xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
26 #include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
27 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
28 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
29 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
30 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
31 #include "llvm/CodeGen/LowLevelType.h"
32 #include "llvm/CodeGen/LowLevelTypeUtils.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineModuleInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/RuntimeLibcalls.h"
42 #include "llvm/CodeGen/StackProtector.h"
43 #include "llvm/CodeGen/SwitchLoweringUtils.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetOpcodes.h"
48 #include "llvm/CodeGen/TargetPassConfig.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/CFG.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/DiagnosticInfo.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/GetElementPtrTypeIterator.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/IR/Metadata.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Statepoint.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/InitializePasses.h"
73 #include "llvm/MC/MCContext.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/CodeGen.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/ErrorHandling.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/Target/TargetIntrinsicInfo.h"
82 #include "llvm/Target/TargetMachine.h"
83 #include "llvm/Transforms/Utils/MemoryOpRemark.h"
84 #include <algorithm>
85 #include <cassert>
86 #include <cstdint>
87 #include <iterator>
88 #include <optional>
89 #include <string>
90 #include <utility>
91 #include <vector>
92 
93 #define DEBUG_TYPE "irtranslator"
94 
95 using namespace llvm;
96 
97 static cl::opt<bool>
98     EnableCSEInIRTranslator("enable-cse-in-irtranslator",
99                             cl::desc("Should enable CSE in irtranslator"),
100                             cl::Optional, cl::init(false));
101 char IRTranslator::ID = 0;
102 
103 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
104                 false, false)
105 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
106 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
107 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
108 INITIALIZE_PASS_DEPENDENCY(StackProtector)
109 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
110 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
111                 false, false)
112 
113 static void reportTranslationError(MachineFunction &MF,
114                                    const TargetPassConfig &TPC,
115                                    OptimizationRemarkEmitter &ORE,
116                                    OptimizationRemarkMissed &R) {
117   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
118 
119   // Print the function name explicitly if we don't have a debug location (which
120   // makes the diagnostic less useful) or if we're going to emit a raw error.
121   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
122     R << (" (in function: " + MF.getName() + ")").str();
123 
124   if (TPC.isGlobalISelAbortEnabled())
125     report_fatal_error(Twine(R.getMsg()));
126   else
127     ORE.emit(R);
128 }
129 
130 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel)
131     : MachineFunctionPass(ID), OptLevel(optlevel) {}
132 
133 #ifndef NDEBUG
134 namespace {
135 /// Verify that every instruction created has the same DILocation as the
136 /// instruction being translated.
137 class DILocationVerifier : public GISelChangeObserver {
138   const Instruction *CurrInst = nullptr;
139 
140 public:
141   DILocationVerifier() = default;
142   ~DILocationVerifier() = default;
143 
144   const Instruction *getCurrentInst() const { return CurrInst; }
145   void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
146 
147   void erasingInstr(MachineInstr &MI) override {}
148   void changingInstr(MachineInstr &MI) override {}
149   void changedInstr(MachineInstr &MI) override {}
150 
151   void createdInstr(MachineInstr &MI) override {
152     assert(getCurrentInst() && "Inserted instruction without a current MI");
153 
154     // Only print the check message if we're actually checking it.
155 #ifndef NDEBUG
156     LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
157                       << " was copied to " << MI);
158 #endif
159     // We allow insts in the entry block to have no debug loc because
160     // they could have originated from constants, and we don't want a jumpy
161     // debug experience.
162     assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
163             (MI.getParent()->isEntryBlock() && !MI.getDebugLoc())) &&
164            "Line info was not transferred to all instructions");
165   }
166 };
167 } // namespace
168 #endif // ifndef NDEBUG
169 
170 
171 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
172   AU.addRequired<StackProtector>();
173   AU.addRequired<TargetPassConfig>();
174   AU.addRequired<GISelCSEAnalysisWrapperPass>();
175   AU.addRequired<AssumptionCacheTracker>();
176   if (OptLevel != CodeGenOpt::None) {
177     AU.addRequired<BranchProbabilityInfoWrapperPass>();
178     AU.addRequired<AAResultsWrapperPass>();
179   }
180   AU.addRequired<TargetLibraryInfoWrapperPass>();
181   AU.addPreserved<TargetLibraryInfoWrapperPass>();
182   getSelectionDAGFallbackAnalysisUsage(AU);
183   MachineFunctionPass::getAnalysisUsage(AU);
184 }
185 
186 IRTranslator::ValueToVRegInfo::VRegListT &
187 IRTranslator::allocateVRegs(const Value &Val) {
188   auto VRegsIt = VMap.findVRegs(Val);
189   if (VRegsIt != VMap.vregs_end())
190     return *VRegsIt->second;
191   auto *Regs = VMap.getVRegs(Val);
192   auto *Offsets = VMap.getOffsets(Val);
193   SmallVector<LLT, 4> SplitTys;
194   computeValueLLTs(*DL, *Val.getType(), SplitTys,
195                    Offsets->empty() ? Offsets : nullptr);
196   for (unsigned i = 0; i < SplitTys.size(); ++i)
197     Regs->push_back(0);
198   return *Regs;
199 }
200 
201 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
202   auto VRegsIt = VMap.findVRegs(Val);
203   if (VRegsIt != VMap.vregs_end())
204     return *VRegsIt->second;
205 
206   if (Val.getType()->isVoidTy())
207     return *VMap.getVRegs(Val);
208 
209   // Create entry for this type.
210   auto *VRegs = VMap.getVRegs(Val);
211   auto *Offsets = VMap.getOffsets(Val);
212 
213   assert(Val.getType()->isSized() &&
214          "Don't know how to create an empty vreg");
215 
216   SmallVector<LLT, 4> SplitTys;
217   computeValueLLTs(*DL, *Val.getType(), SplitTys,
218                    Offsets->empty() ? Offsets : nullptr);
219 
220   if (!isa<Constant>(Val)) {
221     for (auto Ty : SplitTys)
222       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
223     return *VRegs;
224   }
225 
226   if (Val.getType()->isAggregateType()) {
227     // UndefValue, ConstantAggregateZero
228     auto &C = cast<Constant>(Val);
229     unsigned Idx = 0;
230     while (auto Elt = C.getAggregateElement(Idx++)) {
231       auto EltRegs = getOrCreateVRegs(*Elt);
232       llvm::copy(EltRegs, std::back_inserter(*VRegs));
233     }
234   } else {
235     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
236     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
237     bool Success = translate(cast<Constant>(Val), VRegs->front());
238     if (!Success) {
239       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
240                                  MF->getFunction().getSubprogram(),
241                                  &MF->getFunction().getEntryBlock());
242       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
243       reportTranslationError(*MF, *TPC, *ORE, R);
244       return *VRegs;
245     }
246   }
247 
248   return *VRegs;
249 }
250 
251 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
252   auto MapEntry = FrameIndices.find(&AI);
253   if (MapEntry != FrameIndices.end())
254     return MapEntry->second;
255 
256   uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
257   uint64_t Size =
258       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
259 
260   // Always allocate at least one byte.
261   Size = std::max<uint64_t>(Size, 1u);
262 
263   int &FI = FrameIndices[&AI];
264   FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
265   return FI;
266 }
267 
268 Align IRTranslator::getMemOpAlign(const Instruction &I) {
269   if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
270     return SI->getAlign();
271   if (const LoadInst *LI = dyn_cast<LoadInst>(&I))
272     return LI->getAlign();
273   if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I))
274     return AI->getAlign();
275   if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I))
276     return AI->getAlign();
277 
278   OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
279   R << "unable to translate memop: " << ore::NV("Opcode", &I);
280   reportTranslationError(*MF, *TPC, *ORE, R);
281   return Align(1);
282 }
283 
284 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
285   MachineBasicBlock *&MBB = BBToMBB[&BB];
286   assert(MBB && "BasicBlock was not encountered before");
287   return *MBB;
288 }
289 
290 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
291   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
292   MachinePreds[Edge].push_back(NewPred);
293 }
294 
295 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
296                                      MachineIRBuilder &MIRBuilder) {
297   // Get or create a virtual register for each value.
298   // Unless the value is a Constant => loadimm cst?
299   // or inline constant each time?
300   // Creation of a virtual register needs to have a size.
301   Register Op0 = getOrCreateVReg(*U.getOperand(0));
302   Register Op1 = getOrCreateVReg(*U.getOperand(1));
303   Register Res = getOrCreateVReg(U);
304   uint32_t Flags = 0;
305   if (isa<Instruction>(U)) {
306     const Instruction &I = cast<Instruction>(U);
307     Flags = MachineInstr::copyFlagsFromInstruction(I);
308   }
309 
310   MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
311   return true;
312 }
313 
314 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
315                                     MachineIRBuilder &MIRBuilder) {
316   Register Op0 = getOrCreateVReg(*U.getOperand(0));
317   Register Res = getOrCreateVReg(U);
318   uint32_t Flags = 0;
319   if (isa<Instruction>(U)) {
320     const Instruction &I = cast<Instruction>(U);
321     Flags = MachineInstr::copyFlagsFromInstruction(I);
322   }
323   MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
324   return true;
325 }
326 
327 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
328   return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
329 }
330 
331 bool IRTranslator::translateCompare(const User &U,
332                                     MachineIRBuilder &MIRBuilder) {
333   auto *CI = dyn_cast<CmpInst>(&U);
334   Register Op0 = getOrCreateVReg(*U.getOperand(0));
335   Register Op1 = getOrCreateVReg(*U.getOperand(1));
336   Register Res = getOrCreateVReg(U);
337   CmpInst::Predicate Pred =
338       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
339                                     cast<ConstantExpr>(U).getPredicate());
340   if (CmpInst::isIntPredicate(Pred))
341     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
342   else if (Pred == CmpInst::FCMP_FALSE)
343     MIRBuilder.buildCopy(
344         Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
345   else if (Pred == CmpInst::FCMP_TRUE)
346     MIRBuilder.buildCopy(
347         Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
348   else {
349     uint32_t Flags = 0;
350     if (CI)
351       Flags = MachineInstr::copyFlagsFromInstruction(*CI);
352     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags);
353   }
354 
355   return true;
356 }
357 
358 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
359   const ReturnInst &RI = cast<ReturnInst>(U);
360   const Value *Ret = RI.getReturnValue();
361   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
362     Ret = nullptr;
363 
364   ArrayRef<Register> VRegs;
365   if (Ret)
366     VRegs = getOrCreateVRegs(*Ret);
367 
368   Register SwiftErrorVReg = 0;
369   if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
370     SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
371         &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
372   }
373 
374   // The target may mess up with the insertion point, but
375   // this is not important as a return is the last instruction
376   // of the block anyway.
377   return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
378 }
379 
380 void IRTranslator::emitBranchForMergedCondition(
381     const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
382     MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
383     BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
384   // If the leaf of the tree is a comparison, merge the condition into
385   // the caseblock.
386   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
387     CmpInst::Predicate Condition;
388     if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
389       Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
390     } else {
391       const FCmpInst *FC = cast<FCmpInst>(Cond);
392       Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
393     }
394 
395     SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
396                            BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
397                            CurBuilder->getDebugLoc(), TProb, FProb);
398     SL->SwitchCases.push_back(CB);
399     return;
400   }
401 
402   // Create a CaseBlock record representing this branch.
403   CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
404   SwitchCG::CaseBlock CB(
405       Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
406       nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
407   SL->SwitchCases.push_back(CB);
408 }
409 
410 static bool isValInBlock(const Value *V, const BasicBlock *BB) {
411   if (const Instruction *I = dyn_cast<Instruction>(V))
412     return I->getParent() == BB;
413   return true;
414 }
415 
416 void IRTranslator::findMergedConditions(
417     const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
418     MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
419     Instruction::BinaryOps Opc, BranchProbability TProb,
420     BranchProbability FProb, bool InvertCond) {
421   using namespace PatternMatch;
422   assert((Opc == Instruction::And || Opc == Instruction::Or) &&
423          "Expected Opc to be AND/OR");
424   // Skip over not part of the tree and remember to invert op and operands at
425   // next level.
426   Value *NotCond;
427   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
428       isValInBlock(NotCond, CurBB->getBasicBlock())) {
429     findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
430                          !InvertCond);
431     return;
432   }
433 
434   const Instruction *BOp = dyn_cast<Instruction>(Cond);
435   const Value *BOpOp0, *BOpOp1;
436   // Compute the effective opcode for Cond, taking into account whether it needs
437   // to be inverted, e.g.
438   //   and (not (or A, B)), C
439   // gets lowered as
440   //   and (and (not A, not B), C)
441   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
442   if (BOp) {
443     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
444                ? Instruction::And
445                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
446                       ? Instruction::Or
447                       : (Instruction::BinaryOps)0);
448     if (InvertCond) {
449       if (BOpc == Instruction::And)
450         BOpc = Instruction::Or;
451       else if (BOpc == Instruction::Or)
452         BOpc = Instruction::And;
453     }
454   }
455 
456   // If this node is not part of the or/and tree, emit it as a branch.
457   // Note that all nodes in the tree should have same opcode.
458   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
459   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
460       !isValInBlock(BOpOp0, CurBB->getBasicBlock()) ||
461       !isValInBlock(BOpOp1, CurBB->getBasicBlock())) {
462     emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
463                                  InvertCond);
464     return;
465   }
466 
467   //  Create TmpBB after CurBB.
468   MachineFunction::iterator BBI(CurBB);
469   MachineBasicBlock *TmpBB =
470       MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
471   CurBB->getParent()->insert(++BBI, TmpBB);
472 
473   if (Opc == Instruction::Or) {
474     // Codegen X | Y as:
475     // BB1:
476     //   jmp_if_X TBB
477     //   jmp TmpBB
478     // TmpBB:
479     //   jmp_if_Y TBB
480     //   jmp FBB
481     //
482 
483     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
484     // The requirement is that
485     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
486     //     = TrueProb for original BB.
487     // Assuming the original probabilities are A and B, one choice is to set
488     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
489     // A/(1+B) and 2B/(1+B). This choice assumes that
490     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
491     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
492     // TmpBB, but the math is more complicated.
493 
494     auto NewTrueProb = TProb / 2;
495     auto NewFalseProb = TProb / 2 + FProb;
496     // Emit the LHS condition.
497     findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
498                          NewFalseProb, InvertCond);
499 
500     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
501     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
502     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
503     // Emit the RHS condition into TmpBB.
504     findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
505                          Probs[1], InvertCond);
506   } else {
507     assert(Opc == Instruction::And && "Unknown merge op!");
508     // Codegen X & Y as:
509     // BB1:
510     //   jmp_if_X TmpBB
511     //   jmp FBB
512     // TmpBB:
513     //   jmp_if_Y TBB
514     //   jmp FBB
515     //
516     //  This requires creation of TmpBB after CurBB.
517 
518     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
519     // The requirement is that
520     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
521     //     = FalseProb for original BB.
522     // Assuming the original probabilities are A and B, one choice is to set
523     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
524     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
525     // TrueProb for BB1 * FalseProb for TmpBB.
526 
527     auto NewTrueProb = TProb + FProb / 2;
528     auto NewFalseProb = FProb / 2;
529     // Emit the LHS condition.
530     findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
531                          NewFalseProb, InvertCond);
532 
533     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
534     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
535     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
536     // Emit the RHS condition into TmpBB.
537     findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
538                          Probs[1], InvertCond);
539   }
540 }
541 
542 bool IRTranslator::shouldEmitAsBranches(
543     const std::vector<SwitchCG::CaseBlock> &Cases) {
544   // For multiple cases, it's better to emit as branches.
545   if (Cases.size() != 2)
546     return true;
547 
548   // If this is two comparisons of the same values or'd or and'd together, they
549   // will get folded into a single comparison, so don't emit two blocks.
550   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
551        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
552       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
553        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
554     return false;
555   }
556 
557   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
558   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
559   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
560       Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
561       isa<Constant>(Cases[0].CmpRHS) &&
562       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
563     if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
564         Cases[0].TrueBB == Cases[1].ThisBB)
565       return false;
566     if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
567         Cases[0].FalseBB == Cases[1].ThisBB)
568       return false;
569   }
570 
571   return true;
572 }
573 
574 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
575   const BranchInst &BrInst = cast<BranchInst>(U);
576   auto &CurMBB = MIRBuilder.getMBB();
577   auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));
578 
579   if (BrInst.isUnconditional()) {
580     // If the unconditional target is the layout successor, fallthrough.
