xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp (revision 29332c0dcee1e80c9fb871e06c3160bd5deb1b44)
1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BranchProbabilityInfo.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
26 #include "llvm/CodeGen/LowLevelType.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/StackProtector.h"
36 #include "llvm/CodeGen/SwitchLoweringUtils.h"
37 #include "llvm/CodeGen/TargetFrameLowering.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/CFG.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfo.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GetElementPtrTypeIterator.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/User.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/MC/MCContext.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CodeGen.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetIntrinsicInfo.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include "llvm/Transforms/Utils/MemoryOpRemark.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <iterator>
81 #include <string>
82 #include <utility>
83 #include <vector>
84 
85 #define DEBUG_TYPE "irtranslator"
86 
87 using namespace llvm;
88 
89 static cl::opt<bool>
90     EnableCSEInIRTranslator("enable-cse-in-irtranslator",
91                             cl::desc("Should enable CSE in irtranslator"),
92                             cl::Optional, cl::init(false));
93 char IRTranslator::ID = 0;
94 
95 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
96                 false, false)
97 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
98 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
99 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
100 INITIALIZE_PASS_DEPENDENCY(StackProtector)
101 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
102 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
103                 false, false)
104 
105 static void reportTranslationError(MachineFunction &MF,
106                                    const TargetPassConfig &TPC,
107                                    OptimizationRemarkEmitter &ORE,
108                                    OptimizationRemarkMissed &R) {
109   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
110 
111   // Print the function name explicitly if we don't have a debug location (which
112   // makes the diagnostic less useful) or if we're going to emit a raw error.
113   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
114     R << (" (in function: " + MF.getName() + ")").str();
115 
116   if (TPC.isGlobalISelAbortEnabled())
117     report_fatal_error(R.getMsg());
118   else
119     ORE.emit(R);
120 }
121 
122 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel)
123     : MachineFunctionPass(ID), OptLevel(optlevel) {}
124 
125 #ifndef NDEBUG
126 namespace {
127 /// Verify that every instruction created has the same DILocation as the
128 /// instruction being translated.
129 class DILocationVerifier : public GISelChangeObserver {
130   const Instruction *CurrInst = nullptr;
131 
132 public:
133   DILocationVerifier() = default;
134   ~DILocationVerifier() = default;
135 
136   const Instruction *getCurrentInst() const { return CurrInst; }
137   void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
138 
139   void erasingInstr(MachineInstr &MI) override {}
140   void changingInstr(MachineInstr &MI) override {}
141   void changedInstr(MachineInstr &MI) override {}
142 
143   void createdInstr(MachineInstr &MI) override {
144     assert(getCurrentInst() && "Inserted instruction without a current MI");
145 
146     // Only print the check message if we're actually checking it.
147 #ifndef NDEBUG
148     LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
149                       << " was copied to " << MI);
150 #endif
151     // We allow insts in the entry block to have a debug loc line of 0 because
152     // they could have originated from constants, and we don't want a jumpy
153     // debug experience.
154     assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
155             MI.getDebugLoc().getLine() == 0) &&
156            "Line info was not transferred to all instructions");
157   }
158 };
159 } // namespace
160 #endif // ifndef NDEBUG
161 
162 
163 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
164   AU.addRequired<StackProtector>();
165   AU.addRequired<TargetPassConfig>();
166   AU.addRequired<GISelCSEAnalysisWrapperPass>();
167   if (OptLevel != CodeGenOpt::None)
168     AU.addRequired<BranchProbabilityInfoWrapperPass>();
169   AU.addRequired<TargetLibraryInfoWrapperPass>();
170   AU.addPreserved<TargetLibraryInfoWrapperPass>();
171   getSelectionDAGFallbackAnalysisUsage(AU);
172   MachineFunctionPass::getAnalysisUsage(AU);
173 }
174 
175 IRTranslator::ValueToVRegInfo::VRegListT &
176 IRTranslator::allocateVRegs(const Value &Val) {
177   auto VRegsIt = VMap.findVRegs(Val);
178   if (VRegsIt != VMap.vregs_end())
179     return *VRegsIt->second;
180   auto *Regs = VMap.getVRegs(Val);
181   auto *Offsets = VMap.getOffsets(Val);
182   SmallVector<LLT, 4> SplitTys;
183   computeValueLLTs(*DL, *Val.getType(), SplitTys,
184                    Offsets->empty() ? Offsets : nullptr);
185   for (unsigned i = 0; i < SplitTys.size(); ++i)
186     Regs->push_back(0);
187   return *Regs;
188 }
189 
190 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
191   auto VRegsIt = VMap.findVRegs(Val);
192   if (VRegsIt != VMap.vregs_end())
193     return *VRegsIt->second;
194 
195   if (Val.getType()->isVoidTy())
196     return *VMap.getVRegs(Val);
197 
198   // Create entry for this type.
199   auto *VRegs = VMap.getVRegs(Val);
200   auto *Offsets = VMap.getOffsets(Val);
201 
202   assert(Val.getType()->isSized() &&
203          "Don't know how to create an empty vreg");
204 
205   SmallVector<LLT, 4> SplitTys;
206   computeValueLLTs(*DL, *Val.getType(), SplitTys,
207                    Offsets->empty() ? Offsets : nullptr);
208 
209   if (!isa<Constant>(Val)) {
210     for (auto Ty : SplitTys)
211       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
212     return *VRegs;
213   }
214 
215   if (Val.getType()->isAggregateType()) {
216     // UndefValue, ConstantAggregateZero
217     auto &C = cast<Constant>(Val);
218     unsigned Idx = 0;
219     while (auto Elt = C.getAggregateElement(Idx++)) {
220       auto EltRegs = getOrCreateVRegs(*Elt);
221       llvm::copy(EltRegs, std::back_inserter(*VRegs));
222     }
223   } else {
224     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
225     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
226     bool Success = translate(cast<Constant>(Val), VRegs->front());
227     if (!Success) {
228       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
229                                  MF->getFunction().getSubprogram(),
230                                  &MF->getFunction().getEntryBlock());
231       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
232       reportTranslationError(*MF, *TPC, *ORE, R);
233       return *VRegs;
234     }
235   }
236 
237   return *VRegs;
238 }
239 
240 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
241   auto MapEntry = FrameIndices.find(&AI);
242   if (MapEntry != FrameIndices.end())
243     return MapEntry->second;
244 
245   uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
246   uint64_t Size =
247       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
248 
249   // Always allocate at least one byte.
250   Size = std::max<uint64_t>(Size, 1u);
251 
252   int &FI = FrameIndices[&AI];
253   FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
254   return FI;
255 }
256 
257 Align IRTranslator::getMemOpAlign(const Instruction &I) {
258   if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
259     return SI->getAlign();
260   if (const LoadInst *LI = dyn_cast<LoadInst>(&I))
261     return LI->getAlign();
262   if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I))
263     return AI->getAlign();
264   if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I))
265     return AI->getAlign();
266 
267   OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
268   R << "unable to translate memop: " << ore::NV("Opcode", &I);
269   reportTranslationError(*MF, *TPC, *ORE, R);
270   return Align(1);
271 }
272 
273 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
274   MachineBasicBlock *&MBB = BBToMBB[&BB];
275   assert(MBB && "BasicBlock was not encountered before");
276   return *MBB;
277 }
278 
279 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
280   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
281   MachinePreds[Edge].push_back(NewPred);
282 }
283 
284 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
285                                      MachineIRBuilder &MIRBuilder) {
286   // Get or create a virtual register for each value.
287   // Unless the value is a Constant => loadimm cst?
288   // or inline constant each time?
289   // Creation of a virtual register needs to have a size.
290   Register Op0 = getOrCreateVReg(*U.getOperand(0));
291   Register Op1 = getOrCreateVReg(*U.getOperand(1));
292   Register Res = getOrCreateVReg(U);
293   uint16_t Flags = 0;
294   if (isa<Instruction>(U)) {
295     const Instruction &I = cast<Instruction>(U);
296     Flags = MachineInstr::copyFlagsFromInstruction(I);
297   }
298 
299   MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
300   return true;
301 }
302 
303 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
304                                     MachineIRBuilder &MIRBuilder) {
305   Register Op0 = getOrCreateVReg(*U.getOperand(0));
306   Register Res = getOrCreateVReg(U);
307   uint16_t Flags = 0;
308   if (isa<Instruction>(U)) {
309     const Instruction &I = cast<Instruction>(U);
310     Flags = MachineInstr::copyFlagsFromInstruction(I);
311   }
312   MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
313   return true;
314 }
315 
316 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
317   return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
318 }
319 
320 bool IRTranslator::translateCompare(const User &U,
321                                     MachineIRBuilder &MIRBuilder) {
322   auto *CI = dyn_cast<CmpInst>(&U);
323   Register Op0 = getOrCreateVReg(*U.getOperand(0));
324   Register Op1 = getOrCreateVReg(*U.getOperand(1));
325   Register Res = getOrCreateVReg(U);
326   CmpInst::Predicate Pred =
327       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
328                                     cast<ConstantExpr>(U).getPredicate());
329   if (CmpInst::isIntPredicate(Pred))
330     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
331   else if (Pred == CmpInst::FCMP_FALSE)
332     MIRBuilder.buildCopy(
333         Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
334   else if (Pred == CmpInst::FCMP_TRUE)
335     MIRBuilder.buildCopy(
336         Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
337   else {
338     assert(CI && "Instruction should be CmpInst");
339     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1,
340                          MachineInstr::copyFlagsFromInstruction(*CI));
341   }
342 
343   return true;
344 }
345 
346 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
347   const ReturnInst &RI = cast<ReturnInst>(U);
348   const Value *Ret = RI.getReturnValue();
349   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
350     Ret = nullptr;
351 
352   ArrayRef<Register> VRegs;
353   if (Ret)
354     VRegs = getOrCreateVRegs(*Ret);
355 
356   Register SwiftErrorVReg = 0;
357   if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
358     SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
359         &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
360   }
361 
362   // The target may mess up with the insertion point, but
363   // this is not important as a return is the last instruction
364   // of the block anyway.
365   return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
366 }
367 
368 void IRTranslator::emitBranchForMergedCondition(
369     const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
370     MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
371     BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
372   // If the leaf of the tree is a comparison, merge the condition into
373   // the caseblock.
374   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
375     CmpInst::Predicate Condition;
376     if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
377       Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
378     } else {
379       const FCmpInst *FC = cast<FCmpInst>(Cond);
380       Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
381     }
382 
383     SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
384                            BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
385                            CurBuilder->getDebugLoc(), TProb, FProb);
386     SL->SwitchCases.push_back(CB);
387     return;
388   }
389 
390   // Create a CaseBlock record representing this branch.
391   CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
392   SwitchCG::CaseBlock CB(
393       Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
394       nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
395   SL->SwitchCases.push_back(CB);
396 }
397 
398 static bool isValInBlock(const Value *V, const BasicBlock *BB) {
399   if (const Instruction *I = dyn_cast<Instruction>(V))
400     return I->getParent() == BB;
401   return true;
402 }
403 
404 void IRTranslator::findMergedConditions(
405     const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
406     MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
407     Instruction::BinaryOps Opc, BranchProbability TProb,
408     BranchProbability FProb, bool InvertCond) {
409   using namespace PatternMatch;
410   assert((Opc == Instruction::And || Opc == Instruction::Or) &&
411          "Expected Opc to be AND/OR");
412   // Skip over not part of the tree and remember to invert op and operands at
413   // next level.
414   Value *NotCond;
415   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
416       isValInBlock(NotCond, CurBB->getBasicBlock())) {
417     findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
418                          !InvertCond);
419     return;
420   }
421 
422   const Instruction *BOp = dyn_cast<Instruction>(Cond);
423   const Value *BOpOp0, *BOpOp1;
424   // Compute the effective opcode for Cond, taking into account whether it needs
425   // to be inverted, e.g.
426   //   and (not (or A, B)), C
427   // gets lowered as
428   //   and (and (not A, not B), C)
429   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
430   if (BOp) {
431     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
432                ? Instruction::And
433                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
434                       ? Instruction::Or
435                       : (Instruction::BinaryOps)0);
436     if (InvertCond) {
437       if (BOpc == Instruction::And)
438         BOpc = Instruction::Or;
439       else if (BOpc == Instruction::Or)
440         BOpc = Instruction::And;
441     }
442   }
443 
444   // If this node is not part of the or/and tree, emit it as a branch.
445   // Note that all nodes in the tree should have same opcode.
446   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
447   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
448       !isValInBlock(BOpOp0, CurBB->getBasicBlock()) ||
449       !isValInBlock(BOpOp1, CurBB->getBasicBlock())) {
450     emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
451                                  InvertCond);
452     return;
453   }
454 
455   //  Create TmpBB after CurBB.
456   MachineFunction::iterator BBI(CurBB);
457   MachineBasicBlock *TmpBB =
458       MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
459   CurBB->getParent()->insert(++BBI, TmpBB);
460 
461   if (Opc == Instruction::Or) {
462     // Codegen X | Y as:
463     // BB1:
464     //   jmp_if_X TBB
465     //   jmp TmpBB
466     // TmpBB:
467     //   jmp_if_Y TBB
468     //   jmp FBB
469     //
470 
471     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
472     // The requirement is that
473     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
474     //     = TrueProb for original BB.
475     // Assuming the original probabilities are A and B, one choice is to set
476     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
477     // A/(1+B) and 2B/(1+B). This choice assumes that
478     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
479     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
480     // TmpBB, but the math is more complicated.
481 
482     auto NewTrueProb = TProb / 2;
483     auto NewFalseProb = TProb / 2 + FProb;
484     // Emit the LHS condition.
485     findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
486                          NewFalseProb, InvertCond);
487 
488     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
489     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
490     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
491     // Emit the RHS condition into TmpBB.
492     findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
493                          Probs[1], InvertCond);
494   } else {
495     assert(Opc == Instruction::And && "Unknown merge op!");
496     // Codegen X & Y as:
497     // BB1:
498     //   jmp_if_X TmpBB
499     //   jmp FBB
500     // TmpBB:
501     //   jmp_if_Y TBB
502     //   jmp FBB
503     //
504     //  This requires creation of TmpBB after CurBB.
