1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 12 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 13 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 14 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 16 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/LowLevelType.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineMemOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/RegisterBankInfo.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetLowering.h" 28 #include "llvm/CodeGen/TargetOpcodes.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/DivisionByConstantInfo.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <tuple> 35 36 #define DEBUG_TYPE "gi-combiner" 37 38 using namespace llvm; 39 using namespace MIPatternMatch; 40 41 // Option to allow testing of the combiner while no targets know about indexed 42 // addressing. 43 static cl::opt<bool> 44 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 45 cl::desc("Force all indexed operations to be " 46 "legal for the GlobalISel combiner")); 47 48 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 49 MachineIRBuilder &B, GISelKnownBits *KB, 50 MachineDominatorTree *MDT, 51 const LegalizerInfo *LI) 52 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 53 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 54 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 55 (void)this->KB; 56 } 57 58 const TargetLowering &CombinerHelper::getTargetLowering() const { 59 return *Builder.getMF().getSubtarget().getTargetLowering(); 60 } 61 62 /// \returns The little endian in-memory byte position of byte \p I in a 63 /// \p ByteWidth bytes wide type. 64 /// 65 /// E.g. Given a 4-byte type x, x[0] -> byte 0 66 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 67 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 68 return I; 69 } 70 71 /// Determines the LogBase2 value for a non-null input value using the 72 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 73 static Register buildLogBase2(Register V, MachineIRBuilder &MIB) { 74 auto &MRI = *MIB.getMRI(); 75 LLT Ty = MRI.getType(V); 76 auto Ctlz = MIB.buildCTLZ(Ty, V); 77 auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1); 78 return MIB.buildSub(Ty, Base, Ctlz).getReg(0); 79 } 80 81 /// \returns The big endian in-memory byte position of byte \p I in a 82 /// \p ByteWidth bytes wide type. 83 /// 84 /// E.g. Given a 4-byte type x, x[0] -> byte 3 85 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 86 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 87 return ByteWidth - I - 1; 88 } 89 90 /// Given a map from byte offsets in memory to indices in a load/store, 91 /// determine if that map corresponds to a little or big endian byte pattern. 92 /// 93 /// \param MemOffset2Idx maps memory offsets to address offsets. 94 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 95 /// 96 /// \returns true if the map corresponds to a big endian byte pattern, false 97 /// if it corresponds to a little endian byte pattern, and None otherwise. 98 /// 99 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 100 /// are as follows: 101 /// 102 /// AddrOffset Little endian Big endian 103 /// 0 0 3 104 /// 1 1 2 105 /// 2 2 1 106 /// 3 3 0 107 static Optional<bool> 108 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 109 int64_t LowestIdx) { 110 // Need at least two byte positions to decide on endianness. 111 unsigned Width = MemOffset2Idx.size(); 112 if (Width < 2) 113 return None; 114 bool BigEndian = true, LittleEndian = true; 115 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 116 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 117 if (MemOffsetAndIdx == MemOffset2Idx.end()) 118 return None; 119 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 120 assert(Idx >= 0 && "Expected non-negative byte offset?"); 121 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 122 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 123 if (!BigEndian && !LittleEndian) 124 return None; 125 } 126 127 assert((BigEndian != LittleEndian) && 128 "Pattern cannot be both big and little endian!"); 129 return BigEndian; 130 } 131 132 bool CombinerHelper::isPreLegalize() const { return !LI; } 133 134 bool CombinerHelper::isLegal(const LegalityQuery &Query) const { 135 assert(LI && "Must have LegalizerInfo to query isLegal!"); 136 return LI->getAction(Query).Action == LegalizeActions::Legal; 137 } 138 139 bool CombinerHelper::isLegalOrBeforeLegalizer( 140 const LegalityQuery &Query) const { 141 return isPreLegalize() || isLegal(Query); 142 } 143 144 bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const { 145 if (!Ty.isVector()) 146 return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}}); 147 // Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs. 148 if (isPreLegalize()) 149 return true; 150 LLT EltTy = Ty.getElementType(); 151 return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) && 152 isLegal({TargetOpcode::G_CONSTANT, {EltTy}}); 153 } 154 155 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 156 Register ToReg) const { 157 Observer.changingAllUsesOfReg(MRI, FromReg); 158 159 if (MRI.constrainRegAttrs(ToReg, FromReg)) 160 MRI.replaceRegWith(FromReg, ToReg); 161 else 162 Builder.buildCopy(ToReg, FromReg); 163 164 Observer.finishedChangingAllUsesOfReg(); 165 } 166 167 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 168 MachineOperand &FromRegOp, 169 Register ToReg) const { 170 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 171 Observer.changingInstr(*FromRegOp.getParent()); 172 173 FromRegOp.setReg(ToReg); 174 175 Observer.changedInstr(*FromRegOp.getParent()); 176 } 177 178 void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI, 179 unsigned ToOpcode) const { 180 Observer.changingInstr(FromMI); 181 182 FromMI.setDesc(Builder.getTII().get(ToOpcode)); 183 184 Observer.changedInstr(FromMI); 185 } 186 187 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 188 return RBI->getRegBank(Reg, MRI, *TRI); 189 } 190 191 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 192 if (RegBank) 193 MRI.setRegBank(Reg, *RegBank); 194 } 195 196 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 197 if (matchCombineCopy(MI)) { 198 applyCombineCopy(MI); 199 return true; 200 } 201 return false; 202 } 203 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 204 if (MI.getOpcode() != TargetOpcode::COPY) 205 return false; 206 Register DstReg = MI.getOperand(0).getReg(); 207 Register SrcReg = MI.getOperand(1).getReg(); 208 return canReplaceReg(DstReg, SrcReg, MRI); 209 } 210 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 211 Register DstReg = MI.getOperand(0).getReg(); 212 Register SrcReg = MI.getOperand(1).getReg(); 213 MI.eraseFromParent(); 214 replaceRegWith(MRI, DstReg, SrcReg); 215 } 216 217 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 218 bool IsUndef = false; 219 SmallVector<Register, 4> Ops; 220 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 221 applyCombineConcatVectors(MI, IsUndef, Ops); 222 return true; 223 } 224 return false; 225 } 226 227 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 228 SmallVectorImpl<Register> &Ops) { 229 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 230 "Invalid instruction"); 231 IsUndef = true; 232 MachineInstr *Undef = nullptr; 233 234 // Walk over all the operands of concat vectors and check if they are 235 // build_vector themselves or undef. 236 // Then collect their operands in Ops. 237 for (const MachineOperand &MO : MI.uses()) { 238 Register Reg = MO.getReg(); 239 MachineInstr *Def = MRI.getVRegDef(Reg); 240 assert(Def && "Operand not defined"); 241 switch (Def->getOpcode()) { 242 case TargetOpcode::G_BUILD_VECTOR: 243 IsUndef = false; 244 // Remember the operands of the build_vector to fold 245 // them into the yet-to-build flattened concat vectors. 246 for (const MachineOperand &BuildVecMO : Def->uses()) 247 Ops.push_back(BuildVecMO.getReg()); 248 break; 249 case TargetOpcode::G_IMPLICIT_DEF: { 250 LLT OpType = MRI.getType(Reg); 251 // Keep one undef value for all the undef operands. 252 if (!Undef) { 253 Builder.setInsertPt(*MI.getParent(), MI); 254 Undef = Builder.buildUndef(OpType.getScalarType()); 255 } 256 assert(MRI.getType(Undef->getOperand(0).getReg()) == 257 OpType.getScalarType() && 258 "All undefs should have the same type"); 259 // Break the undef vector in as many scalar elements as needed 260 // for the flattening. 261 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 262 EltIdx != EltEnd; ++EltIdx) 263 Ops.push_back(Undef->getOperand(0).getReg()); 264 break; 265 } 266 default: 267 return false; 268 } 269 } 270 return true; 271 } 272 void CombinerHelper::applyCombineConcatVectors( 273 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 274 // We determined that the concat_vectors can be flatten. 275 // Generate the flattened build_vector. 276 Register DstReg = MI.getOperand(0).getReg(); 277 Builder.setInsertPt(*MI.getParent(), MI); 278 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 279 280 // Note: IsUndef is sort of redundant. We could have determine it by 281 // checking that at all Ops are undef. Alternatively, we could have 282 // generate a build_vector of undefs and rely on another combine to 283 // clean that up. For now, given we already gather this information 284 // in tryCombineConcatVectors, just save compile time and issue the 285 // right thing. 286 if (IsUndef) 287 Builder.buildUndef(NewDstReg); 288 else 289 Builder.buildBuildVector(NewDstReg, Ops); 290 MI.eraseFromParent(); 291 replaceRegWith(MRI, DstReg, NewDstReg); 292 } 293 294 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 295 SmallVector<Register, 4> Ops; 296 if (matchCombineShuffleVector(MI, Ops)) { 297 applyCombineShuffleVector(MI, Ops); 298 return true; 299 } 300 return false; 301 } 302 303 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 304 SmallVectorImpl<Register> &Ops) { 305 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 306 "Invalid instruction kind"); 307 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 308 Register Src1 = MI.getOperand(1).getReg(); 309 LLT SrcType = MRI.getType(Src1); 310 // As bizarre as it may look, shuffle vector can actually produce 311 // scalar! This is because at the IR level a <1 x ty> shuffle 312 // vector is perfectly valid. 313 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 314 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 315 316 // If the resulting vector is smaller than the size of the source 317 // vectors being concatenated, we won't be able to replace the 318 // shuffle vector into a concat_vectors. 319 // 320 // Note: We may still be able to produce a concat_vectors fed by 321 // extract_vector_elt and so on. It is less clear that would 322 // be better though, so don't bother for now. 323 // 324 // If the destination is a scalar, the size of the sources doesn't 325 // matter. we will lower the shuffle to a plain copy. This will 326 // work only if the source and destination have the same size. But 327 // that's covered by the next condition. 328 // 329 // TODO: If the size between the source and destination don't match 330 // we could still emit an extract vector element in that case. 331 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 332 return false; 333 334 // Check that the shuffle mask can be broken evenly between the 335 // different sources. 336 if (DstNumElts % SrcNumElts != 0) 337 return false; 338 339 // Mask length is a multiple of the source vector length. 340 // Check if the shuffle is some kind of concatenation of the input 341 // vectors. 342 unsigned NumConcat = DstNumElts / SrcNumElts; 343 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 344 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 345 for (unsigned i = 0; i != DstNumElts; ++i) { 346 int Idx = Mask[i]; 347 // Undef value. 348 if (Idx < 0) 349 continue; 350 // Ensure the indices in each SrcType sized piece are sequential and that 351 // the same source is used for the whole piece. 352 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 353 (ConcatSrcs[i / SrcNumElts] >= 0 && 354 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 355 return false; 356 // Remember which source this index came from. 357 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 358 } 359 360 // The shuffle is concatenating multiple vectors together. 361 // Collect the different operands for that. 362 Register UndefReg; 363 Register Src2 = MI.getOperand(2).getReg(); 364 for (auto Src : ConcatSrcs) { 365 if (Src < 0) { 366 if (!UndefReg) { 367 Builder.setInsertPt(*MI.getParent(), MI); 368 UndefReg = Builder.buildUndef(SrcType).getReg(0); 369 } 370 Ops.push_back(UndefReg); 371 } else if (Src == 0) 372 Ops.push_back(Src1); 373 else 374 Ops.push_back(Src2); 375 } 376 return true; 377 } 378 379 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 380 const ArrayRef<Register> Ops) { 381 Register DstReg = MI.getOperand(0).getReg(); 382 Builder.setInsertPt(*MI.getParent(), MI); 383 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 384 385 if (Ops.size() == 1) 386 Builder.buildCopy(NewDstReg, Ops[0]); 387 else 388 Builder.buildMerge(NewDstReg, Ops); 389 390 MI.eraseFromParent(); 391 replaceRegWith(MRI, DstReg, NewDstReg); 392 } 393 394 namespace { 395 396 /// Select a preference between two uses. CurrentUse is the current preference 397 /// while *ForCandidate is attributes of the candidate under consideration. 398 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 399 const LLT TyForCandidate, 400 unsigned OpcodeForCandidate, 401 MachineInstr *MIForCandidate) { 402 if (!CurrentUse.Ty.isValid()) { 403 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 404 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 405 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 406 return CurrentUse; 407 } 408 409 // We permit the extend to hoist through basic blocks but this is only 410 // sensible if the target has extending loads. If you end up lowering back 411 // into a load and extend during the legalizer then the end result is 412 // hoisting the extend up to the load. 413 414 // Prefer defined extensions to undefined extensions as these are more 415 // likely to reduce the number of instructions. 416 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 417 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 418 return CurrentUse; 419 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 420 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 421 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 422 423 // Prefer sign extensions to zero extensions as sign-extensions tend to be 424 // more expensive. 425 if (CurrentUse.Ty == TyForCandidate) { 426 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 427 OpcodeForCandidate == TargetOpcode::G_ZEXT) 428 return CurrentUse; 429 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 430 OpcodeForCandidate == TargetOpcode::G_SEXT) 431 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 432 } 433 434 // This is potentially target specific. We've chosen the largest type 435 // because G_TRUNC is usually free. One potential catch with this is that 436 // some targets have a reduced number of larger registers than smaller 437 // registers and this choice potentially increases the live-range for the 438 // larger value. 439 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 440 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 441 } 442 return CurrentUse; 443 } 444 445 /// Find a suitable place to insert some instructions and insert them. This 446 /// function accounts for special cases like inserting before a PHI node. 447 /// The current strategy for inserting before PHI's is to duplicate the 448 /// instructions for each predecessor. However, while that's ok for G_TRUNC 449 /// on most targets since it generally requires no code, other targets/cases may 450 /// want to try harder to find a dominating block. 451 static void InsertInsnsWithoutSideEffectsBeforeUse( 452 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 453 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 454 MachineOperand &UseMO)> 455 Inserter) { 456 MachineInstr &UseMI = *UseMO.getParent(); 457 458 MachineBasicBlock *InsertBB = UseMI.getParent(); 459 460 // If the use is a PHI then we want the predecessor block instead. 461 if (UseMI.isPHI()) { 462 MachineOperand *PredBB = std::next(&UseMO); 463 InsertBB = PredBB->getMBB(); 464 } 465 466 // If the block is the same block as the def then we want to insert just after 467 // the def instead of at the start of the block. 468 if (InsertBB == DefMI.getParent()) { 469 MachineBasicBlock::iterator InsertPt = &DefMI; 470 Inserter(InsertBB, std::next(InsertPt), UseMO); 471 return; 472 } 473 474 // Otherwise we want the start of the BB 475 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 476 } 477 } // end anonymous namespace 478 479 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 480 PreferredTuple Preferred; 481 if (matchCombineExtendingLoads(MI, Preferred)) { 482 applyCombineExtendingLoads(MI, Preferred); 483 return true; 484 } 485 return false; 486 } 487 488 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 489 PreferredTuple &Preferred) { 490 // We match the loads and follow the uses to the extend instead of matching 491 // the extends and following the def to the load. This is because the load 492 // must remain in the same position for correctness (unless we also add code 493 // to find a safe place to sink it) whereas the extend is freely movable. 494 // It also prevents us from duplicating the load for the volatile case or just 495 // for performance. 496 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 497 if (!LoadMI) 498 return false; 499 500 Register LoadReg = LoadMI->getDstReg(); 501 502 LLT LoadValueTy = MRI.getType(LoadReg); 503 if (!LoadValueTy.isScalar()) 504 return false; 505 506 // Most architectures are going to legalize <s8 loads into at least a 1 byte 507 // load, and the MMOs can only describe memory accesses in multiples of bytes. 508 // If we try to perform extload combining on those, we can end up with 509 // %a(s8) = extload %ptr (load 1 byte from %ptr) 510 // ... which is an illegal extload instruction. 511 if (LoadValueTy.getSizeInBits() < 8) 512 return false; 513 514 // For non power-of-2 types, they will very likely be legalized into multiple 515 // loads. Don't bother trying to match them into extending loads. 516 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 517 return false; 518 519 // Find the preferred type aside from the any-extends (unless it's the only 520 // one) and non-extending ops. We'll emit an extending load to that type and 521 // and emit a variant of (extend (trunc X)) for the others according to the 522 // relative type sizes. At the same time, pick an extend to use based on the 523 // extend involved in the chosen type. 524 unsigned PreferredOpcode = 525 isa<GLoad>(&MI) 526 ? TargetOpcode::G_ANYEXT 527 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 528 Preferred = {LLT(), PreferredOpcode, nullptr}; 529 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 530 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 531 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 532 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 533 const auto &MMO = LoadMI->getMMO(); 534 // For atomics, only form anyextending loads. 535 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 536 continue; 537 // Check for legality. 538 if (LI) { 539 LegalityQuery::MemDesc MMDesc(MMO); 540 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 541 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 542 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 543 .Action != LegalizeActions::Legal) 544 continue; 545 } 546 Preferred = ChoosePreferredUse(Preferred, 547 MRI.getType(UseMI.getOperand(0).getReg()), 548 UseMI.getOpcode(), &UseMI); 549 } 550 } 551 552 // There were no extends 553 if (!Preferred.MI) 554 return false; 555 // It should be impossible to chose an extend without selecting a different 556 // type since by definition the result of an extend is larger. 557 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 558 559 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 560 return true; 561 } 562 563 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 564 PreferredTuple &Preferred) { 565 // Rewrite the load to the chosen extending load. 566 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 567 568 // Inserter to insert a truncate back to the original type at a given point 569 // with some basic CSE to limit truncate duplication to one per BB. 570 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 571 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 572 MachineBasicBlock::iterator InsertBefore, 573 MachineOperand &UseMO) { 574 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 575 if (PreviouslyEmitted) { 576 Observer.changingInstr(*UseMO.getParent()); 577 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 578 Observer.changedInstr(*UseMO.getParent()); 579 return; 580 } 581 582 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 583 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 584 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 585 EmittedInsns[InsertIntoBB] = NewMI; 586 replaceRegOpWith(MRI, UseMO, NewDstReg); 587 }; 588 589 Observer.changingInstr(MI); 590 MI.setDesc( 591 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 592 ? TargetOpcode::G_SEXTLOAD 593 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 594 ? TargetOpcode::G_ZEXTLOAD 595 : TargetOpcode::G_LOAD)); 596 597 // Rewrite all the uses to fix up the types. 598 auto &LoadValue = MI.getOperand(0); 599 SmallVector<MachineOperand *, 4> Uses; 600 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 601 Uses.push_back(&UseMO); 602 603 for (auto *UseMO : Uses) { 604 MachineInstr *UseMI = UseMO->getParent(); 605 606 // If the extend is compatible with the preferred extend then we should fix 607 // up the type and extend so that it uses the preferred use. 608 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 609 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 610 Register UseDstReg = UseMI->getOperand(0).getReg(); 611 MachineOperand &UseSrcMO = UseMI->getOperand(1); 612 const LLT UseDstTy = MRI.getType(UseDstReg); 613 if (UseDstReg != ChosenDstReg) { 614 if (Preferred.Ty == UseDstTy) { 615 // If the use has the same type as the preferred use, then merge 616 // the vregs and erase the extend. For example: 617 // %1:_(s8) = G_LOAD ... 