unconditional target is the layout successor, fallthrough.
575     if (!CurMBB.isLayoutSuccessor(Succ0MBB))
576       MIRBuilder.buildBr(*Succ0MBB);
577 
578     // Link successors.
579     for (const BasicBlock *Succ : successors(&BrInst))
580       CurMBB.addSuccessor(&getMBB(*Succ));
581     return true;
582   }
583 
584   // If this condition is one of the special cases we handle, do special stuff
585   // now.
586   const Value *CondVal = BrInst.getCondition();
587   MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));
588 
589   const auto &TLI = *MF->getSubtarget().getTargetLowering();
590 
591   // If this is a series of conditions that are or'd or and'd together, emit
592   // this as a sequence of branches instead of setcc's with and/or operations.
593   // As long as jumps are not expensive (exceptions for multi-use logic ops,
594   // unpredictable branches, and vector extracts because those jumps are likely
595   // expensive for any target), this should improve performance.
596   // For example, instead of something like:
597   //     cmp A, B
598   //     C = seteq
599   //     cmp D, E
600   //     F = setle
601   //     or C, F
602   //     jnz foo
603   // Emit:
604   //     cmp A, B
605   //     je foo
606   //     cmp D, E
607   //     jle foo
608   using namespace PatternMatch;
609   const Instruction *CondI = dyn_cast<Instruction>(CondVal);
610   if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() &&
611       !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) {
612     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
613     Value *Vec;
614     const Value *BOp0, *BOp1;
615     if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
616       Opcode = Instruction::And;
617     else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
618       Opcode = Instruction::Or;
619 
620     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
621                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
622       findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
623                            getEdgeProbability(&CurMBB, Succ0MBB),
624                            getEdgeProbability(&CurMBB, Succ1MBB),
625                            /*InvertCond=*/false);
626       assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
627 
628       // Allow some cases to be rejected.
629       if (shouldEmitAsBranches(SL->SwitchCases)) {
630         // Emit the branch for this block.
631         emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
632         SL->SwitchCases.erase(SL->SwitchCases.begin());
633         return true;
634       }
635 
636       // Okay, we decided not to do this, remove any inserted MBB's and clear
637       // SwitchCases.
638       for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
639         MF->erase(SL->SwitchCases[I].ThisBB);
640 
641       SL->SwitchCases.clear();
642     }
643   }
644 
645   // Create a CaseBlock record representing this branch.
646   SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
647                          ConstantInt::getTrue(MF->getFunction().getContext()),
648                          nullptr, Succ0MBB, Succ1MBB, &CurMBB,
649                          CurBuilder->getDebugLoc());
650 
651   // Use emitSwitchCase to actually insert the fast branch sequence for this
652   // cond branch.
653   emitSwitchCase(CB, &CurMBB, *CurBuilder);
654   return true;
655 }
656 
657 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
658                                         MachineBasicBlock *Dst,
659                                         BranchProbability Prob) {
660   if (!FuncInfo.BPI) {
661     Src->addSuccessorWithoutProb(Dst);
662     return;
663   }
664   if (Prob.isUnknown())
665     Prob = getEdgeProbability(Src, Dst);
666   Src->addSuccessor(Dst, Prob);
667 }
668 
669 BranchProbability
670 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
671                                  const MachineBasicBlock *Dst) const {
672   const BasicBlock *SrcBB = Src->getBasicBlock();
673   const BasicBlock *DstBB = Dst->getBasicBlock();
674   if (!FuncInfo.BPI) {
675     // If BPI is not available, set the default probability as 1 / N, where N is
676     // the number of successors.
677     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
678     return BranchProbability(1, SuccSize);
679   }
680   return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
681 }
682 
683 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
684   using namespace SwitchCG;
685   // Extract cases from the switch.
686   const SwitchInst &SI = cast<SwitchInst>(U);
687   BranchProbabilityInfo *BPI = FuncInfo.BPI;
688   CaseClusterVector Clusters;
689   Clusters.reserve(SI.getNumCases());
690   for (auto &I : SI.cases()) {
691     MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
692     assert(Succ && "Could not find successor mbb in mapping");
693     const ConstantInt *CaseVal = I.getCaseValue();
694     BranchProbability Prob =
695         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
696             : BranchProbability(1, SI.getNumCases() + 1);
697     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
698   }
699 
700   MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
701 
702   // Cluster adjacent cases with the same destination. We do this at all
703   // optimization levels because it's cheap to do and will make codegen faster
704   // if there are many clusters.
705   sortAndRangeify(Clusters);
706 
707   MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
708 
709   // If there is only the default destination, jump there directly.
710   if (Clusters.empty()) {
711     SwitchMBB->addSuccessor(DefaultMBB);
712     if (DefaultMBB != SwitchMBB->getNextNode())
713       MIB.buildBr(*DefaultMBB);
714     return true;
715   }
716 
717   SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
718   SL->findBitTestClusters(Clusters, &SI);
719 
720   LLVM_DEBUG({
721     dbgs() << "Case clusters: ";
722     for (const CaseCluster &C : Clusters) {
723       if (C.Kind == CC_JumpTable)
724         dbgs() << "JT:";
725       if (C.Kind == CC_BitTests)
726         dbgs() << "BT:";
727 
728       C.Low->getValue().print(dbgs(), true);
729       if (C.Low != C.High) {
730         dbgs() << '-';
731         C.High->getValue().print(dbgs(), true);
732       }
733       dbgs() << ' ';
734     }
735     dbgs() << '\n';
736   });
737 
738   assert(!Clusters.empty());
739   SwitchWorkList WorkList;
740   CaseClusterIt First = Clusters.begin();
741   CaseClusterIt Last = Clusters.end() - 1;
742   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
743   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
744 
745   // FIXME: At the moment we don't do any splitting optimizations here like
746   // SelectionDAG does, so this worklist only has one entry.
747   while (!WorkList.empty()) {
748     SwitchWorkListItem W = WorkList.back();
749     WorkList.pop_back();
750     if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
751       return false;
752   }
753   return true;
754 }
755 
756 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
757                                  MachineBasicBlock *MBB) {
758   // Emit the code for the jump table
759   assert(JT.Reg != -1U && "Should lower JT Header first!");
760   MachineIRBuilder MIB(*MBB->getParent());
761   MIB.setMBB(*MBB);
762   MIB.setDebugLoc(CurBuilder->getDebugLoc());
763 
764   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
765   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
766 
767   auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
768   MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
769 }
770 
771 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
772                                        SwitchCG::JumpTableHeader &JTH,
773                                        MachineBasicBlock *HeaderBB) {
774   MachineIRBuilder MIB(*HeaderBB->getParent());
775   MIB.setMBB(*HeaderBB);
776   MIB.setDebugLoc(CurBuilder->getDebugLoc());
777 
778   const Value &SValue = *JTH.SValue;
779   // Subtract the lowest switch case value from the value being switched on.
780   const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
781   Register SwitchOpReg = getOrCreateVReg(SValue);
782   auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
783   auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
784 
785   // This value may be smaller or larger than the target's pointer type, and
786   // therefore require extension or truncating.
787   Type *PtrIRTy = SValue.getType()->getPointerTo();
788   const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
789   Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
790 
791   JT.Reg = Sub.getReg(0);
792 
793   if (JTH.OmitRangeCheck) {
794     if (JT.MBB != HeaderBB->getNextNode())
795       MIB.buildBr(*JT.MBB);
796     return true;
797   }
798 
799   // Emit the range check for the jump table, and branch to the default block
800   // for the switch statement if the value being switched on exceeds the
801   // largest case in the switch.
802   auto Cst = getOrCreateVReg(
803       *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
804   Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
805   auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
806 
807   auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
808 
809   // Avoid emitting unnecessary branches to the next block.
810   if (JT.MBB != HeaderBB->getNextNode())
811     BrCond = MIB.buildBr(*JT.MBB);
812   return true;
813 }
814 
815 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
816                                   MachineBasicBlock *SwitchBB,
817                                   MachineIRBuilder &MIB) {
818   Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
819   Register Cond;
820   DebugLoc OldDbgLoc = MIB.getDebugLoc();
821   MIB.setDebugLoc(CB.DbgLoc);
822   MIB.setMBB(*CB.ThisBB);
823 
824   if (CB.PredInfo.NoCmp) {
825     // Branch or fall through to TrueBB.
826     addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
827     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
828                       CB.ThisBB);
829     CB.ThisBB->normalizeSuccProbs();
830     if (CB.TrueBB != CB.ThisBB->getNextNode())
831       MIB.buildBr(*CB.TrueBB);
832     MIB.setDebugLoc(OldDbgLoc);
833     return;
834   }
835 
836   const LLT i1Ty = LLT::scalar(1);
837   // Build the compare.
838   if (!CB.CmpMHS) {
839     const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
840     // For conditional branch lowering, we might try to do something silly like
841     // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
842     // just re-use the existing condition vreg.
843     if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI &&
844         CI->getZExtValue() == 1 && CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
845       Cond = CondLHS;
846     } else {
847       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
848       if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
849         Cond =
850             MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
851       else
852         Cond =
853             MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
854     }
855   } else {
856     assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
857            "Can only handle SLE ranges");
858 
859     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
860     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
861 
862     Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
863     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
864       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
865       Cond =
866           MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
867     } else {
868       const LLT CmpTy = MRI->getType(CmpOpReg);
869       auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
870       auto Diff = MIB.buildConstant(CmpTy, High - Low);
871       Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
872     }
873   }
874 
875   // Update successor info
876   addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
877 
878   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
879                     CB.ThisBB);
880 
881   // TrueBB and FalseBB are always different unless the incoming IR is
882   // degenerate. This only happens when running llc on weird IR.
883   if (CB.TrueBB != CB.FalseBB)
884     addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
885   CB.ThisBB->normalizeSuccProbs();
886 
887   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
888                     CB.ThisBB);
889 
890   MIB.buildBrCond(Cond, *CB.TrueBB);
891   MIB.buildBr(*CB.FalseBB);
892   MIB.setDebugLoc(OldDbgLoc);
893 }
894 
895 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
896                                           MachineBasicBlock *SwitchMBB,
897                                           MachineBasicBlock *CurMBB,
898                                           MachineBasicBlock *DefaultMBB,
899                                           MachineIRBuilder &MIB,
900                                           MachineFunction::iterator BBI,
901                                           BranchProbability UnhandledProbs,
902                                           SwitchCG::CaseClusterIt I,
903                                           MachineBasicBlock *Fallthrough,
904                                           bool FallthroughUnreachable) {
905   using namespace SwitchCG;
906   MachineFunction *CurMF = SwitchMBB->getParent();
907   // FIXME: Optimize away range check based on pivot comparisons.
908   JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
909   SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
910   BranchProbability DefaultProb = W.DefaultProb;
911 
912   // The jump block hasn't been inserted yet; insert it here.
913   MachineBasicBlock *JumpMBB = JT->MBB;
914   CurMF->insert(BBI, JumpMBB);
915 
916   // Since the jump table block is separate from the switch block, we need
917   // to keep track of it as a machine predecessor to the default block,
918   // otherwise we lose the phi edges.
919   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
920                     CurMBB);
921   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
922                     JumpMBB);
923 
924   auto JumpProb = I->Prob;
925   auto FallthroughProb = UnhandledProbs;
926 
927   // If the default statement is a target of the jump table, we evenly
928   // distribute the default probability to successors of CurMBB. Also
929   // update the probability on the edge from JumpMBB to Fallthrough.
930   for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
931                                         SE = JumpMBB->succ_end();
932        SI != SE; ++SI) {
933     if (*SI == DefaultMBB) {
934       JumpProb += DefaultProb / 2;
935       FallthroughProb -= DefaultProb / 2;
936       JumpMBB->setSuccProbability(SI, DefaultProb / 2);
937       JumpMBB->normalizeSuccProbs();
938     } else {
939       // Also record edges from the jump table block to it's successors.
