1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/APFloat.h" 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SetVector.h" 12 #include "llvm/ADT/SmallBitVector.h" 13 #include "llvm/Analysis/CmpInstAnalysis.h" 14 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 15 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 16 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 17 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 21 #include "llvm/CodeGen/GlobalISel/Utils.h" 22 #include "llvm/CodeGen/LowLevelTypeUtils.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/RegisterBankInfo.h" 29 #include "llvm/CodeGen/TargetInstrInfo.h" 30 #include "llvm/CodeGen/TargetLowering.h" 31 #include "llvm/CodeGen/TargetOpcodes.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/DivisionByConstantInfo.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Target/TargetMachine.h" 40 #include <cmath> 41 #include <optional> 42 #include <tuple> 43 44 #define DEBUG_TYPE "gi-combiner" 45 46 using namespace llvm; 47 using namespace MIPatternMatch; 48 49 // Option to allow testing of the combiner while no targets know about indexed 50 // addressing. 51 static cl::opt<bool> 52 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 53 cl::desc("Force all indexed operations to be " 54 "legal for the GlobalISel combiner")); 55 56 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 57 MachineIRBuilder &B, bool IsPreLegalize, 58 GISelKnownBits *KB, MachineDominatorTree *MDT, 59 const LegalizerInfo *LI) 60 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 61 MDT(MDT), IsPreLegalize(IsPreLegalize), LI(LI), 62 RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 63 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 64 (void)this->KB; 65 } 66 67 const TargetLowering &CombinerHelper::getTargetLowering() const { 68 return *Builder.getMF().getSubtarget().getTargetLowering(); 69 } 70 71 /// \returns The little endian in-memory byte position of byte \p I in a 72 /// \p ByteWidth bytes wide type. 73 /// 74 /// E.g. Given a 4-byte type x, x[0] -> byte 0 75 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 76 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 77 return I; 78 } 79 80 /// Determines the LogBase2 value for a non-null input value using the 81 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 82 static Register buildLogBase2(Register V, MachineIRBuilder &MIB) { 83 auto &MRI = *MIB.getMRI(); 84 LLT Ty = MRI.getType(V); 85 auto Ctlz = MIB.buildCTLZ(Ty, V); 86 auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1); 87 return MIB.buildSub(Ty, Base, Ctlz).getReg(0); 88 } 89 90 /// \returns The big endian in-memory byte position of byte \p I in a 91 /// \p ByteWidth bytes wide type. 92 /// 93 /// E.g. Given a 4-byte type x, x[0] -> byte 3 94 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 95 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 96 return ByteWidth - I - 1; 97 } 98 99 /// Given a map from byte offsets in memory to indices in a load/store, 100 /// determine if that map corresponds to a little or big endian byte pattern. 101 /// 102 /// \param MemOffset2Idx maps memory offsets to address offsets. 103 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 104 /// 105 /// \returns true if the map corresponds to a big endian byte pattern, false if 106 /// it corresponds to a little endian byte pattern, and std::nullopt otherwise. 107 /// 108 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 109 /// are as follows: 110 /// 111 /// AddrOffset Little endian Big endian 112 /// 0 0 3 113 /// 1 1 2 114 /// 2 2 1 115 /// 3 3 0 116 static std::optional<bool> 117 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 118 int64_t LowestIdx) { 119 // Need at least two byte positions to decide on endianness. 120 unsigned Width = MemOffset2Idx.size(); 121 if (Width < 2) 122 return std::nullopt; 123 bool BigEndian = true, LittleEndian = true; 124 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 125 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 126 if (MemOffsetAndIdx == MemOffset2Idx.end()) 127 return std::nullopt; 128 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 129 assert(Idx >= 0 && "Expected non-negative byte offset?"); 130 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 131 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 132 if (!BigEndian && !LittleEndian) 133 return std::nullopt; 134 } 135 136 assert((BigEndian != LittleEndian) && 137 "Pattern cannot be both big and little endian!"); 138 return BigEndian; 139 } 140 141 bool CombinerHelper::isPreLegalize() const { return IsPreLegalize; } 142 143 bool CombinerHelper::isLegal(const LegalityQuery &Query) const { 144 assert(LI && "Must have LegalizerInfo to query isLegal!"); 145 return LI->getAction(Query).Action == LegalizeActions::Legal; 146 } 147 148 bool CombinerHelper::isLegalOrBeforeLegalizer( 149 const LegalityQuery &Query) const { 150 return isPreLegalize() || isLegal(Query); 151 } 152 153 bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const { 154 if (!Ty.isVector()) 155 return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}}); 156 // Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs. 157 if (isPreLegalize()) 158 return true; 159 LLT EltTy = Ty.getElementType(); 160 return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) && 161 isLegal({TargetOpcode::G_CONSTANT, {EltTy}}); 162 } 163 164 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 165 Register ToReg) const { 166 Observer.changingAllUsesOfReg(MRI, FromReg); 167 168 if (MRI.constrainRegAttrs(ToReg, FromReg)) 169 MRI.replaceRegWith(FromReg, ToReg); 170 else 171 Builder.buildCopy(ToReg, FromReg); 172 173 Observer.finishedChangingAllUsesOfReg(); 174 } 175 176 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 177 MachineOperand &FromRegOp, 178 Register ToReg) const { 179 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 180 Observer.changingInstr(*FromRegOp.getParent()); 181 182 FromRegOp.setReg(ToReg); 183 184 Observer.changedInstr(*FromRegOp.getParent()); 185 } 186 187 void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI, 188 unsigned ToOpcode) const { 189 Observer.changingInstr(FromMI); 190 191 FromMI.setDesc(Builder.getTII().get(ToOpcode)); 192 193 Observer.changedInstr(FromMI); 194 } 195 196 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 197 return RBI->getRegBank(Reg, MRI, *TRI); 198 } 199 200 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 201 if (RegBank) 202 MRI.setRegBank(Reg, *RegBank); 203 } 204 205 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 206 if (matchCombineCopy(MI)) { 207 applyCombineCopy(MI); 208 return true; 209 } 210 return false; 211 } 212 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 213 if (MI.getOpcode() != TargetOpcode::COPY) 214 return false; 215 Register DstReg = MI.getOperand(0).getReg(); 216 Register SrcReg = MI.getOperand(1).getReg(); 217 return canReplaceReg(DstReg, SrcReg, MRI); 218 } 219 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 220 Register DstReg = MI.getOperand(0).getReg(); 221 Register SrcReg = MI.getOperand(1).getReg(); 222 MI.eraseFromParent(); 223 replaceRegWith(MRI, DstReg, SrcReg); 224 } 225 226 bool CombinerHelper::matchFreezeOfSingleMaybePoisonOperand( 227 MachineInstr &MI, BuildFnTy &MatchInfo) { 228 // Ported from InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating. 229 Register DstOp = MI.getOperand(0).getReg(); 230 Register OrigOp = MI.getOperand(1).getReg(); 231 232 if (!MRI.hasOneNonDBGUse(OrigOp)) 233 return false; 234 235 MachineInstr *OrigDef = MRI.getUniqueVRegDef(OrigOp); 236 // Even if only a single operand of the PHI is not guaranteed non-poison, 237 // moving freeze() backwards across a PHI can cause optimization issues for 238 // other users of that operand. 239 // 240 // Moving freeze() from one of the output registers of a G_UNMERGE_VALUES to 241 // the source register is unprofitable because it makes the freeze() more 242 // strict than is necessary (it would affect the whole register instead of 243 // just the subreg being frozen). 244 if (OrigDef->isPHI() || isa<GUnmerge>(OrigDef)) 245 return false; 246 247 if (canCreateUndefOrPoison(OrigOp, MRI, 248 /*ConsiderFlagsAndMetadata=*/false)) 249 return false; 250 251 std::optional<MachineOperand> MaybePoisonOperand; 252 for (MachineOperand &Operand : OrigDef->uses()) { 253 if (!Operand.isReg()) 254 return false; 255 256 if (isGuaranteedNotToBeUndefOrPoison(Operand.getReg(), MRI)) 257 continue; 258 259 if (!MaybePoisonOperand) 260 MaybePoisonOperand = Operand; 261 else { 262 // We have more than one maybe-poison operand. Moving the freeze is 263 // unsafe. 264 return false; 265 } 266 } 267 268 // Eliminate freeze if all operands are guaranteed non-poison. 269 if (!MaybePoisonOperand) { 270 MatchInfo = [=](MachineIRBuilder &B) { 271 Observer.changingInstr(*OrigDef); 272 cast<GenericMachineInstr>(OrigDef)->dropPoisonGeneratingFlags(); 273 Observer.changedInstr(*OrigDef); 274 B.buildCopy(DstOp, OrigOp); 275 }; 276 return true; 277 } 278 279 Register MaybePoisonOperandReg = MaybePoisonOperand->getReg(); 280 LLT MaybePoisonOperandRegTy = MRI.getType(MaybePoisonOperandReg); 281 282 MatchInfo = [=](MachineIRBuilder &B) mutable { 283 Observer.changingInstr(*OrigDef); 284 cast<GenericMachineInstr>(OrigDef)->dropPoisonGeneratingFlags(); 285 Observer.changedInstr(*OrigDef); 286 B.setInsertPt(*OrigDef->getParent(), OrigDef->getIterator()); 287 auto Freeze = B.buildFreeze(MaybePoisonOperandRegTy, MaybePoisonOperandReg); 288 replaceRegOpWith( 289 MRI, *OrigDef->findRegisterUseOperand(MaybePoisonOperandReg, TRI), 290 Freeze.getReg(0)); 291 replaceRegWith(MRI, DstOp, OrigOp); 292 }; 293 return true; 294 } 295 296 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, 297 SmallVector<Register> &Ops) { 298 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 299 "Invalid instruction"); 300 bool IsUndef = true; 301 MachineInstr *Undef = nullptr; 302 303 // Walk over all the operands of concat vectors and check if they are 304 // build_vector themselves or undef. 305 // Then collect their operands in Ops. 306 for (const MachineOperand &MO : MI.uses()) { 307 Register Reg = MO.getReg(); 308 MachineInstr *Def = MRI.getVRegDef(Reg); 309 assert(Def && "Operand not defined"); 310 if (!MRI.hasOneNonDBGUse(Reg)) 311 return false; 312 switch (Def->getOpcode()) { 313 case TargetOpcode::G_BUILD_VECTOR: 314 IsUndef = false; 315 // Remember the operands of the build_vector to fold 316 // them into the yet-to-build flattened concat vectors. 317 for (const MachineOperand &BuildVecMO : Def->uses()) 318 Ops.push_back(BuildVecMO.getReg()); 319 break; 320 case TargetOpcode::G_IMPLICIT_DEF: { 321 LLT OpType = MRI.getType(Reg); 322 // Keep one undef value for all the undef operands. 323 if (!Undef) { 324 Builder.setInsertPt(*MI.getParent(), MI); 325 Undef = Builder.buildUndef(OpType.getScalarType()); 326 } 327 assert(MRI.getType(Undef->getOperand(0).getReg()) == 328 OpType.getScalarType() && 329 "All undefs should have the same type"); 330 // Break the undef vector in as many scalar elements as needed 331 // for the flattening. 332 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 333 EltIdx != EltEnd; ++EltIdx) 334 Ops.push_back(Undef->getOperand(0).getReg()); 335 break; 336 } 337 default: 338 return false; 339 } 340 } 341 342 // Check if the combine is illegal 343 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 344 if (!isLegalOrBeforeLegalizer( 345 {TargetOpcode::G_BUILD_VECTOR, {DstTy, MRI.getType(Ops[0])}})) { 346 return false; 347 } 348 349 if (IsUndef) 350 Ops.clear(); 351 352 return true; 353 } 354 void CombinerHelper::applyCombineConcatVectors(MachineInstr &MI, 355 SmallVector<Register> &Ops) { 356 // We determined that the concat_vectors can be flatten. 357 // Generate the flattened build_vector. 358 Register DstReg = MI.getOperand(0).getReg(); 359 Builder.setInsertPt(*MI.getParent(), MI); 360 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 361 362 // Note: IsUndef is sort of redundant. We could have determine it by 363 // checking that at all Ops are undef. Alternatively, we could have 364 // generate a build_vector of undefs and rely on another combine to 365 // clean that up. For now, given we already gather this information 366 // in matchCombineConcatVectors, just save compile time and issue the 367 // right thing. 368 if (Ops.empty()) 369 Builder.buildUndef(NewDstReg); 370 else 371 Builder.buildBuildVector(NewDstReg, Ops); 372 MI.eraseFromParent(); 373 replaceRegWith(MRI, DstReg, NewDstReg); 374 } 375 376 bool CombinerHelper::matchCombineShuffleConcat(MachineInstr &MI, 377 SmallVector<Register> &Ops) { 378 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 379 auto ConcatMI1 = 380 dyn_cast<GConcatVectors>(MRI.getVRegDef(MI.getOperand(1).getReg())); 381 auto ConcatMI2 = 382 dyn_cast<GConcatVectors>(MRI.getVRegDef(MI.getOperand(2).getReg())); 383 if (!ConcatMI1 || !ConcatMI2) 384 return false; 385 386 // Check that the sources of the Concat instructions have the same type 387 if (MRI.getType(ConcatMI1->getSourceReg(0)) != 388 MRI.getType(ConcatMI2->getSourceReg(0))) 389 return false; 390 391 LLT ConcatSrcTy = MRI.getType(ConcatMI1->getReg(1)); 392 LLT ShuffleSrcTy1 = MRI.getType(MI.getOperand(1).getReg()); 393 unsigned ConcatSrcNumElt = ConcatSrcTy.getNumElements(); 394 for (unsigned i = 0; i < Mask.size(); i += ConcatSrcNumElt) { 395 // Check if the index takes a whole source register from G_CONCAT_VECTORS 396 // Assumes that all Sources of G_CONCAT_VECTORS are the same type 397 if (Mask[i] == -1) { 398 for (unsigned j = 1; j < ConcatSrcNumElt; j++) { 399 if (i + j >= Mask.size()) 400 return false; 401 if (Mask[i + j] != -1) 402 return false; 403 } 404 if (!isLegalOrBeforeLegalizer( 405 {TargetOpcode::G_IMPLICIT_DEF, {ConcatSrcTy}})) 406 return false; 407 Ops.push_back(0); 408 } else if (Mask[i] % ConcatSrcNumElt == 0) { 409 for (unsigned j = 1; j < ConcatSrcNumElt; j++) { 410 if (i + j >= Mask.size()) 411 return false; 412 if (Mask[i + j] != Mask[i] + static_cast<int>(j)) 413 return false; 414 } 415 // Retrieve the source register from its respective G_CONCAT_VECTORS 416 // instruction 417 if (Mask[i] < ShuffleSrcTy1.getNumElements()) { 418 Ops.push_back(ConcatMI1->getSourceReg(Mask[i] / ConcatSrcNumElt)); 419 } else { 420 Ops.push_back(ConcatMI2->getSourceReg(Mask[i] / ConcatSrcNumElt - 421 ConcatMI1->getNumSources())); 422 } 423 } else { 424 return false; 425 } 426 } 427 428 if (!isLegalOrBeforeLegalizer( 429 {TargetOpcode::G_CONCAT_VECTORS, 430 {MRI.getType(MI.getOperand(0).getReg()), ConcatSrcTy}})) 431 return false; 432 433 return !Ops.empty(); 434 } 435 436 void CombinerHelper::applyCombineShuffleConcat(MachineInstr &MI, 437 SmallVector<Register> &Ops) { 438 LLT SrcTy = MRI.getType(Ops[0]); 439 Register UndefReg = 0; 440 441 for (Register &Reg : Ops) { 442 if (Reg == 0) { 443 if (UndefReg == 0) 444 UndefReg = Builder.buildUndef(SrcTy).getReg(0); 445 Reg = UndefReg; 446 } 447 } 448 449 if (Ops.size() > 1) 450 Builder.buildConcatVectors(MI.getOperand(0).getReg(), Ops); 451 else 452 Builder.buildCopy(MI.getOperand(0).getReg(), Ops[0]); 453 MI.eraseFromParent(); 454 } 455 456 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 457 SmallVector<Register, 4> Ops; 458 if (matchCombineShuffleVector(MI, Ops)) { 459 applyCombineShuffleVector(MI, Ops); 460 return true; 461 } 462 return false; 463 } 464 465 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 466 SmallVectorImpl<Register> &Ops) { 467 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 468 "Invalid instruction kind"); 469 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 470 Register Src1 = MI.getOperand(1).getReg(); 471 LLT SrcType = MRI.getType(Src1); 472 // As bizarre as it may look, shuffle vector can actually produce 473 // scalar! This is because at the IR level a <1 x ty> shuffle 474 // vector is perfectly valid. 475 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 476 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 477 478 // If the resulting vector is smaller than the size of the source 479 // vectors being concatenated, we won't be able to replace the 480 // shuffle vector into a concat_vectors. 481 // 482 // Note: We may still be able to produce a concat_vectors fed by 483 // extract_vector_elt and so on. It is less clear that would 484 // be better though, so don't bother for now. 485 // 486 // If the destination is a scalar, the size of the sources doesn't 487 // matter. we will lower the shuffle to a plain copy. This will 488 // work only if the source and destination have the same size. But 489 // that's covered by the next condition. 490 // 491 // TODO: If the size between the source and destination don't match 492 // we could still emit an extract vector element in that case. 493 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 494 return false; 495 496 // Check that the shuffle mask can be broken evenly between the 497 // different sources. 498 if (DstNumElts % SrcNumElts != 0) 499 return false; 500 501 // Mask length is a multiple of the source vector length. 502 // Check if the shuffle is some kind of concatenation of the input 503 // vectors. 504 unsigned NumConcat = DstNumElts / SrcNumElts; 505 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 506 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 507 for (unsigned i = 0; i != DstNumElts; ++i) { 508 int Idx = Mask[i]; 509 // Undef value. 510 if (Idx < 0) 511 continue; 512 // Ensure the indices in each SrcType sized piece are sequential and that 513 // the same source is used for the whole piece. 514 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 515 (ConcatSrcs[i / SrcNumElts] >= 0 && 516 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 517 return false; 518 // Remember which source this index came from. 519 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 520 } 521 522 // The shuffle is concatenating multiple vectors together. 523 // Collect the different operands for that. 524 Register UndefReg; 525 Register Src2 = MI.getOperand(2).getReg(); 526 for (auto Src : ConcatSrcs) { 527 if (Src < 0) { 528 if (!UndefReg) { 529 Builder.setInsertPt(*MI.getParent(), MI); 530 UndefReg = Builder.buildUndef(SrcType).getReg(0); 531 } 532 Ops.push_back(UndefReg); 533 } else if (Src == 0) 534 Ops.push_back(Src1); 535 else 536 Ops.push_back(Src2); 537 } 538 return true; 539 } 540 541 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 542 const ArrayRef<Register> Ops) { 543 Register DstReg = MI.getOperand(0).getReg(); 544 Builder.setInsertPt(*MI.getParent(), MI); 545 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 546 547 if (Ops.size() == 1) 548 Builder.buildCopy(NewDstReg, Ops[0]); 549 else 550 Builder.buildMergeLikeInstr(NewDstReg, Ops); 551 552 MI.eraseFromParent(); 553 replaceRegWith(MRI, DstReg, NewDstReg); 554 } 555 556 bool CombinerHelper::matchShuffleToExtract(MachineInstr &MI) { 557 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 558 "Invalid instruction kind"); 559 560 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 561 return Mask.size() == 1; 562 } 563 564 void CombinerHelper::applyShuffleToExtract(MachineInstr &MI) { 565 Register DstReg = MI.getOperand(0).getReg(); 566 Builder.setInsertPt(*MI.getParent(), MI); 567 568 int I = MI.getOperand(3).getShuffleMask()[0]; 569 Register Src1 = MI.getOperand(1).getReg(); 570 LLT Src1Ty = MRI.getType(Src1); 571 int Src1NumElts = Src1Ty.isVector() ? Src1Ty.getNumElements() : 1; 572 Register SrcReg; 573 if (I >= Src1NumElts) { 574 SrcReg = MI.getOperand(2).getReg(); 575 I -= Src1NumElts; 576 } else if (I >= 0) 577 SrcReg = Src1; 578 579 if (I < 0) 580 Builder.buildUndef(DstReg); 581 else if (!MRI.getType(SrcReg).isVector()) 582 Builder.buildCopy(DstReg, SrcReg); 583 else 584 Builder.buildExtractVectorElementConstant(DstReg, SrcReg, I); 585 586 MI.eraseFromParent(); 587 } 588 589 namespace { 590 591 /// Select a preference between two uses. CurrentUse is the current preference 592 /// while *ForCandidate is attributes of the candidate under consideration. 593 PreferredTuple ChoosePreferredUse(MachineInstr &LoadMI, 594 PreferredTuple &CurrentUse, 595 const LLT TyForCandidate, 596 unsigned OpcodeForCandidate, 597 MachineInstr *MIForCandidate) { 598 if (!CurrentUse.Ty.isValid()) { 599 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 600 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 601 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 602 return CurrentUse; 603 } 604 605 // We permit the extend to hoist through basic blocks but this is only 606 // sensible if the target has extending loads. If you end up lowering back 607 // into a load and extend during the legalizer then the end result is 608 // hoisting the extend up to the load. 609 610 // Prefer defined extensions to undefined extensions as these are more 611 // likely to reduce the number of instructions. 612 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 613 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 614 return CurrentUse; 615 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 616 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 617 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 618 619 // Prefer sign extensions to zero extensions as sign-extensions tend to be 620 // more expensive. Don't do this if the load is already a zero-extend load 621 // though, otherwise we'll rewrite a zero-extend load into a sign-extend 622 // later. 623 if (!isa<GZExtLoad>(LoadMI) && CurrentUse.Ty == TyForCandidate) { 624 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 625 OpcodeForCandidate == TargetOpcode::G_ZEXT) 626 return CurrentUse; 627 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 628 OpcodeForCandidate == TargetOpcode::G_SEXT) 629 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 630 } 631 632 // This is potentially target specific. We've chosen the largest type 633 // because G_TRUNC is usually free. One potential catch with this is that 634 // some targets have a reduced number of larger registers than smaller 635 // registers and this choice potentially increases the live-range for the 636 // larger value. 637 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 638 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 639 } 640 return CurrentUse; 641 } 642 643 /// Find a suitable place to insert some instructions and insert them. This 644 /// function accounts for special cases like inserting before a PHI node. 645 /// The current strategy for inserting before PHI's is to duplicate the 646 /// instructions for each predecessor. However, while that's ok for G_TRUNC 647 /// on most targets since it generally requires no code, other targets/cases may 648 /// want to try harder to find a dominating block. 649 static void InsertInsnsWithoutSideEffectsBeforeUse( 650 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 651 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 652 MachineOperand &UseMO)> 653 Inserter) { 654 MachineInstr &UseMI = *UseMO.getParent(); 655 656 MachineBasicBlock *InsertBB = UseMI.getParent(); 657 658 // If the use is a PHI then we want the predecessor block instead. 659 if (UseMI.isPHI()) { 660 MachineOperand *PredBB = std::next(&UseMO); 661 InsertBB = PredBB->getMBB(); 662 } 663 664 // If the block is the same block as the def then we want to insert just after 665 // the def instead of at the start of the block. 666 if (InsertBB == DefMI.getParent()) { 667 MachineBasicBlock::iterator InsertPt = &DefMI; 668 Inserter(InsertBB, std::next(InsertPt), UseMO); 669 return; 670 } 671 672 // Otherwise we want the start of the BB 673 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 674 } 675 } // end anonymous namespace 676 677 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 678 PreferredTuple Preferred; 679 if (matchCombineExtendingLoads(MI, Preferred)) { 680 applyCombineExtendingLoads(MI, Preferred); 681 return true; 682 } 683 return false; 684 } 685 686 static unsigned getExtLoadOpcForExtend(unsigned ExtOpc) { 687 unsigned CandidateLoadOpc; 688 switch (ExtOpc) { 689 case TargetOpcode::G_ANYEXT: 690 CandidateLoadOpc = TargetOpcode::G_LOAD; 691 break; 692 case TargetOpcode::G_SEXT: 693 CandidateLoadOpc = TargetOpcode::G_SEXTLOAD; 694 break; 695 case TargetOpcode::G_ZEXT: 696 CandidateLoadOpc = TargetOpcode::G_ZEXTLOAD; 697 break; 698 default: 699 llvm_unreachable("Unexpected extend opc"); 700 } 701 return CandidateLoadOpc; 702 } 703 704 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 705 PreferredTuple &Preferred) { 706 // We match the loads and follow the uses to the extend instead of matching 707 // the extends and following the def to the load. This is because the load 708 // must remain in the same position for correctness (unless we also add code 709 // to find a safe place to sink it) whereas the extend is freely movable. 710 // It also prevents us from duplicating the load for the volatile case or just 711 // for performance. 712 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 713 if (!LoadMI) 714 return false; 715 716 Register LoadReg = LoadMI->getDstReg(); 717 718 LLT LoadValueTy = MRI.getType(LoadReg); 719 if (!LoadValueTy.isScalar()) 720 return false; 721 722 // Most architectures are going to legalize <s8 loads into at least a 1 byte 723 // load, and the MMOs can only describe memory accesses in multiples of bytes. 724 // If we try to perform extload combining on those, we can end up with 725 // %a(s8) = extload %ptr (load 1 byte from %ptr) 726 // ... which is an illegal extload instruction. 727 if (LoadValueTy.getSizeInBits() < 8) 728 return false; 729 730 // For non power-of-2 types, they will very likely be legalized into multiple 731 // loads. Don't bother trying to match them into extending loads. 732 if (!llvm::has_single_bit<uint32_t>(LoadValueTy.getSizeInBits())) 733 return false; 734 735 // Find the preferred type aside from the any-extends (unless it's the only 736 // one) and non-extending ops. We'll emit an extending load to that type and 737 // and emit a variant of (extend (trunc X)) for the others according to the 738 // relative type sizes. At the same time, pick an extend to use based on the 739 // extend involved in the chosen type. 740 unsigned PreferredOpcode = 741 isa<GLoad>(&MI) 742 ? TargetOpcode::G_ANYEXT 743 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 744 Preferred = {LLT(), PreferredOpcode, nullptr}; 745 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 746 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 747 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 748 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 749 const auto &MMO = LoadMI->getMMO(); 750 // Don't do anything for atomics. 751 if (MMO.isAtomic()) 752 continue; 753 // Check for legality. 754 if (!isPreLegalize()) { 755 LegalityQuery::MemDesc MMDesc(MMO); 756 unsigned CandidateLoadOpc = getExtLoadOpcForExtend(UseMI.getOpcode()); 757 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 758 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 759 if (LI->getAction({CandidateLoadOpc, {UseTy, SrcTy}, {MMDesc}}) 760 .Action != LegalizeActions::Legal) 761 continue; 762 } 763 Preferred = ChoosePreferredUse(MI, Preferred, 764 MRI.getType(UseMI.getOperand(0).getReg()), 765 UseMI.getOpcode(), &UseMI); 766 } 767 } 768 769 // There were no extends 770 if (!Preferred.MI) 771 return false; 772 // It should be impossible to chose an extend without selecting a different 773 // type since by definition the result of an extend is larger. 774 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 775 776 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 777 return true; 778 } 779 780 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 781 PreferredTuple &Preferred) { 782 // Rewrite the load to the chosen extending load. 783 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 784 785 // Inserter to insert a truncate back to the original type at a given point 786 // with some basic CSE to limit truncate duplication to one per BB. 787 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 788 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 789 MachineBasicBlock::iterator InsertBefore, 790 MachineOperand &UseMO) { 791 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 792 if (PreviouslyEmitted) { 793 Observer.changingInstr(*UseMO.getParent()); 794 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 795 Observer.changedInstr(*UseMO.getParent()); 796 return; 797 } 798 799 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 800 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 801 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 802 EmittedInsns[InsertIntoBB] = NewMI; 803 replaceRegOpWith(MRI, UseMO, NewDstReg); 804 }; 805 806 Observer.changingInstr(MI); 807 unsigned LoadOpc = getExtLoadOpcForExtend(Preferred.ExtendOpcode); 808 MI.setDesc(Builder.getTII().get(LoadOpc)); 809 810 // Rewrite all the uses to fix up the types. 811 auto &LoadValue = MI.getOperand(0); 812 SmallVector<MachineOperand *, 4> Uses; 813 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 814 Uses.push_back(&UseMO); 815 816 for (auto *UseMO : Uses) { 817 MachineInstr *UseMI = UseMO->getParent(); 818 819 // If the extend is compatible with the preferred extend then we should fix 820 // up the type and extend so that it uses the preferred use. 821 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 822 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 823 Register UseDstReg = UseMI->getOperand(0).getReg(); 824 MachineOperand &UseSrcMO = UseMI->getOperand(1); 825 const LLT UseDstTy = MRI.getType(UseDstReg); 826 if (UseDstReg != ChosenDstReg) { 827 if (Preferred.Ty == UseDstTy) { 828 // If the use has the same type as the preferred use, then merge 829 // the vregs and erase the extend. For example: 830 // %1:_(s8) = G_LOAD ... 831 // %2:_(s32) = G_SEXT %1(s8) 832 // %3:_(s32) = G_ANYEXT %1(s8) 833 // ... = ... %3(s32) 834 // rewrites to: 835 // %2:_(s32) = G_SEXTLOAD ... 836 // ... = ... %2(s32) 837 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 838 Observer.erasingInstr(*UseMO->getParent()); 839 UseMO->getParent()->eraseFromParent(); 840 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 841 // If the preferred size is smaller, then keep the extend but extend 842 // from the result of the extending load. For example: 843 // %1:_(s8) = G_LOAD ... 844 // %2:_(s32) = G_SEXT %1(s8) 845 // %3:_(s64) = G_ANYEXT %1(s8) 846 // ... = ... %3(s64) 847 /// rewrites to: 848 // %2:_(s32) = G_SEXTLOAD ... 849 // %3:_(s64) = G_ANYEXT %2:_(s32) 850 // ... = ... %3(s64) 851 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 852 } else { 853 // If the preferred size is large, then insert a truncate. For 854 // example: 855 // %1:_(s8) = G_LOAD ... 856 // %2:_(s64) = G_SEXT %1(s8) 857 // %3:_(s32) = G_ZEXT %1(s8) 858 // ... = ... %3(s32) 859 /// rewrites to: 860 // %2:_(s64) = G_SEXTLOAD ... 861 // %4:_(s8) = G_TRUNC %2:_(s32) 862 // %3:_(s64) = G_ZEXT %2:_(s8) 863 // ... = ... %3(s64) 864 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 865 InsertTruncAt); 866 } 867 continue; 868 } 869 // The use is (one of) the uses of the preferred use we chose earlier. 870 // We're going to update the load to def this value later so just erase 871 // the old extend. 872 Observer.erasingInstr(*UseMO->getParent()); 873 UseMO->getParent()->eraseFromParent(); 874 continue; 875 } 876 877 // The use isn't an extend. Truncate back to the type we originally loaded. 878 // This is free on many targets. 879 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 880 } 881 882 MI.getOperand(0).setReg(ChosenDstReg); 883 Observer.changedInstr(MI); 884 } 885 886 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI, 887 BuildFnTy &MatchInfo) { 888 assert(MI.getOpcode() == TargetOpcode::G_AND); 889 890 // If we have the following code: 891 // %mask = G_CONSTANT 255 892 // %ld = G_LOAD %ptr, (load s16) 893 // %and = G_AND %ld, %mask 894 // 895 // Try to fold it into 896 // %ld = G_ZEXTLOAD %ptr, (load s8) 897 898 Register Dst = MI.getOperand(0).getReg(); 899 if (MRI.getType(Dst).isVector()) 900 return false; 901 902 auto MaybeMask = 903 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 904 if (!MaybeMask) 905 return false; 906 907 APInt MaskVal = MaybeMask->Value; 908 909 if (!MaskVal.isMask()) 910 return false; 911 912 Register SrcReg = MI.getOperand(1).getReg(); 913 // Don't use getOpcodeDef() here since intermediate instructions may have 914 // multiple users. 915 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(MRI.getVRegDef(SrcReg)); 916 if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg())) 917 return false; 918 919 Register LoadReg = LoadMI->getDstReg(); 920 LLT RegTy = MRI.getType(LoadReg); 921 Register PtrReg = LoadMI->getPointerReg(); 922 unsigned RegSize = RegTy.getSizeInBits(); 923 LocationSize LoadSizeBits = LoadMI->getMemSizeInBits(); 924 unsigned MaskSizeBits = MaskVal.countr_one(); 925 926 // The mask may not be larger than the in-memory type, as it might cover sign 927 // extended bits 928 if (MaskSizeBits > LoadSizeBits.getValue()) 929 return false; 930 931 // If the mask covers the whole destination register, there's nothing to 932 // extend 933 if (MaskSizeBits >= RegSize) 934 return false; 935 936 // Most targets cannot deal with loads of size < 8 and need to re-legalize to 937 // at least byte loads. Avoid creating such loads here 938 if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits)) 939 return false; 940 941 const MachineMemOperand &MMO = LoadMI->getMMO(); 942 LegalityQuery::MemDesc MemDesc(MMO); 943 944 // Don't modify the memory access size if this is atomic/volatile, but we can 945 // still adjust the opcode to indicate the high bit behavior. 