581     if (OptLevel == CodeGenOpt::None || !CurMBB.isLayoutSuccessor(Succ0MBB))
582       MIRBuilder.buildBr(*Succ0MBB);
583 
584     // Link successors.
585     for (const BasicBlock *Succ : successors(&BrInst))
586       CurMBB.addSuccessor(&getMBB(*Succ));
587     return true;
588   }
589 
590   // If this condition is one of the special cases we handle, do special stuff
591   // now.
592   const Value *CondVal = BrInst.getCondition();
593   MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));
594 
595   const auto &TLI = *MF->getSubtarget().getTargetLowering();
596 
597   // If this is a series of conditions that are or'd or and'd together, emit
598   // this as a sequence of branches instead of setcc's with and/or operations.
599   // As long as jumps are not expensive (exceptions for multi-use logic ops,
600   // unpredictable branches, and vector extracts because those jumps are likely
601   // expensive for any target), this should improve performance.
602   // For example, instead of something like:
603   //     cmp A, B
604   //     C = seteq
605   //     cmp D, E
606   //     F = setle
607   //     or C, F
608   //     jnz foo
609   // Emit:
610   //     cmp A, B
611   //     je foo
612   //     cmp D, E
613   //     jle foo
614   using namespace PatternMatch;
615   const Instruction *CondI = dyn_cast<Instruction>(CondVal);
616   if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() &&
617       !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) {
618     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
619     Value *Vec;
620     const Value *BOp0, *BOp1;
621     if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
622       Opcode = Instruction::And;
623     else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
624       Opcode = Instruction::Or;
625 
626     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
627                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
628       findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
629                            getEdgeProbability(&CurMBB, Succ0MBB),
630                            getEdgeProbability(&CurMBB, Succ1MBB),
631                            /*InvertCond=*/false);
632       assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
633 
634       // Allow some cases to be rejected.
635       if (shouldEmitAsBranches(SL->SwitchCases)) {
636         // Emit the branch for this block.
637         emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
638         SL->SwitchCases.erase(SL->SwitchCases.begin());
639         return true;
640       }
641 
642       // Okay, we decided not to do this, remove any inserted MBB's and clear
643       // SwitchCases.
644       for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
645         MF->erase(SL->SwitchCases[I].ThisBB);
646 
647       SL->SwitchCases.clear();
648     }
649   }
650 
651   // Create a CaseBlock record representing this branch.
652   SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
653                          ConstantInt::getTrue(MF->getFunction().getContext()),
654                          nullptr, Succ0MBB, Succ1MBB, &CurMBB,
655                          CurBuilder->getDebugLoc());
656 
657   // Use emitSwitchCase to actually insert the fast branch sequence for this
658   // cond branch.
659   emitSwitchCase(CB, &CurMBB, *CurBuilder);
660   return true;
661 }
662 
663 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
664                                         MachineBasicBlock *Dst,
665                                         BranchProbability Prob) {
666   if (!FuncInfo.BPI) {
667     Src->addSuccessorWithoutProb(Dst);
668     return;
669   }
670   if (Prob.isUnknown())
671     Prob = getEdgeProbability(Src, Dst);
672   Src->addSuccessor(Dst, Prob);
673 }
674 
675 BranchProbability
676 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
677                                  const MachineBasicBlock *Dst) const {
678   const BasicBlock *SrcBB = Src->getBasicBlock();
679   const BasicBlock *DstBB = Dst->getBasicBlock();
680   if (!FuncInfo.BPI) {
681     // If BPI is not available, set the default probability as 1 / N, where N is
682     // the number of successors.
683     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
684     return BranchProbability(1, SuccSize);
685   }
686   return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
687 }
688 
689 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
690   using namespace SwitchCG;
691   // Extract cases from the switch.
692   const SwitchInst &SI = cast<SwitchInst>(U);
693   BranchProbabilityInfo *BPI = FuncInfo.BPI;
694   CaseClusterVector Clusters;
695   Clusters.reserve(SI.getNumCases());
696   for (const auto &I : SI.cases()) {
697     MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
698     assert(Succ && "Could not find successor mbb in mapping");
699     const ConstantInt *CaseVal = I.getCaseValue();
700     BranchProbability Prob =
701         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
702             : BranchProbability(1, SI.getNumCases() + 1);
703     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
704   }
705 
706   MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
707 
708   // Cluster adjacent cases with the same destination. We do this at all
709   // optimization levels because it's cheap to do and will make codegen faster
710   // if there are many clusters.
711   sortAndRangeify(Clusters);
712 
713   MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
714 
715   // If there is only the default destination, jump there directly.
716   if (Clusters.empty()) {
717     SwitchMBB->addSuccessor(DefaultMBB);
718     if (DefaultMBB != SwitchMBB->getNextNode())
719       MIB.buildBr(*DefaultMBB);
720     return true;
721   }
722 
723   SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
724   SL->findBitTestClusters(Clusters, &SI);
725 
726   LLVM_DEBUG({
727     dbgs() << "Case clusters: ";
728     for (const CaseCluster &C : Clusters) {
729       if (C.Kind == CC_JumpTable)
730         dbgs() << "JT:";
731       if (C.Kind == CC_BitTests)
732         dbgs() << "BT:";
733 
734       C.Low->getValue().print(dbgs(), true);
735       if (C.Low != C.High) {
736         dbgs() << '-';
737         C.High->getValue().print(dbgs(), true);
738       }
739       dbgs() << ' ';
740     }
741     dbgs() << '\n';
742   });
743 
744   assert(!Clusters.empty());
745   SwitchWorkList WorkList;
746   CaseClusterIt First = Clusters.begin();
747   CaseClusterIt Last = Clusters.end() - 1;
748   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
749   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
750 
751   // FIXME: At the moment we don't do any splitting optimizations here like
752   // SelectionDAG does, so this worklist only has one entry.
753   while (!WorkList.empty()) {
754     SwitchWorkListItem W = WorkList.pop_back_val();
755     if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
756       return false;
757   }
758   return true;
759 }
760 
761 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
762                                  MachineBasicBlock *MBB) {
763   // Emit the code for the jump table
764   assert(JT.Reg != -1U && "Should lower JT Header first!");
765   MachineIRBuilder MIB(*MBB->getParent());
766   MIB.setMBB(*MBB);
767   MIB.setDebugLoc(CurBuilder->getDebugLoc());
768 
769   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
770   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
771 
772   auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
773   MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
774 }
775 
776 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
777                                        SwitchCG::JumpTableHeader &JTH,
778                                        MachineBasicBlock *HeaderBB) {
779   MachineIRBuilder MIB(*HeaderBB->getParent());
780   MIB.setMBB(*HeaderBB);
781   MIB.setDebugLoc(CurBuilder->getDebugLoc());
782 
783   const Value &SValue = *JTH.SValue;
784   // Subtract the lowest switch case value from the value being switched on.
785   const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
786   Register SwitchOpReg = getOrCreateVReg(SValue);
787   auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
788   auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
789 
790   // This value may be smaller or larger than the target's pointer type, and
791   // therefore require extension or truncating.
792   Type *PtrIRTy = SValue.getType()->getPointerTo();
793   const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
794   Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
795 
796   JT.Reg = Sub.getReg(0);
797 
798   if (JTH.FallthroughUnreachable) {
799     if (JT.MBB != HeaderBB->getNextNode())
800       MIB.buildBr(*JT.MBB);
801     return true;
802   }
803 
804   // Emit the range check for the jump table, and branch to the default block
805   // for the switch statement if the value being switched on exceeds the
806   // largest case in the switch.
807   auto Cst = getOrCreateVReg(
808       *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
809   Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
810   auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
811 
812   auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
813 
814   // Avoid emitting unnecessary branches to the next block.
815   if (JT.MBB != HeaderBB->getNextNode())
816     BrCond = MIB.buildBr(*JT.MBB);
817   return true;
818 }
819 
820 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
821                                   MachineBasicBlock *SwitchBB,
822                                   MachineIRBuilder &MIB) {
823   Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
824   Register Cond;
825   DebugLoc OldDbgLoc = MIB.getDebugLoc();
826   MIB.setDebugLoc(CB.DbgLoc);
827   MIB.setMBB(*CB.ThisBB);
828 
829   if (CB.PredInfo.NoCmp) {
830     // Branch or fall through to TrueBB.
831     addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
832     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
833                       CB.ThisBB);
834     CB.ThisBB->normalizeSuccProbs();
835     if (CB.TrueBB != CB.ThisBB->getNextNode())
836       MIB.buildBr(*CB.TrueBB);
837     MIB.setDebugLoc(OldDbgLoc);
838     return;
839   }
840 
841   const LLT i1Ty = LLT::scalar(1);
842   // Build the compare.
843   if (!CB.CmpMHS) {
844     const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
845     // For conditional branch lowering, we might try to do something silly like
846     // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
847     // just re-use the existing condition vreg.
848     if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && CI->isOne() &&
849         CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
850       Cond = CondLHS;
851     } else {
852       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
853       if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
854         Cond =
855             MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
856       else
857         Cond =
858             MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
859     }
860   } else {
861     assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
862            "Can only handle SLE ranges");
863 
864     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
865     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
866 
867     Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
868     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
869       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
870       Cond =
871           MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
872     } else {
873       const LLT CmpTy = MRI->getType(CmpOpReg);
874       auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
875       auto Diff = MIB.buildConstant(CmpTy, High - Low);
876       Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
877     }
878   }
879 
880   // Update successor info
881   addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
882 
883   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
884                     CB.ThisBB);
885 
886   // TrueBB and FalseBB are always different unless the incoming IR is
887   // degenerate. This only happens when running llc on weird IR.
888   if (CB.TrueBB != CB.FalseBB)
889     addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
890   CB.ThisBB->normalizeSuccProbs();
891 
892   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
893                     CB.ThisBB);
894 
895   MIB.buildBrCond(Cond, *CB.TrueBB);
896   MIB.buildBr(*CB.FalseBB);
897   MIB.setDebugLoc(OldDbgLoc);
898 }
899 
900 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
901                                           MachineBasicBlock *SwitchMBB,
902                                           MachineBasicBlock *CurMBB,
903                                           MachineBasicBlock *DefaultMBB,
904                                           MachineIRBuilder &MIB,
905                                           MachineFunction::iterator BBI,
906                                           BranchProbability UnhandledProbs,
907                                           SwitchCG::CaseClusterIt I,
908                                           MachineBasicBlock *Fallthrough,
909                                           bool FallthroughUnreachable) {
910   using namespace SwitchCG;
911   MachineFunction *CurMF = SwitchMBB->getParent();
912   // FIXME: Optimize away range check based on pivot comparisons.
913   JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
914   SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
915   BranchProbability DefaultProb = W.DefaultProb;
916 
917   // The jump block hasn't been inserted yet; insert it here.
918   MachineBasicBlock *JumpMBB = JT->MBB;
919   CurMF->insert(BBI, JumpMBB);
920 
921   // Since the jump table block is separate from the switch block, we need
922   // to keep track of it as a machine predecessor to the default block,
923   // otherwise we lose the phi edges.
924   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
925                     CurMBB);
926   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
927                     JumpMBB);
928 
929   auto JumpProb = I->Prob;
930   auto FallthroughProb = UnhandledProbs;
931 
932   // If the default statement is a target of the jump table, we evenly
933   // distribute the default probability to successors of CurMBB. Also
934   // update the probability on the edge from JumpMBB to Fallthrough.
935   for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
936                                         SE = JumpMBB->succ_end();
937        SI != SE; ++SI) {
938     if (*SI == DefaultMBB) {
939       JumpProb += DefaultProb / 2;
940       FallthroughProb -= DefaultProb / 2;
941       JumpMBB->setSuccProbability(SI, DefaultProb / 2);
942       JumpMBB->normalizeSuccProbs();
943     } else {
944       // Also record edges from the jump table block to it's successors.
945       addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
946                         JumpMBB);
947     }
948   }
949 
950   if (FallthroughUnreachable)
951     JTH->FallthroughUnreachable = true;
952 
953   if (!JTH->FallthroughUnreachable)
954     addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
955   addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
956   CurMBB->normalizeSuccProbs();
957 
958   // The jump table header will be inserted in our current block, do the
959   // range check, and fall through to our fallthrough block.
960   JTH->HeaderBB = CurMBB;
961   JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
962 
963   // If we're in the right place, emit the jump table header right now.
964   if (CurMBB == SwitchMBB) {
965     if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
966       return false;
967     JTH->Emitted = true;
968   }
969   return true;
970 }
971 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
972                                             Value *Cond,
973                                             MachineBasicBlock *Fallthrough,
974                                             bool FallthroughUnreachable,
975                                             BranchProbability UnhandledProbs,
976                                             MachineBasicBlock *CurMBB,
977                                             MachineIRBuilder &MIB,
978                                             MachineBasicBlock *SwitchMBB) {
979   using namespace SwitchCG;
980   const Value *RHS, *LHS, *MHS;
981   CmpInst::Predicate Pred;
982   if (I->Low == I->High) {
983     // Check Cond == I->Low.
984     Pred = CmpInst::ICMP_EQ;
985     LHS = Cond;
986     RHS = I->Low;
987     MHS = nullptr;
988   } else {
989     // Check I->Low <= Cond <= I->High.
990     Pred = CmpInst::ICMP_SLE;
991     LHS = I->Low;
992     MHS = Cond;
993     RHS = I->High;
994   }
995 
996   // If Fallthrough is unreachable, fold away the comparison.
997   // The false probability is the sum of all unhandled cases.
998   CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
999                CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
1000 
1001   emitSwitchCase(CB, SwitchMBB, MIB);
1002   return true;
1003 }
1004 
1005 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
1006                                      MachineBasicBlock *SwitchBB) {
1007   MachineIRBuilder &MIB = *CurBuilder;
1008   MIB.setMBB(*SwitchBB);
1009 
1010   // Subtract the minimum value.
1011   Register SwitchOpReg = getOrCreateVReg(*B.SValue);
1012 
1013   LLT SwitchOpTy = MRI->getType(SwitchOpReg);
1014   Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
1015   auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
1016 
1017   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
1018   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1019 
1020   LLT MaskTy = SwitchOpTy;
1021   if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() ||
1022       !llvm::has_single_bit<uint32_t>(MaskTy.getSizeInBits()))
1023     MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1024   else {
1025     // Ensure that the type will fit the mask value.
1026     for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
1027       if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
1028         // Switch table case range are encoded into series of masks.
1029         // Just use pointer type, it's guaranteed to fit.
1030         MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1031         break;
1032       }
1033     }
1034   }
1035   Register SubReg = RangeSub.getReg(0);
1036   if (SwitchOpTy != MaskTy)
1037     SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);
1038 
1039   B.RegVT = getMVTForLLT(MaskTy);
1040   B.Reg = SubReg;
1041 
1042   MachineBasicBlock *MBB = B.Cases[0].ThisBB;
1043 
1044   if (!B.FallthroughUnreachable)
1045     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
1046   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
1047 
1048   SwitchBB->normalizeSuccProbs();
1049 
1050   if (!B.FallthroughUnreachable) {
1051     // Conditional branch to the default block.
1052     auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
1053     auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
1054                                   RangeSub, RangeCst);
1055     MIB.buildBrCond(RangeCmp, *B.Default);
1056   }
1057 
1058   // Avoid emitting unnecessary branches to the next block.
1059   if (MBB != SwitchBB->getNextNode())
1060     MIB.buildBr(*MBB);
1061 }
1062 
1063 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
1064                                    MachineBasicBlock *NextMBB,
1065                                    BranchProbability BranchProbToNext,
1066                                    Register Reg, SwitchCG::BitTestCase &B,
1067                                    MachineBasicBlock *SwitchBB) {
1068   MachineIRBuilder &MIB = *CurBuilder;
1069   MIB.setMBB(*SwitchBB);
1070 
1071   LLT SwitchTy = getLLTForMVT(BB.RegVT);
1072   Register Cmp;
1073   unsigned PopCount = llvm::popcount(B.Mask);
1074   if (PopCount == 1) {
1075     // Testing for a single bit; just compare the shift count with what it
1076     // would need to be to shift a 1 bit in that position.
