1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 26 #include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h" 27 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 28 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 29 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 30 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 31 #include "llvm/CodeGen/LowLevelType.h" 32 #include "llvm/CodeGen/LowLevelTypeUtils.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineModuleInfo.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/RuntimeLibcalls.h" 42 #include "llvm/CodeGen/StackProtector.h" 43 #include "llvm/CodeGen/SwitchLoweringUtils.h" 44 #include "llvm/CodeGen/TargetFrameLowering.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetOpcodes.h" 48 #include "llvm/CodeGen/TargetPassConfig.h" 49 #include "llvm/CodeGen/TargetRegisterInfo.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/CFG.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/DiagnosticInfo.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/GetElementPtrTypeIterator.h" 60 #include "llvm/IR/InlineAsm.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/IntrinsicsAMDGPU.h" 66 #include "llvm/IR/LLVMContext.h" 67 #include "llvm/IR/Metadata.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CodeGen.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/Target/TargetIntrinsicInfo.h" 83 #include "llvm/Target/TargetMachine.h" 84 #include "llvm/Transforms/Utils/Local.h" 85 #include "llvm/Transforms/Utils/MemoryOpRemark.h" 86 #include <algorithm> 87 #include <cassert> 88 #include <cstdint> 89 #include <iterator> 90 #include <optional> 91 #include <string> 92 #include <utility> 93 #include <vector> 94 95 #define DEBUG_TYPE "irtranslator" 96 97 using namespace llvm; 98 99 static cl::opt<bool> 100 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 101 cl::desc("Should enable CSE in irtranslator"), 102 cl::Optional, cl::init(false)); 103 char IRTranslator::ID = 0; 104 105 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 106 false, false) 107 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 108 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 109 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 110 INITIALIZE_PASS_DEPENDENCY(StackProtector) 111 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 112 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 113 false, false) 114 115 static void reportTranslationError(MachineFunction &MF, 116 const TargetPassConfig &TPC, 117 OptimizationRemarkEmitter &ORE, 118 OptimizationRemarkMissed &R) { 119 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 120 121 // Print the function name explicitly if we don't have a debug location (which 122 // makes the diagnostic less useful) or if we're going to emit a raw error. 123 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 124 R << (" (in function: " + MF.getName() + ")").str(); 125 126 if (TPC.isGlobalISelAbortEnabled()) 127 report_fatal_error(Twine(R.getMsg())); 128 else 129 ORE.emit(R); 130 } 131 132 IRTranslator::IRTranslator(CodeGenOptLevel optlevel) 133 : MachineFunctionPass(ID), OptLevel(optlevel) {} 134 135 #ifndef NDEBUG 136 namespace { 137 /// Verify that every instruction created has the same DILocation as the 138 /// instruction being translated. 139 class DILocationVerifier : public GISelChangeObserver { 140 const Instruction *CurrInst = nullptr; 141 142 public: 143 DILocationVerifier() = default; 144 ~DILocationVerifier() = default; 145 146 const Instruction *getCurrentInst() const { return CurrInst; } 147 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 148 149 void erasingInstr(MachineInstr &MI) override {} 150 void changingInstr(MachineInstr &MI) override {} 151 void changedInstr(MachineInstr &MI) override {} 152 153 void createdInstr(MachineInstr &MI) override { 154 assert(getCurrentInst() && "Inserted instruction without a current MI"); 155 156 // Only print the check message if we're actually checking it. 157 #ifndef NDEBUG 158 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 159 << " was copied to " << MI); 160 #endif 161 // We allow insts in the entry block to have no debug loc because 162 // they could have originated from constants, and we don't want a jumpy 163 // debug experience. 164 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 165 (MI.getParent()->isEntryBlock() && !MI.getDebugLoc())) && 166 "Line info was not transferred to all instructions"); 167 } 168 }; 169 } // namespace 170 #endif // ifndef NDEBUG 171 172 173 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 174 AU.addRequired<StackProtector>(); 175 AU.addRequired<TargetPassConfig>(); 176 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 177 AU.addRequired<AssumptionCacheTracker>(); 178 if (OptLevel != CodeGenOptLevel::None) { 179 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 180 AU.addRequired<AAResultsWrapperPass>(); 181 } 182 AU.addRequired<TargetLibraryInfoWrapperPass>(); 183 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 184 getSelectionDAGFallbackAnalysisUsage(AU); 185 MachineFunctionPass::getAnalysisUsage(AU); 186 } 187 188 IRTranslator::ValueToVRegInfo::VRegListT & 189 IRTranslator::allocateVRegs(const Value &Val) { 190 auto VRegsIt = VMap.findVRegs(Val); 191 if (VRegsIt != VMap.vregs_end()) 192 return *VRegsIt->second; 193 auto *Regs = VMap.getVRegs(Val); 194 auto *Offsets = VMap.getOffsets(Val); 195 SmallVector<LLT, 4> SplitTys; 196 computeValueLLTs(*DL, *Val.getType(), SplitTys, 197 Offsets->empty() ? Offsets : nullptr); 198 for (unsigned i = 0; i < SplitTys.size(); ++i) 199 Regs->push_back(0); 200 return *Regs; 201 } 202 203 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 204 auto VRegsIt = VMap.findVRegs(Val); 205 if (VRegsIt != VMap.vregs_end()) 206 return *VRegsIt->second; 207 208 if (Val.getType()->isVoidTy()) 209 return *VMap.getVRegs(Val); 210 211 // Create entry for this type. 212 auto *VRegs = VMap.getVRegs(Val); 213 auto *Offsets = VMap.getOffsets(Val); 214 215 assert(Val.getType()->isSized() && 216 "Don't know how to create an empty vreg"); 217 218 SmallVector<LLT, 4> SplitTys; 219 computeValueLLTs(*DL, *Val.getType(), SplitTys, 220 Offsets->empty() ? Offsets : nullptr); 221 222 if (!isa<Constant>(Val)) { 223 for (auto Ty : SplitTys) 224 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 225 return *VRegs; 226 } 227 228 if (Val.getType()->isAggregateType()) { 229 // UndefValue, ConstantAggregateZero 230 auto &C = cast<Constant>(Val); 231 unsigned Idx = 0; 232 while (auto Elt = C.getAggregateElement(Idx++)) { 233 auto EltRegs = getOrCreateVRegs(*Elt); 234 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 235 } 236 } else { 237 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 238 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 239 bool Success = translate(cast<Constant>(Val), VRegs->front()); 240 if (!Success) { 241 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 242 MF->getFunction().getSubprogram(), 243 &MF->getFunction().getEntryBlock()); 244 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 245 reportTranslationError(*MF, *TPC, *ORE, R); 246 return *VRegs; 247 } 248 } 249 250 return *VRegs; 251 } 252 253 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 254 auto MapEntry = FrameIndices.find(&AI); 255 if (MapEntry != FrameIndices.end()) 256 return MapEntry->second; 257 258 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 259 uint64_t Size = 260 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 261 262 // Always allocate at least one byte. 263 Size = std::max<uint64_t>(Size, 1u); 264 265 int &FI = FrameIndices[&AI]; 266 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI); 267 return FI; 268 } 269 270 Align IRTranslator::getMemOpAlign(const Instruction &I) { 271 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) 272 return SI->getAlign(); 273 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) 274 return LI->getAlign(); 275 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 276 return AI->getAlign(); 277 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) 278 return AI->getAlign(); 279 280 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 281 R << "unable to translate memop: " << ore::NV("Opcode", &I); 282 reportTranslationError(*MF, *TPC, *ORE, R); 283 return Align(1); 284 } 285 286 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 287 MachineBasicBlock *&MBB = BBToMBB[&BB]; 288 assert(MBB && "BasicBlock was not encountered before"); 289 return *MBB; 290 } 291 292 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 293 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 294 MachinePreds[Edge].push_back(NewPred); 295 } 296 297 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 298 MachineIRBuilder &MIRBuilder) { 299 // Get or create a virtual register for each value. 300 // Unless the value is a Constant => loadimm cst? 301 // or inline constant each time? 302 // Creation of a virtual register needs to have a size. 303 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 304 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 305 Register Res = getOrCreateVReg(U); 306 uint32_t Flags = 0; 307 if (isa<Instruction>(U)) { 308 const Instruction &I = cast<Instruction>(U); 309 Flags = MachineInstr::copyFlagsFromInstruction(I); 310 } 311 312 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 313 return true; 314 } 315 316 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U, 317 MachineIRBuilder &MIRBuilder) { 318 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 319 Register Res = getOrCreateVReg(U); 320 uint32_t Flags = 0; 321 if (isa<Instruction>(U)) { 322 const Instruction &I = cast<Instruction>(U); 323 Flags = MachineInstr::copyFlagsFromInstruction(I); 324 } 325 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags); 326 return true; 327 } 328 329 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 330 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder); 331 } 332 333 bool IRTranslator::translateCompare(const User &U, 334 MachineIRBuilder &MIRBuilder) { 335 auto *CI = dyn_cast<CmpInst>(&U); 336 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 337 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 338 Register Res = getOrCreateVReg(U); 339 CmpInst::Predicate Pred = 340 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 341 cast<ConstantExpr>(U).getPredicate()); 342 if (CmpInst::isIntPredicate(Pred)) 343 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 344 else if (Pred == CmpInst::FCMP_FALSE) 345 MIRBuilder.buildCopy( 346 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 347 else if (Pred == CmpInst::FCMP_TRUE) 348 MIRBuilder.buildCopy( 349 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 350 else { 351 uint32_t Flags = 0; 352 if (CI) 353 Flags = MachineInstr::copyFlagsFromInstruction(*CI); 354 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags); 355 } 356 357 return true; 358 } 359 360 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 361 const ReturnInst &RI = cast<ReturnInst>(U); 362 const Value *Ret = RI.getReturnValue(); 363 if (Ret && DL->getTypeStoreSize(Ret->getType()).isZero()) 364 Ret = nullptr; 365 366 ArrayRef<Register> VRegs; 367 if (Ret) 368 VRegs = getOrCreateVRegs(*Ret); 369 370 Register SwiftErrorVReg = 0; 371 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 372 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 373 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 374 } 375 376 // The target may mess up with the insertion point, but 377 // this is not important as a return is the last instruction 378 // of the block anyway. 379 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg); 380 } 381 382 void IRTranslator::emitBranchForMergedCondition( 383 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 384 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 385 BranchProbability TProb, BranchProbability FProb, bool InvertCond) { 386 // If the leaf of the tree is a comparison, merge the condition into 387 // the caseblock. 388 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 389 CmpInst::Predicate Condition; 390 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 391 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 392 } else { 393 const FCmpInst *FC = cast<FCmpInst>(Cond); 394 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 395 } 396 397 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0), 398 BOp->getOperand(1), nullptr, TBB, FBB, CurBB, 399 CurBuilder->getDebugLoc(), TProb, FProb); 400 SL->SwitchCases.push_back(CB); 401 return; 402 } 403 404 // Create a CaseBlock record representing this branch. 405 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 406 SwitchCG::CaseBlock CB( 407 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()), 408 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb); 409 SL->SwitchCases.push_back(CB); 410 } 411 412 static bool isValInBlock(const Value *V, const BasicBlock *BB) { 413 if (const Instruction *I = dyn_cast<Instruction>(V)) 414 return I->getParent() == BB; 415 return true; 416 } 417 418 void IRTranslator::findMergedConditions( 419 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 420 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 421 Instruction::BinaryOps Opc, BranchProbability TProb, 422 BranchProbability FProb, bool InvertCond) { 423 using namespace PatternMatch; 424 assert((Opc == Instruction::And || Opc == Instruction::Or) && 425 "Expected Opc to be AND/OR"); 426 // Skip over not part of the tree and remember to invert op and operands at 427 // next level. 428 Value *NotCond; 429 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 430 isValInBlock(NotCond, CurBB->getBasicBlock())) { 431 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 432 !InvertCond); 433 return; 434 } 435 436 const Instruction *BOp = dyn_cast<Instruction>(Cond); 437 const Value *BOpOp0, *BOpOp1; 438 // Compute the effective opcode for Cond, taking into account whether it needs 439 // to be inverted, e.g. 440 // and (not (or A, B)), C 441 // gets lowered as 442 // and (and (not A, not B), C) 443 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 444 if (BOp) { 445 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 446 ? Instruction::And 447 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 448 ? Instruction::Or 449 : (Instruction::BinaryOps)0); 450 if (InvertCond) { 451 if (BOpc == Instruction::And) 452 BOpc = Instruction::Or; 453 else if (BOpc == Instruction::Or) 454 BOpc = Instruction::And; 455 } 456 } 457 458 // If this node is not part of the or/and tree, emit it as a branch. 459 // Note that all nodes in the tree should have same opcode. 460 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 461 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 462 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) || 463 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) { 464 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb, 465 InvertCond); 466 return; 467 } 468 469 // Create TmpBB after CurBB. 470 MachineFunction::iterator BBI(CurBB); 471 MachineBasicBlock *TmpBB = 472 MF->CreateMachineBasicBlock(CurBB->getBasicBlock()); 473 CurBB->getParent()->insert(++BBI, TmpBB); 474 475 if (Opc == Instruction::Or) { 476 // Codegen X | Y as: 477 // BB1: 478 // jmp_if_X TBB 479 // jmp TmpBB 480 // TmpBB: 481 // jmp_if_Y TBB 482 // jmp FBB 483 // 484 485 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 486 // The requirement is that 487 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 488 // = TrueProb for original BB. 489 // Assuming the original probabilities are A and B, one choice is to set 490 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 491 // A/(1+B) and 2B/(1+B). This choice assumes that 492 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 493 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 494 // TmpBB, but the math is more complicated. 495 496 auto NewTrueProb = TProb / 2; 497 auto NewFalseProb = TProb / 2 + FProb; 498 // Emit the LHS condition. 499 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 500 NewFalseProb, InvertCond); 501 502 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 503 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 504 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 505 // Emit the RHS condition into TmpBB. 506 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 507 Probs[1], InvertCond); 508 } else { 509 assert(Opc == Instruction::And && "Unknown merge op!"); 510 // Codegen X & Y as: 511 // BB1: 512 // jmp_if_X TmpBB 513 // jmp FBB 514 // TmpBB: 515 // jmp_if_Y TBB 516 // jmp FBB 517 // 518 // This requires creation of TmpBB after CurBB. 519 520 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 521 // The requirement is that 522 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 523 // = FalseProb for original BB. 524 // Assuming the original probabilities are A and B, one choice is to set 525 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 526 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 527 // TrueProb for BB1 * FalseProb for TmpBB. 528 529 auto NewTrueProb = TProb + FProb / 2; 530 auto NewFalseProb = FProb / 2; 531 // Emit the LHS condition. 