618 // %2:_(s32) = G_SEXT %1(s8) 619 // %3:_(s32) = G_ANYEXT %1(s8) 620 // ... = ... %3(s32) 621 // rewrites to: 622 // %2:_(s32) = G_SEXTLOAD ... 623 // ... = ... %2(s32) 624 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 625 Observer.erasingInstr(*UseMO->getParent()); 626 UseMO->getParent()->eraseFromParent(); 627 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 628 // If the preferred size is smaller, then keep the extend but extend 629 // from the result of the extending load. For example: 630 // %1:_(s8) = G_LOAD ... 631 // %2:_(s32) = G_SEXT %1(s8) 632 // %3:_(s64) = G_ANYEXT %1(s8) 633 // ... = ... %3(s64) 634 /// rewrites to: 635 // %2:_(s32) = G_SEXTLOAD ... 636 // %3:_(s64) = G_ANYEXT %2:_(s32) 637 // ... = ... %3(s64) 638 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 639 } else { 640 // If the preferred size is large, then insert a truncate. For 641 // example: 642 // %1:_(s8) = G_LOAD ... 643 // %2:_(s64) = G_SEXT %1(s8) 644 // %3:_(s32) = G_ZEXT %1(s8) 645 // ... = ... %3(s32) 646 /// rewrites to: 647 // %2:_(s64) = G_SEXTLOAD ... 648 // %4:_(s8) = G_TRUNC %2:_(s32) 649 // %3:_(s64) = G_ZEXT %2:_(s8) 650 // ... = ... %3(s64) 651 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 652 InsertTruncAt); 653 } 654 continue; 655 } 656 // The use is (one of) the uses of the preferred use we chose earlier. 657 // We're going to update the load to def this value later so just erase 658 // the old extend. 659 Observer.erasingInstr(*UseMO->getParent()); 660 UseMO->getParent()->eraseFromParent(); 661 continue; 662 } 663 664 // The use isn't an extend. Truncate back to the type we originally loaded. 665 // This is free on many targets. 666 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 667 } 668 669 MI.getOperand(0).setReg(ChosenDstReg); 670 Observer.changedInstr(MI); 671 } 672 673 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI, 674 BuildFnTy &MatchInfo) { 675 assert(MI.getOpcode() == TargetOpcode::G_AND); 676 677 // If we have the following code: 678 // %mask = G_CONSTANT 255 679 // %ld = G_LOAD %ptr, (load s16) 680 // %and = G_AND %ld, %mask 681 // 682 // Try to fold it into 683 // %ld = G_ZEXTLOAD %ptr, (load s8) 684 685 Register Dst = MI.getOperand(0).getReg(); 686 if (MRI.getType(Dst).isVector()) 687 return false; 688 689 auto MaybeMask = 690 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 691 if (!MaybeMask) 692 return false; 693 694 APInt MaskVal = MaybeMask->Value; 695 696 if (!MaskVal.isMask()) 697 return false; 698 699 Register SrcReg = MI.getOperand(1).getReg(); 700 // Don't use getOpcodeDef() here since intermediate instructions may have 701 // multiple users. 702 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(MRI.getVRegDef(SrcReg)); 703 if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg())) 704 return false; 705 706 Register LoadReg = LoadMI->getDstReg(); 707 LLT RegTy = MRI.getType(LoadReg); 708 Register PtrReg = LoadMI->getPointerReg(); 709 unsigned RegSize = RegTy.getSizeInBits(); 710 uint64_t LoadSizeBits = LoadMI->getMemSizeInBits(); 711 unsigned MaskSizeBits = MaskVal.countTrailingOnes(); 712 713 // The mask may not be larger than the in-memory type, as it might cover sign 714 // extended bits 715 if (MaskSizeBits > LoadSizeBits) 716 return false; 717 718 // If the mask covers the whole destination register, there's nothing to 719 // extend 720 if (MaskSizeBits >= RegSize) 721 return false; 722 723 // Most targets cannot deal with loads of size < 8 and need to re-legalize to 724 // at least byte loads. Avoid creating such loads here 725 if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits)) 726 return false; 727 728 const MachineMemOperand &MMO = LoadMI->getMMO(); 729 LegalityQuery::MemDesc MemDesc(MMO); 730 731 // Don't modify the memory access size if this is atomic/volatile, but we can 732 // still adjust the opcode to indicate the high bit behavior. 733 if (LoadMI->isSimple()) 734 MemDesc.MemoryTy = LLT::scalar(MaskSizeBits); 735 else if (LoadSizeBits > MaskSizeBits || LoadSizeBits == RegSize) 736 return false; 737 738 // TODO: Could check if it's legal with the reduced or original memory size. 739 if (!isLegalOrBeforeLegalizer( 740 {TargetOpcode::G_ZEXTLOAD, {RegTy, MRI.getType(PtrReg)}, {MemDesc}})) 741 return false; 742 743 MatchInfo = [=](MachineIRBuilder &B) { 744 B.setInstrAndDebugLoc(*LoadMI); 745 auto &MF = B.getMF(); 746 auto PtrInfo = MMO.getPointerInfo(); 747 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MemDesc.MemoryTy); 748 B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO); 749 LoadMI->eraseFromParent(); 750 }; 751 return true; 752 } 753 754 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 755 const MachineInstr &UseMI) { 756 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 757 "shouldn't consider debug uses"); 758 assert(DefMI.getParent() == UseMI.getParent()); 759 if (&DefMI == &UseMI) 760 return true; 761 const MachineBasicBlock &MBB = *DefMI.getParent(); 762 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 763 return &MI == &DefMI || &MI == &UseMI; 764 }); 765 if (DefOrUse == MBB.end()) 766 llvm_unreachable("Block must contain both DefMI and UseMI!"); 767 return &*DefOrUse == &DefMI; 768 } 769 770 bool CombinerHelper::dominates(const MachineInstr &DefMI, 771 const MachineInstr &UseMI) { 772 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 773 "shouldn't consider debug uses"); 774 if (MDT) 775 return MDT->dominates(&DefMI, &UseMI); 776 else if (DefMI.getParent() != UseMI.getParent()) 777 return false; 778 779 return isPredecessor(DefMI, UseMI); 780 } 781 782 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 783 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 784 Register SrcReg = MI.getOperand(1).getReg(); 785 Register LoadUser = SrcReg; 786 787 if (MRI.getType(SrcReg).isVector()) 788 return false; 789 790 Register TruncSrc; 791 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 792 LoadUser = TruncSrc; 793 794 uint64_t SizeInBits = MI.getOperand(2).getImm(); 795 // If the source is a G_SEXTLOAD from the same bit width, then we don't 796 // need any extend at all, just a truncate. 797 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 798 // If truncating more than the original extended value, abort. 799 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 800 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 801 return false; 802 if (LoadSizeBits == SizeInBits) 803 return true; 804 } 805 return false; 806 } 807 808 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 809 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 810 Builder.setInstrAndDebugLoc(MI); 811 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 812 MI.eraseFromParent(); 813 } 814 815 bool CombinerHelper::matchSextInRegOfLoad( 816 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 817 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 818 819 Register DstReg = MI.getOperand(0).getReg(); 820 LLT RegTy = MRI.getType(DstReg); 821 822 // Only supports scalars for now. 823 if (RegTy.isVector()) 824 return false; 825 826 Register SrcReg = MI.getOperand(1).getReg(); 827 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 828 if (!LoadDef || !MRI.hasOneNonDBGUse(DstReg)) 829 return false; 830 831 uint64_t MemBits = LoadDef->getMemSizeInBits(); 832 833 // If the sign extend extends from a narrower width than the load's width, 834 // then we can narrow the load width when we combine to a G_SEXTLOAD. 835 // Avoid widening the load at all. 836 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), MemBits); 837 838 // Don't generate G_SEXTLOADs with a < 1 byte width. 839 if (NewSizeBits < 8) 840 return false; 841 // Don't bother creating a non-power-2 sextload, it will likely be broken up 842 // anyway for most targets. 843 if (!isPowerOf2_32(NewSizeBits)) 844 return false; 845 846 const MachineMemOperand &MMO = LoadDef->getMMO(); 847 LegalityQuery::MemDesc MMDesc(MMO); 848 849 // Don't modify the memory access size if this is atomic/volatile, but we can 850 // still adjust the opcode to indicate the high bit behavior. 851 if (LoadDef->isSimple()) 852 MMDesc.MemoryTy = LLT::scalar(NewSizeBits); 853 else if (MemBits > NewSizeBits || MemBits == RegTy.getSizeInBits()) 854 return false; 855 856 // TODO: Could check if it's legal with the reduced or original memory size. 857 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, 858 {MRI.getType(LoadDef->getDstReg()), 859 MRI.getType(LoadDef->getPointerReg())}, 860 {MMDesc}})) 861 return false; 862 863 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 864 return true; 865 } 866 867 void CombinerHelper::applySextInRegOfLoad( 868 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 869 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 870 Register LoadReg; 871 unsigned ScalarSizeBits; 872 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 873 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 874 875 // If we have the following: 876 // %ld = G_LOAD %ptr, (load 2) 877 // %ext = G_SEXT_INREG %ld, 8 878 // ==> 879 // %ld = G_SEXTLOAD %ptr (load 1) 880 881 auto &MMO = LoadDef->getMMO(); 882 Builder.setInstrAndDebugLoc(*LoadDef); 883 auto &MF = Builder.getMF(); 884 auto PtrInfo = MMO.getPointerInfo(); 885 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 886 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 887 LoadDef->getPointerReg(), *NewMMO); 888 MI.eraseFromParent(); 889 } 890 891 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 892 Register &Base, Register &Offset) { 893 auto &MF = *MI.getParent()->getParent(); 894 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 895 896 #ifndef NDEBUG 897 unsigned Opcode = MI.getOpcode(); 898 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 899 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 900 #endif 901 902 Base = MI.getOperand(1).getReg(); 903 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 904 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 905 return false; 906 907 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 908 // FIXME: The following use traversal needs a bail out for patholigical cases. 909 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 910 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 911 continue; 912 913 Offset = Use.getOperand(2).getReg(); 914 if (!ForceLegalIndexing && 915 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 916 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 917 << Use); 918 continue; 919 } 920 921 // Make sure the offset calculation is before the potentially indexed op. 922 // FIXME: we really care about dependency here. The offset calculation might 923 // be movable. 924 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 925 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 926 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 927 << Use); 928 continue; 929 } 930 931 // FIXME: check whether all uses of Base are load/store with foldable 932 // addressing modes. If so, using the normal addr-modes is better than 933 // forming an indexed one. 934 935 bool MemOpDominatesAddrUses = true; 936 for (auto &PtrAddUse : 937 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 938 if (!dominates(MI, PtrAddUse)) { 939 MemOpDominatesAddrUses = false; 940 break; 941 } 942 } 943 944 if (!MemOpDominatesAddrUses) { 945 LLVM_DEBUG( 946 dbgs() << " Ignoring candidate as memop does not dominate uses: " 947 << Use); 948 continue; 949 } 950 951 LLVM_DEBUG(dbgs() << " Found match: " << Use); 952 Addr = Use.getOperand(0).getReg(); 953 return true; 954 } 955 956 return false; 957 } 958 959 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 960 Register &Base, Register &Offset) { 961 auto &MF = *MI.getParent()->getParent(); 962 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 963 964 #ifndef NDEBUG 965 unsigned Opcode = MI.getOpcode(); 966 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 967 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 968 #endif 969 970 Addr = MI.getOperand(1).getReg(); 971 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 972 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 973 return false; 974 975 Base = AddrDef->getOperand(1).getReg(); 976 Offset = AddrDef->getOperand(2).getReg(); 977 978 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 979 980 if (!ForceLegalIndexing && 981 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 982 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 983 return false; 984 } 985 986 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 987 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 988 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 989 return false; 990 } 991 992 if (MI.getOpcode() == TargetOpcode::G_STORE) { 993 // Would require a copy. 994 if (Base == MI.getOperand(0).getReg()) { 995 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 996 return false; 997 } 998 999 // We're expecting one use of Addr in MI, but it could also be the 1000 // value stored, which isn't actually dominated by the instruction. 1001 if (MI.getOperand(0).getReg() == Addr) { 1002 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 1003 return false; 1004 } 1005 } 1006 1007 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 1008 // That might allow us to end base's liveness here by adjusting the constant. 1009 1010 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 1011 if (!dominates(MI, UseMI)) { 1012 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 1013 return false; 1014 } 1015 } 1016 1017 return true; 1018 } 1019 1020 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 1021 IndexedLoadStoreMatchInfo MatchInfo; 1022 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 1023 applyCombineIndexedLoadStore(MI, MatchInfo); 1024 return true; 1025 } 1026 return false; 1027 } 1028 1029 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 1030 unsigned Opcode = MI.getOpcode(); 1031 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 1032 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 1033 return false; 1034 1035 // For now, no targets actually support these opcodes so don't waste time 1036 // running these unless we're forced to for testing. 1037 if (!ForceLegalIndexing) 1038 return false; 1039 1040 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 1041 MatchInfo.Offset); 1042 if (!MatchInfo.IsPre && 1043 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 1044 MatchInfo.Offset)) 1045 return false; 1046 1047 return true; 1048 } 1049 1050 void CombinerHelper::applyCombineIndexedLoadStore( 1051 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 1052 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 1053 MachineIRBuilder MIRBuilder(MI); 1054 unsigned Opcode = MI.getOpcode(); 1055 bool IsStore = Opcode == TargetOpcode::G_STORE; 1056 unsigned NewOpcode; 1057 switch (Opcode) { 1058 case TargetOpcode::G_LOAD: 1059 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 1060 break; 1061 case TargetOpcode::G_SEXTLOAD: 1062 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 1063 break; 1064 case TargetOpcode::G_ZEXTLOAD: 1065 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 1066 break; 1067 case TargetOpcode::G_STORE: 1068 NewOpcode = TargetOpcode::G_INDEXED_STORE; 1069 break; 1070 default: 1071 llvm_unreachable("Unknown load/store opcode"); 1072 } 1073 1074 auto MIB = MIRBuilder.buildInstr(NewOpcode); 1075 if (IsStore) { 1076 MIB.addDef(MatchInfo.Addr); 1077 MIB.addUse(MI.getOperand(0).getReg()); 1078 } else { 1079 MIB.addDef(MI.getOperand(0).getReg()); 1080 MIB.addDef(MatchInfo.Addr); 1081 } 1082 1083 MIB.addUse(MatchInfo.Base); 1084 MIB.addUse(MatchInfo.Offset); 1085 MIB.addImm(MatchInfo.IsPre); 1086 MI.eraseFromParent(); 1087 AddrDef.eraseFromParent(); 1088 1089 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 1090 } 1091 1092 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 1093 MachineInstr *&OtherMI) { 1094 unsigned Opcode = MI.getOpcode(); 1095 bool IsDiv, IsSigned; 1096 1097 switch (Opcode) { 1098 default: 1099 llvm_unreachable("Unexpected opcode!"); 1100 case TargetOpcode::G_SDIV: 1101 case TargetOpcode::G_UDIV: { 1102 IsDiv = true; 1103 IsSigned = Opcode == TargetOpcode::G_SDIV; 1104 break; 1105 } 1106 case TargetOpcode::G_SREM: 1107 case TargetOpcode::G_UREM: { 1108 IsDiv = false; 1109 IsSigned = Opcode == TargetOpcode::G_SREM; 1110 break; 1111 } 1112 } 1113 1114 Register Src1 = MI.getOperand(1).getReg(); 1115 unsigned DivOpcode, RemOpcode, DivremOpcode; 1116 if (IsSigned) { 1117 DivOpcode = TargetOpcode::G_SDIV; 1118 RemOpcode = TargetOpcode::G_SREM; 1119 DivremOpcode = TargetOpcode::G_SDIVREM; 1120 } else { 1121 DivOpcode = TargetOpcode::G_UDIV; 1122 RemOpcode = TargetOpcode::G_UREM; 1123 DivremOpcode = TargetOpcode::G_UDIVREM; 1124 } 1125 1126 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 1127 return false; 1128 1129 // Combine: 1130 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1131 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1132 // into: 1133 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1134 1135 // Combine: 1136 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1137 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1138 // into: 1139 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1140 1141 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1142 if (MI.getParent() == UseMI.getParent() && 1143 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1144 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1145 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2)) && 1146 matchEqualDefs(MI.getOperand(1), UseMI.getOperand(1))) { 1147 OtherMI = &UseMI; 1148 return true; 1149 } 1150 } 1151 1152 return false; 1153 } 1154 1155 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1156 MachineInstr *&OtherMI) { 1157 unsigned Opcode = MI.getOpcode(); 1158 assert(OtherMI && "OtherMI shouldn't be empty."); 1159 1160 Register DestDivReg, DestRemReg; 1161 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1162 DestDivReg = MI.getOperand(0).getReg(); 1163 DestRemReg = OtherMI->getOperand(0).getReg(); 1164 } else { 1165 DestDivReg = OtherMI->getOperand(0).getReg(); 1166 DestRemReg = MI.getOperand(0).getReg(); 1167 } 1168 1169 bool IsSigned = 1170 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1171 1172 // Check which instruction is first in the block so we don't break def-use 1173 // deps by "moving" the instruction incorrectly. 1174 if (dominates(MI, *OtherMI)) 1175 Builder.setInstrAndDebugLoc(MI); 1176 else 1177 Builder.setInstrAndDebugLoc(*OtherMI); 1178 1179 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1180 : TargetOpcode::G_UDIVREM, 1181 {DestDivReg, DestRemReg}, 1182 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1183 MI.eraseFromParent(); 1184 OtherMI->eraseFromParent(); 1185 } 1186 1187 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1188 MachineInstr *&BrCond) { 1189 assert(MI.getOpcode() == TargetOpcode::G_BR); 1190 1191 // Try to match the following: 1192 // bb1: 1193 // G_BRCOND %c1, %bb2 1194 // G_BR %bb3 1195 // bb2: 1196 // ... 1197 // bb3: 1198 1199 // The above pattern does not have a fall through to the successor bb2, always 1200 // resulting in a branch no matter which path is taken. Here we try to find 1201 // and replace that pattern with conditional branch to bb3 and otherwise 1202 // fallthrough to bb2. This is generally better for branch predictors. 1203 1204 MachineBasicBlock *MBB = MI.getParent(); 1205 MachineBasicBlock::iterator BrIt(MI); 1206 if (BrIt == MBB->begin()) 1207 return false; 1208 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1209 1210 BrCond = &*std::prev(BrIt); 1211 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1212 return false; 1213 1214 // Check that the next block is the conditional branch target. Also make sure 1215 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1216 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1217 return BrCondTarget != MI.getOperand(0).getMBB() && 1218 MBB->isLayoutSuccessor(BrCondTarget); 1219 } 1220 1221 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1222 MachineInstr *&BrCond) { 1223 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1224 Builder.setInstrAndDebugLoc(*BrCond); 1225 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1226 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1227 // this to i1 only since we might not know for sure what kind of 1228 // compare generated the condition value. 1229 auto True = Builder.buildConstant( 1230 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1231 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1232 1233 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1234 Observer.changingInstr(MI); 1235 MI.getOperand(0).setMBB(FallthroughBB); 1236 Observer.changedInstr(MI); 1237 1238 // Change the conditional branch to use the inverted condition and 1239 // new target block. 