940       addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
941                         JumpMBB);
942     }
943   }
944 
945   // Skip the range check if the fallthrough block is unreachable.
946   if (FallthroughUnreachable)
947     JTH->OmitRangeCheck = true;
948 
949   if (!JTH->OmitRangeCheck)
950     addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
951   addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
952   CurMBB->normalizeSuccProbs();
953 
954   // The jump table header will be inserted in our current block, do the
955   // range check, and fall through to our fallthrough block.
956   JTH->HeaderBB = CurMBB;
957   JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
958 
959   // If we're in the right place, emit the jump table header right now.
960   if (CurMBB == SwitchMBB) {
961     if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
962       return false;
963     JTH->Emitted = true;
964   }
965   return true;
966 }
967 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
968                                             Value *Cond,
969                                             MachineBasicBlock *Fallthrough,
970                                             bool FallthroughUnreachable,
971                                             BranchProbability UnhandledProbs,
972                                             MachineBasicBlock *CurMBB,
973                                             MachineIRBuilder &MIB,
974                                             MachineBasicBlock *SwitchMBB) {
975   using namespace SwitchCG;
976   const Value *RHS, *LHS, *MHS;
977   CmpInst::Predicate Pred;
978   if (I->Low == I->High) {
979     // Check Cond == I->Low.
980     Pred = CmpInst::ICMP_EQ;
981     LHS = Cond;
982     RHS = I->Low;
983     MHS = nullptr;
984   } else {
985     // Check I->Low <= Cond <= I->High.
986     Pred = CmpInst::ICMP_SLE;
987     LHS = I->Low;
988     MHS = Cond;
989     RHS = I->High;
990   }
991 
992   // If Fallthrough is unreachable, fold away the comparison.
993   // The false probability is the sum of all unhandled cases.
994   CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
995                CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
996 
997   emitSwitchCase(CB, SwitchMBB, MIB);
998   return true;
999 }
1000 
1001 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
1002                                      MachineBasicBlock *SwitchBB) {
1003   MachineIRBuilder &MIB = *CurBuilder;
1004   MIB.setMBB(*SwitchBB);
1005 
1006   // Subtract the minimum value.
1007   Register SwitchOpReg = getOrCreateVReg(*B.SValue);
1008 
1009   LLT SwitchOpTy = MRI->getType(SwitchOpReg);
1010   Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
1011   auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
1012 
1013   // Ensure that the type will fit the mask value.
1014   LLT MaskTy = SwitchOpTy;
1015   for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
1016     if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
1017       // Switch table case range are encoded into series of masks.
1018       // Just use pointer type, it's guaranteed to fit.
1019       MaskTy = LLT::scalar(64);
1020       break;
1021     }
1022   }
1023   Register SubReg = RangeSub.getReg(0);
1024   if (SwitchOpTy != MaskTy)
1025     SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);
1026 
1027   B.RegVT = getMVTForLLT(MaskTy);
1028   B.Reg = SubReg;
1029 
1030   MachineBasicBlock *MBB = B.Cases[0].ThisBB;
1031 
1032   if (!B.OmitRangeCheck)
1033     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
1034   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
1035 
1036   SwitchBB->normalizeSuccProbs();
1037 
1038   if (!B.OmitRangeCheck) {
1039     // Conditional branch to the default block.
1040     auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
1041     auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
1042                                   RangeSub, RangeCst);
1043     MIB.buildBrCond(RangeCmp, *B.Default);
1044   }
1045 
1046   // Avoid emitting unnecessary branches to the next block.
1047   if (MBB != SwitchBB->getNextNode())
1048     MIB.buildBr(*MBB);
1049 }
1050 
1051 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
1052                                    MachineBasicBlock *NextMBB,
1053                                    BranchProbability BranchProbToNext,
1054                                    Register Reg, SwitchCG::BitTestCase &B,
1055                                    MachineBasicBlock *SwitchBB) {
1056   MachineIRBuilder &MIB = *CurBuilder;
1057   MIB.setMBB(*SwitchBB);
1058 
1059   LLT SwitchTy = getLLTForMVT(BB.RegVT);
1060   Register Cmp;
1061   unsigned PopCount = countPopulation(B.Mask);
1062   if (PopCount == 1) {
1063     // Testing for a single bit; just compare the shift count with what it
1064     // would need to be to shift a 1 bit in that position.
1065     auto MaskTrailingZeros =
1066         MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask));
1067     Cmp =
1068         MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
1069             .getReg(0);
1070   } else if (PopCount == BB.Range) {
1071     // There is only one zero bit in the range, test for it directly.
1072     auto MaskTrailingOnes =
1073         MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask));
1074     Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
1075               .getReg(0);
1076   } else {
1077     // Make desired shift.
1078     auto CstOne = MIB.buildConstant(SwitchTy, 1);
1079     auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);
1080 
1081     // Emit bit tests and jumps.
1082     auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
1083     auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
1084     auto CstZero = MIB.buildConstant(SwitchTy, 0);
1085     Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
1086               .getReg(0);
1087   }
1088 
1089   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
1090   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
1091   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
1092   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
1093   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
1094   // one as they are relative probabilities (and thus work more like weights),
1095   // and hence we need to normalize them to let the sum of them become one.
1096   SwitchBB->normalizeSuccProbs();
1097 
1098   // Record the fact that the IR edge from the header to the bit test target
1099   // will go through our new block. Neeeded for PHIs to have nodes added.
1100   addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
1101                     SwitchBB);
1102 
1103   MIB.buildBrCond(Cmp, *B.TargetBB);
1104 
1105   // Avoid emitting unnecessary branches to the next block.
1106   if (NextMBB != SwitchBB->getNextNode())
1107     MIB.buildBr(*NextMBB);
1108 }
1109 
1110 bool IRTranslator::lowerBitTestWorkItem(
1111     SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
1112     MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
1113     MachineIRBuilder &MIB, MachineFunction::iterator BBI,
1114     BranchProbability DefaultProb, BranchProbability UnhandledProbs,
1115     SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
1116     bool FallthroughUnreachable) {
1117   using namespace SwitchCG;
1118   MachineFunction *CurMF = SwitchMBB->getParent();
1119   // FIXME: Optimize away range check based on pivot comparisons.
1120   BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
1121   // The bit test blocks haven't been inserted yet; insert them here.
1122   for (BitTestCase &BTC : BTB->Cases)
1123     CurMF->insert(BBI, BTC.ThisBB);
1124 
1125   // Fill in fields of the BitTestBlock.
1126   BTB->Parent = CurMBB;
1127   BTB->Default = Fallthrough;
1128 
1129   BTB->DefaultProb = UnhandledProbs;
1130   // If the cases in bit test don't form a contiguous range, we evenly
1131   // distribute the probability on the edge to Fallthrough to two
1132   // successors of CurMBB.
1133   if (!BTB->ContiguousRange) {
1134     BTB->Prob += DefaultProb / 2;
1135     BTB->DefaultProb -= DefaultProb / 2;
1136   }
1137 
1138   if (FallthroughUnreachable) {
1139     // Skip the range check if the fallthrough block is unreachable.
1140     BTB->OmitRangeCheck = true;
1141   }
1142 
1143   // If we're in the right place, emit the bit test header right now.
1144   if (CurMBB == SwitchMBB) {
1145     emitBitTestHeader(*BTB, SwitchMBB);
1146     BTB->Emitted = true;
1147   }
1148   return true;
1149 }
1150 
1151 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
1152                                        Value *Cond,
1153                                        MachineBasicBlock *SwitchMBB,
1154                                        MachineBasicBlock *DefaultMBB,
1155                                        MachineIRBuilder &MIB) {
1156   using namespace SwitchCG;
1157   MachineFunction *CurMF = FuncInfo.MF;
1158   MachineBasicBlock *NextMBB = nullptr;
1159   MachineFunction::iterator BBI(W.MBB);
1160   if (++BBI != FuncInfo.MF->end())
1161     NextMBB = &*BBI;
1162 
1163   if (EnableOpts) {
1164     // Here, we order cases by probability so the most likely case will be
1165     // checked first. However, two clusters can have the same probability in
1166     // which case their relative ordering is non-deterministic. So we use Low
1167     // as a tie-breaker as clusters are guaranteed to never overlap.
1168     llvm::sort(W.FirstCluster, W.LastCluster + 1,
1169                [](const CaseCluster &a, const CaseCluster &b) {
1170                  return a.Prob != b.Prob
1171                             ? a.Prob > b.Prob
1172                             : a.Low->getValue().slt(b.Low->getValue());
1173                });
1174 
1175     // Rearrange the case blocks so that the last one falls through if possible
1176     // without changing the order of probabilities.
1177     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
1178       --I;
1179       if (I->Prob > W.LastCluster->Prob)
1180         break;
1181       if (I->Kind == CC_Range && I->MBB == NextMBB) {
1182         std::swap(*I, *W.LastCluster);
1183         break;
1184       }
1185     }
1186   }
1187 
1188   // Compute total probability.
1189   BranchProbability DefaultProb = W.DefaultProb;
1190   BranchProbability UnhandledProbs = DefaultProb;
1191   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
1192     UnhandledProbs += I->Prob;
1193 
1194   MachineBasicBlock *CurMBB = W.MBB;
1195   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
1196     bool FallthroughUnreachable = false;
1197     MachineBasicBlock *Fallthrough;
1198     if (I == W.LastCluster) {
1199       // For the last cluster, fall through to the default destination.
1200       Fallthrough = DefaultMBB;
1201       FallthroughUnreachable = isa<UnreachableInst>(
1202           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
1203     } else {
1204       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
1205       CurMF->insert(BBI, Fallthrough);
1206     }
1207     UnhandledProbs -= I->Prob;
1208 
1209     switch (I->Kind) {
1210     case CC_BitTests: {
1211       if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1212                                 DefaultProb, UnhandledProbs, I, Fallthrough,
1213                                 FallthroughUnreachable)) {
1214         LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
1215         return false;
1216       }
1217       break;
1218     }
1219 
1220     case CC_JumpTable: {
1221       if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1222                                   UnhandledProbs, I, Fallthrough,
1223                                   FallthroughUnreachable)) {
1224         LLVM_DEBUG(dbgs() << "Failed to lower jump table");
1225         return false;
1226       }
1227       break;
1228     }
1229     case CC_Range: {
1230       if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
1231                                     FallthroughUnreachable, UnhandledProbs,
1232                                     CurMBB, MIB, SwitchMBB)) {
1233         LLVM_DEBUG(dbgs() << "Failed to lower switch range");
1234         return false;
1235       }
1236       break;
1237     }
1238     }
1239     CurMBB = Fallthrough;
1240   }
1241 
1242   return true;
1243 }
1244 
1245 bool IRTranslator::translateIndirectBr(const User &U,
1246                                        MachineIRBuilder &MIRBuilder) {
1247   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
1248 
1249   const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
1250   MIRBuilder.buildBrIndirect(Tgt);
1251 
1252   // Link successors.
1253   SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
1254   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
1255   for (const BasicBlock *Succ : successors(&BrInst)) {
1256     // It's legal for indirectbr instructions to have duplicate blocks in the
1257     // destination list. We don't allow this in MIR. Skip anything that's
1258     // already a successor.