532 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 533 NewFalseProb, InvertCond); 534 535 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 536 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 537 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 538 // Emit the RHS condition into TmpBB. 539 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 540 Probs[1], InvertCond); 541 } 542 } 543 544 bool IRTranslator::shouldEmitAsBranches( 545 const std::vector<SwitchCG::CaseBlock> &Cases) { 546 // For multiple cases, it's better to emit as branches. 547 if (Cases.size() != 2) 548 return true; 549 550 // If this is two comparisons of the same values or'd or and'd together, they 551 // will get folded into a single comparison, so don't emit two blocks. 552 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 553 Cases[0].CmpRHS == Cases[1].CmpRHS) || 554 (Cases[0].CmpRHS == Cases[1].CmpLHS && 555 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 556 return false; 557 } 558 559 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 560 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 561 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 562 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred && 563 isa<Constant>(Cases[0].CmpRHS) && 564 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 565 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ && 566 Cases[0].TrueBB == Cases[1].ThisBB) 567 return false; 568 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE && 569 Cases[0].FalseBB == Cases[1].ThisBB) 570 return false; 571 } 572 573 return true; 574 } 575 576 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 577 const BranchInst &BrInst = cast<BranchInst>(U); 578 auto &CurMBB = MIRBuilder.getMBB(); 579 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0)); 580 581 if (BrInst.isUnconditional()) { 582 // If the unconditional target is the layout successor, fallthrough. 583 if (OptLevel == CodeGenOptLevel::None || 584 !CurMBB.isLayoutSuccessor(Succ0MBB)) 585 MIRBuilder.buildBr(*Succ0MBB); 586 587 // Link successors. 588 for (const BasicBlock *Succ : successors(&BrInst)) 589 CurMBB.addSuccessor(&getMBB(*Succ)); 590 return true; 591 } 592 593 // If this condition is one of the special cases we handle, do special stuff 594 // now. 595 const Value *CondVal = BrInst.getCondition(); 596 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1)); 597 598 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 599 600 // If this is a series of conditions that are or'd or and'd together, emit 601 // this as a sequence of branches instead of setcc's with and/or operations. 602 // As long as jumps are not expensive (exceptions for multi-use logic ops, 603 // unpredictable branches, and vector extracts because those jumps are likely 604 // expensive for any target), this should improve performance. 605 // For example, instead of something like: 606 // cmp A, B 607 // C = seteq 608 // cmp D, E 609 // F = setle 610 // or C, F 611 // jnz foo 612 // Emit: 613 // cmp A, B 614 // je foo 615 // cmp D, E 616 // jle foo 617 using namespace PatternMatch; 618 const Instruction *CondI = dyn_cast<Instruction>(CondVal); 619 if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() && 620 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) { 621 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 622 Value *Vec; 623 const Value *BOp0, *BOp1; 624 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 625 Opcode = Instruction::And; 626 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 627 Opcode = Instruction::Or; 628 629 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 630 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 631 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode, 632 getEdgeProbability(&CurMBB, Succ0MBB), 633 getEdgeProbability(&CurMBB, Succ1MBB), 634 /*InvertCond=*/false); 635 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!"); 636 637 // Allow some cases to be rejected. 638 if (shouldEmitAsBranches(SL->SwitchCases)) { 639 // Emit the branch for this block. 640 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder); 641 SL->SwitchCases.erase(SL->SwitchCases.begin()); 642 return true; 643 } 644 645 // Okay, we decided not to do this, remove any inserted MBB's and clear 646 // SwitchCases. 647 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I) 648 MF->erase(SL->SwitchCases[I].ThisBB); 649 650 SL->SwitchCases.clear(); 651 } 652 } 653 654 // Create a CaseBlock record representing this branch. 655 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal, 656 ConstantInt::getTrue(MF->getFunction().getContext()), 657 nullptr, Succ0MBB, Succ1MBB, &CurMBB, 658 CurBuilder->getDebugLoc()); 659 660 // Use emitSwitchCase to actually insert the fast branch sequence for this 661 // cond branch. 662 emitSwitchCase(CB, &CurMBB, *CurBuilder); 663 return true; 664 } 665 666 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 667 MachineBasicBlock *Dst, 668 BranchProbability Prob) { 669 if (!FuncInfo.BPI) { 670 Src->addSuccessorWithoutProb(Dst); 671 return; 672 } 673 if (Prob.isUnknown()) 674 Prob = getEdgeProbability(Src, Dst); 675 Src->addSuccessor(Dst, Prob); 676 } 677 678 BranchProbability 679 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 680 const MachineBasicBlock *Dst) const { 681 const BasicBlock *SrcBB = Src->getBasicBlock(); 682 const BasicBlock *DstBB = Dst->getBasicBlock(); 683 if (!FuncInfo.BPI) { 684 // If BPI is not available, set the default probability as 1 / N, where N is 685 // the number of successors. 686 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 687 return BranchProbability(1, SuccSize); 688 } 689 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 690 } 691 692 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 693 using namespace SwitchCG; 694 // Extract cases from the switch. 695 const SwitchInst &SI = cast<SwitchInst>(U); 696 BranchProbabilityInfo *BPI = FuncInfo.BPI; 697 CaseClusterVector Clusters; 698 Clusters.reserve(SI.getNumCases()); 699 for (const auto &I : SI.cases()) { 700 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 701 assert(Succ && "Could not find successor mbb in mapping"); 702 const ConstantInt *CaseVal = I.getCaseValue(); 703 BranchProbability Prob = 704 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 705 : BranchProbability(1, SI.getNumCases() + 1); 706 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 707 } 708 709 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 710 711 // Cluster adjacent cases with the same destination. We do this at all 712 // optimization levels because it's cheap to do and will make codegen faster 713 // if there are many clusters. 714 sortAndRangeify(Clusters); 715 716 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 717 718 // If there is only the default destination, jump there directly. 719 if (Clusters.empty()) { 720 SwitchMBB->addSuccessor(DefaultMBB); 721 if (DefaultMBB != SwitchMBB->getNextNode()) 722 MIB.buildBr(*DefaultMBB); 723 return true; 724 } 725 726 SL->findJumpTables(Clusters, &SI, std::nullopt, DefaultMBB, nullptr, nullptr); 727 SL->findBitTestClusters(Clusters, &SI); 728 729 LLVM_DEBUG({ 730 dbgs() << "Case clusters: "; 731 for (const CaseCluster &C : Clusters) { 732 if (C.Kind == CC_JumpTable) 733 dbgs() << "JT:"; 734 if (C.Kind == CC_BitTests) 735 dbgs() << "BT:"; 736 737 C.Low->getValue().print(dbgs(), true); 738 if (C.Low != C.High) { 739 dbgs() << '-'; 740 C.High->getValue().print(dbgs(), true); 741 } 742 dbgs() << ' '; 743 } 744 dbgs() << '\n'; 745 }); 746 747 assert(!Clusters.empty()); 748 SwitchWorkList WorkList; 749 CaseClusterIt First = Clusters.begin(); 750 CaseClusterIt Last = Clusters.end() - 1; 751 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 752 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 753 754 while (!WorkList.empty()) { 755 SwitchWorkListItem W = WorkList.pop_back_val(); 756 757 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 758 // For optimized builds, lower large range as a balanced binary tree. 759 if (NumClusters > 3 && 760 MF->getTarget().getOptLevel() != CodeGenOptLevel::None && 761 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 762 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB, MIB); 763 continue; 764 } 765 766 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 767 return false; 768 } 769 return true; 770 } 771 772 void IRTranslator::splitWorkItem(SwitchCG::SwitchWorkList &WorkList, 773 const SwitchCG::SwitchWorkListItem &W, 774 Value *Cond, MachineBasicBlock *SwitchMBB, 775 MachineIRBuilder &MIB) { 776 using namespace SwitchCG; 777 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 778 "Clusters not sorted?"); 779 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 780 781 auto [LastLeft, FirstRight, LeftProb, RightProb] = 782 SL->computeSplitWorkItemInfo(W); 783 784 // Use the first element on the right as pivot since we will make less-than 785 // comparisons against it. 786 CaseClusterIt PivotCluster = FirstRight; 787 assert(PivotCluster > W.FirstCluster); 788 assert(PivotCluster <= W.LastCluster); 789 790 CaseClusterIt FirstLeft = W.FirstCluster; 791 CaseClusterIt LastRight = W.LastCluster; 792 793 const ConstantInt *Pivot = PivotCluster->Low; 794 795 // New blocks will be inserted immediately after the current one. 796 MachineFunction::iterator BBI(W.MBB); 797 ++BBI; 798 799 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 800 // we can branch to its destination directly if it's squeezed exactly in 801 // between the known lower bound and Pivot - 1. 802 MachineBasicBlock *LeftMBB; 803 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 804 FirstLeft->Low == W.GE && 805 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 806 LeftMBB = FirstLeft->MBB; 807 } else { 808 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 809 FuncInfo.MF->insert(BBI, LeftMBB); 810 WorkList.push_back( 811 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 812 } 813 814 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 815 // single cluster, RHS.Low == Pivot, and we can branch to its destination 816 // directly if RHS.High equals the current upper bound. 817 MachineBasicBlock *RightMBB; 818 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && W.LT && 819 (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 820 RightMBB = FirstRight->MBB; 821 } else { 822 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 823 FuncInfo.MF->insert(BBI, RightMBB); 824 WorkList.push_back( 825 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 826 } 827 828 // Create the CaseBlock record that will be used to lower the branch. 829 CaseBlock CB(ICmpInst::Predicate::ICMP_SLT, false, Cond, Pivot, nullptr, 830 LeftMBB, RightMBB, W.MBB, MIB.getDebugLoc(), LeftProb, 831 RightProb); 832 833 if (W.MBB == SwitchMBB) 834 emitSwitchCase(CB, SwitchMBB, MIB); 835 else 836 SL->SwitchCases.push_back(CB); 837 } 838 839 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 840 MachineBasicBlock *MBB) { 841 // Emit the code for the jump table 842 assert(JT.Reg != -1U && "Should lower JT Header first!"); 843 MachineIRBuilder MIB(*MBB->getParent()); 844 MIB.setMBB(*MBB); 845 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 846 847 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext()); 848 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 849 850 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 851 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 852 } 853 854 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 855 SwitchCG::JumpTableHeader &JTH, 856 MachineBasicBlock *HeaderBB) { 857 MachineIRBuilder MIB(*HeaderBB->getParent()); 858 MIB.setMBB(*HeaderBB); 859 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 860 861 const Value &SValue = *JTH.SValue; 862 // Subtract the lowest switch case value from the value being switched on. 863 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 864 Register SwitchOpReg = getOrCreateVReg(SValue); 865 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 866 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 867 868 // This value may be smaller or larger than the target's pointer type, and 869 // therefore require extension or truncating. 870 auto *PtrIRTy = PointerType::getUnqual(SValue.getContext()); 871 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 872 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 873 874 JT.Reg = Sub.getReg(0); 875 876 if (JTH.FallthroughUnreachable) { 877 if (JT.MBB != HeaderBB->getNextNode()) 878 MIB.buildBr(*JT.MBB); 879 return true; 880 } 881 882 // Emit the range check for the jump table, and branch to the default block 883 // for the switch statement if the value being switched on exceeds the 884 // largest case in the switch. 885 auto Cst = getOrCreateVReg( 886 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 887 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 888 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 889 890 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 891 892 // Avoid emitting unnecessary branches to the next block. 893 if (JT.MBB != HeaderBB->getNextNode()) 894 BrCond = MIB.buildBr(*JT.MBB); 895 return true; 896 } 897 898 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 899 MachineBasicBlock *SwitchBB, 900 MachineIRBuilder &MIB) { 901 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 902 Register Cond; 903 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 904 MIB.setDebugLoc(CB.DbgLoc); 905 MIB.setMBB(*CB.ThisBB); 906 907 if (CB.PredInfo.NoCmp) { 908 // Branch or fall through to TrueBB. 909 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 910 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 911 CB.ThisBB); 912 CB.ThisBB->normalizeSuccProbs(); 913 if (CB.TrueBB != CB.ThisBB->getNextNode()) 914 MIB.buildBr(*CB.TrueBB); 915 MIB.setDebugLoc(OldDbgLoc); 916 return; 917 } 918 919 const LLT i1Ty = LLT::scalar(1); 920 // Build the compare. 921 if (!CB.CmpMHS) { 922 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS); 923 // For conditional branch lowering, we might try to do something silly like 924 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so, 925 // just re-use the existing condition vreg. 926 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && CI->isOne() && 927 CB.PredInfo.Pred == CmpInst::ICMP_EQ) { 928 Cond = CondLHS; 929 } else { 930 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 931 if (CmpInst::isFPPredicate(CB.PredInfo.Pred)) 932 Cond = 933 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 934 else 935 Cond = 936 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 937 } 938 } else { 939 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 940 "Can only handle SLE ranges"); 941 942 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 943 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 944 945 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 946 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 947 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 948 Cond = 949 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 950 } else { 951 const LLT CmpTy = MRI->getType(CmpOpReg); 952 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 953 auto Diff = MIB.buildConstant(CmpTy, High - Low); 954 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 955 } 956 } 957 958 // Update successor info 959 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 960 961 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 962 CB.ThisBB); 963 964 // TrueBB and FalseBB are always different unless the incoming IR is 965 // degenerate. This only happens when running llc on weird IR. 966 if (CB.TrueBB != CB.FalseBB) 967 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 968 CB.ThisBB->normalizeSuccProbs(); 969 970 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 971 CB.ThisBB); 972 973 MIB.buildBrCond(Cond, *CB.TrueBB); 974 MIB.buildBr(*CB.FalseBB); 975 MIB.setDebugLoc(OldDbgLoc); 976 } 977 978 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 979 MachineBasicBlock *SwitchMBB, 980 MachineBasicBlock *CurMBB, 981 MachineBasicBlock *DefaultMBB, 982 MachineIRBuilder &MIB, 983 MachineFunction::iterator BBI, 984 BranchProbability UnhandledProbs, 985 SwitchCG::CaseClusterIt I, 986 MachineBasicBlock *Fallthrough, 987 bool FallthroughUnreachable) { 988 using namespace SwitchCG; 989 MachineFunction *CurMF = SwitchMBB->getParent(); 990 // FIXME: Optimize away range check based on pivot comparisons. 991 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 992 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 993 BranchProbability DefaultProb = W.DefaultProb; 994 995 // The jump block hasn't been inserted yet; insert it here. 996 MachineBasicBlock *JumpMBB = JT->MBB; 997 CurMF->insert(BBI, JumpMBB); 998 999 // Since the jump table block is separate from the switch block, we need 1000 // to keep track of it as a machine predecessor to the default block, 1001 // otherwise we lose the phi edges. 