1240 Observer.changingInstr(*BrCond); 1241 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1242 BrCond->getOperand(1).setMBB(BrTarget); 1243 Observer.changedInstr(*BrCond); 1244 } 1245 1246 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1247 if (Ty.isVector()) 1248 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1249 Ty.getNumElements()); 1250 return IntegerType::get(C, Ty.getSizeInBits()); 1251 } 1252 1253 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1254 MachineIRBuilder HelperBuilder(MI); 1255 GISelObserverWrapper DummyObserver; 1256 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1257 return Helper.lowerMemcpyInline(MI) == 1258 LegalizerHelper::LegalizeResult::Legalized; 1259 } 1260 1261 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1262 MachineIRBuilder HelperBuilder(MI); 1263 GISelObserverWrapper DummyObserver; 1264 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1265 return Helper.lowerMemCpyFamily(MI, MaxLen) == 1266 LegalizerHelper::LegalizeResult::Legalized; 1267 } 1268 1269 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1270 const Register Op, 1271 const MachineRegisterInfo &MRI) { 1272 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1273 if (!MaybeCst) 1274 return None; 1275 1276 APFloat V = MaybeCst->getValueAPF(); 1277 switch (Opcode) { 1278 default: 1279 llvm_unreachable("Unexpected opcode!"); 1280 case TargetOpcode::G_FNEG: { 1281 V.changeSign(); 1282 return V; 1283 } 1284 case TargetOpcode::G_FABS: { 1285 V.clearSign(); 1286 return V; 1287 } 1288 case TargetOpcode::G_FPTRUNC: 1289 break; 1290 case TargetOpcode::G_FSQRT: { 1291 bool Unused; 1292 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1293 V = APFloat(sqrt(V.convertToDouble())); 1294 break; 1295 } 1296 case TargetOpcode::G_FLOG2: { 1297 bool Unused; 1298 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1299 V = APFloat(log2(V.convertToDouble())); 1300 break; 1301 } 1302 } 1303 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1304 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1305 // and `G_FLOG2` reach here. 1306 bool Unused; 1307 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1308 return V; 1309 } 1310 1311 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1312 Optional<APFloat> &Cst) { 1313 Register DstReg = MI.getOperand(0).getReg(); 1314 Register SrcReg = MI.getOperand(1).getReg(); 1315 LLT DstTy = MRI.getType(DstReg); 1316 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1317 return Cst.has_value(); 1318 } 1319 1320 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1321 Optional<APFloat> &Cst) { 1322 assert(Cst && "Optional is unexpectedly empty!"); 1323 Builder.setInstrAndDebugLoc(MI); 1324 MachineFunction &MF = Builder.getMF(); 1325 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1326 Register DstReg = MI.getOperand(0).getReg(); 1327 Builder.buildFConstant(DstReg, *FPVal); 1328 MI.eraseFromParent(); 1329 } 1330 1331 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1332 PtrAddChain &MatchInfo) { 1333 // We're trying to match the following pattern: 1334 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1335 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1336 // --> 1337 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1338 1339 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1340 return false; 1341 1342 Register Add2 = MI.getOperand(1).getReg(); 1343 Register Imm1 = MI.getOperand(2).getReg(); 1344 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1345 if (!MaybeImmVal) 1346 return false; 1347 1348 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1349 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1350 return false; 1351 1352 Register Base = Add2Def->getOperand(1).getReg(); 1353 Register Imm2 = Add2Def->getOperand(2).getReg(); 1354 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1355 if (!MaybeImm2Val) 1356 return false; 1357 1358 // Check if the new combined immediate forms an illegal addressing mode. 1359 // Do not combine if it was legal before but would get illegal. 1360 // To do so, we need to find a load/store user of the pointer to get 1361 // the access type. 1362 Type *AccessTy = nullptr; 1363 auto &MF = *MI.getMF(); 1364 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1365 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1366 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1367 MF.getFunction().getContext()); 1368 break; 1369 } 1370 } 1371 TargetLoweringBase::AddrMode AMNew; 1372 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1373 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1374 if (AccessTy) { 1375 AMNew.HasBaseReg = true; 1376 TargetLoweringBase::AddrMode AMOld; 1377 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); 1378 AMOld.HasBaseReg = true; 1379 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1380 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1381 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1382 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1383 return false; 1384 } 1385 1386 // Pass the combined immediate to the apply function. 1387 MatchInfo.Imm = AMNew.BaseOffs; 1388 MatchInfo.Base = Base; 1389 MatchInfo.Bank = getRegBank(Imm2); 1390 return true; 1391 } 1392 1393 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1394 PtrAddChain &MatchInfo) { 1395 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1396 MachineIRBuilder MIB(MI); 1397 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1398 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1399 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1400 Observer.changingInstr(MI); 1401 MI.getOperand(1).setReg(MatchInfo.Base); 1402 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1403 Observer.changedInstr(MI); 1404 } 1405 1406 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1407 RegisterImmPair &MatchInfo) { 1408 // We're trying to match the following pattern with any of 1409 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1410 // %t1 = SHIFT %base, G_CONSTANT imm1 1411 // %root = SHIFT %t1, G_CONSTANT imm2 1412 // --> 1413 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1414 1415 unsigned Opcode = MI.getOpcode(); 1416 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1417 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1418 Opcode == TargetOpcode::G_USHLSAT) && 1419 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1420 1421 Register Shl2 = MI.getOperand(1).getReg(); 1422 Register Imm1 = MI.getOperand(2).getReg(); 1423 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1424 if (!MaybeImmVal) 1425 return false; 1426 1427 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1428 if (Shl2Def->getOpcode() != Opcode) 1429 return false; 1430 1431 Register Base = Shl2Def->getOperand(1).getReg(); 1432 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1433 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1434 if (!MaybeImm2Val) 1435 return false; 1436 1437 // Pass the combined immediate to the apply function. 1438 MatchInfo.Imm = 1439 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1440 MatchInfo.Reg = Base; 1441 1442 // There is no simple replacement for a saturating unsigned left shift that 1443 // exceeds the scalar size. 1444 if (Opcode == TargetOpcode::G_USHLSAT && 1445 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1446 return false; 1447 1448 return true; 1449 } 1450 1451 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1452 RegisterImmPair &MatchInfo) { 1453 unsigned Opcode = MI.getOpcode(); 1454 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1455 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1456 Opcode == TargetOpcode::G_USHLSAT) && 1457 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1458 1459 Builder.setInstrAndDebugLoc(MI); 1460 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1461 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1462 auto Imm = MatchInfo.Imm; 1463 1464 if (Imm >= ScalarSizeInBits) { 1465 // Any logical shift that exceeds scalar size will produce zero. 1466 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1467 Builder.buildConstant(MI.getOperand(0), 0); 1468 MI.eraseFromParent(); 1469 return; 1470 } 1471 // Arithmetic shift and saturating signed left shift have no effect beyond 1472 // scalar size. 1473 Imm = ScalarSizeInBits - 1; 1474 } 1475 1476 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1477 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1478 Observer.changingInstr(MI); 1479 MI.getOperand(1).setReg(MatchInfo.Reg); 1480 MI.getOperand(2).setReg(NewImm); 1481 Observer.changedInstr(MI); 1482 } 1483 1484 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1485 ShiftOfShiftedLogic &MatchInfo) { 1486 // We're trying to match the following pattern with any of 1487 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1488 // with any of G_AND/G_OR/G_XOR logic instructions. 1489 // %t1 = SHIFT %X, G_CONSTANT C0 1490 // %t2 = LOGIC %t1, %Y 1491 // %root = SHIFT %t2, G_CONSTANT C1 1492 // --> 1493 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1494 // %t4 = SHIFT %Y, G_CONSTANT C1 1495 // %root = LOGIC %t3, %t4 1496 unsigned ShiftOpcode = MI.getOpcode(); 1497 assert((ShiftOpcode == TargetOpcode::G_SHL || 1498 ShiftOpcode == TargetOpcode::G_ASHR || 1499 ShiftOpcode == TargetOpcode::G_LSHR || 1500 ShiftOpcode == TargetOpcode::G_USHLSAT || 1501 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1502 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1503 1504 // Match a one-use bitwise logic op. 1505 Register LogicDest = MI.getOperand(1).getReg(); 1506 if (!MRI.hasOneNonDBGUse(LogicDest)) 1507 return false; 1508 1509 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1510 unsigned LogicOpcode = LogicMI->getOpcode(); 1511 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1512 LogicOpcode != TargetOpcode::G_XOR) 1513 return false; 1514 1515 // Find a matching one-use shift by constant. 1516 const Register C1 = MI.getOperand(2).getReg(); 1517 auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI); 1518 if (!MaybeImmVal) 1519 return false; 1520 1521 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1522 1523 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1524 // Shift should match previous one and should be a one-use. 1525 if (MI->getOpcode() != ShiftOpcode || 1526 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1527 return false; 1528 1529 // Must be a constant. 1530 auto MaybeImmVal = 1531 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1532 if (!MaybeImmVal) 1533 return false; 1534 1535 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1536 return true; 1537 }; 1538 1539 // Logic ops are commutative, so check each operand for a match. 1540 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1541 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1542 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1543 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1544 uint64_t C0Val; 1545 1546 if (matchFirstShift(LogicMIOp1, C0Val)) { 1547 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1548 MatchInfo.Shift2 = LogicMIOp1; 1549 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1550 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1551 MatchInfo.Shift2 = LogicMIOp2; 1552 } else 1553 return false; 1554 1555 MatchInfo.ValSum = C0Val + C1Val; 1556 1557 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1558 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1559 return false; 1560 1561 MatchInfo.Logic = LogicMI; 1562 return true; 1563 } 1564 1565 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1566 ShiftOfShiftedLogic &MatchInfo) { 1567 unsigned Opcode = MI.getOpcode(); 1568 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1569 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1570 Opcode == TargetOpcode::G_SSHLSAT) && 1571 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1572 1573 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1574 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1575 Builder.setInstrAndDebugLoc(MI); 1576 1577 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1578 1579 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1580 Register Shift1 = 1581 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1582 1583 Register Shift2Const = MI.getOperand(2).getReg(); 1584 Register Shift2 = Builder 1585 .buildInstr(Opcode, {DestType}, 1586 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1587 .getReg(0); 1588 1589 Register Dest = MI.getOperand(0).getReg(); 1590 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1591 1592 // These were one use so it's safe to remove them. 1593 MatchInfo.Shift2->eraseFromParent(); 1594 MatchInfo.Logic->eraseFromParent(); 1595 1596 MI.eraseFromParent(); 1597 } 1598 1599 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1600 unsigned &ShiftVal) { 1601 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1602 auto MaybeImmVal = 1603 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1604 if (!MaybeImmVal) 1605 return false; 1606 1607 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1608 return (static_cast<int32_t>(ShiftVal) != -1); 1609 } 1610 1611 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1612 unsigned &ShiftVal) { 1613 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1614 MachineIRBuilder MIB(MI); 1615 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1616 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1617 Observer.changingInstr(MI); 1618 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1619 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1620 Observer.changedInstr(MI); 1621 } 1622 1623 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1624 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1625 RegisterImmPair &MatchData) { 1626 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1627 1628 Register LHS = MI.getOperand(1).getReg(); 1629 1630 Register ExtSrc; 1631 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1632 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1633 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1634 return false; 1635 1636 // TODO: Should handle vector splat. 1637 Register RHS = MI.getOperand(2).getReg(); 1638 auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI); 1639 if (!MaybeShiftAmtVal) 1640 return false; 1641 1642 if (LI) { 1643 LLT SrcTy = MRI.getType(ExtSrc); 1644 1645 // We only really care about the legality with the shifted value. We can 1646 // pick any type the constant shift amount, so ask the target what to 1647 // use. Otherwise we would have to guess and hope it is reported as legal. 1648 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1649 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1650 return false; 1651 } 1652 1653 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1654 MatchData.Reg = ExtSrc; 1655 MatchData.Imm = ShiftAmt; 1656 1657 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1658 return MinLeadingZeros >= ShiftAmt; 1659 } 1660 1661 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1662 const RegisterImmPair &MatchData) { 1663 Register ExtSrcReg = MatchData.Reg; 1664 int64_t ShiftAmtVal = MatchData.Imm; 1665 1666 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1667 Builder.setInstrAndDebugLoc(MI); 1668 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1669 auto NarrowShift = 1670 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1671 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1672 MI.eraseFromParent(); 1673 } 1674 1675 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 1676 Register &MatchInfo) { 1677 GMerge &Merge = cast<GMerge>(MI); 1678 SmallVector<Register, 16> MergedValues; 1679 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 1680 MergedValues.emplace_back(Merge.getSourceReg(I)); 1681 1682 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 1683 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 1684 return false; 1685 1686 for (unsigned I = 0; I < MergedValues.size(); ++I) 1687 if (MergedValues[I] != Unmerge->getReg(I)) 1688 return false; 1689 1690 MatchInfo = Unmerge->getSourceReg(); 1691 return true; 1692 } 1693 1694 static Register peekThroughBitcast(Register Reg, 1695 const MachineRegisterInfo &MRI) { 1696 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1697 ; 1698 1699 return Reg; 1700 } 1701 1702 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1703 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1704 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1705 "Expected an unmerge"); 1706 auto &Unmerge = cast<GUnmerge>(MI); 1707 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 1708 1709 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI); 1710 if (!SrcInstr) 1711 return false; 1712 1713 // Check the source type of the merge. 1714 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 1715 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 1716 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1717 if (SrcMergeTy != Dst0Ty && !SameSize) 1718 return false; 1719 // They are the same now (modulo a bitcast). 1720 // We can collect all the src registers. 1721 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 1722 Operands.push_back(SrcInstr->getSourceReg(Idx)); 1723 return true; 1724 } 1725 1726 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1727 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1728 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1729 "Expected an unmerge"); 1730 assert((MI.getNumOperands() - 1 == Operands.size()) && 1731 "Not enough operands to replace all defs"); 1732 unsigned NumElems = MI.getNumOperands() - 1; 1733 1734 LLT SrcTy = MRI.getType(Operands[0]); 1735 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1736 bool CanReuseInputDirectly = DstTy == SrcTy; 1737 Builder.setInstrAndDebugLoc(MI); 1738 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1739 Register DstReg = MI.getOperand(Idx).getReg(); 1740 Register SrcReg = Operands[Idx]; 1741 if (CanReuseInputDirectly) 1742 replaceRegWith(MRI, DstReg, SrcReg); 1743 else 1744 Builder.buildCast(DstReg, SrcReg); 1745 } 1746 MI.eraseFromParent(); 1747 } 1748 1749 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1750 SmallVectorImpl<APInt> &Csts) { 1751 unsigned SrcIdx = MI.getNumOperands() - 1; 1752 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1753 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1754 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1755 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1756 return false; 1757 // Break down the big constant in smaller ones. 1758 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1759 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1760 ? CstVal.getCImm()->getValue() 1761 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1762 1763 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1764 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1765 // Unmerge a constant. 1766 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1767 Csts.emplace_back(Val.trunc(ShiftAmt)); 1768 Val = Val.lshr(ShiftAmt); 1769 } 1770 1771 return true; 1772 } 1773 1774 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1775 SmallVectorImpl<APInt> &Csts) { 1776 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1777 "Expected an unmerge"); 1778 assert((MI.getNumOperands() - 1 == Csts.size()) && 1779 "Not enough operands to replace all defs"); 1780 unsigned NumElems = MI.getNumOperands() - 1; 1781 Builder.setInstrAndDebugLoc(MI); 1782 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1783 Register DstReg = MI.getOperand(Idx).getReg(); 1784 Builder.buildConstant(DstReg, Csts[Idx]); 1785 } 1786 1787 MI.eraseFromParent(); 1788 } 1789 1790 bool CombinerHelper::matchCombineUnmergeUndef( 1791 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 1792 unsigned SrcIdx = MI.getNumOperands() - 1; 1793 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1794 MatchInfo = [&MI](MachineIRBuilder &B) { 1795 unsigned NumElems = MI.getNumOperands() - 1; 1796 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1797 Register DstReg = MI.getOperand(Idx).getReg(); 1798 B.buildUndef(DstReg); 1799 } 1800 }; 1801 return isa<GImplicitDef>(MRI.getVRegDef(SrcReg)); 1802 } 1803 1804 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1805 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1806 "Expected an unmerge"); 1807 // Check that all the lanes are dead except the first one. 1808 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1809 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1810 return false; 1811 } 1812 return true; 1813 } 1814 1815 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1816 Builder.setInstrAndDebugLoc(MI); 1817 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1818 // Truncating a vector is going to truncate every single lane, 1819 // whereas we want the full lowbits. 1820 // Do the operation on a scalar instead. 1821 LLT SrcTy = MRI.getType(SrcReg); 1822 if (SrcTy.isVector()) 1823 SrcReg = 1824 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1825 1826 Register Dst0Reg = MI.getOperand(0).getReg(); 1827 LLT Dst0Ty = MRI.getType(Dst0Reg); 1828 if (Dst0Ty.isVector()) { 1829 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 1830 Builder.buildCast(Dst0Reg, MIB); 1831 } else 1832 Builder.buildTrunc(Dst0Reg, SrcReg); 1833 MI.eraseFromParent(); 1834 } 1835 1836 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 1837 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1838 "Expected an unmerge"); 1839 Register Dst0Reg = MI.getOperand(0).getReg(); 1840 LLT Dst0Ty = MRI.getType(Dst0Reg); 1841 // G_ZEXT on vector applies to each lane, so it will 1842 // affect all destinations. Therefore we won't be able 1843 // to simplify the unmerge to just the first definition. 