1077     auto MaskTrailingZeros =
1078         MIB.buildConstant(SwitchTy, llvm::countr_zero(B.Mask));
1079     Cmp =
1080         MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
1081             .getReg(0);
1082   } else if (PopCount == BB.Range) {
1083     // There is only one zero bit in the range, test for it directly.
1084     auto MaskTrailingOnes =
1085         MIB.buildConstant(SwitchTy, llvm::countr_one(B.Mask));
1086     Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
1087               .getReg(0);
1088   } else {
1089     // Make desired shift.
1090     auto CstOne = MIB.buildConstant(SwitchTy, 1);
1091     auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);
1092 
1093     // Emit bit tests and jumps.
1094     auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
1095     auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
1096     auto CstZero = MIB.buildConstant(SwitchTy, 0);
1097     Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
1098               .getReg(0);
1099   }
1100 
1101   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
1102   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
1103   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
1104   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
1105   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
1106   // one as they are relative probabilities (and thus work more like weights),
1107   // and hence we need to normalize them to let the sum of them become one.
1108   SwitchBB->normalizeSuccProbs();
1109 
1110   // Record the fact that the IR edge from the header to the bit test target
1111   // will go through our new block. Neeeded for PHIs to have nodes added.
1112   addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
1113                     SwitchBB);
1114 
1115   MIB.buildBrCond(Cmp, *B.TargetBB);
1116 
1117   // Avoid emitting unnecessary branches to the next block.
1118   if (NextMBB != SwitchBB->getNextNode())
1119     MIB.buildBr(*NextMBB);
1120 }
1121 
1122 bool IRTranslator::lowerBitTestWorkItem(
1123     SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
1124     MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
1125     MachineIRBuilder &MIB, MachineFunction::iterator BBI,
1126     BranchProbability DefaultProb, BranchProbability UnhandledProbs,
1127     SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
1128     bool FallthroughUnreachable) {
1129   using namespace SwitchCG;
1130   MachineFunction *CurMF = SwitchMBB->getParent();
1131   // FIXME: Optimize away range check based on pivot comparisons.
1132   BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
1133   // The bit test blocks haven't been inserted yet; insert them here.
1134   for (BitTestCase &BTC : BTB->Cases)
1135     CurMF->insert(BBI, BTC.ThisBB);
1136 
1137   // Fill in fields of the BitTestBlock.
1138   BTB->Parent = CurMBB;
1139   BTB->Default = Fallthrough;
1140 
1141   BTB->DefaultProb = UnhandledProbs;
1142   // If the cases in bit test don't form a contiguous range, we evenly
1143   // distribute the probability on the edge to Fallthrough to two
1144   // successors of CurMBB.
1145   if (!BTB->ContiguousRange) {
1146     BTB->Prob += DefaultProb / 2;
1147     BTB->DefaultProb -= DefaultProb / 2;
1148   }
1149 
1150   if (FallthroughUnreachable)
1151     BTB->FallthroughUnreachable = true;
1152 
1153   // If we're in the right place, emit the bit test header right now.
1154   if (CurMBB == SwitchMBB) {
1155     emitBitTestHeader(*BTB, SwitchMBB);
1156     BTB->Emitted = true;
1157   }
1158   return true;
1159 }
1160 
1161 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
1162                                        Value *Cond,
1163                                        MachineBasicBlock *SwitchMBB,
1164                                        MachineBasicBlock *DefaultMBB,
1165                                        MachineIRBuilder &MIB) {
1166   using namespace SwitchCG;
1167   MachineFunction *CurMF = FuncInfo.MF;
1168   MachineBasicBlock *NextMBB = nullptr;
1169   MachineFunction::iterator BBI(W.MBB);
1170   if (++BBI != FuncInfo.MF->end())
1171     NextMBB = &*BBI;
1172 
1173   if (EnableOpts) {
1174     // Here, we order cases by probability so the most likely case will be
1175     // checked first. However, two clusters can have the same probability in
1176     // which case their relative ordering is non-deterministic. So we use Low
1177     // as a tie-breaker as clusters are guaranteed to never overlap.
1178     llvm::sort(W.FirstCluster, W.LastCluster + 1,
1179                [](const CaseCluster &a, const CaseCluster &b) {
1180                  return a.Prob != b.Prob
1181                             ? a.Prob > b.Prob
1182                             : a.Low->getValue().slt(b.Low->getValue());
1183                });
1184 
1185     // Rearrange the case blocks so that the last one falls through if possible
1186     // without changing the order of probabilities.
1187     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
1188       --I;
1189       if (I->Prob > W.LastCluster->Prob)
1190         break;
1191       if (I->Kind == CC_Range && I->MBB == NextMBB) {
1192         std::swap(*I, *W.LastCluster);
1193         break;
1194       }
1195     }
1196   }
1197 
1198   // Compute total probability.
1199   BranchProbability DefaultProb = W.DefaultProb;
1200   BranchProbability UnhandledProbs = DefaultProb;
1201   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
1202     UnhandledProbs += I->Prob;
1203 
1204   MachineBasicBlock *CurMBB = W.MBB;
1205   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
1206     bool FallthroughUnreachable = false;
1207     MachineBasicBlock *Fallthrough;
1208     if (I == W.LastCluster) {
1209       // For the last cluster, fall through to the default destination.
1210       Fallthrough = DefaultMBB;
1211       FallthroughUnreachable = isa<UnreachableInst>(
1212           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
1213     } else {
1214       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
1215       CurMF->insert(BBI, Fallthrough);
1216     }
1217     UnhandledProbs -= I->Prob;
1218 
1219     switch (I->Kind) {
1220     case CC_BitTests: {
1221       if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1222                                 DefaultProb, UnhandledProbs, I, Fallthrough,
1223                                 FallthroughUnreachable)) {
1224         LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
1225         return false;
1226       }
1227       break;
1228     }
1229 
1230     case CC_JumpTable: {
1231       if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1232                                   UnhandledProbs, I, Fallthrough,
1233                                   FallthroughUnreachable)) {
1234         LLVM_DEBUG(dbgs() << "Failed to lower jump table");
1235         return false;
1236       }
1237       break;
1238     }
1239     case CC_Range: {
1240       if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
1241                                     FallthroughUnreachable, UnhandledProbs,
1242                                     CurMBB, MIB, SwitchMBB)) {
1243         LLVM_DEBUG(dbgs() << "Failed to lower switch range");
1244         return false;
1245       }
1246       break;
1247     }
1248     }
1249     CurMBB = Fallthrough;
1250   }
1251 
1252   return true;
1253 }
1254 
1255 bool IRTranslator::translateIndirectBr(const User &U,
1256                                        MachineIRBuilder &MIRBuilder) {
1257   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
1258 
1259   const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
1260   MIRBuilder.buildBrIndirect(Tgt);
1261 
1262   // Link successors.
1263   SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
1264   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
1265   for (const BasicBlock *Succ : successors(&BrInst)) {
1266     // It's legal for indirectbr instructions to have duplicate blocks in the
1267     // destination list. We don't allow this in MIR. Skip anything that's
1268     // already a successor.
1269     if (!AddedSuccessors.insert(Succ).second)
1270       continue;
1271     CurBB.addSuccessor(&getMBB(*Succ));
1272   }
1273 
1274   return true;
1275 }
1276 
1277 static bool isSwiftError(const Value *V) {
1278   if (auto Arg = dyn_cast<Argument>(V))
1279     return Arg->hasSwiftErrorAttr();
1280   if (auto AI = dyn_cast<AllocaInst>(V))
1281     return AI->isSwiftError();
1282   return false;
1283 }
1284 
1285 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
1286   const LoadInst &LI = cast<LoadInst>(U);
1287 
1288   unsigned StoreSize = DL->getTypeStoreSize(LI.getType());
1289   if (StoreSize == 0)
1290     return true;
1291 
1292   ArrayRef<Register> Regs = getOrCreateVRegs(LI);
1293   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
1294   Register Base = getOrCreateVReg(*LI.getPointerOperand());
1295   AAMDNodes AAInfo = LI.getAAMetadata();
1296 
1297   const Value *Ptr = LI.getPointerOperand();
1298   Type *OffsetIRTy = DL->getIndexType(Ptr->getType());
1299   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1300 
1301   if (CLI->supportSwiftError() && isSwiftError(Ptr)) {
1302     assert(Regs.size() == 1 && "swifterror should be single pointer");
1303     Register VReg =
1304         SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), Ptr);
1305     MIRBuilder.buildCopy(Regs[0], VReg);
1306     return true;
1307   }
1308 
1309   auto &TLI = *MF->getSubtarget().getTargetLowering();
1310   MachineMemOperand::Flags Flags =
1311       TLI.getLoadMemOperandFlags(LI, *DL, AC, LibInfo);
1312   if (AA && !(Flags & MachineMemOperand::MOInvariant)) {
1313     if (AA->pointsToConstantMemory(
1314             MemoryLocation(Ptr, LocationSize::precise(StoreSize), AAInfo))) {
1315       Flags |= MachineMemOperand::MOInvariant;
1316     }
1317   }
1318 
1319   const MDNode *Ranges =
1320       Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
1321   for (unsigned i = 0; i < Regs.size(); ++i) {
1322     Register Addr;
1323     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1324 
1325     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
1326     Align BaseAlign = getMemOpAlign(LI);
1327     auto MMO = MF->getMachineMemOperand(
1328         Ptr, Flags, MRI->getType(Regs[i]),
1329         commonAlignment(BaseAlign, Offsets[i] / 8), AAInfo, Ranges,
1330         LI.getSyncScopeID(), LI.getOrdering());
1331     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
1332   }
1333 
1334   return true;
1335 }
1336 
1337 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
1338   const StoreInst &SI = cast<StoreInst>(U);
1339   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
1340     return true;
1341 
1342   ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
1343   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
1344   Register Base = getOrCreateVReg(*SI.getPointerOperand());
1345 
1346   Type *OffsetIRTy = DL->getIndexType(SI.getPointerOperandType());
1347   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1348 
1349   if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
1350     assert(Vals.size() == 1 && "swifterror should be single pointer");
1351 
1352     Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
1353                                                     SI.getPointerOperand());
1354     MIRBuilder.buildCopy(VReg, Vals[0]);
1355     return true;
1356   }
1357 
1358   auto &TLI = *MF->getSubtarget().getTargetLowering();
1359   MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
1360 
1361   for (unsigned i = 0; i < Vals.size(); ++i) {
1362     Register Addr;
1363     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1364 
1365     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
1366     Align BaseAlign = getMemOpAlign(SI);
1367     auto MMO = MF->getMachineMemOperand(
1368         Ptr, Flags, MRI->getType(Vals[i]),
1369         commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr,
1370         SI.getSyncScopeID(), SI.getOrdering());
1371     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
1372   }
1373   return true;
1374 }
1375 
1376 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
1377   const Value *Src = U.getOperand(0);
1378   Type *Int32Ty = Type::getInt32Ty(U.getContext());
1379 
1380   // getIndexedOffsetInType is designed for GEPs, so the first index is the
1381   // usual array element rather than looking into the actual aggregate.
1382   SmallVector<Value *, 1> Indices;
1383   Indices.push_back(ConstantInt::get(Int32Ty, 0));
1384 
1385   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
1386     for (auto Idx : EVI->indices())
1387       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1388   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
1389     for (auto Idx : IVI->indices())
1390       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1391   } else {
1392     for (unsigned i = 1; i < U.getNumOperands(); ++i)
1393       Indices.push_back(U.getOperand(i));
1394   }
1395 
1396   return 8 * static_cast<uint64_t>(
1397                  DL.getIndexedOffsetInType(Src->getType(), Indices));
1398 }
1399 
1400 bool IRTranslator::translateExtractValue(const User &U,
1401                                          MachineIRBuilder &MIRBuilder) {
1402   const Value *Src = U.getOperand(0);
1403   uint64_t Offset = getOffsetFromIndices(U, *DL);
1404   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1405   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
1406   unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
1407   auto &DstRegs = allocateVRegs(U);
1408 
1409   for (unsigned i = 0; i < DstRegs.size(); ++i)
1410     DstRegs[i] = SrcRegs[Idx++];
1411 
1412   return true;
1413 }
1414 
1415 bool IRTranslator::translateInsertValue(const User &U,
1416                                         MachineIRBuilder &MIRBuilder) {
1417   const Value *Src = U.getOperand(0);
1418   uint64_t Offset = getOffsetFromIndices(U, *DL);
1419   auto &DstRegs = allocateVRegs(U);
1420   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
1421   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1422   ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
1423   auto *InsertedIt = InsertedRegs.begin();
1424 
1425   for (unsigned i = 0; i < DstRegs.size(); ++i) {
1426     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
1427       DstRegs[i] = *InsertedIt++;
1428     else
1429       DstRegs[i] = SrcRegs[i];
1430   }
1431 
1432   return true;
1433 }
1434 
1435 bool IRTranslator::translateSelect(const User &U,
1436                                    MachineIRBuilder &MIRBuilder) {
1437   Register Tst = getOrCreateVReg(*U.getOperand(0));
1438   ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1439   ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1440   ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1441 
1442   uint32_t Flags = 0;
1443   if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
1444     Flags = MachineInstr::copyFlagsFromInstruction(*SI);
1445 
1446   for (unsigned i = 0; i < ResRegs.size(); ++i) {
1447     MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1448   }
1449 
1450   return true;
1451 }
1452 
1453 bool IRTranslator::translateCopy(const User &U, const Value &V,
1454                                  MachineIRBuilder &MIRBuilder) {
1455   Register Src = getOrCreateVReg(V);
1456   auto &Regs = *VMap.getVRegs(U);
1457   if (Regs.empty()) {
1458     Regs.push_back(Src);
1459     VMap.getOffsets(U)->push_back(0);
1460   } else {
1461     // If we already assigned a vreg for this instruction, we can't change that.
1462     // Emit a copy to satisfy the users we already emitted.
1463     MIRBuilder.buildCopy(Regs[0], Src);
1464   }
1465   return true;
1466 }
1467 
1468 bool IRTranslator::translateBitCast(const User &U,
1469                                     MachineIRBuilder &MIRBuilder) {
1470   // If we're bitcasting to the source type, we can reuse the source vreg.
1471   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1472       getLLTForType(*U.getType(), *DL)) {
1473     // If the source is a ConstantInt then it was probably created by
1474     // ConstantHoisting and we should leave it alone.
1475     if (isa<ConstantInt>(U.getOperand(0)))
1476       return translateCast(TargetOpcode::G_CONSTANT_FOLD_BARRIER, U,
1477                            MIRBuilder);
1478     return translateCopy(U, *U.getOperand(0), MIRBuilder);
1479   }
1480 
1481   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1482 }
1483 
1484 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1485                                  MachineIRBuilder &MIRBuilder) {
1486   Register Op = getOrCreateVReg(*U.getOperand(0));
1487   Register Res = getOrCreateVReg(U);
1488   MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1489   return true;
1490 }
1491 
1492 bool IRTranslator::translateGetElementPtr(const User &U,
1493                                           MachineIRBuilder &MIRBuilder) {
1494   Value &Op0 = *U.getOperand(0);
1495   Register BaseReg = getOrCreateVReg(Op0);
1496   Type *PtrIRTy = Op0.getType();
1497   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1498   Type *OffsetIRTy = DL->getIndexType(PtrIRTy);
1499   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1500 
1501   // Normalize Vector GEP - all scalar operands should be converted to the
1502   // splat vector.
1503   unsigned VectorWidth = 0;
1504 
1505   // True if we should use a splat vector; using VectorWidth alone is not
1506   // sufficient.
1507   bool WantSplatVector = false;
1508   if (auto *VT = dyn_cast<VectorType>(U.getType())) {
1509     VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
1510     // We don't produce 1 x N vectors; those are treated as scalars.