505 
506     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
507     // The requirement is that
508     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
509     //     = FalseProb for original BB.
510     // Assuming the original probabilities are A and B, one choice is to set
511     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
512     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
513     // TrueProb for BB1 * FalseProb for TmpBB.
514 
515     auto NewTrueProb = TProb + FProb / 2;
516     auto NewFalseProb = FProb / 2;
517     // Emit the LHS condition.
518     findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
519                          NewFalseProb, InvertCond);
520 
521     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
522     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
523     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
524     // Emit the RHS condition into TmpBB.
525     findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
526                          Probs[1], InvertCond);
527   }
528 }
529 
530 bool IRTranslator::shouldEmitAsBranches(
531     const std::vector<SwitchCG::CaseBlock> &Cases) {
532   // For multiple cases, it's better to emit as branches.
533   if (Cases.size() != 2)
534     return true;
535 
536   // If this is two comparisons of the same values or'd or and'd together, they
537   // will get folded into a single comparison, so don't emit two blocks.
538   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
539        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
540       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
541        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
542     return false;
543   }
544 
545   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
546   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
547   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
548       Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
549       isa<Constant>(Cases[0].CmpRHS) &&
550       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
551     if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
552         Cases[0].TrueBB == Cases[1].ThisBB)
553       return false;
554     if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
555         Cases[0].FalseBB == Cases[1].ThisBB)
556       return false;
557   }
558 
559   return true;
560 }
561 
562 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
563   const BranchInst &BrInst = cast<BranchInst>(U);
564   auto &CurMBB = MIRBuilder.getMBB();
565   auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));
566 
567   if (BrInst.isUnconditional()) {
568     // If the unconditional target is the layout successor, fallthrough.
569     if (!CurMBB.isLayoutSuccessor(Succ0MBB))
570       MIRBuilder.buildBr(*Succ0MBB);
571 
572     // Link successors.
573     for (const BasicBlock *Succ : successors(&BrInst))
574       CurMBB.addSuccessor(&getMBB(*Succ));
575     return true;
576   }
577 
578   // If this condition is one of the special cases we handle, do special stuff
579   // now.
580   const Value *CondVal = BrInst.getCondition();
581   MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));
582 
583   const auto &TLI = *MF->getSubtarget().getTargetLowering();
584 
585   // If this is a series of conditions that are or'd or and'd together, emit
586   // this as a sequence of branches instead of setcc's with and/or operations.
587   // As long as jumps are not expensive (exceptions for multi-use logic ops,
588   // unpredictable branches, and vector extracts because those jumps are likely
589   // expensive for any target), this should improve performance.
590   // For example, instead of something like:
591   //     cmp A, B
592   //     C = seteq
593   //     cmp D, E
594   //     F = setle
595   //     or C, F
596   //     jnz foo
597   // Emit:
598   //     cmp A, B
599   //     je foo
600   //     cmp D, E
601   //     jle foo
602   using namespace PatternMatch;
603   const Instruction *CondI = dyn_cast<Instruction>(CondVal);
604   if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() &&
605       !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) {
606     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
607     Value *Vec;
608     const Value *BOp0, *BOp1;
609     if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
610       Opcode = Instruction::And;
611     else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
612       Opcode = Instruction::Or;
613 
614     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
615                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
616       findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
617                            getEdgeProbability(&CurMBB, Succ0MBB),
618                            getEdgeProbability(&CurMBB, Succ1MBB),
619                            /*InvertCond=*/false);
620       assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
621 
622       // Allow some cases to be rejected.
623       if (shouldEmitAsBranches(SL->SwitchCases)) {
624         // Emit the branch for this block.
625         emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
626         SL->SwitchCases.erase(SL->SwitchCases.begin());
627         return true;
628       }
629 
630       // Okay, we decided not to do this, remove any inserted MBB's and clear
631       // SwitchCases.
632       for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
633         MF->erase(SL->SwitchCases[I].ThisBB);
634 
635       SL->SwitchCases.clear();
636     }
637   }
638 
639   // Create a CaseBlock record representing this branch.
640   SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
641                          ConstantInt::getTrue(MF->getFunction().getContext()),
642                          nullptr, Succ0MBB, Succ1MBB, &CurMBB,
643                          CurBuilder->getDebugLoc());
644 
645   // Use emitSwitchCase to actually insert the fast branch sequence for this
646   // cond branch.
647   emitSwitchCase(CB, &CurMBB, *CurBuilder);
648   return true;
649 }
650 
651 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
652                                         MachineBasicBlock *Dst,
653                                         BranchProbability Prob) {
654   if (!FuncInfo.BPI) {
655     Src->addSuccessorWithoutProb(Dst);
656     return;
657   }
658   if (Prob.isUnknown())
659     Prob = getEdgeProbability(Src, Dst);
660   Src->addSuccessor(Dst, Prob);
661 }
662 
663 BranchProbability
664 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
665                                  const MachineBasicBlock *Dst) const {
666   const BasicBlock *SrcBB = Src->getBasicBlock();
667   const BasicBlock *DstBB = Dst->getBasicBlock();
668   if (!FuncInfo.BPI) {
669     // If BPI is not available, set the default probability as 1 / N, where N is
670     // the number of successors.
671     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
672     return BranchProbability(1, SuccSize);
673   }
674   return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
675 }
676 
677 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
678   using namespace SwitchCG;
679   // Extract cases from the switch.
680   const SwitchInst &SI = cast<SwitchInst>(U);
681   BranchProbabilityInfo *BPI = FuncInfo.BPI;
682   CaseClusterVector Clusters;
683   Clusters.reserve(SI.getNumCases());
684   for (auto &I : SI.cases()) {
685     MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
686     assert(Succ && "Could not find successor mbb in mapping");
687     const ConstantInt *CaseVal = I.getCaseValue();
688     BranchProbability Prob =
689         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
690             : BranchProbability(1, SI.getNumCases() + 1);
691     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
692   }
693 
694   MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
695 
696   // Cluster adjacent cases with the same destination. We do this at all
697   // optimization levels because it's cheap to do and will make codegen faster
698   // if there are many clusters.
699   sortAndRangeify(Clusters);
700 
701   MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
702 
703   // If there is only the default destination, jump there directly.
704   if (Clusters.empty()) {
705     SwitchMBB->addSuccessor(DefaultMBB);
706     if (DefaultMBB != SwitchMBB->getNextNode())
707       MIB.buildBr(*DefaultMBB);
708     return true;
709   }
710 
711   SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
712   SL->findBitTestClusters(Clusters, &SI);
713 
714   LLVM_DEBUG({
715     dbgs() << "Case clusters: ";
716     for (const CaseCluster &C : Clusters) {
717       if (C.Kind == CC_JumpTable)
718         dbgs() << "JT:";
719       if (C.Kind == CC_BitTests)
720         dbgs() << "BT:";
721 
722       C.Low->getValue().print(dbgs(), true);
723       if (C.Low != C.High) {
724         dbgs() << '-';
725         C.High->getValue().print(dbgs(), true);
726       }
727       dbgs() << ' ';
728     }
729     dbgs() << '\n';
730   });
731 
732   assert(!Clusters.empty());
733   SwitchWorkList WorkList;
734   CaseClusterIt First = Clusters.begin();
735   CaseClusterIt Last = Clusters.end() - 1;
736   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
737   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
738 
739   // FIXME: At the moment we don't do any splitting optimizations here like
740   // SelectionDAG does, so this worklist only has one entry.
741   while (!WorkList.empty()) {
742     SwitchWorkListItem W = WorkList.back();
743     WorkList.pop_back();
744     if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
745       return false;
746   }
747   return true;
748 }
749 
750 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
751                                  MachineBasicBlock *MBB) {
752   // Emit the code for the jump table
753   assert(JT.Reg != -1U && "Should lower JT Header first!");
754   MachineIRBuilder MIB(*MBB->getParent());
755   MIB.setMBB(*MBB);
756   MIB.setDebugLoc(CurBuilder->getDebugLoc());
757 
758   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
759   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
760 
761   auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
762   MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
763 }
764 
765 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
766                                        SwitchCG::JumpTableHeader &JTH,
767                                        MachineBasicBlock *HeaderBB) {
768   MachineIRBuilder MIB(*HeaderBB->getParent());
769   MIB.setMBB(*HeaderBB);
770   MIB.setDebugLoc(CurBuilder->getDebugLoc());
771 
772   const Value &SValue = *JTH.SValue;
773   // Subtract the lowest switch case value from the value being switched on.
774   const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
775   Register SwitchOpReg = getOrCreateVReg(SValue);
776   auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
777   auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
778 
779   // This value may be smaller or larger than the target's pointer type, and
780   // therefore require extension or truncating.
781   Type *PtrIRTy = SValue.getType()->getPointerTo();
782   const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
783   Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
784 
785   JT.Reg = Sub.getReg(0);
786 
787   if (JTH.OmitRangeCheck) {
788     if (JT.MBB != HeaderBB->getNextNode())
789       MIB.buildBr(*JT.MBB);
790     return true;
791   }
792 
793   // Emit the range check for the jump table, and branch to the default block
794   // for the switch statement if the value being switched on exceeds the
795   // largest case in the switch.
796   auto Cst = getOrCreateVReg(
797       *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
798   Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
799   auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
800 
801   auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
802 
803   // Avoid emitting unnecessary branches to the next block.
804   if (JT.MBB != HeaderBB->getNextNode())
805     BrCond = MIB.buildBr(*JT.MBB);
806   return true;
807 }
808 
809 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
810                                   MachineBasicBlock *SwitchBB,
811                                   MachineIRBuilder &MIB) {
812   Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
813   Register Cond;
814   DebugLoc OldDbgLoc = MIB.getDebugLoc();
815   MIB.setDebugLoc(CB.DbgLoc);
816   MIB.setMBB(*CB.ThisBB);
817 
818   if (CB.PredInfo.NoCmp) {
819     // Branch or fall through to TrueBB.
820     addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
821     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
822                       CB.ThisBB);
823     CB.ThisBB->normalizeSuccProbs();
824     if (CB.TrueBB != CB.ThisBB->getNextNode())
825       MIB.buildBr(*CB.TrueBB);
826     MIB.setDebugLoc(OldDbgLoc);
827     return;
828   }
829 
830   const LLT i1Ty = LLT::scalar(1);
831   // Build the compare.
832   if (!CB.CmpMHS) {
833     const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
834     // For conditional branch lowering, we might try to do something silly like
835     // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
836     // just re-use the existing condition vreg.
837     if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI &&
838         CI->getZExtValue() == 1 && CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
839       Cond = CondLHS;
840     } else {
841       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
842       if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
843         Cond =
844             MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
845       else
846         Cond =
847             MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
848     }
849   } else {
850     assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
851            "Can only handle SLE ranges");
852 
853     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
854     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
855 
856     Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
857     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
858       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
859       Cond =
860           MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
861     } else {
862       const LLT CmpTy = MRI->getType(CmpOpReg);
863       auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
864       auto Diff = MIB.buildConstant(CmpTy, High - Low);
865       Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
866     }
867   }
868 
869   // Update successor info
870   addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
871 
872   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
873                     CB.ThisBB);
874 
875   // TrueBB and FalseBB are always different unless the incoming IR is
876   // degenerate. This only happens when running llc on weird IR.
877   if (CB.TrueBB != CB.FalseBB)
878     addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
879   CB.ThisBB->normalizeSuccProbs();
880 
881   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
882                     CB.ThisBB);
883 
884   MIB.buildBrCond(Cond, *CB.TrueBB);
885   MIB.buildBr(*CB.FalseBB);
886   MIB.setDebugLoc(OldDbgLoc);
887 }
888 
889 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
890                                           MachineBasicBlock *SwitchMBB,
891                                           MachineBasicBlock *CurMBB,
892                                           MachineBasicBlock *DefaultMBB,
893                                           MachineIRBuilder &MIB,
894                                           MachineFunction::iterator BBI,
895                                           BranchProbability UnhandledProbs,
896                                           SwitchCG::CaseClusterIt I,
897                                           MachineBasicBlock *Fallthrough,
898                                           bool FallthroughUnreachable) {
899   using namespace SwitchCG;
900   MachineFunction *CurMF = SwitchMBB->getParent();
901   // FIXME: Optimize away range check based on pivot comparisons.
902   JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
903   SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
904   BranchProbability DefaultProb = W.DefaultProb;
905 
906   // The jump block hasn't been inserted yet; insert it here.
907   MachineBasicBlock *JumpMBB = JT->MBB;
908   CurMF->insert(BBI, JumpMBB);
909 
910   // Since the jump table block is separate from the switch block, we need
911   // to keep track of it as a machine predecessor to the default block,
912   // otherwise we lose the phi edges.
913   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
914                     CurMBB);
915   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
916                     JumpMBB);
917 
918   auto JumpProb = I->Prob;
919   auto FallthroughProb = UnhandledProbs;
920 
921   // If the default statement is a target of the jump table, we evenly
922   // distribute the default probability to successors of CurMBB. Also
923   // update the probability on the edge from JumpMBB to Fallthrough.
924   for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
925                                         SE = JumpMBB->succ_end();
926        SI != SE; ++SI) {
927     if (*SI == DefaultMBB) {
928       JumpProb += DefaultProb / 2;
929       FallthroughProb -= DefaultProb / 2;
930       JumpMBB->setSuccProbability(SI, DefaultProb / 2);
931       JumpMBB->normalizeSuccProbs();
932     } else {
933       // Also record edges from the jump table block to it's successors.
934       addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
935                         JumpMBB);
936     }
937   }
938 
939   // Skip the range check if the fallthrough block is unreachable.
940   if (FallthroughUnreachable)
941     JTH->OmitRangeCheck = true;
942 
943   if (!JTH->OmitRangeCheck)
944     addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
945   addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
946   CurMBB->normalizeSuccProbs();
947 
948   // The jump table header will be inserted in our current block, do the
949   // range check, and fall through to our fallthrough block.