1844 if (Dst0Ty.isVector()) 1845 return false; 1846 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1847 LLT SrcTy = MRI.getType(SrcReg); 1848 if (SrcTy.isVector()) 1849 return false; 1850 1851 Register ZExtSrcReg; 1852 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 1853 return false; 1854 1855 // Finally we can replace the first definition with 1856 // a zext of the source if the definition is big enough to hold 1857 // all of ZExtSrc bits. 1858 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1859 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 1860 } 1861 1862 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 1863 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1864 "Expected an unmerge"); 1865 1866 Register Dst0Reg = MI.getOperand(0).getReg(); 1867 1868 MachineInstr *ZExtInstr = 1869 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 1870 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 1871 "Expecting a G_ZEXT"); 1872 1873 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 1874 LLT Dst0Ty = MRI.getType(Dst0Reg); 1875 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1876 1877 Builder.setInstrAndDebugLoc(MI); 1878 1879 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 1880 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 1881 } else { 1882 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 1883 "ZExt src doesn't fit in destination"); 1884 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 1885 } 1886 1887 Register ZeroReg; 1888 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1889 if (!ZeroReg) 1890 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 1891 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 1892 } 1893 MI.eraseFromParent(); 1894 } 1895 1896 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1897 unsigned TargetShiftSize, 1898 unsigned &ShiftVal) { 1899 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1900 MI.getOpcode() == TargetOpcode::G_LSHR || 1901 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1902 1903 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1904 if (Ty.isVector()) // TODO: 1905 return false; 1906 1907 // Don't narrow further than the requested size. 1908 unsigned Size = Ty.getSizeInBits(); 1909 if (Size <= TargetShiftSize) 1910 return false; 1911 1912 auto MaybeImmVal = 1913 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1914 if (!MaybeImmVal) 1915 return false; 1916 1917 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1918 return ShiftVal >= Size / 2 && ShiftVal < Size; 1919 } 1920 1921 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1922 const unsigned &ShiftVal) { 1923 Register DstReg = MI.getOperand(0).getReg(); 1924 Register SrcReg = MI.getOperand(1).getReg(); 1925 LLT Ty = MRI.getType(SrcReg); 1926 unsigned Size = Ty.getSizeInBits(); 1927 unsigned HalfSize = Size / 2; 1928 assert(ShiftVal >= HalfSize); 1929 1930 LLT HalfTy = LLT::scalar(HalfSize); 1931 1932 Builder.setInstr(MI); 1933 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1934 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1935 1936 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1937 Register Narrowed = Unmerge.getReg(1); 1938 1939 // dst = G_LSHR s64:x, C for C >= 32 1940 // => 1941 // lo, hi = G_UNMERGE_VALUES x 1942 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1943 1944 if (NarrowShiftAmt != 0) { 1945 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1946 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1947 } 1948 1949 auto Zero = Builder.buildConstant(HalfTy, 0); 1950 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1951 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1952 Register Narrowed = Unmerge.getReg(0); 1953 // dst = G_SHL s64:x, C for C >= 32 1954 // => 1955 // lo, hi = G_UNMERGE_VALUES x 1956 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1957 if (NarrowShiftAmt != 0) { 1958 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1959 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1960 } 1961 1962 auto Zero = Builder.buildConstant(HalfTy, 0); 1963 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1964 } else { 1965 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1966 auto Hi = Builder.buildAShr( 1967 HalfTy, Unmerge.getReg(1), 1968 Builder.buildConstant(HalfTy, HalfSize - 1)); 1969 1970 if (ShiftVal == HalfSize) { 1971 // (G_ASHR i64:x, 32) -> 1972 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1973 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1974 } else if (ShiftVal == Size - 1) { 1975 // Don't need a second shift. 1976 // (G_ASHR i64:x, 63) -> 1977 // %narrowed = (G_ASHR hi_32(x), 31) 1978 // G_MERGE_VALUES %narrowed, %narrowed 1979 Builder.buildMerge(DstReg, { Hi, Hi }); 1980 } else { 1981 auto Lo = Builder.buildAShr( 1982 HalfTy, Unmerge.getReg(1), 1983 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1984 1985 // (G_ASHR i64:x, C) ->, for C >= 32 1986 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1987 Builder.buildMerge(DstReg, { Lo, Hi }); 1988 } 1989 } 1990 1991 MI.eraseFromParent(); 1992 } 1993 1994 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1995 unsigned TargetShiftAmount) { 1996 unsigned ShiftAmt; 1997 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1998 applyCombineShiftToUnmerge(MI, ShiftAmt); 1999 return true; 2000 } 2001 2002 return false; 2003 } 2004 2005 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2006 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2007 Register DstReg = MI.getOperand(0).getReg(); 2008 LLT DstTy = MRI.getType(DstReg); 2009 Register SrcReg = MI.getOperand(1).getReg(); 2010 return mi_match(SrcReg, MRI, 2011 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2012 } 2013 2014 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2015 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2016 Register DstReg = MI.getOperand(0).getReg(); 2017 Builder.setInstr(MI); 2018 Builder.buildCopy(DstReg, Reg); 2019 MI.eraseFromParent(); 2020 } 2021 2022 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2023 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2024 Register SrcReg = MI.getOperand(1).getReg(); 2025 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2026 } 2027 2028 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2029 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2030 Register DstReg = MI.getOperand(0).getReg(); 2031 Builder.setInstr(MI); 2032 Builder.buildZExtOrTrunc(DstReg, Reg); 2033 MI.eraseFromParent(); 2034 } 2035 2036 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2037 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2038 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2039 Register LHS = MI.getOperand(1).getReg(); 2040 Register RHS = MI.getOperand(2).getReg(); 2041 LLT IntTy = MRI.getType(LHS); 2042 2043 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2044 // instruction. 2045 PtrReg.second = false; 2046 for (Register SrcReg : {LHS, RHS}) { 2047 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2048 // Don't handle cases where the integer is implicitly converted to the 2049 // pointer width. 2050 LLT PtrTy = MRI.getType(PtrReg.first); 2051 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2052 return true; 2053 } 2054 2055 PtrReg.second = true; 2056 } 2057 2058 return false; 2059 } 2060 2061 void CombinerHelper::applyCombineAddP2IToPtrAdd( 2062 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2063 Register Dst = MI.getOperand(0).getReg(); 2064 Register LHS = MI.getOperand(1).getReg(); 2065 Register RHS = MI.getOperand(2).getReg(); 2066 2067 const bool DoCommute = PtrReg.second; 2068 if (DoCommute) 2069 std::swap(LHS, RHS); 2070 LHS = PtrReg.first; 2071 2072 LLT PtrTy = MRI.getType(LHS); 2073 2074 Builder.setInstrAndDebugLoc(MI); 2075 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2076 Builder.buildPtrToInt(Dst, PtrAdd); 2077 MI.eraseFromParent(); 2078 } 2079 2080 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2081 APInt &NewCst) { 2082 auto &PtrAdd = cast<GPtrAdd>(MI); 2083 Register LHS = PtrAdd.getBaseReg(); 2084 Register RHS = PtrAdd.getOffsetReg(); 2085 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2086 2087 if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) { 2088 APInt Cst; 2089 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2090 auto DstTy = MRI.getType(PtrAdd.getReg(0)); 2091 // G_INTTOPTR uses zero-extension 2092 NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits()); 2093 NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits()); 2094 return true; 2095 } 2096 } 2097 2098 return false; 2099 } 2100 2101 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2102 APInt &NewCst) { 2103 auto &PtrAdd = cast<GPtrAdd>(MI); 2104 Register Dst = PtrAdd.getReg(0); 2105 2106 Builder.setInstrAndDebugLoc(MI); 2107 Builder.buildConstant(Dst, NewCst); 2108 PtrAdd.eraseFromParent(); 2109 } 2110 2111 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2112 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2113 Register DstReg = MI.getOperand(0).getReg(); 2114 Register SrcReg = MI.getOperand(1).getReg(); 2115 LLT DstTy = MRI.getType(DstReg); 2116 return mi_match(SrcReg, MRI, 2117 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2118 } 2119 2120 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2121 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2122 Register DstReg = MI.getOperand(0).getReg(); 2123 Register SrcReg = MI.getOperand(1).getReg(); 2124 LLT DstTy = MRI.getType(DstReg); 2125 if (mi_match(SrcReg, MRI, 2126 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2127 unsigned DstSize = DstTy.getScalarSizeInBits(); 2128 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2129 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2130 } 2131 return false; 2132 } 2133 2134 bool CombinerHelper::matchCombineExtOfExt( 2135 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2136 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2137 MI.getOpcode() == TargetOpcode::G_SEXT || 2138 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2139 "Expected a G_[ASZ]EXT"); 2140 Register SrcReg = MI.getOperand(1).getReg(); 2141 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2142 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2143 unsigned Opc = MI.getOpcode(); 2144 unsigned SrcOpc = SrcMI->getOpcode(); 2145 if (Opc == SrcOpc || 2146 (Opc == TargetOpcode::G_ANYEXT && 2147 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2148 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2149 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2150 return true; 2151 } 2152 return false; 2153 } 2154 2155 void CombinerHelper::applyCombineExtOfExt( 2156 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2157 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2158 MI.getOpcode() == TargetOpcode::G_SEXT || 2159 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2160 "Expected a G_[ASZ]EXT"); 2161 2162 Register Reg = std::get<0>(MatchInfo); 2163 unsigned SrcExtOp = std::get<1>(MatchInfo); 2164 2165 // Combine exts with the same opcode. 2166 if (MI.getOpcode() == SrcExtOp) { 2167 Observer.changingInstr(MI); 2168 MI.getOperand(1).setReg(Reg); 2169 Observer.changedInstr(MI); 2170 return; 2171 } 2172 2173 // Combine: 2174 // - anyext([sz]ext x) to [sz]ext x 2175 // - sext(zext x) to zext x 2176 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2177 (MI.getOpcode() == TargetOpcode::G_SEXT && 2178 SrcExtOp == TargetOpcode::G_ZEXT)) { 2179 Register DstReg = MI.getOperand(0).getReg(); 2180 Builder.setInstrAndDebugLoc(MI); 2181 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2182 MI.eraseFromParent(); 2183 } 2184 } 2185 2186 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2187 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2188 Register DstReg = MI.getOperand(0).getReg(); 2189 Register SrcReg = MI.getOperand(1).getReg(); 2190 LLT DstTy = MRI.getType(DstReg); 2191 2192 Builder.setInstrAndDebugLoc(MI); 2193 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2194 MI.getFlags()); 2195 MI.eraseFromParent(); 2196 } 2197 2198 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2199 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2200 Register SrcReg = MI.getOperand(1).getReg(); 2201 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2202 } 2203 2204 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2205 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2206 Src = MI.getOperand(1).getReg(); 2207 Register AbsSrc; 2208 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2209 } 2210 2211 bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI, 2212 BuildFnTy &MatchInfo) { 2213 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2214 Register Src = MI.getOperand(1).getReg(); 2215 Register NegSrc; 2216 2217 if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc)))) 2218 return false; 2219 2220 MatchInfo = [=, &MI](MachineIRBuilder &B) { 2221 Observer.changingInstr(MI); 2222 MI.getOperand(1).setReg(NegSrc); 2223 Observer.changedInstr(MI); 2224 }; 2225 return true; 2226 } 2227 2228 bool CombinerHelper::matchCombineTruncOfExt( 2229 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2230 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2231 Register SrcReg = MI.getOperand(1).getReg(); 2232 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2233 unsigned SrcOpc = SrcMI->getOpcode(); 2234 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2235 SrcOpc == TargetOpcode::G_ZEXT) { 2236 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2237 return true; 2238 } 2239 return false; 2240 } 2241 2242 void CombinerHelper::applyCombineTruncOfExt( 2243 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2244 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2245 Register SrcReg = MatchInfo.first; 2246 unsigned SrcExtOp = MatchInfo.second; 2247 Register DstReg = MI.getOperand(0).getReg(); 2248 LLT SrcTy = MRI.getType(SrcReg); 2249 LLT DstTy = MRI.getType(DstReg); 2250 if (SrcTy == DstTy) { 2251 MI.eraseFromParent(); 2252 replaceRegWith(MRI, DstReg, SrcReg); 2253 return; 2254 } 2255 Builder.setInstrAndDebugLoc(MI); 2256 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2257 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2258 else 2259 Builder.buildTrunc(DstReg, SrcReg); 2260 MI.eraseFromParent(); 2261 } 2262 2263 bool CombinerHelper::matchCombineTruncOfShl( 2264 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2265 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2266 Register DstReg = MI.getOperand(0).getReg(); 2267 Register SrcReg = MI.getOperand(1).getReg(); 2268 LLT DstTy = MRI.getType(DstReg); 2269 Register ShiftSrc; 2270 Register ShiftAmt; 2271 2272 if (MRI.hasOneNonDBGUse(SrcReg) && 2273 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2274 isLegalOrBeforeLegalizer( 2275 {TargetOpcode::G_SHL, 2276 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2277 KnownBits Known = KB->getKnownBits(ShiftAmt); 2278 unsigned Size = DstTy.getSizeInBits(); 2279 if (Known.countMaxActiveBits() <= Log2_32(Size)) { 2280 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2281 return true; 2282 } 2283 } 2284 return false; 2285 } 2286 2287 void CombinerHelper::applyCombineTruncOfShl( 2288 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2289 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2290 Register DstReg = MI.getOperand(0).getReg(); 2291 Register SrcReg = MI.getOperand(1).getReg(); 2292 LLT DstTy = MRI.getType(DstReg); 2293 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2294 2295 Register ShiftSrc = MatchInfo.first; 2296 Register ShiftAmt = MatchInfo.second; 2297 Builder.setInstrAndDebugLoc(MI); 2298 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2299 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2300 MI.eraseFromParent(); 2301 } 2302 2303 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2304 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2305 return MO.isReg() && 2306 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2307 }); 2308 } 2309 2310 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2311 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2312 return !MO.isReg() || 2313 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2314 }); 2315 } 2316 2317 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2318 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2319 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2320 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2321 } 2322 2323 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2324 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2325 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2326 MRI); 2327 } 2328 2329 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2330 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2331 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2332 MRI); 2333 } 2334 2335 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2336 GSelect &SelMI = cast<GSelect>(MI); 2337 auto Cst = 2338 isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI); 2339 if (!Cst) 2340 return false; 2341 OpIdx = Cst->isZero() ? 3 : 2; 2342 return true; 2343 } 2344 2345 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2346 MI.eraseFromParent(); 2347 return true; 2348 } 2349 2350 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2351 const MachineOperand &MOP2) { 2352 if (!MOP1.isReg() || !MOP2.isReg()) 2353 return false; 2354 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2355 if (!InstAndDef1) 2356 return false; 2357 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2358 if (!InstAndDef2) 2359 return false; 2360 MachineInstr *I1 = InstAndDef1->MI; 2361 MachineInstr *I2 = InstAndDef2->MI; 2362 2363 // Handle a case like this: 2364 // 2365 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2366 // 2367 // Even though %0 and %1 are produced by the same instruction they are not 2368 // the same values. 2369 if (I1 == I2) 2370 return MOP1.getReg() == MOP2.getReg(); 2371 2372 // If we have an instruction which loads or stores, we can't guarantee that 2373 // it is identical. 2374 // 2375 // For example, we may have 2376 // 2377 // %x1 = G_LOAD %addr (load N from @somewhere) 2378 // ... 2379 // call @foo 2380 // ... 2381 // %x2 = G_LOAD %addr (load N from @somewhere) 2382 // ... 2383 // %or = G_OR %x1, %x2 2384 // 2385 // It's possible that @foo will modify whatever lives at the address we're 2386 // loading from. To be safe, let's just assume that all loads and stores 2387 // are different (unless we have something which is guaranteed to not 2388 // change.) 2389 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad()) 2390 return false; 2391 2392 // If both instructions are loads or stores, they are equal only if both 2393 // are dereferenceable invariant loads with the same number of bits. 2394 if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) { 2395 GLoadStore *LS1 = dyn_cast<GLoadStore>(I1); 2396 GLoadStore *LS2 = dyn_cast<GLoadStore>(I2); 2397 if (!LS1 || !LS2) 2398 return false; 2399 2400 if (!I2->isDereferenceableInvariantLoad() || 2401 (LS1->getMemSizeInBits() != LS2->getMemSizeInBits())) 2402 return false; 2403 } 2404 2405 // Check for physical registers on the instructions first to avoid cases 2406 // like this: 2407 // 2408 // %a = COPY $physreg 2409 // ... 2410 // SOMETHING implicit-def $physreg 2411 // ... 2412 // %b = COPY $physreg 2413 // 2414 // These copies are not equivalent. 2415 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2416 return MO.isReg() && MO.getReg().isPhysical(); 2417 })) { 2418 // Check if we have a case like this: 2419 // 2420 // %a = COPY $physreg 2421 // %b = COPY %a 2422 // 2423 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2424 // From that, we know that they must have the same value, since they must 2425 // have come from the same COPY. 2426 return I1->isIdenticalTo(*I2); 2427 } 2428 2429 // We don't have any physical registers, so we don't necessarily need the 2430 // same vreg defs. 2431 // 2432 // On the off-chance that there's some target instruction feeding into the 2433 // instruction, let's use produceSameValue instead of isIdenticalTo. 2434 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2435 // Handle instructions with multiple defs that produce same values. Values 2436 // are same for operands with same index. 2437 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2438 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2439 // I1 and I2 are different instructions but produce same values, 2440 // %1 and %6 are same, %1 and %7 are not the same value. 2441 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2442 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2443 } 2444 return false; 2445 } 2446 2447 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2448 if (!MOP.isReg()) 2449 return false; 2450 auto *MI = MRI.getVRegDef(MOP.getReg()); 2451 auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI); 2452 return MaybeCst && MaybeCst->getBitWidth() <= 64 && 2453 MaybeCst->getSExtValue() == C; 2454 } 2455 2456 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2457 unsigned OpIdx) { 2458 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2459 Register OldReg = MI.getOperand(0).getReg(); 2460 Register Replacement = MI.getOperand(OpIdx).getReg(); 2461 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2462 MI.eraseFromParent(); 2463 replaceRegWith(MRI, OldReg, Replacement); 2464 return true; 2465 } 2466 2467 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2468 Register Replacement) { 2469 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2470 Register OldReg = MI.getOperand(0).getReg(); 2471 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2472 MI.eraseFromParent(); 2473 replaceRegWith(MRI, OldReg, Replacement); 2474 return true; 2475 } 2476 2477 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2478 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2479 // Match (cond ? x : x) 2480 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2481 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2482 MRI); 2483 } 2484 2485 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2486 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2487 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2488 MRI); 2489 } 2490 2491 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2492 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2493 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2494 MRI); 2495 } 2496 2497 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2498 MachineOperand &MO = MI.getOperand(OpIdx); 2499 return MO.isReg() && 2500 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2501 } 2502 2503 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2504 unsigned OpIdx) { 2505 MachineOperand &MO = MI.getOperand(OpIdx); 2506 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2507 } 2508 2509 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2510 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2511 Builder.setInstr(MI); 2512 Builder.buildFConstant(MI.getOperand(0), C); 2513 MI.eraseFromParent(); 2514 return true; 2515 } 2516 2517 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2518 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2519 Builder.setInstr(MI); 2520 Builder.buildConstant(MI.getOperand(0), C); 2521 MI.eraseFromParent(); 2522 return true; 2523 } 2524 2525 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2526 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2527 Builder.setInstr(MI); 2528 Builder.buildConstant(MI.getOperand(0), C); 2529 MI.eraseFromParent(); 2530 return true; 2531 } 2532 2533 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2534 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2535 Builder.setInstr(MI); 2536 Builder.buildUndef(MI.getOperand(0)); 2537 MI.eraseFromParent(); 2538 return true; 2539 } 2540 2541 bool CombinerHelper::matchSimplifyAddToSub( 2542 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2543 Register LHS = MI.getOperand(1).getReg(); 2544 Register RHS = MI.getOperand(2).getReg(); 2545 Register &NewLHS = std::get<0>(MatchInfo); 2546 Register &NewRHS = std::get<1>(MatchInfo); 2547 2548 // Helper lambda to check for opportunities for 2549 // ((0-A) + B) -> B - A 2550 // (A + (0-B)) -> A - B 2551 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2552 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2553 return false; 2554 NewLHS = MaybeNewLHS; 2555 return true; 2556 }; 2557 2558 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2559 } 2560 2561 bool CombinerHelper::matchCombineInsertVecElts( 2562 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2563 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2564 "Invalid opcode"); 2565 Register DstReg = MI.getOperand(0).getReg(); 2566 LLT DstTy = MRI.getType(DstReg); 2567 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2568 unsigned NumElts = DstTy.getNumElements(); 2569 // If this MI is part of a sequence of insert_vec_elts, then 2570 // don't do the combine in the middle of the sequence. 