1259     if (!AddedSuccessors.insert(Succ).second)
1260       continue;
1261     CurBB.addSuccessor(&getMBB(*Succ));
1262   }
1263 
1264   return true;
1265 }
1266 
1267 static bool isSwiftError(const Value *V) {
1268   if (auto Arg = dyn_cast<Argument>(V))
1269     return Arg->hasSwiftErrorAttr();
1270   if (auto AI = dyn_cast<AllocaInst>(V))
1271     return AI->isSwiftError();
1272   return false;
1273 }
1274 
1275 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
1276   const LoadInst &LI = cast<LoadInst>(U);
1277   if (DL->getTypeStoreSize(LI.getType()) == 0)
1278     return true;
1279 
1280   ArrayRef<Register> Regs = getOrCreateVRegs(LI);
1281   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
1282   Register Base = getOrCreateVReg(*LI.getPointerOperand());
1283 
1284   Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
1285   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1286 
1287   if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
1288     assert(Regs.size() == 1 && "swifterror should be single pointer");
1289     Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
1290                                                     LI.getPointerOperand());
1291     MIRBuilder.buildCopy(Regs[0], VReg);
1292     return true;
1293   }
1294 
1295   auto &TLI = *MF->getSubtarget().getTargetLowering();
1296   MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL);
1297 
1298   const MDNode *Ranges =
1299       Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
1300   for (unsigned i = 0; i < Regs.size(); ++i) {
1301     Register Addr;
1302     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1303 
1304     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
1305     Align BaseAlign = getMemOpAlign(LI);
1306     AAMDNodes AAMetadata;
1307     LI.getAAMetadata(AAMetadata);
1308     auto MMO = MF->getMachineMemOperand(
1309         Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(),
1310         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges,
1311         LI.getSyncScopeID(), LI.getOrdering());
1312     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
1313   }
1314 
1315   return true;
1316 }
1317 
1318 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
1319   const StoreInst &SI = cast<StoreInst>(U);
1320   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
1321     return true;
1322 
1323   ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
1324   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
1325   Register Base = getOrCreateVReg(*SI.getPointerOperand());
1326 
1327   Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
1328   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1329 
1330   if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
1331     assert(Vals.size() == 1 && "swifterror should be single pointer");
1332 
1333     Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
1334                                                     SI.getPointerOperand());
1335     MIRBuilder.buildCopy(VReg, Vals[0]);
1336     return true;
1337   }
1338 
1339   auto &TLI = *MF->getSubtarget().getTargetLowering();
1340   MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
1341 
1342   for (unsigned i = 0; i < Vals.size(); ++i) {
1343     Register Addr;
1344     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1345 
1346     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
1347     Align BaseAlign = getMemOpAlign(SI);
1348     AAMDNodes AAMetadata;
1349     SI.getAAMetadata(AAMetadata);
1350     auto MMO = MF->getMachineMemOperand(
1351         Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(),
1352         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr,
1353         SI.getSyncScopeID(), SI.getOrdering());
1354     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
1355   }
1356   return true;
1357 }
1358 
1359 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
1360   const Value *Src = U.getOperand(0);
1361   Type *Int32Ty = Type::getInt32Ty(U.getContext());
1362 
1363   // getIndexedOffsetInType is designed for GEPs, so the first index is the
1364   // usual array element rather than looking into the actual aggregate.
1365   SmallVector<Value *, 1> Indices;
1366   Indices.push_back(ConstantInt::get(Int32Ty, 0));
1367 
1368   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
1369     for (auto Idx : EVI->indices())
1370       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1371   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
1372     for (auto Idx : IVI->indices())
1373       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1374   } else {
1375     for (unsigned i = 1; i < U.getNumOperands(); ++i)
1376       Indices.push_back(U.getOperand(i));
1377   }
1378 
1379   return 8 * static_cast<uint64_t>(
1380                  DL.getIndexedOffsetInType(Src->getType(), Indices));
1381 }
1382 
1383 bool IRTranslator::translateExtractValue(const User &U,
1384                                          MachineIRBuilder &MIRBuilder) {
1385   const Value *Src = U.getOperand(0);
1386   uint64_t Offset = getOffsetFromIndices(U, *DL);
1387   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1388   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
1389   unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
1390   auto &DstRegs = allocateVRegs(U);
1391 
1392   for (unsigned i = 0; i < DstRegs.size(); ++i)
1393     DstRegs[i] = SrcRegs[Idx++];
1394 
1395   return true;
1396 }
1397 
1398 bool IRTranslator::translateInsertValue(const User &U,
1399                                         MachineIRBuilder &MIRBuilder) {
1400   const Value *Src = U.getOperand(0);
1401   uint64_t Offset = getOffsetFromIndices(U, *DL);
1402   auto &DstRegs = allocateVRegs(U);
1403   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
1404   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1405   ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
1406   auto InsertedIt = InsertedRegs.begin();
1407 
1408   for (unsigned i = 0; i < DstRegs.size(); ++i) {
1409     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
1410       DstRegs[i] = *InsertedIt++;
1411     else
1412       DstRegs[i] = SrcRegs[i];
1413   }
1414 
1415   return true;
1416 }
1417 
1418 bool IRTranslator::translateSelect(const User &U,
1419                                    MachineIRBuilder &MIRBuilder) {
1420   Register Tst = getOrCreateVReg(*U.getOperand(0));
1421   ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1422   ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1423   ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1424 
1425   uint16_t Flags = 0;
1426   if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
1427     Flags = MachineInstr::copyFlagsFromInstruction(*SI);
1428 
1429   for (unsigned i = 0; i < ResRegs.size(); ++i) {
1430     MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1431   }
1432 
1433   return true;
1434 }
1435 
1436 bool IRTranslator::translateCopy(const User &U, const Value &V,
1437                                  MachineIRBuilder &MIRBuilder) {
1438   Register Src = getOrCreateVReg(V);
1439   auto &Regs = *VMap.getVRegs(U);
1440   if (Regs.empty()) {
1441     Regs.push_back(Src);
1442     VMap.getOffsets(U)->push_back(0);
1443   } else {
1444     // If we already assigned a vreg for this instruction, we can't change that.
1445     // Emit a copy to satisfy the users we already emitted.
1446     MIRBuilder.buildCopy(Regs[0], Src);
1447   }
1448   return true;
1449 }
1450 
1451 bool IRTranslator::translateBitCast(const User &U,
1452                                     MachineIRBuilder &MIRBuilder) {
1453   // If we're bitcasting to the source type, we can reuse the source vreg.
1454   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1455       getLLTForType(*U.getType(), *DL))
1456     return translateCopy(U, *U.getOperand(0), MIRBuilder);
1457 
1458   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1459 }
1460 
1461 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1462                                  MachineIRBuilder &MIRBuilder) {
1463   Register Op = getOrCreateVReg(*U.getOperand(0));
1464   Register Res = getOrCreateVReg(U);
1465   MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1466   return true;
1467 }
1468 
1469 bool IRTranslator::translateGetElementPtr(const User &U,
1470                                           MachineIRBuilder &MIRBuilder) {
1471   Value &Op0 = *U.getOperand(0);
1472   Register BaseReg = getOrCreateVReg(Op0);
1473   Type *PtrIRTy = Op0.getType();
1474   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1475   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1476   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1477 
1478   // Normalize Vector GEP - all scalar operands should be converted to the
1479   // splat vector.
1480   unsigned VectorWidth = 0;
1481   if (auto *VT = dyn_cast<VectorType>(U.getType()))
1482     VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
1483 
1484   // We might need to splat the base pointer into a vector if the offsets
1485   // are vectors.
1486   if (VectorWidth && !PtrTy.isVector()) {
1487     BaseReg =
1488         MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg)
1489             .getReg(0);
1490     PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1491     PtrTy = getLLTForType(*PtrIRTy, *DL);
1492     OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1493     OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1494   }
1495 
1496   int64_t Offset = 0;
1497   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1498        GTI != E; ++GTI) {
1499     const Value *Idx = GTI.getOperand();
1500     if (StructType *StTy = GTI.getStructTypeOrNull()) {
1501       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1502       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1503       continue;
1504     } else {
1505       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1506 
1507       // If this is a scalar constant or a splat vector of constants,
1508       // handle it quickly.
1509       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1510         Offset += ElementSize * CI->getSExtValue();
1511         continue;
1512       }
1513 
1514       if (Offset != 0) {
1515         auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1516         BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1517                       .getReg(0);
1518         Offset = 0;
1519       }
1520 
1521       Register IdxReg = getOrCreateVReg(*Idx);
1522       LLT IdxTy = MRI->getType(IdxReg);
1523       if (IdxTy != OffsetTy) {
1524         if (!IdxTy.isVector() && VectorWidth) {
1525           IdxReg = MIRBuilder.buildSplatVector(
1526             OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1527         }
1528 
1529         IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1530       }
1531 
1532       // N = N + Idx * ElementSize;
1533       // Avoid doing it for ElementSize of 1.
1534       Register GepOffsetReg;
1535       if (ElementSize != 1) {
1536         auto ElementSizeMIB = MIRBuilder.buildConstant(
1537             getLLTForType(*OffsetIRTy, *DL), ElementSize);
1538         GepOffsetReg =
1539             MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1540       } else
1541         GepOffsetReg = IdxReg;
1542 
1543       BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1544     }
1545   }
1546 
1547   if (Offset != 0) {
1548     auto OffsetMIB =
1549         MIRBuilder.buildConstant(OffsetTy, Offset);
1550     MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1551     return true;
1552   }
1553 
1554   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1555   return true;
1556 }
1557 
1558 bool IRTranslator::translateMemFunc(const CallInst &CI,
1559                                     MachineIRBuilder &MIRBuilder,
1560                                     unsigned Opcode) {
1561 
1562   // If the source is undef, then just emit a nop.
1563   if (isa<UndefValue>(CI.getArgOperand(1)))
1564     return true;
1565 
1566   SmallVector<Register, 3> SrcRegs;
1567 
1568   unsigned MinPtrSize = UINT_MAX;
1569   for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
1570     Register SrcReg = getOrCreateVReg(**AI);
1571     LLT SrcTy = MRI->getType(SrcReg);
1572     if (SrcTy.isPointer())
1573       MinPtrSize = std::min(SrcTy.getSizeInBits(), MinPtrSize);
1574     SrcRegs.push_back(SrcReg);
1575   }
1576 
1577   LLT SizeTy = LLT::scalar(MinPtrSize);
1578 
1579   // The size operand should be the minimum of the pointer sizes.
1580   Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
1581   if (MRI->getType(SizeOpReg) != SizeTy)
1582     SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);
1583 
1584   auto ICall = MIRBuilder.buildInstr(Opcode);
1585   for (Register SrcReg : SrcRegs)
1586     ICall.addUse(SrcReg);
1587 
1588   Align DstAlign;
1589   Align SrcAlign;
1590   unsigned IsVol =
1591       cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
1592           ->getZExtValue();
1593 
1594   if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1595     DstAlign = MCI->getDestAlign().valueOrOne();
1596     SrcAlign = MCI->getSourceAlign().valueOrOne();
1597   } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1598     DstAlign = MMI->getDestAlign().valueOrOne();
1599     SrcAlign = MMI->getSourceAlign().valueOrOne();
1600   } else {
1601     auto *MSI = cast<MemSetInst>(&CI);
1602     DstAlign = MSI->getDestAlign().valueOrOne();
1603   }
1604 
1605   // We need to propagate the tail call flag from the IR inst as an argument.
1606   // Otherwise, we have to pessimize and assume later that we cannot tail call
1607   // any memory intrinsics.
1608   ICall.addImm(CI.isTailCall() ? 1 : 0);
1609 
1610   // Create mem operands to store the alignment and volatile info.