950   JTH->HeaderBB = CurMBB;
951   JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
952 
953   // If we're in the right place, emit the jump table header right now.
954   if (CurMBB == SwitchMBB) {
955     if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
956       return false;
957     JTH->Emitted = true;
958   }
959   return true;
960 }
961 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
962                                             Value *Cond,
963                                             MachineBasicBlock *Fallthrough,
964                                             bool FallthroughUnreachable,
965                                             BranchProbability UnhandledProbs,
966                                             MachineBasicBlock *CurMBB,
967                                             MachineIRBuilder &MIB,
968                                             MachineBasicBlock *SwitchMBB) {
969   using namespace SwitchCG;
970   const Value *RHS, *LHS, *MHS;
971   CmpInst::Predicate Pred;
972   if (I->Low == I->High) {
973     // Check Cond == I->Low.
974     Pred = CmpInst::ICMP_EQ;
975     LHS = Cond;
976     RHS = I->Low;
977     MHS = nullptr;
978   } else {
979     // Check I->Low <= Cond <= I->High.
980     Pred = CmpInst::ICMP_SLE;
981     LHS = I->Low;
982     MHS = Cond;
983     RHS = I->High;
984   }
985 
986   // If Fallthrough is unreachable, fold away the comparison.
987   // The false probability is the sum of all unhandled cases.
988   CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
989                CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
990 
991   emitSwitchCase(CB, SwitchMBB, MIB);
992   return true;
993 }
994 
995 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
996                                      MachineBasicBlock *SwitchBB) {
997   MachineIRBuilder &MIB = *CurBuilder;
998   MIB.setMBB(*SwitchBB);
999 
1000   // Subtract the minimum value.
1001   Register SwitchOpReg = getOrCreateVReg(*B.SValue);
1002 
1003   LLT SwitchOpTy = MRI->getType(SwitchOpReg);
1004   Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
1005   auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
1006 
1007   // Ensure that the type will fit the mask value.
1008   LLT MaskTy = SwitchOpTy;
1009   for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
1010     if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
1011       // Switch table case range are encoded into series of masks.
1012       // Just use pointer type, it's guaranteed to fit.
1013       MaskTy = LLT::scalar(64);
1014       break;
1015     }
1016   }
1017   Register SubReg = RangeSub.getReg(0);
1018   if (SwitchOpTy != MaskTy)
1019     SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);
1020 
1021   B.RegVT = getMVTForLLT(MaskTy);
1022   B.Reg = SubReg;
1023 
1024   MachineBasicBlock *MBB = B.Cases[0].ThisBB;
1025 
1026   if (!B.OmitRangeCheck)
1027     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
1028   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
1029 
1030   SwitchBB->normalizeSuccProbs();
1031 
1032   if (!B.OmitRangeCheck) {
1033     // Conditional branch to the default block.
1034     auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
1035     auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
1036                                   RangeSub, RangeCst);
1037     MIB.buildBrCond(RangeCmp, *B.Default);
1038   }
1039 
1040   // Avoid emitting unnecessary branches to the next block.
1041   if (MBB != SwitchBB->getNextNode())
1042     MIB.buildBr(*MBB);
1043 }
1044 
1045 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
1046                                    MachineBasicBlock *NextMBB,
1047                                    BranchProbability BranchProbToNext,
1048                                    Register Reg, SwitchCG::BitTestCase &B,
1049                                    MachineBasicBlock *SwitchBB) {
1050   MachineIRBuilder &MIB = *CurBuilder;
1051   MIB.setMBB(*SwitchBB);
1052 
1053   LLT SwitchTy = getLLTForMVT(BB.RegVT);
1054   Register Cmp;
1055   unsigned PopCount = countPopulation(B.Mask);
1056   if (PopCount == 1) {
1057     // Testing for a single bit; just compare the shift count with what it
1058     // would need to be to shift a 1 bit in that position.
1059     auto MaskTrailingZeros =
1060         MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask));
1061     Cmp =
1062         MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
1063             .getReg(0);
1064   } else if (PopCount == BB.Range) {
1065     // There is only one zero bit in the range, test for it directly.
1066     auto MaskTrailingOnes =
1067         MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask));
1068     Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
1069               .getReg(0);
1070   } else {
1071     // Make desired shift.
1072     auto CstOne = MIB.buildConstant(SwitchTy, 1);
1073     auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);
1074 
1075     // Emit bit tests and jumps.
1076     auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
1077     auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
1078     auto CstZero = MIB.buildConstant(SwitchTy, 0);
1079     Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
1080               .getReg(0);
1081   }
1082 
1083   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
1084   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
1085   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
1086   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
1087   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
1088   // one as they are relative probabilities (and thus work more like weights),
1089   // and hence we need to normalize them to let the sum of them become one.
1090   SwitchBB->normalizeSuccProbs();
1091 
1092   // Record the fact that the IR edge from the header to the bit test target
1093   // will go through our new block. Neeeded for PHIs to have nodes added.
1094   addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
1095                     SwitchBB);
1096 
1097   MIB.buildBrCond(Cmp, *B.TargetBB);
1098 
1099   // Avoid emitting unnecessary branches to the next block.
1100   if (NextMBB != SwitchBB->getNextNode())
1101     MIB.buildBr(*NextMBB);
1102 }
1103 
1104 bool IRTranslator::lowerBitTestWorkItem(
1105     SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
1106     MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
1107     MachineIRBuilder &MIB, MachineFunction::iterator BBI,
1108     BranchProbability DefaultProb, BranchProbability UnhandledProbs,
1109     SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
1110     bool FallthroughUnreachable) {
1111   using namespace SwitchCG;
1112   MachineFunction *CurMF = SwitchMBB->getParent();
1113   // FIXME: Optimize away range check based on pivot comparisons.
1114   BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
1115   // The bit test blocks haven't been inserted yet; insert them here.
1116   for (BitTestCase &BTC : BTB->Cases)
1117     CurMF->insert(BBI, BTC.ThisBB);
1118 
1119   // Fill in fields of the BitTestBlock.
1120   BTB->Parent = CurMBB;
1121   BTB->Default = Fallthrough;
1122 
1123   BTB->DefaultProb = UnhandledProbs;
1124   // If the cases in bit test don't form a contiguous range, we evenly
1125   // distribute the probability on the edge to Fallthrough to two
1126   // successors of CurMBB.
1127   if (!BTB->ContiguousRange) {
1128     BTB->Prob += DefaultProb / 2;
1129     BTB->DefaultProb -= DefaultProb / 2;
1130   }
1131 
1132   if (FallthroughUnreachable) {
1133     // Skip the range check if the fallthrough block is unreachable.
1134     BTB->OmitRangeCheck = true;
1135   }
1136 
1137   // If we're in the right place, emit the bit test header right now.
1138   if (CurMBB == SwitchMBB) {
1139     emitBitTestHeader(*BTB, SwitchMBB);
1140     BTB->Emitted = true;
1141   }
1142   return true;
1143 }
1144 
1145 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
1146                                        Value *Cond,
1147                                        MachineBasicBlock *SwitchMBB,
1148                                        MachineBasicBlock *DefaultMBB,
1149                                        MachineIRBuilder &MIB) {
1150   using namespace SwitchCG;
1151   MachineFunction *CurMF = FuncInfo.MF;
1152   MachineBasicBlock *NextMBB = nullptr;
1153   MachineFunction::iterator BBI(W.MBB);
1154   if (++BBI != FuncInfo.MF->end())
1155     NextMBB = &*BBI;
1156 
1157   if (EnableOpts) {
1158     // Here, we order cases by probability so the most likely case will be
1159     // checked first. However, two clusters can have the same probability in
1160     // which case their relative ordering is non-deterministic. So we use Low
1161     // as a tie-breaker as clusters are guaranteed to never overlap.
1162     llvm::sort(W.FirstCluster, W.LastCluster + 1,
1163                [](const CaseCluster &a, const CaseCluster &b) {
1164                  return a.Prob != b.Prob
1165                             ? a.Prob > b.Prob
1166                             : a.Low->getValue().slt(b.Low->getValue());
1167                });
1168 
1169     // Rearrange the case blocks so that the last one falls through if possible
1170     // without changing the order of probabilities.
1171     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
1172       --I;
1173       if (I->Prob > W.LastCluster->Prob)
1174         break;
1175       if (I->Kind == CC_Range && I->MBB == NextMBB) {
1176         std::swap(*I, *W.LastCluster);
1177         break;
1178       }
1179     }
1180   }
1181 
1182   // Compute total probability.
1183   BranchProbability DefaultProb = W.DefaultProb;
1184   BranchProbability UnhandledProbs = DefaultProb;
1185   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
1186     UnhandledProbs += I->Prob;
1187 
1188   MachineBasicBlock *CurMBB = W.MBB;
1189   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
1190     bool FallthroughUnreachable = false;
1191     MachineBasicBlock *Fallthrough;
1192     if (I == W.LastCluster) {
1193       // For the last cluster, fall through to the default destination.
1194       Fallthrough = DefaultMBB;
1195       FallthroughUnreachable = isa<UnreachableInst>(
1196           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
1197     } else {
1198       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
1199       CurMF->insert(BBI, Fallthrough);
1200     }
1201     UnhandledProbs -= I->Prob;
1202 
1203     switch (I->Kind) {
1204     case CC_BitTests: {
1205       if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1206                                 DefaultProb, UnhandledProbs, I, Fallthrough,
1207                                 FallthroughUnreachable)) {
1208         LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
1209         return false;
1210       }
1211       break;
1212     }
1213 
1214     case CC_JumpTable: {
1215       if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1216                                   UnhandledProbs, I, Fallthrough,
1217                                   FallthroughUnreachable)) {
1218         LLVM_DEBUG(dbgs() << "Failed to lower jump table");
1219         return false;
1220       }
1221       break;
1222     }
1223     case CC_Range: {
1224       if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
1225                                     FallthroughUnreachable, UnhandledProbs,
1226                                     CurMBB, MIB, SwitchMBB)) {
1227         LLVM_DEBUG(dbgs() << "Failed to lower switch range");
1228         return false;
1229       }
1230       break;
1231     }
1232     }
1233     CurMBB = Fallthrough;
1234   }
1235 
1236   return true;
1237 }
1238 
1239 bool IRTranslator::translateIndirectBr(const User &U,
1240                                        MachineIRBuilder &MIRBuilder) {
1241   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
1242 
1243   const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
1244   MIRBuilder.buildBrIndirect(Tgt);
1245 
1246   // Link successors.
1247   SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
1248   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
1249   for (const BasicBlock *Succ : successors(&BrInst)) {
1250     // It's legal for indirectbr instructions to have duplicate blocks in the
1251     // destination list. We don't allow this in MIR. Skip anything that's
1252     // already a successor.
1253     if (!AddedSuccessors.insert(Succ).second)
1254       continue;
1255     CurBB.addSuccessor(&getMBB(*Succ));
1256   }
1257 
1258   return true;
1259 }
1260 
1261 static bool isSwiftError(const Value *V) {
1262   if (auto Arg = dyn_cast<Argument>(V))
1263     return Arg->hasSwiftErrorAttr();
1264   if (auto AI = dyn_cast<AllocaInst>(V))
1265     return AI->isSwiftError();
1266   return false;
1267 }
1268 
1269 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
1270   const LoadInst &LI = cast<LoadInst>(U);
1271   if (DL->getTypeStoreSize(LI.getType()) == 0)
1272     return true;
1273 
1274   ArrayRef<Register> Regs = getOrCreateVRegs(LI);
1275   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
1276   Register Base = getOrCreateVReg(*LI.getPointerOperand());
1277 
1278   Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
1279   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1280 
1281   if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
1282     assert(Regs.size() == 1 && "swifterror should be single pointer");
1283     Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
1284                                                     LI.getPointerOperand());
1285     MIRBuilder.buildCopy(Regs[0], VReg);
1286     return true;
1287   }
1288 
1289   auto &TLI = *MF->getSubtarget().getTargetLowering();
1290   MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL);
1291 
1292   const MDNode *Ranges =
1293       Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
1294   for (unsigned i = 0; i < Regs.size(); ++i) {
1295     Register Addr;
1296     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1297 
1298     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
1299     Align BaseAlign = getMemOpAlign(LI);
1300     AAMDNodes AAMetadata;
1301     LI.getAAMetadata(AAMetadata);
1302     auto MMO = MF->getMachineMemOperand(
1303         Ptr, Flags, MRI->getType(Regs[i]),
1304         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges,
1305         LI.getSyncScopeID(), LI.getOrdering());
1306     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
1307   }
1308 
1309   return true;
1310 }
1311 
1312 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
1313   const StoreInst &SI = cast<StoreInst>(U);
1314   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
1315     return true;
1316 
1317   ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
1318   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
1319   Register Base = getOrCreateVReg(*SI.getPointerOperand());
1320 
1321   Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
1322   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1323 
1324   if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
1325     assert(Vals.size() == 1 && "swifterror should be single pointer");
1326 
1327     Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
1328                                                     SI.getPointerOperand());
1329     MIRBuilder.buildCopy(VReg, Vals[0]);
1330     return true;
1331   }
1332 
1333   auto &TLI = *MF->getSubtarget().getTargetLowering();
1334   MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
1335 
1336   for (unsigned i = 0; i < Vals.size(); ++i) {
1337     Register Addr;
1338     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1339 
1340     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
1341     Align BaseAlign = getMemOpAlign(SI);
1342     AAMDNodes AAMetadata;
1343     SI.getAAMetadata(AAMetadata);
1344     auto MMO = MF->getMachineMemOperand(
1345         Ptr, Flags, MRI->getType(Vals[i]),
1346         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr,
1347         SI.getSyncScopeID(), SI.getOrdering());
1348     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
1349   }
1350   return true;
1351 }
1352 
1353 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
1354   const Value *Src = U.getOperand(0);
1355   Type *Int32Ty = Type::getInt32Ty(U.getContext());
1356 
1357   // getIndexedOffsetInType is designed for GEPs, so the first index is the
1358   // usual array element rather than looking into the actual aggregate.