2571 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2572 TargetOpcode::G_INSERT_VECTOR_ELT) 2573 return false; 2574 MachineInstr *CurrInst = &MI; 2575 MachineInstr *TmpInst; 2576 int64_t IntImm; 2577 Register TmpReg; 2578 MatchInfo.resize(NumElts); 2579 while (mi_match( 2580 CurrInst->getOperand(0).getReg(), MRI, 2581 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2582 if (IntImm >= NumElts) 2583 return false; 2584 if (!MatchInfo[IntImm]) 2585 MatchInfo[IntImm] = TmpReg; 2586 CurrInst = TmpInst; 2587 } 2588 // Variable index. 2589 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2590 return false; 2591 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2592 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2593 if (!MatchInfo[I - 1].isValid()) 2594 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2595 } 2596 return true; 2597 } 2598 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2599 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2600 } 2601 2602 void CombinerHelper::applyCombineInsertVecElts( 2603 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2604 Builder.setInstr(MI); 2605 Register UndefReg; 2606 auto GetUndef = [&]() { 2607 if (UndefReg) 2608 return UndefReg; 2609 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2610 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2611 return UndefReg; 2612 }; 2613 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2614 if (!MatchInfo[I]) 2615 MatchInfo[I] = GetUndef(); 2616 } 2617 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2618 MI.eraseFromParent(); 2619 } 2620 2621 void CombinerHelper::applySimplifyAddToSub( 2622 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2623 Builder.setInstr(MI); 2624 Register SubLHS, SubRHS; 2625 std::tie(SubLHS, SubRHS) = MatchInfo; 2626 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2627 MI.eraseFromParent(); 2628 } 2629 2630 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2631 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2632 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2633 // 2634 // Creates the new hand + logic instruction (but does not insert them.) 2635 // 2636 // On success, MatchInfo is populated with the new instructions. These are 2637 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2638 unsigned LogicOpcode = MI.getOpcode(); 2639 assert(LogicOpcode == TargetOpcode::G_AND || 2640 LogicOpcode == TargetOpcode::G_OR || 2641 LogicOpcode == TargetOpcode::G_XOR); 2642 MachineIRBuilder MIB(MI); 2643 Register Dst = MI.getOperand(0).getReg(); 2644 Register LHSReg = MI.getOperand(1).getReg(); 2645 Register RHSReg = MI.getOperand(2).getReg(); 2646 2647 // Don't recompute anything. 2648 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2649 return false; 2650 2651 // Make sure we have (hand x, ...), (hand y, ...) 2652 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2653 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2654 if (!LeftHandInst || !RightHandInst) 2655 return false; 2656 unsigned HandOpcode = LeftHandInst->getOpcode(); 2657 if (HandOpcode != RightHandInst->getOpcode()) 2658 return false; 2659 if (!LeftHandInst->getOperand(1).isReg() || 2660 !RightHandInst->getOperand(1).isReg()) 2661 return false; 2662 2663 // Make sure the types match up, and if we're doing this post-legalization, 2664 // we end up with legal types. 2665 Register X = LeftHandInst->getOperand(1).getReg(); 2666 Register Y = RightHandInst->getOperand(1).getReg(); 2667 LLT XTy = MRI.getType(X); 2668 LLT YTy = MRI.getType(Y); 2669 if (XTy != YTy) 2670 return false; 2671 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2672 return false; 2673 2674 // Optional extra source register. 2675 Register ExtraHandOpSrcReg; 2676 switch (HandOpcode) { 2677 default: 2678 return false; 2679 case TargetOpcode::G_ANYEXT: 2680 case TargetOpcode::G_SEXT: 2681 case TargetOpcode::G_ZEXT: { 2682 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2683 break; 2684 } 2685 case TargetOpcode::G_AND: 2686 case TargetOpcode::G_ASHR: 2687 case TargetOpcode::G_LSHR: 2688 case TargetOpcode::G_SHL: { 2689 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2690 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2691 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2692 return false; 2693 ExtraHandOpSrcReg = ZOp.getReg(); 2694 break; 2695 } 2696 } 2697 2698 // Record the steps to build the new instructions. 2699 // 2700 // Steps to build (logic x, y) 2701 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2702 OperandBuildSteps LogicBuildSteps = { 2703 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2704 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2705 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2706 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2707 2708 // Steps to build hand (logic x, y), ...z 2709 OperandBuildSteps HandBuildSteps = { 2710 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2711 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2712 if (ExtraHandOpSrcReg.isValid()) 2713 HandBuildSteps.push_back( 2714 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2715 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2716 2717 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2718 return true; 2719 } 2720 2721 void CombinerHelper::applyBuildInstructionSteps( 2722 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2723 assert(MatchInfo.InstrsToBuild.size() && 2724 "Expected at least one instr to build?"); 2725 Builder.setInstr(MI); 2726 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2727 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2728 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2729 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2730 for (auto &OperandFn : InstrToBuild.OperandFns) 2731 OperandFn(Instr); 2732 } 2733 MI.eraseFromParent(); 2734 } 2735 2736 bool CombinerHelper::matchAshrShlToSextInreg( 2737 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2738 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2739 int64_t ShlCst, AshrCst; 2740 Register Src; 2741 // FIXME: detect splat constant vectors. 2742 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2743 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2744 return false; 2745 if (ShlCst != AshrCst) 2746 return false; 2747 if (!isLegalOrBeforeLegalizer( 2748 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2749 return false; 2750 MatchInfo = std::make_tuple(Src, ShlCst); 2751 return true; 2752 } 2753 2754 void CombinerHelper::applyAshShlToSextInreg( 2755 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2756 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2757 Register Src; 2758 int64_t ShiftAmt; 2759 std::tie(Src, ShiftAmt) = MatchInfo; 2760 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2761 Builder.setInstrAndDebugLoc(MI); 2762 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2763 MI.eraseFromParent(); 2764 } 2765 2766 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 2767 bool CombinerHelper::matchOverlappingAnd( 2768 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 2769 assert(MI.getOpcode() == TargetOpcode::G_AND); 2770 2771 Register Dst = MI.getOperand(0).getReg(); 2772 LLT Ty = MRI.getType(Dst); 2773 2774 Register R; 2775 int64_t C1; 2776 int64_t C2; 2777 if (!mi_match( 2778 Dst, MRI, 2779 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 2780 return false; 2781 2782 MatchInfo = [=](MachineIRBuilder &B) { 2783 if (C1 & C2) { 2784 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 2785 return; 2786 } 2787 auto Zero = B.buildConstant(Ty, 0); 2788 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 2789 }; 2790 return true; 2791 } 2792 2793 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2794 Register &Replacement) { 2795 // Given 2796 // 2797 // %y:_(sN) = G_SOMETHING 2798 // %x:_(sN) = G_SOMETHING 2799 // %res:_(sN) = G_AND %x, %y 2800 // 2801 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 2802 // 2803 // Patterns like this can appear as a result of legalization. E.g. 2804 // 2805 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2806 // %one:_(s32) = G_CONSTANT i32 1 2807 // %and:_(s32) = G_AND %cmp, %one 2808 // 2809 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2810 assert(MI.getOpcode() == TargetOpcode::G_AND); 2811 if (!KB) 2812 return false; 2813 2814 Register AndDst = MI.getOperand(0).getReg(); 2815 LLT DstTy = MRI.getType(AndDst); 2816 2817 // FIXME: This should be removed once GISelKnownBits supports vectors. 2818 if (DstTy.isVector()) 2819 return false; 2820 2821 Register LHS = MI.getOperand(1).getReg(); 2822 Register RHS = MI.getOperand(2).getReg(); 2823 KnownBits LHSBits = KB->getKnownBits(LHS); 2824 KnownBits RHSBits = KB->getKnownBits(RHS); 2825 2826 // Check that x & Mask == x. 2827 // x & 1 == x, always 2828 // x & 0 == x, only if x is also 0 2829 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 2830 // 2831 // Check if we can replace AndDst with the LHS of the G_AND 2832 if (canReplaceReg(AndDst, LHS, MRI) && 2833 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2834 Replacement = LHS; 2835 return true; 2836 } 2837 2838 // Check if we can replace AndDst with the RHS of the G_AND 2839 if (canReplaceReg(AndDst, RHS, MRI) && 2840 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2841 Replacement = RHS; 2842 return true; 2843 } 2844 2845 return false; 2846 } 2847 2848 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 2849 // Given 2850 // 2851 // %y:_(sN) = G_SOMETHING 2852 // %x:_(sN) = G_SOMETHING 2853 // %res:_(sN) = G_OR %x, %y 2854 // 2855 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 2856 assert(MI.getOpcode() == TargetOpcode::G_OR); 2857 if (!KB) 2858 return false; 2859 2860 Register OrDst = MI.getOperand(0).getReg(); 2861 LLT DstTy = MRI.getType(OrDst); 2862 2863 // FIXME: This should be removed once GISelKnownBits supports vectors. 2864 if (DstTy.isVector()) 2865 return false; 2866 2867 Register LHS = MI.getOperand(1).getReg(); 2868 Register RHS = MI.getOperand(2).getReg(); 2869 KnownBits LHSBits = KB->getKnownBits(LHS); 2870 KnownBits RHSBits = KB->getKnownBits(RHS); 2871 2872 // Check that x | Mask == x. 2873 // x | 0 == x, always 2874 // x | 1 == x, only if x is also 1 2875 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 2876 // 2877 // Check if we can replace OrDst with the LHS of the G_OR 2878 if (canReplaceReg(OrDst, LHS, MRI) && 2879 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2880 Replacement = LHS; 2881 return true; 2882 } 2883 2884 // Check if we can replace OrDst with the RHS of the G_OR 2885 if (canReplaceReg(OrDst, RHS, MRI) && 2886 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2887 Replacement = RHS; 2888 return true; 2889 } 2890 2891 return false; 2892 } 2893 2894 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 2895 // If the input is already sign extended, just drop the extension. 2896 Register Src = MI.getOperand(1).getReg(); 2897 unsigned ExtBits = MI.getOperand(2).getImm(); 2898 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 2899 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 2900 } 2901 2902 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 2903 int64_t Cst, bool IsVector, bool IsFP) { 2904 // For i1, Cst will always be -1 regardless of boolean contents. 2905 return (ScalarSizeBits == 1 && Cst == -1) || 2906 isConstTrueVal(TLI, Cst, IsVector, IsFP); 2907 } 2908 2909 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 2910 SmallVectorImpl<Register> &RegsToNegate) { 2911 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2912 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2913 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 2914 Register XorSrc; 2915 Register CstReg; 2916 // We match xor(src, true) here. 2917 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2918 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 2919 return false; 2920 2921 if (!MRI.hasOneNonDBGUse(XorSrc)) 2922 return false; 2923 2924 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 2925 // and ORs. The suffix of RegsToNegate starting from index I is used a work 2926 // list of tree nodes to visit. 2927 RegsToNegate.push_back(XorSrc); 2928 // Remember whether the comparisons are all integer or all floating point. 2929 bool IsInt = false; 2930 bool IsFP = false; 2931 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 2932 Register Reg = RegsToNegate[I]; 2933 if (!MRI.hasOneNonDBGUse(Reg)) 2934 return false; 2935 MachineInstr *Def = MRI.getVRegDef(Reg); 2936 switch (Def->getOpcode()) { 2937 default: 2938 // Don't match if the tree contains anything other than ANDs, ORs and 2939 // comparisons. 2940 return false; 2941 case TargetOpcode::G_ICMP: 2942 if (IsFP) 2943 return false; 2944 IsInt = true; 2945 // When we apply the combine we will invert the predicate. 2946 break; 2947 case TargetOpcode::G_FCMP: 2948 if (IsInt) 2949 return false; 2950 IsFP = true; 2951 // When we apply the combine we will invert the predicate. 2952 break; 2953 case TargetOpcode::G_AND: 2954 case TargetOpcode::G_OR: 2955 // Implement De Morgan's laws: 2956 // ~(x & y) -> ~x | ~y 2957 // ~(x | y) -> ~x & ~y 2958 // When we apply the combine we will change the opcode and recursively 2959 // negate the operands. 2960 RegsToNegate.push_back(Def->getOperand(1).getReg()); 2961 RegsToNegate.push_back(Def->getOperand(2).getReg()); 2962 break; 2963 } 2964 } 2965 2966 // Now we know whether the comparisons are integer or floating point, check 2967 // the constant in the xor. 2968 int64_t Cst; 2969 if (Ty.isVector()) { 2970 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 2971 auto MaybeCst = getIConstantSplatSExtVal(*CstDef, MRI); 2972 if (!MaybeCst) 2973 return false; 2974 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 2975 return false; 2976 } else { 2977 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 2978 return false; 2979 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 2980 return false; 2981 } 2982 2983 return true; 2984 } 2985 2986 void CombinerHelper::applyNotCmp(MachineInstr &MI, 2987 SmallVectorImpl<Register> &RegsToNegate) { 2988 for (Register Reg : RegsToNegate) { 2989 MachineInstr *Def = MRI.getVRegDef(Reg); 2990 Observer.changingInstr(*Def); 2991 // For each comparison, invert the opcode. For each AND and OR, change the 2992 // opcode. 2993 switch (Def->getOpcode()) { 2994 default: 2995 llvm_unreachable("Unexpected opcode"); 2996 case TargetOpcode::G_ICMP: 2997 case TargetOpcode::G_FCMP: { 2998 MachineOperand &PredOp = Def->getOperand(1); 2999 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 3000 (CmpInst::Predicate)PredOp.getPredicate()); 3001 PredOp.setPredicate(NewP); 3002 break; 3003 } 3004 case TargetOpcode::G_AND: 3005 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3006 break; 3007 case TargetOpcode::G_OR: 3008 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3009 break; 3010 } 3011 Observer.changedInstr(*Def); 3012 } 3013 3014 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3015 MI.eraseFromParent(); 3016 } 3017 3018 bool CombinerHelper::matchXorOfAndWithSameReg( 3019 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3020 // Match (xor (and x, y), y) (or any of its commuted cases) 3021 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3022 Register &X = MatchInfo.first; 3023 Register &Y = MatchInfo.second; 3024 Register AndReg = MI.getOperand(1).getReg(); 3025 Register SharedReg = MI.getOperand(2).getReg(); 3026 3027 // Find a G_AND on either side of the G_XOR. 3028 // Look for one of 3029 // 3030 // (xor (and x, y), SharedReg) 3031 // (xor SharedReg, (and x, y)) 3032 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3033 std::swap(AndReg, SharedReg); 3034 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3035 return false; 3036 } 3037 3038 // Only do this if we'll eliminate the G_AND. 3039 if (!MRI.hasOneNonDBGUse(AndReg)) 3040 return false; 3041 3042 // We can combine if SharedReg is the same as either the LHS or RHS of the 3043 // G_AND. 3044 if (Y != SharedReg) 3045 std::swap(X, Y); 3046 return Y == SharedReg; 3047 } 3048 3049 void CombinerHelper::applyXorOfAndWithSameReg( 3050 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3051 // Fold (xor (and x, y), y) -> (and (not x), y) 3052 Builder.setInstrAndDebugLoc(MI); 3053 Register X, Y; 3054 std::tie(X, Y) = MatchInfo; 3055 auto Not = Builder.buildNot(MRI.getType(X), X); 3056 Observer.changingInstr(MI); 3057 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3058 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3059 MI.getOperand(2).setReg(Y); 3060 Observer.changedInstr(MI); 3061 } 3062 3063 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3064 auto &PtrAdd = cast<GPtrAdd>(MI); 3065 Register DstReg = PtrAdd.getReg(0); 3066 LLT Ty = MRI.getType(DstReg); 3067 const DataLayout &DL = Builder.getMF().getDataLayout(); 3068 3069 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3070 return false; 3071 3072 if (Ty.isPointer()) { 3073 auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI); 3074 return ConstVal && *ConstVal == 0; 3075 } 3076 3077 assert(Ty.isVector() && "Expecting a vector type"); 3078 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 3079 return isBuildVectorAllZeros(*VecMI, MRI); 3080 } 3081 3082 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3083 auto &PtrAdd = cast<GPtrAdd>(MI); 3084 Builder.setInstrAndDebugLoc(PtrAdd); 3085 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 3086 PtrAdd.eraseFromParent(); 3087 } 3088 3089 /// The second source operand is known to be a power of 2. 3090 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3091 Register DstReg = MI.getOperand(0).getReg(); 3092 Register Src0 = MI.getOperand(1).getReg(); 3093 Register Pow2Src1 = MI.getOperand(2).getReg(); 3094 LLT Ty = MRI.getType(DstReg); 3095 Builder.setInstrAndDebugLoc(MI); 3096 3097 // Fold (urem x, pow2) -> (and x, pow2-1) 3098 auto NegOne = Builder.buildConstant(Ty, -1); 3099 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3100 Builder.buildAnd(DstReg, Src0, Add); 3101 MI.eraseFromParent(); 3102 } 3103 3104 bool CombinerHelper::matchFoldBinOpIntoSelect(MachineInstr &MI, 3105 unsigned &SelectOpNo) { 3106 Register LHS = MI.getOperand(1).getReg(); 3107 Register RHS = MI.getOperand(2).getReg(); 3108 3109 Register OtherOperandReg = RHS; 3110 SelectOpNo = 1; 3111 MachineInstr *Select = MRI.getVRegDef(LHS); 3112 3113 // Don't do this unless the old select is going away. We want to eliminate the 3114 // binary operator, not replace a binop with a select. 3115 if (Select->getOpcode() != TargetOpcode::G_SELECT || 3116 !MRI.hasOneNonDBGUse(LHS)) { 3117 OtherOperandReg = LHS; 3118 SelectOpNo = 2; 3119 Select = MRI.getVRegDef(RHS); 3120 if (Select->getOpcode() != TargetOpcode::G_SELECT || 3121 !MRI.hasOneNonDBGUse(RHS)) 3122 return false; 3123 } 3124 3125 MachineInstr *SelectLHS = MRI.getVRegDef(Select->getOperand(2).getReg()); 3126 MachineInstr *SelectRHS = MRI.getVRegDef(Select->getOperand(3).getReg()); 3127 3128 if (!isConstantOrConstantVector(*SelectLHS, MRI, 3129 /*AllowFP*/ true, 3130 /*AllowOpaqueConstants*/ false)) 3131 return false; 3132 if (!isConstantOrConstantVector(*SelectRHS, MRI, 3133 /*AllowFP*/ true, 3134 /*AllowOpaqueConstants*/ false)) 3135 return false; 3136 3137 unsigned BinOpcode = MI.getOpcode(); 3138 3139 // We know know one of the operands is a select of constants. Now verify that 3140 // the other binary operator operand is either a constant, or we can handle a 3141 // variable. 3142 bool CanFoldNonConst = 3143 (BinOpcode == TargetOpcode::G_AND || BinOpcode == TargetOpcode::G_OR) && 3144 (isNullOrNullSplat(*SelectLHS, MRI) || 3145 isAllOnesOrAllOnesSplat(*SelectLHS, MRI)) && 3146 (isNullOrNullSplat(*SelectRHS, MRI) || 3147 isAllOnesOrAllOnesSplat(*SelectRHS, MRI)); 3148 if (CanFoldNonConst) 3149 return true; 3150 3151 return isConstantOrConstantVector(*MRI.getVRegDef(OtherOperandReg), MRI, 3152 /*AllowFP*/ true, 3153 /*AllowOpaqueConstants*/ false); 3154 } 3155 3156 /// \p SelectOperand is the operand in binary operator \p MI that is the select 3157 /// to fold. 3158 bool CombinerHelper::applyFoldBinOpIntoSelect(MachineInstr &MI, 3159 const unsigned &SelectOperand) { 3160 Builder.setInstrAndDebugLoc(MI); 3161 3162 Register Dst = MI.getOperand(0).getReg(); 3163 Register LHS = MI.getOperand(1).getReg(); 3164 Register RHS = MI.getOperand(2).getReg(); 3165 MachineInstr *Select = MRI.getVRegDef(MI.getOperand(SelectOperand).getReg()); 3166 3167 Register SelectCond = Select->getOperand(1).getReg(); 3168 Register SelectTrue = Select->getOperand(2).getReg(); 3169 Register SelectFalse = Select->getOperand(3).getReg(); 3170 3171 LLT Ty = MRI.getType(Dst); 3172 unsigned BinOpcode = MI.getOpcode(); 3173 3174 Register FoldTrue, FoldFalse; 3175 3176 // We have a select-of-constants followed by a binary operator with a 3177 // constant. Eliminate the binop by pulling the constant math into the select. 3178 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO 3179 if (SelectOperand == 1) { 3180 // TODO: SelectionDAG verifies this actually constant folds before 3181 // committing to the combine. 