946 if (LoadMI->isSimple()) 947 MemDesc.MemoryTy = LLT::scalar(MaskSizeBits); 948 else if (LoadSizeBits.getValue() > MaskSizeBits || 949 LoadSizeBits.getValue() == RegSize) 950 return false; 951 952 // TODO: Could check if it's legal with the reduced or original memory size. 953 if (!isLegalOrBeforeLegalizer( 954 {TargetOpcode::G_ZEXTLOAD, {RegTy, MRI.getType(PtrReg)}, {MemDesc}})) 955 return false; 956 957 MatchInfo = [=](MachineIRBuilder &B) { 958 B.setInstrAndDebugLoc(*LoadMI); 959 auto &MF = B.getMF(); 960 auto PtrInfo = MMO.getPointerInfo(); 961 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MemDesc.MemoryTy); 962 B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO); 963 LoadMI->eraseFromParent(); 964 }; 965 return true; 966 } 967 968 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 969 const MachineInstr &UseMI) { 970 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 971 "shouldn't consider debug uses"); 972 assert(DefMI.getParent() == UseMI.getParent()); 973 if (&DefMI == &UseMI) 974 return true; 975 const MachineBasicBlock &MBB = *DefMI.getParent(); 976 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 977 return &MI == &DefMI || &MI == &UseMI; 978 }); 979 if (DefOrUse == MBB.end()) 980 llvm_unreachable("Block must contain both DefMI and UseMI!"); 981 return &*DefOrUse == &DefMI; 982 } 983 984 bool CombinerHelper::dominates(const MachineInstr &DefMI, 985 const MachineInstr &UseMI) { 986 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 987 "shouldn't consider debug uses"); 988 if (MDT) 989 return MDT->dominates(&DefMI, &UseMI); 990 else if (DefMI.getParent() != UseMI.getParent()) 991 return false; 992 993 return isPredecessor(DefMI, UseMI); 994 } 995 996 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 997 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 998 Register SrcReg = MI.getOperand(1).getReg(); 999 Register LoadUser = SrcReg; 1000 1001 if (MRI.getType(SrcReg).isVector()) 1002 return false; 1003 1004 Register TruncSrc; 1005 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 1006 LoadUser = TruncSrc; 1007 1008 uint64_t SizeInBits = MI.getOperand(2).getImm(); 1009 // If the source is a G_SEXTLOAD from the same bit width, then we don't 1010 // need any extend at all, just a truncate. 1011 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 1012 // If truncating more than the original extended value, abort. 1013 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 1014 if (TruncSrc && 1015 MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits.getValue()) 1016 return false; 1017 if (LoadSizeBits == SizeInBits) 1018 return true; 1019 } 1020 return false; 1021 } 1022 1023 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 1024 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 1025 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 1026 MI.eraseFromParent(); 1027 } 1028 1029 bool CombinerHelper::matchSextInRegOfLoad( 1030 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 1031 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 1032 1033 Register DstReg = MI.getOperand(0).getReg(); 1034 LLT RegTy = MRI.getType(DstReg); 1035 1036 // Only supports scalars for now. 1037 if (RegTy.isVector()) 1038 return false; 1039 1040 Register SrcReg = MI.getOperand(1).getReg(); 1041 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 1042 if (!LoadDef || !MRI.hasOneNonDBGUse(DstReg)) 1043 return false; 1044 1045 uint64_t MemBits = LoadDef->getMemSizeInBits().getValue(); 1046 1047 // If the sign extend extends from a narrower width than the load's width, 1048 // then we can narrow the load width when we combine to a G_SEXTLOAD. 1049 // Avoid widening the load at all. 1050 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), MemBits); 1051 1052 // Don't generate G_SEXTLOADs with a < 1 byte width. 1053 if (NewSizeBits < 8) 1054 return false; 1055 // Don't bother creating a non-power-2 sextload, it will likely be broken up 1056 // anyway for most targets. 1057 if (!isPowerOf2_32(NewSizeBits)) 1058 return false; 1059 1060 const MachineMemOperand &MMO = LoadDef->getMMO(); 1061 LegalityQuery::MemDesc MMDesc(MMO); 1062 1063 // Don't modify the memory access size if this is atomic/volatile, but we can 1064 // still adjust the opcode to indicate the high bit behavior. 1065 if (LoadDef->isSimple()) 1066 MMDesc.MemoryTy = LLT::scalar(NewSizeBits); 1067 else if (MemBits > NewSizeBits || MemBits == RegTy.getSizeInBits()) 1068 return false; 1069 1070 // TODO: Could check if it's legal with the reduced or original memory size. 1071 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, 1072 {MRI.getType(LoadDef->getDstReg()), 1073 MRI.getType(LoadDef->getPointerReg())}, 1074 {MMDesc}})) 1075 return false; 1076 1077 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 1078 return true; 1079 } 1080 1081 void CombinerHelper::applySextInRegOfLoad( 1082 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 1083 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 1084 Register LoadReg; 1085 unsigned ScalarSizeBits; 1086 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 1087 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 1088 1089 // If we have the following: 1090 // %ld = G_LOAD %ptr, (load 2) 1091 // %ext = G_SEXT_INREG %ld, 8 1092 // ==> 1093 // %ld = G_SEXTLOAD %ptr (load 1) 1094 1095 auto &MMO = LoadDef->getMMO(); 1096 Builder.setInstrAndDebugLoc(*LoadDef); 1097 auto &MF = Builder.getMF(); 1098 auto PtrInfo = MMO.getPointerInfo(); 1099 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 1100 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 1101 LoadDef->getPointerReg(), *NewMMO); 1102 MI.eraseFromParent(); 1103 } 1104 1105 /// Return true if 'MI' is a load or a store that may be fold it's address 1106 /// operand into the load / store addressing mode. 1107 static bool canFoldInAddressingMode(GLoadStore *MI, const TargetLowering &TLI, 1108 MachineRegisterInfo &MRI) { 1109 TargetLowering::AddrMode AM; 1110 auto *MF = MI->getMF(); 1111 auto *Addr = getOpcodeDef<GPtrAdd>(MI->getPointerReg(), MRI); 1112 if (!Addr) 1113 return false; 1114 1115 AM.HasBaseReg = true; 1116 if (auto CstOff = getIConstantVRegVal(Addr->getOffsetReg(), MRI)) 1117 AM.BaseOffs = CstOff->getSExtValue(); // [reg +/- imm] 1118 else 1119 AM.Scale = 1; // [reg +/- reg] 1120 1121 return TLI.isLegalAddressingMode( 1122 MF->getDataLayout(), AM, 1123 getTypeForLLT(MI->getMMO().getMemoryType(), 1124 MF->getFunction().getContext()), 1125 MI->getMMO().getAddrSpace()); 1126 } 1127 1128 static unsigned getIndexedOpc(unsigned LdStOpc) { 1129 switch (LdStOpc) { 1130 case TargetOpcode::G_LOAD: 1131 return TargetOpcode::G_INDEXED_LOAD; 1132 case TargetOpcode::G_STORE: 1133 return TargetOpcode::G_INDEXED_STORE; 1134 case TargetOpcode::G_ZEXTLOAD: 1135 return TargetOpcode::G_INDEXED_ZEXTLOAD; 1136 case TargetOpcode::G_SEXTLOAD: 1137 return TargetOpcode::G_INDEXED_SEXTLOAD; 1138 default: 1139 llvm_unreachable("Unexpected opcode"); 1140 } 1141 } 1142 1143 bool CombinerHelper::isIndexedLoadStoreLegal(GLoadStore &LdSt) const { 1144 // Check for legality. 1145 LLT PtrTy = MRI.getType(LdSt.getPointerReg()); 1146 LLT Ty = MRI.getType(LdSt.getReg(0)); 1147 LLT MemTy = LdSt.getMMO().getMemoryType(); 1148 SmallVector<LegalityQuery::MemDesc, 2> MemDescrs( 1149 {{MemTy, MemTy.getSizeInBits().getKnownMinValue(), 1150 AtomicOrdering::NotAtomic}}); 1151 unsigned IndexedOpc = getIndexedOpc(LdSt.getOpcode()); 1152 SmallVector<LLT> OpTys; 1153 if (IndexedOpc == TargetOpcode::G_INDEXED_STORE) 1154 OpTys = {PtrTy, Ty, Ty}; 1155 else 1156 OpTys = {Ty, PtrTy}; // For G_INDEXED_LOAD, G_INDEXED_[SZ]EXTLOAD 1157 1158 LegalityQuery Q(IndexedOpc, OpTys, MemDescrs); 1159 return isLegal(Q); 1160 } 1161 1162 static cl::opt<unsigned> PostIndexUseThreshold( 1163 "post-index-use-threshold", cl::Hidden, cl::init(32), 1164 cl::desc("Number of uses of a base pointer to check before it is no longer " 1165 "considered for post-indexing.")); 1166 1167 bool CombinerHelper::findPostIndexCandidate(GLoadStore &LdSt, Register &Addr, 1168 Register &Base, Register &Offset, 1169 bool &RematOffset) { 1170 // We're looking for the following pattern, for either load or store: 1171 // %baseptr:_(p0) = ... 1172 // G_STORE %val(s64), %baseptr(p0) 1173 // %offset:_(s64) = G_CONSTANT i64 -256 1174 // %new_addr:_(p0) = G_PTR_ADD %baseptr, %offset(s64) 1175 const auto &TLI = getTargetLowering(); 1176 1177 Register Ptr = LdSt.getPointerReg(); 1178 // If the store is the only use, don't bother. 1179 if (MRI.hasOneNonDBGUse(Ptr)) 1180 return false; 1181 1182 if (!isIndexedLoadStoreLegal(LdSt)) 1183 return false; 1184 1185 if (getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Ptr, MRI)) 1186 return false; 1187 1188 MachineInstr *StoredValDef = getDefIgnoringCopies(LdSt.getReg(0), MRI); 1189 auto *PtrDef = MRI.getVRegDef(Ptr); 1190 1191 unsigned NumUsesChecked = 0; 1192 for (auto &Use : MRI.use_nodbg_instructions(Ptr)) { 1193 if (++NumUsesChecked > PostIndexUseThreshold) 1194 return false; // Try to avoid exploding compile time. 1195 1196 auto *PtrAdd = dyn_cast<GPtrAdd>(&Use); 1197 // The use itself might be dead. This can happen during combines if DCE 1198 // hasn't had a chance to run yet. Don't allow it to form an indexed op. 1199 if (!PtrAdd || MRI.use_nodbg_empty(PtrAdd->getReg(0))) 1200 continue; 1201 1202 // Check the user of this isn't the store, otherwise we'd be generate a 1203 // indexed store defining its own use. 1204 if (StoredValDef == &Use) 1205 continue; 1206 1207 Offset = PtrAdd->getOffsetReg(); 1208 if (!ForceLegalIndexing && 1209 !TLI.isIndexingLegal(LdSt, PtrAdd->getBaseReg(), Offset, 1210 /*IsPre*/ false, MRI)) 1211 continue; 1212 1213 // Make sure the offset calculation is before the potentially indexed op. 1214 MachineInstr *OffsetDef = MRI.getVRegDef(Offset); 1215 RematOffset = false; 1216 if (!dominates(*OffsetDef, LdSt)) { 1217 // If the offset however is just a G_CONSTANT, we can always just 1218 // rematerialize it where we need it. 1219 if (OffsetDef->getOpcode() != TargetOpcode::G_CONSTANT) 1220 continue; 1221 RematOffset = true; 1222 } 1223 1224 for (auto &BasePtrUse : MRI.use_nodbg_instructions(PtrAdd->getBaseReg())) { 1225 if (&BasePtrUse == PtrDef) 1226 continue; 1227 1228 // If the user is a later load/store that can be post-indexed, then don't 1229 // combine this one. 1230 auto *BasePtrLdSt = dyn_cast<GLoadStore>(&BasePtrUse); 1231 if (BasePtrLdSt && BasePtrLdSt != &LdSt && 1232 dominates(LdSt, *BasePtrLdSt) && 1233 isIndexedLoadStoreLegal(*BasePtrLdSt)) 1234 return false; 1235 1236 // Now we're looking for the key G_PTR_ADD instruction, which contains 1237 // the offset add that we want to fold. 1238 if (auto *BasePtrUseDef = dyn_cast<GPtrAdd>(&BasePtrUse)) { 1239 Register PtrAddDefReg = BasePtrUseDef->getReg(0); 1240 for (auto &BaseUseUse : MRI.use_nodbg_instructions(PtrAddDefReg)) { 1241 // If the use is in a different block, then we may produce worse code 1242 // due to the extra register pressure. 1243 if (BaseUseUse.getParent() != LdSt.getParent()) 1244 return false; 1245 1246 if (auto *UseUseLdSt = dyn_cast<GLoadStore>(&BaseUseUse)) 1247 if (canFoldInAddressingMode(UseUseLdSt, TLI, MRI)) 1248 return false; 1249 } 1250 if (!dominates(LdSt, BasePtrUse)) 1251 return false; // All use must be dominated by the load/store. 1252 } 1253 } 1254 1255 Addr = PtrAdd->getReg(0); 1256 Base = PtrAdd->getBaseReg(); 1257 return true; 1258 } 1259 1260 return false; 1261 } 1262 1263 bool CombinerHelper::findPreIndexCandidate(GLoadStore &LdSt, Register &Addr, 1264 Register &Base, Register &Offset) { 1265 auto &MF = *LdSt.getParent()->getParent(); 1266 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1267 1268 Addr = LdSt.getPointerReg(); 1269 if (!mi_match(Addr, MRI, m_GPtrAdd(m_Reg(Base), m_Reg(Offset))) || 1270 MRI.hasOneNonDBGUse(Addr)) 1271 return false; 1272 1273 if (!ForceLegalIndexing && 1274 !TLI.isIndexingLegal(LdSt, Base, Offset, /*IsPre*/ true, MRI)) 1275 return false; 1276 1277 if (!isIndexedLoadStoreLegal(LdSt)) 1278 return false; 1279 1280 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 1281 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 1282 return false; 1283 1284 if (auto *St = dyn_cast<GStore>(&LdSt)) { 1285 // Would require a copy. 1286 if (Base == St->getValueReg()) 1287 return false; 1288 1289 // We're expecting one use of Addr in MI, but it could also be the 1290 // value stored, which isn't actually dominated by the instruction. 1291 if (St->getValueReg() == Addr) 1292 return false; 1293 } 1294 1295 // Avoid increasing cross-block register pressure. 1296 for (auto &AddrUse : MRI.use_nodbg_instructions(Addr)) 1297 if (AddrUse.getParent() != LdSt.getParent()) 1298 return false; 1299 1300 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 1301 // That might allow us to end base's liveness here by adjusting the constant. 1302 bool RealUse = false; 1303 for (auto &AddrUse : MRI.use_nodbg_instructions(Addr)) { 1304 if (!dominates(LdSt, AddrUse)) 1305 return false; // All use must be dominated by the load/store. 1306 1307 // If Ptr may be folded in addressing mode of other use, then it's 1308 // not profitable to do this transformation. 1309 if (auto *UseLdSt = dyn_cast<GLoadStore>(&AddrUse)) { 1310 if (!canFoldInAddressingMode(UseLdSt, TLI, MRI)) 1311 RealUse = true; 1312 } else { 1313 RealUse = true; 1314 } 1315 } 1316 return RealUse; 1317 } 1318 1319 bool CombinerHelper::matchCombineExtractedVectorLoad(MachineInstr &MI, 1320 BuildFnTy &MatchInfo) { 1321 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 1322 1323 // Check if there is a load that defines the vector being extracted from. 1324 auto *LoadMI = getOpcodeDef<GLoad>(MI.getOperand(1).getReg(), MRI); 1325 if (!LoadMI) 1326 return false; 1327 1328 Register Vector = MI.getOperand(1).getReg(); 1329 LLT VecEltTy = MRI.getType(Vector).getElementType(); 1330 1331 assert(MRI.getType(MI.getOperand(0).getReg()) == VecEltTy); 1332 1333 // Checking whether we should reduce the load width. 1334 if (!MRI.hasOneNonDBGUse(Vector)) 1335 return false; 1336 1337 // Check if the defining load is simple. 1338 if (!LoadMI->isSimple()) 1339 return false; 1340 1341 // If the vector element type is not a multiple of a byte then we are unable 1342 // to correctly compute an address to load only the extracted element as a 1343 // scalar. 1344 if (!VecEltTy.isByteSized()) 1345 return false; 1346 1347 // Check for load fold barriers between the extraction and the load. 1348 if (MI.getParent() != LoadMI->getParent()) 1349 return false; 1350 const unsigned MaxIter = 20; 1351 unsigned Iter = 0; 1352 for (auto II = LoadMI->getIterator(), IE = MI.getIterator(); II != IE; ++II) { 1353 if (II->isLoadFoldBarrier()) 1354 return false; 1355 if (Iter++ == MaxIter) 1356 return false; 1357 } 1358 1359 // Check if the new load that we are going to create is legal 1360 // if we are in the post-legalization phase. 1361 MachineMemOperand MMO = LoadMI->getMMO(); 1362 Align Alignment = MMO.getAlign(); 1363 MachinePointerInfo PtrInfo; 1364 uint64_t Offset; 1365 1366 // Finding the appropriate PtrInfo if offset is a known constant. 1367 // This is required to create the memory operand for the narrowed load. 1368 // This machine memory operand object helps us infer about legality 1369 // before we proceed to combine the instruction. 1370 if (auto CVal = getIConstantVRegVal(Vector, MRI)) { 1371 int Elt = CVal->getZExtValue(); 1372 // FIXME: should be (ABI size)*Elt. 1373 Offset = VecEltTy.getSizeInBits() * Elt / 8; 1374 PtrInfo = MMO.getPointerInfo().getWithOffset(Offset); 1375 } else { 1376 // Discard the pointer info except the address space because the memory 1377 // operand can't represent this new access since the offset is variable. 1378 Offset = VecEltTy.getSizeInBits() / 8; 1379 PtrInfo = MachinePointerInfo(MMO.getPointerInfo().getAddrSpace()); 1380 } 1381 1382 Alignment = commonAlignment(Alignment, Offset); 1383 1384 Register VecPtr = LoadMI->getPointerReg(); 1385 LLT PtrTy = MRI.getType(VecPtr); 1386 1387 MachineFunction &MF = *MI.getMF(); 1388 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, VecEltTy); 1389 1390 LegalityQuery::MemDesc MMDesc(*NewMMO); 1391 1392 LegalityQuery Q = {TargetOpcode::G_LOAD, {VecEltTy, PtrTy}, {MMDesc}}; 1393 1394 if (!isLegalOrBeforeLegalizer(Q)) 1395 return false; 1396 1397 // Load must be allowed and fast on the target. 1398 LLVMContext &C = MF.getFunction().getContext(); 1399 auto &DL = MF.getDataLayout(); 1400 unsigned Fast = 0; 1401 if (!getTargetLowering().allowsMemoryAccess(C, DL, VecEltTy, *NewMMO, 1402 &Fast) || 1403 !Fast) 1404 return false; 1405 1406 Register Result = MI.getOperand(0).getReg(); 1407 Register Index = MI.getOperand(2).getReg(); 1408 1409 MatchInfo = [=](MachineIRBuilder &B) { 1410 GISelObserverWrapper DummyObserver; 1411 LegalizerHelper Helper(B.getMF(), DummyObserver, B); 1412 //// Get pointer to the vector element. 1413 Register finalPtr = Helper.getVectorElementPointer( 1414 LoadMI->getPointerReg(), MRI.getType(LoadMI->getOperand(0).getReg()), 1415 Index); 1416 // New G_LOAD instruction. 1417 B.buildLoad(Result, finalPtr, PtrInfo, Alignment); 1418 // Remove original GLOAD instruction. 1419 LoadMI->eraseFromParent(); 1420 }; 1421 1422 return true; 1423 } 1424 1425 bool CombinerHelper::matchCombineIndexedLoadStore( 1426 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 1427 auto &LdSt = cast<GLoadStore>(MI); 1428 1429 if (LdSt.isAtomic()) 1430 return false; 1431 1432 MatchInfo.IsPre = findPreIndexCandidate(LdSt, MatchInfo.Addr, MatchInfo.Base, 1433 MatchInfo.Offset); 1434 if (!MatchInfo.IsPre && 1435 !findPostIndexCandidate(LdSt, MatchInfo.Addr, MatchInfo.Base, 1436 MatchInfo.Offset, MatchInfo.RematOffset)) 1437 return false; 1438 1439 return true; 1440 } 1441 1442 void CombinerHelper::applyCombineIndexedLoadStore( 1443 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 1444 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 1445 unsigned Opcode = MI.getOpcode(); 1446 bool IsStore = Opcode == TargetOpcode::G_STORE; 1447 unsigned NewOpcode = getIndexedOpc(Opcode); 1448 1449 // If the offset constant didn't happen to dominate the load/store, we can 1450 // just clone it as needed. 1451 if (MatchInfo.RematOffset) { 1452 auto *OldCst = MRI.getVRegDef(MatchInfo.Offset); 1453 auto NewCst = Builder.buildConstant(MRI.getType(MatchInfo.Offset), 1454 *OldCst->getOperand(1).getCImm()); 1455 MatchInfo.Offset = NewCst.getReg(0); 1456 } 1457 1458 auto MIB = Builder.buildInstr(NewOpcode); 1459 if (IsStore) { 1460 MIB.addDef(MatchInfo.Addr); 1461 MIB.addUse(MI.getOperand(0).getReg()); 1462 } else { 1463 MIB.addDef(MI.getOperand(0).getReg()); 1464 MIB.addDef(MatchInfo.Addr); 1465 } 1466 1467 MIB.addUse(MatchInfo.Base); 1468 MIB.addUse(MatchInfo.Offset); 1469 MIB.addImm(MatchInfo.IsPre); 1470 MIB->cloneMemRefs(*MI.getMF(), MI); 1471 MI.eraseFromParent(); 1472 AddrDef.eraseFromParent(); 1473 1474 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 1475 } 1476 1477 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 1478 MachineInstr *&OtherMI) { 1479 unsigned Opcode = MI.getOpcode(); 1480 bool IsDiv, IsSigned; 1481 1482 switch (Opcode) { 1483 default: 1484 llvm_unreachable("Unexpected opcode!"); 1485 case TargetOpcode::G_SDIV: 1486 case TargetOpcode::G_UDIV: { 1487 IsDiv = true; 1488 IsSigned = Opcode == TargetOpcode::G_SDIV; 1489 break; 1490 } 1491 case TargetOpcode::G_SREM: 1492 case TargetOpcode::G_UREM: { 1493 IsDiv = false; 1494 IsSigned = Opcode == TargetOpcode::G_SREM; 1495 break; 1496 } 1497 } 1498 1499 Register Src1 = MI.getOperand(1).getReg(); 1500 unsigned DivOpcode, RemOpcode, DivremOpcode; 1501 if (IsSigned) { 1502 DivOpcode = TargetOpcode::G_SDIV; 1503 RemOpcode = TargetOpcode::G_SREM; 1504 DivremOpcode = TargetOpcode::G_SDIVREM; 1505 } else { 1506 DivOpcode = TargetOpcode::G_UDIV; 1507 RemOpcode = TargetOpcode::G_UREM; 1508 DivremOpcode = TargetOpcode::G_UDIVREM; 1509 } 1510 1511 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 1512 return false; 1513 1514 // Combine: 1515 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1516 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1517 // into: 1518 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1519 1520 // Combine: 1521 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1522 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1523 // into: 1524 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1525 1526 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1527 if (MI.getParent() == UseMI.getParent() && 1528 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1529 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1530 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2)) && 1531 matchEqualDefs(MI.getOperand(1), UseMI.getOperand(1))) { 1532 OtherMI = &UseMI; 1533 return true; 1534 } 1535 } 1536 1537 return false; 1538 } 1539 1540 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1541 MachineInstr *&OtherMI) { 1542 unsigned Opcode = MI.getOpcode(); 1543 assert(OtherMI && "OtherMI shouldn't be empty."); 1544 1545 Register DestDivReg, DestRemReg; 1546 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1547 DestDivReg = MI.getOperand(0).getReg(); 1548 DestRemReg = OtherMI->getOperand(0).getReg(); 1549 } else { 1550 DestDivReg = OtherMI->getOperand(0).getReg(); 1551 DestRemReg = MI.getOperand(0).getReg(); 1552 } 1553 1554 bool IsSigned = 1555 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1556 1557 // Check which instruction is first in the block so we don't break def-use 1558 // deps by "moving" the instruction incorrectly. Also keep track of which 1559 // instruction is first so we pick it's operands, avoiding use-before-def 1560 // bugs. 1561 MachineInstr *FirstInst = dominates(MI, *OtherMI) ? &MI : OtherMI; 1562 Builder.setInstrAndDebugLoc(*FirstInst); 1563 1564 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1565 : TargetOpcode::G_UDIVREM, 1566 {DestDivReg, DestRemReg}, 1567 { FirstInst->getOperand(1), FirstInst->getOperand(2) }); 1568 MI.eraseFromParent(); 1569 OtherMI->eraseFromParent(); 1570 } 1571 1572 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1573 MachineInstr *&BrCond) { 1574 assert(MI.getOpcode() == TargetOpcode::G_BR); 1575 1576 // Try to match the following: 1577 // bb1: 1578 // G_BRCOND %c1, %bb2 1579 // G_BR %bb3 1580 // bb2: 1581 // ... 1582 // bb3: 1583 1584 // The above pattern does not have a fall through to the successor bb2, always 1585 // resulting in a branch no matter which path is taken. Here we try to find 1586 // and replace that pattern with conditional branch to bb3 and otherwise 1587 // fallthrough to bb2. This is generally better for branch predictors. 1588 1589 MachineBasicBlock *MBB = MI.getParent(); 1590 MachineBasicBlock::iterator BrIt(MI); 1591 if (BrIt == MBB->begin()) 1592 return false; 1593 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1594 1595 BrCond = &*std::prev(BrIt); 1596 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1597 return false; 1598 1599 // Check that the next block is the conditional branch target. Also make sure 1600 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1601 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1602 return BrCondTarget != MI.getOperand(0).getMBB() && 1603 MBB->isLayoutSuccessor(BrCondTarget); 1604 } 1605 1606 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1607 MachineInstr *&BrCond) { 1608 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1609 Builder.setInstrAndDebugLoc(*BrCond); 1610 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1611 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1612 // this to i1 only since we might not know for sure what kind of 1613 // compare generated the condition value. 1614 auto True = Builder.buildConstant( 1615 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1616 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1617 1618 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1619 Observer.changingInstr(MI); 1620 MI.getOperand(0).setMBB(FallthroughBB); 1621 Observer.changedInstr(MI); 1622 1623 // Change the conditional branch to use the inverted condition and 1624 // new target block. 1625 Observer.changingInstr(*BrCond); 1626 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1627 BrCond->getOperand(1).setMBB(BrTarget); 1628 Observer.changedInstr(*BrCond); 1629 } 1630 1631 1632 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1633 MachineIRBuilder HelperBuilder(MI); 1634 GISelObserverWrapper DummyObserver; 1635 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1636 return Helper.lowerMemcpyInline(MI) == 1637 LegalizerHelper::LegalizeResult::Legalized; 1638 } 1639 1640 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1641 MachineIRBuilder HelperBuilder(MI); 1642 GISelObserverWrapper DummyObserver; 1643 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1644 return Helper.lowerMemCpyFamily(MI, MaxLen) == 1645 LegalizerHelper::LegalizeResult::Legalized; 1646 } 1647 1648 static APFloat constantFoldFpUnary(const MachineInstr &MI, 1649 const MachineRegisterInfo &MRI, 1650 const APFloat &Val) { 1651 APFloat Result(Val); 1652 switch (MI.getOpcode()) { 1653 default: 1654 llvm_unreachable("Unexpected opcode!"); 1655 case TargetOpcode::G_FNEG: { 1656 Result.changeSign(); 1657 return Result; 1658 } 1659 case TargetOpcode::G_FABS: { 1660 Result.clearSign(); 1661 return Result; 1662 } 1663 case TargetOpcode::G_FPTRUNC: { 1664 bool Unused; 1665 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1666 Result.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, 1667 &Unused); 1668 return Result; 1669 } 1670 case TargetOpcode::G_FSQRT: { 1671 bool Unused; 1672 Result.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1673 &Unused); 1674 Result = APFloat(sqrt(Result.convertToDouble())); 1675 break; 1676 } 1677 case TargetOpcode::G_FLOG2: { 1678 bool Unused; 1679 Result.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1680 &Unused); 1681 Result = APFloat(log2(Result.convertToDouble())); 1682 break; 1683 } 1684 } 1685 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1686 // `buildFConstant` will assert on size mismatch. Only `G_FSQRT`, and 1687 // `G_FLOG2` reach here. 1688 bool Unused; 1689 Result.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &Unused); 1690 return Result; 1691 } 1692 1693 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1694 const ConstantFP *Cst) { 1695 APFloat Folded = constantFoldFpUnary(MI, MRI, Cst->getValue()); 1696 const ConstantFP *NewCst = ConstantFP::get(Builder.getContext(), Folded); 1697 Builder.buildFConstant(MI.getOperand(0), *NewCst); 1698 MI.eraseFromParent(); 1699 } 1700 1701 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1702 PtrAddChain &MatchInfo) { 1703 // We're trying to match the following pattern: 1704 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1705 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1706 // --> 1707 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1708 1709 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1710 return false; 1711 1712 Register Add2 = MI.getOperand(1).getReg(); 1713 Register Imm1 = MI.getOperand(2).getReg(); 1714 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1715 if (!MaybeImmVal) 1716 return false; 1717 1718 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1719 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1720 return false; 1721 1722 Register Base = Add2Def->getOperand(1).getReg(); 1723 Register Imm2 = Add2Def->getOperand(2).getReg(); 1724 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1725 if (!MaybeImm2Val) 1726 return false; 1727 1728 // Check if the new combined immediate forms an illegal addressing mode. 1729 // Do not combine if it was legal before but would get illegal. 1730 // To do so, we need to find a load/store user of the pointer to get 1731 // the access type. 1732 Type *AccessTy = nullptr; 1733 auto &MF = *MI.getMF(); 1734 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1735 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1736 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1737 MF.getFunction().getContext()); 1738 break; 1739 } 1740 } 1741 TargetLoweringBase::AddrMode AMNew; 1742 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1743 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1744 if (AccessTy) { 1745 AMNew.HasBaseReg = true; 1746 TargetLoweringBase::AddrMode AMOld; 1747 AMOld.BaseOffs = MaybeImmVal->Value.getSExtValue(); 1748 AMOld.HasBaseReg = true; 1749 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1750 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1751 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1752 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1753 return false; 1754 } 1755 1756 // Pass the combined immediate to the apply function. 1757 MatchInfo.Imm = AMNew.BaseOffs; 1758 MatchInfo.Base = Base; 1759 MatchInfo.Bank = getRegBank(Imm2); 1760 return true; 1761 } 1762 1763 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1764 PtrAddChain &MatchInfo) { 1765 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1766 MachineIRBuilder MIB(MI); 1767 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1768 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1769 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1770 Observer.changingInstr(MI); 1771 MI.getOperand(1).setReg(MatchInfo.Base); 1772 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1773 Observer.changedInstr(MI); 1774 } 1775 1776 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1777 RegisterImmPair &MatchInfo) { 1778 // We're trying to match the following pattern with any of 1779 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1780 // %t1 = SHIFT %base, G_CONSTANT imm1 1781 // %root = SHIFT %t1, G_CONSTANT imm2 1782 // --> 1783 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1784 1785 unsigned Opcode = MI.getOpcode(); 1786 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1787 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1788 Opcode == TargetOpcode::G_USHLSAT) && 1789 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1790 1791 Register Shl2 = MI.getOperand(1).getReg(); 1792 Register Imm1 = MI.getOperand(2).getReg(); 1793 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1794 if (!MaybeImmVal) 1795 return false; 1796 1797 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1798 if (Shl2Def->getOpcode() != Opcode) 1799 return false; 1800 1801 Register Base = Shl2Def->getOperand(1).getReg(); 1802 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1803 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1804 if (!MaybeImm2Val) 1805 return false; 1806 1807 // Pass the combined immediate to the apply function. 1808 MatchInfo.Imm = 1809 (MaybeImmVal->Value.getZExtValue() + MaybeImm2Val->Value).getZExtValue(); 1810 MatchInfo.Reg = Base; 1811 1812 // There is no simple replacement for a saturating unsigned left shift that 1813 // exceeds the scalar size. 1814 if (Opcode == TargetOpcode::G_USHLSAT && 1815 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1816 return false; 1817 1818 return true; 1819 } 1820 1821 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1822 RegisterImmPair &MatchInfo) { 1823 unsigned Opcode = MI.getOpcode(); 1824 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1825 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1826 Opcode == TargetOpcode::G_USHLSAT) && 1827 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1828 1829 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1830 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1831 auto Imm = MatchInfo.Imm; 1832 1833 if (Imm >= ScalarSizeInBits) { 1834 // Any logical shift that exceeds scalar size will produce zero. 1835 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1836 Builder.buildConstant(MI.getOperand(0), 0); 1837 MI.eraseFromParent(); 1838 return; 1839 } 1840 // Arithmetic shift and saturating signed left shift have no effect beyond 1841 // scalar size. 1842 Imm = ScalarSizeInBits - 1; 1843 } 1844 1845 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1846 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1847 Observer.changingInstr(MI); 1848 MI.getOperand(1).setReg(MatchInfo.Reg); 1849 MI.getOperand(2).setReg(NewImm); 1850 Observer.changedInstr(MI); 1851 } 1852 1853 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1854 ShiftOfShiftedLogic &MatchInfo) { 1855 // We're trying to match the following pattern with any of 1856 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1857 // with any of G_AND/G_OR/G_XOR logic instructions. 1858 // %t1 = SHIFT %X, G_CONSTANT C0 1859 // %t2 = LOGIC %t1, %Y 1860 // %root = SHIFT %t2, G_CONSTANT C1 1861 // --> 1862 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1863 // %t4 = SHIFT %Y, G_CONSTANT C1 1864 // %root = LOGIC %t3, %t4 1865 unsigned ShiftOpcode = MI.getOpcode(); 1866 assert((ShiftOpcode == TargetOpcode::G_SHL || 1867 ShiftOpcode == TargetOpcode::G_ASHR || 1868 ShiftOpcode == TargetOpcode::G_LSHR || 1869 ShiftOpcode == TargetOpcode::G_USHLSAT || 1870 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1871 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1872 1873 // Match a one-use bitwise logic op. 1874 Register LogicDest = MI.getOperand(1).getReg(); 1875 if (!MRI.hasOneNonDBGUse(LogicDest)) 1876 return false; 1877 1878 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1879 unsigned LogicOpcode = LogicMI->getOpcode(); 1880 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1881 LogicOpcode != TargetOpcode::G_XOR) 1882 return false; 1883 1884 // Find a matching one-use shift by constant. 1885 const Register C1 = MI.getOperand(2).getReg(); 1886 auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI); 1887 if (!MaybeImmVal || MaybeImmVal->Value == 0) 1888 return false; 1889 1890 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1891 1892 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1893 // Shift should match previous one and should be a one-use. 1894 if (MI->getOpcode() != ShiftOpcode || 1895 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1896 return false; 1897 1898 // Must be a constant. 