1002 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 1003 CurMBB); 1004 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 1005 JumpMBB); 1006 1007 auto JumpProb = I->Prob; 1008 auto FallthroughProb = UnhandledProbs; 1009 1010 // If the default statement is a target of the jump table, we evenly 1011 // distribute the default probability to successors of CurMBB. Also 1012 // update the probability on the edge from JumpMBB to Fallthrough. 1013 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 1014 SE = JumpMBB->succ_end(); 1015 SI != SE; ++SI) { 1016 if (*SI == DefaultMBB) { 1017 JumpProb += DefaultProb / 2; 1018 FallthroughProb -= DefaultProb / 2; 1019 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 1020 JumpMBB->normalizeSuccProbs(); 1021 } else { 1022 // Also record edges from the jump table block to it's successors. 1023 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 1024 JumpMBB); 1025 } 1026 } 1027 1028 if (FallthroughUnreachable) 1029 JTH->FallthroughUnreachable = true; 1030 1031 if (!JTH->FallthroughUnreachable) 1032 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 1033 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 1034 CurMBB->normalizeSuccProbs(); 1035 1036 // The jump table header will be inserted in our current block, do the 1037 // range check, and fall through to our fallthrough block. 1038 JTH->HeaderBB = CurMBB; 1039 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 1040 1041 // If we're in the right place, emit the jump table header right now. 1042 if (CurMBB == SwitchMBB) { 1043 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 1044 return false; 1045 JTH->Emitted = true; 1046 } 1047 return true; 1048 } 1049 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 1050 Value *Cond, 1051 MachineBasicBlock *Fallthrough, 1052 bool FallthroughUnreachable, 1053 BranchProbability UnhandledProbs, 1054 MachineBasicBlock *CurMBB, 1055 MachineIRBuilder &MIB, 1056 MachineBasicBlock *SwitchMBB) { 1057 using namespace SwitchCG; 1058 const Value *RHS, *LHS, *MHS; 1059 CmpInst::Predicate Pred; 1060 if (I->Low == I->High) { 1061 // Check Cond == I->Low. 1062 Pred = CmpInst::ICMP_EQ; 1063 LHS = Cond; 1064 RHS = I->Low; 1065 MHS = nullptr; 1066 } else { 1067 // Check I->Low <= Cond <= I->High. 1068 Pred = CmpInst::ICMP_SLE; 1069 LHS = I->Low; 1070 MHS = Cond; 1071 RHS = I->High; 1072 } 1073 1074 // If Fallthrough is unreachable, fold away the comparison. 1075 // The false probability is the sum of all unhandled cases. 1076 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 1077 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 1078 1079 emitSwitchCase(CB, SwitchMBB, MIB); 1080 return true; 1081 } 1082 1083 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B, 1084 MachineBasicBlock *SwitchBB) { 1085 MachineIRBuilder &MIB = *CurBuilder; 1086 MIB.setMBB(*SwitchBB); 1087 1088 // Subtract the minimum value. 1089 Register SwitchOpReg = getOrCreateVReg(*B.SValue); 1090 1091 LLT SwitchOpTy = MRI->getType(SwitchOpReg); 1092 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0); 1093 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg); 1094 1095 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext()); 1096 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1097 1098 LLT MaskTy = SwitchOpTy; 1099 if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() || 1100 !llvm::has_single_bit<uint32_t>(MaskTy.getSizeInBits())) 1101 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1102 else { 1103 // Ensure that the type will fit the mask value. 1104 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) { 1105 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) { 1106 // Switch table case range are encoded into series of masks. 1107 // Just use pointer type, it's guaranteed to fit. 1108 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1109 break; 1110 } 1111 } 1112 } 1113 Register SubReg = RangeSub.getReg(0); 1114 if (SwitchOpTy != MaskTy) 1115 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0); 1116 1117 B.RegVT = getMVTForLLT(MaskTy); 1118 B.Reg = SubReg; 1119 1120 MachineBasicBlock *MBB = B.Cases[0].ThisBB; 1121 1122 if (!B.FallthroughUnreachable) 1123 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 1124 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 1125 1126 SwitchBB->normalizeSuccProbs(); 1127 1128 if (!B.FallthroughUnreachable) { 1129 // Conditional branch to the default block. 1130 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range); 1131 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1), 1132 RangeSub, RangeCst); 1133 MIB.buildBrCond(RangeCmp, *B.Default); 1134 } 1135 1136 // Avoid emitting unnecessary branches to the next block. 1137 if (MBB != SwitchBB->getNextNode()) 1138 MIB.buildBr(*MBB); 1139 } 1140 1141 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB, 1142 MachineBasicBlock *NextMBB, 1143 BranchProbability BranchProbToNext, 1144 Register Reg, SwitchCG::BitTestCase &B, 1145 MachineBasicBlock *SwitchBB) { 1146 MachineIRBuilder &MIB = *CurBuilder; 1147 MIB.setMBB(*SwitchBB); 1148 1149 LLT SwitchTy = getLLTForMVT(BB.RegVT); 1150 Register Cmp; 1151 unsigned PopCount = llvm::popcount(B.Mask); 1152 if (PopCount == 1) { 1153 // Testing for a single bit; just compare the shift count with what it 1154 // would need to be to shift a 1 bit in that position. 1155 auto MaskTrailingZeros = 1156 MIB.buildConstant(SwitchTy, llvm::countr_zero(B.Mask)); 1157 Cmp = 1158 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros) 1159 .getReg(0); 1160 } else if (PopCount == BB.Range) { 1161 // There is only one zero bit in the range, test for it directly. 1162 auto MaskTrailingOnes = 1163 MIB.buildConstant(SwitchTy, llvm::countr_one(B.Mask)); 1164 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes) 1165 .getReg(0); 1166 } else { 1167 // Make desired shift. 1168 auto CstOne = MIB.buildConstant(SwitchTy, 1); 1169 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg); 1170 1171 // Emit bit tests and jumps. 1172 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask); 1173 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask); 1174 auto CstZero = MIB.buildConstant(SwitchTy, 0); 1175 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero) 1176 .getReg(0); 1177 } 1178 1179 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 1180 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 1181 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 1182 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 1183 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 1184 // one as they are relative probabilities (and thus work more like weights), 1185 // and hence we need to normalize them to let the sum of them become one. 1186 SwitchBB->normalizeSuccProbs(); 1187 1188 // Record the fact that the IR edge from the header to the bit test target 1189 // will go through our new block. Neeeded for PHIs to have nodes added. 1190 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()}, 1191 SwitchBB); 1192 1193 MIB.buildBrCond(Cmp, *B.TargetBB); 1194 1195 // Avoid emitting unnecessary branches to the next block. 1196 if (NextMBB != SwitchBB->getNextNode()) 1197 MIB.buildBr(*NextMBB); 1198 } 1199 1200 bool IRTranslator::lowerBitTestWorkItem( 1201 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB, 1202 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB, 1203 MachineIRBuilder &MIB, MachineFunction::iterator BBI, 1204 BranchProbability DefaultProb, BranchProbability UnhandledProbs, 1205 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough, 1206 bool FallthroughUnreachable) { 1207 using namespace SwitchCG; 1208 MachineFunction *CurMF = SwitchMBB->getParent(); 1209 // FIXME: Optimize away range check based on pivot comparisons. 1210 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 1211 // The bit test blocks haven't been inserted yet; insert them here. 1212 for (BitTestCase &BTC : BTB->Cases) 1213 CurMF->insert(BBI, BTC.ThisBB); 1214 1215 // Fill in fields of the BitTestBlock. 1216 BTB->Parent = CurMBB; 1217 BTB->Default = Fallthrough; 1218 1219 BTB->DefaultProb = UnhandledProbs; 1220 // If the cases in bit test don't form a contiguous range, we evenly 1221 // distribute the probability on the edge to Fallthrough to two 1222 // successors of CurMBB. 1223 if (!BTB->ContiguousRange) { 1224 BTB->Prob += DefaultProb / 2; 1225 BTB->DefaultProb -= DefaultProb / 2; 1226 } 1227 1228 if (FallthroughUnreachable) 1229 BTB->FallthroughUnreachable = true; 1230 1231 // If we're in the right place, emit the bit test header right now. 1232 if (CurMBB == SwitchMBB) { 1233 emitBitTestHeader(*BTB, SwitchMBB); 1234 BTB->Emitted = true; 1235 } 1236 return true; 1237 } 1238 1239 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 1240 Value *Cond, 1241 MachineBasicBlock *SwitchMBB, 1242 MachineBasicBlock *DefaultMBB, 1243 MachineIRBuilder &MIB) { 1244 using namespace SwitchCG; 1245 MachineFunction *CurMF = FuncInfo.MF; 1246 MachineBasicBlock *NextMBB = nullptr; 1247 MachineFunction::iterator BBI(W.MBB); 1248 if (++BBI != FuncInfo.MF->end()) 1249 NextMBB = &*BBI; 1250 1251 if (EnableOpts) { 1252 // Here, we order cases by probability so the most likely case will be 1253 // checked first. However, two clusters can have the same probability in 1254 // which case their relative ordering is non-deterministic. So we use Low 1255 // as a tie-breaker as clusters are guaranteed to never overlap. 1256 llvm::sort(W.FirstCluster, W.LastCluster + 1, 1257 [](const CaseCluster &a, const CaseCluster &b) { 1258 return a.Prob != b.Prob 1259 ? a.Prob > b.Prob 1260 : a.Low->getValue().slt(b.Low->getValue()); 1261 }); 1262 1263 // Rearrange the case blocks so that the last one falls through if possible 1264 // without changing the order of probabilities. 1265 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 1266 --I; 1267 if (I->Prob > W.LastCluster->Prob) 1268 break; 1269 if (I->Kind == CC_Range && I->MBB == NextMBB) { 1270 std::swap(*I, *W.LastCluster); 1271 break; 1272 } 1273 } 1274 } 1275 1276 // Compute total probability. 1277 BranchProbability DefaultProb = W.DefaultProb; 1278 BranchProbability UnhandledProbs = DefaultProb; 1279 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 1280 UnhandledProbs += I->Prob; 1281 1282 MachineBasicBlock *CurMBB = W.MBB; 1283 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 1284 bool FallthroughUnreachable = false; 1285 MachineBasicBlock *Fallthrough; 1286 if (I == W.LastCluster) { 1287 // For the last cluster, fall through to the default destination. 1288 Fallthrough = DefaultMBB; 1289 FallthroughUnreachable = isa<UnreachableInst>( 1290 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 1291 } else { 1292 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 1293 CurMF->insert(BBI, Fallthrough); 1294 } 1295 UnhandledProbs -= I->Prob; 1296 1297 switch (I->Kind) { 1298 case CC_BitTests: { 1299 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1300 DefaultProb, UnhandledProbs, I, Fallthrough, 1301 FallthroughUnreachable)) { 1302 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch"); 1303 return false; 1304 } 1305 break; 1306 } 1307 1308 case CC_JumpTable: { 1309 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1310 UnhandledProbs, I, Fallthrough, 1311 FallthroughUnreachable)) { 1312 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 1313 return false; 1314 } 1315 break; 1316 } 1317 case CC_Range: { 1318 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 1319 FallthroughUnreachable, UnhandledProbs, 1320 CurMBB, MIB, SwitchMBB)) { 1321 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 1322 return false; 1323 } 1324 break; 1325 } 1326 } 1327 CurMBB = Fallthrough; 1328 } 1329 1330 return true; 1331 } 1332 1333 bool IRTranslator::translateIndirectBr(const User &U, 1334 MachineIRBuilder &MIRBuilder) { 1335 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 1336 1337 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 1338 MIRBuilder.buildBrIndirect(Tgt); 1339 1340 // Link successors. 1341 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 1342 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 1343 for (const BasicBlock *Succ : successors(&BrInst)) { 1344 // It's legal for indirectbr instructions to have duplicate blocks in the 1345 // destination list. We don't allow this in MIR. Skip anything that's 1346 // already a successor. 1347 if (!AddedSuccessors.insert(Succ).second) 1348 continue; 1349 CurBB.addSuccessor(&getMBB(*Succ)); 1350 } 1351 1352 return true; 1353 } 1354 1355 static bool isSwiftError(const Value *V) { 1356 if (auto Arg = dyn_cast<Argument>(V)) 1357 return Arg->hasSwiftErrorAttr(); 1358 if (auto AI = dyn_cast<AllocaInst>(V)) 1359 return AI->isSwiftError(); 1360 return false; 1361 } 1362 1363 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 1364 const LoadInst &LI = cast<LoadInst>(U); 1365 1366 unsigned StoreSize = DL->getTypeStoreSize(LI.getType()); 1367 if (StoreSize == 0) 1368 return true; 1369 1370 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 1371 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 1372 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 1373 AAMDNodes AAInfo = LI.getAAMetadata(); 1374 1375 const Value *Ptr = LI.getPointerOperand(); 1376 Type *OffsetIRTy = DL->getIndexType(Ptr->getType()); 1377 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1378 1379 if (CLI->supportSwiftError() && isSwiftError(Ptr)) { 1380 assert(Regs.size() == 1 && "swifterror should be single pointer"); 1381 Register VReg = 1382 SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), Ptr); 1383 MIRBuilder.buildCopy(Regs[0], VReg); 1384 return true; 1385 } 1386 1387 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1388 MachineMemOperand::Flags Flags = 1389 TLI.getLoadMemOperandFlags(LI, *DL, AC, LibInfo); 1390 if (AA && !(Flags & MachineMemOperand::MOInvariant)) { 1391 if (AA->pointsToConstantMemory( 1392 MemoryLocation(Ptr, LocationSize::precise(StoreSize), AAInfo))) { 1393 Flags |= MachineMemOperand::MOInvariant; 1394 } 1395 } 1396 1397 const MDNode *Ranges = 1398 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 1399 for (unsigned i = 0; i < Regs.size(); ++i) { 1400 Register Addr; 1401 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1402 1403 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 1404 Align BaseAlign = getMemOpAlign(LI); 1405 auto MMO = MF->getMachineMemOperand( 1406 Ptr, Flags, MRI->getType(Regs[i]), 1407 commonAlignment(BaseAlign, Offsets[i] / 8), AAInfo, Ranges, 1408 LI.getSyncScopeID(), LI.getOrdering()); 1409 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 1410 } 1411 1412 return true; 1413 } 1414 1415 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 1416 const StoreInst &SI = cast<StoreInst>(U); 1417 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 1418 return true; 1419 1420 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 1421 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 1422 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 1423 1424 Type *OffsetIRTy = DL->getIndexType(SI.getPointerOperandType()); 1425 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1426 1427 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 1428 assert(Vals.size() == 1 && "swifterror should be single pointer"); 1429 1430 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 1431 SI.getPointerOperand()); 1432 MIRBuilder.buildCopy(VReg, Vals[0]); 1433 return true; 1434 } 1435 1436 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1437 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 1438 1439 for (unsigned i = 0; i < Vals.size(); ++i) { 1440 Register Addr; 1441 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1442 1443 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 1444 Align BaseAlign = getMemOpAlign(SI); 1445 auto MMO = MF->getMachineMemOperand( 1446 Ptr, Flags, MRI->getType(Vals[i]), 1447 commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr, 1448 SI.getSyncScopeID(), SI.getOrdering()); 1449 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 1450 } 1451 return true; 1452 } 1453 1454 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 1455 const Value *Src = U.getOperand(0); 1456 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 1457 1458 // getIndexedOffsetInType is designed for GEPs, so the first index is the 1459 // usual array element rather than looking into the actual aggregate. 