1359   SmallVector<Value *, 1> Indices;
1360   Indices.push_back(ConstantInt::get(Int32Ty, 0));
1361 
1362   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
1363     for (auto Idx : EVI->indices())
1364       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1365   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
1366     for (auto Idx : IVI->indices())
1367       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1368   } else {
1369     for (unsigned i = 1; i < U.getNumOperands(); ++i)
1370       Indices.push_back(U.getOperand(i));
1371   }
1372 
1373   return 8 * static_cast<uint64_t>(
1374                  DL.getIndexedOffsetInType(Src->getType(), Indices));
1375 }
1376 
1377 bool IRTranslator::translateExtractValue(const User &U,
1378                                          MachineIRBuilder &MIRBuilder) {
1379   const Value *Src = U.getOperand(0);
1380   uint64_t Offset = getOffsetFromIndices(U, *DL);
1381   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1382   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
1383   unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
1384   auto &DstRegs = allocateVRegs(U);
1385 
1386   for (unsigned i = 0; i < DstRegs.size(); ++i)
1387     DstRegs[i] = SrcRegs[Idx++];
1388 
1389   return true;
1390 }
1391 
1392 bool IRTranslator::translateInsertValue(const User &U,
1393                                         MachineIRBuilder &MIRBuilder) {
1394   const Value *Src = U.getOperand(0);
1395   uint64_t Offset = getOffsetFromIndices(U, *DL);
1396   auto &DstRegs = allocateVRegs(U);
1397   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
1398   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1399   ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
1400   auto InsertedIt = InsertedRegs.begin();
1401 
1402   for (unsigned i = 0; i < DstRegs.size(); ++i) {
1403     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
1404       DstRegs[i] = *InsertedIt++;
1405     else
1406       DstRegs[i] = SrcRegs[i];
1407   }
1408 
1409   return true;
1410 }
1411 
1412 bool IRTranslator::translateSelect(const User &U,
1413                                    MachineIRBuilder &MIRBuilder) {
1414   Register Tst = getOrCreateVReg(*U.getOperand(0));
1415   ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1416   ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1417   ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1418 
1419   uint16_t Flags = 0;
1420   if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
1421     Flags = MachineInstr::copyFlagsFromInstruction(*SI);
1422 
1423   for (unsigned i = 0; i < ResRegs.size(); ++i) {
1424     MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1425   }
1426 
1427   return true;
1428 }
1429 
1430 bool IRTranslator::translateCopy(const User &U, const Value &V,
1431                                  MachineIRBuilder &MIRBuilder) {
1432   Register Src = getOrCreateVReg(V);
1433   auto &Regs = *VMap.getVRegs(U);
1434   if (Regs.empty()) {
1435     Regs.push_back(Src);
1436     VMap.getOffsets(U)->push_back(0);
1437   } else {
1438     // If we already assigned a vreg for this instruction, we can't change that.
1439     // Emit a copy to satisfy the users we already emitted.
1440     MIRBuilder.buildCopy(Regs[0], Src);
1441   }
1442   return true;
1443 }
1444 
1445 bool IRTranslator::translateBitCast(const User &U,
1446                                     MachineIRBuilder &MIRBuilder) {
1447   // If we're bitcasting to the source type, we can reuse the source vreg.
1448   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1449       getLLTForType(*U.getType(), *DL))
1450     return translateCopy(U, *U.getOperand(0), MIRBuilder);
1451 
1452   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1453 }
1454 
1455 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1456                                  MachineIRBuilder &MIRBuilder) {
1457   Register Op = getOrCreateVReg(*U.getOperand(0));
1458   Register Res = getOrCreateVReg(U);
1459   MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1460   return true;
1461 }
1462 
1463 bool IRTranslator::translateGetElementPtr(const User &U,
1464                                           MachineIRBuilder &MIRBuilder) {
1465   Value &Op0 = *U.getOperand(0);
1466   Register BaseReg = getOrCreateVReg(Op0);
1467   Type *PtrIRTy = Op0.getType();
1468   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1469   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1470   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1471 
1472   // Normalize Vector GEP - all scalar operands should be converted to the
1473   // splat vector.
1474   unsigned VectorWidth = 0;
1475 
1476   // True if we should use a splat vector; using VectorWidth alone is not
1477   // sufficient.
1478   bool WantSplatVector = false;
1479   if (auto *VT = dyn_cast<VectorType>(U.getType())) {
1480     VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
1481     // We don't produce 1 x N vectors; those are treated as scalars.
1482     WantSplatVector = VectorWidth > 1;
1483   }
1484 
1485   // We might need to splat the base pointer into a vector if the offsets
1486   // are vectors.
1487   if (WantSplatVector && !PtrTy.isVector()) {
1488     BaseReg =
1489         MIRBuilder
1490             .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg)
1491             .getReg(0);
1492     PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1493     PtrTy = getLLTForType(*PtrIRTy, *DL);
1494     OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1495     OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1496   }
1497 
1498   int64_t Offset = 0;
1499   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1500        GTI != E; ++GTI) {
1501     const Value *Idx = GTI.getOperand();
1502     if (StructType *StTy = GTI.getStructTypeOrNull()) {
1503       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1504       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1505       continue;
1506     } else {
1507       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1508 
1509       // If this is a scalar constant or a splat vector of constants,
1510       // handle it quickly.
1511       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1512         Offset += ElementSize * CI->getSExtValue();
1513         continue;
1514       }
1515 
1516       if (Offset != 0) {
1517         auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1518         BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1519                       .getReg(0);
1520         Offset = 0;
1521       }
1522 
1523       Register IdxReg = getOrCreateVReg(*Idx);
1524       LLT IdxTy = MRI->getType(IdxReg);
1525       if (IdxTy != OffsetTy) {
1526         if (!IdxTy.isVector() && WantSplatVector) {
1527           IdxReg = MIRBuilder.buildSplatVector(
1528             OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1529         }
1530 
1531         IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1532       }
1533 
1534       // N = N + Idx * ElementSize;
1535       // Avoid doing it for ElementSize of 1.
1536       Register GepOffsetReg;
1537       if (ElementSize != 1) {
1538         auto ElementSizeMIB = MIRBuilder.buildConstant(
1539             getLLTForType(*OffsetIRTy, *DL), ElementSize);
1540         GepOffsetReg =
1541             MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1542       } else
1543         GepOffsetReg = IdxReg;
1544 
1545       BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1546     }
1547   }
1548 
1549   if (Offset != 0) {
1550     auto OffsetMIB =
1551         MIRBuilder.buildConstant(OffsetTy, Offset);
1552     MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1553     return true;
1554   }
1555 
1556   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1557   return true;
1558 }
1559 
1560 bool IRTranslator::translateMemFunc(const CallInst &CI,
1561                                     MachineIRBuilder &MIRBuilder,
1562                                     unsigned Opcode) {
1563 
1564   // If the source is undef, then just emit a nop.
1565   if (isa<UndefValue>(CI.getArgOperand(1)))
1566     return true;
1567 
1568   SmallVector<Register, 3> SrcRegs;
1569 
1570   unsigned MinPtrSize = UINT_MAX;
1571   for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
1572     Register SrcReg = getOrCreateVReg(**AI);
1573     LLT SrcTy = MRI->getType(SrcReg);
1574     if (SrcTy.isPointer())
1575       MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize);
1576     SrcRegs.push_back(SrcReg);
1577   }
1578 
1579   LLT SizeTy = LLT::scalar(MinPtrSize);
1580 
1581   // The size operand should be the minimum of the pointer sizes.
1582   Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
1583   if (MRI->getType(SizeOpReg) != SizeTy)
1584     SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);
1585 
1586   auto ICall = MIRBuilder.buildInstr(Opcode);
1587   for (Register SrcReg : SrcRegs)
1588     ICall.addUse(SrcReg);
1589 
1590   Align DstAlign;
1591   Align SrcAlign;
1592   unsigned IsVol =
1593       cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
1594           ->getZExtValue();
1595 
1596   if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1597     DstAlign = MCI->getDestAlign().valueOrOne();
1598     SrcAlign = MCI->getSourceAlign().valueOrOne();
1599   } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) {
1600     DstAlign = MCI->getDestAlign().valueOrOne();
1601     SrcAlign = MCI->getSourceAlign().valueOrOne();
1602   } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1603     DstAlign = MMI->getDestAlign().valueOrOne();
1604     SrcAlign = MMI->getSourceAlign().valueOrOne();
1605   } else {
1606     auto *MSI = cast<MemSetInst>(&CI);
1607     DstAlign = MSI->getDestAlign().valueOrOne();
1608   }
1609 
1610   if (Opcode != TargetOpcode::G_MEMCPY_INLINE) {
1611     // We need to propagate the tail call flag from the IR inst as an argument.
1612     // Otherwise, we have to pessimize and assume later that we cannot tail call
1613     // any memory intrinsics.
1614     ICall.addImm(CI.isTailCall() ? 1 : 0);
1615   }
1616 
1617   // Create mem operands to store the alignment and volatile info.
1618   auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
1619   ICall.addMemOperand(MF->getMachineMemOperand(
1620       MachinePointerInfo(CI.getArgOperand(0)),
1621       MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
1622   if (Opcode != TargetOpcode::G_MEMSET)
1623     ICall.addMemOperand(MF->getMachineMemOperand(
1624         MachinePointerInfo(CI.getArgOperand(1)),
1625         MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
1626 
1627   return true;
1628 }
1629 
1630 void IRTranslator::getStackGuard(Register DstReg,
1631                                  MachineIRBuilder &MIRBuilder) {
1632   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1633   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1634   auto MIB =
1635       MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1636 
1637   auto &TLI = *MF->getSubtarget().getTargetLowering();
1638   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1639   if (!Global)
1640     return;
1641 
1642   unsigned AddrSpace = Global->getType()->getPointerAddressSpace();
1643   LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace));
1644 
1645   MachinePointerInfo MPInfo(Global);
1646   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1647                MachineMemOperand::MODereferenceable;
1648   MachineMemOperand *MemRef = MF->getMachineMemOperand(
1649       MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace));
1650   MIB.setMemRefs({MemRef});
1651 }
1652 
1653 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1654                                               MachineIRBuilder &MIRBuilder) {
1655   ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1656   MIRBuilder.buildInstr(
1657       Op, {ResRegs[0], ResRegs[1]},
1658       {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1659 
1660   return true;
1661 }
1662 
1663 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1664                                                 MachineIRBuilder &MIRBuilder) {
1665   Register Dst = getOrCreateVReg(CI);
1666   Register Src0 = getOrCreateVReg(*CI.getOperand(0));
1667   Register Src1 = getOrCreateVReg(*CI.getOperand(1));
1668   uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
1669   MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
1670   return true;
1671 }
1672 
1673 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1674   switch (ID) {
1675     default:
1676       break;
1677     case Intrinsic::bswap:
1678       return TargetOpcode::G_BSWAP;
1679     case Intrinsic::bitreverse:
1680       return TargetOpcode::G_BITREVERSE;
1681     case Intrinsic::fshl:
1682       return TargetOpcode::G_FSHL;
1683     case Intrinsic::fshr:
1684       return TargetOpcode::G_FSHR;
1685     case Intrinsic::ceil:
1686       return TargetOpcode::G_FCEIL;
1687     case Intrinsic::cos:
1688       return TargetOpcode::G_FCOS;
1689     case Intrinsic::ctpop:
1690       return TargetOpcode::G_CTPOP;
1691     case Intrinsic::exp:
1692       return TargetOpcode::G_FEXP;
1693     case Intrinsic::exp2:
1694       return TargetOpcode::G_FEXP2;
1695     case Intrinsic::fabs:
1696       return TargetOpcode::G_FABS;
1697     case Intrinsic::copysign:
1698       return TargetOpcode::G_FCOPYSIGN;
1699     case Intrinsic::minnum:
1700       return TargetOpcode::G_FMINNUM;
1701     case Intrinsic::maxnum:
1702       return TargetOpcode::G_FMAXNUM;
1703     case Intrinsic::minimum:
1704       return TargetOpcode::G_FMINIMUM;
1705     case Intrinsic::maximum:
1706       return TargetOpcode::G_FMAXIMUM;
1707     case Intrinsic::canonicalize:
1708       return TargetOpcode::G_FCANONICALIZE;
1709     case Intrinsic::floor:
1710       return TargetOpcode::G_FFLOOR;
1711     case Intrinsic::fma:
1712       return TargetOpcode::G_FMA;
1713     case Intrinsic::log:
1714       return TargetOpcode::G_FLOG;
1715     case Intrinsic::log2:
1716       return TargetOpcode::G_FLOG2;
1717     case Intrinsic::log10:
1718       return TargetOpcode::G_FLOG10;
1719     case Intrinsic::nearbyint:
1720       return TargetOpcode::G_FNEARBYINT;
1721     case Intrinsic::pow:
1722       return TargetOpcode::G_FPOW;
1723     case Intrinsic::powi:
1724       return TargetOpcode::G_FPOWI;
1725     case Intrinsic::rint:
1726       return TargetOpcode::G_FRINT;
1727     case Intrinsic::round:
1728       return TargetOpcode::G_INTRINSIC_ROUND;
1729     case Intrinsic::roundeven:
1730       return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1731     case Intrinsic::sin:
1732       return TargetOpcode::G_FSIN;
1733     case Intrinsic::sqrt:
1734       return TargetOpcode::G_FSQRT;
1735     case Intrinsic::trunc:
1736       return TargetOpcode::G_INTRINSIC_TRUNC;
1737     case Intrinsic::readcyclecounter:
1738       return TargetOpcode::G_READCYCLECOUNTER;
1739     case Intrinsic::ptrmask:
1740       return TargetOpcode::G_PTRMASK;
1741     case Intrinsic::lrint:
1742       return TargetOpcode::G_INTRINSIC_LRINT;
1743     // FADD/FMUL require checking the FMF, so are handled elsewhere.