1611   auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
1612   ICall.addMemOperand(MF->getMachineMemOperand(
1613       MachinePointerInfo(CI.getArgOperand(0)),
1614       MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
1615   if (Opcode != TargetOpcode::G_MEMSET)
1616     ICall.addMemOperand(MF->getMachineMemOperand(
1617         MachinePointerInfo(CI.getArgOperand(1)),
1618         MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
1619 
1620   return true;
1621 }
1622 
1623 void IRTranslator::getStackGuard(Register DstReg,
1624                                  MachineIRBuilder &MIRBuilder) {
1625   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1626   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1627   auto MIB =
1628       MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1629 
1630   auto &TLI = *MF->getSubtarget().getTargetLowering();
1631   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1632   if (!Global)
1633     return;
1634 
1635   MachinePointerInfo MPInfo(Global);
1636   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1637                MachineMemOperand::MODereferenceable;
1638   MachineMemOperand *MemRef =
1639       MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
1640                                DL->getPointerABIAlignment(0));
1641   MIB.setMemRefs({MemRef});
1642 }
1643 
1644 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1645                                               MachineIRBuilder &MIRBuilder) {
1646   ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1647   MIRBuilder.buildInstr(
1648       Op, {ResRegs[0], ResRegs[1]},
1649       {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1650 
1651   return true;
1652 }
1653 
1654 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1655                                                 MachineIRBuilder &MIRBuilder) {
1656   Register Dst = getOrCreateVReg(CI);
1657   Register Src0 = getOrCreateVReg(*CI.getOperand(0));
1658   Register Src1 = getOrCreateVReg(*CI.getOperand(1));
1659   uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
1660   MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
1661   return true;
1662 }
1663 
1664 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1665   switch (ID) {
1666     default:
1667       break;
1668     case Intrinsic::bswap:
1669       return TargetOpcode::G_BSWAP;
1670     case Intrinsic::bitreverse:
1671       return TargetOpcode::G_BITREVERSE;
1672     case Intrinsic::fshl:
1673       return TargetOpcode::G_FSHL;
1674     case Intrinsic::fshr:
1675       return TargetOpcode::G_FSHR;
1676     case Intrinsic::ceil:
1677       return TargetOpcode::G_FCEIL;
1678     case Intrinsic::cos:
1679       return TargetOpcode::G_FCOS;
1680     case Intrinsic::ctpop:
1681       return TargetOpcode::G_CTPOP;
1682     case Intrinsic::exp:
1683       return TargetOpcode::G_FEXP;
1684     case Intrinsic::exp2:
1685       return TargetOpcode::G_FEXP2;
1686     case Intrinsic::fabs:
1687       return TargetOpcode::G_FABS;
1688     case Intrinsic::copysign:
1689       return TargetOpcode::G_FCOPYSIGN;
1690     case Intrinsic::minnum:
1691       return TargetOpcode::G_FMINNUM;
1692     case Intrinsic::maxnum:
1693       return TargetOpcode::G_FMAXNUM;
1694     case Intrinsic::minimum:
1695       return TargetOpcode::G_FMINIMUM;
1696     case Intrinsic::maximum:
1697       return TargetOpcode::G_FMAXIMUM;
1698     case Intrinsic::canonicalize:
1699       return TargetOpcode::G_FCANONICALIZE;
1700     case Intrinsic::floor:
1701       return TargetOpcode::G_FFLOOR;
1702     case Intrinsic::fma:
1703       return TargetOpcode::G_FMA;
1704     case Intrinsic::log:
1705       return TargetOpcode::G_FLOG;
1706     case Intrinsic::log2:
1707       return TargetOpcode::G_FLOG2;
1708     case Intrinsic::log10:
1709       return TargetOpcode::G_FLOG10;
1710     case Intrinsic::nearbyint:
1711       return TargetOpcode::G_FNEARBYINT;
1712     case Intrinsic::pow:
1713       return TargetOpcode::G_FPOW;
1714     case Intrinsic::powi:
1715       return TargetOpcode::G_FPOWI;
1716     case Intrinsic::rint:
1717       return TargetOpcode::G_FRINT;
1718     case Intrinsic::round:
1719       return TargetOpcode::G_INTRINSIC_ROUND;
1720     case Intrinsic::roundeven:
1721       return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1722     case Intrinsic::sin:
1723       return TargetOpcode::G_FSIN;
1724     case Intrinsic::sqrt:
1725       return TargetOpcode::G_FSQRT;
1726     case Intrinsic::trunc:
1727       return TargetOpcode::G_INTRINSIC_TRUNC;
1728     case Intrinsic::readcyclecounter:
1729       return TargetOpcode::G_READCYCLECOUNTER;
1730     case Intrinsic::ptrmask:
1731       return TargetOpcode::G_PTRMASK;
1732     case Intrinsic::lrint:
1733       return TargetOpcode::G_INTRINSIC_LRINT;
1734     // FADD/FMUL require checking the FMF, so are handled elsewhere.
1735     case Intrinsic::vector_reduce_fmin:
1736       return TargetOpcode::G_VECREDUCE_FMIN;
1737     case Intrinsic::vector_reduce_fmax:
1738       return TargetOpcode::G_VECREDUCE_FMAX;
1739     case Intrinsic::vector_reduce_add:
1740       return TargetOpcode::G_VECREDUCE_ADD;
1741     case Intrinsic::vector_reduce_mul:
1742       return TargetOpcode::G_VECREDUCE_MUL;
1743     case Intrinsic::vector_reduce_and:
1744       return TargetOpcode::G_VECREDUCE_AND;
1745     case Intrinsic::vector_reduce_or:
1746       return TargetOpcode::G_VECREDUCE_OR;
1747     case Intrinsic::vector_reduce_xor:
1748       return TargetOpcode::G_VECREDUCE_XOR;
1749     case Intrinsic::vector_reduce_smax:
1750       return TargetOpcode::G_VECREDUCE_SMAX;
1751     case Intrinsic::vector_reduce_smin:
1752       return TargetOpcode::G_VECREDUCE_SMIN;
1753     case Intrinsic::vector_reduce_umax:
1754       return TargetOpcode::G_VECREDUCE_UMAX;
1755     case Intrinsic::vector_reduce_umin:
1756       return TargetOpcode::G_VECREDUCE_UMIN;
1757   }
1758   return Intrinsic::not_intrinsic;
1759 }
1760 
1761 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1762                                             Intrinsic::ID ID,
1763                                             MachineIRBuilder &MIRBuilder) {
1764 
1765   unsigned Op = getSimpleIntrinsicOpcode(ID);
1766 
1767   // Is this a simple intrinsic?
1768   if (Op == Intrinsic::not_intrinsic)
1769     return false;
1770 
1771   // Yes. Let's translate it.
1772   SmallVector<llvm::SrcOp, 4> VRegs;
1773   for (auto &Arg : CI.arg_operands())
1774     VRegs.push_back(getOrCreateVReg(*Arg));
1775 
1776   MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1777                         MachineInstr::copyFlagsFromInstruction(CI));
1778   return true;
1779 }
1780 
1781 // TODO: Include ConstainedOps.def when all strict instructions are defined.
1782 static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
1783   switch (ID) {
1784   case Intrinsic::experimental_constrained_fadd:
1785     return TargetOpcode::G_STRICT_FADD;
1786   case Intrinsic::experimental_constrained_fsub:
1787     return TargetOpcode::G_STRICT_FSUB;
1788   case Intrinsic::experimental_constrained_fmul:
1789     return TargetOpcode::G_STRICT_FMUL;
1790   case Intrinsic::experimental_constrained_fdiv:
1791     return TargetOpcode::G_STRICT_FDIV;
1792   case Intrinsic::experimental_constrained_frem:
1793     return TargetOpcode::G_STRICT_FREM;
1794   case Intrinsic::experimental_constrained_fma:
1795     return TargetOpcode::G_STRICT_FMA;
1796   case Intrinsic::experimental_constrained_sqrt:
1797     return TargetOpcode::G_STRICT_FSQRT;
1798   default:
1799     return 0;
1800   }
1801 }
1802 
1803 bool IRTranslator::translateConstrainedFPIntrinsic(
1804   const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
1805   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
1806 
1807   unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
1808   if (!Opcode)
1809     return false;
1810 
1811   unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI);
1812   if (EB == fp::ExceptionBehavior::ebIgnore)
1813     Flags |= MachineInstr::NoFPExcept;
1814 
1815   SmallVector<llvm::SrcOp, 4> VRegs;
1816   VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
1817   if (!FPI.isUnaryOp())
1818     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
1819   if (FPI.isTernaryOp())
1820     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
1821 
1822   MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
1823   return true;
1824 }
1825 
1826 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1827                                            MachineIRBuilder &MIRBuilder) {
1828 
1829   // If this is a simple intrinsic (that is, we just need to add a def of
1830   // a vreg, and uses for each arg operand, then translate it.
1831   if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1832     return true;
1833 
1834   switch (ID) {
1835   default:
1836     break;
1837   case Intrinsic::lifetime_start:
1838   case Intrinsic::lifetime_end: {
1839     // No stack colouring in O0, discard region information.
1840     if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1841       return true;
1842 
1843     unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1844                                                   : TargetOpcode::LIFETIME_END;
1845 
1846     // Get the underlying objects for the location passed on the lifetime
1847     // marker.
1848     SmallVector<const Value *, 4> Allocas;
1849     getUnderlyingObjects(CI.getArgOperand(1), Allocas);
1850 
1851     // Iterate over each underlying object, creating lifetime markers for each
1852     // static alloca. Quit if we find a non-static alloca.
1853     for (const Value *V : Allocas) {
1854       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1855       if (!AI)
1856         continue;
1857 
1858       if (!AI->isStaticAlloca())
1859         return true;
1860 
1861       MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1862     }
1863     return true;
1864   }
1865   case Intrinsic::dbg_declare: {
1866     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1867     assert(DI.getVariable() && "Missing variable");
1868 
1869     const Value *Address = DI.getAddress();
1870     if (!Address || isa<UndefValue>(Address)) {
1871       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1872       return true;
1873     }
1874 
1875     assert(DI.getVariable()->isValidLocationForIntrinsic(
1876                MIRBuilder.getDebugLoc()) &&
1877            "Expected inlined-at fields to agree");
1878     auto AI = dyn_cast<AllocaInst>(Address);
1879     if (AI && AI->isStaticAlloca()) {
1880       // Static allocas are tracked at the MF level, no need for DBG_VALUE
1881       // instructions (in fact, they get ignored if they *do* exist).
1882       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
1883                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
1884     } else {
1885       // A dbg.declare describes the address of a source variable, so lower it
1886       // into an indirect DBG_VALUE.
1887       MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
1888                                        DI.getVariable(), DI.getExpression());
1889     }
1890     return true;
1891   }
1892   case Intrinsic::dbg_label: {
1893     const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
1894     assert(DI.getLabel() && "Missing label");
1895 
1896     assert(DI.getLabel()->isValidLocationForIntrinsic(
1897                MIRBuilder.getDebugLoc()) &&
1898            "Expected inlined-at fields to agree");
1899 
1900     MIRBuilder.buildDbgLabel(DI.getLabel());
1901     return true;
1902   }
1903   case Intrinsic::vaend:
1904     // No target I know of cares about va_end. Certainly no in-tree target
1905     // does. Simplest intrinsic ever!
1906     return true;
1907   case Intrinsic::vastart: {
1908     auto &TLI = *MF->getSubtarget().getTargetLowering();
1909     Value *Ptr = CI.getArgOperand(0);
1910     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
1911 
1912     // FIXME: Get alignment
1913     MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
1914         .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
1915                                                 MachineMemOperand::MOStore,
1916                                                 ListSize, Align(1)));
1917     return true;
1918   }
1919   case Intrinsic::dbg_value: {
1920     // This form of DBG_VALUE is target-independent.