1899 auto MaybeImmVal = 1900 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1901 if (!MaybeImmVal) 1902 return false; 1903 1904 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1905 return true; 1906 }; 1907 1908 // Logic ops are commutative, so check each operand for a match. 1909 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1910 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1911 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1912 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1913 uint64_t C0Val; 1914 1915 if (matchFirstShift(LogicMIOp1, C0Val)) { 1916 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1917 MatchInfo.Shift2 = LogicMIOp1; 1918 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1919 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1920 MatchInfo.Shift2 = LogicMIOp2; 1921 } else 1922 return false; 1923 1924 MatchInfo.ValSum = C0Val + C1Val; 1925 1926 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1927 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1928 return false; 1929 1930 MatchInfo.Logic = LogicMI; 1931 return true; 1932 } 1933 1934 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1935 ShiftOfShiftedLogic &MatchInfo) { 1936 unsigned Opcode = MI.getOpcode(); 1937 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1938 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1939 Opcode == TargetOpcode::G_SSHLSAT) && 1940 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1941 1942 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1943 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1944 1945 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1946 1947 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1948 Register Shift1 = 1949 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1950 1951 // If LogicNonShiftReg is the same to Shift1Base, and shift1 const is the same 1952 // to MatchInfo.Shift2 const, CSEMIRBuilder will reuse the old shift1 when 1953 // build shift2. So, if we erase MatchInfo.Shift2 at the end, actually we 1954 // remove old shift1. And it will cause crash later. So erase it earlier to 1955 // avoid the crash. 1956 MatchInfo.Shift2->eraseFromParent(); 1957 1958 Register Shift2Const = MI.getOperand(2).getReg(); 1959 Register Shift2 = Builder 1960 .buildInstr(Opcode, {DestType}, 1961 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1962 .getReg(0); 1963 1964 Register Dest = MI.getOperand(0).getReg(); 1965 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1966 1967 // This was one use so it's safe to remove it. 1968 MatchInfo.Logic->eraseFromParent(); 1969 1970 MI.eraseFromParent(); 1971 } 1972 1973 bool CombinerHelper::matchCommuteShift(MachineInstr &MI, BuildFnTy &MatchInfo) { 1974 assert(MI.getOpcode() == TargetOpcode::G_SHL && "Expected G_SHL"); 1975 // Combine (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 1976 // Combine (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 1977 auto &Shl = cast<GenericMachineInstr>(MI); 1978 Register DstReg = Shl.getReg(0); 1979 Register SrcReg = Shl.getReg(1); 1980 Register ShiftReg = Shl.getReg(2); 1981 Register X, C1; 1982 1983 if (!getTargetLowering().isDesirableToCommuteWithShift(MI, !isPreLegalize())) 1984 return false; 1985 1986 if (!mi_match(SrcReg, MRI, 1987 m_OneNonDBGUse(m_any_of(m_GAdd(m_Reg(X), m_Reg(C1)), 1988 m_GOr(m_Reg(X), m_Reg(C1)))))) 1989 return false; 1990 1991 APInt C1Val, C2Val; 1992 if (!mi_match(C1, MRI, m_ICstOrSplat(C1Val)) || 1993 !mi_match(ShiftReg, MRI, m_ICstOrSplat(C2Val))) 1994 return false; 1995 1996 auto *SrcDef = MRI.getVRegDef(SrcReg); 1997 assert((SrcDef->getOpcode() == TargetOpcode::G_ADD || 1998 SrcDef->getOpcode() == TargetOpcode::G_OR) && "Unexpected op"); 1999 LLT SrcTy = MRI.getType(SrcReg); 2000 MatchInfo = [=](MachineIRBuilder &B) { 2001 auto S1 = B.buildShl(SrcTy, X, ShiftReg); 2002 auto S2 = B.buildShl(SrcTy, C1, ShiftReg); 2003 B.buildInstr(SrcDef->getOpcode(), {DstReg}, {S1, S2}); 2004 }; 2005 return true; 2006 } 2007 2008 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 2009 unsigned &ShiftVal) { 2010 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2011 auto MaybeImmVal = 2012 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 2013 if (!MaybeImmVal) 2014 return false; 2015 2016 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 2017 return (static_cast<int32_t>(ShiftVal) != -1); 2018 } 2019 2020 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 2021 unsigned &ShiftVal) { 2022 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2023 MachineIRBuilder MIB(MI); 2024 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 2025 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 2026 Observer.changingInstr(MI); 2027 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 2028 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 2029 Observer.changedInstr(MI); 2030 } 2031 2032 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 2033 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 2034 RegisterImmPair &MatchData) { 2035 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 2036 if (!getTargetLowering().isDesirableToPullExtFromShl(MI)) 2037 return false; 2038 2039 Register LHS = MI.getOperand(1).getReg(); 2040 2041 Register ExtSrc; 2042 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 2043 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 2044 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 2045 return false; 2046 2047 Register RHS = MI.getOperand(2).getReg(); 2048 MachineInstr *MIShiftAmt = MRI.getVRegDef(RHS); 2049 auto MaybeShiftAmtVal = isConstantOrConstantSplatVector(*MIShiftAmt, MRI); 2050 if (!MaybeShiftAmtVal) 2051 return false; 2052 2053 if (LI) { 2054 LLT SrcTy = MRI.getType(ExtSrc); 2055 2056 // We only really care about the legality with the shifted value. We can 2057 // pick any type the constant shift amount, so ask the target what to 2058 // use. Otherwise we would have to guess and hope it is reported as legal. 2059 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 2060 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 2061 return false; 2062 } 2063 2064 int64_t ShiftAmt = MaybeShiftAmtVal->getSExtValue(); 2065 MatchData.Reg = ExtSrc; 2066 MatchData.Imm = ShiftAmt; 2067 2068 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countl_one(); 2069 unsigned SrcTySize = MRI.getType(ExtSrc).getScalarSizeInBits(); 2070 return MinLeadingZeros >= ShiftAmt && ShiftAmt < SrcTySize; 2071 } 2072 2073 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 2074 const RegisterImmPair &MatchData) { 2075 Register ExtSrcReg = MatchData.Reg; 2076 int64_t ShiftAmtVal = MatchData.Imm; 2077 2078 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 2079 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 2080 auto NarrowShift = 2081 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 2082 Builder.buildZExt(MI.getOperand(0), NarrowShift); 2083 MI.eraseFromParent(); 2084 } 2085 2086 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 2087 Register &MatchInfo) { 2088 GMerge &Merge = cast<GMerge>(MI); 2089 SmallVector<Register, 16> MergedValues; 2090 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 2091 MergedValues.emplace_back(Merge.getSourceReg(I)); 2092 2093 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 2094 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 2095 return false; 2096 2097 for (unsigned I = 0; I < MergedValues.size(); ++I) 2098 if (MergedValues[I] != Unmerge->getReg(I)) 2099 return false; 2100 2101 MatchInfo = Unmerge->getSourceReg(); 2102 return true; 2103 } 2104 2105 static Register peekThroughBitcast(Register Reg, 2106 const MachineRegisterInfo &MRI) { 2107 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 2108 ; 2109 2110 return Reg; 2111 } 2112 2113 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 2114 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2115 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2116 "Expected an unmerge"); 2117 auto &Unmerge = cast<GUnmerge>(MI); 2118 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 2119 2120 auto *SrcInstr = getOpcodeDef<GMergeLikeInstr>(SrcReg, MRI); 2121 if (!SrcInstr) 2122 return false; 2123 2124 // Check the source type of the merge. 2125 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 2126 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 2127 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 2128 if (SrcMergeTy != Dst0Ty && !SameSize) 2129 return false; 2130 // They are the same now (modulo a bitcast). 2131 // We can collect all the src registers. 2132 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 2133 Operands.push_back(SrcInstr->getSourceReg(Idx)); 2134 return true; 2135 } 2136 2137 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 2138 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2139 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2140 "Expected an unmerge"); 2141 assert((MI.getNumOperands() - 1 == Operands.size()) && 2142 "Not enough operands to replace all defs"); 2143 unsigned NumElems = MI.getNumOperands() - 1; 2144 2145 LLT SrcTy = MRI.getType(Operands[0]); 2146 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2147 bool CanReuseInputDirectly = DstTy == SrcTy; 2148 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2149 Register DstReg = MI.getOperand(Idx).getReg(); 2150 Register SrcReg = Operands[Idx]; 2151 2152 // This combine may run after RegBankSelect, so we need to be aware of 2153 // register banks. 2154 const auto &DstCB = MRI.getRegClassOrRegBank(DstReg); 2155 if (!DstCB.isNull() && DstCB != MRI.getRegClassOrRegBank(SrcReg)) { 2156 SrcReg = Builder.buildCopy(MRI.getType(SrcReg), SrcReg).getReg(0); 2157 MRI.setRegClassOrRegBank(SrcReg, DstCB); 2158 } 2159 2160 if (CanReuseInputDirectly) 2161 replaceRegWith(MRI, DstReg, SrcReg); 2162 else 2163 Builder.buildCast(DstReg, SrcReg); 2164 } 2165 MI.eraseFromParent(); 2166 } 2167 2168 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 2169 SmallVectorImpl<APInt> &Csts) { 2170 unsigned SrcIdx = MI.getNumOperands() - 1; 2171 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 2172 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 2173 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 2174 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 2175 return false; 2176 // Break down the big constant in smaller ones. 2177 const MachineOperand &CstVal = SrcInstr->getOperand(1); 2178 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 2179 ? CstVal.getCImm()->getValue() 2180 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 2181 2182 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 2183 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 2184 // Unmerge a constant. 2185 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 2186 Csts.emplace_back(Val.trunc(ShiftAmt)); 2187 Val = Val.lshr(ShiftAmt); 2188 } 2189 2190 return true; 2191 } 2192 2193 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 2194 SmallVectorImpl<APInt> &Csts) { 2195 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2196 "Expected an unmerge"); 2197 assert((MI.getNumOperands() - 1 == Csts.size()) && 2198 "Not enough operands to replace all defs"); 2199 unsigned NumElems = MI.getNumOperands() - 1; 2200 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2201 Register DstReg = MI.getOperand(Idx).getReg(); 2202 Builder.buildConstant(DstReg, Csts[Idx]); 2203 } 2204 2205 MI.eraseFromParent(); 2206 } 2207 2208 bool CombinerHelper::matchCombineUnmergeUndef( 2209 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 2210 unsigned SrcIdx = MI.getNumOperands() - 1; 2211 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 2212 MatchInfo = [&MI](MachineIRBuilder &B) { 2213 unsigned NumElems = MI.getNumOperands() - 1; 2214 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2215 Register DstReg = MI.getOperand(Idx).getReg(); 2216 B.buildUndef(DstReg); 2217 } 2218 }; 2219 return isa<GImplicitDef>(MRI.getVRegDef(SrcReg)); 2220 } 2221 2222 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2223 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2224 "Expected an unmerge"); 2225 if (MRI.getType(MI.getOperand(0).getReg()).isVector() || 2226 MRI.getType(MI.getOperand(MI.getNumDefs()).getReg()).isVector()) 2227 return false; 2228 // Check that all the lanes are dead except the first one. 2229 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2230 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 2231 return false; 2232 } 2233 return true; 2234 } 2235 2236 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2237 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2238 Register Dst0Reg = MI.getOperand(0).getReg(); 2239 Builder.buildTrunc(Dst0Reg, SrcReg); 2240 MI.eraseFromParent(); 2241 } 2242 2243 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 2244 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2245 "Expected an unmerge"); 2246 Register Dst0Reg = MI.getOperand(0).getReg(); 2247 LLT Dst0Ty = MRI.getType(Dst0Reg); 2248 // G_ZEXT on vector applies to each lane, so it will 2249 // affect all destinations. Therefore we won't be able 2250 // to simplify the unmerge to just the first definition. 2251 if (Dst0Ty.isVector()) 2252 return false; 2253 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2254 LLT SrcTy = MRI.getType(SrcReg); 2255 if (SrcTy.isVector()) 2256 return false; 2257 2258 Register ZExtSrcReg; 2259 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 2260 return false; 2261 2262 // Finally we can replace the first definition with 2263 // a zext of the source if the definition is big enough to hold 2264 // all of ZExtSrc bits. 2265 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2266 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 2267 } 2268 2269 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 2270 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2271 "Expected an unmerge"); 2272 2273 Register Dst0Reg = MI.getOperand(0).getReg(); 2274 2275 MachineInstr *ZExtInstr = 2276 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 2277 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 2278 "Expecting a G_ZEXT"); 2279 2280 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 2281 LLT Dst0Ty = MRI.getType(Dst0Reg); 2282 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2283 2284 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 2285 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 2286 } else { 2287 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 2288 "ZExt src doesn't fit in destination"); 2289 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 2290 } 2291 2292 Register ZeroReg; 2293 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2294 if (!ZeroReg) 2295 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 2296 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 2297 } 2298 MI.eraseFromParent(); 2299 } 2300 2301 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 2302 unsigned TargetShiftSize, 2303 unsigned &ShiftVal) { 2304 assert((MI.getOpcode() == TargetOpcode::G_SHL || 2305 MI.getOpcode() == TargetOpcode::G_LSHR || 2306 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 2307 2308 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2309 if (Ty.isVector()) // TODO: 2310 return false; 2311 2312 // Don't narrow further than the requested size. 2313 unsigned Size = Ty.getSizeInBits(); 2314 if (Size <= TargetShiftSize) 2315 return false; 2316 2317 auto MaybeImmVal = 2318 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 2319 if (!MaybeImmVal) 2320 return false; 2321 2322 ShiftVal = MaybeImmVal->Value.getSExtValue(); 2323 return ShiftVal >= Size / 2 && ShiftVal < Size; 2324 } 2325 2326 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 2327 const unsigned &ShiftVal) { 2328 Register DstReg = MI.getOperand(0).getReg(); 2329 Register SrcReg = MI.getOperand(1).getReg(); 2330 LLT Ty = MRI.getType(SrcReg); 2331 unsigned Size = Ty.getSizeInBits(); 2332 unsigned HalfSize = Size / 2; 2333 assert(ShiftVal >= HalfSize); 2334 2335 LLT HalfTy = LLT::scalar(HalfSize); 2336 2337 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 2338 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 2339 2340 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2341 Register Narrowed = Unmerge.getReg(1); 2342 2343 // dst = G_LSHR s64:x, C for C >= 32 2344 // => 2345 // lo, hi = G_UNMERGE_VALUES x 2346 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 2347 2348 if (NarrowShiftAmt != 0) { 2349 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 2350 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2351 } 2352 2353 auto Zero = Builder.buildConstant(HalfTy, 0); 2354 Builder.buildMergeLikeInstr(DstReg, {Narrowed, Zero}); 2355 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 2356 Register Narrowed = Unmerge.getReg(0); 2357 // dst = G_SHL s64:x, C for C >= 32 2358 // => 2359 // lo, hi = G_UNMERGE_VALUES x 2360 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 2361 if (NarrowShiftAmt != 0) { 2362 Narrowed = Builder.buildShl(HalfTy, Narrowed, 2363 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2364 } 2365 2366 auto Zero = Builder.buildConstant(HalfTy, 0); 2367 Builder.buildMergeLikeInstr(DstReg, {Zero, Narrowed}); 2368 } else { 2369 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2370 auto Hi = Builder.buildAShr( 2371 HalfTy, Unmerge.getReg(1), 2372 Builder.buildConstant(HalfTy, HalfSize - 1)); 2373 2374 if (ShiftVal == HalfSize) { 2375 // (G_ASHR i64:x, 32) -> 2376 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 2377 Builder.buildMergeLikeInstr(DstReg, {Unmerge.getReg(1), Hi}); 2378 } else if (ShiftVal == Size - 1) { 2379 // Don't need a second shift. 2380 // (G_ASHR i64:x, 63) -> 2381 // %narrowed = (G_ASHR hi_32(x), 31) 2382 // G_MERGE_VALUES %narrowed, %narrowed 2383 Builder.buildMergeLikeInstr(DstReg, {Hi, Hi}); 2384 } else { 2385 auto Lo = Builder.buildAShr( 2386 HalfTy, Unmerge.getReg(1), 2387 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 2388 2389 // (G_ASHR i64:x, C) ->, for C >= 32 2390 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 2391 Builder.buildMergeLikeInstr(DstReg, {Lo, Hi}); 2392 } 2393 } 2394 2395 MI.eraseFromParent(); 2396 } 2397 2398 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 2399 unsigned TargetShiftAmount) { 2400 unsigned ShiftAmt; 2401 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 2402 applyCombineShiftToUnmerge(MI, ShiftAmt); 2403 return true; 2404 } 2405 2406 return false; 2407 } 2408 2409 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2410 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2411 Register DstReg = MI.getOperand(0).getReg(); 2412 LLT DstTy = MRI.getType(DstReg); 2413 Register SrcReg = MI.getOperand(1).getReg(); 2414 return mi_match(SrcReg, MRI, 2415 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2416 } 2417 2418 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2419 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2420 Register DstReg = MI.getOperand(0).getReg(); 2421 Builder.buildCopy(DstReg, Reg); 2422 MI.eraseFromParent(); 2423 } 2424 2425 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2426 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2427 Register DstReg = MI.getOperand(0).getReg(); 2428 Builder.buildZExtOrTrunc(DstReg, Reg); 2429 MI.eraseFromParent(); 2430 } 2431 2432 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2433 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2434 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2435 Register LHS = MI.getOperand(1).getReg(); 2436 Register RHS = MI.getOperand(2).getReg(); 2437 LLT IntTy = MRI.getType(LHS); 2438 2439 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2440 // instruction. 2441 PtrReg.second = false; 2442 for (Register SrcReg : {LHS, RHS}) { 2443 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2444 // Don't handle cases where the integer is implicitly converted to the 2445 // pointer width. 2446 LLT PtrTy = MRI.getType(PtrReg.first); 2447 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2448 return true; 2449 } 2450 2451 PtrReg.second = true; 2452 } 2453 2454 return false; 2455 } 2456 2457 void CombinerHelper::applyCombineAddP2IToPtrAdd( 2458 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2459 Register Dst = MI.getOperand(0).getReg(); 2460 Register LHS = MI.getOperand(1).getReg(); 2461 Register RHS = MI.getOperand(2).getReg(); 2462 2463 const bool DoCommute = PtrReg.second; 2464 if (DoCommute) 2465 std::swap(LHS, RHS); 2466 LHS = PtrReg.first; 2467 2468 LLT PtrTy = MRI.getType(LHS); 2469 2470 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2471 Builder.buildPtrToInt(Dst, PtrAdd); 2472 MI.eraseFromParent(); 2473 } 2474 2475 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2476 APInt &NewCst) { 2477 auto &PtrAdd = cast<GPtrAdd>(MI); 2478 Register LHS = PtrAdd.getBaseReg(); 2479 Register RHS = PtrAdd.getOffsetReg(); 2480 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2481 2482 if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) { 2483 APInt Cst; 2484 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2485 auto DstTy = MRI.getType(PtrAdd.getReg(0)); 2486 // G_INTTOPTR uses zero-extension 2487 NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits()); 2488 NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits()); 2489 return true; 2490 } 2491 } 2492 2493 return false; 2494 } 2495 2496 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2497 APInt &NewCst) { 2498 auto &PtrAdd = cast<GPtrAdd>(MI); 2499 Register Dst = PtrAdd.getReg(0); 2500 2501 Builder.buildConstant(Dst, NewCst); 2502 PtrAdd.eraseFromParent(); 2503 } 2504 2505 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2506 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2507 Register DstReg = MI.getOperand(0).getReg(); 2508 Register SrcReg = MI.getOperand(1).getReg(); 2509 Register OriginalSrcReg = getSrcRegIgnoringCopies(SrcReg, MRI); 2510 if (OriginalSrcReg.isValid()) 2511 SrcReg = OriginalSrcReg; 2512 LLT DstTy = MRI.getType(DstReg); 2513 return mi_match(SrcReg, MRI, 2514 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2515 } 2516 2517 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2518 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2519 Register DstReg = MI.getOperand(0).getReg(); 2520 Register SrcReg = MI.getOperand(1).getReg(); 2521 LLT DstTy = MRI.getType(DstReg); 2522 if (mi_match(SrcReg, MRI, 2523 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2524 unsigned DstSize = DstTy.getScalarSizeInBits(); 2525 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2526 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2527 } 2528 return false; 2529 } 2530 2531 bool CombinerHelper::matchCombineExtOfExt( 2532 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2533 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2534 MI.getOpcode() == TargetOpcode::G_SEXT || 2535 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2536 "Expected a G_[ASZ]EXT"); 2537 Register SrcReg = MI.getOperand(1).getReg(); 2538 Register OriginalSrcReg = getSrcRegIgnoringCopies(SrcReg, MRI); 2539 if (OriginalSrcReg.isValid()) 2540 SrcReg = OriginalSrcReg; 2541 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2542 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2543 unsigned Opc = MI.getOpcode(); 2544 unsigned SrcOpc = SrcMI->getOpcode(); 2545 if (Opc == SrcOpc || 2546 (Opc == TargetOpcode::G_ANYEXT && 2547 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2548 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2549 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2550 return true; 2551 } 2552 return false; 2553 } 2554 2555 void CombinerHelper::applyCombineExtOfExt( 2556 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2557 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2558 MI.getOpcode() == TargetOpcode::G_SEXT || 2559 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2560 "Expected a G_[ASZ]EXT"); 2561 2562 Register Reg = std::get<0>(MatchInfo); 2563 unsigned SrcExtOp = std::get<1>(MatchInfo); 2564 2565 // Combine exts with the same opcode. 2566 if (MI.getOpcode() == SrcExtOp) { 2567 Observer.changingInstr(MI); 2568 MI.getOperand(1).setReg(Reg); 2569 Observer.changedInstr(MI); 2570 return; 2571 } 2572 2573 // Combine: 2574 // - anyext([sz]ext x) to [sz]ext x 2575 // - sext(zext x) to zext x 2576 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2577 (MI.getOpcode() == TargetOpcode::G_SEXT && 2578 SrcExtOp == TargetOpcode::G_ZEXT)) { 2579 Register DstReg = MI.getOperand(0).getReg(); 2580 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2581 MI.eraseFromParent(); 2582 } 2583 } 2584 2585 bool CombinerHelper::matchCombineTruncOfExt( 2586 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2587 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2588 Register SrcReg = MI.getOperand(1).getReg(); 2589 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2590 unsigned SrcOpc = SrcMI->getOpcode(); 2591 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2592 SrcOpc == TargetOpcode::G_ZEXT) { 2593 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2594 return true; 2595 } 2596 return false; 2597 } 2598 2599 void CombinerHelper::applyCombineTruncOfExt( 2600 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2601 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2602 Register SrcReg = MatchInfo.first; 2603 unsigned SrcExtOp = MatchInfo.second; 2604 Register DstReg = MI.getOperand(0).getReg(); 2605 LLT SrcTy = MRI.getType(SrcReg); 2606 LLT DstTy = MRI.getType(DstReg); 2607 if (SrcTy == DstTy) { 2608 MI.eraseFromParent(); 2609 replaceRegWith(MRI, DstReg, SrcReg); 2610 return; 2611 } 2612 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2613 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2614 else 2615 Builder.buildTrunc(DstReg, SrcReg); 2616 MI.eraseFromParent(); 2617 } 2618 2619 static LLT getMidVTForTruncRightShiftCombine(LLT ShiftTy, LLT TruncTy) { 2620 const unsigned ShiftSize = ShiftTy.getScalarSizeInBits(); 2621 const unsigned TruncSize = TruncTy.getScalarSizeInBits(); 2622 2623 // ShiftTy > 32 > TruncTy -> 32 2624 if (ShiftSize > 32 && TruncSize < 32) 2625 return ShiftTy.changeElementSize(32); 2626 2627 // TODO: We could also reduce to 16 bits, but that's more target-dependent. 2628 // Some targets like it, some don't, some only like it under certain 2629 // conditions/processor versions, etc. 2630 // A TL hook might be needed for this. 2631 2632 // Don't combine 2633 return ShiftTy; 2634 } 2635 2636 bool CombinerHelper::matchCombineTruncOfShift( 2637 MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) { 2638 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2639 Register DstReg = MI.getOperand(0).getReg(); 2640 Register SrcReg = MI.getOperand(1).getReg(); 2641 2642 if (!MRI.hasOneNonDBGUse(SrcReg)) 2643 return false; 2644 2645 LLT SrcTy = MRI.getType(SrcReg); 2646 LLT DstTy = MRI.getType(DstReg); 2647 2648 MachineInstr *SrcMI = getDefIgnoringCopies(SrcReg, MRI); 2649 const auto &TL = getTargetLowering(); 2650 2651 LLT NewShiftTy; 2652 switch (SrcMI->getOpcode()) { 2653 default: 2654 return false; 2655 case TargetOpcode::G_SHL: { 2656 NewShiftTy = DstTy; 2657 2658 // Make sure new shift amount is legal. 2659 KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg()); 2660 if (Known.getMaxValue().uge(NewShiftTy.getScalarSizeInBits())) 2661 return false; 2662 break; 2663 } 2664 case TargetOpcode::G_LSHR: 2665 case TargetOpcode::G_ASHR: { 2666 // For right shifts, we conservatively do not do the transform if the TRUNC 2667 // has any STORE users. The reason is that if we change the type of the 2668 // shift, we may break the truncstore combine. 2669 // 2670 // TODO: Fix truncstore combine to handle (trunc(lshr (trunc x), k)). 2671 for (auto &User : MRI.use_instructions(DstReg)) 2672 if (User.getOpcode() == TargetOpcode::G_STORE) 2673 return false; 2674 2675 NewShiftTy = getMidVTForTruncRightShiftCombine(SrcTy, DstTy); 2676 if (NewShiftTy == SrcTy) 2677 return false; 2678 2679 // Make sure we won't lose information by truncating the high bits. 2680 KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg()); 2681 if (Known.getMaxValue().ugt(NewShiftTy.getScalarSizeInBits() - 2682 DstTy.getScalarSizeInBits())) 2683 return false; 2684 break; 2685 } 2686 } 2687 2688 if (!isLegalOrBeforeLegalizer( 2689 {SrcMI->getOpcode(), 2690 {NewShiftTy, TL.getPreferredShiftAmountTy(NewShiftTy)}})) 2691 return false; 2692 2693 MatchInfo = std::make_pair(SrcMI, NewShiftTy); 2694 return true; 2695 } 2696 2697 void CombinerHelper::applyCombineTruncOfShift( 2698 MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) { 2699 MachineInstr *ShiftMI = MatchInfo.first; 2700 LLT NewShiftTy = MatchInfo.second; 2701 2702 Register Dst = MI.getOperand(0).getReg(); 2703 LLT DstTy = MRI.getType(Dst); 2704 2705 Register ShiftAmt = ShiftMI->getOperand(2).getReg(); 2706 Register ShiftSrc = ShiftMI->getOperand(1).getReg(); 2707 ShiftSrc = Builder.buildTrunc(NewShiftTy, ShiftSrc).getReg(0); 2708 2709 Register NewShift = 2710 Builder 2711 .buildInstr(ShiftMI->getOpcode(), {NewShiftTy}, {ShiftSrc, ShiftAmt}) 2712 .getReg(0); 2713 2714 if (NewShiftTy == DstTy) 2715 replaceRegWith(MRI, Dst, NewShift); 2716 else 2717 Builder.buildTrunc(Dst, NewShift); 2718 2719 eraseInst(MI); 2720 } 2721 2722 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2723 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2724 return MO.isReg() && 2725 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2726 }); 2727 } 2728 2729 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2730 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2731 return !MO.isReg() || 2732 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2733 }); 2734 } 2735 2736 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2737 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2738 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2739 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2740 } 2741 2742 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2743 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2744 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2745 MRI); 2746 } 2747 2748 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2749 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2750 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2751 MRI); 2752 } 2753 2754 bool CombinerHelper::matchInsertExtractVecEltOutOfBounds(MachineInstr &MI) { 2755 assert((MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT || 2756 MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) && 2757 "Expected an insert/extract element op"); 2758 LLT VecTy = MRI.getType(MI.getOperand(1).getReg()); 2759 unsigned IdxIdx = 2760 MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 2761 auto Idx = getIConstantVRegVal(MI.getOperand(IdxIdx).getReg(), MRI); 2762 if (!Idx) 2763 return false; 2764 return Idx->getZExtValue() >= VecTy.getNumElements(); 2765 } 2766 2767 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2768 GSelect &SelMI = cast<GSelect>(MI); 2769 auto Cst = 2770 isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI); 2771 if (!Cst) 2772 return false; 2773 OpIdx = Cst->isZero() ? 3 : 2; 2774 return true; 2775 } 2776 2777 void CombinerHelper::eraseInst(MachineInstr &MI) { MI.eraseFromParent(); } 2778 2779 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2780 const MachineOperand &MOP2) { 2781 if (!MOP1.isReg() || !MOP2.isReg()) 2782 return false; 2783 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2784 if (!InstAndDef1) 2785 return false; 2786 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2787 if (!InstAndDef2) 2788 return false; 2789 MachineInstr *I1 = InstAndDef1->MI; 2790 MachineInstr *I2 = InstAndDef2->MI; 2791 2792 // Handle a case like this: 2793 // 2794 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2795 // 2796 // Even though %0 and %1 are produced by the same instruction they are not 2797 // the same values. 2798 if (I1 == I2) 2799 return MOP1.getReg() == MOP2.getReg(); 2800 2801 // If we have an instruction which loads or stores, we can't guarantee that 2802 // it is identical. 2803 // 2804 // For example, we may have 2805 // 2806 // %x1 = G_LOAD %addr (load N from @somewhere) 2807 // ... 2808 // call @foo 2809 // ... 2810 // %x2 = G_LOAD %addr (load N from @somewhere) 2811 // ... 2812 // %or = G_OR %x1, %x2 2813 // 2814 // It's possible that @foo will modify whatever lives at the address we're 2815 // loading from. To be safe, let's just assume that all loads and stores 2816 // are different (unless we have something which is guaranteed to not 2817 // change.) 2818 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad()) 2819 return false; 2820 2821 // If both instructions are loads or stores, they are equal only if both 2822 // are dereferenceable invariant loads with the same number of bits. 2823 if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) { 2824 GLoadStore *LS1 = dyn_cast<GLoadStore>(I1); 2825 GLoadStore *LS2 = dyn_cast<GLoadStore>(I2); 2826 if (!LS1 || !LS2) 2827 return false; 2828 2829 if (!I2->isDereferenceableInvariantLoad() || 2830 (LS1->getMemSizeInBits() != LS2->getMemSizeInBits())) 2831 return false; 2832 } 2833 2834 // Check for physical registers on the instructions first to avoid cases 2835 // like this: 2836 // 2837 // %a = COPY $physreg 2838 // ... 2839 // SOMETHING implicit-def $physreg 2840 // ... 2841 // %b = COPY $physreg 2842 // 2843 // These copies are not equivalent. 2844 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2845 return MO.isReg() && MO.getReg().isPhysical(); 2846 })) { 2847 // Check if we have a case like this: 2848 // 2849 // %a = COPY $physreg 2850 // %b = COPY %a 2851 // 2852 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2853 // From that, we know that they must have the same value, since they must 2854 // have come from the same COPY. 2855 return I1->isIdenticalTo(*I2); 2856 } 2857 2858 // We don't have any physical registers, so we don't necessarily need the 2859 // same vreg defs. 2860 // 2861 // On the off-chance that there's some target instruction feeding into the 2862 // instruction, let's use produceSameValue instead of isIdenticalTo. 