1744     case Intrinsic::vector_reduce_fmin:
1745       return TargetOpcode::G_VECREDUCE_FMIN;
1746     case Intrinsic::vector_reduce_fmax:
1747       return TargetOpcode::G_VECREDUCE_FMAX;
1748     case Intrinsic::vector_reduce_add:
1749       return TargetOpcode::G_VECREDUCE_ADD;
1750     case Intrinsic::vector_reduce_mul:
1751       return TargetOpcode::G_VECREDUCE_MUL;
1752     case Intrinsic::vector_reduce_and:
1753       return TargetOpcode::G_VECREDUCE_AND;
1754     case Intrinsic::vector_reduce_or:
1755       return TargetOpcode::G_VECREDUCE_OR;
1756     case Intrinsic::vector_reduce_xor:
1757       return TargetOpcode::G_VECREDUCE_XOR;
1758     case Intrinsic::vector_reduce_smax:
1759       return TargetOpcode::G_VECREDUCE_SMAX;
1760     case Intrinsic::vector_reduce_smin:
1761       return TargetOpcode::G_VECREDUCE_SMIN;
1762     case Intrinsic::vector_reduce_umax:
1763       return TargetOpcode::G_VECREDUCE_UMAX;
1764     case Intrinsic::vector_reduce_umin:
1765       return TargetOpcode::G_VECREDUCE_UMIN;
1766   }
1767   return Intrinsic::not_intrinsic;
1768 }
1769 
1770 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1771                                             Intrinsic::ID ID,
1772                                             MachineIRBuilder &MIRBuilder) {
1773 
1774   unsigned Op = getSimpleIntrinsicOpcode(ID);
1775 
1776   // Is this a simple intrinsic?
1777   if (Op == Intrinsic::not_intrinsic)
1778     return false;
1779 
1780   // Yes. Let's translate it.
1781   SmallVector<llvm::SrcOp, 4> VRegs;
1782   for (auto &Arg : CI.arg_operands())
1783     VRegs.push_back(getOrCreateVReg(*Arg));
1784 
1785   MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1786                         MachineInstr::copyFlagsFromInstruction(CI));
1787   return true;
1788 }
1789 
1790 // TODO: Include ConstainedOps.def when all strict instructions are defined.
1791 static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
1792   switch (ID) {
1793   case Intrinsic::experimental_constrained_fadd:
1794     return TargetOpcode::G_STRICT_FADD;
1795   case Intrinsic::experimental_constrained_fsub:
1796     return TargetOpcode::G_STRICT_FSUB;
1797   case Intrinsic::experimental_constrained_fmul:
1798     return TargetOpcode::G_STRICT_FMUL;
1799   case Intrinsic::experimental_constrained_fdiv:
1800     return TargetOpcode::G_STRICT_FDIV;
1801   case Intrinsic::experimental_constrained_frem:
1802     return TargetOpcode::G_STRICT_FREM;
1803   case Intrinsic::experimental_constrained_fma:
1804     return TargetOpcode::G_STRICT_FMA;
1805   case Intrinsic::experimental_constrained_sqrt:
1806     return TargetOpcode::G_STRICT_FSQRT;
1807   default:
1808     return 0;
1809   }
1810 }
1811 
1812 bool IRTranslator::translateConstrainedFPIntrinsic(
1813   const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
1814   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
1815 
1816   unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
1817   if (!Opcode)
1818     return false;
1819 
1820   unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI);
1821   if (EB == fp::ExceptionBehavior::ebIgnore)
1822     Flags |= MachineInstr::NoFPExcept;
1823 
1824   SmallVector<llvm::SrcOp, 4> VRegs;
1825   VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
1826   if (!FPI.isUnaryOp())
1827     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
1828   if (FPI.isTernaryOp())
1829     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
1830 
1831   MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
1832   return true;
1833 }
1834 
1835 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1836                                            MachineIRBuilder &MIRBuilder) {
1837   if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) {
1838     if (ORE->enabled()) {
1839       const Function &F = *MI->getParent()->getParent();
1840       auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1841       if (MemoryOpRemark::canHandle(MI, TLI)) {
1842         MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI);
1843         R.visit(MI);
1844       }
1845     }
1846   }
1847 
1848   // If this is a simple intrinsic (that is, we just need to add a def of
1849   // a vreg, and uses for each arg operand, then translate it.
1850   if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1851     return true;
1852 
1853   switch (ID) {
1854   default:
1855     break;
1856   case Intrinsic::lifetime_start:
1857   case Intrinsic::lifetime_end: {
1858     // No stack colouring in O0, discard region information.
1859     if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1860       return true;
1861 
1862     unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1863                                                   : TargetOpcode::LIFETIME_END;
1864 
1865     // Get the underlying objects for the location passed on the lifetime
1866     // marker.
1867     SmallVector<const Value *, 4> Allocas;
1868     getUnderlyingObjects(CI.getArgOperand(1), Allocas);
1869 
1870     // Iterate over each underlying object, creating lifetime markers for each
1871     // static alloca. Quit if we find a non-static alloca.
1872     for (const Value *V : Allocas) {
1873       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1874       if (!AI)
1875         continue;
1876 
1877       if (!AI->isStaticAlloca())
1878         return true;
1879 
1880       MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1881     }
1882     return true;
1883   }
1884   case Intrinsic::dbg_declare: {
1885     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1886     assert(DI.getVariable() && "Missing variable");
1887 
1888     const Value *Address = DI.getAddress();
1889     if (!Address || isa<UndefValue>(Address)) {
1890       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1891       return true;
1892     }
1893 
1894     assert(DI.getVariable()->isValidLocationForIntrinsic(
1895                MIRBuilder.getDebugLoc()) &&
1896            "Expected inlined-at fields to agree");
1897     auto AI = dyn_cast<AllocaInst>(Address);
1898     if (AI && AI->isStaticAlloca()) {
1899       // Static allocas are tracked at the MF level, no need for DBG_VALUE
1900       // instructions (in fact, they get ignored if they *do* exist).
1901       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
1902                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
1903     } else {
1904       // A dbg.declare describes the address of a source variable, so lower it
1905       // into an indirect DBG_VALUE.
1906       MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
1907                                        DI.getVariable(), DI.getExpression());
1908     }
1909     return true;
1910   }
1911   case Intrinsic::dbg_label: {
1912     const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
1913     assert(DI.getLabel() && "Missing label");
1914 
1915     assert(DI.getLabel()->isValidLocationForIntrinsic(
1916                MIRBuilder.getDebugLoc()) &&
1917            "Expected inlined-at fields to agree");
1918 
1919     MIRBuilder.buildDbgLabel(DI.getLabel());
1920     return true;
1921   }
1922   case Intrinsic::vaend:
1923     // No target I know of cares about va_end. Certainly no in-tree target
1924     // does. Simplest intrinsic ever!
1925     return true;
1926   case Intrinsic::vastart: {
1927     auto &TLI = *MF->getSubtarget().getTargetLowering();
1928     Value *Ptr = CI.getArgOperand(0);
1929     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
1930 
1931     // FIXME: Get alignment
1932     MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
1933         .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
1934                                                 MachineMemOperand::MOStore,
1935                                                 ListSize, Align(1)));
1936     return true;
1937   }
1938   case Intrinsic::dbg_value: {
1939     // This form of DBG_VALUE is target-independent.
1940     const DbgValueInst &DI = cast<DbgValueInst>(CI);
1941     const Value *V = DI.getValue();
1942     assert(DI.getVariable()->isValidLocationForIntrinsic(
1943                MIRBuilder.getDebugLoc()) &&
1944            "Expected inlined-at fields to agree");
1945     if (!V || DI.hasArgList()) {
1946       // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to
1947       // terminate any prior location.
1948       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
1949     } else if (const auto *CI = dyn_cast<Constant>(V)) {
1950       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
1951     } else {
1952       for (Register Reg : getOrCreateVRegs(*V)) {
1953         // FIXME: This does not handle register-indirect values at offset 0. The
1954         // direct/indirect thing shouldn't really be handled by something as
1955         // implicit as reg+noreg vs reg+imm in the first place, but it seems
1956         // pretty baked in right now.
1957         MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
1958       }
1959     }
1960     return true;
1961   }
1962   case Intrinsic::uadd_with_overflow:
1963     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
1964   case Intrinsic::sadd_with_overflow:
1965     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
1966   case Intrinsic::usub_with_overflow:
1967     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
1968   case Intrinsic::ssub_with_overflow:
1969     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
1970   case Intrinsic::umul_with_overflow:
1971     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
1972   case Intrinsic::smul_with_overflow:
1973     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
1974   case Intrinsic::uadd_sat:
1975     return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
1976   case Intrinsic::sadd_sat:
1977     return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
1978   case Intrinsic::usub_sat:
1979     return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
1980   case Intrinsic::ssub_sat:
1981     return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
1982   case Intrinsic::ushl_sat:
1983     return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
1984   case Intrinsic::sshl_sat:
1985     return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
1986   case Intrinsic::umin:
1987     return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
1988   case Intrinsic::umax:
1989     return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
1990   case Intrinsic::smin:
1991     return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
1992   case Intrinsic::smax:
1993     return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
1994   case Intrinsic::abs:
1995     // TODO: Preserve "int min is poison" arg in GMIR?
1996     return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
1997   case Intrinsic::smul_fix:
1998     return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
1999   case Intrinsic::umul_fix:
2000     return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
2001   case Intrinsic::smul_fix_sat:
2002     return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
2003   case Intrinsic::umul_fix_sat:
2004     return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
2005   case Intrinsic::sdiv_fix:
2006     return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
2007   case Intrinsic::udiv_fix:
2008     return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
2009   case Intrinsic::sdiv_fix_sat:
2010     return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
2011   case Intrinsic::udiv_fix_sat:
2012     return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
2013   case Intrinsic::fmuladd: {
2014     const TargetMachine &TM = MF->getTarget();
2015     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2016     Register Dst = getOrCreateVReg(CI);
2017     Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
2018     Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
2019     Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
2020     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
2021         TLI.isFMAFasterThanFMulAndFAdd(*MF,
2022                                        TLI.getValueType(*DL, CI.getType()))) {
2023       // TODO: Revisit this to see if we should move this part of the
2024       // lowering to the combiner.
2025       MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
2026                           MachineInstr::copyFlagsFromInstruction(CI));
2027     } else {
2028       LLT Ty = getLLTForType(*CI.getType(), *DL);
2029       auto FMul = MIRBuilder.buildFMul(
2030           Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
2031       MIRBuilder.buildFAdd(Dst, FMul, Op2,
2032                            MachineInstr::copyFlagsFromInstruction(CI));
2033     }
2034     return true;
2035   }
2036   case Intrinsic::convert_from_fp16:
2037     // FIXME: This intrinsic should probably be removed from the IR.
2038     MIRBuilder.buildFPExt(getOrCreateVReg(CI),
2039                           getOrCreateVReg(*CI.getArgOperand(0)),
2040                           MachineInstr::copyFlagsFromInstruction(CI));
2041     return true;
2042   case Intrinsic::convert_to_fp16:
2043     // FIXME: This intrinsic should probably be removed from the IR.
2044     MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
2045                             getOrCreateVReg(*CI.getArgOperand(0)),
2046                             MachineInstr::copyFlagsFromInstruction(CI));
2047     return true;
2048   case Intrinsic::memcpy_inline:
2049     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE);
2050   case Intrinsic::memcpy:
2051     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
2052   case Intrinsic::memmove:
2053     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
2054   case Intrinsic::memset:
2055     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
2056   case Intrinsic::eh_typeid_for: {
2057     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
2058     Register Reg = getOrCreateVReg(CI);
2059     unsigned TypeID = MF->getTypeIDFor(GV);
2060     MIRBuilder.buildConstant(Reg, TypeID);
2061     return true;
2062   }
2063   case Intrinsic::objectsize:
2064     llvm_unreachable("llvm.objectsize.* should have been lowered already");
2065 
2066   case Intrinsic::is_constant:
2067     llvm_unreachable("llvm.is.constant.* should have been lowered already");
2068 
2069   case Intrinsic::stackguard:
2070     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
2071     return true;
2072   case Intrinsic::stackprotector: {
2073     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2074     Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
2075     getStackGuard(GuardVal, MIRBuilder);
2076 
2077     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
2078     int FI = getOrCreateFrameIndex(*Slot);
2079     MF->getFrameInfo().setStackProtectorIndex(FI);
2080 
2081     MIRBuilder.buildStore(
2082         GuardVal, getOrCreateVReg(*Slot),
2083         *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
2084                                   MachineMemOperand::MOStore |
2085                                       MachineMemOperand::MOVolatile,
2086                                   PtrTy, Align(8)));
2087     return true;
2088   }
2089   case Intrinsic::stacksave: {
2090     // Save the stack pointer to the location provided by the intrinsic.
2091     Register Reg = getOrCreateVReg(CI);
2092     Register StackPtr = MF->getSubtarget()
2093                             .getTargetLowering()
2094                             ->getStackPointerRegisterToSaveRestore();
2095 
2096     // If the target doesn't specify a stack pointer, then fall back.
2097     if (!StackPtr)
2098       return false;
2099 
2100     MIRBuilder.buildCopy(Reg, StackPtr);
2101     return true;
2102   }
2103   case Intrinsic::stackrestore: {
2104     // Restore the stack pointer from the location provided by the intrinsic.
2105     Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
2106     Register StackPtr = MF->getSubtarget()
2107                             .getTargetLowering()
2108                             ->getStackPointerRegisterToSaveRestore();
2109 
2110     // If the target doesn't specify a stack pointer, then fall back.