1511     WantSplatVector = VectorWidth > 1;
1512   }
1513 
1514   // We might need to splat the base pointer into a vector if the offsets
1515   // are vectors.
1516   if (WantSplatVector && !PtrTy.isVector()) {
1517     BaseReg =
1518         MIRBuilder
1519             .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg)
1520             .getReg(0);
1521     PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1522     PtrTy = getLLTForType(*PtrIRTy, *DL);
1523     OffsetIRTy = DL->getIndexType(PtrIRTy);
1524     OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1525   }
1526 
1527   int64_t Offset = 0;
1528   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1529        GTI != E; ++GTI) {
1530     const Value *Idx = GTI.getOperand();
1531     if (StructType *StTy = GTI.getStructTypeOrNull()) {
1532       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1533       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1534       continue;
1535     } else {
1536       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1537 
1538       // If this is a scalar constant or a splat vector of constants,
1539       // handle it quickly.
1540       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1541         Offset += ElementSize * CI->getSExtValue();
1542         continue;
1543       }
1544 
1545       if (Offset != 0) {
1546         auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1547         BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1548                       .getReg(0);
1549         Offset = 0;
1550       }
1551 
1552       Register IdxReg = getOrCreateVReg(*Idx);
1553       LLT IdxTy = MRI->getType(IdxReg);
1554       if (IdxTy != OffsetTy) {
1555         if (!IdxTy.isVector() && WantSplatVector) {
1556           IdxReg = MIRBuilder.buildSplatVector(
1557             OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1558         }
1559 
1560         IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1561       }
1562 
1563       // N = N + Idx * ElementSize;
1564       // Avoid doing it for ElementSize of 1.
1565       Register GepOffsetReg;
1566       if (ElementSize != 1) {
1567         auto ElementSizeMIB = MIRBuilder.buildConstant(
1568             getLLTForType(*OffsetIRTy, *DL), ElementSize);
1569         GepOffsetReg =
1570             MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1571       } else
1572         GepOffsetReg = IdxReg;
1573 
1574       BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1575     }
1576   }
1577 
1578   if (Offset != 0) {
1579     auto OffsetMIB =
1580         MIRBuilder.buildConstant(OffsetTy, Offset);
1581     MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1582     return true;
1583   }
1584 
1585   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1586   return true;
1587 }
1588 
1589 bool IRTranslator::translateMemFunc(const CallInst &CI,
1590                                     MachineIRBuilder &MIRBuilder,
1591                                     unsigned Opcode) {
1592   const Value *SrcPtr = CI.getArgOperand(1);
1593   // If the source is undef, then just emit a nop.
1594   if (isa<UndefValue>(SrcPtr))
1595     return true;
1596 
1597   SmallVector<Register, 3> SrcRegs;
1598 
1599   unsigned MinPtrSize = UINT_MAX;
1600   for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
1601     Register SrcReg = getOrCreateVReg(**AI);
1602     LLT SrcTy = MRI->getType(SrcReg);
1603     if (SrcTy.isPointer())
1604       MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize);
1605     SrcRegs.push_back(SrcReg);
1606   }
1607 
1608   LLT SizeTy = LLT::scalar(MinPtrSize);
1609 
1610   // The size operand should be the minimum of the pointer sizes.
1611   Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
1612   if (MRI->getType(SizeOpReg) != SizeTy)
1613     SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);
1614 
1615   auto ICall = MIRBuilder.buildInstr(Opcode);
1616   for (Register SrcReg : SrcRegs)
1617     ICall.addUse(SrcReg);
1618 
1619   Align DstAlign;
1620   Align SrcAlign;
1621   unsigned IsVol =
1622       cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue();
1623 
1624   ConstantInt *CopySize = nullptr;
1625 
1626   if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1627     DstAlign = MCI->getDestAlign().valueOrOne();
1628     SrcAlign = MCI->getSourceAlign().valueOrOne();
1629     CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
1630   } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) {
1631     DstAlign = MCI->getDestAlign().valueOrOne();
1632     SrcAlign = MCI->getSourceAlign().valueOrOne();
1633     CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
1634   } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1635     DstAlign = MMI->getDestAlign().valueOrOne();
1636     SrcAlign = MMI->getSourceAlign().valueOrOne();
1637     CopySize = dyn_cast<ConstantInt>(MMI->getArgOperand(2));
1638   } else {
1639     auto *MSI = cast<MemSetInst>(&CI);
1640     DstAlign = MSI->getDestAlign().valueOrOne();
1641   }
1642 
1643   if (Opcode != TargetOpcode::G_MEMCPY_INLINE) {
1644     // We need to propagate the tail call flag from the IR inst as an argument.
1645     // Otherwise, we have to pessimize and assume later that we cannot tail call
1646     // any memory intrinsics.
1647     ICall.addImm(CI.isTailCall() ? 1 : 0);
1648   }
1649 
1650   // Create mem operands to store the alignment and volatile info.
1651   MachineMemOperand::Flags LoadFlags = MachineMemOperand::MOLoad;
1652   MachineMemOperand::Flags StoreFlags = MachineMemOperand::MOStore;
1653   if (IsVol) {
1654     LoadFlags |= MachineMemOperand::MOVolatile;
1655     StoreFlags |= MachineMemOperand::MOVolatile;
1656   }
1657 
1658   AAMDNodes AAInfo = CI.getAAMetadata();
1659   if (AA && CopySize &&
1660       AA->pointsToConstantMemory(MemoryLocation(
1661           SrcPtr, LocationSize::precise(CopySize->getZExtValue()), AAInfo))) {
1662     LoadFlags |= MachineMemOperand::MOInvariant;
1663 
1664     // FIXME: pointsToConstantMemory probably does not imply dereferenceable,
1665     // but the previous usage implied it did. Probably should check
1666     // isDereferenceableAndAlignedPointer.
1667     LoadFlags |= MachineMemOperand::MODereferenceable;
1668   }
1669 
1670   ICall.addMemOperand(
1671       MF->getMachineMemOperand(MachinePointerInfo(CI.getArgOperand(0)),
1672                                StoreFlags, 1, DstAlign, AAInfo));
1673   if (Opcode != TargetOpcode::G_MEMSET)
1674     ICall.addMemOperand(MF->getMachineMemOperand(
1675         MachinePointerInfo(SrcPtr), LoadFlags, 1, SrcAlign, AAInfo));
1676 
1677   return true;
1678 }
1679 
1680 void IRTranslator::getStackGuard(Register DstReg,
1681                                  MachineIRBuilder &MIRBuilder) {
1682   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1683   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1684   auto MIB =
1685       MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1686 
1687   auto &TLI = *MF->getSubtarget().getTargetLowering();
1688   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1689   if (!Global)
1690     return;
1691 
1692   unsigned AddrSpace = Global->getType()->getPointerAddressSpace();
1693   LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace));
1694 
1695   MachinePointerInfo MPInfo(Global);
1696   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1697                MachineMemOperand::MODereferenceable;
1698   MachineMemOperand *MemRef = MF->getMachineMemOperand(
1699       MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace));
1700   MIB.setMemRefs({MemRef});
1701 }
1702 
1703 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1704                                               MachineIRBuilder &MIRBuilder) {
1705   ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1706   MIRBuilder.buildInstr(
1707       Op, {ResRegs[0], ResRegs[1]},
1708       {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1709 
1710   return true;
1711 }
1712 
1713 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1714                                                 MachineIRBuilder &MIRBuilder) {
1715   Register Dst = getOrCreateVReg(CI);
1716   Register Src0 = getOrCreateVReg(*CI.getOperand(0));
1717   Register Src1 = getOrCreateVReg(*CI.getOperand(1));
1718   uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
1719   MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
1720   return true;
1721 }
1722 
1723 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1724   switch (ID) {
1725     default:
1726       break;
1727     case Intrinsic::bswap:
1728       return TargetOpcode::G_BSWAP;
1729     case Intrinsic::bitreverse:
1730       return TargetOpcode::G_BITREVERSE;
1731     case Intrinsic::fshl:
1732       return TargetOpcode::G_FSHL;
1733     case Intrinsic::fshr:
1734       return TargetOpcode::G_FSHR;
1735     case Intrinsic::ceil:
1736       return TargetOpcode::G_FCEIL;
1737     case Intrinsic::cos:
1738       return TargetOpcode::G_FCOS;
1739     case Intrinsic::ctpop:
1740       return TargetOpcode::G_CTPOP;
1741     case Intrinsic::exp:
1742       return TargetOpcode::G_FEXP;
1743     case Intrinsic::exp2:
1744       return TargetOpcode::G_FEXP2;
1745     case Intrinsic::fabs:
1746       return TargetOpcode::G_FABS;
1747     case Intrinsic::copysign:
1748       return TargetOpcode::G_FCOPYSIGN;
1749     case Intrinsic::minnum:
1750       return TargetOpcode::G_FMINNUM;
1751     case Intrinsic::maxnum:
1752       return TargetOpcode::G_FMAXNUM;
1753     case Intrinsic::minimum:
1754       return TargetOpcode::G_FMINIMUM;
1755     case Intrinsic::maximum:
1756       return TargetOpcode::G_FMAXIMUM;
1757     case Intrinsic::canonicalize:
1758       return TargetOpcode::G_FCANONICALIZE;
1759     case Intrinsic::floor:
1760       return TargetOpcode::G_FFLOOR;
1761     case Intrinsic::fma:
1762       return TargetOpcode::G_FMA;
1763     case Intrinsic::log:
1764       return TargetOpcode::G_FLOG;
1765     case Intrinsic::log2:
1766       return TargetOpcode::G_FLOG2;
1767     case Intrinsic::log10:
1768       return TargetOpcode::G_FLOG10;
1769     case Intrinsic::ldexp:
1770       return TargetOpcode::G_FLDEXP;
1771     case Intrinsic::nearbyint:
1772       return TargetOpcode::G_FNEARBYINT;
1773     case Intrinsic::pow:
1774       return TargetOpcode::G_FPOW;
1775     case Intrinsic::powi:
1776       return TargetOpcode::G_FPOWI;
1777     case Intrinsic::rint:
1778       return TargetOpcode::G_FRINT;
1779     case Intrinsic::round:
1780       return TargetOpcode::G_INTRINSIC_ROUND;
1781     case Intrinsic::roundeven:
1782       return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1783     case Intrinsic::sin:
1784       return TargetOpcode::G_FSIN;
1785     case Intrinsic::sqrt:
1786       return TargetOpcode::G_FSQRT;
1787     case Intrinsic::trunc:
1788       return TargetOpcode::G_INTRINSIC_TRUNC;
1789     case Intrinsic::readcyclecounter:
1790       return TargetOpcode::G_READCYCLECOUNTER;
1791     case Intrinsic::ptrmask:
1792       return TargetOpcode::G_PTRMASK;
1793     case Intrinsic::lrint:
1794       return TargetOpcode::G_INTRINSIC_LRINT;
1795     // FADD/FMUL require checking the FMF, so are handled elsewhere.
1796     case Intrinsic::vector_reduce_fmin:
1797       return TargetOpcode::G_VECREDUCE_FMIN;
1798     case Intrinsic::vector_reduce_fmax:
1799       return TargetOpcode::G_VECREDUCE_FMAX;
1800     case Intrinsic::vector_reduce_add:
1801       return TargetOpcode::G_VECREDUCE_ADD;
1802     case Intrinsic::vector_reduce_mul:
1803       return TargetOpcode::G_VECREDUCE_MUL;
1804     case Intrinsic::vector_reduce_and:
1805       return TargetOpcode::G_VECREDUCE_AND;
1806     case Intrinsic::vector_reduce_or:
1807       return TargetOpcode::G_VECREDUCE_OR;
1808     case Intrinsic::vector_reduce_xor:
1809       return TargetOpcode::G_VECREDUCE_XOR;
1810     case Intrinsic::vector_reduce_smax:
1811       return TargetOpcode::G_VECREDUCE_SMAX;
1812     case Intrinsic::vector_reduce_smin:
1813       return TargetOpcode::G_VECREDUCE_SMIN;
1814     case Intrinsic::vector_reduce_umax:
1815       return TargetOpcode::G_VECREDUCE_UMAX;
1816     case Intrinsic::vector_reduce_umin:
1817       return TargetOpcode::G_VECREDUCE_UMIN;
1818     case Intrinsic::lround:
1819       return TargetOpcode::G_LROUND;
1820     case Intrinsic::llround:
1821       return TargetOpcode::G_LLROUND;
1822   }
1823   return Intrinsic::not_intrinsic;
1824 }
1825 
1826 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1827                                             Intrinsic::ID ID,
1828                                             MachineIRBuilder &MIRBuilder) {
1829 
1830   unsigned Op = getSimpleIntrinsicOpcode(ID);
1831 
1832   // Is this a simple intrinsic?
1833   if (Op == Intrinsic::not_intrinsic)
1834     return false;
1835 
1836   // Yes. Let's translate it.
1837   SmallVector<llvm::SrcOp, 4> VRegs;
1838   for (const auto &Arg : CI.args())
1839     VRegs.push_back(getOrCreateVReg(*Arg));
1840 
1841   MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1842                         MachineInstr::copyFlagsFromInstruction(CI));
1843   return true;
1844 }
1845 
1846 // TODO: Include ConstainedOps.def when all strict instructions are defined.
1847 static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
1848   switch (ID) {
1849   case Intrinsic::experimental_constrained_fadd:
1850     return TargetOpcode::G_STRICT_FADD;
1851   case Intrinsic::experimental_constrained_fsub:
1852     return TargetOpcode::G_STRICT_FSUB;
1853   case Intrinsic::experimental_constrained_fmul:
1854     return TargetOpcode::G_STRICT_FMUL;
1855   case Intrinsic::experimental_constrained_fdiv:
1856     return TargetOpcode::G_STRICT_FDIV;
1857   case Intrinsic::experimental_constrained_frem:
1858     return TargetOpcode::G_STRICT_FREM;
1859   case Intrinsic::experimental_constrained_fma:
1860     return TargetOpcode::G_STRICT_FMA;
1861   case Intrinsic::experimental_constrained_sqrt:
1862     return TargetOpcode::G_STRICT_FSQRT;
1863   case Intrinsic::experimental_constrained_ldexp:
1864     return TargetOpcode::G_STRICT_FLDEXP;
1865   default:
1866     return 0;
1867   }
1868 }
1869 
1870 bool IRTranslator::translateConstrainedFPIntrinsic(
1871   const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
1872   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
1873 
1874   unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
1875   if (!Opcode)
1876     return false;
1877 
1878   uint32_t Flags = MachineInstr::copyFlagsFromInstruction(FPI);
1879   if (EB == fp::ExceptionBehavior::ebIgnore)
1880     Flags |= MachineInstr::NoFPExcept;
1881 
1882   SmallVector<llvm::SrcOp, 4> VRegs;
1883   VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
1884   if (!FPI.isUnaryOp())
1885     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
1886   if (FPI.isTernaryOp())
1887     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
1888 
1889   MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
1890   return true;
1891 }
1892 
1893 std::optional<MCRegister> IRTranslator::getArgPhysReg(Argument &Arg) {
1894   auto VRegs = getOrCreateVRegs(Arg);
1895   if (VRegs.size() != 1)
1896     return std::nullopt;
1897 
1898   // Arguments are lowered as a copy of a livein physical register.