2863 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2864 // Handle instructions with multiple defs that produce same values. Values 2865 // are same for operands with same index. 2866 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2867 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2868 // I1 and I2 are different instructions but produce same values, 2869 // %1 and %6 are same, %1 and %7 are not the same value. 2870 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg, /*TRI=*/nullptr) == 2871 I2->findRegisterDefOperandIdx(InstAndDef2->Reg, /*TRI=*/nullptr); 2872 } 2873 return false; 2874 } 2875 2876 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2877 if (!MOP.isReg()) 2878 return false; 2879 auto *MI = MRI.getVRegDef(MOP.getReg()); 2880 auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI); 2881 return MaybeCst && MaybeCst->getBitWidth() <= 64 && 2882 MaybeCst->getSExtValue() == C; 2883 } 2884 2885 bool CombinerHelper::matchConstantFPOp(const MachineOperand &MOP, double C) { 2886 if (!MOP.isReg()) 2887 return false; 2888 std::optional<FPValueAndVReg> MaybeCst; 2889 if (!mi_match(MOP.getReg(), MRI, m_GFCstOrSplat(MaybeCst))) 2890 return false; 2891 2892 return MaybeCst->Value.isExactlyValue(C); 2893 } 2894 2895 void CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2896 unsigned OpIdx) { 2897 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2898 Register OldReg = MI.getOperand(0).getReg(); 2899 Register Replacement = MI.getOperand(OpIdx).getReg(); 2900 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2901 MI.eraseFromParent(); 2902 replaceRegWith(MRI, OldReg, Replacement); 2903 } 2904 2905 void CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2906 Register Replacement) { 2907 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2908 Register OldReg = MI.getOperand(0).getReg(); 2909 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2910 MI.eraseFromParent(); 2911 replaceRegWith(MRI, OldReg, Replacement); 2912 } 2913 2914 bool CombinerHelper::matchConstantLargerBitWidth(MachineInstr &MI, 2915 unsigned ConstIdx) { 2916 Register ConstReg = MI.getOperand(ConstIdx).getReg(); 2917 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2918 2919 // Get the shift amount 2920 auto VRegAndVal = getIConstantVRegValWithLookThrough(ConstReg, MRI); 2921 if (!VRegAndVal) 2922 return false; 2923 2924 // Return true of shift amount >= Bitwidth 2925 return (VRegAndVal->Value.uge(DstTy.getSizeInBits())); 2926 } 2927 2928 void CombinerHelper::applyFunnelShiftConstantModulo(MachineInstr &MI) { 2929 assert((MI.getOpcode() == TargetOpcode::G_FSHL || 2930 MI.getOpcode() == TargetOpcode::G_FSHR) && 2931 "This is not a funnel shift operation"); 2932 2933 Register ConstReg = MI.getOperand(3).getReg(); 2934 LLT ConstTy = MRI.getType(ConstReg); 2935 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2936 2937 auto VRegAndVal = getIConstantVRegValWithLookThrough(ConstReg, MRI); 2938 assert((VRegAndVal) && "Value is not a constant"); 2939 2940 // Calculate the new Shift Amount = Old Shift Amount % BitWidth 2941 APInt NewConst = VRegAndVal->Value.urem( 2942 APInt(ConstTy.getSizeInBits(), DstTy.getScalarSizeInBits())); 2943 2944 auto NewConstInstr = Builder.buildConstant(ConstTy, NewConst.getZExtValue()); 2945 Builder.buildInstr( 2946 MI.getOpcode(), {MI.getOperand(0)}, 2947 {MI.getOperand(1), MI.getOperand(2), NewConstInstr.getReg(0)}); 2948 2949 MI.eraseFromParent(); 2950 } 2951 2952 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2953 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2954 // Match (cond ? x : x) 2955 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2956 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2957 MRI); 2958 } 2959 2960 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2961 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2962 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2963 MRI); 2964 } 2965 2966 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2967 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2968 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2969 MRI); 2970 } 2971 2972 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2973 MachineOperand &MO = MI.getOperand(OpIdx); 2974 return MO.isReg() && 2975 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2976 } 2977 2978 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2979 unsigned OpIdx) { 2980 MachineOperand &MO = MI.getOperand(OpIdx); 2981 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2982 } 2983 2984 void CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2985 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2986 Builder.buildFConstant(MI.getOperand(0), C); 2987 MI.eraseFromParent(); 2988 } 2989 2990 void CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2991 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2992 Builder.buildConstant(MI.getOperand(0), C); 2993 MI.eraseFromParent(); 2994 } 2995 2996 void CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2997 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2998 Builder.buildConstant(MI.getOperand(0), C); 2999 MI.eraseFromParent(); 3000 } 3001 3002 void CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, 3003 ConstantFP *CFP) { 3004 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 3005 Builder.buildFConstant(MI.getOperand(0), CFP->getValueAPF()); 3006 MI.eraseFromParent(); 3007 } 3008 3009 void CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 3010 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 3011 Builder.buildUndef(MI.getOperand(0)); 3012 MI.eraseFromParent(); 3013 } 3014 3015 bool CombinerHelper::matchSimplifyAddToSub( 3016 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 3017 Register LHS = MI.getOperand(1).getReg(); 3018 Register RHS = MI.getOperand(2).getReg(); 3019 Register &NewLHS = std::get<0>(MatchInfo); 3020 Register &NewRHS = std::get<1>(MatchInfo); 3021 3022 // Helper lambda to check for opportunities for 3023 // ((0-A) + B) -> B - A 3024 // (A + (0-B)) -> A - B 3025 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 3026 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 3027 return false; 3028 NewLHS = MaybeNewLHS; 3029 return true; 3030 }; 3031 3032 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 3033 } 3034 3035 bool CombinerHelper::matchCombineInsertVecElts( 3036 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 3037 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 3038 "Invalid opcode"); 3039 Register DstReg = MI.getOperand(0).getReg(); 3040 LLT DstTy = MRI.getType(DstReg); 3041 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 3042 unsigned NumElts = DstTy.getNumElements(); 3043 // If this MI is part of a sequence of insert_vec_elts, then 3044 // don't do the combine in the middle of the sequence. 3045 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 3046 TargetOpcode::G_INSERT_VECTOR_ELT) 3047 return false; 3048 MachineInstr *CurrInst = &MI; 3049 MachineInstr *TmpInst; 3050 int64_t IntImm; 3051 Register TmpReg; 3052 MatchInfo.resize(NumElts); 3053 while (mi_match( 3054 CurrInst->getOperand(0).getReg(), MRI, 3055 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 3056 if (IntImm >= NumElts || IntImm < 0) 3057 return false; 3058 if (!MatchInfo[IntImm]) 3059 MatchInfo[IntImm] = TmpReg; 3060 CurrInst = TmpInst; 3061 } 3062 // Variable index. 3063 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 3064 return false; 3065 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 3066 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 3067 if (!MatchInfo[I - 1].isValid()) 3068 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 3069 } 3070 return true; 3071 } 3072 // If we didn't end in a G_IMPLICIT_DEF and the source is not fully 3073 // overwritten, bail out. 3074 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF || 3075 all_of(MatchInfo, [](Register Reg) { return !!Reg; }); 3076 } 3077 3078 void CombinerHelper::applyCombineInsertVecElts( 3079 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 3080 Register UndefReg; 3081 auto GetUndef = [&]() { 3082 if (UndefReg) 3083 return UndefReg; 3084 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3085 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 3086 return UndefReg; 3087 }; 3088 for (Register &Reg : MatchInfo) { 3089 if (!Reg) 3090 Reg = GetUndef(); 3091 } 3092 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 3093 MI.eraseFromParent(); 3094 } 3095 3096 void CombinerHelper::applySimplifyAddToSub( 3097 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 3098 Register SubLHS, SubRHS; 3099 std::tie(SubLHS, SubRHS) = MatchInfo; 3100 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 3101 MI.eraseFromParent(); 3102 } 3103 3104 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 3105 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 3106 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 3107 // 3108 // Creates the new hand + logic instruction (but does not insert them.) 3109 // 3110 // On success, MatchInfo is populated with the new instructions. These are 3111 // inserted in applyHoistLogicOpWithSameOpcodeHands. 3112 unsigned LogicOpcode = MI.getOpcode(); 3113 assert(LogicOpcode == TargetOpcode::G_AND || 3114 LogicOpcode == TargetOpcode::G_OR || 3115 LogicOpcode == TargetOpcode::G_XOR); 3116 MachineIRBuilder MIB(MI); 3117 Register Dst = MI.getOperand(0).getReg(); 3118 Register LHSReg = MI.getOperand(1).getReg(); 3119 Register RHSReg = MI.getOperand(2).getReg(); 3120 3121 // Don't recompute anything. 3122 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 3123 return false; 3124 3125 // Make sure we have (hand x, ...), (hand y, ...) 3126 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 3127 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 3128 if (!LeftHandInst || !RightHandInst) 3129 return false; 3130 unsigned HandOpcode = LeftHandInst->getOpcode(); 3131 if (HandOpcode != RightHandInst->getOpcode()) 3132 return false; 3133 if (!LeftHandInst->getOperand(1).isReg() || 3134 !RightHandInst->getOperand(1).isReg()) 3135 return false; 3136 3137 // Make sure the types match up, and if we're doing this post-legalization, 3138 // we end up with legal types. 3139 Register X = LeftHandInst->getOperand(1).getReg(); 3140 Register Y = RightHandInst->getOperand(1).getReg(); 3141 LLT XTy = MRI.getType(X); 3142 LLT YTy = MRI.getType(Y); 3143 if (!XTy.isValid() || XTy != YTy) 3144 return false; 3145 3146 // Optional extra source register. 3147 Register ExtraHandOpSrcReg; 3148 switch (HandOpcode) { 3149 default: 3150 return false; 3151 case TargetOpcode::G_ANYEXT: 3152 case TargetOpcode::G_SEXT: 3153 case TargetOpcode::G_ZEXT: { 3154 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 3155 break; 3156 } 3157 case TargetOpcode::G_TRUNC: { 3158 // Match: logic (trunc X), (trunc Y) -> trunc (logic X, Y) 3159 const MachineFunction *MF = MI.getMF(); 3160 const DataLayout &DL = MF->getDataLayout(); 3161 LLVMContext &Ctx = MF->getFunction().getContext(); 3162 3163 LLT DstTy = MRI.getType(Dst); 3164 const TargetLowering &TLI = getTargetLowering(); 3165 3166 // Be extra careful sinking truncate. If it's free, there's no benefit in 3167 // widening a binop. 3168 if (TLI.isZExtFree(DstTy, XTy, DL, Ctx) && 3169 TLI.isTruncateFree(XTy, DstTy, DL, Ctx)) 3170 return false; 3171 break; 3172 } 3173 case TargetOpcode::G_AND: 3174 case TargetOpcode::G_ASHR: 3175 case TargetOpcode::G_LSHR: 3176 case TargetOpcode::G_SHL: { 3177 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 3178 MachineOperand &ZOp = LeftHandInst->getOperand(2); 3179 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 3180 return false; 3181 ExtraHandOpSrcReg = ZOp.getReg(); 3182 break; 3183 } 3184 } 3185 3186 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 3187 return false; 3188 3189 // Record the steps to build the new instructions. 3190 // 3191 // Steps to build (logic x, y) 3192 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 3193 OperandBuildSteps LogicBuildSteps = { 3194 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 3195 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 3196 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 3197 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 3198 3199 // Steps to build hand (logic x, y), ...z 3200 OperandBuildSteps HandBuildSteps = { 3201 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 3202 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 3203 if (ExtraHandOpSrcReg.isValid()) 3204 HandBuildSteps.push_back( 3205 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 3206 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 3207 3208 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 3209 return true; 3210 } 3211 3212 void CombinerHelper::applyBuildInstructionSteps( 3213 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 3214 assert(MatchInfo.InstrsToBuild.size() && 3215 "Expected at least one instr to build?"); 3216 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 3217 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 3218 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 3219 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 3220 for (auto &OperandFn : InstrToBuild.OperandFns) 3221 OperandFn(Instr); 3222 } 3223 MI.eraseFromParent(); 3224 } 3225 3226 bool CombinerHelper::matchAshrShlToSextInreg( 3227 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 3228 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 3229 int64_t ShlCst, AshrCst; 3230 Register Src; 3231 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3232 m_GAShr(m_GShl(m_Reg(Src), m_ICstOrSplat(ShlCst)), 3233 m_ICstOrSplat(AshrCst)))) 3234 return false; 3235 if (ShlCst != AshrCst) 3236 return false; 3237 if (!isLegalOrBeforeLegalizer( 3238 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 3239 return false; 3240 MatchInfo = std::make_tuple(Src, ShlCst); 3241 return true; 3242 } 3243 3244 void CombinerHelper::applyAshShlToSextInreg( 3245 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 3246 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 3247 Register Src; 3248 int64_t ShiftAmt; 3249 std::tie(Src, ShiftAmt) = MatchInfo; 3250 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 3251 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 3252 MI.eraseFromParent(); 3253 } 3254 3255 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 3256 bool CombinerHelper::matchOverlappingAnd( 3257 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3258 assert(MI.getOpcode() == TargetOpcode::G_AND); 3259 3260 Register Dst = MI.getOperand(0).getReg(); 3261 LLT Ty = MRI.getType(Dst); 3262 3263 Register R; 3264 int64_t C1; 3265 int64_t C2; 3266 if (!mi_match( 3267 Dst, MRI, 3268 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 3269 return false; 3270 3271 MatchInfo = [=](MachineIRBuilder &B) { 3272 if (C1 & C2) { 3273 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 3274 return; 3275 } 3276 auto Zero = B.buildConstant(Ty, 0); 3277 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 3278 }; 3279 return true; 3280 } 3281 3282 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 3283 Register &Replacement) { 3284 // Given 3285 // 3286 // %y:_(sN) = G_SOMETHING 3287 // %x:_(sN) = G_SOMETHING 3288 // %res:_(sN) = G_AND %x, %y 3289 // 3290 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 3291 // 3292 // Patterns like this can appear as a result of legalization. E.g. 3293 // 3294 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 3295 // %one:_(s32) = G_CONSTANT i32 1 3296 // %and:_(s32) = G_AND %cmp, %one 3297 // 3298 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 3299 assert(MI.getOpcode() == TargetOpcode::G_AND); 3300 if (!KB) 3301 return false; 3302 3303 Register AndDst = MI.getOperand(0).getReg(); 3304 Register LHS = MI.getOperand(1).getReg(); 3305 Register RHS = MI.getOperand(2).getReg(); 3306 3307 // Check the RHS (maybe a constant) first, and if we have no KnownBits there, 3308 // we can't do anything. If we do, then it depends on whether we have 3309 // KnownBits on the LHS. 3310 KnownBits RHSBits = KB->getKnownBits(RHS); 3311 if (RHSBits.isUnknown()) 3312 return false; 3313 3314 KnownBits LHSBits = KB->getKnownBits(LHS); 3315 3316 // Check that x & Mask == x. 3317 // x & 1 == x, always 3318 // x & 0 == x, only if x is also 0 3319 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 3320 // 3321 // Check if we can replace AndDst with the LHS of the G_AND 3322 if (canReplaceReg(AndDst, LHS, MRI) && 3323 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 3324 Replacement = LHS; 3325 return true; 3326 } 3327 3328 // Check if we can replace AndDst with the RHS of the G_AND 3329 if (canReplaceReg(AndDst, RHS, MRI) && 3330 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 3331 Replacement = RHS; 3332 return true; 3333 } 3334 3335 return false; 3336 } 3337 3338 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 3339 // Given 3340 // 3341 // %y:_(sN) = G_SOMETHING 3342 // %x:_(sN) = G_SOMETHING 3343 // %res:_(sN) = G_OR %x, %y 3344 // 3345 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 3346 assert(MI.getOpcode() == TargetOpcode::G_OR); 3347 if (!KB) 3348 return false; 3349 3350 Register OrDst = MI.getOperand(0).getReg(); 3351 Register LHS = MI.getOperand(1).getReg(); 3352 Register RHS = MI.getOperand(2).getReg(); 3353 3354 KnownBits LHSBits = KB->getKnownBits(LHS); 3355 KnownBits RHSBits = KB->getKnownBits(RHS); 3356 3357 // Check that x | Mask == x. 3358 // x | 0 == x, always 3359 // x | 1 == x, only if x is also 1 3360 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 3361 // 3362 // Check if we can replace OrDst with the LHS of the G_OR 3363 if (canReplaceReg(OrDst, LHS, MRI) && 3364 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 3365 Replacement = LHS; 3366 return true; 3367 } 3368 3369 // Check if we can replace OrDst with the RHS of the G_OR 3370 if (canReplaceReg(OrDst, RHS, MRI) && 3371 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 3372 Replacement = RHS; 3373 return true; 3374 } 3375 3376 return false; 3377 } 3378 3379 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 3380 // If the input is already sign extended, just drop the extension. 3381 Register Src = MI.getOperand(1).getReg(); 3382 unsigned ExtBits = MI.getOperand(2).getImm(); 3383 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 3384 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 3385 } 3386 3387 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 3388 int64_t Cst, bool IsVector, bool IsFP) { 3389 // For i1, Cst will always be -1 regardless of boolean contents. 3390 return (ScalarSizeBits == 1 && Cst == -1) || 3391 isConstTrueVal(TLI, Cst, IsVector, IsFP); 3392 } 3393 3394 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 3395 SmallVectorImpl<Register> &RegsToNegate) { 3396 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3397 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3398 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 3399 Register XorSrc; 3400 Register CstReg; 3401 // We match xor(src, true) here. 3402 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3403 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 3404 return false; 3405 3406 if (!MRI.hasOneNonDBGUse(XorSrc)) 3407 return false; 3408 3409 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 3410 // and ORs. The suffix of RegsToNegate starting from index I is used a work 3411 // list of tree nodes to visit. 3412 RegsToNegate.push_back(XorSrc); 3413 // Remember whether the comparisons are all integer or all floating point. 3414 bool IsInt = false; 3415 bool IsFP = false; 3416 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 3417 Register Reg = RegsToNegate[I]; 3418 if (!MRI.hasOneNonDBGUse(Reg)) 3419 return false; 3420 MachineInstr *Def = MRI.getVRegDef(Reg); 3421 switch (Def->getOpcode()) { 3422 default: 3423 // Don't match if the tree contains anything other than ANDs, ORs and 3424 // comparisons. 3425 return false; 3426 case TargetOpcode::G_ICMP: 3427 if (IsFP) 3428 return false; 3429 IsInt = true; 3430 // When we apply the combine we will invert the predicate. 3431 break; 3432 case TargetOpcode::G_FCMP: 3433 if (IsInt) 3434 return false; 3435 IsFP = true; 3436 // When we apply the combine we will invert the predicate. 3437 break; 3438 case TargetOpcode::G_AND: 3439 case TargetOpcode::G_OR: 3440 // Implement De Morgan's laws: 3441 // ~(x & y) -> ~x | ~y 3442 // ~(x | y) -> ~x & ~y 3443 // When we apply the combine we will change the opcode and recursively 3444 // negate the operands. 3445 RegsToNegate.push_back(Def->getOperand(1).getReg()); 3446 RegsToNegate.push_back(Def->getOperand(2).getReg()); 3447 break; 3448 } 3449 } 3450 3451 // Now we know whether the comparisons are integer or floating point, check 3452 // the constant in the xor. 3453 int64_t Cst; 3454 if (Ty.isVector()) { 3455 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 3456 auto MaybeCst = getIConstantSplatSExtVal(*CstDef, MRI); 3457 if (!MaybeCst) 3458 return false; 3459 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 3460 return false; 3461 } else { 3462 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 3463 return false; 3464 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 3465 return false; 3466 } 3467 3468 return true; 3469 } 3470 3471 void CombinerHelper::applyNotCmp(MachineInstr &MI, 3472 SmallVectorImpl<Register> &RegsToNegate) { 3473 for (Register Reg : RegsToNegate) { 3474 MachineInstr *Def = MRI.getVRegDef(Reg); 3475 Observer.changingInstr(*Def); 3476 // For each comparison, invert the opcode. For each AND and OR, change the 3477 // opcode. 3478 switch (Def->getOpcode()) { 3479 default: 3480 llvm_unreachable("Unexpected opcode"); 3481 case TargetOpcode::G_ICMP: 3482 case TargetOpcode::G_FCMP: { 3483 MachineOperand &PredOp = Def->getOperand(1); 3484 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 3485 (CmpInst::Predicate)PredOp.getPredicate()); 3486 PredOp.setPredicate(NewP); 3487 break; 3488 } 3489 case TargetOpcode::G_AND: 3490 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3491 break; 3492 case TargetOpcode::G_OR: 3493 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3494 break; 3495 } 3496 Observer.changedInstr(*Def); 3497 } 3498 3499 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3500 MI.eraseFromParent(); 3501 } 3502 3503 bool CombinerHelper::matchXorOfAndWithSameReg( 3504 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3505 // Match (xor (and x, y), y) (or any of its commuted cases) 3506 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3507 Register &X = MatchInfo.first; 3508 Register &Y = MatchInfo.second; 3509 Register AndReg = MI.getOperand(1).getReg(); 3510 Register SharedReg = MI.getOperand(2).getReg(); 3511 3512 // Find a G_AND on either side of the G_XOR. 3513 // Look for one of 3514 // 3515 // (xor (and x, y), SharedReg) 3516 // (xor SharedReg, (and x, y)) 3517 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3518 std::swap(AndReg, SharedReg); 3519 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3520 return false; 3521 } 3522 3523 // Only do this if we'll eliminate the G_AND. 3524 if (!MRI.hasOneNonDBGUse(AndReg)) 3525 return false; 3526 3527 // We can combine if SharedReg is the same as either the LHS or RHS of the 3528 // G_AND. 3529 if (Y != SharedReg) 3530 std::swap(X, Y); 3531 return Y == SharedReg; 3532 } 3533 3534 void CombinerHelper::applyXorOfAndWithSameReg( 3535 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3536 // Fold (xor (and x, y), y) -> (and (not x), y) 3537 Register X, Y; 3538 std::tie(X, Y) = MatchInfo; 3539 auto Not = Builder.buildNot(MRI.getType(X), X); 3540 Observer.changingInstr(MI); 3541 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3542 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3543 MI.getOperand(2).setReg(Y); 3544 Observer.changedInstr(MI); 3545 } 3546 3547 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3548 auto &PtrAdd = cast<GPtrAdd>(MI); 3549 Register DstReg = PtrAdd.getReg(0); 3550 LLT Ty = MRI.getType(DstReg); 3551 const DataLayout &DL = Builder.getMF().getDataLayout(); 3552 3553 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3554 return false; 3555 3556 if (Ty.isPointer()) { 3557 auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI); 3558 return ConstVal && *ConstVal == 0; 3559 } 3560 3561 assert(Ty.isVector() && "Expecting a vector type"); 3562 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 3563 return isBuildVectorAllZeros(*VecMI, MRI); 3564 } 3565 3566 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3567 auto &PtrAdd = cast<GPtrAdd>(MI); 3568 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 3569 PtrAdd.eraseFromParent(); 3570 } 3571 3572 /// The second source operand is known to be a power of 2. 3573 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3574 Register DstReg = MI.getOperand(0).getReg(); 3575 Register Src0 = MI.getOperand(1).getReg(); 3576 Register Pow2Src1 = MI.getOperand(2).getReg(); 3577 LLT Ty = MRI.getType(DstReg); 3578 3579 // Fold (urem x, pow2) -> (and x, pow2-1) 3580 auto NegOne = Builder.buildConstant(Ty, -1); 3581 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3582 Builder.buildAnd(DstReg, Src0, Add); 3583 MI.eraseFromParent(); 3584 } 3585 3586 bool CombinerHelper::matchFoldBinOpIntoSelect(MachineInstr &MI, 3587 unsigned &SelectOpNo) { 3588 Register LHS = MI.getOperand(1).getReg(); 3589 Register RHS = MI.getOperand(2).getReg(); 3590 3591 Register OtherOperandReg = RHS; 3592 SelectOpNo = 1; 3593 MachineInstr *Select = MRI.getVRegDef(LHS); 3594 3595 // Don't do this unless the old select is going away. We want to eliminate the 3596 // binary operator, not replace a binop with a select. 3597 if (Select->getOpcode() != TargetOpcode::G_SELECT || 3598 !MRI.hasOneNonDBGUse(LHS)) { 3599 OtherOperandReg = LHS; 3600 SelectOpNo = 2; 3601 Select = MRI.getVRegDef(RHS); 3602 if (Select->getOpcode() != TargetOpcode::G_SELECT || 3603 !MRI.hasOneNonDBGUse(RHS)) 3604 return false; 3605 } 3606 3607 MachineInstr *SelectLHS = MRI.getVRegDef(Select->getOperand(2).getReg()); 3608 MachineInstr *SelectRHS = MRI.getVRegDef(Select->getOperand(3).getReg()); 3609 3610 if (!isConstantOrConstantVector(*SelectLHS, MRI, 3611 /*AllowFP*/ true, 3612 /*AllowOpaqueConstants*/ false)) 3613 return false; 3614 if (!isConstantOrConstantVector(*SelectRHS, MRI, 3615 /*AllowFP*/ true, 3616 /*AllowOpaqueConstants*/ false)) 3617 return false; 3618 3619 unsigned BinOpcode = MI.getOpcode(); 3620 3621 // We know that one of the operands is a select of constants. Now verify that 3622 // the other binary operator operand is either a constant, or we can handle a 3623 // variable. 3624 bool CanFoldNonConst = 3625 (BinOpcode == TargetOpcode::G_AND || BinOpcode == TargetOpcode::G_OR) && 3626 (isNullOrNullSplat(*SelectLHS, MRI) || 3627 isAllOnesOrAllOnesSplat(*SelectLHS, MRI)) && 3628 (isNullOrNullSplat(*SelectRHS, MRI) || 3629 isAllOnesOrAllOnesSplat(*SelectRHS, MRI)); 3630 if (CanFoldNonConst) 3631 return true; 3632 3633 return isConstantOrConstantVector(*MRI.getVRegDef(OtherOperandReg), MRI, 3634 /*AllowFP*/ true, 3635 /*AllowOpaqueConstants*/ false); 3636 } 3637 3638 /// \p SelectOperand is the operand in binary operator \p MI that is the select 3639 /// to fold. 3640 void CombinerHelper::applyFoldBinOpIntoSelect(MachineInstr &MI, 3641 const unsigned &SelectOperand) { 3642 Register Dst = MI.getOperand(0).getReg(); 3643 Register LHS = MI.getOperand(1).getReg(); 3644 Register RHS = MI.getOperand(2).getReg(); 3645 MachineInstr *Select = MRI.getVRegDef(MI.getOperand(SelectOperand).getReg()); 3646 3647 Register SelectCond = Select->getOperand(1).getReg(); 3648 Register SelectTrue = Select->getOperand(2).getReg(); 3649 Register SelectFalse = Select->getOperand(3).getReg(); 3650 3651 LLT Ty = MRI.getType(Dst); 3652 unsigned BinOpcode = MI.getOpcode(); 3653 3654 Register FoldTrue, FoldFalse; 3655 3656 // We have a select-of-constants followed by a binary operator with a 3657 // constant. Eliminate the binop by pulling the constant math into the select. 3658 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO 3659 if (SelectOperand == 1) { 3660 // TODO: SelectionDAG verifies this actually constant folds before 3661 // committing to the combine. 3662 3663 FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {SelectTrue, RHS}).getReg(0); 3664 FoldFalse = 3665 Builder.buildInstr(BinOpcode, {Ty}, {SelectFalse, RHS}).getReg(0); 3666 } else { 3667 FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectTrue}).getReg(0); 3668 FoldFalse = 3669 Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectFalse}).getReg(0); 3670 } 3671 3672 Builder.buildSelect(Dst, SelectCond, FoldTrue, FoldFalse, MI.getFlags()); 3673 MI.eraseFromParent(); 3674 } 3675 3676 std::optional<SmallVector<Register, 8>> 3677 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3678 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3679 // We want to detect if Root is part of a tree which represents a bunch 3680 // of loads being merged into a larger load. We'll try to recognize patterns 3681 // like, for example: 3682 // 3683 // Reg Reg 3684 // \ / 3685 // OR_1 Reg 3686 // \ / 3687 // OR_2 3688 // \ Reg 3689 // .. / 3690 // Root 3691 // 3692 // Reg Reg Reg Reg 3693 // \ / \ / 3694 // OR_1 OR_2 3695 // \ / 3696 // \ / 3697 // ... 3698 // Root 3699 // 3700 // Each "Reg" may have been produced by a load + some arithmetic. This 3701 // function will save each of them. 3702 SmallVector<Register, 8> RegsToVisit; 3703 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3704 3705 // In the "worst" case, we're dealing with a load for each byte. So, there 3706 // are at most #bytes - 1 ORs. 3707 const unsigned MaxIter = 3708 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3709 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3710 if (Ors.empty()) 3711 break; 3712 const MachineInstr *Curr = Ors.pop_back_val(); 3713 Register OrLHS = Curr->getOperand(1).getReg(); 3714 Register OrRHS = Curr->getOperand(2).getReg(); 3715 3716 // In the combine, we want to elimate the entire tree. 3717 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3718 return std::nullopt; 3719 3720 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3721 // something that may be a load + arithmetic. 3722 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3723 Ors.push_back(Or); 3724 else 3725 RegsToVisit.push_back(OrLHS); 3726 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3727 Ors.push_back(Or); 3728 else 3729 RegsToVisit.push_back(OrRHS); 3730 } 3731 3732 // We're going to try and merge each register into a wider power-of-2 type, 3733 // so we ought to have an even number of registers. 3734 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3735 return std::nullopt; 3736 return RegsToVisit; 3737 } 3738 3739 /// Helper function for findLoadOffsetsForLoadOrCombine. 3740 /// 3741 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3742 /// and then moving that value into a specific byte offset. 3743 /// 3744 /// e.g. x[i] << 24 3745 /// 3746 /// \returns The load instruction and the byte offset it is moved into. 3747 static std::optional<std::pair<GZExtLoad *, int64_t>> 3748 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3749 const MachineRegisterInfo &MRI) { 3750 assert(MRI.hasOneNonDBGUse(Reg) && 3751 "Expected Reg to only have one non-debug use?"); 3752 Register MaybeLoad; 3753 int64_t Shift; 3754 if (!mi_match(Reg, MRI, 3755 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3756 Shift = 0; 3757 MaybeLoad = Reg; 3758 } 3759 3760 if (Shift % MemSizeInBits != 0) 3761 return std::nullopt; 3762 3763 // TODO: Handle other types of loads. 3764 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3765 if (!Load) 3766 return std::nullopt; 3767 3768 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3769 return std::nullopt; 3770 3771 return std::make_pair(Load, Shift / MemSizeInBits); 3772 } 3773 3774 std::optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3775 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3776 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3777 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3778 3779 // Each load found for the pattern. There should be one for each RegsToVisit. 3780 SmallSetVector<const MachineInstr *, 8> Loads; 3781 3782 // The lowest index used in any load. (The lowest "i" for each x[i].) 3783 int64_t LowestIdx = INT64_MAX; 3784 3785 // The load which uses the lowest index. 3786 GZExtLoad *LowestIdxLoad = nullptr; 3787 3788 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3789 SmallSet<int64_t, 8> SeenIdx; 3790 3791 // Ensure each load is in the same MBB. 3792 // TODO: Support multiple MachineBasicBlocks. 3793 MachineBasicBlock *MBB = nullptr; 3794 const MachineMemOperand *MMO = nullptr; 3795 3796 // Earliest instruction-order load in the pattern. 3797 GZExtLoad *EarliestLoad = nullptr; 3798 3799 // Latest instruction-order load in the pattern. 3800 GZExtLoad *LatestLoad = nullptr; 3801 3802 // Base pointer which every load should share. 3803 Register BasePtr; 3804 3805 // We want to find a load for each register. Each load should have some 3806 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3807 // track of the load which uses the lowest index. Later, we will check if we 3808 // can use its pointer in the final, combined load. 3809 for (auto Reg : RegsToVisit) { 3810 // Find the load, and find the position that it will end up in (e.g. a 3811 // shifted) value. 3812 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3813 if (!LoadAndPos) 3814 return std::nullopt; 3815 GZExtLoad *Load; 3816 int64_t DstPos; 3817 std::tie(Load, DstPos) = *LoadAndPos; 3818 3819 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3820 // it is difficult to check for stores/calls/etc between loads. 