1921     const DbgValueInst &DI = cast<DbgValueInst>(CI);
1922     const Value *V = DI.getValue();
1923     assert(DI.getVariable()->isValidLocationForIntrinsic(
1924                MIRBuilder.getDebugLoc()) &&
1925            "Expected inlined-at fields to agree");
1926     if (!V) {
1927       // Currently the optimizer can produce this; insert an undef to
1928       // help debugging.  Probably the optimizer should not do this.
1929       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
1930     } else if (const auto *CI = dyn_cast<Constant>(V)) {
1931       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
1932     } else {
1933       for (Register Reg : getOrCreateVRegs(*V)) {
1934         // FIXME: This does not handle register-indirect values at offset 0. The
1935         // direct/indirect thing shouldn't really be handled by something as
1936         // implicit as reg+noreg vs reg+imm in the first place, but it seems
1937         // pretty baked in right now.
1938         MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
1939       }
1940     }
1941     return true;
1942   }
1943   case Intrinsic::uadd_with_overflow:
1944     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
1945   case Intrinsic::sadd_with_overflow:
1946     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
1947   case Intrinsic::usub_with_overflow:
1948     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
1949   case Intrinsic::ssub_with_overflow:
1950     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
1951   case Intrinsic::umul_with_overflow:
1952     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
1953   case Intrinsic::smul_with_overflow:
1954     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
1955   case Intrinsic::uadd_sat:
1956     return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
1957   case Intrinsic::sadd_sat:
1958     return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
1959   case Intrinsic::usub_sat:
1960     return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
1961   case Intrinsic::ssub_sat:
1962     return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
1963   case Intrinsic::ushl_sat:
1964     return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
1965   case Intrinsic::sshl_sat:
1966     return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
1967   case Intrinsic::umin:
1968     return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
1969   case Intrinsic::umax:
1970     return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
1971   case Intrinsic::smin:
1972     return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
1973   case Intrinsic::smax:
1974     return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
1975   case Intrinsic::abs:
1976     // TODO: Preserve "int min is poison" arg in GMIR?
1977     return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
1978   case Intrinsic::smul_fix:
1979     return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
1980   case Intrinsic::umul_fix:
1981     return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
1982   case Intrinsic::smul_fix_sat:
1983     return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
1984   case Intrinsic::umul_fix_sat:
1985     return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
1986   case Intrinsic::sdiv_fix:
1987     return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
1988   case Intrinsic::udiv_fix:
1989     return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
1990   case Intrinsic::sdiv_fix_sat:
1991     return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
1992   case Intrinsic::udiv_fix_sat:
1993     return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
1994   case Intrinsic::fmuladd: {
1995     const TargetMachine &TM = MF->getTarget();
1996     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1997     Register Dst = getOrCreateVReg(CI);
1998     Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
1999     Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
2000     Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
2001     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
2002         TLI.isFMAFasterThanFMulAndFAdd(*MF,
2003                                        TLI.getValueType(*DL, CI.getType()))) {
2004       // TODO: Revisit this to see if we should move this part of the
2005       // lowering to the combiner.
2006       MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
2007                           MachineInstr::copyFlagsFromInstruction(CI));
2008     } else {
2009       LLT Ty = getLLTForType(*CI.getType(), *DL);
2010       auto FMul = MIRBuilder.buildFMul(
2011           Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
2012       MIRBuilder.buildFAdd(Dst, FMul, Op2,
2013                            MachineInstr::copyFlagsFromInstruction(CI));
2014     }
2015     return true;
2016   }
2017   case Intrinsic::convert_from_fp16:
2018     // FIXME: This intrinsic should probably be removed from the IR.
2019     MIRBuilder.buildFPExt(getOrCreateVReg(CI),
2020                           getOrCreateVReg(*CI.getArgOperand(0)),
2021                           MachineInstr::copyFlagsFromInstruction(CI));
2022     return true;
2023   case Intrinsic::convert_to_fp16:
2024     // FIXME: This intrinsic should probably be removed from the IR.
2025     MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
2026                             getOrCreateVReg(*CI.getArgOperand(0)),
2027                             MachineInstr::copyFlagsFromInstruction(CI));
2028     return true;
2029   case Intrinsic::memcpy:
2030     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
2031   case Intrinsic::memmove:
2032     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
2033   case Intrinsic::memset:
2034     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
2035   case Intrinsic::eh_typeid_for: {
2036     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
2037     Register Reg = getOrCreateVReg(CI);
2038     unsigned TypeID = MF->getTypeIDFor(GV);
2039     MIRBuilder.buildConstant(Reg, TypeID);
2040     return true;
2041   }
2042   case Intrinsic::objectsize:
2043     llvm_unreachable("llvm.objectsize.* should have been lowered already");
2044 
2045   case Intrinsic::is_constant:
2046     llvm_unreachable("llvm.is.constant.* should have been lowered already");
2047 
2048   case Intrinsic::stackguard:
2049     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
2050     return true;
2051   case Intrinsic::stackprotector: {
2052     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2053     Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
2054     getStackGuard(GuardVal, MIRBuilder);
2055 
2056     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
2057     int FI = getOrCreateFrameIndex(*Slot);
2058     MF->getFrameInfo().setStackProtectorIndex(FI);
2059 
2060     MIRBuilder.buildStore(
2061         GuardVal, getOrCreateVReg(*Slot),
2062         *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
2063                                   MachineMemOperand::MOStore |
2064                                       MachineMemOperand::MOVolatile,
2065                                   PtrTy.getSizeInBits() / 8, Align(8)));
2066     return true;
2067   }
2068   case Intrinsic::stacksave: {
2069     // Save the stack pointer to the location provided by the intrinsic.
2070     Register Reg = getOrCreateVReg(CI);
2071     Register StackPtr = MF->getSubtarget()
2072                             .getTargetLowering()
2073                             ->getStackPointerRegisterToSaveRestore();
2074 
2075     // If the target doesn't specify a stack pointer, then fall back.
2076     if (!StackPtr)
2077       return false;
2078 
2079     MIRBuilder.buildCopy(Reg, StackPtr);
2080     return true;
2081   }
2082   case Intrinsic::stackrestore: {
2083     // Restore the stack pointer from the location provided by the intrinsic.
2084     Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
2085     Register StackPtr = MF->getSubtarget()
2086                             .getTargetLowering()
2087                             ->getStackPointerRegisterToSaveRestore();
2088 
2089     // If the target doesn't specify a stack pointer, then fall back.
2090     if (!StackPtr)
2091       return false;
2092 
2093     MIRBuilder.buildCopy(StackPtr, Reg);
2094     return true;
2095   }
2096   case Intrinsic::cttz:
2097   case Intrinsic::ctlz: {
2098     ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
2099     bool isTrailing = ID == Intrinsic::cttz;
2100     unsigned Opcode = isTrailing
2101                           ? Cst->isZero() ? TargetOpcode::G_CTTZ
2102                                           : TargetOpcode::G_CTTZ_ZERO_UNDEF
2103                           : Cst->isZero() ? TargetOpcode::G_CTLZ
2104                                           : TargetOpcode::G_CTLZ_ZERO_UNDEF;
2105     MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
2106                           {getOrCreateVReg(*CI.getArgOperand(0))});
2107     return true;
2108   }
2109   case Intrinsic::invariant_start: {
2110     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2111     Register Undef = MRI->createGenericVirtualRegister(PtrTy);
2112     MIRBuilder.buildUndef(Undef);
2113     return true;
2114   }
2115   case Intrinsic::invariant_end:
2116     return true;
2117   case Intrinsic::expect:
2118   case Intrinsic::annotation:
2119   case Intrinsic::ptr_annotation:
2120   case Intrinsic::launder_invariant_group:
2121   case Intrinsic::strip_invariant_group: {
2122     // Drop the intrinsic, but forward the value.
2123     MIRBuilder.buildCopy(getOrCreateVReg(CI),
2124                          getOrCreateVReg(*CI.getArgOperand(0)));
2125     return true;
2126   }
2127   case Intrinsic::assume:
2128   case Intrinsic::experimental_noalias_scope_decl:
2129   case Intrinsic::var_annotation:
2130   case Intrinsic::sideeffect:
2131     // Discard annotate attributes, assumptions, and artificial side-effects.
2132     return true;
2133   case Intrinsic::read_volatile_register:
2134   case Intrinsic::read_register: {
2135     Value *Arg = CI.getArgOperand(0);
2136     MIRBuilder
2137         .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
2138         .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
2139     return true;
2140   }
2141   case Intrinsic::write_register: {
2142     Value *Arg = CI.getArgOperand(0);
2143     MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
2144       .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
2145       .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
2146     return true;
2147   }
2148   case Intrinsic::localescape: {
2149     MachineBasicBlock &EntryMBB = MF->front();
2150     StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
2151 
2152     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
2153     // is the same on all targets.
2154     for (unsigned Idx = 0, E = CI.getNumArgOperands(); Idx < E; ++Idx) {
2155       Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
2156       if (isa<ConstantPointerNull>(Arg))
2157         continue; // Skip null pointers. They represent a hole in index space.
2158 
2159       int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
2160       MCSymbol *FrameAllocSym =
2161           MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
2162                                                                 Idx);
2163 
2164       // This should be inserted at the start of the entry block.
2165       auto LocalEscape =
2166           MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
2167               .addSym(FrameAllocSym)
2168               .addFrameIndex(FI);
2169 
2170       EntryMBB.insert(EntryMBB.begin(), LocalEscape);
2171     }
2172 
2173     return true;
2174   }
2175   case Intrinsic::vector_reduce_fadd:
2176   case Intrinsic::vector_reduce_fmul: {
2177     // Need to check for the reassoc flag to decide whether we want a
2178     // sequential reduction opcode or not.
2179     Register Dst = getOrCreateVReg(CI);
2180     Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0));
2181     Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1));
2182     unsigned Opc = 0;
2183     if (!CI.hasAllowReassoc()) {
2184       // The sequential ordering case.
2185       Opc = ID == Intrinsic::vector_reduce_fadd
2186                 ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2187                 : TargetOpcode::G_VECREDUCE_SEQ_FMUL;
2188       MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc},
2189                             MachineInstr::copyFlagsFromInstruction(CI));
2190       return true;
2191     }
2192     // We split the operation into a separate G_FADD/G_FMUL + the reduce,
2193     // since the associativity doesn't matter.
2194     unsigned ScalarOpc;
2195     if (ID == Intrinsic::vector_reduce_fadd) {
2196       Opc = TargetOpcode::G_VECREDUCE_FADD;
2197       ScalarOpc = TargetOpcode::G_FADD;
2198     } else {
2199       Opc = TargetOpcode::G_VECREDUCE_FMUL;
2200       ScalarOpc = TargetOpcode::G_FMUL;
2201     }
2202     LLT DstTy = MRI->getType(Dst);
2203     auto Rdx = MIRBuilder.buildInstr(
2204         Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI));
2205     MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
2206                           MachineInstr::copyFlagsFromInstruction(CI));
2207 
2208     return true;
2209   }
2210 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)  \
2211   case Intrinsic::INTRINSIC:
2212 #include "llvm/IR/ConstrainedOps.def"
2213     return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
2214                                            MIRBuilder);
2215 
2216   }
2217   return false;
2218 }
2219 
2220 bool IRTranslator::translateInlineAsm(const CallBase &CB,
2221                                       MachineIRBuilder &MIRBuilder) {
2222 
2223   const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
2224 
2225   if (!ALI) {
2226     LLVM_DEBUG(
2227         dbgs() << "Inline asm lowering is not supported for this target yet\n");
2228     return false;
2229   }
2230 
2231   return ALI->lowerInlineAsm(
2232       MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
2233 }
2234 
2235 bool IRTranslator::translateCallBase(const CallBase &CB,
2236                                      MachineIRBuilder &MIRBuilder) {
2237   ArrayRef<Register> Res = getOrCreateVRegs(CB);
2238 
2239   SmallVector<ArrayRef<Register>, 8> Args;
2240   Register SwiftInVReg = 0;
2241   Register SwiftErrorVReg = 0;
2242   for (auto &Arg : CB.args()) {
2243     if (CLI->supportSwiftError() && isSwiftError(Arg)) {
2244       assert(SwiftInVReg == 0 && "Expected only one swift error argument");
2245       LLT Ty = getLLTForType(*Arg->getType(), *DL);
2246       SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
2247       MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
2248                                             &CB, &MIRBuilder.getMBB(), Arg));
2249       Args.emplace_back(makeArrayRef(SwiftInVReg));
2250       SwiftErrorVReg =
2251           SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
2252       continue;
2253     }
2254     Args.push_back(getOrCreateVRegs(*Arg));
2255   }
2256 
2257   // We don't set HasCalls on MFI here yet because call lowering may decide to
2258   // optimize into tail calls. Instead, we defer that to selection where a final
2259   // scan is done to check if any instructions are calls.