1899   auto *VRegDef = MF->getRegInfo().getVRegDef(VRegs[0]);
1900   if (!VRegDef || !VRegDef->isCopy())
1901     return std::nullopt;
1902   return VRegDef->getOperand(1).getReg().asMCReg();
1903 }
1904 
1905 bool IRTranslator::translateIfEntryValueArgument(const DbgValueInst &DebugInst,
1906                                                  MachineIRBuilder &MIRBuilder) {
1907   auto *Arg = dyn_cast<Argument>(DebugInst.getValue());
1908   if (!Arg)
1909     return false;
1910 
1911   const DIExpression *Expr = DebugInst.getExpression();
1912   if (!Expr->isEntryValue())
1913     return false;
1914 
1915   std::optional<MCRegister> PhysReg = getArgPhysReg(*Arg);
1916   if (!PhysReg) {
1917     LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
1918                          "couldn't find a physical register\n"
1919                       << DebugInst << "\n");
1920     return true;
1921   }
1922 
1923   MIRBuilder.buildDirectDbgValue(*PhysReg, DebugInst.getVariable(),
1924                                  DebugInst.getExpression());
1925   return true;
1926 }
1927 
1928 bool IRTranslator::translateIfEntryValueArgument(
1929     const DbgDeclareInst &DebugInst) {
1930   auto *Arg = dyn_cast<Argument>(DebugInst.getAddress());
1931   if (!Arg)
1932     return false;
1933 
1934   const DIExpression *Expr = DebugInst.getExpression();
1935   if (!Expr->isEntryValue())
1936     return false;
1937 
1938   std::optional<MCRegister> PhysReg = getArgPhysReg(*Arg);
1939   if (!PhysReg)
1940     return false;
1941 
1942   MF->setVariableDbgInfo(DebugInst.getVariable(), Expr, *PhysReg,
1943                          DebugInst.getDebugLoc());
1944   return true;
1945 }
1946 
1947 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1948                                            MachineIRBuilder &MIRBuilder) {
1949   if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) {
1950     if (ORE->enabled()) {
1951       if (MemoryOpRemark::canHandle(MI, *LibInfo)) {
1952         MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
1953         R.visit(MI);
1954       }
1955     }
1956   }
1957 
1958   // If this is a simple intrinsic (that is, we just need to add a def of
1959   // a vreg, and uses for each arg operand, then translate it.
1960   if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1961     return true;
1962 
1963   switch (ID) {
1964   default:
1965     break;
1966   case Intrinsic::lifetime_start:
1967   case Intrinsic::lifetime_end: {
1968     // No stack colouring in O0, discard region information.
1969     if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1970       return true;
1971 
1972     unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1973                                                   : TargetOpcode::LIFETIME_END;
1974 
1975     // Get the underlying objects for the location passed on the lifetime
1976     // marker.
1977     SmallVector<const Value *, 4> Allocas;
1978     getUnderlyingObjects(CI.getArgOperand(1), Allocas);
1979 
1980     // Iterate over each underlying object, creating lifetime markers for each
1981     // static alloca. Quit if we find a non-static alloca.
1982     for (const Value *V : Allocas) {
1983       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1984       if (!AI)
1985         continue;
1986 
1987       if (!AI->isStaticAlloca())
1988         return true;
1989 
1990       MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1991     }
1992     return true;
1993   }
1994   case Intrinsic::dbg_declare: {
1995     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1996     assert(DI.getVariable() && "Missing variable");
1997 
1998     const Value *Address = DI.getAddress();
1999     if (!Address || isa<UndefValue>(Address)) {
2000       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
2001       return true;
2002     }
2003 
2004     assert(DI.getVariable()->isValidLocationForIntrinsic(
2005                MIRBuilder.getDebugLoc()) &&
2006            "Expected inlined-at fields to agree");
2007     auto AI = dyn_cast<AllocaInst>(Address);
2008     if (AI && AI->isStaticAlloca()) {
2009       // Static allocas are tracked at the MF level, no need for DBG_VALUE
2010       // instructions (in fact, they get ignored if they *do* exist).
2011       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
2012                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
2013       return true;
2014     }
2015 
2016     if (translateIfEntryValueArgument(DI))
2017       return true;
2018 
2019     // A dbg.declare describes the address of a source variable, so lower it
2020     // into an indirect DBG_VALUE.
2021     MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
2022                                      DI.getVariable(), DI.getExpression());
2023     return true;
2024   }
2025   case Intrinsic::dbg_label: {
2026     const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
2027     assert(DI.getLabel() && "Missing label");
2028 
2029     assert(DI.getLabel()->isValidLocationForIntrinsic(
2030                MIRBuilder.getDebugLoc()) &&
2031            "Expected inlined-at fields to agree");
2032 
2033     MIRBuilder.buildDbgLabel(DI.getLabel());
2034     return true;
2035   }
2036   case Intrinsic::vaend:
2037     // No target I know of cares about va_end. Certainly no in-tree target
2038     // does. Simplest intrinsic ever!
2039     return true;
2040   case Intrinsic::vastart: {
2041     auto &TLI = *MF->getSubtarget().getTargetLowering();
2042     Value *Ptr = CI.getArgOperand(0);
2043     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
2044 
2045     // FIXME: Get alignment
2046     MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
2047         .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
2048                                                 MachineMemOperand::MOStore,
2049                                                 ListSize, Align(1)));
2050     return true;
2051   }
2052   case Intrinsic::dbg_value: {
2053     // This form of DBG_VALUE is target-independent.
2054     const DbgValueInst &DI = cast<DbgValueInst>(CI);
2055     const Value *V = DI.getValue();
2056     assert(DI.getVariable()->isValidLocationForIntrinsic(
2057                MIRBuilder.getDebugLoc()) &&
2058            "Expected inlined-at fields to agree");
2059     if (!V || DI.hasArgList()) {
2060       // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to
2061       // terminate any prior location.
2062       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
2063       return true;
2064     }
2065     if (const auto *CI = dyn_cast<Constant>(V)) {
2066       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
2067       return true;
2068     }
2069     if (auto *AI = dyn_cast<AllocaInst>(V);
2070         AI && AI->isStaticAlloca() && DI.getExpression()->startsWithDeref()) {
2071       // If the value is an alloca and the expression starts with a
2072       // dereference, track a stack slot instead of a register, as registers
2073       // may be clobbered.
2074       auto ExprOperands = DI.getExpression()->getElements();
2075       auto *ExprDerefRemoved =
2076           DIExpression::get(AI->getContext(), ExprOperands.drop_front());
2077       MIRBuilder.buildFIDbgValue(getOrCreateFrameIndex(*AI), DI.getVariable(),
2078                                  ExprDerefRemoved);
2079       return true;
2080     }
2081     if (translateIfEntryValueArgument(DI, MIRBuilder))
2082       return true;
2083     for (Register Reg : getOrCreateVRegs(*V)) {
2084       // FIXME: This does not handle register-indirect values at offset 0. The
2085       // direct/indirect thing shouldn't really be handled by something as
2086       // implicit as reg+noreg vs reg+imm in the first place, but it seems
2087       // pretty baked in right now.
2088       MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
2089     }
2090     return true;
2091   }
2092   case Intrinsic::uadd_with_overflow:
2093     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
2094   case Intrinsic::sadd_with_overflow:
2095     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
2096   case Intrinsic::usub_with_overflow:
2097     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
2098   case Intrinsic::ssub_with_overflow:
2099     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
2100   case Intrinsic::umul_with_overflow:
2101     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
2102   case Intrinsic::smul_with_overflow:
2103     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
2104   case Intrinsic::uadd_sat:
2105     return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
2106   case Intrinsic::sadd_sat:
2107     return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
2108   case Intrinsic::usub_sat:
2109     return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
2110   case Intrinsic::ssub_sat:
2111     return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
2112   case Intrinsic::ushl_sat:
2113     return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
2114   case Intrinsic::sshl_sat:
2115     return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
2116   case Intrinsic::umin:
2117     return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
2118   case Intrinsic::umax:
2119     return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
2120   case Intrinsic::smin:
2121     return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
2122   case Intrinsic::smax:
2123     return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
2124   case Intrinsic::abs:
2125     // TODO: Preserve "int min is poison" arg in GMIR?
2126     return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
2127   case Intrinsic::smul_fix:
2128     return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
2129   case Intrinsic::umul_fix:
2130     return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
2131   case Intrinsic::smul_fix_sat:
2132     return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
2133   case Intrinsic::umul_fix_sat:
2134     return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
2135   case Intrinsic::sdiv_fix:
2136     return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
2137   case Intrinsic::udiv_fix:
2138     return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
2139   case Intrinsic::sdiv_fix_sat:
2140     return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
2141   case Intrinsic::udiv_fix_sat:
2142     return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
2143   case Intrinsic::fmuladd: {
2144     const TargetMachine &TM = MF->getTarget();
2145     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2146     Register Dst = getOrCreateVReg(CI);
2147     Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
2148     Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
2149     Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
2150     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
2151         TLI.isFMAFasterThanFMulAndFAdd(*MF,
2152                                        TLI.getValueType(*DL, CI.getType()))) {
2153       // TODO: Revisit this to see if we should move this part of the
2154       // lowering to the combiner.
2155       MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
2156                           MachineInstr::copyFlagsFromInstruction(CI));
2157     } else {
2158       LLT Ty = getLLTForType(*CI.getType(), *DL);
2159       auto FMul = MIRBuilder.buildFMul(
2160           Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
2161       MIRBuilder.buildFAdd(Dst, FMul, Op2,
2162                            MachineInstr::copyFlagsFromInstruction(CI));
2163     }
2164     return true;
2165   }
2166   case Intrinsic::convert_from_fp16:
2167     // FIXME: This intrinsic should probably be removed from the IR.
2168     MIRBuilder.buildFPExt(getOrCreateVReg(CI),
2169                           getOrCreateVReg(*CI.getArgOperand(0)),
2170                           MachineInstr::copyFlagsFromInstruction(CI));
2171     return true;
2172   case Intrinsic::convert_to_fp16:
2173     // FIXME: This intrinsic should probably be removed from the IR.
2174     MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
2175                             getOrCreateVReg(*CI.getArgOperand(0)),
2176                             MachineInstr::copyFlagsFromInstruction(CI));
2177     return true;
2178   case Intrinsic::frexp: {
2179     ArrayRef<Register> VRegs = getOrCreateVRegs(CI);
2180     MIRBuilder.buildFFrexp(VRegs[0], VRegs[1],
2181                            getOrCreateVReg(*CI.getArgOperand(0)),
2182                            MachineInstr::copyFlagsFromInstruction(CI));
2183     return true;
2184   }
2185   case Intrinsic::memcpy_inline:
2186     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE);
2187   case Intrinsic::memcpy:
2188     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
2189   case Intrinsic::memmove:
2190     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
2191   case Intrinsic::memset:
2192     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
2193   case Intrinsic::eh_typeid_for: {
2194     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
2195     Register Reg = getOrCreateVReg(CI);
2196     unsigned TypeID = MF->getTypeIDFor(GV);
2197     MIRBuilder.buildConstant(Reg, TypeID);
2198     return true;
2199   }
2200   case Intrinsic::objectsize:
2201     llvm_unreachable("llvm.objectsize.* should have been lowered already");
2202 
2203   case Intrinsic::is_constant:
2204     llvm_unreachable("llvm.is.constant.* should have been lowered already");
2205 
2206   case Intrinsic::stackguard:
2207     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
2208     return true;
2209   case Intrinsic::stackprotector: {
2210     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2211     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2212     Register GuardVal;
2213     if (TLI.useLoadStackGuardNode()) {
2214       GuardVal = MRI->createGenericVirtualRegister(PtrTy);
2215       getStackGuard(GuardVal, MIRBuilder);
2216     } else
2217       GuardVal = getOrCreateVReg(*CI.getArgOperand(0)); // The guard's value.
2218 
2219     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
2220     int FI = getOrCreateFrameIndex(*Slot);
2221     MF->getFrameInfo().setStackProtectorIndex(FI);
2222 
2223     MIRBuilder.buildStore(
2224         GuardVal, getOrCreateVReg(*Slot),
2225         *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
2226                                   MachineMemOperand::MOStore |
2227                                       MachineMemOperand::MOVolatile,
2228                                   PtrTy, Align(8)));
2229     return true;
2230   }
2231   case Intrinsic::stacksave: {
2232     // Save the stack pointer to the location provided by the intrinsic.
2233     Register Reg = getOrCreateVReg(CI);
2234     Register StackPtr = MF->getSubtarget()
2235                             .getTargetLowering()
2236                             ->getStackPointerRegisterToSaveRestore();
2237 
2238     // If the target doesn't specify a stack pointer, then fall back.
2239     if (!StackPtr)
2240       return false;
2241 
2242     MIRBuilder.buildCopy(Reg, StackPtr);
2243     return true;
2244   }
2245   case Intrinsic::stackrestore: {
2246     // Restore the stack pointer from the location provided by the intrinsic.
2247     Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
2248     Register StackPtr = MF->getSubtarget()
2249                             .getTargetLowering()
2250                             ->getStackPointerRegisterToSaveRestore();
2251 
2252     // If the target doesn't specify a stack pointer, then fall back.
2253     if (!StackPtr)
2254       return false;
2255 
2256     MIRBuilder.buildCopy(StackPtr, Reg);
2257     return true;
2258   }
2259   case Intrinsic::cttz:
2260   case Intrinsic::ctlz: {
2261     ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
2262     bool isTrailing = ID == Intrinsic::cttz;
2263     unsigned Opcode = isTrailing
2264                           ? Cst->isZero() ? TargetOpcode::G_CTTZ
2265                                           : TargetOpcode::G_CTTZ_ZERO_UNDEF
2266                           : Cst->isZero() ? TargetOpcode::G_CTLZ
2267                                           : TargetOpcode::G_CTLZ_ZERO_UNDEF;
2268     MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
2269                           {getOrCreateVReg(*CI.getArgOperand(0))});
2270     return true;
2271   }
2272   case Intrinsic::invariant_start: {
2273     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2274     Register Undef = MRI->createGenericVirtualRegister(PtrTy);
2275     MIRBuilder.buildUndef(Undef);
2276     return true;
2277   }
2278   case Intrinsic::invariant_end:
2279     return true;
2280   case Intrinsic::expect:
2281   case Intrinsic::annotation:
2282   case Intrinsic::ptr_annotation:
2283   case Intrinsic::launder_invariant_group:
2284   case Intrinsic::strip_invariant_group: {
2285     // Drop the intrinsic, but forward the value.
2286     MIRBuilder.buildCopy(getOrCreateVReg(CI),
2287                          getOrCreateVReg(*CI.getArgOperand(0)));
2288     return true;
2289   }
2290   case Intrinsic::assume:
2291   case Intrinsic::experimental_noalias_scope_decl:
2292   case Intrinsic::var_annotation:
2293   case Intrinsic::sideeffect:
2294     // Discard annotate attributes, assumptions, and artificial side-effects.
2295     return true;
2296   case Intrinsic::read_volatile_register:
2297   case Intrinsic::read_register: {
2298     Value *Arg = CI.getArgOperand(0);
2299     MIRBuilder
2300         .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
2301         .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
2302     return true;
2303   }
2304   case Intrinsic::write_register: {
2305     Value *Arg = CI.getArgOperand(0);
2306     MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
2307       .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
2308       .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
2309     return true;
2310   }
2311   case Intrinsic::localescape: {
2312     MachineBasicBlock &EntryMBB = MF->front();
2313     StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
2314 
2315     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
2316     // is the same on all targets.
2317     for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) {
2318       Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
2319       if (isa<ConstantPointerNull>(Arg))
2320         continue; // Skip null pointers. They represent a hole in index space.
2321 
2322       int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
2323       MCSymbol *FrameAllocSym =
2324           MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
2325                                                                 Idx);
2326 
2327       // This should be inserted at the start of the entry block.
2328       auto LocalEscape =
2329           MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
2330               .addSym(FrameAllocSym)
2331               .addFrameIndex(FI);
2332 
2333       EntryMBB.insert(EntryMBB.begin(), LocalEscape);
2334     }
2335 
2336     return true;
2337   }
2338   case Intrinsic::vector_reduce_fadd:
2339   case Intrinsic::vector_reduce_fmul: {
2340     // Need to check for the reassoc flag to decide whether we want a
2341     // sequential reduction opcode or not.
2342     Register Dst = getOrCreateVReg(CI);
2343     Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0));
2344     Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1));
2345     unsigned Opc = 0;
2346     if (!CI.hasAllowReassoc()) {
2347       // The sequential ordering case.
2348       Opc = ID == Intrinsic::vector_reduce_fadd
2349                 ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2350                 : TargetOpcode::G_VECREDUCE_SEQ_FMUL;
2351       MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc},
2352                             MachineInstr::copyFlagsFromInstruction(CI));
2353       return true;
2354     }
2355     // We split the operation into a separate G_FADD/G_FMUL + the reduce,
2356     // since the associativity doesn't matter.