2111     if (!StackPtr)
2112       return false;
2113 
2114     MIRBuilder.buildCopy(StackPtr, Reg);
2115     return true;
2116   }
2117   case Intrinsic::cttz:
2118   case Intrinsic::ctlz: {
2119     ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
2120     bool isTrailing = ID == Intrinsic::cttz;
2121     unsigned Opcode = isTrailing
2122                           ? Cst->isZero() ? TargetOpcode::G_CTTZ
2123                                           : TargetOpcode::G_CTTZ_ZERO_UNDEF
2124                           : Cst->isZero() ? TargetOpcode::G_CTLZ
2125                                           : TargetOpcode::G_CTLZ_ZERO_UNDEF;
2126     MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
2127                           {getOrCreateVReg(*CI.getArgOperand(0))});
2128     return true;
2129   }
2130   case Intrinsic::invariant_start: {
2131     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2132     Register Undef = MRI->createGenericVirtualRegister(PtrTy);
2133     MIRBuilder.buildUndef(Undef);
2134     return true;
2135   }
2136   case Intrinsic::invariant_end:
2137     return true;
2138   case Intrinsic::expect:
2139   case Intrinsic::annotation:
2140   case Intrinsic::ptr_annotation:
2141   case Intrinsic::launder_invariant_group:
2142   case Intrinsic::strip_invariant_group: {
2143     // Drop the intrinsic, but forward the value.
2144     MIRBuilder.buildCopy(getOrCreateVReg(CI),
2145                          getOrCreateVReg(*CI.getArgOperand(0)));
2146     return true;
2147   }
2148   case Intrinsic::assume:
2149   case Intrinsic::experimental_noalias_scope_decl:
2150   case Intrinsic::var_annotation:
2151   case Intrinsic::sideeffect:
2152     // Discard annotate attributes, assumptions, and artificial side-effects.
2153     return true;
2154   case Intrinsic::read_volatile_register:
2155   case Intrinsic::read_register: {
2156     Value *Arg = CI.getArgOperand(0);
2157     MIRBuilder
2158         .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
2159         .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
2160     return true;
2161   }
2162   case Intrinsic::write_register: {
2163     Value *Arg = CI.getArgOperand(0);
2164     MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
2165       .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
2166       .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
2167     return true;
2168   }
2169   case Intrinsic::localescape: {
2170     MachineBasicBlock &EntryMBB = MF->front();
2171     StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
2172 
2173     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
2174     // is the same on all targets.
2175     for (unsigned Idx = 0, E = CI.getNumArgOperands(); Idx < E; ++Idx) {
2176       Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
2177       if (isa<ConstantPointerNull>(Arg))
2178         continue; // Skip null pointers. They represent a hole in index space.
2179 
2180       int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
2181       MCSymbol *FrameAllocSym =
2182           MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
2183                                                                 Idx);
2184 
2185       // This should be inserted at the start of the entry block.
2186       auto LocalEscape =
2187           MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
2188               .addSym(FrameAllocSym)
2189               .addFrameIndex(FI);
2190 
2191       EntryMBB.insert(EntryMBB.begin(), LocalEscape);
2192     }
2193 
2194     return true;
2195   }
2196   case Intrinsic::vector_reduce_fadd:
2197   case Intrinsic::vector_reduce_fmul: {
2198     // Need to check for the reassoc flag to decide whether we want a
2199     // sequential reduction opcode or not.
2200     Register Dst = getOrCreateVReg(CI);
2201     Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0));
2202     Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1));
2203     unsigned Opc = 0;
2204     if (!CI.hasAllowReassoc()) {
2205       // The sequential ordering case.
2206       Opc = ID == Intrinsic::vector_reduce_fadd
2207                 ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2208                 : TargetOpcode::G_VECREDUCE_SEQ_FMUL;
2209       MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc},
2210                             MachineInstr::copyFlagsFromInstruction(CI));
2211       return true;
2212     }
2213     // We split the operation into a separate G_FADD/G_FMUL + the reduce,
2214     // since the associativity doesn't matter.
2215     unsigned ScalarOpc;
2216     if (ID == Intrinsic::vector_reduce_fadd) {
2217       Opc = TargetOpcode::G_VECREDUCE_FADD;
2218       ScalarOpc = TargetOpcode::G_FADD;
2219     } else {
2220       Opc = TargetOpcode::G_VECREDUCE_FMUL;
2221       ScalarOpc = TargetOpcode::G_FMUL;
2222     }
2223     LLT DstTy = MRI->getType(Dst);
2224     auto Rdx = MIRBuilder.buildInstr(
2225         Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI));
2226     MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
2227                           MachineInstr::copyFlagsFromInstruction(CI));
2228 
2229     return true;
2230   }
2231 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)  \
2232   case Intrinsic::INTRINSIC:
2233 #include "llvm/IR/ConstrainedOps.def"
2234     return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
2235                                            MIRBuilder);
2236 
2237   }
2238   return false;
2239 }
2240 
2241 bool IRTranslator::translateInlineAsm(const CallBase &CB,
2242                                       MachineIRBuilder &MIRBuilder) {
2243 
2244   const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
2245 
2246   if (!ALI) {
2247     LLVM_DEBUG(
2248         dbgs() << "Inline asm lowering is not supported for this target yet\n");
2249     return false;
2250   }
2251 
2252   return ALI->lowerInlineAsm(
2253       MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
2254 }
2255 
2256 bool IRTranslator::translateCallBase(const CallBase &CB,
2257                                      MachineIRBuilder &MIRBuilder) {
2258   ArrayRef<Register> Res = getOrCreateVRegs(CB);
2259 
2260   SmallVector<ArrayRef<Register>, 8> Args;
2261   Register SwiftInVReg = 0;
2262   Register SwiftErrorVReg = 0;
2263   for (auto &Arg : CB.args()) {
2264     if (CLI->supportSwiftError() && isSwiftError(Arg)) {
2265       assert(SwiftInVReg == 0 && "Expected only one swift error argument");
2266       LLT Ty = getLLTForType(*Arg->getType(), *DL);
2267       SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
2268       MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
2269                                             &CB, &MIRBuilder.getMBB(), Arg));
2270       Args.emplace_back(makeArrayRef(SwiftInVReg));
2271       SwiftErrorVReg =
2272           SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
2273       continue;
2274     }
2275     Args.push_back(getOrCreateVRegs(*Arg));
2276   }
2277 
2278   if (auto *CI = dyn_cast<CallInst>(&CB)) {
2279     if (ORE->enabled()) {
2280       const Function &F = *CI->getParent()->getParent();
2281       auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2282       if (MemoryOpRemark::canHandle(CI, TLI)) {
2283         MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI);
2284         R.visit(CI);
2285       }
2286     }
2287   }
2288 
2289   // We don't set HasCalls on MFI here yet because call lowering may decide to
2290   // optimize into tail calls. Instead, we defer that to selection where a final
2291   // scan is done to check if any instructions are calls.
2292   bool Success =
2293       CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
2294                      [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
2295 
2296   // Check if we just inserted a tail call.
2297   if (Success) {
2298     assert(!HasTailCall && "Can't tail call return twice from block?");
2299     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2300     HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
2301   }
2302 
2303   return Success;
2304 }
2305 
2306 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
2307   const CallInst &CI = cast<CallInst>(U);
2308   auto TII = MF->getTarget().getIntrinsicInfo();
2309   const Function *F = CI.getCalledFunction();
2310 
2311   // FIXME: support Windows dllimport function calls.
2312   if (F && (F->hasDLLImportStorageClass() ||
2313             (MF->getTarget().getTargetTriple().isOSWindows() &&
2314              F->hasExternalWeakLinkage())))
2315     return false;
2316 
2317   // FIXME: support control flow guard targets.
2318   if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2319     return false;
2320 
2321   if (CI.isInlineAsm())
2322     return translateInlineAsm(CI, MIRBuilder);
2323 
2324   Intrinsic::ID ID = Intrinsic::not_intrinsic;
2325   if (F && F->isIntrinsic()) {
2326     ID = F->getIntrinsicID();
2327     if (TII && ID == Intrinsic::not_intrinsic)
2328       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
2329   }
2330 
2331   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
2332     return translateCallBase(CI, MIRBuilder);
2333 
2334   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
2335 
2336   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
2337     return true;
2338 
2339   ArrayRef<Register> ResultRegs;
2340   if (!CI.getType()->isVoidTy())
2341     ResultRegs = getOrCreateVRegs(CI);
2342 
2343   // Ignore the callsite attributes. Backend code is most likely not expecting
2344   // an intrinsic to sometimes have side effects and sometimes not.
2345   MachineInstrBuilder MIB =
2346       MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
2347   if (isa<FPMathOperator>(CI))
2348     MIB->copyIRFlags(CI);
2349 
2350   for (auto &Arg : enumerate(CI.arg_operands())) {
2351     // If this is required to be an immediate, don't materialize it in a
2352     // register.
2353     if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
2354       if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
2355         // imm arguments are more convenient than cimm (and realistically
2356         // probably sufficient), so use them.
2357         assert(CI->getBitWidth() <= 64 &&
2358                "large intrinsic immediates not handled");
2359         MIB.addImm(CI->getSExtValue());
2360       } else {
2361         MIB.addFPImm(cast<ConstantFP>(Arg.value()));
2362       }
2363     } else if (auto MD = dyn_cast<MetadataAsValue>(Arg.value())) {
2364       auto *MDN = dyn_cast<MDNode>(MD->getMetadata());
2365       if (!MDN) // This was probably an MDString.
2366         return false;
2367       MIB.addMetadata(MDN);
2368     } else {
2369       ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
2370       if (VRegs.size() > 1)
2371         return false;
2372       MIB.addUse(VRegs[0]);
2373     }
2374   }
2375 
2376   // Add a MachineMemOperand if it is a target mem intrinsic.
2377   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2378   TargetLowering::IntrinsicInfo Info;
2379   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
2380   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
2381     Align Alignment = Info.align.getValueOr(
2382         DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
2383     LLT MemTy = Info.memVT.isSimple()
2384                     ? getLLTForMVT(Info.memVT.getSimpleVT())
2385                     : LLT::scalar(Info.memVT.getStoreSizeInBits());
2386     MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
2387                                                Info.flags, MemTy, Alignment));
2388   }
2389 
2390   return true;
2391 }
2392 
2393 bool IRTranslator::findUnwindDestinations(
2394     const BasicBlock *EHPadBB,
2395     BranchProbability Prob,
2396     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2397         &UnwindDests) {
2398   EHPersonality Personality = classifyEHPersonality(
2399       EHPadBB->getParent()->getFunction().getPersonalityFn());
2400   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2401   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2402   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2403   bool IsSEH = isAsynchronousEHPersonality(Personality);
2404 
2405   if (IsWasmCXX) {
2406     // Ignore this for now.
2407     return false;
2408   }
2409 
2410   while (EHPadBB) {
2411     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2412     BasicBlock *NewEHPadBB = nullptr;
2413     if (isa<LandingPadInst>(Pad)) {
2414       // Stop on landingpads. They are not funclets.
2415       UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2416       break;
2417     }
2418     if (isa<CleanupPadInst>(Pad)) {
2419       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2420       // personalities.
2421       UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2422       UnwindDests.back().first->setIsEHScopeEntry();
2423       UnwindDests.back().first->setIsEHFuncletEntry();
2424       break;
2425     }
2426     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2427       // Add the catchpad handlers to the possible destinations.
2428       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2429         UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
2430         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2431         if (IsMSVCCXX || IsCoreCLR)
2432           UnwindDests.back().first->setIsEHFuncletEntry();
2433         if (!IsSEH)
2434           UnwindDests.back().first->setIsEHScopeEntry();
2435       }
2436       NewEHPadBB = CatchSwitch->getUnwindDest();
2437     } else {
2438       continue;
2439     }
2440 
2441     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2442     if (BPI && NewEHPadBB)
2443       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2444     EHPadBB = NewEHPadBB;
2445   }
2446   return true;
2447 }
2448 
2449 bool IRTranslator::translateInvoke(const User &U,
2450                                    MachineIRBuilder &MIRBuilder) {
2451   const InvokeInst &I = cast<InvokeInst>(U);
2452   MCContext &Context = MF->getContext();
2453 
2454   const BasicBlock *ReturnBB = I.getSuccessor(0);
2455   const BasicBlock *EHPadBB = I.getSuccessor(1);
2456 
2457   const Function *Fn = I.getCalledFunction();
2458 
2459   // FIXME: support invoking patchpoint and statepoint intrinsics.
2460   if (Fn && Fn->isIntrinsic())
2461     return false;
2462 
2463   // FIXME: support whatever these are.
2464   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
2465     return false;
2466 
2467   // FIXME: support control flow guard targets.
2468   if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2469     return false;
2470 
2471   // FIXME: support Windows exception handling.
2472   if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
2473     return false;
2474 
2475   bool LowerInlineAsm = false;
2476   if (I.isInlineAsm()) {
2477     const InlineAsm *IA = cast<InlineAsm>(I.getCalledOperand());
2478     if (!IA->canThrow()) {
2479       // Fast path without emitting EH_LABELs.
2480 
2481       if (!translateInlineAsm(I, MIRBuilder))
2482         return false;
2483 
2484       MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(),
2485                         *ReturnMBB = &getMBB(*ReturnBB);
2486 
2487       // Update successor info.
2488       addSuccessorWithProb(InvokeMBB, ReturnMBB, BranchProbability::getOne());
2489 
2490       MIRBuilder.buildBr(*ReturnMBB);
2491       return true;
2492     } else {
2493       LowerInlineAsm = true;
2494     }
2495   }
2496 
2497   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
2498   // the region covered by the try.
2499   MCSymbol *BeginSymbol = Context.createTempSymbol();
2500   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
2501 
2502   if (LowerInlineAsm) {
2503     if (!translateInlineAsm(I, MIRBuilder))
2504       return false;
2505   } else if (!translateCallBase(I, MIRBuilder))
2506     return false;
2507 
2508   MCSymbol *EndSymbol = Context.createTempSymbol();
2509   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
2510 
2511   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2512   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2513   MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
2514   BranchProbability EHPadBBProb =
2515       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2516           : BranchProbability::getZero();
2517 
2518   if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
2519     return false;
2520 
2521   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
2522                     &ReturnMBB = getMBB(*ReturnBB);
2523   // Update successor info.