2260   bool Success =
2261       CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
2262                      [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
2263 
2264   // Check if we just inserted a tail call.
2265   if (Success) {
2266     assert(!HasTailCall && "Can't tail call return twice from block?");
2267     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2268     HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
2269   }
2270 
2271   return Success;
2272 }
2273 
2274 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
2275   const CallInst &CI = cast<CallInst>(U);
2276   auto TII = MF->getTarget().getIntrinsicInfo();
2277   const Function *F = CI.getCalledFunction();
2278 
2279   // FIXME: support Windows dllimport function calls.
2280   if (F && (F->hasDLLImportStorageClass() ||
2281             (MF->getTarget().getTargetTriple().isOSWindows() &&
2282              F->hasExternalWeakLinkage())))
2283     return false;
2284 
2285   // FIXME: support control flow guard targets.
2286   if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2287     return false;
2288 
2289   if (CI.isInlineAsm())
2290     return translateInlineAsm(CI, MIRBuilder);
2291 
2292   Intrinsic::ID ID = Intrinsic::not_intrinsic;
2293   if (F && F->isIntrinsic()) {
2294     ID = F->getIntrinsicID();
2295     if (TII && ID == Intrinsic::not_intrinsic)
2296       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
2297   }
2298 
2299   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
2300     return translateCallBase(CI, MIRBuilder);
2301 
2302   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
2303 
2304   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
2305     return true;
2306 
2307   ArrayRef<Register> ResultRegs;
2308   if (!CI.getType()->isVoidTy())
2309     ResultRegs = getOrCreateVRegs(CI);
2310 
2311   // Ignore the callsite attributes. Backend code is most likely not expecting
2312   // an intrinsic to sometimes have side effects and sometimes not.
2313   MachineInstrBuilder MIB =
2314       MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
2315   if (isa<FPMathOperator>(CI))
2316     MIB->copyIRFlags(CI);
2317 
2318   for (auto &Arg : enumerate(CI.arg_operands())) {
2319     // If this is required to be an immediate, don't materialize it in a
2320     // register.
2321     if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
2322       if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
2323         // imm arguments are more convenient than cimm (and realistically
2324         // probably sufficient), so use them.
2325         assert(CI->getBitWidth() <= 64 &&
2326                "large intrinsic immediates not handled");
2327         MIB.addImm(CI->getSExtValue());
2328       } else {
2329         MIB.addFPImm(cast<ConstantFP>(Arg.value()));
2330       }
2331     } else if (auto MD = dyn_cast<MetadataAsValue>(Arg.value())) {
2332       auto *MDN = dyn_cast<MDNode>(MD->getMetadata());
2333       if (!MDN) // This was probably an MDString.
2334         return false;
2335       MIB.addMetadata(MDN);
2336     } else {
2337       ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
2338       if (VRegs.size() > 1)
2339         return false;
2340       MIB.addUse(VRegs[0]);
2341     }
2342   }
2343 
2344   // Add a MachineMemOperand if it is a target mem intrinsic.
2345   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2346   TargetLowering::IntrinsicInfo Info;
2347   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
2348   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
2349     Align Alignment = Info.align.getValueOr(
2350         DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
2351 
2352     uint64_t Size = Info.memVT.getStoreSize();
2353     MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
2354                                                Info.flags, Size, Alignment));
2355   }
2356 
2357   return true;
2358 }
2359 
2360 bool IRTranslator::findUnwindDestinations(
2361     const BasicBlock *EHPadBB,
2362     BranchProbability Prob,
2363     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2364         &UnwindDests) {
2365   EHPersonality Personality = classifyEHPersonality(
2366       EHPadBB->getParent()->getFunction().getPersonalityFn());
2367   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2368   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2369   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2370   bool IsSEH = isAsynchronousEHPersonality(Personality);
2371 
2372   if (IsWasmCXX) {
2373     // Ignore this for now.
2374     return false;
2375   }
2376 
2377   while (EHPadBB) {
2378     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2379     BasicBlock *NewEHPadBB = nullptr;
2380     if (isa<LandingPadInst>(Pad)) {
2381       // Stop on landingpads. They are not funclets.
2382       UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2383       break;
2384     }
2385     if (isa<CleanupPadInst>(Pad)) {
2386       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2387       // personalities.
2388       UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2389       UnwindDests.back().first->setIsEHScopeEntry();
2390       UnwindDests.back().first->setIsEHFuncletEntry();
2391       break;
2392     }
2393     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2394       // Add the catchpad handlers to the possible destinations.
2395       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2396         UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
2397         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2398         if (IsMSVCCXX || IsCoreCLR)
2399           UnwindDests.back().first->setIsEHFuncletEntry();
2400         if (!IsSEH)
2401           UnwindDests.back().first->setIsEHScopeEntry();
2402       }
2403       NewEHPadBB = CatchSwitch->getUnwindDest();
2404     } else {
2405       continue;
2406     }
2407 
2408     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2409     if (BPI && NewEHPadBB)
2410       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2411     EHPadBB = NewEHPadBB;
2412   }
2413   return true;
2414 }
2415 
2416 bool IRTranslator::translateInvoke(const User &U,
2417                                    MachineIRBuilder &MIRBuilder) {
2418   const InvokeInst &I = cast<InvokeInst>(U);
2419   MCContext &Context = MF->getContext();
2420 
2421   const BasicBlock *ReturnBB = I.getSuccessor(0);
2422   const BasicBlock *EHPadBB = I.getSuccessor(1);
2423 
2424   const Function *Fn = I.getCalledFunction();
2425   if (I.isInlineAsm())
2426     return false;
2427 
2428   // FIXME: support invoking patchpoint and statepoint intrinsics.
2429   if (Fn && Fn->isIntrinsic())
2430     return false;
2431 
2432   // FIXME: support whatever these are.
2433   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
2434     return false;
2435 
2436   // FIXME: support control flow guard targets.
2437   if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2438     return false;
2439 
2440   // FIXME: support Windows exception handling.
2441   if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
2442     return false;
2443 
2444   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
2445   // the region covered by the try.
2446   MCSymbol *BeginSymbol = Context.createTempSymbol();
2447   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
2448 
2449   if (!translateCallBase(I, MIRBuilder))
2450     return false;
2451 
2452   MCSymbol *EndSymbol = Context.createTempSymbol();
2453   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
2454 
2455   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2456   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2457   MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
2458   BranchProbability EHPadBBProb =
2459       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2460           : BranchProbability::getZero();
2461 
2462   if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
2463     return false;
2464 
2465   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
2466                     &ReturnMBB = getMBB(*ReturnBB);
2467   // Update successor info.
2468   addSuccessorWithProb(InvokeMBB, &ReturnMBB);
2469   for (auto &UnwindDest : UnwindDests) {
2470     UnwindDest.first->setIsEHPad();
2471     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2472   }
2473   InvokeMBB->normalizeSuccProbs();
2474 
2475   MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
2476   MIRBuilder.buildBr(ReturnMBB);
2477   return true;
2478 }
2479 
2480 bool IRTranslator::translateCallBr(const User &U,
2481                                    MachineIRBuilder &MIRBuilder) {
2482   // FIXME: Implement this.
2483   return false;
2484 }
2485 
2486 bool IRTranslator::translateLandingPad(const User &U,
2487                                        MachineIRBuilder &MIRBuilder) {
2488   const LandingPadInst &LP = cast<LandingPadInst>(U);
2489 
2490   MachineBasicBlock &MBB = MIRBuilder.getMBB();
2491 
2492   MBB.setIsEHPad();
2493 
2494   // If there aren't registers to copy the values into (e.g., during SjLj
2495   // exceptions), then don't bother.
2496   auto &TLI = *MF->getSubtarget().getTargetLowering();
2497   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
2498   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2499       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2500     return true;
2501 
2502   // If landingpad's return type is token type, we don't create DAG nodes
2503   // for its exception pointer and selector value. The extraction of exception
2504   // pointer or selector value from token type landingpads is not currently
2505   // supported.
2506   if (LP.getType()->isTokenTy())
2507     return true;
2508 
2509   // Add a label to mark the beginning of the landing pad.  Deletion of the
2510   // landing pad can thus be detected via the MachineModuleInfo.
2511   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
2512     .addSym(MF->addLandingPad(&MBB));
2513 
2514   // If the unwinder does not preserve all registers, ensure that the
2515   // function marks the clobbered registers as used.
2516   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
2517   if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
2518     MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
2519 
2520   LLT Ty = getLLTForType(*LP.getType(), *DL);
2521   Register Undef = MRI->createGenericVirtualRegister(Ty);
2522   MIRBuilder.buildUndef(Undef);
2523 
2524   SmallVector<LLT, 2> Tys;
2525   for (Type *Ty : cast<StructType>(LP.getType())->elements())
2526     Tys.push_back(getLLTForType(*Ty, *DL));
2527   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
2528 
2529   // Mark exception register as live in.
2530   Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
2531   if (!ExceptionReg)
2532     return false;
2533 
2534   MBB.addLiveIn(ExceptionReg);
2535   ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
2536   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
2537 
2538   Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
2539   if (!SelectorReg)
2540     return false;
2541 
2542   MBB.addLiveIn(SelectorReg);
2543   Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
2544   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
2545   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
2546 
2547   return true;
2548 }
2549 
2550 bool IRTranslator::translateAlloca(const User &U,
2551                                    MachineIRBuilder &MIRBuilder) {
2552   auto &AI = cast<AllocaInst>(U);
2553 
2554   if (AI.isSwiftError())
2555     return true;
2556 
2557   if (AI.isStaticAlloca()) {
2558     Register Res = getOrCreateVReg(AI);
2559     int FI = getOrCreateFrameIndex(AI);
2560     MIRBuilder.buildFrameIndex(Res, FI);
2561     return true;
2562   }
2563 
2564   // FIXME: support stack probing for Windows.
2565   if (MF->getTarget().getTargetTriple().isOSWindows())
2566     return false;
2567 
2568   // Now we're in the harder dynamic case.
2569   Register NumElts = getOrCreateVReg(*AI.getArraySize());
2570   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
2571   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
2572   if (MRI->getType(NumElts) != IntPtrTy) {
2573     Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
2574     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
2575     NumElts = ExtElts;
2576   }
2577 
2578   Type *Ty = AI.getAllocatedType();
2579 
2580   Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
2581   Register TySize =
2582       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
2583   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
2584 
2585   // Round the size of the allocation up to the stack alignment size
2586   // by add SA-1 to the size. This doesn't overflow because we're computing
2587   // an address inside an alloca.