1460 SmallVector<Value *, 1> Indices; 1461 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 1462 1463 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 1464 for (auto Idx : EVI->indices()) 1465 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1466 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 1467 for (auto Idx : IVI->indices()) 1468 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1469 } else { 1470 for (unsigned i = 1; i < U.getNumOperands(); ++i) 1471 Indices.push_back(U.getOperand(i)); 1472 } 1473 1474 return 8 * static_cast<uint64_t>( 1475 DL.getIndexedOffsetInType(Src->getType(), Indices)); 1476 } 1477 1478 bool IRTranslator::translateExtractValue(const User &U, 1479 MachineIRBuilder &MIRBuilder) { 1480 const Value *Src = U.getOperand(0); 1481 uint64_t Offset = getOffsetFromIndices(U, *DL); 1482 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1483 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 1484 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 1485 auto &DstRegs = allocateVRegs(U); 1486 1487 for (unsigned i = 0; i < DstRegs.size(); ++i) 1488 DstRegs[i] = SrcRegs[Idx++]; 1489 1490 return true; 1491 } 1492 1493 bool IRTranslator::translateInsertValue(const User &U, 1494 MachineIRBuilder &MIRBuilder) { 1495 const Value *Src = U.getOperand(0); 1496 uint64_t Offset = getOffsetFromIndices(U, *DL); 1497 auto &DstRegs = allocateVRegs(U); 1498 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 1499 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1500 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 1501 auto *InsertedIt = InsertedRegs.begin(); 1502 1503 for (unsigned i = 0; i < DstRegs.size(); ++i) { 1504 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 1505 DstRegs[i] = *InsertedIt++; 1506 else 1507 DstRegs[i] = SrcRegs[i]; 1508 } 1509 1510 return true; 1511 } 1512 1513 bool IRTranslator::translateSelect(const User &U, 1514 MachineIRBuilder &MIRBuilder) { 1515 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1516 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1517 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1518 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1519 1520 uint32_t Flags = 0; 1521 if (const SelectInst *SI = dyn_cast<SelectInst>(&U)) 1522 Flags = MachineInstr::copyFlagsFromInstruction(*SI); 1523 1524 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1525 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1526 } 1527 1528 return true; 1529 } 1530 1531 bool IRTranslator::translateCopy(const User &U, const Value &V, 1532 MachineIRBuilder &MIRBuilder) { 1533 Register Src = getOrCreateVReg(V); 1534 auto &Regs = *VMap.getVRegs(U); 1535 if (Regs.empty()) { 1536 Regs.push_back(Src); 1537 VMap.getOffsets(U)->push_back(0); 1538 } else { 1539 // If we already assigned a vreg for this instruction, we can't change that. 1540 // Emit a copy to satisfy the users we already emitted. 1541 MIRBuilder.buildCopy(Regs[0], Src); 1542 } 1543 return true; 1544 } 1545 1546 bool IRTranslator::translateBitCast(const User &U, 1547 MachineIRBuilder &MIRBuilder) { 1548 // If we're bitcasting to the source type, we can reuse the source vreg. 1549 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1550 getLLTForType(*U.getType(), *DL)) { 1551 // If the source is a ConstantInt then it was probably created by 1552 // ConstantHoisting and we should leave it alone. 1553 if (isa<ConstantInt>(U.getOperand(0))) 1554 return translateCast(TargetOpcode::G_CONSTANT_FOLD_BARRIER, U, 1555 MIRBuilder); 1556 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1557 } 1558 1559 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1560 } 1561 1562 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1563 MachineIRBuilder &MIRBuilder) { 1564 if (U.getType()->getScalarType()->isBFloatTy() || 1565 U.getOperand(0)->getType()->getScalarType()->isBFloatTy()) 1566 return false; 1567 Register Op = getOrCreateVReg(*U.getOperand(0)); 1568 Register Res = getOrCreateVReg(U); 1569 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1570 return true; 1571 } 1572 1573 bool IRTranslator::translateGetElementPtr(const User &U, 1574 MachineIRBuilder &MIRBuilder) { 1575 Value &Op0 = *U.getOperand(0); 1576 Register BaseReg = getOrCreateVReg(Op0); 1577 Type *PtrIRTy = Op0.getType(); 1578 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1579 Type *OffsetIRTy = DL->getIndexType(PtrIRTy); 1580 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1581 1582 uint32_t Flags = 0; 1583 if (isa<Instruction>(U)) { 1584 const Instruction &I = cast<Instruction>(U); 1585 Flags = MachineInstr::copyFlagsFromInstruction(I); 1586 } 1587 1588 // Normalize Vector GEP - all scalar operands should be converted to the 1589 // splat vector. 1590 unsigned VectorWidth = 0; 1591 1592 // True if we should use a splat vector; using VectorWidth alone is not 1593 // sufficient. 1594 bool WantSplatVector = false; 1595 if (auto *VT = dyn_cast<VectorType>(U.getType())) { 1596 VectorWidth = cast<FixedVectorType>(VT)->getNumElements(); 1597 // We don't produce 1 x N vectors; those are treated as scalars. 1598 WantSplatVector = VectorWidth > 1; 1599 } 1600 1601 // We might need to splat the base pointer into a vector if the offsets 1602 // are vectors. 1603 if (WantSplatVector && !PtrTy.isVector()) { 1604 BaseReg = 1605 MIRBuilder 1606 .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg) 1607 .getReg(0); 1608 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth); 1609 PtrTy = getLLTForType(*PtrIRTy, *DL); 1610 OffsetIRTy = DL->getIndexType(PtrIRTy); 1611 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1612 } 1613 1614 int64_t Offset = 0; 1615 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1616 GTI != E; ++GTI) { 1617 const Value *Idx = GTI.getOperand(); 1618 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1619 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1620 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1621 continue; 1622 } else { 1623 uint64_t ElementSize = GTI.getSequentialElementStride(*DL); 1624 1625 // If this is a scalar constant or a splat vector of constants, 1626 // handle it quickly. 1627 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1628 if (std::optional<int64_t> Val = CI->getValue().trySExtValue()) { 1629 Offset += ElementSize * *Val; 1630 continue; 1631 } 1632 } 1633 1634 if (Offset != 0) { 1635 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1636 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1637 .getReg(0); 1638 Offset = 0; 1639 } 1640 1641 Register IdxReg = getOrCreateVReg(*Idx); 1642 LLT IdxTy = MRI->getType(IdxReg); 1643 if (IdxTy != OffsetTy) { 1644 if (!IdxTy.isVector() && WantSplatVector) { 1645 IdxReg = MIRBuilder.buildSplatVector( 1646 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1647 } 1648 1649 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1650 } 1651 1652 // N = N + Idx * ElementSize; 1653 // Avoid doing it for ElementSize of 1. 1654 Register GepOffsetReg; 1655 if (ElementSize != 1) { 1656 auto ElementSizeMIB = MIRBuilder.buildConstant( 1657 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1658 GepOffsetReg = 1659 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1660 } else 1661 GepOffsetReg = IdxReg; 1662 1663 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1664 } 1665 } 1666 1667 if (Offset != 0) { 1668 auto OffsetMIB = 1669 MIRBuilder.buildConstant(OffsetTy, Offset); 1670 1671 if (int64_t(Offset) >= 0 && cast<GEPOperator>(U).isInBounds()) 1672 Flags |= MachineInstr::MIFlag::NoUWrap; 1673 1674 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0), 1675 Flags); 1676 return true; 1677 } 1678 1679 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1680 return true; 1681 } 1682 1683 bool IRTranslator::translateMemFunc(const CallInst &CI, 1684 MachineIRBuilder &MIRBuilder, 1685 unsigned Opcode) { 1686 const Value *SrcPtr = CI.getArgOperand(1); 1687 // If the source is undef, then just emit a nop. 1688 if (isa<UndefValue>(SrcPtr)) 1689 return true; 1690 1691 SmallVector<Register, 3> SrcRegs; 1692 1693 unsigned MinPtrSize = UINT_MAX; 1694 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) { 1695 Register SrcReg = getOrCreateVReg(**AI); 1696 LLT SrcTy = MRI->getType(SrcReg); 1697 if (SrcTy.isPointer()) 1698 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize); 1699 SrcRegs.push_back(SrcReg); 1700 } 1701 1702 LLT SizeTy = LLT::scalar(MinPtrSize); 1703 1704 // The size operand should be the minimum of the pointer sizes. 1705 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1]; 1706 if (MRI->getType(SizeOpReg) != SizeTy) 1707 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0); 1708 1709 auto ICall = MIRBuilder.buildInstr(Opcode); 1710 for (Register SrcReg : SrcRegs) 1711 ICall.addUse(SrcReg); 1712 1713 Align DstAlign; 1714 Align SrcAlign; 1715 unsigned IsVol = 1716 cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue(); 1717 1718 ConstantInt *CopySize = nullptr; 1719 1720 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1721 DstAlign = MCI->getDestAlign().valueOrOne(); 1722 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1723 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2)); 1724 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) { 1725 DstAlign = MCI->getDestAlign().valueOrOne(); 1726 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1727 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2)); 1728 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1729 DstAlign = MMI->getDestAlign().valueOrOne(); 1730 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1731 CopySize = dyn_cast<ConstantInt>(MMI->getArgOperand(2)); 1732 } else { 1733 auto *MSI = cast<MemSetInst>(&CI); 1734 DstAlign = MSI->getDestAlign().valueOrOne(); 1735 } 1736 1737 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) { 1738 // We need to propagate the tail call flag from the IR inst as an argument. 1739 // Otherwise, we have to pessimize and assume later that we cannot tail call 1740 // any memory intrinsics. 1741 ICall.addImm(CI.isTailCall() ? 1 : 0); 1742 } 1743 1744 // Create mem operands to store the alignment and volatile info. 1745 MachineMemOperand::Flags LoadFlags = MachineMemOperand::MOLoad; 1746 MachineMemOperand::Flags StoreFlags = MachineMemOperand::MOStore; 1747 if (IsVol) { 1748 LoadFlags |= MachineMemOperand::MOVolatile; 1749 StoreFlags |= MachineMemOperand::MOVolatile; 1750 } 1751 1752 AAMDNodes AAInfo = CI.getAAMetadata(); 1753 if (AA && CopySize && 1754 AA->pointsToConstantMemory(MemoryLocation( 1755 SrcPtr, LocationSize::precise(CopySize->getZExtValue()), AAInfo))) { 1756 LoadFlags |= MachineMemOperand::MOInvariant; 1757 1758 // FIXME: pointsToConstantMemory probably does not imply dereferenceable, 1759 // but the previous usage implied it did. Probably should check 1760 // isDereferenceableAndAlignedPointer. 1761 LoadFlags |= MachineMemOperand::MODereferenceable; 1762 } 1763 1764 ICall.addMemOperand( 1765 MF->getMachineMemOperand(MachinePointerInfo(CI.getArgOperand(0)), 1766 StoreFlags, 1, DstAlign, AAInfo)); 1767 if (Opcode != TargetOpcode::G_MEMSET) 1768 ICall.addMemOperand(MF->getMachineMemOperand( 1769 MachinePointerInfo(SrcPtr), LoadFlags, 1, SrcAlign, AAInfo)); 1770 1771 return true; 1772 } 1773 1774 void IRTranslator::getStackGuard(Register DstReg, 1775 MachineIRBuilder &MIRBuilder) { 1776 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1777 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1778 auto MIB = 1779 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1780 1781 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1782 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1783 if (!Global) 1784 return; 1785 1786 unsigned AddrSpace = Global->getType()->getPointerAddressSpace(); 1787 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace)); 1788 1789 MachinePointerInfo MPInfo(Global); 1790 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1791 MachineMemOperand::MODereferenceable; 1792 MachineMemOperand *MemRef = MF->getMachineMemOperand( 1793 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace)); 1794 MIB.setMemRefs({MemRef}); 1795 } 1796 1797 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1798 MachineIRBuilder &MIRBuilder) { 1799 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1800 MIRBuilder.buildInstr( 1801 Op, {ResRegs[0], ResRegs[1]}, 1802 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1803 1804 return true; 1805 } 1806 1807 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI, 1808 MachineIRBuilder &MIRBuilder) { 1809 Register Dst = getOrCreateVReg(CI); 1810 Register Src0 = getOrCreateVReg(*CI.getOperand(0)); 1811 Register Src1 = getOrCreateVReg(*CI.getOperand(1)); 1812 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 1813 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale }); 1814 return true; 1815 } 1816 1817 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1818 switch (ID) { 1819 default: 1820 break; 1821 case Intrinsic::bswap: 1822 return TargetOpcode::G_BSWAP; 1823 case Intrinsic::bitreverse: 1824 return TargetOpcode::G_BITREVERSE; 1825 case Intrinsic::fshl: 1826 return TargetOpcode::G_FSHL; 1827 case Intrinsic::fshr: 1828 return TargetOpcode::G_FSHR; 1829 case Intrinsic::ceil: 1830 return TargetOpcode::G_FCEIL; 1831 case Intrinsic::cos: 1832 return TargetOpcode::G_FCOS; 1833 case Intrinsic::ctpop: 1834 return TargetOpcode::G_CTPOP; 1835 case Intrinsic::exp: 1836 return TargetOpcode::G_FEXP; 1837 case Intrinsic::exp2: 1838 return TargetOpcode::G_FEXP2; 1839 case Intrinsic::exp10: 1840 return TargetOpcode::G_FEXP10; 1841 case Intrinsic::fabs: 1842 return TargetOpcode::G_FABS; 1843 case Intrinsic::copysign: 1844 return TargetOpcode::G_FCOPYSIGN; 1845 case Intrinsic::minnum: 1846 return TargetOpcode::G_FMINNUM; 1847 case Intrinsic::maxnum: 1848 return TargetOpcode::G_FMAXNUM; 1849 case Intrinsic::minimum: 1850 return TargetOpcode::G_FMINIMUM; 1851 case Intrinsic::maximum: 1852 return TargetOpcode::G_FMAXIMUM; 1853 case Intrinsic::canonicalize: 1854 return TargetOpcode::G_FCANONICALIZE; 1855 case Intrinsic::floor: 1856 return TargetOpcode::G_FFLOOR; 1857 case Intrinsic::fma: 1858 return TargetOpcode::G_FMA; 1859 case Intrinsic::log: 1860 return TargetOpcode::G_FLOG; 1861 case Intrinsic::log2: 1862 return TargetOpcode::G_FLOG2; 1863 case Intrinsic::log10: 1864 return TargetOpcode::G_FLOG10; 1865 case Intrinsic::ldexp: 1866 return TargetOpcode::G_FLDEXP; 1867 case Intrinsic::nearbyint: 1868 return TargetOpcode::G_FNEARBYINT; 1869 case Intrinsic::pow: 1870 return TargetOpcode::G_FPOW; 1871 case Intrinsic::powi: 1872 return TargetOpcode::G_FPOWI; 1873 case Intrinsic::rint: 1874 return TargetOpcode::G_FRINT; 1875 case Intrinsic::round: 1876 return TargetOpcode::G_INTRINSIC_ROUND; 1877 case Intrinsic::roundeven: 1878 return TargetOpcode::G_INTRINSIC_ROUNDEVEN; 1879 case Intrinsic::sin: 1880 return TargetOpcode::G_FSIN; 1881 case Intrinsic::sqrt: 1882 return TargetOpcode::G_FSQRT; 1883 case Intrinsic::trunc: 1884 return TargetOpcode::G_INTRINSIC_TRUNC; 1885 case Intrinsic::readcyclecounter: 1886 return TargetOpcode::G_READCYCLECOUNTER; 1887 case Intrinsic::ptrmask: 1888 return TargetOpcode::G_PTRMASK; 1889 case Intrinsic::lrint: 1890 return TargetOpcode::G_INTRINSIC_LRINT; 1891 // FADD/FMUL require checking the FMF, so are handled elsewhere. 1892 case Intrinsic::vector_reduce_fmin: 1893 return TargetOpcode::G_VECREDUCE_FMIN; 1894 case Intrinsic::vector_reduce_fmax: 1895 return TargetOpcode::G_VECREDUCE_FMAX; 1896 case Intrinsic::vector_reduce_fminimum: 1897 return TargetOpcode::G_VECREDUCE_FMINIMUM; 1898 case Intrinsic::vector_reduce_fmaximum: 1899 return TargetOpcode::G_VECREDUCE_FMAXIMUM; 1900 case Intrinsic::vector_reduce_add: 1901 return TargetOpcode::G_VECREDUCE_ADD; 1902 case Intrinsic::vector_reduce_mul: 1903 return TargetOpcode::G_VECREDUCE_MUL; 1904 case Intrinsic::vector_reduce_and: 1905 return TargetOpcode::G_VECREDUCE_AND; 1906 case Intrinsic::vector_reduce_or: 1907 return TargetOpcode::G_VECREDUCE_OR; 1908 case Intrinsic::vector_reduce_xor: 1909 return TargetOpcode::G_VECREDUCE_XOR; 1910 case Intrinsic::vector_reduce_smax: 1911 return TargetOpcode::G_VECREDUCE_SMAX; 1912 case Intrinsic::vector_reduce_smin: 1913 return TargetOpcode::G_VECREDUCE_SMIN; 1914 case Intrinsic::vector_reduce_umax: 1915 return TargetOpcode::G_VECREDUCE_UMAX; 1916 case Intrinsic::vector_reduce_umin: 1917 return TargetOpcode::G_VECREDUCE_UMIN; 1918 case Intrinsic::lround: 1919 return TargetOpcode::G_LROUND; 1920 case Intrinsic::llround: 1921 return TargetOpcode::G_LLROUND; 1922 case Intrinsic::get_fpmode: 1923 return TargetOpcode::G_GET_FPMODE; 1924 } 1925 return Intrinsic::not_intrinsic; 1926 } 1927 1928 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1929 Intrinsic::ID ID, 1930 MachineIRBuilder &MIRBuilder) { 1931 1932 unsigned Op = getSimpleIntrinsicOpcode(ID); 1933 1934 // Is this a simple intrinsic? 1935 if (Op == Intrinsic::not_intrinsic) 1936 return false; 1937 1938 // Yes. Let's translate it. 1939 SmallVector<llvm::SrcOp, 4> VRegs; 1940 for (const auto &Arg : CI.args()) 1941 VRegs.push_back(getOrCreateVReg(*Arg)); 1942 1943 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1944 MachineInstr::copyFlagsFromInstruction(CI)); 1945 return true; 1946 } 1947 1948 // TODO: Include ConstainedOps.def when all strict instructions are defined. 