3821 MachineBasicBlock *LoadMBB = Load->getParent(); 3822 if (!MBB) 3823 MBB = LoadMBB; 3824 if (LoadMBB != MBB) 3825 return std::nullopt; 3826 3827 // Make sure that the MachineMemOperands of every seen load are compatible. 3828 auto &LoadMMO = Load->getMMO(); 3829 if (!MMO) 3830 MMO = &LoadMMO; 3831 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3832 return std::nullopt; 3833 3834 // Find out what the base pointer and index for the load is. 3835 Register LoadPtr; 3836 int64_t Idx; 3837 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3838 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3839 LoadPtr = Load->getOperand(1).getReg(); 3840 Idx = 0; 3841 } 3842 3843 // Don't combine things like a[i], a[i] -> a bigger load. 3844 if (!SeenIdx.insert(Idx).second) 3845 return std::nullopt; 3846 3847 // Every load must share the same base pointer; don't combine things like: 3848 // 3849 // a[i], b[i + 1] -> a bigger load. 3850 if (!BasePtr.isValid()) 3851 BasePtr = LoadPtr; 3852 if (BasePtr != LoadPtr) 3853 return std::nullopt; 3854 3855 if (Idx < LowestIdx) { 3856 LowestIdx = Idx; 3857 LowestIdxLoad = Load; 3858 } 3859 3860 // Keep track of the byte offset that this load ends up at. If we have seen 3861 // the byte offset, then stop here. We do not want to combine: 3862 // 3863 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3864 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3865 return std::nullopt; 3866 Loads.insert(Load); 3867 3868 // Keep track of the position of the earliest/latest loads in the pattern. 3869 // We will check that there are no load fold barriers between them later 3870 // on. 3871 // 3872 // FIXME: Is there a better way to check for load fold barriers? 3873 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3874 EarliestLoad = Load; 3875 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3876 LatestLoad = Load; 3877 } 3878 3879 // We found a load for each register. Let's check if each load satisfies the 3880 // pattern. 3881 assert(Loads.size() == RegsToVisit.size() && 3882 "Expected to find a load for each register?"); 3883 assert(EarliestLoad != LatestLoad && EarliestLoad && 3884 LatestLoad && "Expected at least two loads?"); 3885 3886 // Check if there are any stores, calls, etc. between any of the loads. If 3887 // there are, then we can't safely perform the combine. 3888 // 3889 // MaxIter is chosen based off the (worst case) number of iterations it 3890 // typically takes to succeed in the LLVM test suite plus some padding. 3891 // 3892 // FIXME: Is there a better way to check for load fold barriers? 3893 const unsigned MaxIter = 20; 3894 unsigned Iter = 0; 3895 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3896 LatestLoad->getIterator())) { 3897 if (Loads.count(&MI)) 3898 continue; 3899 if (MI.isLoadFoldBarrier()) 3900 return std::nullopt; 3901 if (Iter++ == MaxIter) 3902 return std::nullopt; 3903 } 3904 3905 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3906 } 3907 3908 bool CombinerHelper::matchLoadOrCombine( 3909 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3910 assert(MI.getOpcode() == TargetOpcode::G_OR); 3911 MachineFunction &MF = *MI.getMF(); 3912 // Assuming a little-endian target, transform: 3913 // s8 *a = ... 3914 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3915 // => 3916 // s32 val = *((i32)a) 3917 // 3918 // s8 *a = ... 3919 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3920 // => 3921 // s32 val = BSWAP(*((s32)a)) 3922 Register Dst = MI.getOperand(0).getReg(); 3923 LLT Ty = MRI.getType(Dst); 3924 if (Ty.isVector()) 3925 return false; 3926 3927 // We need to combine at least two loads into this type. Since the smallest 3928 // possible load is into a byte, we need at least a 16-bit wide type. 3929 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3930 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3931 return false; 3932 3933 // Match a collection of non-OR instructions in the pattern. 3934 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3935 if (!RegsToVisit) 3936 return false; 3937 3938 // We have a collection of non-OR instructions. Figure out how wide each of 3939 // the small loads should be based off of the number of potential loads we 3940 // found. 3941 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3942 if (NarrowMemSizeInBits % 8 != 0) 3943 return false; 3944 3945 // Check if each register feeding into each OR is a load from the same 3946 // base pointer + some arithmetic. 3947 // 3948 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3949 // 3950 // Also verify that each of these ends up putting a[i] into the same memory 3951 // offset as a load into a wide type would. 3952 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3953 GZExtLoad *LowestIdxLoad, *LatestLoad; 3954 int64_t LowestIdx; 3955 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3956 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3957 if (!MaybeLoadInfo) 3958 return false; 3959 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3960 3961 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3962 // we found before, check if this corresponds to a big or little endian byte 3963 // pattern. If it does, then we can represent it using a load + possibly a 3964 // BSWAP. 3965 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3966 std::optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3967 if (!IsBigEndian) 3968 return false; 3969 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3970 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3971 return false; 3972 3973 // Make sure that the load from the lowest index produces offset 0 in the 3974 // final value. 3975 // 3976 // This ensures that we won't combine something like this: 3977 // 3978 // load x[i] -> byte 2 3979 // load x[i+1] -> byte 0 ---> wide_load x[i] 3980 // load x[i+2] -> byte 1 3981 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3982 const unsigned ZeroByteOffset = 3983 *IsBigEndian 3984 ? bigEndianByteAt(NumLoadsInTy, 0) 3985 : littleEndianByteAt(NumLoadsInTy, 0); 3986 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3987 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3988 ZeroOffsetIdx->second != LowestIdx) 3989 return false; 3990 3991 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3992 // may not use index 0. 3993 Register Ptr = LowestIdxLoad->getPointerReg(); 3994 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3995 LegalityQuery::MemDesc MMDesc(MMO); 3996 MMDesc.MemoryTy = Ty; 3997 if (!isLegalOrBeforeLegalizer( 3998 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3999 return false; 4000 auto PtrInfo = MMO.getPointerInfo(); 4001 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 4002 4003 // Load must be allowed and fast on the target. 4004 LLVMContext &C = MF.getFunction().getContext(); 4005 auto &DL = MF.getDataLayout(); 4006 unsigned Fast = 0; 4007 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 4008 !Fast) 4009 return false; 4010 4011 MatchInfo = [=](MachineIRBuilder &MIB) { 4012 MIB.setInstrAndDebugLoc(*LatestLoad); 4013 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 4014 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 4015 if (NeedsBSwap) 4016 MIB.buildBSwap(Dst, LoadDst); 4017 }; 4018 return true; 4019 } 4020 4021 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 4022 MachineInstr *&ExtMI) { 4023 auto &PHI = cast<GPhi>(MI); 4024 Register DstReg = PHI.getReg(0); 4025 4026 // TODO: Extending a vector may be expensive, don't do this until heuristics 4027 // are better. 4028 if (MRI.getType(DstReg).isVector()) 4029 return false; 4030 4031 // Try to match a phi, whose only use is an extend. 4032 if (!MRI.hasOneNonDBGUse(DstReg)) 4033 return false; 4034 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 4035 switch (ExtMI->getOpcode()) { 4036 case TargetOpcode::G_ANYEXT: 4037 return true; // G_ANYEXT is usually free. 4038 case TargetOpcode::G_ZEXT: 4039 case TargetOpcode::G_SEXT: 4040 break; 4041 default: 4042 return false; 4043 } 4044 4045 // If the target is likely to fold this extend away, don't propagate. 4046 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 4047 return false; 4048 4049 // We don't want to propagate the extends unless there's a good chance that 4050 // they'll be optimized in some way. 4051 // Collect the unique incoming values. 4052 SmallPtrSet<MachineInstr *, 4> InSrcs; 4053 for (unsigned I = 0; I < PHI.getNumIncomingValues(); ++I) { 4054 auto *DefMI = getDefIgnoringCopies(PHI.getIncomingValue(I), MRI); 4055 switch (DefMI->getOpcode()) { 4056 case TargetOpcode::G_LOAD: 4057 case TargetOpcode::G_TRUNC: 4058 case TargetOpcode::G_SEXT: 4059 case TargetOpcode::G_ZEXT: 4060 case TargetOpcode::G_ANYEXT: 4061 case TargetOpcode::G_CONSTANT: 4062 InSrcs.insert(DefMI); 4063 // Don't try to propagate if there are too many places to create new 4064 // extends, chances are it'll increase code size. 4065 if (InSrcs.size() > 2) 4066 return false; 4067 break; 4068 default: 4069 return false; 4070 } 4071 } 4072 return true; 4073 } 4074 4075 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 4076 MachineInstr *&ExtMI) { 4077 auto &PHI = cast<GPhi>(MI); 4078 Register DstReg = ExtMI->getOperand(0).getReg(); 4079 LLT ExtTy = MRI.getType(DstReg); 4080 4081 // Propagate the extension into the block of each incoming reg's block. 4082 // Use a SetVector here because PHIs can have duplicate edges, and we want 4083 // deterministic iteration order. 4084 SmallSetVector<MachineInstr *, 8> SrcMIs; 4085 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 4086 for (unsigned I = 0; I < PHI.getNumIncomingValues(); ++I) { 4087 auto SrcReg = PHI.getIncomingValue(I); 4088 auto *SrcMI = MRI.getVRegDef(SrcReg); 4089 if (!SrcMIs.insert(SrcMI)) 4090 continue; 4091 4092 // Build an extend after each src inst. 4093 auto *MBB = SrcMI->getParent(); 4094 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 4095 if (InsertPt != MBB->end() && InsertPt->isPHI()) 4096 InsertPt = MBB->getFirstNonPHI(); 4097 4098 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 4099 Builder.setDebugLoc(MI.getDebugLoc()); 4100 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, SrcReg); 4101 OldToNewSrcMap[SrcMI] = NewExt; 4102 } 4103 4104 // Create a new phi with the extended inputs. 4105 Builder.setInstrAndDebugLoc(MI); 4106 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 4107 NewPhi.addDef(DstReg); 4108 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 4109 if (!MO.isReg()) { 4110 NewPhi.addMBB(MO.getMBB()); 4111 continue; 4112 } 4113 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 4114 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 4115 } 4116 Builder.insertInstr(NewPhi); 4117 ExtMI->eraseFromParent(); 4118 } 4119 4120 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 4121 Register &Reg) { 4122 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 4123 // If we have a constant index, look for a G_BUILD_VECTOR source 4124 // and find the source register that the index maps to. 4125 Register SrcVec = MI.getOperand(1).getReg(); 4126 LLT SrcTy = MRI.getType(SrcVec); 4127 4128 auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 4129 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 4130 return false; 4131 4132 unsigned VecIdx = Cst->Value.getZExtValue(); 4133 4134 // Check if we have a build_vector or build_vector_trunc with an optional 4135 // trunc in front. 4136 MachineInstr *SrcVecMI = MRI.getVRegDef(SrcVec); 4137 if (SrcVecMI->getOpcode() == TargetOpcode::G_TRUNC) { 4138 SrcVecMI = MRI.getVRegDef(SrcVecMI->getOperand(1).getReg()); 4139 } 4140 4141 if (SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR && 4142 SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR_TRUNC) 4143 return false; 4144 4145 EVT Ty(getMVTForLLT(SrcTy)); 4146 if (!MRI.hasOneNonDBGUse(SrcVec) && 4147 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 4148 return false; 4149 4150 Reg = SrcVecMI->getOperand(VecIdx + 1).getReg(); 4151 return true; 4152 } 4153 4154 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 4155 Register &Reg) { 4156 // Check the type of the register, since it may have come from a 4157 // G_BUILD_VECTOR_TRUNC. 4158 LLT ScalarTy = MRI.getType(Reg); 4159 Register DstReg = MI.getOperand(0).getReg(); 4160 LLT DstTy = MRI.getType(DstReg); 4161 4162 if (ScalarTy != DstTy) { 4163 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 4164 Builder.buildTrunc(DstReg, Reg); 4165 MI.eraseFromParent(); 4166 return; 4167 } 4168 replaceSingleDefInstWithReg(MI, Reg); 4169 } 4170 4171 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 4172 MachineInstr &MI, 4173 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 4174 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 4175 // This combine tries to find build_vector's which have every source element 4176 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 4177 // the masked load scalarization is run late in the pipeline. There's already 4178 // a combine for a similar pattern starting from the extract, but that 4179 // doesn't attempt to do it if there are multiple uses of the build_vector, 4180 // which in this case is true. Starting the combine from the build_vector 4181 // feels more natural than trying to find sibling nodes of extracts. 4182 // E.g. 4183 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 4184 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 4185 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 4186 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 4187 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 4188 // ==> 4189 // replace ext{1,2,3,4} with %s{1,2,3,4} 4190 4191 Register DstReg = MI.getOperand(0).getReg(); 4192 LLT DstTy = MRI.getType(DstReg); 4193 unsigned NumElts = DstTy.getNumElements(); 4194 4195 SmallBitVector ExtractedElts(NumElts); 4196 for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) { 4197 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 4198 return false; 4199 auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI); 4200 if (!Cst) 4201 return false; 4202 unsigned Idx = Cst->getZExtValue(); 4203 if (Idx >= NumElts) 4204 return false; // Out of range. 4205 ExtractedElts.set(Idx); 4206 SrcDstPairs.emplace_back( 4207 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 4208 } 4209 // Match if every element was extracted. 4210 return ExtractedElts.all(); 4211 } 4212 4213 void CombinerHelper::applyExtractAllEltsFromBuildVector( 4214 MachineInstr &MI, 4215 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 4216 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 4217 for (auto &Pair : SrcDstPairs) { 4218 auto *ExtMI = Pair.second; 4219 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 4220 ExtMI->eraseFromParent(); 4221 } 4222 MI.eraseFromParent(); 4223 } 4224 4225 void CombinerHelper::applyBuildFn( 4226 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4227 applyBuildFnNoErase(MI, MatchInfo); 4228 MI.eraseFromParent(); 4229 } 4230 4231 void CombinerHelper::applyBuildFnNoErase( 4232 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4233 MatchInfo(Builder); 4234 } 4235 4236 bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI, 4237 BuildFnTy &MatchInfo) { 4238 assert(MI.getOpcode() == TargetOpcode::G_OR); 4239 4240 Register Dst = MI.getOperand(0).getReg(); 4241 LLT Ty = MRI.getType(Dst); 4242 unsigned BitWidth = Ty.getScalarSizeInBits(); 4243 4244 Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt; 4245 unsigned FshOpc = 0; 4246 4247 // Match (or (shl ...), (lshr ...)). 4248 if (!mi_match(Dst, MRI, 4249 // m_GOr() handles the commuted version as well. 4250 m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)), 4251 m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt))))) 4252 return false; 4253 4254 // Given constants C0 and C1 such that C0 + C1 is bit-width: 4255 // (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1) 4256 int64_t CstShlAmt, CstLShrAmt; 4257 if (mi_match(ShlAmt, MRI, m_ICstOrSplat(CstShlAmt)) && 4258 mi_match(LShrAmt, MRI, m_ICstOrSplat(CstLShrAmt)) && 4259 CstShlAmt + CstLShrAmt == BitWidth) { 4260 FshOpc = TargetOpcode::G_FSHR; 4261 Amt = LShrAmt; 4262 4263 } else if (mi_match(LShrAmt, MRI, 4264 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && 4265 ShlAmt == Amt) { 4266 // (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt) 4267 FshOpc = TargetOpcode::G_FSHL; 4268 4269 } else if (mi_match(ShlAmt, MRI, 4270 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && 4271 LShrAmt == Amt) { 4272 // (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt) 4273 FshOpc = TargetOpcode::G_FSHR; 4274 4275 } else { 4276 return false; 4277 } 4278 4279 LLT AmtTy = MRI.getType(Amt); 4280 if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}})) 4281 return false; 4282 4283 MatchInfo = [=](MachineIRBuilder &B) { 4284 B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt}); 4285 }; 4286 return true; 4287 } 4288 4289 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 4290 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 4291 unsigned Opc = MI.getOpcode(); 4292 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 4293 Register X = MI.getOperand(1).getReg(); 4294 Register Y = MI.getOperand(2).getReg(); 4295 if (X != Y) 4296 return false; 4297 unsigned RotateOpc = 4298 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 4299 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 4300 } 4301 4302 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 4303 unsigned Opc = MI.getOpcode(); 4304 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 4305 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 4306 Observer.changingInstr(MI); 4307 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 4308 : TargetOpcode::G_ROTR)); 4309 MI.removeOperand(2); 4310 Observer.changedInstr(MI); 4311 } 4312 4313 // Fold (rot x, c) -> (rot x, c % BitSize) 4314 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 4315 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4316 MI.getOpcode() == TargetOpcode::G_ROTR); 4317 unsigned Bitsize = 4318 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4319 Register AmtReg = MI.getOperand(2).getReg(); 4320 bool OutOfRange = false; 4321 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 4322 if (auto *CI = dyn_cast<ConstantInt>(C)) 4323 OutOfRange |= CI->getValue().uge(Bitsize); 4324 return true; 4325 }; 4326 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 4327 } 4328 4329 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 4330 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4331 MI.getOpcode() == TargetOpcode::G_ROTR); 4332 unsigned Bitsize = 4333 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4334 Register Amt = MI.getOperand(2).getReg(); 4335 LLT AmtTy = MRI.getType(Amt); 4336 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 4337 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 4338 Observer.changingInstr(MI); 4339 MI.getOperand(2).setReg(Amt); 4340 Observer.changedInstr(MI); 4341 } 4342 4343 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 4344 int64_t &MatchInfo) { 4345 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4346 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4347 4348 // We want to avoid calling KnownBits on the LHS if possible, as this combine 4349 // has no filter and runs on every G_ICMP instruction. We can avoid calling 4350 // KnownBits on the LHS in two cases: 4351 // 4352 // - The RHS is unknown: Constants are always on RHS. If the RHS is unknown 4353 // we cannot do any transforms so we can safely bail out early. 4354 // - The RHS is zero: we don't need to know the LHS to do unsigned <0 and 4355 // >=0. 4356 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 4357 if (KnownRHS.isUnknown()) 4358 return false; 4359 4360 std::optional<bool> KnownVal; 4361 if (KnownRHS.isZero()) { 4362 // ? uge 0 -> always true 4363 // ? ult 0 -> always false 4364 if (Pred == CmpInst::ICMP_UGE) 4365 KnownVal = true; 4366 else if (Pred == CmpInst::ICMP_ULT) 4367 KnownVal = false; 4368 } 4369 4370 if (!KnownVal) { 4371 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 4372 switch (Pred) { 4373 default: 4374 llvm_unreachable("Unexpected G_ICMP predicate?"); 4375 case CmpInst::ICMP_EQ: 4376 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 4377 break; 4378 case CmpInst::ICMP_NE: 4379 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 4380 break; 4381 case CmpInst::ICMP_SGE: 4382 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 4383 break; 4384 case CmpInst::ICMP_SGT: 4385 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 4386 break; 4387 case CmpInst::ICMP_SLE: 4388 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 4389 break; 4390 case CmpInst::ICMP_SLT: 4391 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 4392 break; 4393 case CmpInst::ICMP_UGE: 4394 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 4395 break; 4396 case CmpInst::ICMP_UGT: 4397 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 4398 break; 4399 case CmpInst::ICMP_ULE: 4400 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 4401 break; 4402 case CmpInst::ICMP_ULT: 4403 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 4404 break; 4405 } 4406 } 4407 4408 if (!KnownVal) 4409 return false; 4410 MatchInfo = 4411 *KnownVal 4412 ? getICmpTrueVal(getTargetLowering(), 4413 /*IsVector = */ 4414 MRI.getType(MI.getOperand(0).getReg()).isVector(), 4415 /* IsFP = */ false) 4416 : 0; 4417 return true; 4418 } 4419 4420 bool CombinerHelper::matchICmpToLHSKnownBits( 4421 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4422 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4423 // Given: 4424 // 4425 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4426 // %cmp = G_ICMP ne %x, 0 4427 // 4428 // Or: 4429 // 4430 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4431 // %cmp = G_ICMP eq %x, 1 4432 // 4433 // We can replace %cmp with %x assuming true is 1 on the target. 4434 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4435 if (!CmpInst::isEquality(Pred)) 4436 return false; 4437 Register Dst = MI.getOperand(0).getReg(); 4438 LLT DstTy = MRI.getType(Dst); 4439 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), 4440 /* IsFP = */ false) != 1) 4441 return false; 4442 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; 4443 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) 4444 return false; 4445 Register LHS = MI.getOperand(2).getReg(); 4446 auto KnownLHS = KB->getKnownBits(LHS); 4447 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) 4448 return false; 4449 // Make sure replacing Dst with the LHS is a legal operation. 4450 LLT LHSTy = MRI.getType(LHS); 4451 unsigned LHSSize = LHSTy.getSizeInBits(); 4452 unsigned DstSize = DstTy.getSizeInBits(); 4453 unsigned Op = TargetOpcode::COPY; 4454 if (DstSize != LHSSize) 4455 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; 4456 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) 4457 return false; 4458 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; 4459 return true; 4460 } 4461 4462 // Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0 4463 bool CombinerHelper::matchAndOrDisjointMask( 4464 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4465 assert(MI.getOpcode() == TargetOpcode::G_AND); 4466 4467 // Ignore vector types to simplify matching the two constants. 4468 // TODO: do this for vectors and scalars via a demanded bits analysis. 4469 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 4470 if (Ty.isVector()) 4471 return false; 4472 4473 Register Src; 4474 Register AndMaskReg; 4475 int64_t AndMaskBits; 4476 int64_t OrMaskBits; 4477 if (!mi_match(MI, MRI, 4478 m_GAnd(m_GOr(m_Reg(Src), m_ICst(OrMaskBits)), 4479 m_all_of(m_ICst(AndMaskBits), m_Reg(AndMaskReg))))) 4480 return false; 4481 4482 // Check if OrMask could turn on any bits in Src. 4483 if (AndMaskBits & OrMaskBits) 4484 return false; 4485 4486 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4487 Observer.changingInstr(MI); 4488 // Canonicalize the result to have the constant on the RHS. 4489 if (MI.getOperand(1).getReg() == AndMaskReg) 4490 MI.getOperand(2).setReg(AndMaskReg); 4491 MI.getOperand(1).setReg(Src); 4492 Observer.changedInstr(MI); 4493 }; 4494 return true; 4495 } 4496 4497 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4498 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4499 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4500 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4501 Register Dst = MI.getOperand(0).getReg(); 4502 Register Src = MI.getOperand(1).getReg(); 4503 LLT Ty = MRI.getType(Src); 4504 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4505 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4506 return false; 4507 int64_t Width = MI.getOperand(2).getImm(); 4508 Register ShiftSrc; 4509 int64_t ShiftImm; 4510 if (!mi_match( 4511 Src, MRI, 4512 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4513 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4514 return false; 4515 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4516 return false; 4517 4518 MatchInfo = [=](MachineIRBuilder &B) { 4519 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4520 auto Cst2 = B.buildConstant(ExtractTy, Width); 4521 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4522 }; 4523 return true; 4524 } 4525 4526 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4527 bool CombinerHelper::matchBitfieldExtractFromAnd(MachineInstr &MI, 4528 BuildFnTy &MatchInfo) { 4529 GAnd *And = cast<GAnd>(&MI); 4530 Register Dst = And->getReg(0); 4531 LLT Ty = MRI.getType(Dst); 4532 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4533 // Note that isLegalOrBeforeLegalizer is stricter and does not take custom 4534 // into account. 4535 if (LI && !LI->isLegalOrCustom({TargetOpcode::G_UBFX, {Ty, ExtractTy}})) 4536 return false; 4537 4538 int64_t AndImm, LSBImm; 4539 Register ShiftSrc; 4540 const unsigned Size = Ty.getScalarSizeInBits(); 4541 if (!mi_match(And->getReg(0), MRI, 4542 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4543 m_ICst(AndImm)))) 4544 return false; 4545 4546 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4547 auto MaybeMask = static_cast<uint64_t>(AndImm); 4548 if (MaybeMask & (MaybeMask + 1)) 4549 return false; 4550 4551 // LSB must fit within the register. 4552 if (static_cast<uint64_t>(LSBImm) >= Size) 4553 return false; 4554 4555 uint64_t Width = APInt(Size, AndImm).countr_one(); 4556 MatchInfo = [=](MachineIRBuilder &B) { 4557 auto WidthCst = B.buildConstant(ExtractTy, Width); 4558 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4559 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4560 }; 4561 return true; 4562 } 4563 4564 bool CombinerHelper::matchBitfieldExtractFromShr( 4565 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4566 const unsigned Opcode = MI.getOpcode(); 4567 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 4568 4569 const Register Dst = MI.getOperand(0).getReg(); 4570 4571 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 4572 ? TargetOpcode::G_SBFX 4573 : TargetOpcode::G_UBFX; 4574 4575 // Check if the type we would use for the extract is legal 4576 LLT Ty = MRI.getType(Dst); 4577 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4578 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 4579 return false; 4580 4581 Register ShlSrc; 4582 int64_t ShrAmt; 4583 int64_t ShlAmt; 4584 const unsigned Size = Ty.getScalarSizeInBits(); 4585 4586 // Try to match shr (shl x, c1), c2 4587 if (!mi_match(Dst, MRI, 4588 m_BinOp(Opcode, 4589 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4590 m_ICst(ShrAmt)))) 4591 return false; 4592 4593 // Make sure that the shift sizes can fit a bitfield extract 4594 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4595 return false; 4596 4597 // Skip this combine if the G_SEXT_INREG combine could handle it 4598 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4599 return false; 4600 4601 // Calculate start position and width of the extract 4602 const int64_t Pos = ShrAmt - ShlAmt; 4603 const int64_t Width = Size - ShrAmt; 4604 4605 MatchInfo = [=](MachineIRBuilder &B) { 4606 auto WidthCst = B.buildConstant(ExtractTy, Width); 4607 auto PosCst = B.buildConstant(ExtractTy, Pos); 4608 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4609 }; 4610 return true; 4611 } 4612 4613 bool CombinerHelper::matchBitfieldExtractFromShrAnd( 4614 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4615 const unsigned Opcode = MI.getOpcode(); 4616 assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR); 4617 4618 const Register Dst = MI.getOperand(0).getReg(); 4619 LLT Ty = MRI.getType(Dst); 4620 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4621 if (LI && !LI->isLegalOrCustom({TargetOpcode::G_UBFX, {Ty, ExtractTy}})) 4622 return false; 4623 4624 // Try to match shr (and x, c1), c2 4625 Register AndSrc; 4626 int64_t ShrAmt; 4627 int64_t SMask; 4628 if (!mi_match(Dst, MRI, 4629 m_BinOp(Opcode, 4630 m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))), 4631 m_ICst(ShrAmt)))) 4632 return false; 4633 4634 const unsigned Size = Ty.getScalarSizeInBits(); 4635 if (ShrAmt < 0 || ShrAmt >= Size) 4636 return false; 4637 4638 // If the shift subsumes the mask, emit the 0 directly. 4639 if (0 == (SMask >> ShrAmt)) { 4640 MatchInfo = [=](MachineIRBuilder &B) { 4641 B.buildConstant(Dst, 0); 4642 }; 4643 return true; 4644 } 4645 4646 // Check that ubfx can do the extraction, with no holes in the mask. 4647 uint64_t UMask = SMask; 4648 UMask |= maskTrailingOnes<uint64_t>(ShrAmt); 4649 UMask &= maskTrailingOnes<uint64_t>(Size); 4650 if (!isMask_64(UMask)) 4651 return false; 4652 4653 // Calculate start position and width of the extract. 4654 const int64_t Pos = ShrAmt; 4655 const int64_t Width = llvm::countr_one(UMask) - ShrAmt; 4656 4657 // It's preferable to keep the shift, rather than form G_SBFX. 4658 // TODO: remove the G_AND via demanded bits analysis. 4659 if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size) 4660 return false; 4661 4662 MatchInfo = [=](MachineIRBuilder &B) { 4663 auto WidthCst = B.buildConstant(ExtractTy, Width); 4664 auto PosCst = B.buildConstant(ExtractTy, Pos); 4665 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst}); 4666 }; 4667 return true; 4668 } 4669 4670 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4671 MachineInstr &MI) { 4672 auto &PtrAdd = cast<GPtrAdd>(MI); 4673 4674 Register Src1Reg = PtrAdd.getBaseReg(); 4675 auto *Src1Def = getOpcodeDef<GPtrAdd>(Src1Reg, MRI); 4676 if (!Src1Def) 4677 return false; 4678 4679 Register Src2Reg = PtrAdd.getOffsetReg(); 4680 4681 if (MRI.hasOneNonDBGUse(Src1Reg)) 4682 return false; 4683 4684 auto C1 = getIConstantVRegVal(Src1Def->getOffsetReg(), MRI); 4685 if (!C1) 4686 return false; 4687 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4688 if (!C2) 4689 return false; 4690 4691 const APInt &C1APIntVal = *C1; 4692 const APInt &C2APIntVal = *C2; 4693 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4694 4695 for (auto &UseMI : MRI.use_nodbg_instructions(PtrAdd.getReg(0))) { 4696 // This combine may end up running before ptrtoint/inttoptr combines 4697 // manage to eliminate redundant conversions, so try to look through them. 4698 MachineInstr *ConvUseMI = &UseMI; 4699 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4700 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4701 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4702 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4703 if (!MRI.hasOneNonDBGUse(DefReg)) 4704 break; 4705 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4706 ConvUseOpc = ConvUseMI->getOpcode(); 4707 } 4708 auto *LdStMI = dyn_cast<GLoadStore>(ConvUseMI); 4709 if (!LdStMI) 4710 continue; 4711 // Is x[offset2] already not a legal addressing mode? If so then 4712 // reassociating the constants breaks nothing (we test offset2 because 4713 // that's the one we hope to fold into the load or store). 4714 TargetLoweringBase::AddrMode AM; 4715 AM.HasBaseReg = true; 4716 AM.BaseOffs = C2APIntVal.getSExtValue(); 4717 unsigned AS = MRI.getType(LdStMI->getPointerReg()).getAddressSpace(); 4718 Type *AccessTy = getTypeForLLT(LdStMI->getMMO().getMemoryType(), 4719 PtrAdd.getMF()->getFunction().getContext()); 4720 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4721 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4722 AccessTy, AS)) 4723 continue; 4724 4725 // Would x[offset1+offset2] still be a legal addressing mode? 4726 AM.BaseOffs = CombinedValue; 4727 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4728 AccessTy, AS)) 4729 return true; 4730 } 4731 4732 return false; 4733 } 4734 4735 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI, 4736 MachineInstr *RHS, 4737 BuildFnTy &MatchInfo) { 4738 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4739 Register Src1Reg = MI.getOperand(1).getReg(); 4740 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4741 return false; 4742 auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4743 if (!C2) 4744 return false; 4745 4746 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4747 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4748 4749 auto NewBase = 4750 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4751 Observer.changingInstr(MI); 4752 MI.getOperand(1).setReg(NewBase.getReg(0)); 4753 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4754 Observer.changedInstr(MI); 4755 }; 4756 return !reassociationCanBreakAddressingModePattern(MI); 4757 } 4758 4759 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI, 4760 MachineInstr *LHS, 4761 MachineInstr *RHS, 4762 BuildFnTy &MatchInfo) { 4763 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C) 4764 // if and only if (G_PTR_ADD X, C) has one use. 4765 Register LHSBase; 4766 std::optional<ValueAndVReg> LHSCstOff; 4767 if (!mi_match(MI.getBaseReg(), MRI, 4768 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff))))) 4769 return false; 4770 4771 auto *LHSPtrAdd = cast<GPtrAdd>(LHS); 4772 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4773 // When we change LHSPtrAdd's offset register we might cause it to use a reg 4774 // before its def. Sink the instruction so the outer PTR_ADD to ensure this 4775 // doesn't happen. 