3182 3183 FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {SelectTrue, RHS}).getReg(0); 3184 FoldFalse = 3185 Builder.buildInstr(BinOpcode, {Ty}, {SelectFalse, RHS}).getReg(0); 3186 } else { 3187 FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectTrue}).getReg(0); 3188 FoldFalse = 3189 Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectFalse}).getReg(0); 3190 } 3191 3192 Builder.buildSelect(Dst, SelectCond, FoldTrue, FoldFalse, MI.getFlags()); 3193 Observer.erasingInstr(*Select); 3194 Select->eraseFromParent(); 3195 MI.eraseFromParent(); 3196 3197 return true; 3198 } 3199 3200 Optional<SmallVector<Register, 8>> 3201 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3202 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3203 // We want to detect if Root is part of a tree which represents a bunch 3204 // of loads being merged into a larger load. We'll try to recognize patterns 3205 // like, for example: 3206 // 3207 // Reg Reg 3208 // \ / 3209 // OR_1 Reg 3210 // \ / 3211 // OR_2 3212 // \ Reg 3213 // .. / 3214 // Root 3215 // 3216 // Reg Reg Reg Reg 3217 // \ / \ / 3218 // OR_1 OR_2 3219 // \ / 3220 // \ / 3221 // ... 3222 // Root 3223 // 3224 // Each "Reg" may have been produced by a load + some arithmetic. This 3225 // function will save each of them. 3226 SmallVector<Register, 8> RegsToVisit; 3227 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3228 3229 // In the "worst" case, we're dealing with a load for each byte. So, there 3230 // are at most #bytes - 1 ORs. 3231 const unsigned MaxIter = 3232 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3233 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3234 if (Ors.empty()) 3235 break; 3236 const MachineInstr *Curr = Ors.pop_back_val(); 3237 Register OrLHS = Curr->getOperand(1).getReg(); 3238 Register OrRHS = Curr->getOperand(2).getReg(); 3239 3240 // In the combine, we want to elimate the entire tree. 3241 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3242 return None; 3243 3244 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3245 // something that may be a load + arithmetic. 3246 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3247 Ors.push_back(Or); 3248 else 3249 RegsToVisit.push_back(OrLHS); 3250 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3251 Ors.push_back(Or); 3252 else 3253 RegsToVisit.push_back(OrRHS); 3254 } 3255 3256 // We're going to try and merge each register into a wider power-of-2 type, 3257 // so we ought to have an even number of registers. 3258 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3259 return None; 3260 return RegsToVisit; 3261 } 3262 3263 /// Helper function for findLoadOffsetsForLoadOrCombine. 3264 /// 3265 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3266 /// and then moving that value into a specific byte offset. 3267 /// 3268 /// e.g. x[i] << 24 3269 /// 3270 /// \returns The load instruction and the byte offset it is moved into. 3271 static Optional<std::pair<GZExtLoad *, int64_t>> 3272 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3273 const MachineRegisterInfo &MRI) { 3274 assert(MRI.hasOneNonDBGUse(Reg) && 3275 "Expected Reg to only have one non-debug use?"); 3276 Register MaybeLoad; 3277 int64_t Shift; 3278 if (!mi_match(Reg, MRI, 3279 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3280 Shift = 0; 3281 MaybeLoad = Reg; 3282 } 3283 3284 if (Shift % MemSizeInBits != 0) 3285 return None; 3286 3287 // TODO: Handle other types of loads. 3288 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3289 if (!Load) 3290 return None; 3291 3292 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3293 return None; 3294 3295 return std::make_pair(Load, Shift / MemSizeInBits); 3296 } 3297 3298 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3299 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3300 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3301 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3302 3303 // Each load found for the pattern. There should be one for each RegsToVisit. 3304 SmallSetVector<const MachineInstr *, 8> Loads; 3305 3306 // The lowest index used in any load. (The lowest "i" for each x[i].) 3307 int64_t LowestIdx = INT64_MAX; 3308 3309 // The load which uses the lowest index. 3310 GZExtLoad *LowestIdxLoad = nullptr; 3311 3312 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3313 SmallSet<int64_t, 8> SeenIdx; 3314 3315 // Ensure each load is in the same MBB. 3316 // TODO: Support multiple MachineBasicBlocks. 3317 MachineBasicBlock *MBB = nullptr; 3318 const MachineMemOperand *MMO = nullptr; 3319 3320 // Earliest instruction-order load in the pattern. 3321 GZExtLoad *EarliestLoad = nullptr; 3322 3323 // Latest instruction-order load in the pattern. 3324 GZExtLoad *LatestLoad = nullptr; 3325 3326 // Base pointer which every load should share. 3327 Register BasePtr; 3328 3329 // We want to find a load for each register. Each load should have some 3330 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3331 // track of the load which uses the lowest index. Later, we will check if we 3332 // can use its pointer in the final, combined load. 3333 for (auto Reg : RegsToVisit) { 3334 // Find the load, and find the position that it will end up in (e.g. a 3335 // shifted) value. 3336 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3337 if (!LoadAndPos) 3338 return None; 3339 GZExtLoad *Load; 3340 int64_t DstPos; 3341 std::tie(Load, DstPos) = *LoadAndPos; 3342 3343 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3344 // it is difficult to check for stores/calls/etc between loads. 3345 MachineBasicBlock *LoadMBB = Load->getParent(); 3346 if (!MBB) 3347 MBB = LoadMBB; 3348 if (LoadMBB != MBB) 3349 return None; 3350 3351 // Make sure that the MachineMemOperands of every seen load are compatible. 3352 auto &LoadMMO = Load->getMMO(); 3353 if (!MMO) 3354 MMO = &LoadMMO; 3355 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3356 return None; 3357 3358 // Find out what the base pointer and index for the load is. 3359 Register LoadPtr; 3360 int64_t Idx; 3361 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3362 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3363 LoadPtr = Load->getOperand(1).getReg(); 3364 Idx = 0; 3365 } 3366 3367 // Don't combine things like a[i], a[i] -> a bigger load. 3368 if (!SeenIdx.insert(Idx).second) 3369 return None; 3370 3371 // Every load must share the same base pointer; don't combine things like: 3372 // 3373 // a[i], b[i + 1] -> a bigger load. 3374 if (!BasePtr.isValid()) 3375 BasePtr = LoadPtr; 3376 if (BasePtr != LoadPtr) 3377 return None; 3378 3379 if (Idx < LowestIdx) { 3380 LowestIdx = Idx; 3381 LowestIdxLoad = Load; 3382 } 3383 3384 // Keep track of the byte offset that this load ends up at. If we have seen 3385 // the byte offset, then stop here. We do not want to combine: 3386 // 3387 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3388 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3389 return None; 3390 Loads.insert(Load); 3391 3392 // Keep track of the position of the earliest/latest loads in the pattern. 3393 // We will check that there are no load fold barriers between them later 3394 // on. 3395 // 3396 // FIXME: Is there a better way to check for load fold barriers? 3397 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3398 EarliestLoad = Load; 3399 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3400 LatestLoad = Load; 3401 } 3402 3403 // We found a load for each register. Let's check if each load satisfies the 3404 // pattern. 3405 assert(Loads.size() == RegsToVisit.size() && 3406 "Expected to find a load for each register?"); 3407 assert(EarliestLoad != LatestLoad && EarliestLoad && 3408 LatestLoad && "Expected at least two loads?"); 3409 3410 // Check if there are any stores, calls, etc. between any of the loads. If 3411 // there are, then we can't safely perform the combine. 3412 // 3413 // MaxIter is chosen based off the (worst case) number of iterations it 3414 // typically takes to succeed in the LLVM test suite plus some padding. 3415 // 3416 // FIXME: Is there a better way to check for load fold barriers? 3417 const unsigned MaxIter = 20; 3418 unsigned Iter = 0; 3419 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3420 LatestLoad->getIterator())) { 3421 if (Loads.count(&MI)) 3422 continue; 3423 if (MI.isLoadFoldBarrier()) 3424 return None; 3425 if (Iter++ == MaxIter) 3426 return None; 3427 } 3428 3429 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3430 } 3431 3432 bool CombinerHelper::matchLoadOrCombine( 3433 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3434 assert(MI.getOpcode() == TargetOpcode::G_OR); 3435 MachineFunction &MF = *MI.getMF(); 3436 // Assuming a little-endian target, transform: 3437 // s8 *a = ... 3438 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3439 // => 3440 // s32 val = *((i32)a) 3441 // 3442 // s8 *a = ... 3443 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3444 // => 3445 // s32 val = BSWAP(*((s32)a)) 3446 Register Dst = MI.getOperand(0).getReg(); 3447 LLT Ty = MRI.getType(Dst); 3448 if (Ty.isVector()) 3449 return false; 3450 3451 // We need to combine at least two loads into this type. Since the smallest 3452 // possible load is into a byte, we need at least a 16-bit wide type. 3453 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3454 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3455 return false; 3456 3457 // Match a collection of non-OR instructions in the pattern. 3458 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3459 if (!RegsToVisit) 3460 return false; 3461 3462 // We have a collection of non-OR instructions. Figure out how wide each of 3463 // the small loads should be based off of the number of potential loads we 3464 // found. 3465 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3466 if (NarrowMemSizeInBits % 8 != 0) 3467 return false; 3468 3469 // Check if each register feeding into each OR is a load from the same 3470 // base pointer + some arithmetic. 3471 // 3472 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3473 // 3474 // Also verify that each of these ends up putting a[i] into the same memory 3475 // offset as a load into a wide type would. 3476 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3477 GZExtLoad *LowestIdxLoad, *LatestLoad; 3478 int64_t LowestIdx; 3479 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3480 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3481 if (!MaybeLoadInfo) 3482 return false; 3483 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3484 3485 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3486 // we found before, check if this corresponds to a big or little endian byte 3487 // pattern. If it does, then we can represent it using a load + possibly a 3488 // BSWAP. 3489 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3490 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3491 if (!IsBigEndian) 3492 return false; 3493 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3494 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3495 return false; 3496 3497 // Make sure that the load from the lowest index produces offset 0 in the 3498 // final value. 3499 // 3500 // This ensures that we won't combine something like this: 3501 // 3502 // load x[i] -> byte 2 3503 // load x[i+1] -> byte 0 ---> wide_load x[i] 3504 // load x[i+2] -> byte 1 3505 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3506 const unsigned ZeroByteOffset = 3507 *IsBigEndian 3508 ? bigEndianByteAt(NumLoadsInTy, 0) 3509 : littleEndianByteAt(NumLoadsInTy, 0); 3510 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3511 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3512 ZeroOffsetIdx->second != LowestIdx) 3513 return false; 3514 3515 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3516 // may not use index 0. 3517 Register Ptr = LowestIdxLoad->getPointerReg(); 3518 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3519 LegalityQuery::MemDesc MMDesc(MMO); 3520 MMDesc.MemoryTy = Ty; 3521 if (!isLegalOrBeforeLegalizer( 3522 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3523 return false; 3524 auto PtrInfo = MMO.getPointerInfo(); 3525 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3526 3527 // Load must be allowed and fast on the target. 3528 LLVMContext &C = MF.getFunction().getContext(); 3529 auto &DL = MF.getDataLayout(); 3530 bool Fast = false; 3531 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3532 !Fast) 3533 return false; 3534 3535 MatchInfo = [=](MachineIRBuilder &MIB) { 3536 MIB.setInstrAndDebugLoc(*LatestLoad); 3537 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3538 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3539 if (NeedsBSwap) 3540 MIB.buildBSwap(Dst, LoadDst); 3541 }; 3542 return true; 3543 } 3544 3545 /// Check if the store \p Store is a truncstore that can be merged. That is, 3546 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty 3547 /// Register then it does not need to match and SrcVal is set to the source 3548 /// value found. 3549 /// On match, returns the start byte offset of the \p SrcVal that is being 3550 /// stored. 3551 static Optional<int64_t> getTruncStoreByteOffset(GStore &Store, Register &SrcVal, 3552 MachineRegisterInfo &MRI) { 3553 Register TruncVal; 3554 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) 3555 return None; 3556 3557 // The shift amount must be a constant multiple of the narrow type. 3558 // It is translated to the offset address in the wide source value "y". 3559 // 3560 // x = G_LSHR y, ShiftAmtC 3561 // s8 z = G_TRUNC x 3562 // store z, ... 3563 Register FoundSrcVal; 3564 int64_t ShiftAmt; 3565 if (!mi_match(TruncVal, MRI, 3566 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), 3567 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { 3568 if (!SrcVal.isValid() || TruncVal == SrcVal) { 3569 if (!SrcVal.isValid()) 3570 SrcVal = TruncVal; 3571 return 0; // If it's the lowest index store. 3572 } 3573 return None; 3574 } 3575 3576 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); 3577 if (ShiftAmt % NarrowBits!= 0) 3578 return None; 3579 const unsigned Offset = ShiftAmt / NarrowBits; 3580 3581 if (SrcVal.isValid() && FoundSrcVal != SrcVal) 3582 return None; 3583 3584 if (!SrcVal.isValid()) 3585 SrcVal = FoundSrcVal; 3586 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) 3587 return None; 3588 return Offset; 3589 } 3590 3591 /// Match a pattern where a wide type scalar value is stored by several narrow 3592 /// stores. Fold it into a single store or a BSWAP and a store if the targets 3593 /// supports it. 3594 /// 3595 /// Assuming little endian target: 3596 /// i8 *p = ... 3597 /// i32 val = ... 3598 /// p[0] = (val >> 0) & 0xFF; 3599 /// p[1] = (val >> 8) & 0xFF; 3600 /// p[2] = (val >> 16) & 0xFF; 3601 /// p[3] = (val >> 24) & 0xFF; 3602 /// => 3603 /// *((i32)p) = val; 3604 /// 3605 /// i8 *p = ... 3606 /// i32 val = ... 3607 /// p[0] = (val >> 24) & 0xFF; 3608 /// p[1] = (val >> 16) & 0xFF; 3609 /// p[2] = (val >> 8) & 0xFF; 3610 /// p[3] = (val >> 0) & 0xFF; 3611 /// => 3612 /// *((i32)p) = BSWAP(val); 3613 bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI, 3614 MergeTruncStoresInfo &MatchInfo) { 3615 auto &StoreMI = cast<GStore>(MI); 3616 LLT MemTy = StoreMI.getMMO().getMemoryType(); 3617 3618 // We only handle merging simple stores of 1-4 bytes. 3619 if (!MemTy.isScalar()) 3620 return false; 3621 switch (MemTy.getSizeInBits()) { 3622 case 8: 3623 case 16: 3624 case 32: 3625 break; 3626 default: 3627 return false; 3628 } 3629 if (!StoreMI.isSimple()) 3630 return false; 3631 3632 // We do a simple search for mergeable stores prior to this one. 3633 // Any potential alias hazard along the way terminates the search. 3634 SmallVector<GStore *> FoundStores; 3635 3636 // We're looking for: 3637 // 1) a (store(trunc(...))) 3638 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get 3639 // the partial value stored. 3640 // 3) where the offsets form either a little or big-endian sequence. 3641 3642 auto &LastStore = StoreMI; 3643 3644 // The single base pointer that all stores must use. 3645 Register BaseReg; 3646 int64_t LastOffset; 3647 if (!mi_match(LastStore.getPointerReg(), MRI, 3648 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { 3649 BaseReg = LastStore.getPointerReg(); 3650 LastOffset = 0; 3651 } 3652 3653 GStore *LowestIdxStore = &LastStore; 3654 int64_t LowestIdxOffset = LastOffset; 3655 3656 Register WideSrcVal; 3657 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI); 3658 if (!LowestShiftAmt) 3659 return false; // Didn't match a trunc. 3660 assert(WideSrcVal.isValid()); 3661 3662 LLT WideStoreTy = MRI.getType(WideSrcVal); 3663 // The wide type might not be a multiple of the memory type, e.g. s48 and s32. 3664 if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0) 3665 return false; 3666 const unsigned NumStoresRequired = 3667 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); 3668 3669 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); 3670 OffsetMap[*LowestShiftAmt] = LastOffset; 3671 FoundStores.emplace_back(&LastStore); 3672 3673 // Search the block up for more stores. 3674 // We use a search threshold of 10 instructions here because the combiner 3675 // works top-down within a block, and we don't want to search an unbounded 3676 // number of predecessor instructions trying to find matching stores. 3677 // If we moved this optimization into a separate pass then we could probably 3678 // use a more efficient search without having a hard-coded threshold. 3679 const int MaxInstsToCheck = 10; 3680 int NumInstsChecked = 0; 3681 for (auto II = ++LastStore.getReverseIterator(); 3682 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; 3683 ++II) { 3684 NumInstsChecked++; 3685 GStore *NewStore; 3686 if ((NewStore = dyn_cast<GStore>(&*II))) { 3687 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) 3688 break; 3689 } else if (II->isLoadFoldBarrier() || II->mayLoad()) { 3690 break; 3691 } else { 3692 continue; // This is a safe instruction we can look past. 3693 } 3694 3695 Register NewBaseReg; 3696 int64_t MemOffset; 3697 // Check we're storing to the same base + some offset. 3698 if (!mi_match(NewStore->getPointerReg(), MRI, 3699 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { 3700 NewBaseReg = NewStore->getPointerReg(); 3701 MemOffset = 0; 3702 } 3703 if (BaseReg != NewBaseReg) 3704 break; 3705 3706 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI); 3707 if (!ShiftByteOffset) 3708 break; 3709 if (MemOffset < LowestIdxOffset) { 3710 LowestIdxOffset = MemOffset; 3711 LowestIdxStore = NewStore; 3712 } 3713 3714 // Map the offset in the store and the offset in the combined value, and 3715 // early return if it has been set before. 3716 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || 3717 OffsetMap[*ShiftByteOffset] != INT64_MAX) 3718 break; 3719 OffsetMap[*ShiftByteOffset] = MemOffset; 3720 3721 FoundStores.emplace_back(NewStore); 3722 // Reset counter since we've found a matching inst. 3723 NumInstsChecked = 0; 3724 if (FoundStores.size() == NumStoresRequired) 3725 break; 3726 } 3727 3728 if (FoundStores.size() != NumStoresRequired) { 3729 return false; 3730 } 3731 3732 const auto &DL = LastStore.getMF()->getDataLayout(); 3733 auto &C = LastStore.getMF()->getFunction().getContext(); 3734 // Check that a store of the wide type is both allowed and fast on the target 3735 bool Fast = false; 3736 bool Allowed = getTargetLowering().allowsMemoryAccess( 3737 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); 3738 if (!Allowed || !Fast) 3739 return false; 3740 3741 // Check if the pieces of the value are going to the expected places in memory 3742 // to merge the stores. 3743 unsigned NarrowBits = MemTy.getScalarSizeInBits(); 3744 auto checkOffsets = [&](bool MatchLittleEndian) { 3745 if (MatchLittleEndian) { 3746 for (unsigned i = 0; i != NumStoresRequired; ++i) 3747 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) 3748 return false; 3749 } else { // MatchBigEndian by reversing loop counter. 3750 for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired; 3751 ++i, --j) 3752 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) 3753 return false; 3754 } 3755 return true; 3756 }; 3757 3758 // Check if the offsets line up for the native data layout of this target. 3759 bool NeedBswap = false; 3760 bool NeedRotate = false; 3761 if (!checkOffsets(DL.isLittleEndian())) { 3762 // Special-case: check if byte offsets line up for the opposite endian. 3763 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) 3764 NeedBswap = true; 3765 else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian())) 3766 NeedRotate = true; 3767 else 3768 return false; 3769 } 3770 3771 if (NeedBswap && 3772 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}})) 3773 return false; 3774 if (NeedRotate && 3775 !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}})) 3776 return false; 3777 3778 MatchInfo.NeedBSwap = NeedBswap; 3779 MatchInfo.NeedRotate = NeedRotate; 3780 MatchInfo.LowestIdxStore = LowestIdxStore; 3781 MatchInfo.WideSrcVal = WideSrcVal; 3782 MatchInfo.FoundStores = std::move(FoundStores); 3783 return true; 3784 } 3785 3786 void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI, 3787 MergeTruncStoresInfo &MatchInfo) { 3788 3789 Builder.setInstrAndDebugLoc(MI); 3790 Register WideSrcVal = MatchInfo.WideSrcVal; 3791 LLT WideStoreTy = MRI.getType(WideSrcVal); 3792 3793 if (MatchInfo.NeedBSwap) { 3794 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); 3795 } else if (MatchInfo.NeedRotate) { 3796 assert(WideStoreTy.getSizeInBits() % 2 == 0 && 3797 "Unexpected type for rotate"); 3798 auto RotAmt = 3799 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); 3800 WideSrcVal = 3801 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); 3802 } 3803 3804 Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(), 3805 MatchInfo.LowestIdxStore->getMMO().getPointerInfo(), 3806 MatchInfo.LowestIdxStore->getMMO().getAlign()); 3807 3808 // Erase the old stores. 3809 for (auto *ST : MatchInfo.FoundStores) 3810 ST->eraseFromParent(); 3811 } 3812 3813 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3814 MachineInstr *&ExtMI) { 3815 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3816 3817 Register DstReg = MI.getOperand(0).getReg(); 3818 3819 // TODO: Extending a vector may be expensive, don't do this until heuristics 3820 // are better. 3821 if (MRI.getType(DstReg).isVector()) 3822 return false; 3823 3824 // Try to match a phi, whose only use is an extend. 