1949 static unsigned getConstrainedOpcode(Intrinsic::ID ID) { 1950 switch (ID) { 1951 case Intrinsic::experimental_constrained_fadd: 1952 return TargetOpcode::G_STRICT_FADD; 1953 case Intrinsic::experimental_constrained_fsub: 1954 return TargetOpcode::G_STRICT_FSUB; 1955 case Intrinsic::experimental_constrained_fmul: 1956 return TargetOpcode::G_STRICT_FMUL; 1957 case Intrinsic::experimental_constrained_fdiv: 1958 return TargetOpcode::G_STRICT_FDIV; 1959 case Intrinsic::experimental_constrained_frem: 1960 return TargetOpcode::G_STRICT_FREM; 1961 case Intrinsic::experimental_constrained_fma: 1962 return TargetOpcode::G_STRICT_FMA; 1963 case Intrinsic::experimental_constrained_sqrt: 1964 return TargetOpcode::G_STRICT_FSQRT; 1965 case Intrinsic::experimental_constrained_ldexp: 1966 return TargetOpcode::G_STRICT_FLDEXP; 1967 default: 1968 return 0; 1969 } 1970 } 1971 1972 bool IRTranslator::translateConstrainedFPIntrinsic( 1973 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) { 1974 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 1975 1976 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID()); 1977 if (!Opcode) 1978 return false; 1979 1980 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(FPI); 1981 if (EB == fp::ExceptionBehavior::ebIgnore) 1982 Flags |= MachineInstr::NoFPExcept; 1983 1984 SmallVector<llvm::SrcOp, 4> VRegs; 1985 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0))); 1986 if (!FPI.isUnaryOp()) 1987 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1))); 1988 if (FPI.isTernaryOp()) 1989 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2))); 1990 1991 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags); 1992 return true; 1993 } 1994 1995 std::optional<MCRegister> IRTranslator::getArgPhysReg(Argument &Arg) { 1996 auto VRegs = getOrCreateVRegs(Arg); 1997 if (VRegs.size() != 1) 1998 return std::nullopt; 1999 2000 // Arguments are lowered as a copy of a livein physical register. 2001 auto *VRegDef = MF->getRegInfo().getVRegDef(VRegs[0]); 2002 if (!VRegDef || !VRegDef->isCopy()) 2003 return std::nullopt; 2004 return VRegDef->getOperand(1).getReg().asMCReg(); 2005 } 2006 2007 bool IRTranslator::translateIfEntryValueArgument(const DbgValueInst &DebugInst, 2008 MachineIRBuilder &MIRBuilder) { 2009 auto *Arg = dyn_cast<Argument>(DebugInst.getValue()); 2010 if (!Arg) 2011 return false; 2012 2013 const DIExpression *Expr = DebugInst.getExpression(); 2014 if (!Expr->isEntryValue()) 2015 return false; 2016 2017 std::optional<MCRegister> PhysReg = getArgPhysReg(*Arg); 2018 if (!PhysReg) { 2019 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 2020 "couldn't find a physical register\n" 2021 << DebugInst << "\n"); 2022 return true; 2023 } 2024 2025 MIRBuilder.buildDirectDbgValue(*PhysReg, DebugInst.getVariable(), 2026 DebugInst.getExpression()); 2027 return true; 2028 } 2029 2030 bool IRTranslator::translateIfEntryValueArgument( 2031 const DbgDeclareInst &DebugInst) { 2032 auto *Arg = dyn_cast<Argument>(DebugInst.getAddress()); 2033 if (!Arg) 2034 return false; 2035 2036 const DIExpression *Expr = DebugInst.getExpression(); 2037 if (!Expr->isEntryValue()) 2038 return false; 2039 2040 std::optional<MCRegister> PhysReg = getArgPhysReg(*Arg); 2041 if (!PhysReg) 2042 return false; 2043 2044 // Append an op deref to account for the fact that this is a dbg_declare. 2045 Expr = DIExpression::append(Expr, dwarf::DW_OP_deref); 2046 MF->setVariableDbgInfo(DebugInst.getVariable(), Expr, *PhysReg, 2047 DebugInst.getDebugLoc()); 2048 return true; 2049 } 2050 2051 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 2052 MachineIRBuilder &MIRBuilder) { 2053 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) { 2054 if (ORE->enabled()) { 2055 if (MemoryOpRemark::canHandle(MI, *LibInfo)) { 2056 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo); 2057 R.visit(MI); 2058 } 2059 } 2060 } 2061 2062 // If this is a simple intrinsic (that is, we just need to add a def of 2063 // a vreg, and uses for each arg operand, then translate it. 2064 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 2065 return true; 2066 2067 switch (ID) { 2068 default: 2069 break; 2070 case Intrinsic::lifetime_start: 2071 case Intrinsic::lifetime_end: { 2072 // No stack colouring in O0, discard region information. 2073 if (MF->getTarget().getOptLevel() == CodeGenOptLevel::None) 2074 return true; 2075 2076 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 2077 : TargetOpcode::LIFETIME_END; 2078 2079 // Get the underlying objects for the location passed on the lifetime 2080 // marker. 2081 SmallVector<const Value *, 4> Allocas; 2082 getUnderlyingObjects(CI.getArgOperand(1), Allocas); 2083 2084 // Iterate over each underlying object, creating lifetime markers for each 2085 // static alloca. Quit if we find a non-static alloca. 2086 for (const Value *V : Allocas) { 2087 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 2088 if (!AI) 2089 continue; 2090 2091 if (!AI->isStaticAlloca()) 2092 return true; 2093 2094 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 2095 } 2096 return true; 2097 } 2098 case Intrinsic::dbg_declare: { 2099 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 2100 assert(DI.getVariable() && "Missing variable"); 2101 2102 const Value *Address = DI.getAddress(); 2103 if (!Address || isa<UndefValue>(Address)) { 2104 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 2105 return true; 2106 } 2107 2108 assert(DI.getVariable()->isValidLocationForIntrinsic( 2109 MIRBuilder.getDebugLoc()) && 2110 "Expected inlined-at fields to agree"); 2111 auto AI = dyn_cast<AllocaInst>(Address); 2112 if (AI && AI->isStaticAlloca()) { 2113 // Static allocas are tracked at the MF level, no need for DBG_VALUE 2114 // instructions (in fact, they get ignored if they *do* exist). 2115 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 2116 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 2117 return true; 2118 } 2119 2120 if (translateIfEntryValueArgument(DI)) 2121 return true; 2122 2123 // A dbg.declare describes the address of a source variable, so lower it 2124 // into an indirect DBG_VALUE. 2125 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 2126 DI.getVariable(), DI.getExpression()); 2127 return true; 2128 } 2129 case Intrinsic::dbg_label: { 2130 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 2131 assert(DI.getLabel() && "Missing label"); 2132 2133 assert(DI.getLabel()->isValidLocationForIntrinsic( 2134 MIRBuilder.getDebugLoc()) && 2135 "Expected inlined-at fields to agree"); 2136 2137 MIRBuilder.buildDbgLabel(DI.getLabel()); 2138 return true; 2139 } 2140 case Intrinsic::vaend: 2141 // No target I know of cares about va_end. Certainly no in-tree target 2142 // does. Simplest intrinsic ever! 2143 return true; 2144 case Intrinsic::vastart: { 2145 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2146 Value *Ptr = CI.getArgOperand(0); 2147 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 2148 Align Alignment = getKnownAlignment(Ptr, *DL); 2149 2150 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 2151 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 2152 MachineMemOperand::MOStore, 2153 ListSize, Alignment)); 2154 return true; 2155 } 2156 case Intrinsic::dbg_value: { 2157 // This form of DBG_VALUE is target-independent. 2158 const DbgValueInst &DI = cast<DbgValueInst>(CI); 2159 const Value *V = DI.getValue(); 2160 assert(DI.getVariable()->isValidLocationForIntrinsic( 2161 MIRBuilder.getDebugLoc()) && 2162 "Expected inlined-at fields to agree"); 2163 if (!V || DI.hasArgList()) { 2164 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to 2165 // terminate any prior location. 2166 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 2167 return true; 2168 } 2169 if (const auto *CI = dyn_cast<Constant>(V)) { 2170 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 2171 return true; 2172 } 2173 if (auto *AI = dyn_cast<AllocaInst>(V); 2174 AI && AI->isStaticAlloca() && DI.getExpression()->startsWithDeref()) { 2175 // If the value is an alloca and the expression starts with a 2176 // dereference, track a stack slot instead of a register, as registers 2177 // may be clobbered. 2178 auto ExprOperands = DI.getExpression()->getElements(); 2179 auto *ExprDerefRemoved = 2180 DIExpression::get(AI->getContext(), ExprOperands.drop_front()); 2181 MIRBuilder.buildFIDbgValue(getOrCreateFrameIndex(*AI), DI.getVariable(), 2182 ExprDerefRemoved); 2183 return true; 2184 } 2185 if (translateIfEntryValueArgument(DI, MIRBuilder)) 2186 return true; 2187 for (Register Reg : getOrCreateVRegs(*V)) { 2188 // FIXME: This does not handle register-indirect values at offset 0. The 2189 // direct/indirect thing shouldn't really be handled by something as 2190 // implicit as reg+noreg vs reg+imm in the first place, but it seems 2191 // pretty baked in right now. 2192 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 2193 } 2194 return true; 2195 } 2196 case Intrinsic::uadd_with_overflow: 2197 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 2198 case Intrinsic::sadd_with_overflow: 2199 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 2200 case Intrinsic::usub_with_overflow: 2201 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 2202 case Intrinsic::ssub_with_overflow: 2203 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 2204 case Intrinsic::umul_with_overflow: 2205 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 2206 case Intrinsic::smul_with_overflow: 2207 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 2208 case Intrinsic::uadd_sat: 2209 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 2210 case Intrinsic::sadd_sat: 2211 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 2212 case Intrinsic::usub_sat: 2213 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 2214 case Intrinsic::ssub_sat: 2215 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 2216 case Intrinsic::ushl_sat: 2217 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder); 2218 case Intrinsic::sshl_sat: 2219 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder); 2220 case Intrinsic::umin: 2221 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder); 2222 case Intrinsic::umax: 2223 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder); 2224 case Intrinsic::smin: 2225 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder); 2226 case Intrinsic::smax: 2227 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder); 2228 case Intrinsic::abs: 2229 // TODO: Preserve "int min is poison" arg in GMIR? 2230 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder); 2231 case Intrinsic::smul_fix: 2232 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder); 2233 case Intrinsic::umul_fix: 2234 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder); 2235 case Intrinsic::smul_fix_sat: 2236 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder); 2237 case Intrinsic::umul_fix_sat: 2238 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder); 2239 case Intrinsic::sdiv_fix: 2240 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder); 2241 case Intrinsic::udiv_fix: 2242 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder); 2243 case Intrinsic::sdiv_fix_sat: 2244 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder); 2245 case Intrinsic::udiv_fix_sat: 2246 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder); 2247 case Intrinsic::fmuladd: { 2248 const TargetMachine &TM = MF->getTarget(); 2249 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2250 Register Dst = getOrCreateVReg(CI); 2251 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 2252 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 2253 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 2254 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 2255 TLI.isFMAFasterThanFMulAndFAdd(*MF, 2256 TLI.getValueType(*DL, CI.getType()))) { 2257 // TODO: Revisit this to see if we should move this part of the 2258 // lowering to the combiner. 2259 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 2260 MachineInstr::copyFlagsFromInstruction(CI)); 2261 } else { 2262 LLT Ty = getLLTForType(*CI.getType(), *DL); 2263 auto FMul = MIRBuilder.buildFMul( 2264 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 2265 MIRBuilder.buildFAdd(Dst, FMul, Op2, 2266 MachineInstr::copyFlagsFromInstruction(CI)); 2267 } 2268 return true; 2269 } 2270 case Intrinsic::convert_from_fp16: 2271 // FIXME: This intrinsic should probably be removed from the IR. 2272 MIRBuilder.buildFPExt(getOrCreateVReg(CI), 2273 getOrCreateVReg(*CI.getArgOperand(0)), 2274 MachineInstr::copyFlagsFromInstruction(CI)); 2275 return true; 2276 case Intrinsic::convert_to_fp16: 2277 // FIXME: This intrinsic should probably be removed from the IR. 2278 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI), 2279 getOrCreateVReg(*CI.getArgOperand(0)), 2280 MachineInstr::copyFlagsFromInstruction(CI)); 2281 return true; 2282 case Intrinsic::frexp: { 2283 ArrayRef<Register> VRegs = getOrCreateVRegs(CI); 2284 MIRBuilder.buildFFrexp(VRegs[0], VRegs[1], 2285 getOrCreateVReg(*CI.getArgOperand(0)), 2286 MachineInstr::copyFlagsFromInstruction(CI)); 2287 return true; 2288 } 2289 case Intrinsic::memcpy_inline: 2290 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE); 2291 case Intrinsic::memcpy: 2292 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY); 2293 case Intrinsic::memmove: 2294 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE); 2295 case Intrinsic::memset: 2296 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET); 2297 case Intrinsic::eh_typeid_for: { 2298 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 2299 Register Reg = getOrCreateVReg(CI); 2300 unsigned TypeID = MF->getTypeIDFor(GV); 2301 MIRBuilder.buildConstant(Reg, TypeID); 2302 return true; 2303 } 2304 case Intrinsic::objectsize: 2305 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2306 2307 case Intrinsic::is_constant: 2308 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2309 2310 case Intrinsic::stackguard: 2311 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 2312 return true; 2313 case Intrinsic::stackprotector: { 2314 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2315 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2316 Register GuardVal; 2317 if (TLI.useLoadStackGuardNode()) { 2318 GuardVal = MRI->createGenericVirtualRegister(PtrTy); 2319 getStackGuard(GuardVal, MIRBuilder); 2320 } else 2321 GuardVal = getOrCreateVReg(*CI.getArgOperand(0)); // The guard's value. 2322 2323 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 2324 int FI = getOrCreateFrameIndex(*Slot); 2325 MF->getFrameInfo().setStackProtectorIndex(FI); 2326 2327 MIRBuilder.buildStore( 2328 GuardVal, getOrCreateVReg(*Slot), 2329 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 2330 MachineMemOperand::MOStore | 2331 MachineMemOperand::MOVolatile, 2332 PtrTy, Align(8))); 2333 return true; 2334 } 2335 case Intrinsic::stacksave: { 2336 MIRBuilder.buildInstr(TargetOpcode::G_STACKSAVE, {getOrCreateVReg(CI)}, {}); 2337 return true; 2338 } 2339 case Intrinsic::stackrestore: { 2340 MIRBuilder.buildInstr(TargetOpcode::G_STACKRESTORE, {}, 2341 {getOrCreateVReg(*CI.getArgOperand(0))}); 2342 return true; 2343 } 2344 case Intrinsic::cttz: 2345 case Intrinsic::ctlz: { 2346 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 2347 bool isTrailing = ID == Intrinsic::cttz; 2348 unsigned Opcode = isTrailing 2349 ? Cst->isZero() ? TargetOpcode::G_CTTZ 2350 : TargetOpcode::G_CTTZ_ZERO_UNDEF 2351 : Cst->isZero() ? TargetOpcode::G_CTLZ 2352 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 2353 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 2354 {getOrCreateVReg(*CI.getArgOperand(0))}); 2355 return true; 2356 } 2357 case Intrinsic::invariant_start: { 2358 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2359 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 2360 MIRBuilder.buildUndef(Undef); 2361 return true; 2362 } 2363 case Intrinsic::invariant_end: 2364 return true; 2365 case Intrinsic::expect: 2366 case Intrinsic::annotation: 2367 case Intrinsic::ptr_annotation: 2368 case Intrinsic::launder_invariant_group: 2369 case Intrinsic::strip_invariant_group: { 2370 // Drop the intrinsic, but forward the value. 2371 MIRBuilder.buildCopy(getOrCreateVReg(CI), 2372 getOrCreateVReg(*CI.getArgOperand(0))); 2373 return true; 2374 } 2375 case Intrinsic::assume: 2376 case Intrinsic::experimental_noalias_scope_decl: 2377 case Intrinsic::var_annotation: 2378 case Intrinsic::sideeffect: 2379 // Discard annotate attributes, assumptions, and artificial side-effects. 2380 return true; 2381 case Intrinsic::read_volatile_register: 2382 case Intrinsic::read_register: { 2383 Value *Arg = CI.getArgOperand(0); 2384 MIRBuilder 2385 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 2386 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 2387 return true; 2388 } 2389 case Intrinsic::write_register: { 2390 Value *Arg = CI.getArgOperand(0); 2391 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 2392 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 2393 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 2394 return true; 2395 } 2396 case Intrinsic::localescape: { 2397 MachineBasicBlock &EntryMBB = MF->front(); 2398 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName()); 2399 2400 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 2401 // is the same on all targets. 2402 for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) { 2403 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts(); 2404 if (isa<ConstantPointerNull>(Arg)) 2405 continue; // Skip null pointers. They represent a hole in index space. 2406 2407 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg)); 2408 MCSymbol *FrameAllocSym = 2409 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName, 2410 Idx); 2411 2412 // This should be inserted at the start of the entry block. 