2524   addSuccessorWithProb(InvokeMBB, &ReturnMBB);
2525   for (auto &UnwindDest : UnwindDests) {
2526     UnwindDest.first->setIsEHPad();
2527     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2528   }
2529   InvokeMBB->normalizeSuccProbs();
2530 
2531   MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
2532   MIRBuilder.buildBr(ReturnMBB);
2533   return true;
2534 }
2535 
2536 bool IRTranslator::translateCallBr(const User &U,
2537                                    MachineIRBuilder &MIRBuilder) {
2538   // FIXME: Implement this.
2539   return false;
2540 }
2541 
2542 bool IRTranslator::translateLandingPad(const User &U,
2543                                        MachineIRBuilder &MIRBuilder) {
2544   const LandingPadInst &LP = cast<LandingPadInst>(U);
2545 
2546   MachineBasicBlock &MBB = MIRBuilder.getMBB();
2547 
2548   MBB.setIsEHPad();
2549 
2550   // If there aren't registers to copy the values into (e.g., during SjLj
2551   // exceptions), then don't bother.
2552   auto &TLI = *MF->getSubtarget().getTargetLowering();
2553   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
2554   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2555       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2556     return true;
2557 
2558   // If landingpad's return type is token type, we don't create DAG nodes
2559   // for its exception pointer and selector value. The extraction of exception
2560   // pointer or selector value from token type landingpads is not currently
2561   // supported.
2562   if (LP.getType()->isTokenTy())
2563     return true;
2564 
2565   // Add a label to mark the beginning of the landing pad.  Deletion of the
2566   // landing pad can thus be detected via the MachineModuleInfo.
2567   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
2568     .addSym(MF->addLandingPad(&MBB));
2569 
2570   // If the unwinder does not preserve all registers, ensure that the
2571   // function marks the clobbered registers as used.
2572   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
2573   if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
2574     MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
2575 
2576   LLT Ty = getLLTForType(*LP.getType(), *DL);
2577   Register Undef = MRI->createGenericVirtualRegister(Ty);
2578   MIRBuilder.buildUndef(Undef);
2579 
2580   SmallVector<LLT, 2> Tys;
2581   for (Type *Ty : cast<StructType>(LP.getType())->elements())
2582     Tys.push_back(getLLTForType(*Ty, *DL));
2583   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
2584 
2585   // Mark exception register as live in.
2586   Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
2587   if (!ExceptionReg)
2588     return false;
2589 
2590   MBB.addLiveIn(ExceptionReg);
2591   ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
2592   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
2593 
2594   Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
2595   if (!SelectorReg)
2596     return false;
2597 
2598   MBB.addLiveIn(SelectorReg);
2599   Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
2600   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
2601   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
2602 
2603   return true;
2604 }
2605 
2606 bool IRTranslator::translateAlloca(const User &U,
2607                                    MachineIRBuilder &MIRBuilder) {
2608   auto &AI = cast<AllocaInst>(U);
2609 
2610   if (AI.isSwiftError())
2611     return true;
2612 
2613   if (AI.isStaticAlloca()) {
2614     Register Res = getOrCreateVReg(AI);
2615     int FI = getOrCreateFrameIndex(AI);
2616     MIRBuilder.buildFrameIndex(Res, FI);
2617     return true;
2618   }
2619 
2620   // FIXME: support stack probing for Windows.
2621   if (MF->getTarget().getTargetTriple().isOSWindows())
2622     return false;
2623 
2624   // Now we're in the harder dynamic case.
2625   Register NumElts = getOrCreateVReg(*AI.getArraySize());
2626   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
2627   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
2628   if (MRI->getType(NumElts) != IntPtrTy) {
2629     Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
2630     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
2631     NumElts = ExtElts;
2632   }
2633 
2634   Type *Ty = AI.getAllocatedType();
2635 
2636   Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
2637   Register TySize =
2638       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
2639   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
2640 
2641   // Round the size of the allocation up to the stack alignment size
2642   // by add SA-1 to the size. This doesn't overflow because we're computing
2643   // an address inside an alloca.
2644   Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
2645   auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
2646   auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
2647                                       MachineInstr::NoUWrap);
2648   auto AlignCst =
2649       MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
2650   auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
2651 
2652   Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
2653   if (Alignment <= StackAlign)
2654     Alignment = Align(1);
2655   MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
2656 
2657   MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
2658   assert(MF->getFrameInfo().hasVarSizedObjects());
2659   return true;
2660 }
2661 
2662 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
2663   // FIXME: We may need more info about the type. Because of how LLT works,
2664   // we're completely discarding the i64/double distinction here (amongst
2665   // others). Fortunately the ABIs I know of where that matters don't use va_arg
2666   // anyway but that's not guaranteed.
2667   MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
2668                         {getOrCreateVReg(*U.getOperand(0)),
2669                          DL->getABITypeAlign(U.getType()).value()});
2670   return true;
2671 }
2672 
2673 bool IRTranslator::translateInsertElement(const User &U,
2674                                           MachineIRBuilder &MIRBuilder) {
2675   // If it is a <1 x Ty> vector, use the scalar as it is
2676   // not a legal vector type in LLT.
2677   if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
2678     return translateCopy(U, *U.getOperand(1), MIRBuilder);
2679 
2680   Register Res = getOrCreateVReg(U);
2681   Register Val = getOrCreateVReg(*U.getOperand(0));
2682   Register Elt = getOrCreateVReg(*U.getOperand(1));
2683   Register Idx = getOrCreateVReg(*U.getOperand(2));
2684   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
2685   return true;
2686 }
2687 
2688 bool IRTranslator::translateExtractElement(const User &U,
2689                                            MachineIRBuilder &MIRBuilder) {
2690   // If it is a <1 x Ty> vector, use the scalar as it is
2691   // not a legal vector type in LLT.
2692   if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
2693     return translateCopy(U, *U.getOperand(0), MIRBuilder);
2694 
2695   Register Res = getOrCreateVReg(U);
2696   Register Val = getOrCreateVReg(*U.getOperand(0));
2697   const auto &TLI = *MF->getSubtarget().getTargetLowering();
2698   unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
2699   Register Idx;
2700   if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
2701     if (CI->getBitWidth() != PreferredVecIdxWidth) {
2702       APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
2703       auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
2704       Idx = getOrCreateVReg(*NewIdxCI);
2705     }
2706   }
2707   if (!Idx)
2708     Idx = getOrCreateVReg(*U.getOperand(1));
2709   if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
2710     const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
2711     Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0);
2712   }
2713   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
2714   return true;
2715 }
2716 
2717 bool IRTranslator::translateShuffleVector(const User &U,
2718                                           MachineIRBuilder &MIRBuilder) {
2719   ArrayRef<int> Mask;
2720   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
2721     Mask = SVI->getShuffleMask();
2722   else
2723     Mask = cast<ConstantExpr>(U).getShuffleMask();
2724   ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
2725   MIRBuilder
2726       .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
2727                   {getOrCreateVReg(*U.getOperand(0)),
2728                    getOrCreateVReg(*U.getOperand(1))})
2729       .addShuffleMask(MaskAlloc);
2730   return true;
2731 }
2732 
2733 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
2734   const PHINode &PI = cast<PHINode>(U);
2735 
2736   SmallVector<MachineInstr *, 4> Insts;
2737   for (auto Reg : getOrCreateVRegs(PI)) {
2738     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
2739     Insts.push_back(MIB.getInstr());
2740   }
2741 
2742   PendingPHIs.emplace_back(&PI, std::move(Insts));
2743   return true;
2744 }
2745 
2746 bool IRTranslator::translateAtomicCmpXchg(const User &U,
2747                                           MachineIRBuilder &MIRBuilder) {
2748   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
2749 
2750   auto &TLI = *MF->getSubtarget().getTargetLowering();
2751   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2752 
2753   auto Res = getOrCreateVRegs(I);
2754   Register OldValRes = Res[0];
2755   Register SuccessRes = Res[1];
2756   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2757   Register Cmp = getOrCreateVReg(*I.getCompareOperand());
2758   Register NewVal = getOrCreateVReg(*I.getNewValOperand());
2759 
2760   AAMDNodes AAMetadata;
2761   I.getAAMetadata(AAMetadata);
2762 
2763   MIRBuilder.buildAtomicCmpXchgWithSuccess(
2764       OldValRes, SuccessRes, Addr, Cmp, NewVal,
2765       *MF->getMachineMemOperand(
2766           MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp),
2767           getMemOpAlign(I), AAMetadata, nullptr, I.getSyncScopeID(),
2768           I.getSuccessOrdering(), I.getFailureOrdering()));
2769   return true;
2770 }
2771 
2772 bool IRTranslator::translateAtomicRMW(const User &U,
2773                                       MachineIRBuilder &MIRBuilder) {
2774   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
2775   auto &TLI = *MF->getSubtarget().getTargetLowering();
2776   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2777 
2778   Register Res = getOrCreateVReg(I);
2779   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2780   Register Val = getOrCreateVReg(*I.getValOperand());
2781 
2782   unsigned Opcode = 0;
2783   switch (I.getOperation()) {
2784   default:
2785     return false;
2786   case AtomicRMWInst::Xchg:
2787     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
2788     break;
2789   case AtomicRMWInst::Add:
2790     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
2791     break;
2792   case AtomicRMWInst::Sub:
2793     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
2794     break;
2795   case AtomicRMWInst::And:
2796     Opcode = TargetOpcode::G_ATOMICRMW_AND;
2797     break;
2798   case AtomicRMWInst::Nand:
2799     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
2800     break;
2801   case AtomicRMWInst::Or:
2802     Opcode = TargetOpcode::G_ATOMICRMW_OR;
2803     break;
2804   case AtomicRMWInst::Xor:
2805     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
2806     break;
2807   case AtomicRMWInst::Max:
2808     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
2809     break;
2810   case AtomicRMWInst::Min:
2811     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
2812     break;
2813   case AtomicRMWInst::UMax:
2814     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
2815     break;
2816   case AtomicRMWInst::UMin:
2817     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
2818     break;
2819   case AtomicRMWInst::FAdd:
2820     Opcode = TargetOpcode::G_ATOMICRMW_FADD;
2821     break;
2822   case AtomicRMWInst::FSub:
2823     Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
2824     break;
2825   }
2826 
2827   AAMDNodes AAMetadata;
2828   I.getAAMetadata(AAMetadata);
2829 
2830   MIRBuilder.buildAtomicRMW(
2831       Opcode, Res, Addr, Val,
2832       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
2833                                 Flags, MRI->getType(Val), getMemOpAlign(I),
2834                                 AAMetadata, nullptr, I.getSyncScopeID(),
2835                                 I.getOrdering()));
2836   return true;
2837 }
2838 
2839 bool IRTranslator::translateFence(const User &U,
2840                                   MachineIRBuilder &MIRBuilder) {
2841   const FenceInst &Fence = cast<FenceInst>(U);
2842   MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
2843                         Fence.getSyncScopeID());
2844   return true;
2845 }
2846 
2847 bool IRTranslator::translateFreeze(const User &U,
2848                                    MachineIRBuilder &MIRBuilder) {
2849   const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
2850   const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
2851 
2852   assert(DstRegs.size() == SrcRegs.size() &&
2853          "Freeze with different source and destination type?");
2854 
2855   for (unsigned I = 0; I < DstRegs.size(); ++I) {
2856     MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
2857   }
2858 
2859   return true;
2860 }
2861 
2862 void IRTranslator::finishPendingPhis() {
2863 #ifndef NDEBUG
2864   DILocationVerifier Verifier;
2865   GISelObserverWrapper WrapperObserver(&Verifier);
2866   RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2867 #endif // ifndef NDEBUG
2868   for (auto &Phi : PendingPHIs) {
2869     const PHINode *PI = Phi.first;
2870     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
2871     MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
2872     EntryBuilder->setDebugLoc(PI->getDebugLoc());
2873 #ifndef NDEBUG
2874     Verifier.setCurrentInst(PI);
2875 #endif // ifndef NDEBUG
2876 
2877     SmallSet<const MachineBasicBlock *, 16> SeenPreds;
2878     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
2879       auto IRPred = PI->getIncomingBlock(i);
2880       ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
2881       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
2882         if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
2883           continue;
2884         SeenPreds.insert(Pred);
2885         for (unsigned j = 0; j < ValRegs.size(); ++j) {
2886           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
2887           MIB.addUse(ValRegs[j]);
2888           MIB.addMBB(Pred);
2889         }
2890       }
2891     }
2892   }
2893 }
2894 
2895 bool IRTranslator::valueIsSplit(const Value &V,
2896                                 SmallVectorImpl<uint64_t> *Offsets) {
2897   SmallVector<LLT, 4> SplitTys;
2898   if (Offsets && !Offsets->empty())
2899     Offsets->clear();
2900   computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
2901   return SplitTys.size() > 1;
2902 }
2903 
2904 bool IRTranslator::translate(const Instruction &Inst) {
2905   CurBuilder->setDebugLoc(Inst.getDebugLoc());
2906 
2907   auto &TLI = *MF->getSubtarget().getTargetLowering();
2908   if (TLI.fallBackToDAGISel(Inst))
2909     return false;
2910 
2911   switch (Inst.getOpcode()) {
2912 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2913   case Instruction::OPCODE:                                                    \
2914     return translate##OPCODE(Inst, *CurBuilder.get());
2915 #include "llvm/IR/Instruction.def"
2916   default:
2917     return false;
2918   }
2919 }
2920 
2921 bool IRTranslator::translate(const Constant &C, Register Reg) {
2922   // We only emit constants into the entry block from here. To prevent jumpy
2923   // debug behaviour set the line to 0.