2357     unsigned ScalarOpc;
2358     if (ID == Intrinsic::vector_reduce_fadd) {
2359       Opc = TargetOpcode::G_VECREDUCE_FADD;
2360       ScalarOpc = TargetOpcode::G_FADD;
2361     } else {
2362       Opc = TargetOpcode::G_VECREDUCE_FMUL;
2363       ScalarOpc = TargetOpcode::G_FMUL;
2364     }
2365     LLT DstTy = MRI->getType(Dst);
2366     auto Rdx = MIRBuilder.buildInstr(
2367         Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI));
2368     MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
2369                           MachineInstr::copyFlagsFromInstruction(CI));
2370 
2371     return true;
2372   }
2373   case Intrinsic::trap:
2374   case Intrinsic::debugtrap:
2375   case Intrinsic::ubsantrap: {
2376     StringRef TrapFuncName =
2377         CI.getAttributes().getFnAttr("trap-func-name").getValueAsString();
2378     if (TrapFuncName.empty())
2379       break; // Use the default handling.
2380     CallLowering::CallLoweringInfo Info;
2381     if (ID == Intrinsic::ubsantrap) {
2382       Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)),
2383                                CI.getArgOperand(0)->getType(), 0});
2384     }
2385     Info.Callee = MachineOperand::CreateES(TrapFuncName.data());
2386     Info.CB = &CI;
2387     Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0};
2388     return CLI->lowerCall(MIRBuilder, Info);
2389   }
2390   case Intrinsic::fptrunc_round: {
2391     uint32_t Flags = MachineInstr::copyFlagsFromInstruction(CI);
2392 
2393     // Convert the metadata argument to a constant integer
2394     Metadata *MD = cast<MetadataAsValue>(CI.getArgOperand(1))->getMetadata();
2395     std::optional<RoundingMode> RoundMode =
2396         convertStrToRoundingMode(cast<MDString>(MD)->getString());
2397 
2398     // Add the Rounding mode as an integer
2399     MIRBuilder
2400         .buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND,
2401                     {getOrCreateVReg(CI)},
2402                     {getOrCreateVReg(*CI.getArgOperand(0))}, Flags)
2403         .addImm((int)*RoundMode);
2404 
2405     return true;
2406   }
2407   case Intrinsic::is_fpclass: {
2408     Value *FpValue = CI.getOperand(0);
2409     ConstantInt *TestMaskValue = cast<ConstantInt>(CI.getOperand(1));
2410 
2411     MIRBuilder
2412         .buildInstr(TargetOpcode::G_IS_FPCLASS, {getOrCreateVReg(CI)},
2413                     {getOrCreateVReg(*FpValue)})
2414         .addImm(TestMaskValue->getZExtValue());
2415 
2416     return true;
2417   }
2418 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)  \
2419   case Intrinsic::INTRINSIC:
2420 #include "llvm/IR/ConstrainedOps.def"
2421     return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
2422                                            MIRBuilder);
2423 
2424   }
2425   return false;
2426 }
2427 
2428 bool IRTranslator::translateInlineAsm(const CallBase &CB,
2429                                       MachineIRBuilder &MIRBuilder) {
2430 
2431   const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
2432 
2433   if (!ALI) {
2434     LLVM_DEBUG(
2435         dbgs() << "Inline asm lowering is not supported for this target yet\n");
2436     return false;
2437   }
2438 
2439   return ALI->lowerInlineAsm(
2440       MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
2441 }
2442 
2443 bool IRTranslator::translateCallBase(const CallBase &CB,
2444                                      MachineIRBuilder &MIRBuilder) {
2445   ArrayRef<Register> Res = getOrCreateVRegs(CB);
2446 
2447   SmallVector<ArrayRef<Register>, 8> Args;
2448   Register SwiftInVReg = 0;
2449   Register SwiftErrorVReg = 0;
2450   for (const auto &Arg : CB.args()) {
2451     if (CLI->supportSwiftError() && isSwiftError(Arg)) {
2452       assert(SwiftInVReg == 0 && "Expected only one swift error argument");
2453       LLT Ty = getLLTForType(*Arg->getType(), *DL);
2454       SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
2455       MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
2456                                             &CB, &MIRBuilder.getMBB(), Arg));
2457       Args.emplace_back(ArrayRef(SwiftInVReg));
2458       SwiftErrorVReg =
2459           SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
2460       continue;
2461     }
2462     Args.push_back(getOrCreateVRegs(*Arg));
2463   }
2464 
2465   if (auto *CI = dyn_cast<CallInst>(&CB)) {
2466     if (ORE->enabled()) {
2467       if (MemoryOpRemark::canHandle(CI, *LibInfo)) {
2468         MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
2469         R.visit(CI);
2470       }
2471     }
2472   }
2473 
2474   // We don't set HasCalls on MFI here yet because call lowering may decide to
2475   // optimize into tail calls. Instead, we defer that to selection where a final
2476   // scan is done to check if any instructions are calls.
2477   bool Success =
2478       CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
2479                      [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
2480 
2481   // Check if we just inserted a tail call.
2482   if (Success) {
2483     assert(!HasTailCall && "Can't tail call return twice from block?");
2484     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2485     HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
2486   }
2487 
2488   return Success;
2489 }
2490 
2491 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
2492   const CallInst &CI = cast<CallInst>(U);
2493   auto TII = MF->getTarget().getIntrinsicInfo();
2494   const Function *F = CI.getCalledFunction();
2495 
2496   // FIXME: support Windows dllimport function calls.
2497   if (F && (F->hasDLLImportStorageClass() ||
2498             (MF->getTarget().getTargetTriple().isOSWindows() &&
2499              F->hasExternalWeakLinkage())))
2500     return false;
2501 
2502   // FIXME: support control flow guard targets.
2503   if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2504     return false;
2505 
2506   // FIXME: support statepoints and related.
2507   if (isa<GCStatepointInst, GCRelocateInst, GCResultInst>(U))
2508     return false;
2509 
2510   if (CI.isInlineAsm())
2511     return translateInlineAsm(CI, MIRBuilder);
2512 
2513   diagnoseDontCall(CI);
2514 
2515   Intrinsic::ID ID = Intrinsic::not_intrinsic;
2516   if (F && F->isIntrinsic()) {
2517     ID = F->getIntrinsicID();
2518     if (TII && ID == Intrinsic::not_intrinsic)
2519       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
2520   }
2521 
2522   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
2523     return translateCallBase(CI, MIRBuilder);
2524 
2525   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
2526 
2527   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
2528     return true;
2529 
2530   ArrayRef<Register> ResultRegs;
2531   if (!CI.getType()->isVoidTy())
2532     ResultRegs = getOrCreateVRegs(CI);
2533 
2534   // Ignore the callsite attributes. Backend code is most likely not expecting
2535   // an intrinsic to sometimes have side effects and sometimes not.
2536   MachineInstrBuilder MIB =
2537       MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
2538   if (isa<FPMathOperator>(CI))
2539     MIB->copyIRFlags(CI);
2540 
2541   for (const auto &Arg : enumerate(CI.args())) {
2542     // If this is required to be an immediate, don't materialize it in a
2543     // register.
2544     if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
2545       if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
2546         // imm arguments are more convenient than cimm (and realistically
2547         // probably sufficient), so use them.
2548         assert(CI->getBitWidth() <= 64 &&
2549                "large intrinsic immediates not handled");
2550         MIB.addImm(CI->getSExtValue());
2551       } else {
2552         MIB.addFPImm(cast<ConstantFP>(Arg.value()));
2553       }
2554     } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) {
2555       auto *MD = MDVal->getMetadata();
2556       auto *MDN = dyn_cast<MDNode>(MD);
2557       if (!MDN) {
2558         if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD))
2559           MDN = MDNode::get(MF->getFunction().getContext(), ConstMD);
2560         else // This was probably an MDString.
2561           return false;
2562       }
2563       MIB.addMetadata(MDN);
2564     } else {
2565       ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
2566       if (VRegs.size() > 1)
2567         return false;
2568       MIB.addUse(VRegs[0]);
2569     }
2570   }
2571 
2572   // Add a MachineMemOperand if it is a target mem intrinsic.
2573   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2574   TargetLowering::IntrinsicInfo Info;
2575   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
2576   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
2577     Align Alignment = Info.align.value_or(
2578         DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
2579     LLT MemTy = Info.memVT.isSimple()
2580                     ? getLLTForMVT(Info.memVT.getSimpleVT())
2581                     : LLT::scalar(Info.memVT.getStoreSizeInBits());
2582 
2583     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
2584     //       didn't yield anything useful.
2585     MachinePointerInfo MPI;
2586     if (Info.ptrVal)
2587       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
2588     else if (Info.fallbackAddressSpace)
2589       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
2590     MIB.addMemOperand(
2591         MF->getMachineMemOperand(MPI, Info.flags, MemTy, Alignment, CI.getAAMetadata()));
2592   }
2593 
2594   return true;
2595 }
2596 
2597 bool IRTranslator::findUnwindDestinations(
2598     const BasicBlock *EHPadBB,
2599     BranchProbability Prob,
2600     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2601         &UnwindDests) {
2602   EHPersonality Personality = classifyEHPersonality(
2603       EHPadBB->getParent()->getFunction().getPersonalityFn());
2604   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2605   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2606   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2607   bool IsSEH = isAsynchronousEHPersonality(Personality);
2608 
2609   if (IsWasmCXX) {
2610     // Ignore this for now.
2611     return false;
2612   }
2613 
2614   while (EHPadBB) {
2615     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2616     BasicBlock *NewEHPadBB = nullptr;
2617     if (isa<LandingPadInst>(Pad)) {
2618       // Stop on landingpads. They are not funclets.
2619       UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2620       break;
2621     }
2622     if (isa<CleanupPadInst>(Pad)) {
2623       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2624       // personalities.
2625       UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2626       UnwindDests.back().first->setIsEHScopeEntry();
2627       UnwindDests.back().first->setIsEHFuncletEntry();
2628       break;
2629     }
2630     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2631       // Add the catchpad handlers to the possible destinations.
2632       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2633         UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
2634         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2635         if (IsMSVCCXX || IsCoreCLR)
2636           UnwindDests.back().first->setIsEHFuncletEntry();
2637         if (!IsSEH)
2638           UnwindDests.back().first->setIsEHScopeEntry();
2639       }
2640       NewEHPadBB = CatchSwitch->getUnwindDest();
2641     } else {
2642       continue;
2643     }
2644 
2645     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2646     if (BPI && NewEHPadBB)
2647       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2648     EHPadBB = NewEHPadBB;
2649   }
2650   return true;
2651 }
2652 
2653 bool IRTranslator::translateInvoke(const User &U,
2654                                    MachineIRBuilder &MIRBuilder) {
2655   const InvokeInst &I = cast<InvokeInst>(U);
2656   MCContext &Context = MF->getContext();
2657 
2658   const BasicBlock *ReturnBB = I.getSuccessor(0);
2659   const BasicBlock *EHPadBB = I.getSuccessor(1);
2660 
2661   const Function *Fn = I.getCalledFunction();
2662 
2663   // FIXME: support invoking patchpoint and statepoint intrinsics.
2664   if (Fn && Fn->isIntrinsic())
2665     return false;
2666 
2667   // FIXME: support whatever these are.
2668   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
2669     return false;
2670 
2671   // FIXME: support control flow guard targets.
2672   if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2673     return false;
2674 
2675   // FIXME: support Windows exception handling.
2676   if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
2677     return false;
2678 
2679   bool LowerInlineAsm = I.isInlineAsm();
2680   bool NeedEHLabel = true;
2681 
2682   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
2683   // the region covered by the try.
2684   MCSymbol *BeginSymbol = nullptr;
2685   if (NeedEHLabel) {
2686     MIRBuilder.buildInstr(TargetOpcode::G_INVOKE_REGION_START);
2687     BeginSymbol = Context.createTempSymbol();
2688     MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
2689   }
2690 
2691   if (LowerInlineAsm) {
2692     if (!translateInlineAsm(I, MIRBuilder))
2693       return false;
2694   } else if (!translateCallBase(I, MIRBuilder))
2695     return false;
2696 
2697   MCSymbol *EndSymbol = nullptr;
2698   if (NeedEHLabel) {
2699     EndSymbol = Context.createTempSymbol();
2700     MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
2701   }
2702 
2703   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2704   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2705   MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
2706   BranchProbability EHPadBBProb =
2707       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2708           : BranchProbability::getZero();
2709 
2710   if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
2711     return false;
2712 
2713   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
2714                     &ReturnMBB = getMBB(*ReturnBB);
2715   // Update successor info.
2716   addSuccessorWithProb(InvokeMBB, &ReturnMBB);
2717   for (auto &UnwindDest : UnwindDests) {
2718     UnwindDest.first->setIsEHPad();
2719     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2720   }
2721   InvokeMBB->normalizeSuccProbs();
2722 
2723   if (NeedEHLabel) {
2724     assert(BeginSymbol && "Expected a begin symbol!");
2725     assert(EndSymbol && "Expected an end symbol!");
2726     MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
2727   }
2728 
2729   MIRBuilder.buildBr(ReturnMBB);
2730   return true;
2731 }
2732 
2733 bool IRTranslator::translateCallBr(const User &U,
2734                                    MachineIRBuilder &MIRBuilder) {
2735   // FIXME: Implement this.
2736   return false;
2737 }
2738 
2739 bool IRTranslator::translateLandingPad(const User &U,
2740                                        MachineIRBuilder &MIRBuilder) {
2741   const LandingPadInst &LP = cast<LandingPadInst>(U);
2742 
2743   MachineBasicBlock &MBB = MIRBuilder.getMBB();
2744 
2745   MBB.setIsEHPad();
2746 
2747   // If there aren't registers to copy the values into (e.g., during SjLj
2748   // exceptions), then don't bother.
2749   auto &TLI = *MF->getSubtarget().getTargetLowering();
2750   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
2751   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2752       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2753     return true;
2754 
2755   // If landingpad's return type is token type, we don't create DAG nodes
2756   // for its exception pointer and selector value. The extraction of exception
2757   // pointer or selector value from token type landingpads is not currently
2758   // supported.
2759   if (LP.getType()->isTokenTy())
2760     return true;
2761 
2762   // Add a label to mark the beginning of the landing pad.  Deletion of the
2763   // landing pad can thus be detected via the MachineModuleInfo.
2764   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
2765     .addSym(MF->addLandingPad(&MBB));
2766 
2767   // If the unwinder does not preserve all registers, ensure that the
2768   // function marks the clobbered registers as used.
2769   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
2770   if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
2771     MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
2772 
2773   LLT Ty = getLLTForType(*LP.getType(), *DL);
2774   Register Undef = MRI->createGenericVirtualRegister(Ty);
2775   MIRBuilder.buildUndef(Undef);
2776 
2777   SmallVector<LLT, 2> Tys;
2778   for (Type *Ty : cast<StructType>(LP.getType())->elements())
2779     Tys.push_back(getLLTForType(*Ty, *DL));
2780   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
2781 
2782   // Mark exception register as live in.
2783   Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
2784   if (!ExceptionReg)
2785     return false;
2786 
2787   MBB.addLiveIn(ExceptionReg);
2788   ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
2789   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
2790 
2791   Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
2792   if (!SelectorReg)
2793     return false;
2794 
2795   MBB.addLiveIn(SelectorReg);
2796   Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
2797   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
2798   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
2799 
2800   return true;
2801 }
2802 
2803 bool IRTranslator::translateAlloca(const User &U,
2804                                    MachineIRBuilder &MIRBuilder) {
2805   auto &AI = cast<AllocaInst>(U);
2806 
2807   if (AI.isSwiftError())
2808     return true;
2809 
2810   if (AI.isStaticAlloca()) {
2811     Register Res = getOrCreateVReg(AI);
2812     int FI = getOrCreateFrameIndex(AI);
2813     MIRBuilder.buildFrameIndex(Res, FI);
2814     return true;
2815   }
2816 
2817   // FIXME: support stack probing for Windows.