3825 if (!MRI.hasOneNonDBGUse(DstReg)) 3826 return false; 3827 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3828 switch (ExtMI->getOpcode()) { 3829 case TargetOpcode::G_ANYEXT: 3830 return true; // G_ANYEXT is usually free. 3831 case TargetOpcode::G_ZEXT: 3832 case TargetOpcode::G_SEXT: 3833 break; 3834 default: 3835 return false; 3836 } 3837 3838 // If the target is likely to fold this extend away, don't propagate. 3839 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3840 return false; 3841 3842 // We don't want to propagate the extends unless there's a good chance that 3843 // they'll be optimized in some way. 3844 // Collect the unique incoming values. 3845 SmallPtrSet<MachineInstr *, 4> InSrcs; 3846 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3847 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3848 switch (DefMI->getOpcode()) { 3849 case TargetOpcode::G_LOAD: 3850 case TargetOpcode::G_TRUNC: 3851 case TargetOpcode::G_SEXT: 3852 case TargetOpcode::G_ZEXT: 3853 case TargetOpcode::G_ANYEXT: 3854 case TargetOpcode::G_CONSTANT: 3855 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3856 // Don't try to propagate if there are too many places to create new 3857 // extends, chances are it'll increase code size. 3858 if (InSrcs.size() > 2) 3859 return false; 3860 break; 3861 default: 3862 return false; 3863 } 3864 } 3865 return true; 3866 } 3867 3868 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3869 MachineInstr *&ExtMI) { 3870 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3871 Register DstReg = ExtMI->getOperand(0).getReg(); 3872 LLT ExtTy = MRI.getType(DstReg); 3873 3874 // Propagate the extension into the block of each incoming reg's block. 3875 // Use a SetVector here because PHIs can have duplicate edges, and we want 3876 // deterministic iteration order. 3877 SmallSetVector<MachineInstr *, 8> SrcMIs; 3878 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3879 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3880 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3881 if (!SrcMIs.insert(SrcMI)) 3882 continue; 3883 3884 // Build an extend after each src inst. 3885 auto *MBB = SrcMI->getParent(); 3886 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3887 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3888 InsertPt = MBB->getFirstNonPHI(); 3889 3890 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3891 Builder.setDebugLoc(MI.getDebugLoc()); 3892 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3893 SrcMI->getOperand(0).getReg()); 3894 OldToNewSrcMap[SrcMI] = NewExt; 3895 } 3896 3897 // Create a new phi with the extended inputs. 3898 Builder.setInstrAndDebugLoc(MI); 3899 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3900 NewPhi.addDef(DstReg); 3901 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 3902 if (!MO.isReg()) { 3903 NewPhi.addMBB(MO.getMBB()); 3904 continue; 3905 } 3906 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3907 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3908 } 3909 Builder.insertInstr(NewPhi); 3910 ExtMI->eraseFromParent(); 3911 } 3912 3913 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3914 Register &Reg) { 3915 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3916 // If we have a constant index, look for a G_BUILD_VECTOR source 3917 // and find the source register that the index maps to. 3918 Register SrcVec = MI.getOperand(1).getReg(); 3919 LLT SrcTy = MRI.getType(SrcVec); 3920 if (!isLegalOrBeforeLegalizer( 3921 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3922 return false; 3923 3924 auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3925 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3926 return false; 3927 3928 unsigned VecIdx = Cst->Value.getZExtValue(); 3929 MachineInstr *BuildVecMI = 3930 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3931 if (!BuildVecMI) { 3932 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3933 if (!BuildVecMI) 3934 return false; 3935 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3936 if (!isLegalOrBeforeLegalizer( 3937 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3938 return false; 3939 } 3940 3941 EVT Ty(getMVTForLLT(SrcTy)); 3942 if (!MRI.hasOneNonDBGUse(SrcVec) && 3943 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3944 return false; 3945 3946 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3947 return true; 3948 } 3949 3950 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3951 Register &Reg) { 3952 // Check the type of the register, since it may have come from a 3953 // G_BUILD_VECTOR_TRUNC. 3954 LLT ScalarTy = MRI.getType(Reg); 3955 Register DstReg = MI.getOperand(0).getReg(); 3956 LLT DstTy = MRI.getType(DstReg); 3957 3958 Builder.setInstrAndDebugLoc(MI); 3959 if (ScalarTy != DstTy) { 3960 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3961 Builder.buildTrunc(DstReg, Reg); 3962 MI.eraseFromParent(); 3963 return; 3964 } 3965 replaceSingleDefInstWithReg(MI, Reg); 3966 } 3967 3968 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3969 MachineInstr &MI, 3970 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3971 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3972 // This combine tries to find build_vector's which have every source element 3973 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3974 // the masked load scalarization is run late in the pipeline. There's already 3975 // a combine for a similar pattern starting from the extract, but that 3976 // doesn't attempt to do it if there are multiple uses of the build_vector, 3977 // which in this case is true. Starting the combine from the build_vector 3978 // feels more natural than trying to find sibling nodes of extracts. 3979 // E.g. 3980 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3981 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3982 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3983 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3984 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3985 // ==> 3986 // replace ext{1,2,3,4} with %s{1,2,3,4} 3987 3988 Register DstReg = MI.getOperand(0).getReg(); 3989 LLT DstTy = MRI.getType(DstReg); 3990 unsigned NumElts = DstTy.getNumElements(); 3991 3992 SmallBitVector ExtractedElts(NumElts); 3993 for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) { 3994 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3995 return false; 3996 auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI); 3997 if (!Cst) 3998 return false; 3999 unsigned Idx = Cst->getZExtValue(); 4000 if (Idx >= NumElts) 4001 return false; // Out of range. 4002 ExtractedElts.set(Idx); 4003 SrcDstPairs.emplace_back( 4004 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 4005 } 4006 // Match if every element was extracted. 4007 return ExtractedElts.all(); 4008 } 4009 4010 void CombinerHelper::applyExtractAllEltsFromBuildVector( 4011 MachineInstr &MI, 4012 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 4013 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 4014 for (auto &Pair : SrcDstPairs) { 4015 auto *ExtMI = Pair.second; 4016 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 4017 ExtMI->eraseFromParent(); 4018 } 4019 MI.eraseFromParent(); 4020 } 4021 4022 void CombinerHelper::applyBuildFn( 4023 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4024 Builder.setInstrAndDebugLoc(MI); 4025 MatchInfo(Builder); 4026 MI.eraseFromParent(); 4027 } 4028 4029 void CombinerHelper::applyBuildFnNoErase( 4030 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4031 Builder.setInstrAndDebugLoc(MI); 4032 MatchInfo(Builder); 4033 } 4034 4035 bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI, 4036 BuildFnTy &MatchInfo) { 4037 assert(MI.getOpcode() == TargetOpcode::G_OR); 4038 4039 Register Dst = MI.getOperand(0).getReg(); 4040 LLT Ty = MRI.getType(Dst); 4041 unsigned BitWidth = Ty.getScalarSizeInBits(); 4042 4043 Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt; 4044 unsigned FshOpc = 0; 4045 4046 // Match (or (shl ...), (lshr ...)). 4047 if (!mi_match(Dst, MRI, 4048 // m_GOr() handles the commuted version as well. 4049 m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)), 4050 m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt))))) 4051 return false; 4052 4053 // Given constants C0 and C1 such that C0 + C1 is bit-width: 4054 // (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1) 4055 int64_t CstShlAmt, CstLShrAmt; 4056 if (mi_match(ShlAmt, MRI, m_ICstOrSplat(CstShlAmt)) && 4057 mi_match(LShrAmt, MRI, m_ICstOrSplat(CstLShrAmt)) && 4058 CstShlAmt + CstLShrAmt == BitWidth) { 4059 FshOpc = TargetOpcode::G_FSHR; 4060 Amt = LShrAmt; 4061 4062 } else if (mi_match(LShrAmt, MRI, 4063 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && 4064 ShlAmt == Amt) { 4065 // (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt) 4066 FshOpc = TargetOpcode::G_FSHL; 4067 4068 } else if (mi_match(ShlAmt, MRI, 4069 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && 4070 LShrAmt == Amt) { 4071 // (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt) 4072 FshOpc = TargetOpcode::G_FSHR; 4073 4074 } else { 4075 return false; 4076 } 4077 4078 LLT AmtTy = MRI.getType(Amt); 4079 if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}})) 4080 return false; 4081 4082 MatchInfo = [=](MachineIRBuilder &B) { 4083 B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt}); 4084 }; 4085 return true; 4086 } 4087 4088 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 4089 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 4090 unsigned Opc = MI.getOpcode(); 4091 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 4092 Register X = MI.getOperand(1).getReg(); 4093 Register Y = MI.getOperand(2).getReg(); 4094 if (X != Y) 4095 return false; 4096 unsigned RotateOpc = 4097 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 4098 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 4099 } 4100 4101 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 4102 unsigned Opc = MI.getOpcode(); 4103 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 4104 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 4105 Observer.changingInstr(MI); 4106 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 4107 : TargetOpcode::G_ROTR)); 4108 MI.removeOperand(2); 4109 Observer.changedInstr(MI); 4110 } 4111 4112 // Fold (rot x, c) -> (rot x, c % BitSize) 4113 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 4114 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4115 MI.getOpcode() == TargetOpcode::G_ROTR); 4116 unsigned Bitsize = 4117 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4118 Register AmtReg = MI.getOperand(2).getReg(); 4119 bool OutOfRange = false; 4120 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 4121 if (auto *CI = dyn_cast<ConstantInt>(C)) 4122 OutOfRange |= CI->getValue().uge(Bitsize); 4123 return true; 4124 }; 4125 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 4126 } 4127 4128 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 4129 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4130 MI.getOpcode() == TargetOpcode::G_ROTR); 4131 unsigned Bitsize = 4132 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4133 Builder.setInstrAndDebugLoc(MI); 4134 Register Amt = MI.getOperand(2).getReg(); 4135 LLT AmtTy = MRI.getType(Amt); 4136 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 4137 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 4138 Observer.changingInstr(MI); 4139 MI.getOperand(2).setReg(Amt); 4140 Observer.changedInstr(MI); 4141 } 4142 4143 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 4144 int64_t &MatchInfo) { 4145 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4146 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4147 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 4148 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 4149 Optional<bool> KnownVal; 4150 switch (Pred) { 4151 default: 4152 llvm_unreachable("Unexpected G_ICMP predicate?"); 4153 case CmpInst::ICMP_EQ: 4154 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 4155 break; 4156 case CmpInst::ICMP_NE: 4157 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 4158 break; 4159 case CmpInst::ICMP_SGE: 4160 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 4161 break; 4162 case CmpInst::ICMP_SGT: 4163 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 4164 break; 4165 case CmpInst::ICMP_SLE: 4166 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 4167 break; 4168 case CmpInst::ICMP_SLT: 4169 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 4170 break; 4171 case CmpInst::ICMP_UGE: 4172 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 4173 break; 4174 case CmpInst::ICMP_UGT: 4175 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 4176 break; 4177 case CmpInst::ICMP_ULE: 4178 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 4179 break; 4180 case CmpInst::ICMP_ULT: 4181 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 4182 break; 4183 } 4184 if (!KnownVal) 4185 return false; 4186 MatchInfo = 4187 *KnownVal 4188 ? getICmpTrueVal(getTargetLowering(), 4189 /*IsVector = */ 4190 MRI.getType(MI.getOperand(0).getReg()).isVector(), 4191 /* IsFP = */ false) 4192 : 0; 4193 return true; 4194 } 4195 4196 bool CombinerHelper::matchICmpToLHSKnownBits( 4197 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4198 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4199 // Given: 4200 // 4201 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4202 // %cmp = G_ICMP ne %x, 0 4203 // 4204 // Or: 4205 // 4206 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4207 // %cmp = G_ICMP eq %x, 1 4208 // 4209 // We can replace %cmp with %x assuming true is 1 on the target. 4210 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4211 if (!CmpInst::isEquality(Pred)) 4212 return false; 4213 Register Dst = MI.getOperand(0).getReg(); 4214 LLT DstTy = MRI.getType(Dst); 4215 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), 4216 /* IsFP = */ false) != 1) 4217 return false; 4218 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; 4219 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) 4220 return false; 4221 Register LHS = MI.getOperand(2).getReg(); 4222 auto KnownLHS = KB->getKnownBits(LHS); 4223 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) 4224 return false; 4225 // Make sure replacing Dst with the LHS is a legal operation. 4226 LLT LHSTy = MRI.getType(LHS); 4227 unsigned LHSSize = LHSTy.getSizeInBits(); 4228 unsigned DstSize = DstTy.getSizeInBits(); 4229 unsigned Op = TargetOpcode::COPY; 4230 if (DstSize != LHSSize) 4231 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; 4232 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) 4233 return false; 4234 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; 4235 return true; 4236 } 4237 4238 // Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0 4239 bool CombinerHelper::matchAndOrDisjointMask( 4240 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4241 assert(MI.getOpcode() == TargetOpcode::G_AND); 4242 4243 // Ignore vector types to simplify matching the two constants. 4244 // TODO: do this for vectors and scalars via a demanded bits analysis. 4245 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 4246 if (Ty.isVector()) 4247 return false; 4248 4249 Register Src; 4250 Register AndMaskReg; 4251 int64_t AndMaskBits; 4252 int64_t OrMaskBits; 4253 if (!mi_match(MI, MRI, 4254 m_GAnd(m_GOr(m_Reg(Src), m_ICst(OrMaskBits)), 4255 m_all_of(m_ICst(AndMaskBits), m_Reg(AndMaskReg))))) 4256 return false; 4257 4258 // Check if OrMask could turn on any bits in Src. 4259 if (AndMaskBits & OrMaskBits) 4260 return false; 4261 4262 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4263 Observer.changingInstr(MI); 4264 // Canonicalize the result to have the constant on the RHS. 4265 if (MI.getOperand(1).getReg() == AndMaskReg) 4266 MI.getOperand(2).setReg(AndMaskReg); 4267 MI.getOperand(1).setReg(Src); 4268 Observer.changedInstr(MI); 4269 }; 4270 return true; 4271 } 4272 4273 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4274 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4275 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4276 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4277 Register Dst = MI.getOperand(0).getReg(); 4278 Register Src = MI.getOperand(1).getReg(); 4279 LLT Ty = MRI.getType(Src); 4280 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4281 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4282 return false; 4283 int64_t Width = MI.getOperand(2).getImm(); 4284 Register ShiftSrc; 4285 int64_t ShiftImm; 4286 if (!mi_match( 4287 Src, MRI, 4288 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4289 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4290 return false; 4291 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4292 return false; 4293 4294 MatchInfo = [=](MachineIRBuilder &B) { 4295 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4296 auto Cst2 = B.buildConstant(ExtractTy, Width); 4297 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4298 }; 4299 return true; 4300 } 4301 4302 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4303 bool CombinerHelper::matchBitfieldExtractFromAnd( 4304 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4305 assert(MI.getOpcode() == TargetOpcode::G_AND); 4306 Register Dst = MI.getOperand(0).getReg(); 4307 LLT Ty = MRI.getType(Dst); 4308 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4309 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( 4310 TargetOpcode::G_UBFX, Ty, ExtractTy)) 4311 return false; 4312 4313 int64_t AndImm, LSBImm; 4314 Register ShiftSrc; 4315 const unsigned Size = Ty.getScalarSizeInBits(); 4316 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4317 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4318 m_ICst(AndImm)))) 4319 return false; 4320 4321 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4322 auto MaybeMask = static_cast<uint64_t>(AndImm); 4323 if (MaybeMask & (MaybeMask + 1)) 4324 return false; 4325 4326 // LSB must fit within the register. 4327 if (static_cast<uint64_t>(LSBImm) >= Size) 4328 return false; 4329 4330 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4331 MatchInfo = [=](MachineIRBuilder &B) { 4332 auto WidthCst = B.buildConstant(ExtractTy, Width); 4333 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4334 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4335 }; 4336 return true; 4337 } 4338 4339 bool CombinerHelper::matchBitfieldExtractFromShr( 4340 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4341 const unsigned Opcode = MI.getOpcode(); 4342 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 4343 4344 const Register Dst = MI.getOperand(0).getReg(); 4345 4346 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 4347 ? TargetOpcode::G_SBFX 4348 : TargetOpcode::G_UBFX; 4349 4350 // Check if the type we would use for the extract is legal 4351 LLT Ty = MRI.getType(Dst); 4352 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4353 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 4354 return false; 4355 4356 Register ShlSrc; 4357 int64_t ShrAmt; 4358 int64_t ShlAmt; 4359 const unsigned Size = Ty.getScalarSizeInBits(); 4360 4361 // Try to match shr (shl x, c1), c2 4362 if (!mi_match(Dst, MRI, 4363 m_BinOp(Opcode, 4364 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4365 m_ICst(ShrAmt)))) 4366 return false; 4367 4368 // Make sure that the shift sizes can fit a bitfield extract 4369 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4370 return false; 4371 4372 // Skip this combine if the G_SEXT_INREG combine could handle it 4373 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4374 return false; 4375 4376 // Calculate start position and width of the extract 4377 const int64_t Pos = ShrAmt - ShlAmt; 4378 const int64_t Width = Size - ShrAmt; 4379 4380 MatchInfo = [=](MachineIRBuilder &B) { 4381 auto WidthCst = B.buildConstant(ExtractTy, Width); 4382 auto PosCst = B.buildConstant(ExtractTy, Pos); 4383 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4384 }; 4385 return true; 4386 } 4387 4388 bool CombinerHelper::matchBitfieldExtractFromShrAnd( 4389 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4390 const unsigned Opcode = MI.getOpcode(); 4391 assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR); 4392 4393 const Register Dst = MI.getOperand(0).getReg(); 4394 LLT Ty = MRI.getType(Dst); 4395 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4396 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( 4397 TargetOpcode::G_UBFX, Ty, ExtractTy)) 4398 return false; 4399 4400 // Try to match shr (and x, c1), c2 4401 Register AndSrc; 4402 int64_t ShrAmt; 4403 int64_t SMask; 4404 if (!mi_match(Dst, MRI, 4405 m_BinOp(Opcode, 4406 m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))), 4407 m_ICst(ShrAmt)))) 4408 return false; 4409 4410 const unsigned Size = Ty.getScalarSizeInBits(); 4411 if (ShrAmt < 0 || ShrAmt >= Size) 4412 return false; 4413 4414 // If the shift subsumes the mask, emit the 0 directly. 4415 if (0 == (SMask >> ShrAmt)) { 4416 MatchInfo = [=](MachineIRBuilder &B) { 4417 B.buildConstant(Dst, 0); 4418 }; 4419 return true; 4420 } 4421 4422 // Check that ubfx can do the extraction, with no holes in the mask. 4423 uint64_t UMask = SMask; 4424 UMask |= maskTrailingOnes<uint64_t>(ShrAmt); 4425 UMask &= maskTrailingOnes<uint64_t>(Size); 4426 if (!isMask_64(UMask)) 4427 return false; 4428 4429 // Calculate start position and width of the extract. 4430 const int64_t Pos = ShrAmt; 4431 const int64_t Width = countTrailingOnes(UMask) - ShrAmt; 4432 4433 // It's preferable to keep the shift, rather than form G_SBFX. 4434 // TODO: remove the G_AND via demanded bits analysis. 