4776 LHSPtrAdd->moveBefore(&MI); 4777 Register RHSReg = MI.getOffsetReg(); 4778 // set VReg will cause type mismatch if it comes from extend/trunc 4779 auto NewCst = B.buildConstant(MRI.getType(RHSReg), LHSCstOff->Value); 4780 Observer.changingInstr(MI); 4781 MI.getOperand(2).setReg(NewCst.getReg(0)); 4782 Observer.changedInstr(MI); 4783 Observer.changingInstr(*LHSPtrAdd); 4784 LHSPtrAdd->getOperand(2).setReg(RHSReg); 4785 Observer.changedInstr(*LHSPtrAdd); 4786 }; 4787 return !reassociationCanBreakAddressingModePattern(MI); 4788 } 4789 4790 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI, 4791 MachineInstr *LHS, 4792 MachineInstr *RHS, 4793 BuildFnTy &MatchInfo) { 4794 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4795 auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS); 4796 if (!LHSPtrAdd) 4797 return false; 4798 4799 Register Src2Reg = MI.getOperand(2).getReg(); 4800 Register LHSSrc1 = LHSPtrAdd->getBaseReg(); 4801 Register LHSSrc2 = LHSPtrAdd->getOffsetReg(); 4802 auto C1 = getIConstantVRegVal(LHSSrc2, MRI); 4803 if (!C1) 4804 return false; 4805 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4806 if (!C2) 4807 return false; 4808 4809 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4810 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4811 Observer.changingInstr(MI); 4812 MI.getOperand(1).setReg(LHSSrc1); 4813 MI.getOperand(2).setReg(NewCst.getReg(0)); 4814 Observer.changedInstr(MI); 4815 }; 4816 return !reassociationCanBreakAddressingModePattern(MI); 4817 } 4818 4819 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI, 4820 BuildFnTy &MatchInfo) { 4821 auto &PtrAdd = cast<GPtrAdd>(MI); 4822 // We're trying to match a few pointer computation patterns here for 4823 // re-association opportunities. 4824 // 1) Isolating a constant operand to be on the RHS, e.g.: 4825 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4826 // 4827 // 2) Folding two constants in each sub-tree as long as such folding 4828 // doesn't break a legal addressing mode. 4829 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4830 // 4831 // 3) Move a constant from the LHS of an inner op to the RHS of the outer. 4832 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C) 4833 // iif (G_PTR_ADD X, C) has one use. 4834 MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg()); 4835 MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg()); 4836 4837 // Try to match example 2. 4838 if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo)) 4839 return true; 4840 4841 // Try to match example 3. 4842 if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo)) 4843 return true; 4844 4845 // Try to match example 1. 4846 if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo)) 4847 return true; 4848 4849 return false; 4850 } 4851 bool CombinerHelper::tryReassocBinOp(unsigned Opc, Register DstReg, 4852 Register OpLHS, Register OpRHS, 4853 BuildFnTy &MatchInfo) { 4854 LLT OpRHSTy = MRI.getType(OpRHS); 4855 MachineInstr *OpLHSDef = MRI.getVRegDef(OpLHS); 4856 4857 if (OpLHSDef->getOpcode() != Opc) 4858 return false; 4859 4860 MachineInstr *OpRHSDef = MRI.getVRegDef(OpRHS); 4861 Register OpLHSLHS = OpLHSDef->getOperand(1).getReg(); 4862 Register OpLHSRHS = OpLHSDef->getOperand(2).getReg(); 4863 4864 // If the inner op is (X op C), pull the constant out so it can be folded with 4865 // other constants in the expression tree. Folding is not guaranteed so we 4866 // might have (C1 op C2). In that case do not pull a constant out because it 4867 // won't help and can lead to infinite loops. 4868 if (isConstantOrConstantSplatVector(*MRI.getVRegDef(OpLHSRHS), MRI) && 4869 !isConstantOrConstantSplatVector(*MRI.getVRegDef(OpLHSLHS), MRI)) { 4870 if (isConstantOrConstantSplatVector(*OpRHSDef, MRI)) { 4871 // (Opc (Opc X, C1), C2) -> (Opc X, (Opc C1, C2)) 4872 MatchInfo = [=](MachineIRBuilder &B) { 4873 auto NewCst = B.buildInstr(Opc, {OpRHSTy}, {OpLHSRHS, OpRHS}); 4874 B.buildInstr(Opc, {DstReg}, {OpLHSLHS, NewCst}); 4875 }; 4876 return true; 4877 } 4878 if (getTargetLowering().isReassocProfitable(MRI, OpLHS, OpRHS)) { 4879 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) 4880 // iff (op x, c1) has one use 4881 MatchInfo = [=](MachineIRBuilder &B) { 4882 auto NewLHSLHS = B.buildInstr(Opc, {OpRHSTy}, {OpLHSLHS, OpRHS}); 4883 B.buildInstr(Opc, {DstReg}, {NewLHSLHS, OpLHSRHS}); 4884 }; 4885 return true; 4886 } 4887 } 4888 4889 return false; 4890 } 4891 4892 bool CombinerHelper::matchReassocCommBinOp(MachineInstr &MI, 4893 BuildFnTy &MatchInfo) { 4894 // We don't check if the reassociation will break a legal addressing mode 4895 // here since pointer arithmetic is handled by G_PTR_ADD. 4896 unsigned Opc = MI.getOpcode(); 4897 Register DstReg = MI.getOperand(0).getReg(); 4898 Register LHSReg = MI.getOperand(1).getReg(); 4899 Register RHSReg = MI.getOperand(2).getReg(); 4900 4901 if (tryReassocBinOp(Opc, DstReg, LHSReg, RHSReg, MatchInfo)) 4902 return true; 4903 if (tryReassocBinOp(Opc, DstReg, RHSReg, LHSReg, MatchInfo)) 4904 return true; 4905 return false; 4906 } 4907 4908 bool CombinerHelper::matchConstantFoldCastOp(MachineInstr &MI, APInt &MatchInfo) { 4909 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4910 Register SrcOp = MI.getOperand(1).getReg(); 4911 4912 if (auto MaybeCst = ConstantFoldCastOp(MI.getOpcode(), DstTy, SrcOp, MRI)) { 4913 MatchInfo = *MaybeCst; 4914 return true; 4915 } 4916 4917 return false; 4918 } 4919 4920 bool CombinerHelper::matchConstantFoldBinOp(MachineInstr &MI, APInt &MatchInfo) { 4921 Register Op1 = MI.getOperand(1).getReg(); 4922 Register Op2 = MI.getOperand(2).getReg(); 4923 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4924 if (!MaybeCst) 4925 return false; 4926 MatchInfo = *MaybeCst; 4927 return true; 4928 } 4929 4930 bool CombinerHelper::matchConstantFoldFPBinOp(MachineInstr &MI, ConstantFP* &MatchInfo) { 4931 Register Op1 = MI.getOperand(1).getReg(); 4932 Register Op2 = MI.getOperand(2).getReg(); 4933 auto MaybeCst = ConstantFoldFPBinOp(MI.getOpcode(), Op1, Op2, MRI); 4934 if (!MaybeCst) 4935 return false; 4936 MatchInfo = 4937 ConstantFP::get(MI.getMF()->getFunction().getContext(), *MaybeCst); 4938 return true; 4939 } 4940 4941 bool CombinerHelper::matchConstantFoldFMA(MachineInstr &MI, 4942 ConstantFP *&MatchInfo) { 4943 assert(MI.getOpcode() == TargetOpcode::G_FMA || 4944 MI.getOpcode() == TargetOpcode::G_FMAD); 4945 auto [_, Op1, Op2, Op3] = MI.getFirst4Regs(); 4946 4947 const ConstantFP *Op3Cst = getConstantFPVRegVal(Op3, MRI); 4948 if (!Op3Cst) 4949 return false; 4950 4951 const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI); 4952 if (!Op2Cst) 4953 return false; 4954 4955 const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI); 4956 if (!Op1Cst) 4957 return false; 4958 4959 APFloat Op1F = Op1Cst->getValueAPF(); 4960 Op1F.fusedMultiplyAdd(Op2Cst->getValueAPF(), Op3Cst->getValueAPF(), 4961 APFloat::rmNearestTiesToEven); 4962 MatchInfo = ConstantFP::get(MI.getMF()->getFunction().getContext(), Op1F); 4963 return true; 4964 } 4965 4966 bool CombinerHelper::matchNarrowBinopFeedingAnd( 4967 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4968 // Look for a binop feeding into an AND with a mask: 4969 // 4970 // %add = G_ADD %lhs, %rhs 4971 // %and = G_AND %add, 000...11111111 4972 // 4973 // Check if it's possible to perform the binop at a narrower width and zext 4974 // back to the original width like so: 4975 // 4976 // %narrow_lhs = G_TRUNC %lhs 4977 // %narrow_rhs = G_TRUNC %rhs 4978 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 4979 // %new_add = G_ZEXT %narrow_add 4980 // %and = G_AND %new_add, 000...11111111 4981 // 4982 // This can allow later combines to eliminate the G_AND if it turns out 4983 // that the mask is irrelevant. 4984 assert(MI.getOpcode() == TargetOpcode::G_AND); 4985 Register Dst = MI.getOperand(0).getReg(); 4986 Register AndLHS = MI.getOperand(1).getReg(); 4987 Register AndRHS = MI.getOperand(2).getReg(); 4988 LLT WideTy = MRI.getType(Dst); 4989 4990 // If the potential binop has more than one use, then it's possible that one 4991 // of those uses will need its full width. 4992 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 4993 return false; 4994 4995 // Check if the LHS feeding the AND is impacted by the high bits that we're 4996 // masking out. 4997 // 4998 // e.g. for 64-bit x, y: 4999 // 5000 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 5001 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 5002 if (!LHSInst) 5003 return false; 5004 unsigned LHSOpc = LHSInst->getOpcode(); 5005 switch (LHSOpc) { 5006 default: 5007 return false; 5008 case TargetOpcode::G_ADD: 5009 case TargetOpcode::G_SUB: 5010 case TargetOpcode::G_MUL: 5011 case TargetOpcode::G_AND: 5012 case TargetOpcode::G_OR: 5013 case TargetOpcode::G_XOR: 5014 break; 5015 } 5016 5017 // Find the mask on the RHS. 5018 auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI); 5019 if (!Cst) 5020 return false; 5021 auto Mask = Cst->Value; 5022 if (!Mask.isMask()) 5023 return false; 5024 5025 // No point in combining if there's nothing to truncate. 5026 unsigned NarrowWidth = Mask.countr_one(); 5027 if (NarrowWidth == WideTy.getSizeInBits()) 5028 return false; 5029 LLT NarrowTy = LLT::scalar(NarrowWidth); 5030 5031 // Check if adding the zext + truncates could be harmful. 5032 auto &MF = *MI.getMF(); 5033 const auto &TLI = getTargetLowering(); 5034 LLVMContext &Ctx = MF.getFunction().getContext(); 5035 auto &DL = MF.getDataLayout(); 5036 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 5037 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 5038 return false; 5039 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 5040 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 5041 return false; 5042 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 5043 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 5044 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5045 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 5046 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 5047 auto NarrowBinOp = 5048 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 5049 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 5050 Observer.changingInstr(MI); 5051 MI.getOperand(1).setReg(Ext.getReg(0)); 5052 Observer.changedInstr(MI); 5053 }; 5054 return true; 5055 } 5056 5057 bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) { 5058 unsigned Opc = MI.getOpcode(); 5059 assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO); 5060 5061 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2))) 5062 return false; 5063 5064 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5065 Observer.changingInstr(MI); 5066 unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO 5067 : TargetOpcode::G_SADDO; 5068 MI.setDesc(Builder.getTII().get(NewOpc)); 5069 MI.getOperand(3).setReg(MI.getOperand(2).getReg()); 5070 Observer.changedInstr(MI); 5071 }; 5072 return true; 5073 } 5074 5075 bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { 5076 // (G_*MULO x, 0) -> 0 + no carry out 5077 assert(MI.getOpcode() == TargetOpcode::G_UMULO || 5078 MI.getOpcode() == TargetOpcode::G_SMULO); 5079 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) 5080 return false; 5081 Register Dst = MI.getOperand(0).getReg(); 5082 Register Carry = MI.getOperand(1).getReg(); 5083 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) || 5084 !isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) 5085 return false; 5086 MatchInfo = [=](MachineIRBuilder &B) { 5087 B.buildConstant(Dst, 0); 5088 B.buildConstant(Carry, 0); 5089 }; 5090 return true; 5091 } 5092 5093 bool CombinerHelper::matchAddEToAddO(MachineInstr &MI, BuildFnTy &MatchInfo) { 5094 // (G_*ADDE x, y, 0) -> (G_*ADDO x, y) 5095 // (G_*SUBE x, y, 0) -> (G_*SUBO x, y) 5096 assert(MI.getOpcode() == TargetOpcode::G_UADDE || 5097 MI.getOpcode() == TargetOpcode::G_SADDE || 5098 MI.getOpcode() == TargetOpcode::G_USUBE || 5099 MI.getOpcode() == TargetOpcode::G_SSUBE); 5100 if (!mi_match(MI.getOperand(4).getReg(), MRI, m_SpecificICstOrSplat(0))) 5101 return false; 5102 MatchInfo = [&](MachineIRBuilder &B) { 5103 unsigned NewOpcode; 5104 switch (MI.getOpcode()) { 5105 case TargetOpcode::G_UADDE: 5106 NewOpcode = TargetOpcode::G_UADDO; 5107 break; 5108 case TargetOpcode::G_SADDE: 5109 NewOpcode = TargetOpcode::G_SADDO; 5110 break; 5111 case TargetOpcode::G_USUBE: 5112 NewOpcode = TargetOpcode::G_USUBO; 5113 break; 5114 case TargetOpcode::G_SSUBE: 5115 NewOpcode = TargetOpcode::G_SSUBO; 5116 break; 5117 } 5118 Observer.changingInstr(MI); 5119 MI.setDesc(B.getTII().get(NewOpcode)); 5120 MI.removeOperand(4); 5121 Observer.changedInstr(MI); 5122 }; 5123 return true; 5124 } 5125 5126 bool CombinerHelper::matchSubAddSameReg(MachineInstr &MI, 5127 BuildFnTy &MatchInfo) { 5128 assert(MI.getOpcode() == TargetOpcode::G_SUB); 5129 Register Dst = MI.getOperand(0).getReg(); 5130 // (x + y) - z -> x (if y == z) 5131 // (x + y) - z -> y (if x == z) 5132 Register X, Y, Z; 5133 if (mi_match(Dst, MRI, m_GSub(m_GAdd(m_Reg(X), m_Reg(Y)), m_Reg(Z)))) { 5134 Register ReplaceReg; 5135 int64_t CstX, CstY; 5136 if (Y == Z || (mi_match(Y, MRI, m_ICstOrSplat(CstY)) && 5137 mi_match(Z, MRI, m_SpecificICstOrSplat(CstY)))) 5138 ReplaceReg = X; 5139 else if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) && 5140 mi_match(Z, MRI, m_SpecificICstOrSplat(CstX)))) 5141 ReplaceReg = Y; 5142 if (ReplaceReg) { 5143 MatchInfo = [=](MachineIRBuilder &B) { B.buildCopy(Dst, ReplaceReg); }; 5144 return true; 5145 } 5146 } 5147 5148 // x - (y + z) -> 0 - y (if x == z) 5149 // x - (y + z) -> 0 - z (if x == y) 5150 if (mi_match(Dst, MRI, m_GSub(m_Reg(X), m_GAdd(m_Reg(Y), m_Reg(Z))))) { 5151 Register ReplaceReg; 5152 int64_t CstX; 5153 if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) && 5154 mi_match(Z, MRI, m_SpecificICstOrSplat(CstX)))) 5155 ReplaceReg = Y; 5156 else if (X == Y || (mi_match(X, MRI, m_ICstOrSplat(CstX)) && 5157 mi_match(Y, MRI, m_SpecificICstOrSplat(CstX)))) 5158 ReplaceReg = Z; 5159 if (ReplaceReg) { 5160 MatchInfo = [=](MachineIRBuilder &B) { 5161 auto Zero = B.buildConstant(MRI.getType(Dst), 0); 5162 B.buildSub(Dst, Zero, ReplaceReg); 5163 }; 5164 return true; 5165 } 5166 } 5167 return false; 5168 } 5169 5170 MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) { 5171 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 5172 auto &UDiv = cast<GenericMachineInstr>(MI); 5173 Register Dst = UDiv.getReg(0); 5174 Register LHS = UDiv.getReg(1); 5175 Register RHS = UDiv.getReg(2); 5176 LLT Ty = MRI.getType(Dst); 5177 LLT ScalarTy = Ty.getScalarType(); 5178 const unsigned EltBits = ScalarTy.getScalarSizeInBits(); 5179 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 5180 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); 5181 5182 auto &MIB = Builder; 5183 5184 bool UseSRL = false; 5185 SmallVector<Register, 16> Shifts, Factors; 5186 auto *RHSDefInstr = cast<GenericMachineInstr>(getDefIgnoringCopies(RHS, MRI)); 5187 bool IsSplat = getIConstantSplatVal(*RHSDefInstr, MRI).has_value(); 5188 5189 auto BuildExactUDIVPattern = [&](const Constant *C) { 5190 // Don't recompute inverses for each splat element. 5191 if (IsSplat && !Factors.empty()) { 5192 Shifts.push_back(Shifts[0]); 5193 Factors.push_back(Factors[0]); 5194 return true; 5195 } 5196 5197 auto *CI = cast<ConstantInt>(C); 5198 APInt Divisor = CI->getValue(); 5199 unsigned Shift = Divisor.countr_zero(); 5200 if (Shift) { 5201 Divisor.lshrInPlace(Shift); 5202 UseSRL = true; 5203 } 5204 5205 // Calculate the multiplicative inverse modulo BW. 5206 APInt Factor = Divisor.multiplicativeInverse(); 5207 Shifts.push_back(MIB.buildConstant(ScalarShiftAmtTy, Shift).getReg(0)); 5208 Factors.push_back(MIB.buildConstant(ScalarTy, Factor).getReg(0)); 5209 return true; 5210 }; 5211 5212 if (MI.getFlag(MachineInstr::MIFlag::IsExact)) { 5213 // Collect all magic values from the build vector. 5214 if (!matchUnaryPredicate(MRI, RHS, BuildExactUDIVPattern)) 5215 llvm_unreachable("Expected unary predicate match to succeed"); 5216 5217 Register Shift, Factor; 5218 if (Ty.isVector()) { 5219 Shift = MIB.buildBuildVector(ShiftAmtTy, Shifts).getReg(0); 5220 Factor = MIB.buildBuildVector(Ty, Factors).getReg(0); 5221 } else { 5222 Shift = Shifts[0]; 5223 Factor = Factors[0]; 5224 } 5225 5226 Register Res = LHS; 5227 5228 if (UseSRL) 5229 Res = MIB.buildLShr(Ty, Res, Shift, MachineInstr::IsExact).getReg(0); 5230 5231 return MIB.buildMul(Ty, Res, Factor); 5232 } 5233 5234 unsigned KnownLeadingZeros = 5235 KB ? KB->getKnownBits(LHS).countMinLeadingZeros() : 0; 5236 5237 bool UseNPQ = false; 5238 SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5239 auto BuildUDIVPattern = [&](const Constant *C) { 5240 auto *CI = cast<ConstantInt>(C); 5241 const APInt &Divisor = CI->getValue(); 5242 5243 bool SelNPQ = false; 5244 APInt Magic(Divisor.getBitWidth(), 0); 5245 unsigned PreShift = 0, PostShift = 0; 5246 5247 // Magic algorithm doesn't work for division by 1. We need to emit a select 5248 // at the end. 5249 // TODO: Use undef values for divisor of 1. 5250 if (!Divisor.isOne()) { 5251 5252 // UnsignedDivisionByConstantInfo doesn't work correctly if leading zeros 5253 // in the dividend exceeds the leading zeros for the divisor. 5254 UnsignedDivisionByConstantInfo magics = 5255 UnsignedDivisionByConstantInfo::get( 5256 Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero())); 5257 5258 Magic = std::move(magics.Magic); 5259 5260 assert(magics.PreShift < Divisor.getBitWidth() && 5261 "We shouldn't generate an undefined shift!"); 5262 assert(magics.PostShift < Divisor.getBitWidth() && 5263 "We shouldn't generate an undefined shift!"); 5264 assert((!magics.IsAdd || magics.PreShift == 0) && "Unexpected pre-shift"); 5265 PreShift = magics.PreShift; 5266 PostShift = magics.PostShift; 5267 SelNPQ = magics.IsAdd; 5268 } 5269 5270 PreShifts.push_back( 5271 MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0)); 5272 MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0)); 5273 NPQFactors.push_back( 5274 MIB.buildConstant(ScalarTy, 5275 SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5276 : APInt::getZero(EltBits)) 5277 .getReg(0)); 5278 PostShifts.push_back( 5279 MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0)); 5280 UseNPQ |= SelNPQ; 5281 return true; 5282 }; 5283 5284 // Collect the shifts/magic values from each element. 5285 bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern); 5286 (void)Matched; 5287 assert(Matched && "Expected unary predicate match to succeed"); 5288 5289 Register PreShift, PostShift, MagicFactor, NPQFactor; 5290 auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI); 5291 if (RHSDef) { 5292 PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0); 5293 MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0); 5294 NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0); 5295 PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0); 5296 } else { 5297 assert(MRI.getType(RHS).isScalar() && 5298 "Non-build_vector operation should have been a scalar"); 5299 PreShift = PreShifts[0]; 5300 MagicFactor = MagicFactors[0]; 5301 PostShift = PostShifts[0]; 5302 } 5303 5304 Register Q = LHS; 5305 Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0); 5306 5307 // Multiply the numerator (operand 0) by the magic value. 5308 Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0); 5309 5310 if (UseNPQ) { 5311 Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0); 5312 5313 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5314 // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero. 5315 if (Ty.isVector()) 5316 NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0); 5317 else 5318 NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0); 5319 5320 Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0); 5321 } 5322 5323 Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0); 5324 auto One = MIB.buildConstant(Ty, 1); 5325 auto IsOne = MIB.buildICmp( 5326 CmpInst::Predicate::ICMP_EQ, 5327 Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One); 5328 return MIB.buildSelect(Ty, IsOne, LHS, Q); 5329 } 5330 5331 bool CombinerHelper::matchUDivByConst(MachineInstr &MI) { 5332 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 5333 Register Dst = MI.getOperand(0).getReg(); 5334 Register RHS = MI.getOperand(2).getReg(); 5335 LLT DstTy = MRI.getType(Dst); 5336 5337 auto &MF = *MI.getMF(); 5338 AttributeList Attr = MF.getFunction().getAttributes(); 5339 const auto &TLI = getTargetLowering(); 5340 LLVMContext &Ctx = MF.getFunction().getContext(); 5341 auto &DL = MF.getDataLayout(); 5342 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) 5343 return false; 5344 5345 // Don't do this for minsize because the instruction sequence is usually 5346 // larger. 5347 if (MF.getFunction().hasMinSize()) 5348 return false; 5349 5350 if (MI.getFlag(MachineInstr::MIFlag::IsExact)) { 5351 return matchUnaryPredicate( 5352 MRI, RHS, [](const Constant *C) { return C && !C->isNullValue(); }); 5353 } 5354 5355 auto *RHSDef = MRI.getVRegDef(RHS); 5356 if (!isConstantOrConstantVector(*RHSDef, MRI)) 5357 return false; 5358 5359 // Don't do this if the types are not going to be legal. 5360 if (LI) { 5361 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}})) 5362 return false; 5363 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}})) 5364 return false; 5365 if (!isLegalOrBeforeLegalizer( 5366 {TargetOpcode::G_ICMP, 5367 {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1), 5368 DstTy}})) 5369 return false; 5370 } 5371 5372 return matchUnaryPredicate( 5373 MRI, RHS, [](const Constant *C) { return C && !C->isNullValue(); }); 5374 } 5375 5376 void CombinerHelper::applyUDivByConst(MachineInstr &MI) { 5377 auto *NewMI = buildUDivUsingMul(MI); 5378 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); 5379 } 5380 5381 bool CombinerHelper::matchSDivByConst(MachineInstr &MI) { 5382 assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV"); 5383 Register Dst = MI.getOperand(0).getReg(); 5384 Register RHS = MI.getOperand(2).getReg(); 5385 LLT DstTy = MRI.getType(Dst); 5386 5387 auto &MF = *MI.getMF(); 5388 AttributeList Attr = MF.getFunction().getAttributes(); 5389 const auto &TLI = getTargetLowering(); 5390 LLVMContext &Ctx = MF.getFunction().getContext(); 5391 auto &DL = MF.getDataLayout(); 5392 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) 5393 return false; 5394 5395 // Don't do this for minsize because the instruction sequence is usually 5396 // larger. 5397 if (MF.getFunction().hasMinSize()) 5398 return false; 5399 5400 // If the sdiv has an 'exact' flag we can use a simpler lowering. 5401 if (MI.getFlag(MachineInstr::MIFlag::IsExact)) { 5402 return matchUnaryPredicate( 5403 MRI, RHS, [](const Constant *C) { return C && !C->isNullValue(); }); 5404 } 5405 5406 // Don't support the general case for now. 5407 return false; 5408 } 5409 5410 void CombinerHelper::applySDivByConst(MachineInstr &MI) { 5411 auto *NewMI = buildSDivUsingMul(MI); 5412 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); 5413 } 5414 5415 MachineInstr *CombinerHelper::buildSDivUsingMul(MachineInstr &MI) { 5416 assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV"); 5417 auto &SDiv = cast<GenericMachineInstr>(MI); 5418 Register Dst = SDiv.getReg(0); 5419 Register LHS = SDiv.getReg(1); 5420 Register RHS = SDiv.getReg(2); 5421 LLT Ty = MRI.getType(Dst); 5422 LLT ScalarTy = Ty.getScalarType(); 5423 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 5424 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); 5425 auto &MIB = Builder; 5426 5427 bool UseSRA = false; 5428 SmallVector<Register, 16> Shifts, Factors; 5429 5430 auto *RHSDef = cast<GenericMachineInstr>(getDefIgnoringCopies(RHS, MRI)); 5431 bool IsSplat = getIConstantSplatVal(*RHSDef, MRI).has_value(); 5432 5433 auto BuildSDIVPattern = [&](const Constant *C) { 5434 // Don't recompute inverses for each splat element. 5435 if (IsSplat && !Factors.empty()) { 5436 Shifts.push_back(Shifts[0]); 5437 Factors.push_back(Factors[0]); 5438 return true; 5439 } 5440 5441 auto *CI = cast<ConstantInt>(C); 5442 APInt Divisor = CI->getValue(); 5443 unsigned Shift = Divisor.countr_zero(); 5444 if (Shift) { 5445 Divisor.ashrInPlace(Shift); 5446 UseSRA = true; 5447 } 5448 5449 // Calculate the multiplicative inverse modulo BW. 5450 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5451 APInt Factor = Divisor.multiplicativeInverse(); 5452 Shifts.push_back(MIB.buildConstant(ScalarShiftAmtTy, Shift).getReg(0)); 5453 Factors.push_back(MIB.buildConstant(ScalarTy, Factor).getReg(0)); 5454 return true; 5455 }; 5456 5457 // Collect all magic values from the build vector. 5458 bool Matched = matchUnaryPredicate(MRI, RHS, BuildSDIVPattern); 5459 (void)Matched; 5460 assert(Matched && "Expected unary predicate match to succeed"); 5461 5462 Register Shift, Factor; 5463 if (Ty.isVector()) { 5464 Shift = MIB.buildBuildVector(ShiftAmtTy, Shifts).getReg(0); 5465 Factor = MIB.buildBuildVector(Ty, Factors).getReg(0); 5466 } else { 5467 Shift = Shifts[0]; 5468 Factor = Factors[0]; 5469 } 5470 5471 Register Res = LHS; 5472 5473 if (UseSRA) 5474 Res = MIB.buildAShr(Ty, Res, Shift, MachineInstr::IsExact).getReg(0); 5475 5476 return MIB.buildMul(Ty, Res, Factor); 5477 } 5478 5479 bool CombinerHelper::matchDivByPow2(MachineInstr &MI, bool IsSigned) { 5480 assert((MI.getOpcode() == TargetOpcode::G_SDIV || 5481 MI.getOpcode() == TargetOpcode::G_UDIV) && 5482 "Expected SDIV or UDIV"); 5483 auto &Div = cast<GenericMachineInstr>(MI); 5484 Register RHS = Div.getReg(2); 5485 auto MatchPow2 = [&](const Constant *C) { 5486 auto *CI = dyn_cast<ConstantInt>(C); 5487 return CI && (CI->getValue().isPowerOf2() || 5488 (IsSigned && CI->getValue().isNegatedPowerOf2())); 5489 }; 5490 return matchUnaryPredicate(MRI, RHS, MatchPow2, /*AllowUndefs=*/false); 5491 } 5492 5493 void CombinerHelper::applySDivByPow2(MachineInstr &MI) { 5494 assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV"); 5495 auto &SDiv = cast<GenericMachineInstr>(MI); 5496 Register Dst = SDiv.getReg(0); 5497 Register LHS = SDiv.getReg(1); 5498 Register RHS = SDiv.getReg(2); 5499 LLT Ty = MRI.getType(Dst); 5500 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 5501 LLT CCVT = 5502 Ty.isVector() ? LLT::vector(Ty.getElementCount(), 1) : LLT::scalar(1); 5503 5504 // Effectively we want to lower G_SDIV %lhs, %rhs, where %rhs is a power of 2, 5505 // to the following version: 5506 // 5507 // %c1 = G_CTTZ %rhs 5508 // %inexact = G_SUB $bitwidth, %c1 5509 // %sign = %G_ASHR %lhs, $(bitwidth - 1) 5510 // %lshr = G_LSHR %sign, %inexact 5511 // %add = G_ADD %lhs, %lshr 5512 // %ashr = G_ASHR %add, %c1 5513 // %ashr = G_SELECT, %isoneorallones, %lhs, %ashr 5514 // %zero = G_CONSTANT $0 5515 // %neg = G_NEG %ashr 5516 // %isneg = G_ICMP SLT %rhs, %zero 5517 // %res = G_SELECT %isneg, %neg, %ashr 5518 5519 unsigned BitWidth = Ty.getScalarSizeInBits(); 5520 auto Zero = Builder.buildConstant(Ty, 0); 5521 5522 auto Bits = Builder.buildConstant(ShiftAmtTy, BitWidth); 5523 auto C1 = Builder.buildCTTZ(ShiftAmtTy, RHS); 5524 auto Inexact = Builder.buildSub(ShiftAmtTy, Bits, C1); 5525 // Splat the sign bit into the register 5526 auto Sign = Builder.buildAShr( 5527 Ty, LHS, Builder.buildConstant(ShiftAmtTy, BitWidth - 1)); 5528 5529 // Add (LHS < 0) ? abs2 - 1 : 0; 5530 auto LSrl = Builder.buildLShr(Ty, Sign, Inexact); 5531 auto Add = Builder.buildAdd(Ty, LHS, LSrl); 5532 auto AShr = Builder.buildAShr(Ty, Add, C1); 5533 5534 // Special case: (sdiv X, 1) -> X 5535 // Special Case: (sdiv X, -1) -> 0-X 5536 auto One = Builder.buildConstant(Ty, 1); 5537 auto MinusOne = Builder.buildConstant(Ty, -1); 5538 auto IsOne = Builder.buildICmp(CmpInst::Predicate::ICMP_EQ, CCVT, RHS, One); 5539 auto IsMinusOne = 5540 Builder.buildICmp(CmpInst::Predicate::ICMP_EQ, CCVT, RHS, MinusOne); 5541 auto IsOneOrMinusOne = Builder.buildOr(CCVT, IsOne, IsMinusOne); 5542 AShr = Builder.buildSelect(Ty, IsOneOrMinusOne, LHS, AShr); 5543 5544 // If divided by a positive value, we're done. Otherwise, the result must be 5545 // negated. 5546 auto Neg = Builder.buildNeg(Ty, AShr); 5547 auto IsNeg = Builder.buildICmp(CmpInst::Predicate::ICMP_SLT, CCVT, RHS, Zero); 5548 Builder.buildSelect(MI.getOperand(0).getReg(), IsNeg, Neg, AShr); 5549 MI.eraseFromParent(); 5550 } 5551 5552 void CombinerHelper::applyUDivByPow2(MachineInstr &MI) { 5553 assert(MI.getOpcode() == TargetOpcode::G_UDIV && "Expected UDIV"); 5554 auto &UDiv = cast<GenericMachineInstr>(MI); 5555 Register Dst = UDiv.getReg(0); 5556 Register LHS = UDiv.getReg(1); 5557 Register RHS = UDiv.getReg(2); 5558 LLT Ty = MRI.getType(Dst); 5559 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 5560 5561 auto C1 = Builder.buildCTTZ(ShiftAmtTy, RHS); 5562 Builder.buildLShr(MI.getOperand(0).getReg(), LHS, C1); 5563 MI.eraseFromParent(); 5564 } 5565 5566 bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) { 5567 assert(MI.getOpcode() == TargetOpcode::G_UMULH); 5568 Register RHS = MI.getOperand(2).getReg(); 5569 Register Dst = MI.getOperand(0).getReg(); 5570 LLT Ty = MRI.getType(Dst); 5571 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 5572 auto MatchPow2ExceptOne = [&](const Constant *C) { 5573 if (auto *CI = dyn_cast<ConstantInt>(C)) 5574 return CI->getValue().isPowerOf2() && !CI->getValue().isOne(); 5575 return false; 5576 }; 5577 if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false)) 5578 return false; 5579 return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}}); 5580 } 5581 5582 void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) { 5583 Register LHS = MI.getOperand(1).getReg(); 5584 Register RHS = MI.getOperand(2).getReg(); 5585 Register Dst = MI.getOperand(0).getReg(); 5586 LLT Ty = MRI.getType(Dst); 5587 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 5588 unsigned NumEltBits = Ty.getScalarSizeInBits(); 5589 5590 auto LogBase2 = buildLogBase2(RHS, Builder); 5591 auto ShiftAmt = 5592 Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2); 5593 auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt); 5594 Builder.buildLShr(Dst, LHS, Trunc); 5595 MI.eraseFromParent(); 5596 } 5597 5598 bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI, 5599 BuildFnTy &MatchInfo) { 5600 unsigned Opc = MI.getOpcode(); 5601 assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB || 5602 Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 5603 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA); 5604 5605 Register Dst = MI.getOperand(0).getReg(); 5606 Register X = MI.getOperand(1).getReg(); 5607 Register Y = MI.getOperand(2).getReg(); 5608 LLT Type = MRI.getType(Dst); 5609 5610 // fold (fadd x, fneg(y)) -> (fsub x, y) 5611 // fold (fadd fneg(y), x) -> (fsub x, y) 5612 // G_ADD is commutative so both cases are checked by m_GFAdd 5613 if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 5614 isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) { 5615 Opc = TargetOpcode::G_FSUB; 5616 } 5617 /// fold (fsub x, fneg(y)) -> (fadd x, y) 5618 else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 5619 isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) { 5620 Opc = TargetOpcode::G_FADD; 5621 } 5622 // fold (fmul fneg(x), fneg(y)) -> (fmul x, y) 5623 // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y) 5624 // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z) 5625 // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z) 5626 else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 5627 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) && 5628 mi_match(X, MRI, m_GFNeg(m_Reg(X))) && 5629 mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) { 5630 // no opcode change 5631 } else 5632 return false; 5633 5634 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5635 Observer.changingInstr(MI); 5636 MI.setDesc(B.getTII().get(Opc)); 5637 MI.getOperand(1).setReg(X); 5638 MI.getOperand(2).setReg(Y); 5639 Observer.changedInstr(MI); 5640 }; 5641 return true; 5642 } 5643 5644 bool CombinerHelper::matchFsubToFneg(MachineInstr &MI, Register &MatchInfo) { 5645 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5646 5647 Register LHS = MI.getOperand(1).getReg(); 5648 MatchInfo = MI.getOperand(2).getReg(); 5649 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 5650 5651 const auto LHSCst = Ty.isVector() 5652 ? getFConstantSplat(LHS, MRI, /* allowUndef */ true) 5653 : getFConstantVRegValWithLookThrough(LHS, MRI); 5654 if (!LHSCst) 5655 return false; 5656 5657 // -0.0 is always allowed 5658 if (LHSCst->Value.isNegZero()) 5659 return true; 5660 5661 // +0.0 is only allowed if nsz is set. 5662 if (LHSCst->Value.isPosZero()) 5663 return MI.getFlag(MachineInstr::FmNsz); 5664 5665 return false; 5666 } 5667 5668 void CombinerHelper::applyFsubToFneg(MachineInstr &MI, Register &MatchInfo) { 5669 Register Dst = MI.getOperand(0).getReg(); 5670 Builder.buildFNeg( 5671 Dst, Builder.buildFCanonicalize(MRI.getType(Dst), MatchInfo).getReg(0)); 5672 eraseInst(MI); 5673 } 5674 5675 /// Checks if \p MI is TargetOpcode::G_FMUL and contractable either 5676 /// due to global flags or MachineInstr flags. 