2818   if (MF->getTarget().getTargetTriple().isOSWindows())
2819     return false;
2820 
2821   // Now we're in the harder dynamic case.
2822   Register NumElts = getOrCreateVReg(*AI.getArraySize());
2823   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
2824   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
2825   if (MRI->getType(NumElts) != IntPtrTy) {
2826     Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
2827     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
2828     NumElts = ExtElts;
2829   }
2830 
2831   Type *Ty = AI.getAllocatedType();
2832 
2833   Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
2834   Register TySize =
2835       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
2836   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
2837 
2838   // Round the size of the allocation up to the stack alignment size
2839   // by add SA-1 to the size. This doesn't overflow because we're computing
2840   // an address inside an alloca.
2841   Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
2842   auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
2843   auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
2844                                       MachineInstr::NoUWrap);
2845   auto AlignCst =
2846       MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
2847   auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
2848 
2849   Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
2850   if (Alignment <= StackAlign)
2851     Alignment = Align(1);
2852   MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
2853 
2854   MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
2855   assert(MF->getFrameInfo().hasVarSizedObjects());
2856   return true;
2857 }
2858 
2859 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
2860   // FIXME: We may need more info about the type. Because of how LLT works,
2861   // we're completely discarding the i64/double distinction here (amongst
2862   // others). Fortunately the ABIs I know of where that matters don't use va_arg
2863   // anyway but that's not guaranteed.
2864   MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
2865                         {getOrCreateVReg(*U.getOperand(0)),
2866                          DL->getABITypeAlign(U.getType()).value()});
2867   return true;
2868 }
2869 
2870 bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) {
2871     if (!MF->getTarget().Options.TrapUnreachable)
2872     return true;
2873 
2874   auto &UI = cast<UnreachableInst>(U);
2875   // We may be able to ignore unreachable behind a noreturn call.
2876   if (MF->getTarget().Options.NoTrapAfterNoreturn) {
2877     const BasicBlock &BB = *UI.getParent();
2878     if (&UI != &BB.front()) {
2879       BasicBlock::const_iterator PredI =
2880         std::prev(BasicBlock::const_iterator(UI));
2881       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2882         if (Call->doesNotReturn())
2883           return true;
2884       }
2885     }
2886   }
2887 
2888   MIRBuilder.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true);
2889   return true;
2890 }
2891 
2892 bool IRTranslator::translateInsertElement(const User &U,
2893                                           MachineIRBuilder &MIRBuilder) {
2894   // If it is a <1 x Ty> vector, use the scalar as it is
2895   // not a legal vector type in LLT.
2896   if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
2897     return translateCopy(U, *U.getOperand(1), MIRBuilder);
2898 
2899   Register Res = getOrCreateVReg(U);
2900   Register Val = getOrCreateVReg(*U.getOperand(0));
2901   Register Elt = getOrCreateVReg(*U.getOperand(1));
2902   Register Idx = getOrCreateVReg(*U.getOperand(2));
2903   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
2904   return true;
2905 }
2906 
2907 bool IRTranslator::translateExtractElement(const User &U,
2908                                            MachineIRBuilder &MIRBuilder) {
2909   // If it is a <1 x Ty> vector, use the scalar as it is
2910   // not a legal vector type in LLT.
2911   if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
2912     return translateCopy(U, *U.getOperand(0), MIRBuilder);
2913 
2914   Register Res = getOrCreateVReg(U);
2915   Register Val = getOrCreateVReg(*U.getOperand(0));
2916   const auto &TLI = *MF->getSubtarget().getTargetLowering();
2917   unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
2918   Register Idx;
2919   if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
2920     if (CI->getBitWidth() != PreferredVecIdxWidth) {
2921       APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth);
2922       auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
2923       Idx = getOrCreateVReg(*NewIdxCI);
2924     }
2925   }
2926   if (!Idx)
2927     Idx = getOrCreateVReg(*U.getOperand(1));
2928   if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
2929     const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
2930     Idx = MIRBuilder.buildZExtOrTrunc(VecIdxTy, Idx).getReg(0);
2931   }
2932   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
2933   return true;
2934 }
2935 
2936 bool IRTranslator::translateShuffleVector(const User &U,
2937                                           MachineIRBuilder &MIRBuilder) {
2938   ArrayRef<int> Mask;
2939   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
2940     Mask = SVI->getShuffleMask();
2941   else
2942     Mask = cast<ConstantExpr>(U).getShuffleMask();
2943   ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
2944   MIRBuilder
2945       .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
2946                   {getOrCreateVReg(*U.getOperand(0)),
2947                    getOrCreateVReg(*U.getOperand(1))})
2948       .addShuffleMask(MaskAlloc);
2949   return true;
2950 }
2951 
2952 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
2953   const PHINode &PI = cast<PHINode>(U);
2954 
2955   SmallVector<MachineInstr *, 4> Insts;
2956   for (auto Reg : getOrCreateVRegs(PI)) {
2957     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
2958     Insts.push_back(MIB.getInstr());
2959   }
2960 
2961   PendingPHIs.emplace_back(&PI, std::move(Insts));
2962   return true;
2963 }
2964 
2965 bool IRTranslator::translateAtomicCmpXchg(const User &U,
2966                                           MachineIRBuilder &MIRBuilder) {
2967   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
2968 
2969   auto &TLI = *MF->getSubtarget().getTargetLowering();
2970   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2971 
2972   auto Res = getOrCreateVRegs(I);
2973   Register OldValRes = Res[0];
2974   Register SuccessRes = Res[1];
2975   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2976   Register Cmp = getOrCreateVReg(*I.getCompareOperand());
2977   Register NewVal = getOrCreateVReg(*I.getNewValOperand());
2978 
2979   MIRBuilder.buildAtomicCmpXchgWithSuccess(
2980       OldValRes, SuccessRes, Addr, Cmp, NewVal,
2981       *MF->getMachineMemOperand(
2982           MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp),
2983           getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(),
2984           I.getSuccessOrdering(), I.getFailureOrdering()));
2985   return true;
2986 }
2987 
2988 bool IRTranslator::translateAtomicRMW(const User &U,
2989                                       MachineIRBuilder &MIRBuilder) {
2990   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
2991   auto &TLI = *MF->getSubtarget().getTargetLowering();
2992   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2993 
2994   Register Res = getOrCreateVReg(I);
2995   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2996   Register Val = getOrCreateVReg(*I.getValOperand());
2997 
2998   unsigned Opcode = 0;
2999   switch (I.getOperation()) {
3000   default:
3001     return false;
3002   case AtomicRMWInst::Xchg:
3003     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
3004     break;
3005   case AtomicRMWInst::Add:
3006     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
3007     break;
3008   case AtomicRMWInst::Sub:
3009     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
3010     break;
3011   case AtomicRMWInst::And:
3012     Opcode = TargetOpcode::G_ATOMICRMW_AND;
3013     break;
3014   case AtomicRMWInst::Nand:
3015     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
3016     break;
3017   case AtomicRMWInst::Or:
3018     Opcode = TargetOpcode::G_ATOMICRMW_OR;
3019     break;
3020   case AtomicRMWInst::Xor:
3021     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
3022     break;
3023   case AtomicRMWInst::Max:
3024     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
3025     break;
3026   case AtomicRMWInst::Min:
3027     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
3028     break;
3029   case AtomicRMWInst::UMax:
3030     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
3031     break;
3032   case AtomicRMWInst::UMin:
3033     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
3034     break;
3035   case AtomicRMWInst::FAdd:
3036     Opcode = TargetOpcode::G_ATOMICRMW_FADD;
3037     break;
3038   case AtomicRMWInst::FSub:
3039     Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
3040     break;
3041   case AtomicRMWInst::FMax:
3042     Opcode = TargetOpcode::G_ATOMICRMW_FMAX;
3043     break;
3044   case AtomicRMWInst::FMin:
3045     Opcode = TargetOpcode::G_ATOMICRMW_FMIN;
3046     break;
3047   case AtomicRMWInst::UIncWrap:
3048     Opcode = TargetOpcode::G_ATOMICRMW_UINC_WRAP;
3049     break;
3050   case AtomicRMWInst::UDecWrap:
3051     Opcode = TargetOpcode::G_ATOMICRMW_UDEC_WRAP;
3052     break;
3053   }
3054 
3055   MIRBuilder.buildAtomicRMW(
3056       Opcode, Res, Addr, Val,
3057       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3058                                 Flags, MRI->getType(Val), getMemOpAlign(I),
3059                                 I.getAAMetadata(), nullptr, I.getSyncScopeID(),
3060                                 I.getOrdering()));
3061   return true;
3062 }
3063 
3064 bool IRTranslator::translateFence(const User &U,
3065                                   MachineIRBuilder &MIRBuilder) {
3066   const FenceInst &Fence = cast<FenceInst>(U);
3067   MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
3068                         Fence.getSyncScopeID());
3069   return true;
3070 }
3071 
3072 bool IRTranslator::translateFreeze(const User &U,
3073                                    MachineIRBuilder &MIRBuilder) {
3074   const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
3075   const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
3076 
3077   assert(DstRegs.size() == SrcRegs.size() &&
3078          "Freeze with different source and destination type?");
3079 
3080   for (unsigned I = 0; I < DstRegs.size(); ++I) {
3081     MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
3082   }
3083 
3084   return true;
3085 }
3086 
3087 void IRTranslator::finishPendingPhis() {
3088 #ifndef NDEBUG
3089   DILocationVerifier Verifier;
3090   GISelObserverWrapper WrapperObserver(&Verifier);
3091   RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3092 #endif // ifndef NDEBUG
3093   for (auto &Phi : PendingPHIs) {
3094     const PHINode *PI = Phi.first;
3095     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
3096     MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
3097     EntryBuilder->setDebugLoc(PI->getDebugLoc());
3098 #ifndef NDEBUG
3099     Verifier.setCurrentInst(PI);
3100 #endif // ifndef NDEBUG
3101 
3102     SmallSet<const MachineBasicBlock *, 16> SeenPreds;
3103     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
3104       auto IRPred = PI->getIncomingBlock(i);
3105       ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
3106       for (auto *Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
3107         if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
3108           continue;
3109         SeenPreds.insert(Pred);
3110         for (unsigned j = 0; j < ValRegs.size(); ++j) {
3111           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
3112           MIB.addUse(ValRegs[j]);
3113           MIB.addMBB(Pred);
3114         }
3115       }
3116     }
3117   }
3118 }
3119 
3120 bool IRTranslator::translate(const Instruction &Inst) {
3121   CurBuilder->setDebugLoc(Inst.getDebugLoc());
3122   CurBuilder->setPCSections(Inst.getMetadata(LLVMContext::MD_pcsections));
3123 
3124   auto &TLI = *MF->getSubtarget().getTargetLowering();
3125   if (TLI.fallBackToDAGISel(Inst))
3126     return false;
3127 
3128   switch (Inst.getOpcode()) {
3129 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
3130   case Instruction::OPCODE:                                                    \
3131     return translate##OPCODE(Inst, *CurBuilder.get());
3132 #include "llvm/IR/Instruction.def"
3133   default:
3134     return false;
3135   }
3136 }
3137 
3138 bool IRTranslator::translate(const Constant &C, Register Reg) {
3139   // We only emit constants into the entry block from here. To prevent jumpy
3140   // debug behaviour remove debug line.
3141   if (auto CurrInstDL = CurBuilder->getDL())
3142     EntryBuilder->setDebugLoc(DebugLoc());
3143 
3144   if (auto CI = dyn_cast<ConstantInt>(&C))
3145     EntryBuilder->buildConstant(Reg, *CI);
3146   else if (auto CF = dyn_cast<ConstantFP>(&C))
3147     EntryBuilder->buildFConstant(Reg, *CF);
3148   else if (isa<UndefValue>(C))
3149     EntryBuilder->buildUndef(Reg);
3150   else if (isa<ConstantPointerNull>(C))
3151     EntryBuilder->buildConstant(Reg, 0);
3152   else if (auto GV = dyn_cast<GlobalValue>(&C))
3153     EntryBuilder->buildGlobalValue(Reg, GV);
3154   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
3155     if (!isa<FixedVectorType>(CAZ->getType()))
3156       return false;
3157     // Return the scalar if it is a <1 x Ty> vector.
3158     unsigned NumElts = CAZ->getElementCount().getFixedValue();
3159     if (NumElts == 1)
3160       return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder);
3161     SmallVector<Register, 4> Ops;
3162     for (unsigned I = 0; I < NumElts; ++I) {
3163       Constant &Elt = *CAZ->getElementValue(I);
3164       Ops.push_back(getOrCreateVReg(Elt));
3165     }
3166     EntryBuilder->buildBuildVector(Reg, Ops);
3167   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
3168     // Return the scalar if it is a <1 x Ty> vector.
3169     if (CV->getNumElements() == 1)
3170       return translateCopy(C, *CV->getElementAsConstant(0), *EntryBuilder);
3171     SmallVector<Register, 4> Ops;
3172     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
3173       Constant &Elt = *CV->getElementAsConstant(i);
3174       Ops.push_back(getOrCreateVReg(Elt));
3175     }
3176     EntryBuilder->buildBuildVector(Reg, Ops);
3177   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
3178     switch(CE->getOpcode()) {
3179 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
3180   case Instruction::OPCODE:                                                    \
3181     return translate##OPCODE(*CE, *EntryBuilder.get());
3182 #include "llvm/IR/Instruction.def"
3183     default:
3184       return false;
3185     }
3186   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
3187     if (CV->getNumOperands() == 1)
3188       return translateCopy(C, *CV->getOperand(0), *EntryBuilder);
3189     SmallVector<Register, 4> Ops;
3190     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
3191       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
3192     }
3193     EntryBuilder->buildBuildVector(Reg, Ops);
3194   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
3195     EntryBuilder->buildBlockAddress(Reg, BA);
3196   } else
3197     return false;
3198 
3199   return true;
3200 }
3201 
3202 bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB,
3203                                       MachineBasicBlock &MBB) {
3204   for (auto &BTB : SL->BitTestCases) {
3205     // Emit header first, if it wasn't already emitted.
3206     if (!BTB.Emitted)
3207       emitBitTestHeader(BTB, BTB.Parent);
3208 
3209     BranchProbability UnhandledProb = BTB.Prob;
3210     for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
3211       UnhandledProb -= BTB.Cases[j].ExtraProb;
3212       // Set the current basic block to the mbb we wish to insert the code into
3213       MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
3214       // If all cases cover a contiguous range, it is not necessary to jump to
3215       // the default block after the last bit test fails. This is because the
3216       // range check during bit test header creation has guaranteed that every
3217       // case here doesn't go outside the range. In this case, there is no need
3218       // to perform the last bit test, as it will always be true. Instead, make
3219       // the second-to-last bit-test fall through to the target of the last bit
3220       // test, and delete the last bit test.
3221 
3222       MachineBasicBlock *NextMBB;
3223       if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3224         // Second-to-last bit-test with contiguous range: fall through to the
3225         // target of the final bit test.
3226         NextMBB = BTB.Cases[j + 1].TargetBB;
3227       } else if (j + 1 == ej) {
3228         // For the last bit test, fall through to Default.
3229         NextMBB = BTB.Default;
3230       } else {
3231         // Otherwise, fall through to the next bit test.
3232         NextMBB = BTB.Cases[j + 1].ThisBB;
3233       }
3234 
3235       emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);
3236 
3237       if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3238         // We need to record the replacement phi edge here that normally
3239         // happens in emitBitTestCase before we delete the case, otherwise the
3240         // phi edge will be lost.
3241         addMachineCFGPred({BTB.Parent->getBasicBlock(),
3242                            BTB.Cases[ej - 1].TargetBB->getBasicBlock()},
3243                           MBB);
3244         // Since we're not going to use the final bit test, remove it.
3245         BTB.Cases.pop_back();
3246         break;
3247       }
3248     }
3249     // This is "default" BB. We have two jumps to it. From "header" BB and from
3250     // last "case" BB, unless the latter was skipped.