2413 auto LocalEscape = 2414 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE) 2415 .addSym(FrameAllocSym) 2416 .addFrameIndex(FI); 2417 2418 EntryMBB.insert(EntryMBB.begin(), LocalEscape); 2419 } 2420 2421 return true; 2422 } 2423 case Intrinsic::vector_reduce_fadd: 2424 case Intrinsic::vector_reduce_fmul: { 2425 // Need to check for the reassoc flag to decide whether we want a 2426 // sequential reduction opcode or not. 2427 Register Dst = getOrCreateVReg(CI); 2428 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0)); 2429 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1)); 2430 unsigned Opc = 0; 2431 if (!CI.hasAllowReassoc()) { 2432 // The sequential ordering case. 2433 Opc = ID == Intrinsic::vector_reduce_fadd 2434 ? TargetOpcode::G_VECREDUCE_SEQ_FADD 2435 : TargetOpcode::G_VECREDUCE_SEQ_FMUL; 2436 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc}, 2437 MachineInstr::copyFlagsFromInstruction(CI)); 2438 return true; 2439 } 2440 // We split the operation into a separate G_FADD/G_FMUL + the reduce, 2441 // since the associativity doesn't matter. 2442 unsigned ScalarOpc; 2443 if (ID == Intrinsic::vector_reduce_fadd) { 2444 Opc = TargetOpcode::G_VECREDUCE_FADD; 2445 ScalarOpc = TargetOpcode::G_FADD; 2446 } else { 2447 Opc = TargetOpcode::G_VECREDUCE_FMUL; 2448 ScalarOpc = TargetOpcode::G_FMUL; 2449 } 2450 LLT DstTy = MRI->getType(Dst); 2451 auto Rdx = MIRBuilder.buildInstr( 2452 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI)); 2453 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx}, 2454 MachineInstr::copyFlagsFromInstruction(CI)); 2455 2456 return true; 2457 } 2458 case Intrinsic::trap: 2459 case Intrinsic::debugtrap: 2460 case Intrinsic::ubsantrap: { 2461 StringRef TrapFuncName = 2462 CI.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 2463 if (TrapFuncName.empty()) 2464 break; // Use the default handling. 2465 CallLowering::CallLoweringInfo Info; 2466 if (ID == Intrinsic::ubsantrap) { 2467 Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)), 2468 CI.getArgOperand(0)->getType(), 0}); 2469 } 2470 Info.Callee = MachineOperand::CreateES(TrapFuncName.data()); 2471 Info.CB = &CI; 2472 Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0}; 2473 return CLI->lowerCall(MIRBuilder, Info); 2474 } 2475 case Intrinsic::amdgcn_cs_chain: 2476 return translateCallBase(CI, MIRBuilder); 2477 case Intrinsic::fptrunc_round: { 2478 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(CI); 2479 2480 // Convert the metadata argument to a constant integer 2481 Metadata *MD = cast<MetadataAsValue>(CI.getArgOperand(1))->getMetadata(); 2482 std::optional<RoundingMode> RoundMode = 2483 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 2484 2485 // Add the Rounding mode as an integer 2486 MIRBuilder 2487 .buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND, 2488 {getOrCreateVReg(CI)}, 2489 {getOrCreateVReg(*CI.getArgOperand(0))}, Flags) 2490 .addImm((int)*RoundMode); 2491 2492 return true; 2493 } 2494 case Intrinsic::is_fpclass: { 2495 Value *FpValue = CI.getOperand(0); 2496 ConstantInt *TestMaskValue = cast<ConstantInt>(CI.getOperand(1)); 2497 2498 MIRBuilder 2499 .buildInstr(TargetOpcode::G_IS_FPCLASS, {getOrCreateVReg(CI)}, 2500 {getOrCreateVReg(*FpValue)}) 2501 .addImm(TestMaskValue->getZExtValue()); 2502 2503 return true; 2504 } 2505 case Intrinsic::set_fpmode: { 2506 Value *FPState = CI.getOperand(0); 2507 MIRBuilder.buildInstr(TargetOpcode::G_SET_FPMODE, {}, 2508 { getOrCreateVReg(*FPState) }); 2509 return true; 2510 } 2511 case Intrinsic::reset_fpmode: { 2512 MIRBuilder.buildInstr(TargetOpcode::G_RESET_FPMODE, {}, {}); 2513 return true; 2514 } 2515 case Intrinsic::prefetch: { 2516 Value *Addr = CI.getOperand(0); 2517 unsigned RW = cast<ConstantInt>(CI.getOperand(1))->getZExtValue(); 2518 unsigned Locality = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 2519 unsigned CacheType = cast<ConstantInt>(CI.getOperand(3))->getZExtValue(); 2520 2521 auto Flags = RW ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad; 2522 auto &MMO = *MF->getMachineMemOperand(MachinePointerInfo(Addr), Flags, 2523 LLT(), Align()); 2524 2525 MIRBuilder.buildPrefetch(getOrCreateVReg(*Addr), RW, Locality, CacheType, 2526 MMO); 2527 2528 return true; 2529 } 2530 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 2531 case Intrinsic::INTRINSIC: 2532 #include "llvm/IR/ConstrainedOps.def" 2533 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI), 2534 MIRBuilder); 2535 2536 } 2537 return false; 2538 } 2539 2540 bool IRTranslator::translateInlineAsm(const CallBase &CB, 2541 MachineIRBuilder &MIRBuilder) { 2542 2543 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 2544 2545 if (!ALI) { 2546 LLVM_DEBUG( 2547 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 2548 return false; 2549 } 2550 2551 return ALI->lowerInlineAsm( 2552 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 2553 } 2554 2555 bool IRTranslator::translateCallBase(const CallBase &CB, 2556 MachineIRBuilder &MIRBuilder) { 2557 ArrayRef<Register> Res = getOrCreateVRegs(CB); 2558 2559 SmallVector<ArrayRef<Register>, 8> Args; 2560 Register SwiftInVReg = 0; 2561 Register SwiftErrorVReg = 0; 2562 for (const auto &Arg : CB.args()) { 2563 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 2564 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 2565 LLT Ty = getLLTForType(*Arg->getType(), *DL); 2566 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 2567 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 2568 &CB, &MIRBuilder.getMBB(), Arg)); 2569 Args.emplace_back(ArrayRef(SwiftInVReg)); 2570 SwiftErrorVReg = 2571 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 2572 continue; 2573 } 2574 Args.push_back(getOrCreateVRegs(*Arg)); 2575 } 2576 2577 if (auto *CI = dyn_cast<CallInst>(&CB)) { 2578 if (ORE->enabled()) { 2579 if (MemoryOpRemark::canHandle(CI, *LibInfo)) { 2580 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo); 2581 R.visit(CI); 2582 } 2583 } 2584 } 2585 2586 // We don't set HasCalls on MFI here yet because call lowering may decide to 2587 // optimize into tail calls. Instead, we defer that to selection where a final 2588 // scan is done to check if any instructions are calls. 2589 bool Success = 2590 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg, 2591 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 2592 2593 // Check if we just inserted a tail call. 2594 if (Success) { 2595 assert(!HasTailCall && "Can't tail call return twice from block?"); 2596 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 2597 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 2598 } 2599 2600 return Success; 2601 } 2602 2603 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 2604 const CallInst &CI = cast<CallInst>(U); 2605 auto TII = MF->getTarget().getIntrinsicInfo(); 2606 const Function *F = CI.getCalledFunction(); 2607 2608 // FIXME: support Windows dllimport function calls and calls through 2609 // weak symbols. 2610 if (F && (F->hasDLLImportStorageClass() || 2611 (MF->getTarget().getTargetTriple().isOSWindows() && 2612 F->hasExternalWeakLinkage()))) 2613 return false; 2614 2615 // FIXME: support control flow guard targets. 2616 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2617 return false; 2618 2619 // FIXME: support statepoints and related. 2620 if (isa<GCStatepointInst, GCRelocateInst, GCResultInst>(U)) 2621 return false; 2622 2623 if (CI.isInlineAsm()) 2624 return translateInlineAsm(CI, MIRBuilder); 2625 2626 diagnoseDontCall(CI); 2627 2628 Intrinsic::ID ID = Intrinsic::not_intrinsic; 2629 if (F && F->isIntrinsic()) { 2630 ID = F->getIntrinsicID(); 2631 if (TII && ID == Intrinsic::not_intrinsic) 2632 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 2633 } 2634 2635 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 2636 return translateCallBase(CI, MIRBuilder); 2637 2638 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 2639 2640 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 2641 return true; 2642 2643 ArrayRef<Register> ResultRegs; 2644 if (!CI.getType()->isVoidTy()) 2645 ResultRegs = getOrCreateVRegs(CI); 2646 2647 // Ignore the callsite attributes. Backend code is most likely not expecting 2648 // an intrinsic to sometimes have side effects and sometimes not. 2649 MachineInstrBuilder MIB = MIRBuilder.buildIntrinsic(ID, ResultRegs); 2650 if (isa<FPMathOperator>(CI)) 2651 MIB->copyIRFlags(CI); 2652 2653 for (const auto &Arg : enumerate(CI.args())) { 2654 // If this is required to be an immediate, don't materialize it in a 2655 // register. 2656 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 2657 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 2658 // imm arguments are more convenient than cimm (and realistically 2659 // probably sufficient), so use them. 2660 assert(CI->getBitWidth() <= 64 && 2661 "large intrinsic immediates not handled"); 2662 MIB.addImm(CI->getSExtValue()); 2663 } else { 2664 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 2665 } 2666 } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) { 2667 auto *MD = MDVal->getMetadata(); 2668 auto *MDN = dyn_cast<MDNode>(MD); 2669 if (!MDN) { 2670 if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD)) 2671 MDN = MDNode::get(MF->getFunction().getContext(), ConstMD); 2672 else // This was probably an MDString. 2673 return false; 2674 } 2675 MIB.addMetadata(MDN); 2676 } else { 2677 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 2678 if (VRegs.size() > 1) 2679 return false; 2680 MIB.addUse(VRegs[0]); 2681 } 2682 } 2683 2684 // Add a MachineMemOperand if it is a target mem intrinsic. 2685 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2686 TargetLowering::IntrinsicInfo Info; 2687 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 2688 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 2689 Align Alignment = Info.align.value_or( 2690 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 2691 LLT MemTy = Info.memVT.isSimple() 2692 ? getLLTForMVT(Info.memVT.getSimpleVT()) 2693 : LLT::scalar(Info.memVT.getStoreSizeInBits()); 2694 2695 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 2696 // didn't yield anything useful. 2697 MachinePointerInfo MPI; 2698 if (Info.ptrVal) 2699 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 2700 else if (Info.fallbackAddressSpace) 2701 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 2702 MIB.addMemOperand( 2703 MF->getMachineMemOperand(MPI, Info.flags, MemTy, Alignment, CI.getAAMetadata())); 2704 } 2705 2706 return true; 2707 } 2708 2709 bool IRTranslator::findUnwindDestinations( 2710 const BasicBlock *EHPadBB, 2711 BranchProbability Prob, 2712 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2713 &UnwindDests) { 2714 EHPersonality Personality = classifyEHPersonality( 2715 EHPadBB->getParent()->getFunction().getPersonalityFn()); 2716 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2717 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2718 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2719 bool IsSEH = isAsynchronousEHPersonality(Personality); 2720 2721 if (IsWasmCXX) { 2722 // Ignore this for now. 2723 return false; 2724 } 2725 2726 while (EHPadBB) { 2727 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2728 BasicBlock *NewEHPadBB = nullptr; 2729 if (isa<LandingPadInst>(Pad)) { 2730 // Stop on landingpads. They are not funclets. 2731 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2732 break; 2733 } 2734 if (isa<CleanupPadInst>(Pad)) { 2735 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2736 // personalities. 2737 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2738 UnwindDests.back().first->setIsEHScopeEntry(); 2739 UnwindDests.back().first->setIsEHFuncletEntry(); 2740 break; 2741 } 2742 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2743 // Add the catchpad handlers to the possible destinations. 2744 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2745 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob); 2746 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2747 if (IsMSVCCXX || IsCoreCLR) 2748 UnwindDests.back().first->setIsEHFuncletEntry(); 2749 if (!IsSEH) 2750 UnwindDests.back().first->setIsEHScopeEntry(); 2751 } 2752 NewEHPadBB = CatchSwitch->getUnwindDest(); 2753 } else { 2754 continue; 2755 } 2756 2757 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2758 if (BPI && NewEHPadBB) 2759 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2760 EHPadBB = NewEHPadBB; 2761 } 2762 return true; 2763 } 2764 2765 bool IRTranslator::translateInvoke(const User &U, 2766 MachineIRBuilder &MIRBuilder) { 2767 const InvokeInst &I = cast<InvokeInst>(U); 2768 MCContext &Context = MF->getContext(); 2769 2770 const BasicBlock *ReturnBB = I.getSuccessor(0); 2771 const BasicBlock *EHPadBB = I.getSuccessor(1); 2772 2773 const Function *Fn = I.getCalledFunction(); 2774 2775 // FIXME: support invoking patchpoint and statepoint intrinsics. 2776 if (Fn && Fn->isIntrinsic()) 2777 return false; 2778 2779 // FIXME: support whatever these are. 2780 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 2781 return false; 2782 2783 // FIXME: support control flow guard targets. 2784 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2785 return false; 2786 2787 // FIXME: support Windows exception handling. 2788 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI())) 2789 return false; 2790 2791 // FIXME: support Windows dllimport function calls and calls through 2792 // weak symbols. 2793 if (Fn && (Fn->hasDLLImportStorageClass() || 2794 (MF->getTarget().getTargetTriple().isOSWindows() && 2795 Fn->hasExternalWeakLinkage()))) 2796 return false; 2797 2798 bool LowerInlineAsm = I.isInlineAsm(); 2799 bool NeedEHLabel = true; 2800 2801 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 2802 // the region covered by the try. 2803 MCSymbol *BeginSymbol = nullptr; 2804 if (NeedEHLabel) { 2805 MIRBuilder.buildInstr(TargetOpcode::G_INVOKE_REGION_START); 2806 BeginSymbol = Context.createTempSymbol(); 2807 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 2808 } 2809 2810 if (LowerInlineAsm) { 2811 if (!translateInlineAsm(I, MIRBuilder)) 2812 return false; 2813 } else if (!translateCallBase(I, MIRBuilder)) 2814 return false; 2815 2816 MCSymbol *EndSymbol = nullptr; 2817 if (NeedEHLabel) { 2818 EndSymbol = Context.createTempSymbol(); 2819 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 2820 } 2821 2822 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2823 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2824 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(); 2825 BranchProbability EHPadBBProb = 2826 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2827 : BranchProbability::getZero(); 2828 2829 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests)) 2830 return false; 2831 2832 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 2833 &ReturnMBB = getMBB(*ReturnBB); 2834 // Update successor info. 2835 addSuccessorWithProb(InvokeMBB, &ReturnMBB); 2836 for (auto &UnwindDest : UnwindDests) { 2837 UnwindDest.first->setIsEHPad(); 2838 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2839 } 2840 InvokeMBB->normalizeSuccProbs(); 2841 2842 if (NeedEHLabel) { 2843 assert(BeginSymbol && "Expected a begin symbol!"); 2844 assert(EndSymbol && "Expected an end symbol!"); 2845 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 2846 } 2847 2848 MIRBuilder.buildBr(ReturnMBB); 2849 return true; 2850 } 2851 2852 bool IRTranslator::translateCallBr(const User &U, 2853 MachineIRBuilder &MIRBuilder) { 2854 // FIXME: Implement this. 2855 return false; 2856 } 2857 2858 bool IRTranslator::translateLandingPad(const User &U, 2859 MachineIRBuilder &MIRBuilder) { 2860 const LandingPadInst &LP = cast<LandingPadInst>(U); 2861 2862 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 2863 2864 MBB.setIsEHPad(); 2865 2866 // If there aren't registers to copy the values into (e.g., during SjLj 2867 // exceptions), then don't bother. 2868 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2869 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 2870 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2871 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2872 return true; 2873 2874 // If landingpad's return type is token type, we don't create DAG nodes 2875 // for its exception pointer and selector value. The extraction of exception 2876 // pointer or selector value from token type landingpads is not currently 2877 // supported. 2878 if (LP.getType()->isTokenTy()) 2879 return true; 2880 2881 // Add a label to mark the beginning of the landing pad. Deletion of the 2882 // landing pad can thus be detected via the MachineModuleInfo. 