5677 static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) { 5678 if (MI.getOpcode() != TargetOpcode::G_FMUL) 5679 return false; 5680 return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract); 5681 } 5682 5683 static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1, 5684 const MachineRegisterInfo &MRI) { 5685 return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()), 5686 MRI.use_instr_nodbg_end()) > 5687 std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()), 5688 MRI.use_instr_nodbg_end()); 5689 } 5690 5691 bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI, 5692 bool &AllowFusionGlobally, 5693 bool &HasFMAD, bool &Aggressive, 5694 bool CanReassociate) { 5695 5696 auto *MF = MI.getMF(); 5697 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 5698 const TargetOptions &Options = MF->getTarget().Options; 5699 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5700 5701 if (CanReassociate && 5702 !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc))) 5703 return false; 5704 5705 // Floating-point multiply-add with intermediate rounding. 5706 HasFMAD = (!isPreLegalize() && TLI.isFMADLegal(MI, DstType)); 5707 // Floating-point multiply-add without intermediate rounding. 5708 bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) && 5709 isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}}); 5710 // No valid opcode, do not combine. 5711 if (!HasFMAD && !HasFMA) 5712 return false; 5713 5714 AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast || 5715 Options.UnsafeFPMath || HasFMAD; 5716 // If the addition is not contractable, do not combine. 5717 if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract)) 5718 return false; 5719 5720 Aggressive = TLI.enableAggressiveFMAFusion(DstType); 5721 return true; 5722 } 5723 5724 bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA( 5725 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5726 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5727 5728 bool AllowFusionGlobally, HasFMAD, Aggressive; 5729 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5730 return false; 5731 5732 Register Op1 = MI.getOperand(1).getReg(); 5733 Register Op2 = MI.getOperand(2).getReg(); 5734 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5735 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5736 unsigned PreferredFusedOpcode = 5737 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5738 5739 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5740 // prefer to fold the multiply with fewer uses. 5741 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5742 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5743 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5744 std::swap(LHS, RHS); 5745 } 5746 5747 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 5748 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5749 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) { 5750 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5751 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5752 {LHS.MI->getOperand(1).getReg(), 5753 LHS.MI->getOperand(2).getReg(), RHS.Reg}); 5754 }; 5755 return true; 5756 } 5757 5758 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 5759 if (isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5760 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) { 5761 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5762 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5763 {RHS.MI->getOperand(1).getReg(), 5764 RHS.MI->getOperand(2).getReg(), LHS.Reg}); 5765 }; 5766 return true; 5767 } 5768 5769 return false; 5770 } 5771 5772 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA( 5773 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5774 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5775 5776 bool AllowFusionGlobally, HasFMAD, Aggressive; 5777 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5778 return false; 5779 5780 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5781 Register Op1 = MI.getOperand(1).getReg(); 5782 Register Op2 = MI.getOperand(2).getReg(); 5783 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5784 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5785 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5786 5787 unsigned PreferredFusedOpcode = 5788 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5789 5790 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5791 // prefer to fold the multiply with fewer uses. 5792 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5793 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5794 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5795 std::swap(LHS, RHS); 5796 } 5797 5798 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 5799 MachineInstr *FpExtSrc; 5800 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && 5801 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 5802 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5803 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 5804 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5805 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 5806 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 5807 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5808 {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg}); 5809 }; 5810 return true; 5811 } 5812 5813 // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z) 5814 // Note: Commutes FADD operands. 5815 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && 5816 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 5817 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5818 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 5819 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5820 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 5821 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 5822 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5823 {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg}); 5824 }; 5825 return true; 5826 } 5827 5828 return false; 5829 } 5830 5831 bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA( 5832 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5833 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5834 5835 bool AllowFusionGlobally, HasFMAD, Aggressive; 5836 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true)) 5837 return false; 5838 5839 Register Op1 = MI.getOperand(1).getReg(); 5840 Register Op2 = MI.getOperand(2).getReg(); 5841 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5842 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5843 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5844 5845 unsigned PreferredFusedOpcode = 5846 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5847 5848 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5849 // prefer to fold the multiply with fewer uses. 5850 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5851 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5852 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5853 std::swap(LHS, RHS); 5854 } 5855 5856 MachineInstr *FMA = nullptr; 5857 Register Z; 5858 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z)) 5859 if (LHS.MI->getOpcode() == PreferredFusedOpcode && 5860 (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() == 5861 TargetOpcode::G_FMUL) && 5862 MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) && 5863 MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) { 5864 FMA = LHS.MI; 5865 Z = RHS.Reg; 5866 } 5867 // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z)) 5868 else if (RHS.MI->getOpcode() == PreferredFusedOpcode && 5869 (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() == 5870 TargetOpcode::G_FMUL) && 5871 MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) && 5872 MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) { 5873 Z = LHS.Reg; 5874 FMA = RHS.MI; 5875 } 5876 5877 if (FMA) { 5878 MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg()); 5879 Register X = FMA->getOperand(1).getReg(); 5880 Register Y = FMA->getOperand(2).getReg(); 5881 Register U = FMulMI->getOperand(1).getReg(); 5882 Register V = FMulMI->getOperand(2).getReg(); 5883 5884 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5885 Register InnerFMA = MRI.createGenericVirtualRegister(DstTy); 5886 B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z}); 5887 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5888 {X, Y, InnerFMA}); 5889 }; 5890 return true; 5891 } 5892 5893 return false; 5894 } 5895 5896 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive( 5897 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5898 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5899 5900 bool AllowFusionGlobally, HasFMAD, Aggressive; 5901 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5902 return false; 5903 5904 if (!Aggressive) 5905 return false; 5906 5907 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5908 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5909 Register Op1 = MI.getOperand(1).getReg(); 5910 Register Op2 = MI.getOperand(2).getReg(); 5911 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5912 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5913 5914 unsigned PreferredFusedOpcode = 5915 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5916 5917 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5918 // prefer to fold the multiply with fewer uses. 5919 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5920 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5921 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5922 std::swap(LHS, RHS); 5923 } 5924 5925 // Builds: (fma x, y, (fma (fpext u), (fpext v), z)) 5926 auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X, 5927 Register Y, MachineIRBuilder &B) { 5928 Register FpExtU = B.buildFPExt(DstType, U).getReg(0); 5929 Register FpExtV = B.buildFPExt(DstType, V).getReg(0); 5930 Register InnerFMA = 5931 B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z}) 5932 .getReg(0); 5933 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5934 {X, Y, InnerFMA}); 5935 }; 5936 5937 MachineInstr *FMulMI, *FMAMI; 5938 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 5939 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5940 if (LHS.MI->getOpcode() == PreferredFusedOpcode && 5941 mi_match(LHS.MI->getOperand(3).getReg(), MRI, 5942 m_GFPExt(m_MInstr(FMulMI))) && 5943 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5944 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5945 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5946 MatchInfo = [=](MachineIRBuilder &B) { 5947 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5948 FMulMI->getOperand(2).getReg(), RHS.Reg, 5949 LHS.MI->getOperand(1).getReg(), 5950 LHS.MI->getOperand(2).getReg(), B); 5951 }; 5952 return true; 5953 } 5954 5955 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 5956 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5957 // FIXME: This turns two single-precision and one double-precision 5958 // operation into two double-precision operations, which might not be 5959 // interesting for all targets, especially GPUs. 5960 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && 5961 FMAMI->getOpcode() == PreferredFusedOpcode) { 5962 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 5963 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 5964 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5965 MRI.getType(FMAMI->getOperand(0).getReg()))) { 5966 MatchInfo = [=](MachineIRBuilder &B) { 5967 Register X = FMAMI->getOperand(1).getReg(); 5968 Register Y = FMAMI->getOperand(2).getReg(); 5969 X = B.buildFPExt(DstType, X).getReg(0); 5970 Y = B.buildFPExt(DstType, Y).getReg(0); 5971 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5972 FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B); 5973 }; 5974 5975 return true; 5976 } 5977 } 5978 5979 // fold (fadd z, (fma x, y, (fpext (fmul u, v))) 5980 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5981 if (RHS.MI->getOpcode() == PreferredFusedOpcode && 5982 mi_match(RHS.MI->getOperand(3).getReg(), MRI, 5983 m_GFPExt(m_MInstr(FMulMI))) && 5984 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5985 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5986 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5987 MatchInfo = [=](MachineIRBuilder &B) { 5988 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5989 FMulMI->getOperand(2).getReg(), LHS.Reg, 5990 RHS.MI->getOperand(1).getReg(), 5991 RHS.MI->getOperand(2).getReg(), B); 5992 }; 5993 return true; 5994 } 5995 5996 // fold (fadd z, (fpext (fma x, y, (fmul u, v))) 5997 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5998 // FIXME: This turns two single-precision and one double-precision 5999 // operation into two double-precision operations, which might not be 6000 // interesting for all targets, especially GPUs. 6001 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && 6002 FMAMI->getOpcode() == PreferredFusedOpcode) { 6003 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 6004 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 6005 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 6006 MRI.getType(FMAMI->getOperand(0).getReg()))) { 6007 MatchInfo = [=](MachineIRBuilder &B) { 6008 Register X = FMAMI->getOperand(1).getReg(); 6009 Register Y = FMAMI->getOperand(2).getReg(); 6010 X = B.buildFPExt(DstType, X).getReg(0); 6011 Y = B.buildFPExt(DstType, Y).getReg(0); 6012 buildMatchInfo(FMulMI->getOperand(1).getReg(), 6013 FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B); 6014 }; 6015 return true; 6016 } 6017 } 6018 6019 return false; 6020 } 6021 6022 bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA( 6023 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 6024 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 6025 6026 bool AllowFusionGlobally, HasFMAD, Aggressive; 6027 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 6028 return false; 6029 6030 Register Op1 = MI.getOperand(1).getReg(); 6031 Register Op2 = MI.getOperand(2).getReg(); 6032 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 6033 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 6034 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 6035 6036 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 6037 // prefer to fold the multiply with fewer uses. 6038 int FirstMulHasFewerUses = true; 6039 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 6040 isContractableFMul(*RHS.MI, AllowFusionGlobally) && 6041 hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 6042 FirstMulHasFewerUses = false; 6043 6044 unsigned PreferredFusedOpcode = 6045 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 6046 6047 // fold (fsub (fmul x, y), z) -> (fma x, y, -z) 6048 if (FirstMulHasFewerUses && 6049 (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 6050 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) { 6051 MatchInfo = [=, &MI](MachineIRBuilder &B) { 6052 Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0); 6053 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 6054 {LHS.MI->getOperand(1).getReg(), 6055 LHS.MI->getOperand(2).getReg(), NegZ}); 6056 }; 6057 return true; 6058 } 6059 // fold (fsub x, (fmul y, z)) -> (fma -y, z, x) 6060 else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) && 6061 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) { 6062 MatchInfo = [=, &MI](MachineIRBuilder &B) { 6063 Register NegY = 6064 B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0); 6065 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 6066 {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg}); 6067 }; 6068 return true; 6069 } 6070 6071 return false; 6072 } 6073 6074 bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA( 6075 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 6076 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 6077 6078 bool AllowFusionGlobally, HasFMAD, Aggressive; 6079 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 6080 return false; 6081 6082 Register LHSReg = MI.getOperand(1).getReg(); 6083 Register RHSReg = MI.getOperand(2).getReg(); 6084 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 6085 6086 unsigned PreferredFusedOpcode = 6087 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 6088 6089 MachineInstr *FMulMI; 6090 // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z)) 6091 if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 6092 (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) && 6093 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 6094 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 6095 MatchInfo = [=, &MI](MachineIRBuilder &B) { 6096 Register NegX = 6097 B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 6098 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 6099 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 6100 {NegX, FMulMI->getOperand(2).getReg(), NegZ}); 6101 }; 6102 return true; 6103 } 6104 6105 // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x) 6106 if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 6107 (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) && 6108 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 6109 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 6110 MatchInfo = [=, &MI](MachineIRBuilder &B) { 6111 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 6112 {FMulMI->getOperand(1).getReg(), 6113 FMulMI->getOperand(2).getReg(), LHSReg}); 6114 }; 6115 return true; 6116 } 6117 6118 return false; 6119 } 6120 6121 bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA( 6122 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 6123 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 6124 6125 bool AllowFusionGlobally, HasFMAD, Aggressive; 6126 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 6127 return false; 6128 6129 Register LHSReg = MI.getOperand(1).getReg(); 6130 Register RHSReg = MI.getOperand(2).getReg(); 6131 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 6132 6133 unsigned PreferredFusedOpcode = 6134 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 6135 6136 MachineInstr *FMulMI; 6137 // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z)) 6138 if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 6139 isContractableFMul(*FMulMI, AllowFusionGlobally) && 6140 (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) { 6141 MatchInfo = [=, &MI](MachineIRBuilder &B) { 6142 Register FpExtX = 6143 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 6144 Register FpExtY = 6145 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 6146 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 6147 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 6148 {FpExtX, FpExtY, NegZ}); 6149 }; 6150 return true; 6151 } 6152 6153 // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x) 6154 if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 6155 isContractableFMul(*FMulMI, AllowFusionGlobally) && 6156 (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) { 6157 MatchInfo = [=, &MI](MachineIRBuilder &B) { 6158 Register FpExtY = 6159 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 6160 Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0); 6161 Register FpExtZ = 6162 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 6163 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 6164 {NegY, FpExtZ, LHSReg}); 6165 }; 6166 return true; 6167 } 6168 6169 return false; 6170 } 6171 6172 bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA( 6173 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 6174 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 6175 6176 bool AllowFusionGlobally, HasFMAD, Aggressive; 6177 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 6178 return false; 6179 6180 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 6181 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 6182 Register LHSReg = MI.getOperand(1).getReg(); 6183 Register RHSReg = MI.getOperand(2).getReg(); 6184 6185 unsigned PreferredFusedOpcode = 6186 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 6187 6188 auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z, 6189 MachineIRBuilder &B) { 6190 Register FpExtX = B.buildFPExt(DstTy, X).getReg(0); 6191 Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0); 6192 B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z}); 6193 }; 6194 6195 MachineInstr *FMulMI; 6196 // fold (fsub (fpext (fneg (fmul x, y))), z) -> 6197 // (fneg (fma (fpext x), (fpext y), z)) 6198 // fold (fsub (fneg (fpext (fmul x, y))), z) -> 6199 // (fneg (fma (fpext x), (fpext y), z)) 6200 if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 6201 mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 6202 isContractableFMul(*FMulMI, AllowFusionGlobally) && 6203 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 6204 MRI.getType(FMulMI->getOperand(0).getReg()))) { 6205 MatchInfo = [=, &MI](MachineIRBuilder &B) { 6206 Register FMAReg = MRI.createGenericVirtualRegister(DstTy); 6207 buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(), 6208 FMulMI->getOperand(2).getReg(), RHSReg, B); 6209 B.buildFNeg(MI.getOperand(0).getReg(), FMAReg); 6210 }; 6211 return true; 6212 } 6213 6214 // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 6215 // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 6216 if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 6217 mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 6218 isContractableFMul(*FMulMI, AllowFusionGlobally) && 6219 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 6220 MRI.getType(FMulMI->getOperand(0).getReg()))) { 6221 MatchInfo = [=, &MI](MachineIRBuilder &B) { 6222 buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(), 6223 FMulMI->getOperand(2).getReg(), LHSReg, B); 6224 }; 6225 return true; 6226 } 6227 6228 return false; 6229 } 6230 6231 bool CombinerHelper::matchCombineFMinMaxNaN(MachineInstr &MI, 6232 unsigned &IdxToPropagate) { 6233 bool PropagateNaN; 6234 switch (MI.getOpcode()) { 6235 default: 6236 return false; 6237 case TargetOpcode::G_FMINNUM: 6238 case TargetOpcode::G_FMAXNUM: 6239 PropagateNaN = false; 6240 break; 6241 case TargetOpcode::G_FMINIMUM: 6242 case TargetOpcode::G_FMAXIMUM: 6243 PropagateNaN = true; 6244 break; 6245 } 6246 6247 auto MatchNaN = [&](unsigned Idx) { 6248 Register MaybeNaNReg = MI.getOperand(Idx).getReg(); 6249 const ConstantFP *MaybeCst = getConstantFPVRegVal(MaybeNaNReg, MRI); 6250 if (!MaybeCst || !MaybeCst->getValueAPF().isNaN()) 6251 return false; 6252 IdxToPropagate = PropagateNaN ? Idx : (Idx == 1 ? 2 : 1); 6253 return true; 6254 }; 6255 6256 return MatchNaN(1) || MatchNaN(2); 6257 } 6258 6259 bool CombinerHelper::matchAddSubSameReg(MachineInstr &MI, Register &Src) { 6260 assert(MI.getOpcode() == TargetOpcode::G_ADD && "Expected a G_ADD"); 6261 Register LHS = MI.getOperand(1).getReg(); 6262 Register RHS = MI.getOperand(2).getReg(); 6263 6264 // Helper lambda to check for opportunities for 6265 // A + (B - A) -> B 6266 // (B - A) + A -> B 6267 auto CheckFold = [&](Register MaybeSub, Register MaybeSameReg) { 6268 Register Reg; 6269 return mi_match(MaybeSub, MRI, m_GSub(m_Reg(Src), m_Reg(Reg))) && 6270 Reg == MaybeSameReg; 6271 }; 6272 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 6273 } 6274 6275 bool CombinerHelper::matchBuildVectorIdentityFold(MachineInstr &MI, 6276 Register &MatchInfo) { 6277 // This combine folds the following patterns: 6278 // 6279 // G_BUILD_VECTOR_TRUNC (G_BITCAST(x), G_LSHR(G_BITCAST(x), k)) 6280 // G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), G_TRUNC(G_LSHR(G_BITCAST(x), k))) 6281 // into 6282 // x 6283 // if 6284 // k == sizeof(VecEltTy)/2 6285 // type(x) == type(dst) 6286 // 6287 // G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), undef) 6288 // into 6289 // x 6290 // if 6291 // type(x) == type(dst) 6292 6293 LLT DstVecTy = MRI.getType(MI.getOperand(0).getReg()); 6294 LLT DstEltTy = DstVecTy.getElementType(); 6295 6296 Register Lo, Hi; 6297 6298 if (mi_match( 6299 MI, MRI, 6300 m_GBuildVector(m_GTrunc(m_GBitcast(m_Reg(Lo))), m_GImplicitDef()))) { 6301 MatchInfo = Lo; 6302 return MRI.getType(MatchInfo) == DstVecTy; 6303 } 6304 6305 std::optional<ValueAndVReg> ShiftAmount; 6306 const auto LoPattern = m_GBitcast(m_Reg(Lo)); 6307 const auto HiPattern = m_GLShr(m_GBitcast(m_Reg(Hi)), m_GCst(ShiftAmount)); 6308 if (mi_match( 6309 MI, MRI, 6310 m_any_of(m_GBuildVectorTrunc(LoPattern, HiPattern), 6311 m_GBuildVector(m_GTrunc(LoPattern), m_GTrunc(HiPattern))))) { 6312 if (Lo == Hi && ShiftAmount->Value == DstEltTy.getSizeInBits()) { 6313 MatchInfo = Lo; 6314 return MRI.getType(MatchInfo) == DstVecTy; 6315 } 6316 } 6317 6318 return false; 6319 } 6320 6321 bool CombinerHelper::matchTruncBuildVectorFold(MachineInstr &MI, 6322 Register &MatchInfo) { 6323 // Replace (G_TRUNC (G_BITCAST (G_BUILD_VECTOR x, y)) with just x 6324 // if type(x) == type(G_TRUNC) 6325 if (!mi_match(MI.getOperand(1).getReg(), MRI, 6326 m_GBitcast(m_GBuildVector(m_Reg(MatchInfo), m_Reg())))) 6327 return false; 6328 6329 return MRI.getType(MatchInfo) == MRI.getType(MI.getOperand(0).getReg()); 6330 } 6331 6332 bool CombinerHelper::matchTruncLshrBuildVectorFold(MachineInstr &MI, 6333 Register &MatchInfo) { 6334 // Replace (G_TRUNC (G_LSHR (G_BITCAST (G_BUILD_VECTOR x, y)), K)) with 6335 // y if K == size of vector element type 6336 std::optional<ValueAndVReg> ShiftAmt; 6337 if (!mi_match(MI.getOperand(1).getReg(), MRI, 6338 m_GLShr(m_GBitcast(m_GBuildVector(m_Reg(), m_Reg(MatchInfo))), 6339 m_GCst(ShiftAmt)))) 6340 return false; 6341 6342 LLT MatchTy = MRI.getType(MatchInfo); 6343 return ShiftAmt->Value.getZExtValue() == MatchTy.getSizeInBits() && 6344 MatchTy == MRI.getType(MI.getOperand(0).getReg()); 6345 } 6346 6347 unsigned CombinerHelper::getFPMinMaxOpcForSelect( 6348 CmpInst::Predicate Pred, LLT DstTy, 6349 SelectPatternNaNBehaviour VsNaNRetVal) const { 6350 assert(VsNaNRetVal != SelectPatternNaNBehaviour::NOT_APPLICABLE && 6351 "Expected a NaN behaviour?"); 6352 // Choose an opcode based off of legality or the behaviour when one of the 6353 // LHS/RHS may be NaN. 6354 switch (Pred) { 6355 default: 6356 return 0; 6357 case CmpInst::FCMP_UGT: 6358 case CmpInst::FCMP_UGE: 6359 case CmpInst::FCMP_OGT: 6360 case CmpInst::FCMP_OGE: 6361 if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER) 6362 return TargetOpcode::G_FMAXNUM; 6363 if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN) 6364 return TargetOpcode::G_FMAXIMUM; 6365 if (isLegal({TargetOpcode::G_FMAXNUM, {DstTy}})) 6366 return TargetOpcode::G_FMAXNUM; 6367 if (isLegal({TargetOpcode::G_FMAXIMUM, {DstTy}})) 6368 return TargetOpcode::G_FMAXIMUM; 6369 return 0; 6370 case CmpInst::FCMP_ULT: 6371 case CmpInst::FCMP_ULE: 6372 case CmpInst::FCMP_OLT: 6373 case CmpInst::FCMP_OLE: 6374 if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER) 6375 return TargetOpcode::G_FMINNUM; 6376 if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN) 6377 return TargetOpcode::G_FMINIMUM; 6378 if (isLegal({TargetOpcode::G_FMINNUM, {DstTy}})) 6379 return TargetOpcode::G_FMINNUM; 6380 if (!isLegal({TargetOpcode::G_FMINIMUM, {DstTy}})) 6381 return 0; 6382 return TargetOpcode::G_FMINIMUM; 6383 } 6384 } 6385 6386 CombinerHelper::SelectPatternNaNBehaviour 6387 CombinerHelper::computeRetValAgainstNaN(Register LHS, Register RHS, 6388 bool IsOrderedComparison) const { 6389 bool LHSSafe = isKnownNeverNaN(LHS, MRI); 6390 bool RHSSafe = isKnownNeverNaN(RHS, MRI); 6391 // Completely unsafe. 6392 if (!LHSSafe && !RHSSafe) 6393 return SelectPatternNaNBehaviour::NOT_APPLICABLE; 6394 if (LHSSafe && RHSSafe) 6395 return SelectPatternNaNBehaviour::RETURNS_ANY; 6396 // An ordered comparison will return false when given a NaN, so it 6397 // returns the RHS. 6398 if (IsOrderedComparison) 6399 return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_NAN 6400 : SelectPatternNaNBehaviour::RETURNS_OTHER; 6401 // An unordered comparison will return true when given a NaN, so it 6402 // returns the LHS. 6403 return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_OTHER 6404 : SelectPatternNaNBehaviour::RETURNS_NAN; 6405 } 6406 6407 bool CombinerHelper::matchFPSelectToMinMax(Register Dst, Register Cond, 6408 Register TrueVal, Register FalseVal, 6409 BuildFnTy &MatchInfo) { 6410 // Match: select (fcmp cond x, y) x, y 6411 // select (fcmp cond x, y) y, x 6412 // And turn it into fminnum/fmaxnum or fmin/fmax based off of the condition. 6413 LLT DstTy = MRI.getType(Dst); 6414 // Bail out early on pointers, since we'll never want to fold to a min/max. 6415 if (DstTy.isPointer()) 6416 return false; 6417 // Match a floating point compare with a less-than/greater-than predicate. 6418 // TODO: Allow multiple users of the compare if they are all selects. 6419 CmpInst::Predicate Pred; 6420 Register CmpLHS, CmpRHS; 6421 if (!mi_match(Cond, MRI, 6422 m_OneNonDBGUse( 6423 m_GFCmp(m_Pred(Pred), m_Reg(CmpLHS), m_Reg(CmpRHS)))) || 6424 CmpInst::isEquality(Pred)) 6425 return false; 6426 SelectPatternNaNBehaviour ResWithKnownNaNInfo = 6427 computeRetValAgainstNaN(CmpLHS, CmpRHS, CmpInst::isOrdered(Pred)); 6428 if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::NOT_APPLICABLE) 6429 return false; 6430 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 6431 std::swap(CmpLHS, CmpRHS); 6432 Pred = CmpInst::getSwappedPredicate(Pred); 6433 if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_NAN) 6434 ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_OTHER; 6435 else if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_OTHER) 6436 ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_NAN; 6437 } 6438 if (TrueVal != CmpLHS || FalseVal != CmpRHS) 6439 return false; 6440 // Decide what type of max/min this should be based off of the predicate. 6441 unsigned Opc = getFPMinMaxOpcForSelect(Pred, DstTy, ResWithKnownNaNInfo); 6442 if (!Opc || !isLegal({Opc, {DstTy}})) 6443 return false; 6444 // Comparisons between signed zero and zero may have different results... 6445 // unless we have fmaximum/fminimum. In that case, we know -0 < 0. 6446 if (Opc != TargetOpcode::G_FMAXIMUM && Opc != TargetOpcode::G_FMINIMUM) { 6447 // We don't know if a comparison between two 0s will give us a consistent 6448 // result. Be conservative and only proceed if at least one side is 6449 // non-zero. 6450 auto KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpLHS, MRI); 6451 if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero()) { 6452 KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpRHS, MRI); 6453 if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero()) 6454 return false; 6455 } 6456 } 6457 MatchInfo = [=](MachineIRBuilder &B) { 6458 B.buildInstr(Opc, {Dst}, {CmpLHS, CmpRHS}); 6459 }; 6460 return true; 6461 } 6462 6463 bool CombinerHelper::matchSimplifySelectToMinMax(MachineInstr &MI, 6464 BuildFnTy &MatchInfo) { 6465 // TODO: Handle integer cases. 6466 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 6467 // Condition may be fed by a truncated compare. 6468 Register Cond = MI.getOperand(1).getReg(); 6469 Register MaybeTrunc; 6470 if (mi_match(Cond, MRI, m_OneNonDBGUse(m_GTrunc(m_Reg(MaybeTrunc))))) 6471 Cond = MaybeTrunc; 6472 Register Dst = MI.getOperand(0).getReg(); 6473 Register TrueVal = MI.getOperand(2).getReg(); 6474 Register FalseVal = MI.getOperand(3).getReg(); 6475 return matchFPSelectToMinMax(Dst, Cond, TrueVal, FalseVal, MatchInfo); 6476 } 6477 6478 bool CombinerHelper::matchRedundantBinOpInEquality(MachineInstr &MI, 6479 BuildFnTy &MatchInfo) { 6480 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 6481 // (X + Y) == X --> Y == 0 6482 // (X + Y) != X --> Y != 0 6483 // (X - Y) == X --> Y == 0 6484 // (X - Y) != X --> Y != 0 6485 // (X ^ Y) == X --> Y == 0 6486 // (X ^ Y) != X --> Y != 0 6487 Register Dst = MI.getOperand(0).getReg(); 6488 CmpInst::Predicate Pred; 6489 Register X, Y, OpLHS, OpRHS; 6490 bool MatchedSub = mi_match( 6491 Dst, MRI, 6492 m_c_GICmp(m_Pred(Pred), m_Reg(X), m_GSub(m_Reg(OpLHS), m_Reg(Y)))); 6493 if (MatchedSub && X != OpLHS) 6494 return false; 6495 if (!MatchedSub) { 6496 if (!mi_match(Dst, MRI, 6497 m_c_GICmp(m_Pred(Pred), m_Reg(X), 6498 m_any_of(m_GAdd(m_Reg(OpLHS), m_Reg(OpRHS)), 6499 m_GXor(m_Reg(OpLHS), m_Reg(OpRHS)))))) 6500 return false; 6501 Y = X == OpLHS ? OpRHS : X == OpRHS ? OpLHS : Register(); 6502 } 6503 MatchInfo = [=](MachineIRBuilder &B) { 6504 auto Zero = B.buildConstant(MRI.getType(Y), 0); 6505 B.buildICmp(Pred, Dst, Y, Zero); 6506 }; 6507 return CmpInst::isEquality(Pred) && Y.isValid(); 6508 } 6509 6510 bool CombinerHelper::matchShiftsTooBig(MachineInstr &MI) { 6511 Register ShiftReg = MI.getOperand(2).getReg(); 6512 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 6513 auto IsShiftTooBig = [&](const Constant *C) { 6514 auto *CI = dyn_cast<ConstantInt>(C); 6515 return CI && CI->uge(ResTy.getScalarSizeInBits()); 6516 }; 6517 return matchUnaryPredicate(MRI, ShiftReg, IsShiftTooBig); 6518 } 6519 6520 bool CombinerHelper::matchCommuteConstantToRHS(MachineInstr &MI) { 6521 unsigned LHSOpndIdx = 1; 6522 unsigned RHSOpndIdx = 2; 6523 switch (MI.getOpcode()) { 6524 case TargetOpcode::G_UADDO: 6525 case TargetOpcode::G_SADDO: 6526 case TargetOpcode::G_UMULO: 6527 case TargetOpcode::G_SMULO: 6528 LHSOpndIdx = 2; 6529 RHSOpndIdx = 3; 6530 break; 6531 default: 6532 break; 6533 } 6534 Register LHS = MI.getOperand(LHSOpndIdx).getReg(); 6535 Register RHS = MI.getOperand(RHSOpndIdx).getReg(); 6536 if (!getIConstantVRegVal(LHS, MRI)) { 6537 // Skip commuting if LHS is not a constant. But, LHS may be a 6538 // G_CONSTANT_FOLD_BARRIER. If so we commute as long as we don't already 6539 // have a constant on the RHS. 6540 if (MRI.getVRegDef(LHS)->getOpcode() != 6541 TargetOpcode::G_CONSTANT_FOLD_BARRIER) 6542 return false; 6543 } 6544 // Commute as long as RHS is not a constant or G_CONSTANT_FOLD_BARRIER. 