3251     CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
3252                                    BTB.Default->getBasicBlock()};
3253     addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
3254     if (!BTB.ContiguousRange) {
3255       addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
3256     }
3257   }
3258   SL->BitTestCases.clear();
3259 
3260   for (auto &JTCase : SL->JTCases) {
3261     // Emit header first, if it wasn't already emitted.
3262     if (!JTCase.first.Emitted)
3263       emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
3264 
3265     emitJumpTable(JTCase.second, JTCase.second.MBB);
3266   }
3267   SL->JTCases.clear();
3268 
3269   for (auto &SwCase : SL->SwitchCases)
3270     emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
3271   SL->SwitchCases.clear();
3272 
3273   // Check if we need to generate stack-protector guard checks.
3274   StackProtector &SP = getAnalysis<StackProtector>();
3275   if (SP.shouldEmitSDCheck(BB)) {
3276     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3277     bool FunctionBasedInstrumentation =
3278         TLI.getSSPStackGuardCheck(*MF->getFunction().getParent());
3279     SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation);
3280   }
3281   // Handle stack protector.
3282   if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
3283     LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n");
3284     return false;
3285   } else if (SPDescriptor.shouldEmitStackProtector()) {
3286     MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB();
3287     MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB();
3288 
3289     // Find the split point to split the parent mbb. At the same time copy all
3290     // physical registers used in the tail of parent mbb into virtual registers
3291     // before the split point and back into physical registers after the split
3292     // point. This prevents us needing to deal with Live-ins and many other
3293     // register allocation issues caused by us splitting the parent mbb. The
3294     // register allocator will clean up said virtual copies later on.
3295     MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector(
3296         ParentMBB, *MF->getSubtarget().getInstrInfo());
3297 
3298     // Splice the terminator of ParentMBB into SuccessMBB.
3299     SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint,
3300                        ParentMBB->end());
3301 
3302     // Add compare/jump on neq/jump to the parent BB.
3303     if (!emitSPDescriptorParent(SPDescriptor, ParentMBB))
3304       return false;
3305 
3306     // CodeGen Failure MBB if we have not codegened it yet.
3307     MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB();
3308     if (FailureMBB->empty()) {
3309       if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB))
3310         return false;
3311     }
3312 
3313     // Clear the Per-BB State.
3314     SPDescriptor.resetPerBBState();
3315   }
3316   return true;
3317 }
3318 
3319 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD,
3320                                           MachineBasicBlock *ParentBB) {
3321   CurBuilder->setInsertPt(*ParentBB, ParentBB->end());
3322   // First create the loads to the guard/stack slot for the comparison.
3323   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3324   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
3325   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
3326   LLT PtrMemTy = getLLTForMVT(TLI.getPointerMemTy(*DL));
3327 
3328   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3329   int FI = MFI.getStackProtectorIndex();
3330 
3331   Register Guard;
3332   Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0);
3333   const Module &M = *ParentBB->getParent()->getFunction().getParent();
3334   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
3335 
3336   // Generate code to load the content of the guard slot.
3337   Register GuardVal =
3338       CurBuilder
3339           ->buildLoad(PtrMemTy, StackSlotPtr,
3340                       MachinePointerInfo::getFixedStack(*MF, FI), Align,
3341                       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile)
3342           .getReg(0);
3343 
3344   if (TLI.useStackGuardXorFP()) {
3345     LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented");
3346     return false;
3347   }
3348 
3349   // Retrieve guard check function, nullptr if instrumentation is inlined.
3350   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3351     // This path is currently untestable on GlobalISel, since the only platform
3352     // that needs this seems to be Windows, and we fall back on that currently.
3353     // The code still lives here in case that changes.
3354     // Silence warning about unused variable until the code below that uses
3355     // 'GuardCheckFn' is enabled.
3356     (void)GuardCheckFn;
3357     return false;
3358 #if 0
3359     // The target provides a guard check function to validate the guard value.
3360     // Generate a call to that function with the content of the guard slot as
3361     // argument.
3362     FunctionType *FnTy = GuardCheckFn->getFunctionType();
3363     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3364     ISD::ArgFlagsTy Flags;
3365     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
3366       Flags.setInReg();
3367     CallLowering::ArgInfo GuardArgInfo(
3368         {GuardVal, FnTy->getParamType(0), {Flags}});
3369 
3370     CallLowering::CallLoweringInfo Info;
3371     Info.OrigArgs.push_back(GuardArgInfo);
3372     Info.CallConv = GuardCheckFn->getCallingConv();
3373     Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0);
3374     Info.OrigRet = {Register(), FnTy->getReturnType()};
3375     if (!CLI->lowerCall(MIRBuilder, Info)) {
3376       LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n");
3377       return false;
3378     }
3379     return true;
3380 #endif
3381   }
3382 
3383   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3384   // Otherwise, emit a volatile load to retrieve the stack guard value.
3385   if (TLI.useLoadStackGuardNode()) {
3386     Guard =
3387         MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits()));
3388     getStackGuard(Guard, *CurBuilder);
3389   } else {
3390     // TODO: test using android subtarget when we support @llvm.thread.pointer.
3391     const Value *IRGuard = TLI.getSDagStackGuard(M);
3392     Register GuardPtr = getOrCreateVReg(*IRGuard);
3393 
3394     Guard = CurBuilder
3395                 ->buildLoad(PtrMemTy, GuardPtr,
3396                             MachinePointerInfo::getFixedStack(*MF, FI), Align,
3397                             MachineMemOperand::MOLoad |
3398                                 MachineMemOperand::MOVolatile)
3399                 .getReg(0);
3400   }
3401 
3402   // Perform the comparison.
3403   auto Cmp =
3404       CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal);
3405   // If the guard/stackslot do not equal, branch to failure MBB.
3406   CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB());
3407   // Otherwise branch to success MBB.
3408   CurBuilder->buildBr(*SPD.getSuccessMBB());
3409   return true;
3410 }
3411 
3412 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD,
3413                                            MachineBasicBlock *FailureBB) {
3414   CurBuilder->setInsertPt(*FailureBB, FailureBB->end());
3415   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3416 
3417   const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL;
3418   const char *Name = TLI.getLibcallName(Libcall);
3419 
3420   CallLowering::CallLoweringInfo Info;
3421   Info.CallConv = TLI.getLibcallCallingConv(Libcall);
3422   Info.Callee = MachineOperand::CreateES(Name);
3423   Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()),
3424                   0};
3425   if (!CLI->lowerCall(*CurBuilder, Info)) {
3426     LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n");
3427     return false;
3428   }
3429 
3430   // On PS4/PS5, the "return address" must still be within the calling
3431   // function, even if it's at the very end, so emit an explicit TRAP here.
3432   // WebAssembly needs an unreachable instruction after a non-returning call,
3433   // because the function return type can be different from __stack_chk_fail's
3434   // return type (void).
3435   const TargetMachine &TM = MF->getTarget();
3436   if (TM.getTargetTriple().isPS() || TM.getTargetTriple().isWasm()) {
3437     LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n");
3438     return false;
3439   }
3440   return true;
3441 }
3442 
3443 void IRTranslator::finalizeFunction() {
3444   // Release the memory used by the different maps we
3445   // needed during the translation.
3446   PendingPHIs.clear();
3447   VMap.reset();
3448   FrameIndices.clear();
3449   MachinePreds.clear();
3450   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
3451   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
3452   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
3453   EntryBuilder.reset();
3454   CurBuilder.reset();
3455   FuncInfo.clear();
3456   SPDescriptor.resetPerFunctionState();
3457 }
3458 
3459 /// Returns true if a BasicBlock \p BB within a variadic function contains a
3460 /// variadic musttail call.
3461 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
3462   if (!IsVarArg)
3463     return false;
3464 
3465   // Walk the block backwards, because tail calls usually only appear at the end
3466   // of a block.
3467   return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) {
3468     const auto *CI = dyn_cast<CallInst>(&I);
3469     return CI && CI->isMustTailCall();
3470   });
3471 }
3472 
3473 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
3474   MF = &CurMF;
3475   const Function &F = MF->getFunction();
3476   GISelCSEAnalysisWrapper &Wrapper =
3477       getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
3478   // Set the CSEConfig and run the analysis.
3479   GISelCSEInfo *CSEInfo = nullptr;
3480   TPC = &getAnalysis<TargetPassConfig>();
3481   bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
3482                        ? EnableCSEInIRTranslator
3483                        : TPC->isGISelCSEEnabled();
3484 
3485   if (EnableCSE) {
3486     EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3487     CSEInfo = &Wrapper.get(TPC->getCSEConfig());
3488     EntryBuilder->setCSEInfo(CSEInfo);
3489     CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3490     CurBuilder->setCSEInfo(CSEInfo);
3491   } else {
3492     EntryBuilder = std::make_unique<MachineIRBuilder>();
3493     CurBuilder = std::make_unique<MachineIRBuilder>();
3494   }
3495   CLI = MF->getSubtarget().getCallLowering();
3496   CurBuilder->setMF(*MF);
3497   EntryBuilder->setMF(*MF);
3498   MRI = &MF->getRegInfo();
3499   DL = &F.getParent()->getDataLayout();
3500   ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
3501   const TargetMachine &TM = MF->getTarget();
3502   TM.resetTargetOptions(F);
3503   EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F);
3504   FuncInfo.MF = MF;
3505   if (EnableOpts) {
3506     AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3507     FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
3508   } else {
3509     AA = nullptr;
3510     FuncInfo.BPI = nullptr;
3511   }
3512 
3513   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
3514       MF->getFunction());
3515   LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3516   FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
3517 
3518   const auto &TLI = *MF->getSubtarget().getTargetLowering();
3519 
3520   SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
3521   SL->init(TLI, TM, *DL);
3522 
3523 
3524 
3525   assert(PendingPHIs.empty() && "stale PHIs");
3526 
3527   // Targets which want to use big endian can enable it using
3528   // enableBigEndian()
3529   if (!DL->isLittleEndian() && !CLI->enableBigEndian()) {
3530     // Currently we don't properly handle big endian code.
3531     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3532                                F.getSubprogram(), &F.getEntryBlock());
3533     R << "unable to translate in big endian mode";
3534     reportTranslationError(*MF, *TPC, *ORE, R);
3535   }
3536 
3537   // Release the per-function state when we return, whether we succeeded or not.
3538   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
3539 
3540   // Setup a separate basic-block for the arguments and constants
3541   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
3542   MF->push_back(EntryBB);
3543   EntryBuilder->setMBB(*EntryBB);
3544 
3545   DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
3546   SwiftError.setFunction(CurMF);
3547   SwiftError.createEntriesInEntryBlock(DbgLoc);
3548 
3549   bool IsVarArg = F.isVarArg();
3550   bool HasMustTailInVarArgFn = false;
3551 
3552   // Create all blocks, in IR order, to preserve the layout.
3553   for (const BasicBlock &BB: F) {
3554     auto *&MBB = BBToMBB[&BB];
3555 
3556     MBB = MF->CreateMachineBasicBlock(&BB);
3557     MF->push_back(MBB);
3558 
3559     if (BB.hasAddressTaken())
3560       MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB));
3561 
3562     if (!HasMustTailInVarArgFn)
3563       HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
3564   }
3565 
3566   MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
3567 
3568   // Make our arguments/constants entry block fallthrough to the IR entry block.
3569   EntryBB->addSuccessor(&getMBB(F.front()));
3570 
3571   if (CLI->fallBackToDAGISel(*MF)) {
3572     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3573                                F.getSubprogram(), &F.getEntryBlock());
3574     R << "unable to lower function: " << ore::NV("Prototype", F.getType());
3575     reportTranslationError(*MF, *TPC, *ORE, R);
3576     return false;
3577   }
3578 
3579   // Lower the actual args into this basic block.
3580   SmallVector<ArrayRef<Register>, 8> VRegArgs;
3581   for (const Argument &Arg: F.args()) {
3582     if (DL->getTypeStoreSize(Arg.getType()).isZero())
3583       continue; // Don't handle zero sized types.
3584     ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
3585     VRegArgs.push_back(VRegs);
3586 
3587     if (Arg.hasSwiftErrorAttr()) {
3588       assert(VRegs.size() == 1 && "Too many vregs for Swift error");
3589       SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
3590     }
3591   }
3592 
3593   if (!CLI->lowerFormalArguments(*EntryBuilder, F, VRegArgs, FuncInfo)) {
3594     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3595                                F.getSubprogram(), &F.getEntryBlock());
3596     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
3597     reportTranslationError(*MF, *TPC, *ORE, R);
3598     return false;
3599   }
3600 
3601   // Need to visit defs before uses when translating instructions.
3602   GISelObserverWrapper WrapperObserver;
3603   if (EnableCSE && CSEInfo)
3604     WrapperObserver.addObserver(CSEInfo);
3605   {
3606     ReversePostOrderTraversal<const Function *> RPOT(&F);
3607 #ifndef NDEBUG
3608     DILocationVerifier Verifier;
3609     WrapperObserver.addObserver(&Verifier);
3610 #endif // ifndef NDEBUG
3611     RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3612     RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
3613     for (const BasicBlock *BB : RPOT) {
3614       MachineBasicBlock &MBB = getMBB(*BB);
3615       // Set the insertion point of all the following translations to
3616       // the end of this basic block.
3617       CurBuilder->setMBB(MBB);
3618       HasTailCall = false;
3619       for (const Instruction &Inst : *BB) {
3620         // If we translated a tail call in the last step, then we know
3621         // everything after the call is either a return, or something that is
3622         // handled by the call itself. (E.g. a lifetime marker or assume
3623         // intrinsic.) In this case, we should stop translating the block and
3624         // move on.
3625         if (HasTailCall)
3626           break;
3627 #ifndef NDEBUG
3628         Verifier.setCurrentInst(&Inst);
3629 #endif // ifndef NDEBUG
3630         if (translate(Inst))
3631           continue;
3632 
3633         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3634                                    Inst.getDebugLoc(), BB);
3635         R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
3636 
3637         if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
3638           std::string InstStrStorage;
3639           raw_string_ostream InstStr(InstStrStorage);
3640           InstStr << Inst;
3641 
3642           R << ": '" << InstStr.str() << "'";
3643         }
3644 
3645         reportTranslationError(*MF, *TPC, *ORE, R);
3646         return false;
3647       }
3648 
3649       if (!finalizeBasicBlock(*BB, MBB)) {
3650         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3651                                    BB->getTerminator()->getDebugLoc(), BB);
3652         R << "unable to translate basic block";
3653         reportTranslationError(*MF, *TPC, *ORE, R);
3654         return false;
3655       }
3656     }
3657 #ifndef NDEBUG
3658     WrapperObserver.removeObserver(&Verifier);
3659 #endif
3660   }
3661 
3662   finishPendingPhis();
3663 
3664   SwiftError.propagateVRegs();
3665 
3666   // Merge the argument lowering and constants block with its single
3667   // successor, the LLVM-IR entry block.  We want the basic block to
3668   // be maximal.
3669   assert(EntryBB->succ_size() == 1 &&
3670          "Custom BB used for lowering should have only one successor");
3671   // Get the successor of the current entry block.
3672   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
3673   assert(NewEntryBB.pred_size() == 1 &&
3674          "LLVM-IR entry block has a predecessor!?");
3675   // Move all the instruction from the current entry block to the
3676   // new entry block.
3677   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
3678                     EntryBB->end());
3679 
3680   // Update the live-in information for the new entry block.
3681   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
3682     NewEntryBB.addLiveIn(LiveIn);
3683   NewEntryBB.sortUniqueLiveIns();
3684 
3685   // Get rid of the now empty basic block.
3686   EntryBB->removeSuccessor(&NewEntryBB);
3687   MF->remove(EntryBB);
3688   MF->deleteMachineBasicBlock(EntryBB);
3689 
3690   assert(&MF->front() == &NewEntryBB &&
3691          "New entry wasn't next in the list of basic block!");
3692 
3693   // Initialize stack protector information.
3694   StackProtector &SP = getAnalysis<StackProtector>();
3695   SP.copyToMachineFrameInfo(MF->getFrameInfo());
3696 
3697   return false;
3698 }
3699