2883 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 2884 .addSym(MF->addLandingPad(&MBB)); 2885 2886 // If the unwinder does not preserve all registers, ensure that the 2887 // function marks the clobbered registers as used. 2888 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 2889 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 2890 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 2891 2892 LLT Ty = getLLTForType(*LP.getType(), *DL); 2893 Register Undef = MRI->createGenericVirtualRegister(Ty); 2894 MIRBuilder.buildUndef(Undef); 2895 2896 SmallVector<LLT, 2> Tys; 2897 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 2898 Tys.push_back(getLLTForType(*Ty, *DL)); 2899 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 2900 2901 // Mark exception register as live in. 2902 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 2903 if (!ExceptionReg) 2904 return false; 2905 2906 MBB.addLiveIn(ExceptionReg); 2907 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 2908 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 2909 2910 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 2911 if (!SelectorReg) 2912 return false; 2913 2914 MBB.addLiveIn(SelectorReg); 2915 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 2916 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 2917 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 2918 2919 return true; 2920 } 2921 2922 bool IRTranslator::translateAlloca(const User &U, 2923 MachineIRBuilder &MIRBuilder) { 2924 auto &AI = cast<AllocaInst>(U); 2925 2926 if (AI.isSwiftError()) 2927 return true; 2928 2929 if (AI.isStaticAlloca()) { 2930 Register Res = getOrCreateVReg(AI); 2931 int FI = getOrCreateFrameIndex(AI); 2932 MIRBuilder.buildFrameIndex(Res, FI); 2933 return true; 2934 } 2935 2936 // FIXME: support stack probing for Windows. 2937 if (MF->getTarget().getTargetTriple().isOSWindows()) 2938 return false; 2939 2940 // Now we're in the harder dynamic case. 2941 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 2942 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 2943 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 2944 if (MRI->getType(NumElts) != IntPtrTy) { 2945 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 2946 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 2947 NumElts = ExtElts; 2948 } 2949 2950 Type *Ty = AI.getAllocatedType(); 2951 2952 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 2953 Register TySize = 2954 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 2955 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 2956 2957 // Round the size of the allocation up to the stack alignment size 2958 // by add SA-1 to the size. This doesn't overflow because we're computing 2959 // an address inside an alloca. 2960 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 2961 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 2962 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 2963 MachineInstr::NoUWrap); 2964 auto AlignCst = 2965 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 2966 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 2967 2968 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 2969 if (Alignment <= StackAlign) 2970 Alignment = Align(1); 2971 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 2972 2973 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 2974 assert(MF->getFrameInfo().hasVarSizedObjects()); 2975 return true; 2976 } 2977 2978 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 2979 // FIXME: We may need more info about the type. Because of how LLT works, 2980 // we're completely discarding the i64/double distinction here (amongst 2981 // others). Fortunately the ABIs I know of where that matters don't use va_arg 2982 // anyway but that's not guaranteed. 2983 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 2984 {getOrCreateVReg(*U.getOperand(0)), 2985 DL->getABITypeAlign(U.getType()).value()}); 2986 return true; 2987 } 2988 2989 bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) { 2990 if (!MF->getTarget().Options.TrapUnreachable) 2991 return true; 2992 2993 auto &UI = cast<UnreachableInst>(U); 2994 // We may be able to ignore unreachable behind a noreturn call. 2995 if (MF->getTarget().Options.NoTrapAfterNoreturn) { 2996 const BasicBlock &BB = *UI.getParent(); 2997 if (&UI != &BB.front()) { 2998 BasicBlock::const_iterator PredI = 2999 std::prev(BasicBlock::const_iterator(UI)); 3000 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3001 if (Call->doesNotReturn()) 3002 return true; 3003 } 3004 } 3005 } 3006 3007 MIRBuilder.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>()); 3008 return true; 3009 } 3010 3011 bool IRTranslator::translateInsertElement(const User &U, 3012 MachineIRBuilder &MIRBuilder) { 3013 // If it is a <1 x Ty> vector, use the scalar as it is 3014 // not a legal vector type in LLT. 3015 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1) 3016 return translateCopy(U, *U.getOperand(1), MIRBuilder); 3017 3018 Register Res = getOrCreateVReg(U); 3019 Register Val = getOrCreateVReg(*U.getOperand(0)); 3020 Register Elt = getOrCreateVReg(*U.getOperand(1)); 3021 Register Idx = getOrCreateVReg(*U.getOperand(2)); 3022 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 3023 return true; 3024 } 3025 3026 bool IRTranslator::translateExtractElement(const User &U, 3027 MachineIRBuilder &MIRBuilder) { 3028 // If it is a <1 x Ty> vector, use the scalar as it is 3029 // not a legal vector type in LLT. 3030 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1) 3031 return translateCopy(U, *U.getOperand(0), MIRBuilder); 3032 3033 Register Res = getOrCreateVReg(U); 3034 Register Val = getOrCreateVReg(*U.getOperand(0)); 3035 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 3036 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 3037 Register Idx; 3038 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 3039 if (CI->getBitWidth() != PreferredVecIdxWidth) { 3040 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth); 3041 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 3042 Idx = getOrCreateVReg(*NewIdxCI); 3043 } 3044 } 3045 if (!Idx) 3046 Idx = getOrCreateVReg(*U.getOperand(1)); 3047 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 3048 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 3049 Idx = MIRBuilder.buildZExtOrTrunc(VecIdxTy, Idx).getReg(0); 3050 } 3051 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 3052 return true; 3053 } 3054 3055 bool IRTranslator::translateShuffleVector(const User &U, 3056 MachineIRBuilder &MIRBuilder) { 3057 ArrayRef<int> Mask; 3058 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 3059 Mask = SVI->getShuffleMask(); 3060 else 3061 Mask = cast<ConstantExpr>(U).getShuffleMask(); 3062 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 3063 MIRBuilder 3064 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 3065 {getOrCreateVReg(*U.getOperand(0)), 3066 getOrCreateVReg(*U.getOperand(1))}) 3067 .addShuffleMask(MaskAlloc); 3068 return true; 3069 } 3070 3071 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 3072 const PHINode &PI = cast<PHINode>(U); 3073 3074 SmallVector<MachineInstr *, 4> Insts; 3075 for (auto Reg : getOrCreateVRegs(PI)) { 3076 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 3077 Insts.push_back(MIB.getInstr()); 3078 } 3079 3080 PendingPHIs.emplace_back(&PI, std::move(Insts)); 3081 return true; 3082 } 3083 3084 bool IRTranslator::translateAtomicCmpXchg(const User &U, 3085 MachineIRBuilder &MIRBuilder) { 3086 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 3087 3088 auto &TLI = *MF->getSubtarget().getTargetLowering(); 3089 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 3090 3091 auto Res = getOrCreateVRegs(I); 3092 Register OldValRes = Res[0]; 3093 Register SuccessRes = Res[1]; 3094 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 3095 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 3096 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 3097 3098 MIRBuilder.buildAtomicCmpXchgWithSuccess( 3099 OldValRes, SuccessRes, Addr, Cmp, NewVal, 3100 *MF->getMachineMemOperand( 3101 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp), 3102 getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(), 3103 I.getSuccessOrdering(), I.getFailureOrdering())); 3104 return true; 3105 } 3106 3107 bool IRTranslator::translateAtomicRMW(const User &U, 3108 MachineIRBuilder &MIRBuilder) { 3109 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 3110 auto &TLI = *MF->getSubtarget().getTargetLowering(); 3111 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 3112 3113 Register Res = getOrCreateVReg(I); 3114 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 3115 Register Val = getOrCreateVReg(*I.getValOperand()); 3116 3117 unsigned Opcode = 0; 3118 switch (I.getOperation()) { 3119 default: 3120 return false; 3121 case AtomicRMWInst::Xchg: 3122 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 3123 break; 3124 case AtomicRMWInst::Add: 3125 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 3126 break; 3127 case AtomicRMWInst::Sub: 3128 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 3129 break; 3130 case AtomicRMWInst::And: 3131 Opcode = TargetOpcode::G_ATOMICRMW_AND; 3132 break; 3133 case AtomicRMWInst::Nand: 3134 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 3135 break; 3136 case AtomicRMWInst::Or: 3137 Opcode = TargetOpcode::G_ATOMICRMW_OR; 3138 break; 3139 case AtomicRMWInst::Xor: 3140 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 3141 break; 3142 case AtomicRMWInst::Max: 3143 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 3144 break; 3145 case AtomicRMWInst::Min: 3146 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 3147 break; 3148 case AtomicRMWInst::UMax: 3149 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 3150 break; 3151 case AtomicRMWInst::UMin: 3152 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 3153 break; 3154 case AtomicRMWInst::FAdd: 3155 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 3156 break; 3157 case AtomicRMWInst::FSub: 3158 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 3159 break; 3160 case AtomicRMWInst::FMax: 3161 Opcode = TargetOpcode::G_ATOMICRMW_FMAX; 3162 break; 3163 case AtomicRMWInst::FMin: 3164 Opcode = TargetOpcode::G_ATOMICRMW_FMIN; 3165 break; 3166 case AtomicRMWInst::UIncWrap: 3167 Opcode = TargetOpcode::G_ATOMICRMW_UINC_WRAP; 3168 break; 3169 case AtomicRMWInst::UDecWrap: 3170 Opcode = TargetOpcode::G_ATOMICRMW_UDEC_WRAP; 3171 break; 3172 } 3173 3174 MIRBuilder.buildAtomicRMW( 3175 Opcode, Res, Addr, Val, 3176 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3177 Flags, MRI->getType(Val), getMemOpAlign(I), 3178 I.getAAMetadata(), nullptr, I.getSyncScopeID(), 3179 I.getOrdering())); 3180 return true; 3181 } 3182 3183 bool IRTranslator::translateFence(const User &U, 3184 MachineIRBuilder &MIRBuilder) { 3185 const FenceInst &Fence = cast<FenceInst>(U); 3186 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 3187 Fence.getSyncScopeID()); 3188 return true; 3189 } 3190 3191 bool IRTranslator::translateFreeze(const User &U, 3192 MachineIRBuilder &MIRBuilder) { 3193 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 3194 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 3195 3196 assert(DstRegs.size() == SrcRegs.size() && 3197 "Freeze with different source and destination type?"); 3198 3199 for (unsigned I = 0; I < DstRegs.size(); ++I) { 3200 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 3201 } 3202 3203 return true; 3204 } 3205 3206 void IRTranslator::finishPendingPhis() { 3207 #ifndef NDEBUG 3208 DILocationVerifier Verifier; 3209 GISelObserverWrapper WrapperObserver(&Verifier); 3210 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 3211 #endif // ifndef NDEBUG 3212 for (auto &Phi : PendingPHIs) { 3213 const PHINode *PI = Phi.first; 3214 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 3215 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 3216 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 3217 #ifndef NDEBUG 3218 Verifier.setCurrentInst(PI); 3219 #endif // ifndef NDEBUG 3220 3221 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 3222 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 3223 auto IRPred = PI->getIncomingBlock(i); 3224 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 3225 for (auto *Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 3226 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 3227 continue; 3228 SeenPreds.insert(Pred); 3229 for (unsigned j = 0; j < ValRegs.size(); ++j) { 3230 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 3231 MIB.addUse(ValRegs[j]); 3232 MIB.addMBB(Pred); 3233 } 3234 } 3235 } 3236 } 3237 } 3238 3239 bool IRTranslator::translate(const Instruction &Inst) { 3240 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 3241 CurBuilder->setPCSections(Inst.getMetadata(LLVMContext::MD_pcsections)); 3242 3243 auto &TLI = *MF->getSubtarget().getTargetLowering(); 3244 if (TLI.fallBackToDAGISel(Inst)) 3245 return false; 3246 3247 switch (Inst.getOpcode()) { 3248 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 3249 case Instruction::OPCODE: \ 3250 return translate##OPCODE(Inst, *CurBuilder.get()); 3251 #include "llvm/IR/Instruction.def" 3252 default: 3253 return false; 3254 } 3255 } 3256 3257 bool IRTranslator::translate(const Constant &C, Register Reg) { 3258 // We only emit constants into the entry block from here. To prevent jumpy 3259 // debug behaviour remove debug line. 3260 if (auto CurrInstDL = CurBuilder->getDL()) 3261 EntryBuilder->setDebugLoc(DebugLoc()); 3262 3263 if (auto CI = dyn_cast<ConstantInt>(&C)) 3264 EntryBuilder->buildConstant(Reg, *CI); 3265 else if (auto CF = dyn_cast<ConstantFP>(&C)) 3266 EntryBuilder->buildFConstant(Reg, *CF); 3267 else if (isa<UndefValue>(C)) 3268 EntryBuilder->buildUndef(Reg); 3269 else if (isa<ConstantPointerNull>(C)) 3270 EntryBuilder->buildConstant(Reg, 0); 3271 else if (auto GV = dyn_cast<GlobalValue>(&C)) 3272 EntryBuilder->buildGlobalValue(Reg, GV); 3273 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 3274 if (!isa<FixedVectorType>(CAZ->getType())) 3275 return false; 3276 // Return the scalar if it is a <1 x Ty> vector. 3277 unsigned NumElts = CAZ->getElementCount().getFixedValue(); 3278 if (NumElts == 1) 3279 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder); 3280 SmallVector<Register, 4> Ops; 3281 for (unsigned I = 0; I < NumElts; ++I) { 3282 Constant &Elt = *CAZ->getElementValue(I); 3283 Ops.push_back(getOrCreateVReg(Elt)); 3284 } 3285 EntryBuilder->buildBuildVector(Reg, Ops); 3286 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 3287 // Return the scalar if it is a <1 x Ty> vector. 3288 if (CV->getNumElements() == 1) 3289 return translateCopy(C, *CV->getElementAsConstant(0), *EntryBuilder); 3290 SmallVector<Register, 4> Ops; 3291 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 3292 Constant &Elt = *CV->getElementAsConstant(i); 3293 Ops.push_back(getOrCreateVReg(Elt)); 3294 } 3295 EntryBuilder->buildBuildVector(Reg, Ops); 3296 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 3297 switch(CE->getOpcode()) { 3298 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 3299 case Instruction::OPCODE: \ 3300 return translate##OPCODE(*CE, *EntryBuilder.get()); 3301 #include "llvm/IR/Instruction.def" 3302 default: 3303 return false; 3304 } 3305 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 3306 if (CV->getNumOperands() == 1) 3307 return translateCopy(C, *CV->getOperand(0), *EntryBuilder); 3308 SmallVector<Register, 4> Ops; 3309 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 3310 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 3311 } 3312 EntryBuilder->buildBuildVector(Reg, Ops); 3313 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 3314 EntryBuilder->buildBlockAddress(Reg, BA); 3315 } else 3316 return false; 3317 3318 return true; 3319 } 3320 3321 bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB, 3322 MachineBasicBlock &MBB) { 3323 for (auto &BTB : SL->BitTestCases) { 3324 // Emit header first, if it wasn't already emitted. 3325 if (!BTB.Emitted) 3326 emitBitTestHeader(BTB, BTB.Parent); 3327 3328 BranchProbability UnhandledProb = BTB.Prob; 3329 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 3330 UnhandledProb -= BTB.Cases[j].ExtraProb; 3331 // Set the current basic block to the mbb we wish to insert the code into 3332 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB; 3333 // If all cases cover a contiguous range, it is not necessary to jump to 3334 // the default block after the last bit test fails. This is because the 3335 // range check during bit test header creation has guaranteed that every 3336 // case here doesn't go outside the range. In this case, there is no need 3337 // to perform the last bit test, as it will always be true. Instead, make 3338 // the second-to-last bit-test fall through to the target of the last bit 3339 // test, and delete the last bit test. 3340 3341 MachineBasicBlock *NextMBB; 3342 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3343 // Second-to-last bit-test with contiguous range: fall through to the 3344 // target of the final bit test. 3345 NextMBB = BTB.Cases[j + 1].TargetBB; 3346 } else if (j + 1 == ej) { 3347 // For the last bit test, fall through to Default. 3348 NextMBB = BTB.Default; 3349 } else { 3350 // Otherwise, fall through to the next bit test. 3351 NextMBB = BTB.Cases[j + 1].ThisBB; 3352 } 3353 3354 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB); 3355 3356 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3357 // We need to record the replacement phi edge here that normally 3358 // happens in emitBitTestCase before we delete the case, otherwise the 3359 // phi edge will be lost. 3360 addMachineCFGPred({BTB.Parent->getBasicBlock(), 3361 BTB.Cases[ej - 1].TargetBB->getBasicBlock()}, 3362 MBB); 3363 // Since we're not going to use the final bit test, remove it. 3364 BTB.Cases.pop_back(); 3365 break; 3366 } 3367 } 3368 // This is "default" BB. We have two jumps to it. From "header" BB and from 3369 // last "case" BB, unless the latter was skipped. 