2924   if (auto CurrInstDL = CurBuilder->getDL())
2925     EntryBuilder->setDebugLoc(DILocation::get(C.getContext(), 0, 0,
2926                                               CurrInstDL.getScope(),
2927                                               CurrInstDL.getInlinedAt()));
2928 
2929   if (auto CI = dyn_cast<ConstantInt>(&C))
2930     EntryBuilder->buildConstant(Reg, *CI);
2931   else if (auto CF = dyn_cast<ConstantFP>(&C))
2932     EntryBuilder->buildFConstant(Reg, *CF);
2933   else if (isa<UndefValue>(C))
2934     EntryBuilder->buildUndef(Reg);
2935   else if (isa<ConstantPointerNull>(C))
2936     EntryBuilder->buildConstant(Reg, 0);
2937   else if (auto GV = dyn_cast<GlobalValue>(&C))
2938     EntryBuilder->buildGlobalValue(Reg, GV);
2939   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
2940     if (!isa<FixedVectorType>(CAZ->getType()))
2941       return false;
2942     // Return the scalar if it is a <1 x Ty> vector.
2943     unsigned NumElts = CAZ->getElementCount().getFixedValue();
2944     if (NumElts == 1)
2945       return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get());
2946     SmallVector<Register, 4> Ops;
2947     for (unsigned I = 0; I < NumElts; ++I) {
2948       Constant &Elt = *CAZ->getElementValue(I);
2949       Ops.push_back(getOrCreateVReg(Elt));
2950     }
2951     EntryBuilder->buildBuildVector(Reg, Ops);
2952   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
2953     // Return the scalar if it is a <1 x Ty> vector.
2954     if (CV->getNumElements() == 1)
2955       return translateCopy(C, *CV->getElementAsConstant(0),
2956                            *EntryBuilder.get());
2957     SmallVector<Register, 4> Ops;
2958     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
2959       Constant &Elt = *CV->getElementAsConstant(i);
2960       Ops.push_back(getOrCreateVReg(Elt));
2961     }
2962     EntryBuilder->buildBuildVector(Reg, Ops);
2963   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
2964     switch(CE->getOpcode()) {
2965 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2966   case Instruction::OPCODE:                                                    \
2967     return translate##OPCODE(*CE, *EntryBuilder.get());
2968 #include "llvm/IR/Instruction.def"
2969     default:
2970       return false;
2971     }
2972   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
2973     if (CV->getNumOperands() == 1)
2974       return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get());
2975     SmallVector<Register, 4> Ops;
2976     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
2977       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
2978     }
2979     EntryBuilder->buildBuildVector(Reg, Ops);
2980   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
2981     EntryBuilder->buildBlockAddress(Reg, BA);
2982   } else
2983     return false;
2984 
2985   return true;
2986 }
2987 
2988 void IRTranslator::finalizeBasicBlock() {
2989   for (auto &BTB : SL->BitTestCases) {
2990     // Emit header first, if it wasn't already emitted.
2991     if (!BTB.Emitted)
2992       emitBitTestHeader(BTB, BTB.Parent);
2993 
2994     BranchProbability UnhandledProb = BTB.Prob;
2995     for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
2996       UnhandledProb -= BTB.Cases[j].ExtraProb;
2997       // Set the current basic block to the mbb we wish to insert the code into
2998       MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
2999       // If all cases cover a contiguous range, it is not necessary to jump to
3000       // the default block after the last bit test fails. This is because the
3001       // range check during bit test header creation has guaranteed that every
3002       // case here doesn't go outside the range. In this case, there is no need
3003       // to perform the last bit test, as it will always be true. Instead, make
3004       // the second-to-last bit-test fall through to the target of the last bit
3005       // test, and delete the last bit test.
3006 
3007       MachineBasicBlock *NextMBB;
3008       if (BTB.ContiguousRange && j + 2 == ej) {
3009         // Second-to-last bit-test with contiguous range: fall through to the
3010         // target of the final bit test.
3011         NextMBB = BTB.Cases[j + 1].TargetBB;
3012       } else if (j + 1 == ej) {
3013         // For the last bit test, fall through to Default.
3014         NextMBB = BTB.Default;
3015       } else {
3016         // Otherwise, fall through to the next bit test.
3017         NextMBB = BTB.Cases[j + 1].ThisBB;
3018       }
3019 
3020       emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);
3021 
3022       if (BTB.ContiguousRange && j + 2 == ej) {
3023         // We need to record the replacement phi edge here that normally
3024         // happens in emitBitTestCase before we delete the case, otherwise the
3025         // phi edge will be lost.
3026         addMachineCFGPred({BTB.Parent->getBasicBlock(),
3027                            BTB.Cases[ej - 1].TargetBB->getBasicBlock()},
3028                           MBB);
3029         // Since we're not going to use the final bit test, remove it.
3030         BTB.Cases.pop_back();
3031         break;
3032       }
3033     }
3034     // This is "default" BB. We have two jumps to it. From "header" BB and from
3035     // last "case" BB, unless the latter was skipped.
3036     CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
3037                                    BTB.Default->getBasicBlock()};
3038     addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
3039     if (!BTB.ContiguousRange) {
3040       addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
3041     }
3042   }
3043   SL->BitTestCases.clear();
3044 
3045   for (auto &JTCase : SL->JTCases) {
3046     // Emit header first, if it wasn't already emitted.
3047     if (!JTCase.first.Emitted)
3048       emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
3049 
3050     emitJumpTable(JTCase.second, JTCase.second.MBB);
3051   }
3052   SL->JTCases.clear();
3053 
3054   for (auto &SwCase : SL->SwitchCases)
3055     emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
3056   SL->SwitchCases.clear();
3057 }
3058 
3059 void IRTranslator::finalizeFunction() {
3060   // Release the memory used by the different maps we
3061   // needed during the translation.
3062   PendingPHIs.clear();
3063   VMap.reset();
3064   FrameIndices.clear();
3065   MachinePreds.clear();
3066   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
3067   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
3068   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
3069   EntryBuilder.reset();
3070   CurBuilder.reset();
3071   FuncInfo.clear();
3072 }
3073 
3074 /// Returns true if a BasicBlock \p BB within a variadic function contains a
3075 /// variadic musttail call.
3076 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
3077   if (!IsVarArg)
3078     return false;
3079 
3080   // Walk the block backwards, because tail calls usually only appear at the end
3081   // of a block.
3082   return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
3083     const auto *CI = dyn_cast<CallInst>(&I);
3084     return CI && CI->isMustTailCall();
3085   });
3086 }
3087 
3088 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
3089   MF = &CurMF;
3090   const Function &F = MF->getFunction();
3091   if (F.empty())
3092     return false;
3093   GISelCSEAnalysisWrapper &Wrapper =
3094       getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
3095   // Set the CSEConfig and run the analysis.
3096   GISelCSEInfo *CSEInfo = nullptr;
3097   TPC = &getAnalysis<TargetPassConfig>();
3098   bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
3099                        ? EnableCSEInIRTranslator
3100                        : TPC->isGISelCSEEnabled();
3101 
3102   if (EnableCSE) {
3103     EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3104     CSEInfo = &Wrapper.get(TPC->getCSEConfig());
3105     EntryBuilder->setCSEInfo(CSEInfo);
3106     CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3107     CurBuilder->setCSEInfo(CSEInfo);
3108   } else {
3109     EntryBuilder = std::make_unique<MachineIRBuilder>();
3110     CurBuilder = std::make_unique<MachineIRBuilder>();
3111   }
3112   CLI = MF->getSubtarget().getCallLowering();
3113   CurBuilder->setMF(*MF);
3114   EntryBuilder->setMF(*MF);
3115   MRI = &MF->getRegInfo();
3116   DL = &F.getParent()->getDataLayout();
3117   ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
3118   const TargetMachine &TM = MF->getTarget();
3119   TM.resetTargetOptions(F);
3120   EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F);
3121   FuncInfo.MF = MF;
3122   if (EnableOpts)
3123     FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
3124   else
3125     FuncInfo.BPI = nullptr;
3126 
3127   FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
3128 
3129   const auto &TLI = *MF->getSubtarget().getTargetLowering();
3130 
3131   SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
3132   SL->init(TLI, TM, *DL);
3133 
3134 
3135 
3136   assert(PendingPHIs.empty() && "stale PHIs");
3137 
3138   // Targets which want to use big endian can enable it using
3139   // enableBigEndian()
3140   if (!DL->isLittleEndian() && !CLI->enableBigEndian()) {
3141     // Currently we don't properly handle big endian code.
3142     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3143                                F.getSubprogram(), &F.getEntryBlock());
3144     R << "unable to translate in big endian mode";
3145     reportTranslationError(*MF, *TPC, *ORE, R);
3146   }
3147 
3148   // Release the per-function state when we return, whether we succeeded or not.
3149   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
3150 
3151   // Setup a separate basic-block for the arguments and constants
3152   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
3153   MF->push_back(EntryBB);
3154   EntryBuilder->setMBB(*EntryBB);
3155 
3156   DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
3157   SwiftError.setFunction(CurMF);
3158   SwiftError.createEntriesInEntryBlock(DbgLoc);
3159 
3160   bool IsVarArg = F.isVarArg();
3161   bool HasMustTailInVarArgFn = false;
3162 
3163   // Create all blocks, in IR order, to preserve the layout.
3164   for (const BasicBlock &BB: F) {
3165     auto *&MBB = BBToMBB[&BB];
3166 
3167     MBB = MF->CreateMachineBasicBlock(&BB);
3168     MF->push_back(MBB);
3169 
3170     if (BB.hasAddressTaken())
3171       MBB->setHasAddressTaken();
3172 
3173     if (!HasMustTailInVarArgFn)
3174       HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
3175   }
3176 
3177   MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
3178 
3179   // Make our arguments/constants entry block fallthrough to the IR entry block.
3180   EntryBB->addSuccessor(&getMBB(F.front()));
3181 
3182   if (CLI->fallBackToDAGISel(*MF)) {
3183     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3184                                F.getSubprogram(), &F.getEntryBlock());
3185     R << "unable to lower function: " << ore::NV("Prototype", F.getType());
3186     reportTranslationError(*MF, *TPC, *ORE, R);
3187     return false;
3188   }
3189 
3190   // Lower the actual args into this basic block.
3191   SmallVector<ArrayRef<Register>, 8> VRegArgs;
3192   for (const Argument &Arg: F.args()) {
3193     if (DL->getTypeStoreSize(Arg.getType()).isZero())
3194       continue; // Don't handle zero sized types.
3195     ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
3196     VRegArgs.push_back(VRegs);
3197 
3198     if (Arg.hasSwiftErrorAttr()) {
3199       assert(VRegs.size() == 1 && "Too many vregs for Swift error");
3200       SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
3201     }
3202   }
3203 
3204   if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs, FuncInfo)) {
3205     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3206                                F.getSubprogram(), &F.getEntryBlock());
3207     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
3208     reportTranslationError(*MF, *TPC, *ORE, R);
3209     return false;
3210   }
3211 
3212   // Need to visit defs before uses when translating instructions.
3213   GISelObserverWrapper WrapperObserver;
3214   if (EnableCSE && CSEInfo)
3215     WrapperObserver.addObserver(CSEInfo);
3216   {
3217     ReversePostOrderTraversal<const Function *> RPOT(&F);
3218 #ifndef NDEBUG
3219     DILocationVerifier Verifier;
3220     WrapperObserver.addObserver(&Verifier);
3221 #endif // ifndef NDEBUG
3222     RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3223     RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
3224     for (const BasicBlock *BB : RPOT) {
3225       MachineBasicBlock &MBB = getMBB(*BB);
3226       // Set the insertion point of all the following translations to
3227       // the end of this basic block.
3228       CurBuilder->setMBB(MBB);
3229       HasTailCall = false;
3230       for (const Instruction &Inst : *BB) {
3231         // If we translated a tail call in the last step, then we know
3232         // everything after the call is either a return, or something that is
3233         // handled by the call itself. (E.g. a lifetime marker or assume
3234         // intrinsic.) In this case, we should stop translating the block and
3235         // move on.
3236         if (HasTailCall)
3237           break;
3238 #ifndef NDEBUG
3239         Verifier.setCurrentInst(&Inst);
3240 #endif // ifndef NDEBUG
3241         if (translate(Inst))
3242           continue;
3243 
3244         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3245                                    Inst.getDebugLoc(), BB);
3246         R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
3247 
3248         if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
3249           std::string InstStrStorage;
3250           raw_string_ostream InstStr(InstStrStorage);
3251           InstStr << Inst;
3252 
3253           R << ": '" << InstStr.str() << "'";
3254         }
3255 
3256         reportTranslationError(*MF, *TPC, *ORE, R);
3257         return false;
3258       }
3259 
3260       finalizeBasicBlock();
3261     }
3262 #ifndef NDEBUG
3263     WrapperObserver.removeObserver(&Verifier);
3264 #endif
3265   }
3266 
3267   finishPendingPhis();
3268 
3269   SwiftError.propagateVRegs();
3270 
3271   // Merge the argument lowering and constants block with its single
3272   // successor, the LLVM-IR entry block.  We want the basic block to
3273   // be maximal.
3274   assert(EntryBB->succ_size() == 1 &&
3275          "Custom BB used for lowering should have only one successor");
3276   // Get the successor of the current entry block.
3277   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
3278   assert(NewEntryBB.pred_size() == 1 &&
3279          "LLVM-IR entry block has a predecessor!?");
3280   // Move all the instruction from the current entry block to the
3281   // new entry block.
3282   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
3283                     EntryBB->end());
3284 
3285   // Update the live-in information for the new entry block.
3286   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
3287     NewEntryBB.addLiveIn(LiveIn);
3288   NewEntryBB.sortUniqueLiveIns();
3289 
3290   // Get rid of the now empty basic block.
3291   EntryBB->removeSuccessor(&NewEntryBB);
3292   MF->remove(EntryBB);
3293   MF->DeleteMachineBasicBlock(EntryBB);
3294 
3295   assert(&MF->front() == &NewEntryBB &&
3296          "New entry wasn't next in the list of basic block!");
3297 
3298   // Initialize stack protector information.
3299   StackProtector &SP = getAnalysis<StackProtector>();
3300   SP.copyToMachineFrameInfo(MF->getFrameInfo());
3301 
3302   return false;
3303 }
3304