2588   Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
2589   auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
2590   auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
2591                                       MachineInstr::NoUWrap);
2592   auto AlignCst =
2593       MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
2594   auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
2595 
2596   Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
2597   if (Alignment <= StackAlign)
2598     Alignment = Align(1);
2599   MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
2600 
2601   MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
2602   assert(MF->getFrameInfo().hasVarSizedObjects());
2603   return true;
2604 }
2605 
2606 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
2607   // FIXME: We may need more info about the type. Because of how LLT works,
2608   // we're completely discarding the i64/double distinction here (amongst
2609   // others). Fortunately the ABIs I know of where that matters don't use va_arg
2610   // anyway but that's not guaranteed.
2611   MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
2612                         {getOrCreateVReg(*U.getOperand(0)),
2613                          DL->getABITypeAlign(U.getType()).value()});
2614   return true;
2615 }
2616 
2617 bool IRTranslator::translateInsertElement(const User &U,
2618                                           MachineIRBuilder &MIRBuilder) {
2619   // If it is a <1 x Ty> vector, use the scalar as it is
2620   // not a legal vector type in LLT.
2621   if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
2622     return translateCopy(U, *U.getOperand(1), MIRBuilder);
2623 
2624   Register Res = getOrCreateVReg(U);
2625   Register Val = getOrCreateVReg(*U.getOperand(0));
2626   Register Elt = getOrCreateVReg(*U.getOperand(1));
2627   Register Idx = getOrCreateVReg(*U.getOperand(2));
2628   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
2629   return true;
2630 }
2631 
2632 bool IRTranslator::translateExtractElement(const User &U,
2633                                            MachineIRBuilder &MIRBuilder) {
2634   // If it is a <1 x Ty> vector, use the scalar as it is
2635   // not a legal vector type in LLT.
2636   if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
2637     return translateCopy(U, *U.getOperand(0), MIRBuilder);
2638 
2639   Register Res = getOrCreateVReg(U);
2640   Register Val = getOrCreateVReg(*U.getOperand(0));
2641   const auto &TLI = *MF->getSubtarget().getTargetLowering();
2642   unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
2643   Register Idx;
2644   if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
2645     if (CI->getBitWidth() != PreferredVecIdxWidth) {
2646       APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
2647       auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
2648       Idx = getOrCreateVReg(*NewIdxCI);
2649     }
2650   }
2651   if (!Idx)
2652     Idx = getOrCreateVReg(*U.getOperand(1));
2653   if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
2654     const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
2655     Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0);
2656   }
2657   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
2658   return true;
2659 }
2660 
2661 bool IRTranslator::translateShuffleVector(const User &U,
2662                                           MachineIRBuilder &MIRBuilder) {
2663   ArrayRef<int> Mask;
2664   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
2665     Mask = SVI->getShuffleMask();
2666   else
2667     Mask = cast<ConstantExpr>(U).getShuffleMask();
2668   ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
2669   MIRBuilder
2670       .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
2671                   {getOrCreateVReg(*U.getOperand(0)),
2672                    getOrCreateVReg(*U.getOperand(1))})
2673       .addShuffleMask(MaskAlloc);
2674   return true;
2675 }
2676 
2677 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
2678   const PHINode &PI = cast<PHINode>(U);
2679 
2680   SmallVector<MachineInstr *, 4> Insts;
2681   for (auto Reg : getOrCreateVRegs(PI)) {
2682     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
2683     Insts.push_back(MIB.getInstr());
2684   }
2685 
2686   PendingPHIs.emplace_back(&PI, std::move(Insts));
2687   return true;
2688 }
2689 
2690 bool IRTranslator::translateAtomicCmpXchg(const User &U,
2691                                           MachineIRBuilder &MIRBuilder) {
2692   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
2693 
2694   auto &TLI = *MF->getSubtarget().getTargetLowering();
2695   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2696 
2697   Type *ResType = I.getType();
2698   Type *ValType = ResType->Type::getStructElementType(0);
2699 
2700   auto Res = getOrCreateVRegs(I);
2701   Register OldValRes = Res[0];
2702   Register SuccessRes = Res[1];
2703   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2704   Register Cmp = getOrCreateVReg(*I.getCompareOperand());
2705   Register NewVal = getOrCreateVReg(*I.getNewValOperand());
2706 
2707   AAMDNodes AAMetadata;
2708   I.getAAMetadata(AAMetadata);
2709 
2710   MIRBuilder.buildAtomicCmpXchgWithSuccess(
2711       OldValRes, SuccessRes, Addr, Cmp, NewVal,
2712       *MF->getMachineMemOperand(
2713           MachinePointerInfo(I.getPointerOperand()), Flags,
2714           DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr,
2715           I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering()));
2716   return true;
2717 }
2718 
2719 bool IRTranslator::translateAtomicRMW(const User &U,
2720                                       MachineIRBuilder &MIRBuilder) {
2721   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
2722   auto &TLI = *MF->getSubtarget().getTargetLowering();
2723   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2724 
2725   Type *ResType = I.getType();
2726 
2727   Register Res = getOrCreateVReg(I);
2728   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2729   Register Val = getOrCreateVReg(*I.getValOperand());
2730 
2731   unsigned Opcode = 0;
2732   switch (I.getOperation()) {
2733   default:
2734     return false;
2735   case AtomicRMWInst::Xchg:
2736     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
2737     break;
2738   case AtomicRMWInst::Add:
2739     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
2740     break;
2741   case AtomicRMWInst::Sub:
2742     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
2743     break;
2744   case AtomicRMWInst::And:
2745     Opcode = TargetOpcode::G_ATOMICRMW_AND;
2746     break;
2747   case AtomicRMWInst::Nand:
2748     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
2749     break;
2750   case AtomicRMWInst::Or:
2751     Opcode = TargetOpcode::G_ATOMICRMW_OR;
2752     break;
2753   case AtomicRMWInst::Xor:
2754     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
2755     break;
2756   case AtomicRMWInst::Max:
2757     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
2758     break;
2759   case AtomicRMWInst::Min:
2760     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
2761     break;
2762   case AtomicRMWInst::UMax:
2763     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
2764     break;
2765   case AtomicRMWInst::UMin:
2766     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
2767     break;
2768   case AtomicRMWInst::FAdd:
2769     Opcode = TargetOpcode::G_ATOMICRMW_FADD;
2770     break;
2771   case AtomicRMWInst::FSub:
2772     Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
2773     break;
2774   }
2775 
2776   AAMDNodes AAMetadata;
2777   I.getAAMetadata(AAMetadata);
2778 
2779   MIRBuilder.buildAtomicRMW(
2780       Opcode, Res, Addr, Val,
2781       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
2782                                 Flags, DL->getTypeStoreSize(ResType),
2783                                 getMemOpAlign(I), AAMetadata, nullptr,
2784                                 I.getSyncScopeID(), I.getOrdering()));
2785   return true;
2786 }
2787 
2788 bool IRTranslator::translateFence(const User &U,
2789                                   MachineIRBuilder &MIRBuilder) {
2790   const FenceInst &Fence = cast<FenceInst>(U);
2791   MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
2792                         Fence.getSyncScopeID());
2793   return true;
2794 }
2795 
2796 bool IRTranslator::translateFreeze(const User &U,
2797                                    MachineIRBuilder &MIRBuilder) {
2798   const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
2799   const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
2800 
2801   assert(DstRegs.size() == SrcRegs.size() &&
2802          "Freeze with different source and destination type?");
2803 
2804   for (unsigned I = 0; I < DstRegs.size(); ++I) {
2805     MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
2806   }
2807 
2808   return true;
2809 }
2810 
2811 void IRTranslator::finishPendingPhis() {
2812 #ifndef NDEBUG
2813   DILocationVerifier Verifier;
2814   GISelObserverWrapper WrapperObserver(&Verifier);
2815   RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2816 #endif // ifndef NDEBUG
2817   for (auto &Phi : PendingPHIs) {
2818     const PHINode *PI = Phi.first;
2819     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
2820     MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
2821     EntryBuilder->setDebugLoc(PI->getDebugLoc());
2822 #ifndef NDEBUG
2823     Verifier.setCurrentInst(PI);
2824 #endif // ifndef NDEBUG
2825 
2826     SmallSet<const MachineBasicBlock *, 16> SeenPreds;
2827     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
2828       auto IRPred = PI->getIncomingBlock(i);
2829       ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
2830       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
2831         if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
2832           continue;
2833         SeenPreds.insert(Pred);
2834         for (unsigned j = 0; j < ValRegs.size(); ++j) {
2835           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
2836           MIB.addUse(ValRegs[j]);
2837           MIB.addMBB(Pred);
2838         }
2839       }
2840     }
2841   }
2842 }
2843 
2844 bool IRTranslator::valueIsSplit(const Value &V,
2845                                 SmallVectorImpl<uint64_t> *Offsets) {
2846   SmallVector<LLT, 4> SplitTys;
2847   if (Offsets && !Offsets->empty())
2848     Offsets->clear();
2849   computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
2850   return SplitTys.size() > 1;
2851 }
2852 
2853 bool IRTranslator::translate(const Instruction &Inst) {
2854   CurBuilder->setDebugLoc(Inst.getDebugLoc());
2855   // We only emit constants into the entry block from here. To prevent jumpy
2856   // debug behaviour set the line to 0.
2857   if (const DebugLoc &DL = Inst.getDebugLoc())
2858     EntryBuilder->setDebugLoc(DILocation::get(
2859         Inst.getContext(), 0, 0, DL.getScope(), DL.getInlinedAt()));
2860   else
2861     EntryBuilder->setDebugLoc(DebugLoc());
2862 
2863   auto &TLI = *MF->getSubtarget().getTargetLowering();
2864   if (TLI.fallBackToDAGISel(Inst))
2865     return false;
2866 
2867   switch (Inst.getOpcode()) {
2868 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2869   case Instruction::OPCODE:                                                    \
2870     return translate##OPCODE(Inst, *CurBuilder.get());
2871 #include "llvm/IR/Instruction.def"
2872   default:
2873     return false;
2874   }
2875 }
2876 
2877 bool IRTranslator::translate(const Constant &C, Register Reg) {
2878   if (auto CI = dyn_cast<ConstantInt>(&C))
2879     EntryBuilder->buildConstant(Reg, *CI);
2880   else if (auto CF = dyn_cast<ConstantFP>(&C))
2881     EntryBuilder->buildFConstant(Reg, *CF);
2882   else if (isa<UndefValue>(C))
2883     EntryBuilder->buildUndef(Reg);
2884   else if (isa<ConstantPointerNull>(C))
2885     EntryBuilder->buildConstant(Reg, 0);
2886   else if (auto GV = dyn_cast<GlobalValue>(&C))
2887     EntryBuilder->buildGlobalValue(Reg, GV);
2888   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
2889     if (!CAZ->getType()->isVectorTy())
2890       return false;
2891     // Return the scalar if it is a <1 x Ty> vector.
2892     if (CAZ->getNumElements() == 1)
2893       return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get());
2894     SmallVector<Register, 4> Ops;
2895     for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
2896       Constant &Elt = *CAZ->getElementValue(i);
2897       Ops.push_back(getOrCreateVReg(Elt));
2898     }
2899     EntryBuilder->buildBuildVector(Reg, Ops);
2900   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
2901     // Return the scalar if it is a <1 x Ty> vector.