3370 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(), 3371 BTB.Default->getBasicBlock()}; 3372 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent); 3373 if (!BTB.ContiguousRange) { 3374 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB); 3375 } 3376 } 3377 SL->BitTestCases.clear(); 3378 3379 for (auto &JTCase : SL->JTCases) { 3380 // Emit header first, if it wasn't already emitted. 3381 if (!JTCase.first.Emitted) 3382 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 3383 3384 emitJumpTable(JTCase.second, JTCase.second.MBB); 3385 } 3386 SL->JTCases.clear(); 3387 3388 for (auto &SwCase : SL->SwitchCases) 3389 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder); 3390 SL->SwitchCases.clear(); 3391 3392 // Check if we need to generate stack-protector guard checks. 3393 StackProtector &SP = getAnalysis<StackProtector>(); 3394 if (SP.shouldEmitSDCheck(BB)) { 3395 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3396 bool FunctionBasedInstrumentation = 3397 TLI.getSSPStackGuardCheck(*MF->getFunction().getParent()); 3398 SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation); 3399 } 3400 // Handle stack protector. 3401 if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 3402 LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n"); 3403 return false; 3404 } else if (SPDescriptor.shouldEmitStackProtector()) { 3405 MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB(); 3406 MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB(); 3407 3408 // Find the split point to split the parent mbb. At the same time copy all 3409 // physical registers used in the tail of parent mbb into virtual registers 3410 // before the split point and back into physical registers after the split 3411 // point. This prevents us needing to deal with Live-ins and many other 3412 // register allocation issues caused by us splitting the parent mbb. The 3413 // register allocator will clean up said virtual copies later on. 3414 MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector( 3415 ParentMBB, *MF->getSubtarget().getInstrInfo()); 3416 3417 // Splice the terminator of ParentMBB into SuccessMBB. 3418 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint, 3419 ParentMBB->end()); 3420 3421 // Add compare/jump on neq/jump to the parent BB. 3422 if (!emitSPDescriptorParent(SPDescriptor, ParentMBB)) 3423 return false; 3424 3425 // CodeGen Failure MBB if we have not codegened it yet. 3426 MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB(); 3427 if (FailureMBB->empty()) { 3428 if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB)) 3429 return false; 3430 } 3431 3432 // Clear the Per-BB State. 3433 SPDescriptor.resetPerBBState(); 3434 } 3435 return true; 3436 } 3437 3438 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD, 3439 MachineBasicBlock *ParentBB) { 3440 CurBuilder->setInsertPt(*ParentBB, ParentBB->end()); 3441 // First create the loads to the guard/stack slot for the comparison. 3442 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3443 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext()); 3444 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 3445 LLT PtrMemTy = getLLTForMVT(TLI.getPointerMemTy(*DL)); 3446 3447 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3448 int FI = MFI.getStackProtectorIndex(); 3449 3450 Register Guard; 3451 Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0); 3452 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3453 Align Align = DL->getPrefTypeAlign(PointerType::getUnqual(M.getContext())); 3454 3455 // Generate code to load the content of the guard slot. 3456 Register GuardVal = 3457 CurBuilder 3458 ->buildLoad(PtrMemTy, StackSlotPtr, 3459 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3460 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile) 3461 .getReg(0); 3462 3463 if (TLI.useStackGuardXorFP()) { 3464 LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented"); 3465 return false; 3466 } 3467 3468 // Retrieve guard check function, nullptr if instrumentation is inlined. 3469 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3470 // This path is currently untestable on GlobalISel, since the only platform 3471 // that needs this seems to be Windows, and we fall back on that currently. 3472 // The code still lives here in case that changes. 3473 // Silence warning about unused variable until the code below that uses 3474 // 'GuardCheckFn' is enabled. 3475 (void)GuardCheckFn; 3476 return false; 3477 #if 0 3478 // The target provides a guard check function to validate the guard value. 3479 // Generate a call to that function with the content of the guard slot as 3480 // argument. 3481 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3482 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3483 ISD::ArgFlagsTy Flags; 3484 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 3485 Flags.setInReg(); 3486 CallLowering::ArgInfo GuardArgInfo( 3487 {GuardVal, FnTy->getParamType(0), {Flags}}); 3488 3489 CallLowering::CallLoweringInfo Info; 3490 Info.OrigArgs.push_back(GuardArgInfo); 3491 Info.CallConv = GuardCheckFn->getCallingConv(); 3492 Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0); 3493 Info.OrigRet = {Register(), FnTy->getReturnType()}; 3494 if (!CLI->lowerCall(MIRBuilder, Info)) { 3495 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n"); 3496 return false; 3497 } 3498 return true; 3499 #endif 3500 } 3501 3502 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3503 // Otherwise, emit a volatile load to retrieve the stack guard value. 3504 if (TLI.useLoadStackGuardNode()) { 3505 Guard = 3506 MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits())); 3507 getStackGuard(Guard, *CurBuilder); 3508 } else { 3509 // TODO: test using android subtarget when we support @llvm.thread.pointer. 3510 const Value *IRGuard = TLI.getSDagStackGuard(M); 3511 Register GuardPtr = getOrCreateVReg(*IRGuard); 3512 3513 Guard = CurBuilder 3514 ->buildLoad(PtrMemTy, GuardPtr, 3515 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3516 MachineMemOperand::MOLoad | 3517 MachineMemOperand::MOVolatile) 3518 .getReg(0); 3519 } 3520 3521 // Perform the comparison. 3522 auto Cmp = 3523 CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal); 3524 // If the guard/stackslot do not equal, branch to failure MBB. 3525 CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB()); 3526 // Otherwise branch to success MBB. 3527 CurBuilder->buildBr(*SPD.getSuccessMBB()); 3528 return true; 3529 } 3530 3531 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD, 3532 MachineBasicBlock *FailureBB) { 3533 CurBuilder->setInsertPt(*FailureBB, FailureBB->end()); 3534 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3535 3536 const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL; 3537 const char *Name = TLI.getLibcallName(Libcall); 3538 3539 CallLowering::CallLoweringInfo Info; 3540 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 3541 Info.Callee = MachineOperand::CreateES(Name); 3542 Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()), 3543 0}; 3544 if (!CLI->lowerCall(*CurBuilder, Info)) { 3545 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n"); 3546 return false; 3547 } 3548 3549 // On PS4/PS5, the "return address" must still be within the calling 3550 // function, even if it's at the very end, so emit an explicit TRAP here. 3551 // WebAssembly needs an unreachable instruction after a non-returning call, 3552 // because the function return type can be different from __stack_chk_fail's 3553 // return type (void). 3554 const TargetMachine &TM = MF->getTarget(); 3555 if (TM.getTargetTriple().isPS() || TM.getTargetTriple().isWasm()) { 3556 LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n"); 3557 return false; 3558 } 3559 return true; 3560 } 3561 3562 void IRTranslator::finalizeFunction() { 3563 // Release the memory used by the different maps we 3564 // needed during the translation. 3565 PendingPHIs.clear(); 3566 VMap.reset(); 3567 FrameIndices.clear(); 3568 MachinePreds.clear(); 3569 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 3570 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 3571 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 3572 EntryBuilder.reset(); 3573 CurBuilder.reset(); 3574 FuncInfo.clear(); 3575 SPDescriptor.resetPerFunctionState(); 3576 } 3577 3578 /// Returns true if a BasicBlock \p BB within a variadic function contains a 3579 /// variadic musttail call. 3580 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 3581 if (!IsVarArg) 3582 return false; 3583 3584 // Walk the block backwards, because tail calls usually only appear at the end 3585 // of a block. 3586 return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) { 3587 const auto *CI = dyn_cast<CallInst>(&I); 3588 return CI && CI->isMustTailCall(); 3589 }); 3590 } 3591 3592 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 3593 MF = &CurMF; 3594 const Function &F = MF->getFunction(); 3595 GISelCSEAnalysisWrapper &Wrapper = 3596 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 3597 // Set the CSEConfig and run the analysis. 3598 GISelCSEInfo *CSEInfo = nullptr; 3599 TPC = &getAnalysis<TargetPassConfig>(); 3600 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 3601 ? EnableCSEInIRTranslator 3602 : TPC->isGISelCSEEnabled(); 3603 3604 if (EnableCSE) { 3605 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3606 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 3607 EntryBuilder->setCSEInfo(CSEInfo); 3608 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3609 CurBuilder->setCSEInfo(CSEInfo); 3610 } else { 3611 EntryBuilder = std::make_unique<MachineIRBuilder>(); 3612 CurBuilder = std::make_unique<MachineIRBuilder>(); 3613 } 3614 CLI = MF->getSubtarget().getCallLowering(); 3615 CurBuilder->setMF(*MF); 3616 EntryBuilder->setMF(*MF); 3617 MRI = &MF->getRegInfo(); 3618 DL = &F.getParent()->getDataLayout(); 3619 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 3620 const TargetMachine &TM = MF->getTarget(); 3621 TM.resetTargetOptions(F); 3622 EnableOpts = OptLevel != CodeGenOptLevel::None && !skipFunction(F); 3623 FuncInfo.MF = MF; 3624 if (EnableOpts) { 3625 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3626 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 3627 } else { 3628 AA = nullptr; 3629 FuncInfo.BPI = nullptr; 3630 } 3631 3632 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 3633 MF->getFunction()); 3634 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 3635 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF); 3636 3637 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 3638 3639 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 3640 SL->init(TLI, TM, *DL); 3641 3642 3643 3644 assert(PendingPHIs.empty() && "stale PHIs"); 3645 3646 // Targets which want to use big endian can enable it using 3647 // enableBigEndian() 3648 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) { 3649 // Currently we don't properly handle big endian code. 3650 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3651 F.getSubprogram(), &F.getEntryBlock()); 3652 R << "unable to translate in big endian mode"; 3653 reportTranslationError(*MF, *TPC, *ORE, R); 3654 } 3655 3656 // Release the per-function state when we return, whether we succeeded or not. 3657 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 3658 3659 // Setup a separate basic-block for the arguments and constants 3660 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 3661 MF->push_back(EntryBB); 3662 EntryBuilder->setMBB(*EntryBB); 3663 3664 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 3665 SwiftError.setFunction(CurMF); 3666 SwiftError.createEntriesInEntryBlock(DbgLoc); 3667 3668 bool IsVarArg = F.isVarArg(); 3669 bool HasMustTailInVarArgFn = false; 3670 3671 // Create all blocks, in IR order, to preserve the layout. 3672 for (const BasicBlock &BB: F) { 3673 auto *&MBB = BBToMBB[&BB]; 3674 3675 MBB = MF->CreateMachineBasicBlock(&BB); 3676 MF->push_back(MBB); 3677 3678 if (BB.hasAddressTaken()) 3679 MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB)); 3680 3681 if (!HasMustTailInVarArgFn) 3682 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 3683 } 3684 3685 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 3686 3687 // Make our arguments/constants entry block fallthrough to the IR entry block. 3688 EntryBB->addSuccessor(&getMBB(F.front())); 3689 3690 if (CLI->fallBackToDAGISel(*MF)) { 3691 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3692 F.getSubprogram(), &F.getEntryBlock()); 3693 R << "unable to lower function: " << ore::NV("Prototype", F.getType()); 3694 reportTranslationError(*MF, *TPC, *ORE, R); 3695 return false; 3696 } 3697 3698 // Lower the actual args into this basic block. 3699 SmallVector<ArrayRef<Register>, 8> VRegArgs; 3700 for (const Argument &Arg: F.args()) { 3701 if (DL->getTypeStoreSize(Arg.getType()).isZero()) 3702 continue; // Don't handle zero sized types. 3703 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 3704 VRegArgs.push_back(VRegs); 3705 3706 if (Arg.hasSwiftErrorAttr()) { 3707 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 3708 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 3709 } 3710 } 3711 3712 if (!CLI->lowerFormalArguments(*EntryBuilder, F, VRegArgs, FuncInfo)) { 3713 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3714 F.getSubprogram(), &F.getEntryBlock()); 3715 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 3716 reportTranslationError(*MF, *TPC, *ORE, R); 3717 return false; 3718 } 3719 3720 // Need to visit defs before uses when translating instructions. 3721 GISelObserverWrapper WrapperObserver; 3722 if (EnableCSE && CSEInfo) 3723 WrapperObserver.addObserver(CSEInfo); 3724 { 3725 ReversePostOrderTraversal<const Function *> RPOT(&F); 3726 #ifndef NDEBUG 3727 DILocationVerifier Verifier; 3728 WrapperObserver.addObserver(&Verifier); 3729 #endif // ifndef NDEBUG 3730 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 3731 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 3732 for (const BasicBlock *BB : RPOT) { 3733 MachineBasicBlock &MBB = getMBB(*BB); 3734 // Set the insertion point of all the following translations to 3735 // the end of this basic block. 3736 CurBuilder->setMBB(MBB); 3737 HasTailCall = false; 3738 for (const Instruction &Inst : *BB) { 3739 // If we translated a tail call in the last step, then we know 3740 // everything after the call is either a return, or something that is 3741 // handled by the call itself. (E.g. a lifetime marker or assume 3742 // intrinsic.) In this case, we should stop translating the block and 3743 // move on. 3744 if (HasTailCall) 3745 break; 3746 #ifndef NDEBUG 3747 Verifier.setCurrentInst(&Inst); 3748 #endif // ifndef NDEBUG 3749 if (translate(Inst)) 3750 continue; 3751 3752 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3753 Inst.getDebugLoc(), BB); 3754 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 3755 3756 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 3757 std::string InstStrStorage; 3758 raw_string_ostream InstStr(InstStrStorage); 3759 InstStr << Inst; 3760 3761 R << ": '" << InstStr.str() << "'"; 3762 } 3763 3764 reportTranslationError(*MF, *TPC, *ORE, R); 3765 return false; 3766 } 3767 3768 if (!finalizeBasicBlock(*BB, MBB)) { 3769 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3770 BB->getTerminator()->getDebugLoc(), BB); 3771 R << "unable to translate basic block"; 3772 reportTranslationError(*MF, *TPC, *ORE, R); 3773 return false; 3774 } 3775 } 3776 #ifndef NDEBUG 3777 WrapperObserver.removeObserver(&Verifier); 3778 #endif 3779 } 3780 3781 finishPendingPhis(); 3782 3783 SwiftError.propagateVRegs(); 3784 3785 // Merge the argument lowering and constants block with its single 3786 // successor, the LLVM-IR entry block. We want the basic block to 3787 // be maximal. 3788 assert(EntryBB->succ_size() == 1 && 3789 "Custom BB used for lowering should have only one successor"); 3790 // Get the successor of the current entry block. 3791 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 3792 assert(NewEntryBB.pred_size() == 1 && 3793 "LLVM-IR entry block has a predecessor!?"); 3794 // Move all the instruction from the current entry block to the 3795 // new entry block. 3796 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 3797 EntryBB->end()); 3798 3799 // Update the live-in information for the new entry block. 3800 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 3801 NewEntryBB.addLiveIn(LiveIn); 3802 NewEntryBB.sortUniqueLiveIns(); 3803 3804 // Get rid of the now empty basic block. 3805 EntryBB->removeSuccessor(&NewEntryBB); 3806 MF->remove(EntryBB); 3807 MF->deleteMachineBasicBlock(EntryBB); 3808 3809 assert(&MF->front() == &NewEntryBB && 3810 "New entry wasn't next in the list of basic block!"); 3811 3812 // Initialize stack protector information. 3813 StackProtector &SP = getAnalysis<StackProtector>(); 3814 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 3815 3816 return false; 3817 } 3818