6545 return MRI.getVRegDef(RHS)->getOpcode() != 6546 TargetOpcode::G_CONSTANT_FOLD_BARRIER && 6547 !getIConstantVRegVal(RHS, MRI); 6548 } 6549 6550 bool CombinerHelper::matchCommuteFPConstantToRHS(MachineInstr &MI) { 6551 Register LHS = MI.getOperand(1).getReg(); 6552 Register RHS = MI.getOperand(2).getReg(); 6553 std::optional<FPValueAndVReg> ValAndVReg; 6554 if (!mi_match(LHS, MRI, m_GFCstOrSplat(ValAndVReg))) 6555 return false; 6556 return !mi_match(RHS, MRI, m_GFCstOrSplat(ValAndVReg)); 6557 } 6558 6559 void CombinerHelper::applyCommuteBinOpOperands(MachineInstr &MI) { 6560 Observer.changingInstr(MI); 6561 unsigned LHSOpndIdx = 1; 6562 unsigned RHSOpndIdx = 2; 6563 switch (MI.getOpcode()) { 6564 case TargetOpcode::G_UADDO: 6565 case TargetOpcode::G_SADDO: 6566 case TargetOpcode::G_UMULO: 6567 case TargetOpcode::G_SMULO: 6568 LHSOpndIdx = 2; 6569 RHSOpndIdx = 3; 6570 break; 6571 default: 6572 break; 6573 } 6574 Register LHSReg = MI.getOperand(LHSOpndIdx).getReg(); 6575 Register RHSReg = MI.getOperand(RHSOpndIdx).getReg(); 6576 MI.getOperand(LHSOpndIdx).setReg(RHSReg); 6577 MI.getOperand(RHSOpndIdx).setReg(LHSReg); 6578 Observer.changedInstr(MI); 6579 } 6580 6581 bool CombinerHelper::isOneOrOneSplat(Register Src, bool AllowUndefs) { 6582 LLT SrcTy = MRI.getType(Src); 6583 if (SrcTy.isFixedVector()) 6584 return isConstantSplatVector(Src, 1, AllowUndefs); 6585 if (SrcTy.isScalar()) { 6586 if (AllowUndefs && getOpcodeDef<GImplicitDef>(Src, MRI) != nullptr) 6587 return true; 6588 auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI); 6589 return IConstant && IConstant->Value == 1; 6590 } 6591 return false; // scalable vector 6592 } 6593 6594 bool CombinerHelper::isZeroOrZeroSplat(Register Src, bool AllowUndefs) { 6595 LLT SrcTy = MRI.getType(Src); 6596 if (SrcTy.isFixedVector()) 6597 return isConstantSplatVector(Src, 0, AllowUndefs); 6598 if (SrcTy.isScalar()) { 6599 if (AllowUndefs && getOpcodeDef<GImplicitDef>(Src, MRI) != nullptr) 6600 return true; 6601 auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI); 6602 return IConstant && IConstant->Value == 0; 6603 } 6604 return false; // scalable vector 6605 } 6606 6607 // Ignores COPYs during conformance checks. 6608 // FIXME scalable vectors. 6609 bool CombinerHelper::isConstantSplatVector(Register Src, int64_t SplatValue, 6610 bool AllowUndefs) { 6611 GBuildVector *BuildVector = getOpcodeDef<GBuildVector>(Src, MRI); 6612 if (!BuildVector) 6613 return false; 6614 unsigned NumSources = BuildVector->getNumSources(); 6615 6616 for (unsigned I = 0; I < NumSources; ++I) { 6617 GImplicitDef *ImplicitDef = 6618 getOpcodeDef<GImplicitDef>(BuildVector->getSourceReg(I), MRI); 6619 if (ImplicitDef && AllowUndefs) 6620 continue; 6621 if (ImplicitDef && !AllowUndefs) 6622 return false; 6623 std::optional<ValueAndVReg> IConstant = 6624 getIConstantVRegValWithLookThrough(BuildVector->getSourceReg(I), MRI); 6625 if (IConstant && IConstant->Value == SplatValue) 6626 continue; 6627 return false; 6628 } 6629 return true; 6630 } 6631 6632 // Ignores COPYs during lookups. 6633 // FIXME scalable vectors 6634 std::optional<APInt> 6635 CombinerHelper::getConstantOrConstantSplatVector(Register Src) { 6636 auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI); 6637 if (IConstant) 6638 return IConstant->Value; 6639 6640 GBuildVector *BuildVector = getOpcodeDef<GBuildVector>(Src, MRI); 6641 if (!BuildVector) 6642 return std::nullopt; 6643 unsigned NumSources = BuildVector->getNumSources(); 6644 6645 std::optional<APInt> Value = std::nullopt; 6646 for (unsigned I = 0; I < NumSources; ++I) { 6647 std::optional<ValueAndVReg> IConstant = 6648 getIConstantVRegValWithLookThrough(BuildVector->getSourceReg(I), MRI); 6649 if (!IConstant) 6650 return std::nullopt; 6651 if (!Value) 6652 Value = IConstant->Value; 6653 else if (*Value != IConstant->Value) 6654 return std::nullopt; 6655 } 6656 return Value; 6657 } 6658 6659 // FIXME G_SPLAT_VECTOR 6660 bool CombinerHelper::isConstantOrConstantVectorI(Register Src) const { 6661 auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI); 6662 if (IConstant) 6663 return true; 6664 6665 GBuildVector *BuildVector = getOpcodeDef<GBuildVector>(Src, MRI); 6666 if (!BuildVector) 6667 return false; 6668 6669 unsigned NumSources = BuildVector->getNumSources(); 6670 for (unsigned I = 0; I < NumSources; ++I) { 6671 std::optional<ValueAndVReg> IConstant = 6672 getIConstantVRegValWithLookThrough(BuildVector->getSourceReg(I), MRI); 6673 if (!IConstant) 6674 return false; 6675 } 6676 return true; 6677 } 6678 6679 // TODO: use knownbits to determine zeros 6680 bool CombinerHelper::tryFoldSelectOfConstants(GSelect *Select, 6681 BuildFnTy &MatchInfo) { 6682 uint32_t Flags = Select->getFlags(); 6683 Register Dest = Select->getReg(0); 6684 Register Cond = Select->getCondReg(); 6685 Register True = Select->getTrueReg(); 6686 Register False = Select->getFalseReg(); 6687 LLT CondTy = MRI.getType(Select->getCondReg()); 6688 LLT TrueTy = MRI.getType(Select->getTrueReg()); 6689 6690 // We only do this combine for scalar boolean conditions. 6691 if (CondTy != LLT::scalar(1)) 6692 return false; 6693 6694 if (TrueTy.isPointer()) 6695 return false; 6696 6697 // Both are scalars. 6698 std::optional<ValueAndVReg> TrueOpt = 6699 getIConstantVRegValWithLookThrough(True, MRI); 6700 std::optional<ValueAndVReg> FalseOpt = 6701 getIConstantVRegValWithLookThrough(False, MRI); 6702 6703 if (!TrueOpt || !FalseOpt) 6704 return false; 6705 6706 APInt TrueValue = TrueOpt->Value; 6707 APInt FalseValue = FalseOpt->Value; 6708 6709 // select Cond, 1, 0 --> zext (Cond) 6710 if (TrueValue.isOne() && FalseValue.isZero()) { 6711 MatchInfo = [=](MachineIRBuilder &B) { 6712 B.setInstrAndDebugLoc(*Select); 6713 B.buildZExtOrTrunc(Dest, Cond); 6714 }; 6715 return true; 6716 } 6717 6718 // select Cond, -1, 0 --> sext (Cond) 6719 if (TrueValue.isAllOnes() && FalseValue.isZero()) { 6720 MatchInfo = [=](MachineIRBuilder &B) { 6721 B.setInstrAndDebugLoc(*Select); 6722 B.buildSExtOrTrunc(Dest, Cond); 6723 }; 6724 return true; 6725 } 6726 6727 // select Cond, 0, 1 --> zext (!Cond) 6728 if (TrueValue.isZero() && FalseValue.isOne()) { 6729 MatchInfo = [=](MachineIRBuilder &B) { 6730 B.setInstrAndDebugLoc(*Select); 6731 Register Inner = MRI.createGenericVirtualRegister(CondTy); 6732 B.buildNot(Inner, Cond); 6733 B.buildZExtOrTrunc(Dest, Inner); 6734 }; 6735 return true; 6736 } 6737 6738 // select Cond, 0, -1 --> sext (!Cond) 6739 if (TrueValue.isZero() && FalseValue.isAllOnes()) { 6740 MatchInfo = [=](MachineIRBuilder &B) { 6741 B.setInstrAndDebugLoc(*Select); 6742 Register Inner = MRI.createGenericVirtualRegister(CondTy); 6743 B.buildNot(Inner, Cond); 6744 B.buildSExtOrTrunc(Dest, Inner); 6745 }; 6746 return true; 6747 } 6748 6749 // select Cond, C1, C1-1 --> add (zext Cond), C1-1 6750 if (TrueValue - 1 == FalseValue) { 6751 MatchInfo = [=](MachineIRBuilder &B) { 6752 B.setInstrAndDebugLoc(*Select); 6753 Register Inner = MRI.createGenericVirtualRegister(TrueTy); 6754 B.buildZExtOrTrunc(Inner, Cond); 6755 B.buildAdd(Dest, Inner, False); 6756 }; 6757 return true; 6758 } 6759 6760 // select Cond, C1, C1+1 --> add (sext Cond), C1+1 6761 if (TrueValue + 1 == FalseValue) { 6762 MatchInfo = [=](MachineIRBuilder &B) { 6763 B.setInstrAndDebugLoc(*Select); 6764 Register Inner = MRI.createGenericVirtualRegister(TrueTy); 6765 B.buildSExtOrTrunc(Inner, Cond); 6766 B.buildAdd(Dest, Inner, False); 6767 }; 6768 return true; 6769 } 6770 6771 // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2) 6772 if (TrueValue.isPowerOf2() && FalseValue.isZero()) { 6773 MatchInfo = [=](MachineIRBuilder &B) { 6774 B.setInstrAndDebugLoc(*Select); 6775 Register Inner = MRI.createGenericVirtualRegister(TrueTy); 6776 B.buildZExtOrTrunc(Inner, Cond); 6777 // The shift amount must be scalar. 6778 LLT ShiftTy = TrueTy.isVector() ? TrueTy.getElementType() : TrueTy; 6779 auto ShAmtC = B.buildConstant(ShiftTy, TrueValue.exactLogBase2()); 6780 B.buildShl(Dest, Inner, ShAmtC, Flags); 6781 }; 6782 return true; 6783 } 6784 // select Cond, -1, C --> or (sext Cond), C 6785 if (TrueValue.isAllOnes()) { 6786 MatchInfo = [=](MachineIRBuilder &B) { 6787 B.setInstrAndDebugLoc(*Select); 6788 Register Inner = MRI.createGenericVirtualRegister(TrueTy); 6789 B.buildSExtOrTrunc(Inner, Cond); 6790 B.buildOr(Dest, Inner, False, Flags); 6791 }; 6792 return true; 6793 } 6794 6795 // select Cond, C, -1 --> or (sext (not Cond)), C 6796 if (FalseValue.isAllOnes()) { 6797 MatchInfo = [=](MachineIRBuilder &B) { 6798 B.setInstrAndDebugLoc(*Select); 6799 Register Not = MRI.createGenericVirtualRegister(CondTy); 6800 B.buildNot(Not, Cond); 6801 Register Inner = MRI.createGenericVirtualRegister(TrueTy); 6802 B.buildSExtOrTrunc(Inner, Not); 6803 B.buildOr(Dest, Inner, True, Flags); 6804 }; 6805 return true; 6806 } 6807 6808 return false; 6809 } 6810 6811 // TODO: use knownbits to determine zeros 6812 bool CombinerHelper::tryFoldBoolSelectToLogic(GSelect *Select, 6813 BuildFnTy &MatchInfo) { 6814 uint32_t Flags = Select->getFlags(); 6815 Register DstReg = Select->getReg(0); 6816 Register Cond = Select->getCondReg(); 6817 Register True = Select->getTrueReg(); 6818 Register False = Select->getFalseReg(); 6819 LLT CondTy = MRI.getType(Select->getCondReg()); 6820 LLT TrueTy = MRI.getType(Select->getTrueReg()); 6821 6822 // Boolean or fixed vector of booleans. 6823 if (CondTy.isScalableVector() || 6824 (CondTy.isFixedVector() && 6825 CondTy.getElementType().getScalarSizeInBits() != 1) || 6826 CondTy.getScalarSizeInBits() != 1) 6827 return false; 6828 6829 if (CondTy != TrueTy) 6830 return false; 6831 6832 // select Cond, Cond, F --> or Cond, F 6833 // select Cond, 1, F --> or Cond, F 6834 if ((Cond == True) || isOneOrOneSplat(True, /* AllowUndefs */ true)) { 6835 MatchInfo = [=](MachineIRBuilder &B) { 6836 B.setInstrAndDebugLoc(*Select); 6837 Register Ext = MRI.createGenericVirtualRegister(TrueTy); 6838 B.buildZExtOrTrunc(Ext, Cond); 6839 auto FreezeFalse = B.buildFreeze(TrueTy, False); 6840 B.buildOr(DstReg, Ext, FreezeFalse, Flags); 6841 }; 6842 return true; 6843 } 6844 6845 // select Cond, T, Cond --> and Cond, T 6846 // select Cond, T, 0 --> and Cond, T 6847 if ((Cond == False) || isZeroOrZeroSplat(False, /* AllowUndefs */ true)) { 6848 MatchInfo = [=](MachineIRBuilder &B) { 6849 B.setInstrAndDebugLoc(*Select); 6850 Register Ext = MRI.createGenericVirtualRegister(TrueTy); 6851 B.buildZExtOrTrunc(Ext, Cond); 6852 auto FreezeTrue = B.buildFreeze(TrueTy, True); 6853 B.buildAnd(DstReg, Ext, FreezeTrue); 6854 }; 6855 return true; 6856 } 6857 6858 // select Cond, T, 1 --> or (not Cond), T 6859 if (isOneOrOneSplat(False, /* AllowUndefs */ true)) { 6860 MatchInfo = [=](MachineIRBuilder &B) { 6861 B.setInstrAndDebugLoc(*Select); 6862 // First the not. 6863 Register Inner = MRI.createGenericVirtualRegister(CondTy); 6864 B.buildNot(Inner, Cond); 6865 // Then an ext to match the destination register. 6866 Register Ext = MRI.createGenericVirtualRegister(TrueTy); 6867 B.buildZExtOrTrunc(Ext, Inner); 6868 auto FreezeTrue = B.buildFreeze(TrueTy, True); 6869 B.buildOr(DstReg, Ext, FreezeTrue, Flags); 6870 }; 6871 return true; 6872 } 6873 6874 // select Cond, 0, F --> and (not Cond), F 6875 if (isZeroOrZeroSplat(True, /* AllowUndefs */ true)) { 6876 MatchInfo = [=](MachineIRBuilder &B) { 6877 B.setInstrAndDebugLoc(*Select); 6878 // First the not. 6879 Register Inner = MRI.createGenericVirtualRegister(CondTy); 6880 B.buildNot(Inner, Cond); 6881 // Then an ext to match the destination register. 6882 Register Ext = MRI.createGenericVirtualRegister(TrueTy); 6883 B.buildZExtOrTrunc(Ext, Inner); 6884 auto FreezeFalse = B.buildFreeze(TrueTy, False); 6885 B.buildAnd(DstReg, Ext, FreezeFalse); 6886 }; 6887 return true; 6888 } 6889 6890 return false; 6891 } 6892 6893 bool CombinerHelper::matchSelectIMinMax(const MachineOperand &MO, 6894 BuildFnTy &MatchInfo) { 6895 GSelect *Select = cast<GSelect>(MRI.getVRegDef(MO.getReg())); 6896 GICmp *Cmp = cast<GICmp>(MRI.getVRegDef(Select->getCondReg())); 6897 6898 Register DstReg = Select->getReg(0); 6899 Register True = Select->getTrueReg(); 6900 Register False = Select->getFalseReg(); 6901 LLT DstTy = MRI.getType(DstReg); 6902 6903 if (DstTy.isPointer()) 6904 return false; 6905 6906 // We want to fold the icmp and replace the select. 6907 if (!MRI.hasOneNonDBGUse(Cmp->getReg(0))) 6908 return false; 6909 6910 CmpInst::Predicate Pred = Cmp->getCond(); 6911 // We need a larger or smaller predicate for 6912 // canonicalization. 6913 if (CmpInst::isEquality(Pred)) 6914 return false; 6915 6916 Register CmpLHS = Cmp->getLHSReg(); 6917 Register CmpRHS = Cmp->getRHSReg(); 6918 6919 // We can swap CmpLHS and CmpRHS for higher hitrate. 6920 if (True == CmpRHS && False == CmpLHS) { 6921 std::swap(CmpLHS, CmpRHS); 6922 Pred = CmpInst::getSwappedPredicate(Pred); 6923 } 6924 6925 // (icmp X, Y) ? X : Y -> integer minmax. 6926 // see matchSelectPattern in ValueTracking. 6927 // Legality between G_SELECT and integer minmax can differ. 6928 if (True != CmpLHS || False != CmpRHS) 6929 return false; 6930 6931 switch (Pred) { 6932 case ICmpInst::ICMP_UGT: 6933 case ICmpInst::ICMP_UGE: { 6934 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMAX, DstTy})) 6935 return false; 6936 MatchInfo = [=](MachineIRBuilder &B) { B.buildUMax(DstReg, True, False); }; 6937 return true; 6938 } 6939 case ICmpInst::ICMP_SGT: 6940 case ICmpInst::ICMP_SGE: { 6941 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SMAX, DstTy})) 6942 return false; 6943 MatchInfo = [=](MachineIRBuilder &B) { B.buildSMax(DstReg, True, False); }; 6944 return true; 6945 } 6946 case ICmpInst::ICMP_ULT: 6947 case ICmpInst::ICMP_ULE: { 6948 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMIN, DstTy})) 6949 return false; 6950 MatchInfo = [=](MachineIRBuilder &B) { B.buildUMin(DstReg, True, False); }; 6951 return true; 6952 } 6953 case ICmpInst::ICMP_SLT: 6954 case ICmpInst::ICMP_SLE: { 6955 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SMIN, DstTy})) 6956 return false; 6957 MatchInfo = [=](MachineIRBuilder &B) { B.buildSMin(DstReg, True, False); }; 6958 return true; 6959 } 6960 default: 6961 return false; 6962 } 6963 } 6964 6965 bool CombinerHelper::matchSelect(MachineInstr &MI, BuildFnTy &MatchInfo) { 6966 GSelect *Select = cast<GSelect>(&MI); 6967 6968 if (tryFoldSelectOfConstants(Select, MatchInfo)) 6969 return true; 6970 6971 if (tryFoldBoolSelectToLogic(Select, MatchInfo)) 6972 return true; 6973 6974 return false; 6975 } 6976 6977 /// Fold (icmp Pred1 V1, C1) && (icmp Pred2 V2, C2) 6978 /// or (icmp Pred1 V1, C1) || (icmp Pred2 V2, C2) 6979 /// into a single comparison using range-based reasoning. 6980 /// see InstCombinerImpl::foldAndOrOfICmpsUsingRanges. 6981 bool CombinerHelper::tryFoldAndOrOrICmpsUsingRanges(GLogicalBinOp *Logic, 6982 BuildFnTy &MatchInfo) { 6983 assert(Logic->getOpcode() != TargetOpcode::G_XOR && "unexpected xor"); 6984 bool IsAnd = Logic->getOpcode() == TargetOpcode::G_AND; 6985 Register DstReg = Logic->getReg(0); 6986 Register LHS = Logic->getLHSReg(); 6987 Register RHS = Logic->getRHSReg(); 6988 unsigned Flags = Logic->getFlags(); 6989 6990 // We need an G_ICMP on the LHS register. 6991 GICmp *Cmp1 = getOpcodeDef<GICmp>(LHS, MRI); 6992 if (!Cmp1) 6993 return false; 6994 6995 // We need an G_ICMP on the RHS register. 6996 GICmp *Cmp2 = getOpcodeDef<GICmp>(RHS, MRI); 6997 if (!Cmp2) 6998 return false; 6999 7000 // We want to fold the icmps. 7001 if (!MRI.hasOneNonDBGUse(Cmp1->getReg(0)) || 7002 !MRI.hasOneNonDBGUse(Cmp2->getReg(0))) 7003 return false; 7004 7005 APInt C1; 7006 APInt C2; 7007 std::optional<ValueAndVReg> MaybeC1 = 7008 getIConstantVRegValWithLookThrough(Cmp1->getRHSReg(), MRI); 7009 if (!MaybeC1) 7010 return false; 7011 C1 = MaybeC1->Value; 7012 7013 std::optional<ValueAndVReg> MaybeC2 = 7014 getIConstantVRegValWithLookThrough(Cmp2->getRHSReg(), MRI); 7015 if (!MaybeC2) 7016 return false; 7017 C2 = MaybeC2->Value; 7018 7019 Register R1 = Cmp1->getLHSReg(); 7020 Register R2 = Cmp2->getLHSReg(); 7021 CmpInst::Predicate Pred1 = Cmp1->getCond(); 7022 CmpInst::Predicate Pred2 = Cmp2->getCond(); 7023 LLT CmpTy = MRI.getType(Cmp1->getReg(0)); 7024 LLT CmpOperandTy = MRI.getType(R1); 7025 7026 if (CmpOperandTy.isPointer()) 7027 return false; 7028 7029 // We build ands, adds, and constants of type CmpOperandTy. 7030 // They must be legal to build. 7031 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_AND, CmpOperandTy}) || 7032 !isLegalOrBeforeLegalizer({TargetOpcode::G_ADD, CmpOperandTy}) || 7033 !isConstantLegalOrBeforeLegalizer(CmpOperandTy)) 7034 return false; 7035 7036 // Look through add of a constant offset on R1, R2, or both operands. This 7037 // allows us to interpret the R + C' < C'' range idiom into a proper range. 7038 std::optional<APInt> Offset1; 7039 std::optional<APInt> Offset2; 7040 if (R1 != R2) { 7041 if (GAdd *Add = getOpcodeDef<GAdd>(R1, MRI)) { 7042 std::optional<ValueAndVReg> MaybeOffset1 = 7043 getIConstantVRegValWithLookThrough(Add->getRHSReg(), MRI); 7044 if (MaybeOffset1) { 7045 R1 = Add->getLHSReg(); 7046 Offset1 = MaybeOffset1->Value; 7047 } 7048 } 7049 if (GAdd *Add = getOpcodeDef<GAdd>(R2, MRI)) { 7050 std::optional<ValueAndVReg> MaybeOffset2 = 7051 getIConstantVRegValWithLookThrough(Add->getRHSReg(), MRI); 7052 if (MaybeOffset2) { 7053 R2 = Add->getLHSReg(); 7054 Offset2 = MaybeOffset2->Value; 7055 } 7056 } 7057 } 7058 7059 if (R1 != R2) 7060 return false; 7061 7062 // We calculate the icmp ranges including maybe offsets. 7063 ConstantRange CR1 = ConstantRange::makeExactICmpRegion( 7064 IsAnd ? ICmpInst::getInversePredicate(Pred1) : Pred1, C1); 7065 if (Offset1) 7066 CR1 = CR1.subtract(*Offset1); 7067 7068 ConstantRange CR2 = ConstantRange::makeExactICmpRegion( 7069 IsAnd ? ICmpInst::getInversePredicate(Pred2) : Pred2, C2); 7070 if (Offset2) 7071 CR2 = CR2.subtract(*Offset2); 7072 7073 bool CreateMask = false; 7074 APInt LowerDiff; 7075 std::optional<ConstantRange> CR = CR1.exactUnionWith(CR2); 7076 if (!CR) { 7077 // We need non-wrapping ranges. 7078 if (CR1.isWrappedSet() || CR2.isWrappedSet()) 7079 return false; 7080 7081 // Check whether we have equal-size ranges that only differ by one bit. 7082 // In that case we can apply a mask to map one range onto the other. 7083 LowerDiff = CR1.getLower() ^ CR2.getLower(); 7084 APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1); 7085 APInt CR1Size = CR1.getUpper() - CR1.getLower(); 7086 if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff || 7087 CR1Size != CR2.getUpper() - CR2.getLower()) 7088 return false; 7089 7090 CR = CR1.getLower().ult(CR2.getLower()) ? CR1 : CR2; 7091 CreateMask = true; 7092 } 7093 7094 if (IsAnd) 7095 CR = CR->inverse(); 7096 7097 CmpInst::Predicate NewPred; 7098 APInt NewC, Offset; 7099 CR->getEquivalentICmp(NewPred, NewC, Offset); 7100 7101 // We take the result type of one of the original icmps, CmpTy, for 7102 // the to be build icmp. The operand type, CmpOperandTy, is used for 7103 // the other instructions and constants to be build. The types of 7104 // the parameters and output are the same for add and and. CmpTy 7105 // and the type of DstReg might differ. That is why we zext or trunc 7106 // the icmp into the destination register. 7107 7108 MatchInfo = [=](MachineIRBuilder &B) { 7109 if (CreateMask && Offset != 0) { 7110 auto TildeLowerDiff = B.buildConstant(CmpOperandTy, ~LowerDiff); 7111 auto And = B.buildAnd(CmpOperandTy, R1, TildeLowerDiff); // the mask. 7112 auto OffsetC = B.buildConstant(CmpOperandTy, Offset); 7113 auto Add = B.buildAdd(CmpOperandTy, And, OffsetC, Flags); 7114 auto NewCon = B.buildConstant(CmpOperandTy, NewC); 7115 auto ICmp = B.buildICmp(NewPred, CmpTy, Add, NewCon); 7116 B.buildZExtOrTrunc(DstReg, ICmp); 7117 } else if (CreateMask && Offset == 0) { 7118 auto TildeLowerDiff = B.buildConstant(CmpOperandTy, ~LowerDiff); 7119 auto And = B.buildAnd(CmpOperandTy, R1, TildeLowerDiff); // the mask. 7120 auto NewCon = B.buildConstant(CmpOperandTy, NewC); 7121 auto ICmp = B.buildICmp(NewPred, CmpTy, And, NewCon); 7122 B.buildZExtOrTrunc(DstReg, ICmp); 7123 } else if (!CreateMask && Offset != 0) { 7124 auto OffsetC = B.buildConstant(CmpOperandTy, Offset); 7125 auto Add = B.buildAdd(CmpOperandTy, R1, OffsetC, Flags); 7126 auto NewCon = B.buildConstant(CmpOperandTy, NewC); 7127 auto ICmp = B.buildICmp(NewPred, CmpTy, Add, NewCon); 7128 B.buildZExtOrTrunc(DstReg, ICmp); 7129 } else if (!CreateMask && Offset == 0) { 7130 auto NewCon = B.buildConstant(CmpOperandTy, NewC); 7131 auto ICmp = B.buildICmp(NewPred, CmpTy, R1, NewCon); 7132 B.buildZExtOrTrunc(DstReg, ICmp); 7133 } else { 7134 llvm_unreachable("unexpected configuration of CreateMask and Offset"); 7135 } 7136 }; 7137 return true; 7138 } 7139 7140 bool CombinerHelper::tryFoldLogicOfFCmps(GLogicalBinOp *Logic, 7141 BuildFnTy &MatchInfo) { 7142 assert(Logic->getOpcode() != TargetOpcode::G_XOR && "unexpecte xor"); 7143 Register DestReg = Logic->getReg(0); 7144 Register LHS = Logic->getLHSReg(); 7145 Register RHS = Logic->getRHSReg(); 7146 bool IsAnd = Logic->getOpcode() == TargetOpcode::G_AND; 7147 7148 // We need a compare on the LHS register. 7149 GFCmp *Cmp1 = getOpcodeDef<GFCmp>(LHS, MRI); 7150 if (!Cmp1) 7151 return false; 7152 7153 // We need a compare on the RHS register. 7154 GFCmp *Cmp2 = getOpcodeDef<GFCmp>(RHS, MRI); 7155 if (!Cmp2) 7156 return false; 7157 7158 LLT CmpTy = MRI.getType(Cmp1->getReg(0)); 7159 LLT CmpOperandTy = MRI.getType(Cmp1->getLHSReg()); 7160 7161 // We build one fcmp, want to fold the fcmps, replace the logic op, 7162 // and the fcmps must have the same shape. 7163 if (!isLegalOrBeforeLegalizer( 7164 {TargetOpcode::G_FCMP, {CmpTy, CmpOperandTy}}) || 7165 !MRI.hasOneNonDBGUse(Logic->getReg(0)) || 7166 !MRI.hasOneNonDBGUse(Cmp1->getReg(0)) || 7167 !MRI.hasOneNonDBGUse(Cmp2->getReg(0)) || 7168 MRI.getType(Cmp1->getLHSReg()) != MRI.getType(Cmp2->getLHSReg())) 7169 return false; 7170 7171 CmpInst::Predicate PredL = Cmp1->getCond(); 7172 CmpInst::Predicate PredR = Cmp2->getCond(); 7173 Register LHS0 = Cmp1->getLHSReg(); 7174 Register LHS1 = Cmp1->getRHSReg(); 7175 Register RHS0 = Cmp2->getLHSReg(); 7176 Register RHS1 = Cmp2->getRHSReg(); 7177 7178 if (LHS0 == RHS1 && LHS1 == RHS0) { 7179 // Swap RHS operands to match LHS. 7180 PredR = CmpInst::getSwappedPredicate(PredR); 7181 std::swap(RHS0, RHS1); 7182 } 7183 7184 if (LHS0 == RHS0 && LHS1 == RHS1) { 7185 // We determine the new predicate. 7186 unsigned CmpCodeL = getFCmpCode(PredL); 7187 unsigned CmpCodeR = getFCmpCode(PredR); 7188 unsigned NewPred = IsAnd ? CmpCodeL & CmpCodeR : CmpCodeL | CmpCodeR; 7189 unsigned Flags = Cmp1->getFlags() | Cmp2->getFlags(); 7190 MatchInfo = [=](MachineIRBuilder &B) { 7191 // The fcmp predicates fill the lower part of the enum. 7192 FCmpInst::Predicate Pred = static_cast<FCmpInst::Predicate>(NewPred); 7193 if (Pred == FCmpInst::FCMP_FALSE && 7194 isConstantLegalOrBeforeLegalizer(CmpTy)) { 7195 auto False = B.buildConstant(CmpTy, 0); 7196 B.buildZExtOrTrunc(DestReg, False); 7197 } else if (Pred == FCmpInst::FCMP_TRUE && 7198 isConstantLegalOrBeforeLegalizer(CmpTy)) { 7199 auto True = 7200 B.buildConstant(CmpTy, getICmpTrueVal(getTargetLowering(), 7201 CmpTy.isVector() /*isVector*/, 7202 true /*isFP*/)); 7203 B.buildZExtOrTrunc(DestReg, True); 7204 } else { // We take the predicate without predicate optimizations. 7205 auto Cmp = B.buildFCmp(Pred, CmpTy, LHS0, LHS1, Flags); 7206 B.buildZExtOrTrunc(DestReg, Cmp); 7207 } 7208 }; 7209 return true; 7210 } 7211 7212 return false; 7213 } 7214 7215 bool CombinerHelper::matchAnd(MachineInstr &MI, BuildFnTy &MatchInfo) { 7216 GAnd *And = cast<GAnd>(&MI); 7217 7218 if (tryFoldAndOrOrICmpsUsingRanges(And, MatchInfo)) 7219 return true; 7220 7221 if (tryFoldLogicOfFCmps(And, MatchInfo)) 7222 return true; 7223 7224 return false; 7225 } 7226 7227 bool CombinerHelper::matchOr(MachineInstr &MI, BuildFnTy &MatchInfo) { 7228 GOr *Or = cast<GOr>(&MI); 7229 7230 if (tryFoldAndOrOrICmpsUsingRanges(Or, MatchInfo)) 7231 return true; 7232 7233 if (tryFoldLogicOfFCmps(Or, MatchInfo)) 7234 return true; 7235 7236 return false; 7237 } 7238 7239 bool CombinerHelper::matchAddOverflow(MachineInstr &MI, BuildFnTy &MatchInfo) { 7240 GAddCarryOut *Add = cast<GAddCarryOut>(&MI); 7241 7242 // Addo has no flags 7243 Register Dst = Add->getReg(0); 7244 Register Carry = Add->getReg(1); 7245 Register LHS = Add->getLHSReg(); 7246 Register RHS = Add->getRHSReg(); 7247 bool IsSigned = Add->isSigned(); 7248 LLT DstTy = MRI.getType(Dst); 7249 LLT CarryTy = MRI.getType(Carry); 7250 7251 // Fold addo, if the carry is dead -> add, undef. 7252 if (MRI.use_nodbg_empty(Carry) && 7253 isLegalOrBeforeLegalizer({TargetOpcode::G_ADD, {DstTy}})) { 7254 MatchInfo = [=](MachineIRBuilder &B) { 7255 B.buildAdd(Dst, LHS, RHS); 7256 B.buildUndef(Carry); 7257 }; 7258 return true; 7259 } 7260 7261 // Canonicalize constant to RHS. 7262 if (isConstantOrConstantVectorI(LHS) && !isConstantOrConstantVectorI(RHS)) { 7263 if (IsSigned) { 7264 MatchInfo = [=](MachineIRBuilder &B) { 7265 B.buildSAddo(Dst, Carry, RHS, LHS); 7266 }; 7267 return true; 7268 } 7269 // !IsSigned 7270 MatchInfo = [=](MachineIRBuilder &B) { 7271 B.buildUAddo(Dst, Carry, RHS, LHS); 7272 }; 7273 return true; 7274 } 7275 7276 std::optional<APInt> MaybeLHS = getConstantOrConstantSplatVector(LHS); 7277 std::optional<APInt> MaybeRHS = getConstantOrConstantSplatVector(RHS); 7278 7279 // Fold addo(c1, c2) -> c3, carry. 7280 if (MaybeLHS && MaybeRHS && isConstantLegalOrBeforeLegalizer(DstTy) && 7281 isConstantLegalOrBeforeLegalizer(CarryTy)) { 7282 bool Overflow; 7283 APInt Result = IsSigned ? MaybeLHS->sadd_ov(*MaybeRHS, Overflow) 7284 : MaybeLHS->uadd_ov(*MaybeRHS, Overflow); 7285 MatchInfo = [=](MachineIRBuilder &B) { 7286 B.buildConstant(Dst, Result); 7287 B.buildConstant(Carry, Overflow); 7288 }; 7289 return true; 7290 } 7291 7292 // Fold (addo x, 0) -> x, no carry 7293 if (MaybeRHS && *MaybeRHS == 0 && isConstantLegalOrBeforeLegalizer(CarryTy)) { 7294 MatchInfo = [=](MachineIRBuilder &B) { 7295 B.buildCopy(Dst, LHS); 7296 B.buildConstant(Carry, 0); 7297 }; 7298 return true; 7299 } 7300 7301 // Given 2 constant operands whose sum does not overflow: 7302 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1 7303 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1 7304 GAdd *AddLHS = getOpcodeDef<GAdd>(LHS, MRI); 7305 if (MaybeRHS && AddLHS && MRI.hasOneNonDBGUse(Add->getReg(0)) && 7306 ((IsSigned && AddLHS->getFlag(MachineInstr::MIFlag::NoSWrap)) || 7307 (!IsSigned && AddLHS->getFlag(MachineInstr::MIFlag::NoUWrap)))) { 7308 std::optional<APInt> MaybeAddRHS = 7309 getConstantOrConstantSplatVector(AddLHS->getRHSReg()); 7310 if (MaybeAddRHS) { 7311 bool Overflow; 7312 APInt NewC = IsSigned ? MaybeAddRHS->sadd_ov(*MaybeRHS, Overflow) 7313 : MaybeAddRHS->uadd_ov(*MaybeRHS, Overflow); 7314 if (!Overflow && isConstantLegalOrBeforeLegalizer(DstTy)) { 7315 if (IsSigned) { 7316 MatchInfo = [=](MachineIRBuilder &B) { 7317 auto ConstRHS = B.buildConstant(DstTy, NewC); 7318 B.buildSAddo(Dst, Carry, AddLHS->getLHSReg(), ConstRHS); 7319 }; 7320 return true; 7321 } 7322 // !IsSigned 7323 MatchInfo = [=](MachineIRBuilder &B) { 7324 auto ConstRHS = B.buildConstant(DstTy, NewC); 7325 B.buildUAddo(Dst, Carry, AddLHS->getLHSReg(), ConstRHS); 7326 }; 7327 return true; 7328 } 7329 } 7330 }; 7331 7332 // We try to combine addo to non-overflowing add. 7333 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_ADD, {DstTy}}) || 7334 !isConstantLegalOrBeforeLegalizer(CarryTy)) 7335 return false; 7336 7337 // We try to combine uaddo to non-overflowing add. 7338 if (!IsSigned) { 7339 ConstantRange CRLHS = 7340 ConstantRange::fromKnownBits(KB->getKnownBits(LHS), /*IsSigned=*/false); 7341 ConstantRange CRRHS = 7342 ConstantRange::fromKnownBits(KB->getKnownBits(RHS), /*IsSigned=*/false); 7343 7344 switch (CRLHS.unsignedAddMayOverflow(CRRHS)) { 7345 case ConstantRange::OverflowResult::MayOverflow: 7346 return false; 7347 case ConstantRange::OverflowResult::NeverOverflows: { 7348 MatchInfo = [=](MachineIRBuilder &B) { 7349 B.buildAdd(Dst, LHS, RHS, MachineInstr::MIFlag::NoUWrap); 7350 B.buildConstant(Carry, 0); 7351 }; 7352 return true; 7353 } 7354 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 7355 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: { 7356 MatchInfo = [=](MachineIRBuilder &B) { 7357 B.buildAdd(Dst, LHS, RHS); 7358 B.buildConstant(Carry, 1); 7359 }; 7360 return true; 7361 } 7362 } 7363 return false; 7364 } 7365 7366 // We try to combine saddo to non-overflowing add. 7367 7368 // If LHS and RHS each have at least two sign bits, then there is no signed 7369 // overflow. 7370 if (KB->computeNumSignBits(RHS) > 1 && KB->computeNumSignBits(LHS) > 1) { 7371 MatchInfo = [=](MachineIRBuilder &B) { 7372 B.buildAdd(Dst, LHS, RHS, MachineInstr::MIFlag::NoSWrap); 7373 B.buildConstant(Carry, 0); 7374 }; 7375 return true; 7376 } 7377 7378 ConstantRange CRLHS = 7379 ConstantRange::fromKnownBits(KB->getKnownBits(LHS), /*IsSigned=*/true); 7380 ConstantRange CRRHS = 7381 ConstantRange::fromKnownBits(KB->getKnownBits(RHS), /*IsSigned=*/true); 7382 7383 switch (CRLHS.signedAddMayOverflow(CRRHS)) { 7384 case ConstantRange::OverflowResult::MayOverflow: 7385 return false; 7386 case ConstantRange::OverflowResult::NeverOverflows: { 7387 MatchInfo = [=](MachineIRBuilder &B) { 7388 B.buildAdd(Dst, LHS, RHS, MachineInstr::MIFlag::NoSWrap); 7389 B.buildConstant(Carry, 0); 7390 }; 7391 return true; 7392 } 7393 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 7394 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: { 7395 MatchInfo = [=](MachineIRBuilder &B) { 7396 B.buildAdd(Dst, LHS, RHS); 7397 B.buildConstant(Carry, 1); 7398 }; 7399 return true; 7400 } 7401 } 7402 7403 return false; 7404 } 7405 7406 void CombinerHelper::applyBuildFnMO(const MachineOperand &MO, 7407 BuildFnTy &MatchInfo) { 7408 MachineInstr *Root = getDefIgnoringCopies(MO.getReg(), MRI); 7409 MatchInfo(Builder); 7410 Root->eraseFromParent(); 7411 } 7412 7413 bool CombinerHelper::matchFPowIExpansion(MachineInstr &MI, int64_t Exponent) { 7414 bool OptForSize = MI.getMF()->getFunction().hasOptSize(); 7415 return getTargetLowering().isBeneficialToExpandPowI(Exponent, OptForSize); 7416 } 7417 7418 void CombinerHelper::applyExpandFPowI(MachineInstr &MI, int64_t Exponent) { 7419 auto [Dst, Base] = MI.getFirst2Regs(); 7420 LLT Ty = MRI.getType(Dst); 7421 int64_t ExpVal = Exponent; 7422 7423 if (ExpVal == 0) { 7424 Builder.buildFConstant(Dst, 1.0); 7425 MI.removeFromParent(); 7426 return; 7427 } 7428 7429 if (ExpVal < 0) 7430 ExpVal = -ExpVal; 7431 7432 // We use the simple binary decomposition method from SelectionDAG ExpandPowI 7433 // to generate the multiply sequence. There are more optimal ways to do this 7434 // (for example, powi(x,15) generates one more multiply than it should), but 7435 // this has the benefit of being both really simple and much better than a 7436 // libcall. 7437 std::optional<SrcOp> Res; 7438 SrcOp CurSquare = Base; 7439 while (ExpVal > 0) { 7440 if (ExpVal & 1) { 7441 if (!Res) 7442 Res = CurSquare; 7443 else 7444 Res = Builder.buildFMul(Ty, *Res, CurSquare); 7445 } 7446 7447 CurSquare = Builder.buildFMul(Ty, CurSquare, CurSquare); 7448 ExpVal >>= 1; 7449 } 7450 7451 // If the original exponent was negative, invert the result, producing 7452 // 1/(x*x*x). 7453 if (Exponent < 0) 7454 Res = Builder.buildFDiv(Ty, Builder.buildFConstant(Ty, 1.0), *Res, 7455 MI.getFlags()); 7456 7457 Builder.buildCopy(Dst, *Res); 7458 MI.eraseFromParent(); 7459 } 7460 7461 bool CombinerHelper::matchSextOfTrunc(const MachineOperand &MO, 7462 BuildFnTy &MatchInfo) { 7463 GSext *Sext = cast<GSext>(getDefIgnoringCopies(MO.getReg(), MRI)); 7464 GTrunc *Trunc = cast<GTrunc>(getDefIgnoringCopies(Sext->getSrcReg(), MRI)); 7465 7466 Register Dst = Sext->getReg(0); 7467 Register Src = Trunc->getSrcReg(); 7468 7469 LLT DstTy = MRI.getType(Dst); 7470 LLT SrcTy = MRI.getType(Src); 7471 7472 if (DstTy == SrcTy) { 7473 MatchInfo = [=](MachineIRBuilder &B) { B.buildCopy(Dst, Src); }; 7474 return true; 7475 } 7476 7477 if (DstTy.getScalarSizeInBits() < SrcTy.getScalarSizeInBits() && 7478 isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {DstTy, SrcTy}})) { 7479 MatchInfo = [=](MachineIRBuilder &B) { 7480 B.buildTrunc(Dst, Src, MachineInstr::MIFlag::NoSWrap); 7481 }; 7482 return true; 7483 } 7484 7485 if (DstTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits() && 7486 isLegalOrBeforeLegalizer({TargetOpcode::G_SEXT, {DstTy, SrcTy}})) { 7487 MatchInfo = [=](MachineIRBuilder &B) { B.buildSExt(Dst, Src); }; 7488 return true; 7489 } 7490 7491 return false; 7492 } 7493 7494 bool CombinerHelper::matchZextOfTrunc(const MachineOperand &MO, 7495 BuildFnTy &MatchInfo) { 7496 GZext *Zext = cast<GZext>(getDefIgnoringCopies(MO.getReg(), MRI)); 7497 GTrunc *Trunc = cast<GTrunc>(getDefIgnoringCopies(Zext->getSrcReg(), MRI)); 7498 7499 Register Dst = Zext->getReg(0); 7500 Register Src = Trunc->getSrcReg(); 7501 7502 LLT DstTy = MRI.getType(Dst); 7503 LLT SrcTy = MRI.getType(Src); 7504 7505 if (DstTy == SrcTy) { 7506 MatchInfo = [=](MachineIRBuilder &B) { B.buildCopy(Dst, Src); }; 7507 return true; 7508 } 7509 7510 if (DstTy.getScalarSizeInBits() < SrcTy.getScalarSizeInBits() && 7511 isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {DstTy, SrcTy}})) { 7512 MatchInfo = [=](MachineIRBuilder &B) { 7513 B.buildTrunc(Dst, Src, MachineInstr::MIFlag::NoUWrap); 7514 }; 7515 return true; 7516 } 7517 7518 if (DstTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits() && 7519 isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {DstTy, SrcTy}})) { 7520 MatchInfo = [=](MachineIRBuilder &B) { 7521 B.buildZExt(Dst, Src, MachineInstr::MIFlag::NonNeg); 7522 }; 7523 return true; 7524 } 7525 7526 return false; 7527 } 7528 7529 bool CombinerHelper::matchNonNegZext(const MachineOperand &MO, 7530 BuildFnTy &MatchInfo) { 7531 GZext *Zext = cast<GZext>(MRI.getVRegDef(MO.getReg())); 7532 7533 Register Dst = Zext->getReg(0); 7534 Register Src = Zext->getSrcReg(); 7535 7536 LLT DstTy = MRI.getType(Dst); 7537 LLT SrcTy = MRI.getType(Src); 7538 const auto &TLI = getTargetLowering(); 7539 7540 // Convert zext nneg to sext if sext is the preferred form for the target. 7541 if (isLegalOrBeforeLegalizer({TargetOpcode::G_SEXT, {DstTy, SrcTy}}) && 7542 TLI.isSExtCheaperThanZExt(getMVTForLLT(SrcTy), getMVTForLLT(DstTy))) { 7543 MatchInfo = [=](MachineIRBuilder &B) { B.buildSExt(Dst, Src); }; 7544 return true; 7545 } 7546 7547 return false; 7548 } 7549