2902     if (CV->getNumElements() == 1)
2903       return translateCopy(C, *CV->getElementAsConstant(0),
2904                            *EntryBuilder.get());
2905     SmallVector<Register, 4> Ops;
2906     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
2907       Constant &Elt = *CV->getElementAsConstant(i);
2908       Ops.push_back(getOrCreateVReg(Elt));
2909     }
2910     EntryBuilder->buildBuildVector(Reg, Ops);
2911   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
2912     switch(CE->getOpcode()) {
2913 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2914   case Instruction::OPCODE:                                                    \
2915     return translate##OPCODE(*CE, *EntryBuilder.get());
2916 #include "llvm/IR/Instruction.def"
2917     default:
2918       return false;
2919     }
2920   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
2921     if (CV->getNumOperands() == 1)
2922       return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get());
2923     SmallVector<Register, 4> Ops;
2924     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
2925       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
2926     }
2927     EntryBuilder->buildBuildVector(Reg, Ops);
2928   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
2929     EntryBuilder->buildBlockAddress(Reg, BA);
2930   } else
2931     return false;
2932 
2933   return true;
2934 }
2935 
2936 void IRTranslator::finalizeBasicBlock() {
2937   for (auto &BTB : SL->BitTestCases) {
2938     // Emit header first, if it wasn't already emitted.
2939     if (!BTB.Emitted)
2940       emitBitTestHeader(BTB, BTB.Parent);
2941 
2942     BranchProbability UnhandledProb = BTB.Prob;
2943     for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
2944       UnhandledProb -= BTB.Cases[j].ExtraProb;
2945       // Set the current basic block to the mbb we wish to insert the code into
2946       MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
2947       // If all cases cover a contiguous range, it is not necessary to jump to
2948       // the default block after the last bit test fails. This is because the
2949       // range check during bit test header creation has guaranteed that every
2950       // case here doesn't go outside the range. In this case, there is no need
2951       // to perform the last bit test, as it will always be true. Instead, make
2952       // the second-to-last bit-test fall through to the target of the last bit
2953       // test, and delete the last bit test.
2954 
2955       MachineBasicBlock *NextMBB;
2956       if (BTB.ContiguousRange && j + 2 == ej) {
2957         // Second-to-last bit-test with contiguous range: fall through to the
2958         // target of the final bit test.
2959         NextMBB = BTB.Cases[j + 1].TargetBB;
2960       } else if (j + 1 == ej) {
2961         // For the last bit test, fall through to Default.
2962         NextMBB = BTB.Default;
2963       } else {
2964         // Otherwise, fall through to the next bit test.
2965         NextMBB = BTB.Cases[j + 1].ThisBB;
2966       }
2967 
2968       emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);
2969 
2970       // FIXME delete this block below?
2971       if (BTB.ContiguousRange && j + 2 == ej) {
2972         // Since we're not going to use the final bit test, remove it.
2973         BTB.Cases.pop_back();
2974         break;
2975       }
2976     }
2977     // This is "default" BB. We have two jumps to it. From "header" BB and from
2978     // last "case" BB, unless the latter was skipped.
2979     CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
2980                                    BTB.Default->getBasicBlock()};
2981     addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
2982     if (!BTB.ContiguousRange) {
2983       addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
2984     }
2985   }
2986   SL->BitTestCases.clear();
2987 
2988   for (auto &JTCase : SL->JTCases) {
2989     // Emit header first, if it wasn't already emitted.
2990     if (!JTCase.first.Emitted)
2991       emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
2992 
2993     emitJumpTable(JTCase.second, JTCase.second.MBB);
2994   }
2995   SL->JTCases.clear();
2996 
2997   for (auto &SwCase : SL->SwitchCases)
2998     emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
2999   SL->SwitchCases.clear();
3000 }
3001 
3002 void IRTranslator::finalizeFunction() {
3003   // Release the memory used by the different maps we
3004   // needed during the translation.
3005   PendingPHIs.clear();
3006   VMap.reset();
3007   FrameIndices.clear();
3008   MachinePreds.clear();
3009   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
3010   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
3011   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
3012   EntryBuilder.reset();
3013   CurBuilder.reset();
3014   FuncInfo.clear();
3015 }
3016 
3017 /// Returns true if a BasicBlock \p BB within a variadic function contains a
3018 /// variadic musttail call.
3019 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
3020   if (!IsVarArg)
3021     return false;
3022 
3023   // Walk the block backwards, because tail calls usually only appear at the end
3024   // of a block.
3025   return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
3026     const auto *CI = dyn_cast<CallInst>(&I);
3027     return CI && CI->isMustTailCall();
3028   });
3029 }
3030 
3031 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
3032   MF = &CurMF;
3033   const Function &F = MF->getFunction();
3034   if (F.empty())
3035     return false;
3036   GISelCSEAnalysisWrapper &Wrapper =
3037       getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
3038   // Set the CSEConfig and run the analysis.
3039   GISelCSEInfo *CSEInfo = nullptr;
3040   TPC = &getAnalysis<TargetPassConfig>();
3041   bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
3042                        ? EnableCSEInIRTranslator
3043                        : TPC->isGISelCSEEnabled();
3044 
3045   if (EnableCSE) {
3046     EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3047     CSEInfo = &Wrapper.get(TPC->getCSEConfig());
3048     EntryBuilder->setCSEInfo(CSEInfo);
3049     CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3050     CurBuilder->setCSEInfo(CSEInfo);
3051   } else {
3052     EntryBuilder = std::make_unique<MachineIRBuilder>();
3053     CurBuilder = std::make_unique<MachineIRBuilder>();
3054   }
3055   CLI = MF->getSubtarget().getCallLowering();
3056   CurBuilder->setMF(*MF);
3057   EntryBuilder->setMF(*MF);
3058   MRI = &MF->getRegInfo();
3059   DL = &F.getParent()->getDataLayout();
3060   ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
3061   const TargetMachine &TM = MF->getTarget();
3062   TM.resetTargetOptions(F);
3063   EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F);
3064   FuncInfo.MF = MF;
3065   if (EnableOpts)
3066     FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
3067   else
3068     FuncInfo.BPI = nullptr;
3069 
3070   FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
3071 
3072   const auto &TLI = *MF->getSubtarget().getTargetLowering();
3073 
3074   SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
3075   SL->init(TLI, TM, *DL);
3076 
3077 
3078 
3079   assert(PendingPHIs.empty() && "stale PHIs");
3080 
3081   if (!DL->isLittleEndian()) {
3082     // Currently we don't properly handle big endian code.
3083     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3084                                F.getSubprogram(), &F.getEntryBlock());
3085     R << "unable to translate in big endian mode";
3086     reportTranslationError(*MF, *TPC, *ORE, R);
3087   }
3088 
3089   // Release the per-function state when we return, whether we succeeded or not.
3090   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
3091 
3092   // Setup a separate basic-block for the arguments and constants
3093   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
3094   MF->push_back(EntryBB);
3095   EntryBuilder->setMBB(*EntryBB);
3096 
3097   DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
3098   SwiftError.setFunction(CurMF);
3099   SwiftError.createEntriesInEntryBlock(DbgLoc);
3100 
3101   bool IsVarArg = F.isVarArg();
3102   bool HasMustTailInVarArgFn = false;
3103 
3104   // Create all blocks, in IR order, to preserve the layout.
3105   for (const BasicBlock &BB: F) {
3106     auto *&MBB = BBToMBB[&BB];
3107 
3108     MBB = MF->CreateMachineBasicBlock(&BB);
3109     MF->push_back(MBB);
3110 
3111     if (BB.hasAddressTaken())
3112       MBB->setHasAddressTaken();
3113 
3114     if (!HasMustTailInVarArgFn)
3115       HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
3116   }
3117 
3118   MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
3119 
3120   // Make our arguments/constants entry block fallthrough to the IR entry block.
3121   EntryBB->addSuccessor(&getMBB(F.front()));
3122 
3123   if (CLI->fallBackToDAGISel(F)) {
3124     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3125                                F.getSubprogram(), &F.getEntryBlock());
3126     R << "unable to lower function: " << ore::NV("Prototype", F.getType());
3127     reportTranslationError(*MF, *TPC, *ORE, R);
3128     return false;
3129   }
3130 
3131   // Lower the actual args into this basic block.
3132   SmallVector<ArrayRef<Register>, 8> VRegArgs;
3133   for (const Argument &Arg: F.args()) {
3134     if (DL->getTypeStoreSize(Arg.getType()).isZero())
3135       continue; // Don't handle zero sized types.
3136     ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
3137     VRegArgs.push_back(VRegs);
3138 
3139     if (Arg.hasSwiftErrorAttr()) {
3140       assert(VRegs.size() == 1 && "Too many vregs for Swift error");
3141       SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
3142     }
3143   }
3144 
3145   if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs, FuncInfo)) {
3146     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3147                                F.getSubprogram(), &F.getEntryBlock());
3148     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
3149     reportTranslationError(*MF, *TPC, *ORE, R);
3150     return false;
3151   }
3152 
3153   // Need to visit defs before uses when translating instructions.
3154   GISelObserverWrapper WrapperObserver;
3155   if (EnableCSE && CSEInfo)
3156     WrapperObserver.addObserver(CSEInfo);
3157   {
3158     ReversePostOrderTraversal<const Function *> RPOT(&F);
3159 #ifndef NDEBUG
3160     DILocationVerifier Verifier;
3161     WrapperObserver.addObserver(&Verifier);
3162 #endif // ifndef NDEBUG
3163     RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3164     RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
3165     for (const BasicBlock *BB : RPOT) {
3166       MachineBasicBlock &MBB = getMBB(*BB);
3167       // Set the insertion point of all the following translations to
3168       // the end of this basic block.
3169       CurBuilder->setMBB(MBB);
3170       HasTailCall = false;
3171       for (const Instruction &Inst : *BB) {
3172         // If we translated a tail call in the last step, then we know
3173         // everything after the call is either a return, or something that is
3174         // handled by the call itself. (E.g. a lifetime marker or assume
3175         // intrinsic.) In this case, we should stop translating the block and
3176         // move on.
3177         if (HasTailCall)
3178           break;
3179 #ifndef NDEBUG
3180         Verifier.setCurrentInst(&Inst);
3181 #endif // ifndef NDEBUG
3182         if (translate(Inst))
3183           continue;
3184 
3185         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3186                                    Inst.getDebugLoc(), BB);
3187         R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
3188 
3189         if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
3190           std::string InstStrStorage;
3191           raw_string_ostream InstStr(InstStrStorage);
3192           InstStr << Inst;
3193 
3194           R << ": '" << InstStr.str() << "'";
3195         }
3196 
3197         reportTranslationError(*MF, *TPC, *ORE, R);
3198         return false;
3199       }
3200 
3201       finalizeBasicBlock();
3202     }
3203 #ifndef NDEBUG
3204     WrapperObserver.removeObserver(&Verifier);
3205 #endif
3206   }
3207 
3208   finishPendingPhis();
3209 
3210   SwiftError.propagateVRegs();
3211 
3212   // Merge the argument lowering and constants block with its single
3213   // successor, the LLVM-IR entry block.  We want the basic block to
3214   // be maximal.
3215   assert(EntryBB->succ_size() == 1 &&
3216          "Custom BB used for lowering should have only one successor");
3217   // Get the successor of the current entry block.
3218   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
3219   assert(NewEntryBB.pred_size() == 1 &&
3220          "LLVM-IR entry block has a predecessor!?");
3221   // Move all the instruction from the current entry block to the
3222   // new entry block.
3223   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
3224                     EntryBB->end());
3225 
3226   // Update the live-in information for the new entry block.
3227   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
3228     NewEntryBB.addLiveIn(LiveIn);
3229   NewEntryBB.sortUniqueLiveIns();
3230 
3231   // Get rid of the now empty basic block.
3232   EntryBB->removeSuccessor(&NewEntryBB);
3233   MF->remove(EntryBB);
3234   MF->DeleteMachineBasicBlock(EntryBB);
3235 
3236   assert(&MF->front() == &NewEntryBB &&
3237          "New entry wasn't next in the list of basic block!");
3238 
3239   // Initialize stack protector information.
3240   StackProtector &SP = getAnalysis<StackProtector>();
3241   SP.copyToMachineFrameInfo(MF->getFrameInfo());
3242 
3243   return false;
3244 }
3245