4435 if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size) 4436 return false; 4437 4438 MatchInfo = [=](MachineIRBuilder &B) { 4439 auto WidthCst = B.buildConstant(ExtractTy, Width); 4440 auto PosCst = B.buildConstant(ExtractTy, Pos); 4441 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst}); 4442 }; 4443 return true; 4444 } 4445 4446 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4447 MachineInstr &PtrAdd) { 4448 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4449 4450 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4451 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4452 if (!Src1Def) 4453 return false; 4454 4455 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4456 4457 if (MRI.hasOneNonDBGUse(Src1Reg)) 4458 return false; 4459 4460 auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4461 if (!C1) 4462 return false; 4463 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4464 if (!C2) 4465 return false; 4466 4467 const APInt &C1APIntVal = *C1; 4468 const APInt &C2APIntVal = *C2; 4469 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4470 4471 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4472 // This combine may end up running before ptrtoint/inttoptr combines 4473 // manage to eliminate redundant conversions, so try to look through them. 4474 MachineInstr *ConvUseMI = &UseMI; 4475 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4476 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4477 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4478 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4479 if (!MRI.hasOneNonDBGUse(DefReg)) 4480 break; 4481 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4482 ConvUseOpc = ConvUseMI->getOpcode(); 4483 } 4484 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4485 ConvUseOpc == TargetOpcode::G_STORE; 4486 if (!LoadStore) 4487 continue; 4488 // Is x[offset2] already not a legal addressing mode? If so then 4489 // reassociating the constants breaks nothing (we test offset2 because 4490 // that's the one we hope to fold into the load or store). 4491 TargetLoweringBase::AddrMode AM; 4492 AM.HasBaseReg = true; 4493 AM.BaseOffs = C2APIntVal.getSExtValue(); 4494 unsigned AS = 4495 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4496 Type *AccessTy = 4497 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4498 PtrAdd.getMF()->getFunction().getContext()); 4499 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4500 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4501 AccessTy, AS)) 4502 continue; 4503 4504 // Would x[offset1+offset2] still be a legal addressing mode? 4505 AM.BaseOffs = CombinedValue; 4506 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4507 AccessTy, AS)) 4508 return true; 4509 } 4510 4511 return false; 4512 } 4513 4514 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI, 4515 MachineInstr *RHS, 4516 BuildFnTy &MatchInfo) { 4517 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4518 Register Src1Reg = MI.getOperand(1).getReg(); 4519 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4520 return false; 4521 auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4522 if (!C2) 4523 return false; 4524 4525 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4526 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4527 4528 auto NewBase = 4529 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4530 Observer.changingInstr(MI); 4531 MI.getOperand(1).setReg(NewBase.getReg(0)); 4532 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4533 Observer.changedInstr(MI); 4534 }; 4535 return !reassociationCanBreakAddressingModePattern(MI); 4536 } 4537 4538 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI, 4539 MachineInstr *LHS, 4540 MachineInstr *RHS, 4541 BuildFnTy &MatchInfo) { 4542 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C) 4543 // if and only if (G_PTR_ADD X, C) has one use. 4544 Register LHSBase; 4545 Optional<ValueAndVReg> LHSCstOff; 4546 if (!mi_match(MI.getBaseReg(), MRI, 4547 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff))))) 4548 return false; 4549 4550 auto *LHSPtrAdd = cast<GPtrAdd>(LHS); 4551 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4552 // When we change LHSPtrAdd's offset register we might cause it to use a reg 4553 // before its def. Sink the instruction so the outer PTR_ADD to ensure this 4554 // doesn't happen. 4555 LHSPtrAdd->moveBefore(&MI); 4556 Register RHSReg = MI.getOffsetReg(); 4557 Observer.changingInstr(MI); 4558 MI.getOperand(2).setReg(LHSCstOff->VReg); 4559 Observer.changedInstr(MI); 4560 Observer.changingInstr(*LHSPtrAdd); 4561 LHSPtrAdd->getOperand(2).setReg(RHSReg); 4562 Observer.changedInstr(*LHSPtrAdd); 4563 }; 4564 return !reassociationCanBreakAddressingModePattern(MI); 4565 } 4566 4567 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI, 4568 MachineInstr *LHS, 4569 MachineInstr *RHS, 4570 BuildFnTy &MatchInfo) { 4571 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4572 auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS); 4573 if (!LHSPtrAdd) 4574 return false; 4575 4576 Register Src2Reg = MI.getOperand(2).getReg(); 4577 Register LHSSrc1 = LHSPtrAdd->getBaseReg(); 4578 Register LHSSrc2 = LHSPtrAdd->getOffsetReg(); 4579 auto C1 = getIConstantVRegVal(LHSSrc2, MRI); 4580 if (!C1) 4581 return false; 4582 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4583 if (!C2) 4584 return false; 4585 4586 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4587 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4588 Observer.changingInstr(MI); 4589 MI.getOperand(1).setReg(LHSSrc1); 4590 MI.getOperand(2).setReg(NewCst.getReg(0)); 4591 Observer.changedInstr(MI); 4592 }; 4593 return !reassociationCanBreakAddressingModePattern(MI); 4594 } 4595 4596 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI, 4597 BuildFnTy &MatchInfo) { 4598 auto &PtrAdd = cast<GPtrAdd>(MI); 4599 // We're trying to match a few pointer computation patterns here for 4600 // re-association opportunities. 4601 // 1) Isolating a constant operand to be on the RHS, e.g.: 4602 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4603 // 4604 // 2) Folding two constants in each sub-tree as long as such folding 4605 // doesn't break a legal addressing mode. 4606 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4607 // 4608 // 3) Move a constant from the LHS of an inner op to the RHS of the outer. 4609 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C) 4610 // iif (G_PTR_ADD X, C) has one use. 4611 MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg()); 4612 MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg()); 4613 4614 // Try to match example 2. 4615 if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo)) 4616 return true; 4617 4618 // Try to match example 3. 4619 if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo)) 4620 return true; 4621 4622 // Try to match example 1. 4623 if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo)) 4624 return true; 4625 4626 return false; 4627 } 4628 4629 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4630 Register Op1 = MI.getOperand(1).getReg(); 4631 Register Op2 = MI.getOperand(2).getReg(); 4632 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4633 if (!MaybeCst) 4634 return false; 4635 MatchInfo = *MaybeCst; 4636 return true; 4637 } 4638 4639 bool CombinerHelper::matchNarrowBinopFeedingAnd( 4640 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4641 // Look for a binop feeding into an AND with a mask: 4642 // 4643 // %add = G_ADD %lhs, %rhs 4644 // %and = G_AND %add, 000...11111111 4645 // 4646 // Check if it's possible to perform the binop at a narrower width and zext 4647 // back to the original width like so: 4648 // 4649 // %narrow_lhs = G_TRUNC %lhs 4650 // %narrow_rhs = G_TRUNC %rhs 4651 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 4652 // %new_add = G_ZEXT %narrow_add 4653 // %and = G_AND %new_add, 000...11111111 4654 // 4655 // This can allow later combines to eliminate the G_AND if it turns out 4656 // that the mask is irrelevant. 4657 assert(MI.getOpcode() == TargetOpcode::G_AND); 4658 Register Dst = MI.getOperand(0).getReg(); 4659 Register AndLHS = MI.getOperand(1).getReg(); 4660 Register AndRHS = MI.getOperand(2).getReg(); 4661 LLT WideTy = MRI.getType(Dst); 4662 4663 // If the potential binop has more than one use, then it's possible that one 4664 // of those uses will need its full width. 4665 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 4666 return false; 4667 4668 // Check if the LHS feeding the AND is impacted by the high bits that we're 4669 // masking out. 4670 // 4671 // e.g. for 64-bit x, y: 4672 // 4673 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 4674 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 4675 if (!LHSInst) 4676 return false; 4677 unsigned LHSOpc = LHSInst->getOpcode(); 4678 switch (LHSOpc) { 4679 default: 4680 return false; 4681 case TargetOpcode::G_ADD: 4682 case TargetOpcode::G_SUB: 4683 case TargetOpcode::G_MUL: 4684 case TargetOpcode::G_AND: 4685 case TargetOpcode::G_OR: 4686 case TargetOpcode::G_XOR: 4687 break; 4688 } 4689 4690 // Find the mask on the RHS. 4691 auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI); 4692 if (!Cst) 4693 return false; 4694 auto Mask = Cst->Value; 4695 if (!Mask.isMask()) 4696 return false; 4697 4698 // No point in combining if there's nothing to truncate. 4699 unsigned NarrowWidth = Mask.countTrailingOnes(); 4700 if (NarrowWidth == WideTy.getSizeInBits()) 4701 return false; 4702 LLT NarrowTy = LLT::scalar(NarrowWidth); 4703 4704 // Check if adding the zext + truncates could be harmful. 4705 auto &MF = *MI.getMF(); 4706 const auto &TLI = getTargetLowering(); 4707 LLVMContext &Ctx = MF.getFunction().getContext(); 4708 auto &DL = MF.getDataLayout(); 4709 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 4710 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 4711 return false; 4712 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 4713 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 4714 return false; 4715 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 4716 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 4717 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4718 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 4719 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 4720 auto NarrowBinOp = 4721 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 4722 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 4723 Observer.changingInstr(MI); 4724 MI.getOperand(1).setReg(Ext.getReg(0)); 4725 Observer.changedInstr(MI); 4726 }; 4727 return true; 4728 } 4729 4730 bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) { 4731 unsigned Opc = MI.getOpcode(); 4732 assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO); 4733 4734 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2))) 4735 return false; 4736 4737 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4738 Observer.changingInstr(MI); 4739 unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO 4740 : TargetOpcode::G_SADDO; 4741 MI.setDesc(Builder.getTII().get(NewOpc)); 4742 MI.getOperand(3).setReg(MI.getOperand(2).getReg()); 4743 Observer.changedInstr(MI); 4744 }; 4745 return true; 4746 } 4747 4748 bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { 4749 // (G_*MULO x, 0) -> 0 + no carry out 4750 assert(MI.getOpcode() == TargetOpcode::G_UMULO || 4751 MI.getOpcode() == TargetOpcode::G_SMULO); 4752 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) 4753 return false; 4754 Register Dst = MI.getOperand(0).getReg(); 4755 Register Carry = MI.getOperand(1).getReg(); 4756 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) || 4757 !isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) 4758 return false; 4759 MatchInfo = [=](MachineIRBuilder &B) { 4760 B.buildConstant(Dst, 0); 4761 B.buildConstant(Carry, 0); 4762 }; 4763 return true; 4764 } 4765 4766 bool CombinerHelper::matchAddOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { 4767 // (G_*ADDO x, 0) -> x + no carry out 4768 assert(MI.getOpcode() == TargetOpcode::G_UADDO || 4769 MI.getOpcode() == TargetOpcode::G_SADDO); 4770 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) 4771 return false; 4772 Register Carry = MI.getOperand(1).getReg(); 4773 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) 4774 return false; 4775 Register Dst = MI.getOperand(0).getReg(); 4776 Register LHS = MI.getOperand(2).getReg(); 4777 MatchInfo = [=](MachineIRBuilder &B) { 4778 B.buildCopy(Dst, LHS); 4779 B.buildConstant(Carry, 0); 4780 }; 4781 return true; 4782 } 4783 4784 MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) { 4785 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4786 auto &UDiv = cast<GenericMachineInstr>(MI); 4787 Register Dst = UDiv.getReg(0); 4788 Register LHS = UDiv.getReg(1); 4789 Register RHS = UDiv.getReg(2); 4790 LLT Ty = MRI.getType(Dst); 4791 LLT ScalarTy = Ty.getScalarType(); 4792 const unsigned EltBits = ScalarTy.getScalarSizeInBits(); 4793 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4794 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); 4795 auto &MIB = Builder; 4796 MIB.setInstrAndDebugLoc(MI); 4797 4798 bool UseNPQ = false; 4799 SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4800 4801 auto BuildUDIVPattern = [&](const Constant *C) { 4802 auto *CI = cast<ConstantInt>(C); 4803 const APInt &Divisor = CI->getValue(); 4804 UnsignedDivisionByConstantInfo magics = 4805 UnsignedDivisionByConstantInfo::get(Divisor); 4806 unsigned PreShift = 0, PostShift = 0; 4807 4808 // If the divisor is even, we can avoid using the expensive fixup by 4809 // shifting the divided value upfront. 4810 if (magics.IsAdd && !Divisor[0]) { 4811 PreShift = Divisor.countTrailingZeros(); 4812 // Get magic number for the shifted divisor. 4813 magics = 4814 UnsignedDivisionByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 4815 assert(!magics.IsAdd && "Should use cheap fixup now"); 4816 } 4817 4818 unsigned SelNPQ; 4819 if (!magics.IsAdd || Divisor.isOneValue()) { 4820 assert(magics.ShiftAmount < Divisor.getBitWidth() && 4821 "We shouldn't generate an undefined shift!"); 4822 PostShift = magics.ShiftAmount; 4823 SelNPQ = false; 4824 } else { 4825 PostShift = magics.ShiftAmount - 1; 4826 SelNPQ = true; 4827 } 4828 4829 PreShifts.push_back( 4830 MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0)); 4831 MagicFactors.push_back(MIB.buildConstant(ScalarTy, magics.Magic).getReg(0)); 4832 NPQFactors.push_back( 4833 MIB.buildConstant(ScalarTy, 4834 SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4835 : APInt::getZero(EltBits)) 4836 .getReg(0)); 4837 PostShifts.push_back( 4838 MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0)); 4839 UseNPQ |= SelNPQ; 4840 return true; 4841 }; 4842 4843 // Collect the shifts/magic values from each element. 4844 bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern); 4845 (void)Matched; 4846 assert(Matched && "Expected unary predicate match to succeed"); 4847 4848 Register PreShift, PostShift, MagicFactor, NPQFactor; 4849 auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI); 4850 if (RHSDef) { 4851 PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0); 4852 MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0); 4853 NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0); 4854 PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0); 4855 } else { 4856 assert(MRI.getType(RHS).isScalar() && 4857 "Non-build_vector operation should have been a scalar"); 4858 PreShift = PreShifts[0]; 4859 MagicFactor = MagicFactors[0]; 4860 PostShift = PostShifts[0]; 4861 } 4862 4863 Register Q = LHS; 4864 Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0); 4865 4866 // Multiply the numerator (operand 0) by the magic value. 4867 Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0); 4868 4869 if (UseNPQ) { 4870 Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0); 4871 4872 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4873 // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero. 4874 if (Ty.isVector()) 4875 NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0); 4876 else 4877 NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0); 4878 4879 Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0); 4880 } 4881 4882 Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0); 4883 auto One = MIB.buildConstant(Ty, 1); 4884 auto IsOne = MIB.buildICmp( 4885 CmpInst::Predicate::ICMP_EQ, 4886 Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One); 4887 return MIB.buildSelect(Ty, IsOne, LHS, Q); 4888 } 4889 4890 bool CombinerHelper::matchUDivByConst(MachineInstr &MI) { 4891 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4892 Register Dst = MI.getOperand(0).getReg(); 4893 Register RHS = MI.getOperand(2).getReg(); 4894 LLT DstTy = MRI.getType(Dst); 4895 auto *RHSDef = MRI.getVRegDef(RHS); 4896 if (!isConstantOrConstantVector(*RHSDef, MRI)) 4897 return false; 4898 4899 auto &MF = *MI.getMF(); 4900 AttributeList Attr = MF.getFunction().getAttributes(); 4901 const auto &TLI = getTargetLowering(); 4902 LLVMContext &Ctx = MF.getFunction().getContext(); 4903 auto &DL = MF.getDataLayout(); 4904 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) 4905 return false; 4906 4907 // Don't do this for minsize because the instruction sequence is usually 4908 // larger. 4909 if (MF.getFunction().hasMinSize()) 4910 return false; 4911 4912 // Don't do this if the types are not going to be legal. 4913 if (LI) { 4914 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}})) 4915 return false; 4916 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}})) 4917 return false; 4918 if (!isLegalOrBeforeLegalizer( 4919 {TargetOpcode::G_ICMP, 4920 {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1), 4921 DstTy}})) 4922 return false; 4923 } 4924 4925 auto CheckEltValue = [&](const Constant *C) { 4926 if (auto *CI = dyn_cast_or_null<ConstantInt>(C)) 4927 return !CI->isZero(); 4928 return false; 4929 }; 4930 return matchUnaryPredicate(MRI, RHS, CheckEltValue); 4931 } 4932 4933 void CombinerHelper::applyUDivByConst(MachineInstr &MI) { 4934 auto *NewMI = buildUDivUsingMul(MI); 4935 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); 4936 } 4937 4938 bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) { 4939 assert(MI.getOpcode() == TargetOpcode::G_UMULH); 4940 Register RHS = MI.getOperand(2).getReg(); 4941 Register Dst = MI.getOperand(0).getReg(); 4942 LLT Ty = MRI.getType(Dst); 4943 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4944 auto MatchPow2ExceptOne = [&](const Constant *C) { 4945 if (auto *CI = dyn_cast<ConstantInt>(C)) 4946 return CI->getValue().isPowerOf2() && !CI->getValue().isOne(); 4947 return false; 4948 }; 4949 if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false)) 4950 return false; 4951 return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}}); 4952 } 4953 4954 void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) { 4955 Register LHS = MI.getOperand(1).getReg(); 4956 Register RHS = MI.getOperand(2).getReg(); 4957 Register Dst = MI.getOperand(0).getReg(); 4958 LLT Ty = MRI.getType(Dst); 4959 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4960 unsigned NumEltBits = Ty.getScalarSizeInBits(); 4961 4962 Builder.setInstrAndDebugLoc(MI); 4963 auto LogBase2 = buildLogBase2(RHS, Builder); 4964 auto ShiftAmt = 4965 Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2); 4966 auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt); 4967 Builder.buildLShr(Dst, LHS, Trunc); 4968 MI.eraseFromParent(); 4969 } 4970 4971 bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI, 4972 BuildFnTy &MatchInfo) { 4973 unsigned Opc = MI.getOpcode(); 4974 assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB || 4975 Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 4976 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA); 4977 4978 Register Dst = MI.getOperand(0).getReg(); 4979 Register X = MI.getOperand(1).getReg(); 4980 Register Y = MI.getOperand(2).getReg(); 4981 LLT Type = MRI.getType(Dst); 4982 4983 // fold (fadd x, fneg(y)) -> (fsub x, y) 4984 // fold (fadd fneg(y), x) -> (fsub x, y) 4985 // G_ADD is commutative so both cases are checked by m_GFAdd 4986 if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 4987 isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) { 4988 Opc = TargetOpcode::G_FSUB; 4989 } 4990 /// fold (fsub x, fneg(y)) -> (fadd x, y) 4991 else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 4992 isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) { 4993 Opc = TargetOpcode::G_FADD; 4994 } 4995 // fold (fmul fneg(x), fneg(y)) -> (fmul x, y) 4996 // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y) 4997 // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z) 4998 // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z) 4999 else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 5000 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) && 5001 mi_match(X, MRI, m_GFNeg(m_Reg(X))) && 5002 mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) { 5003 // no opcode change 5004 } else 5005 return false; 5006 5007 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5008 Observer.changingInstr(MI); 5009 MI.setDesc(B.getTII().get(Opc)); 5010 MI.getOperand(1).setReg(X); 5011 MI.getOperand(2).setReg(Y); 5012 Observer.changedInstr(MI); 5013 }; 5014 return true; 5015 } 5016 5017 /// Checks if \p MI is TargetOpcode::G_FMUL and contractable either 5018 /// due to global flags or MachineInstr flags. 5019 static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) { 5020 if (MI.getOpcode() != TargetOpcode::G_FMUL) 5021 return false; 5022 return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract); 5023 } 5024 5025 static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1, 5026 const MachineRegisterInfo &MRI) { 5027 return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()), 5028 MRI.use_instr_nodbg_end()) > 5029 std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()), 5030 MRI.use_instr_nodbg_end()); 5031 } 5032 5033 bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI, 5034 bool &AllowFusionGlobally, 5035 bool &HasFMAD, bool &Aggressive, 5036 bool CanReassociate) { 5037 5038 auto *MF = MI.getMF(); 5039 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 5040 const TargetOptions &Options = MF->getTarget().Options; 5041 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5042 5043 if (CanReassociate && 5044 !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc))) 5045 return false; 5046 5047 // Floating-point multiply-add with intermediate rounding. 5048 HasFMAD = (LI && TLI.isFMADLegal(MI, DstType)); 5049 // Floating-point multiply-add without intermediate rounding. 5050 bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) && 5051 isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}}); 5052 // No valid opcode, do not combine. 5053 if (!HasFMAD && !HasFMA) 5054 return false; 5055 5056 AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast || 5057 Options.UnsafeFPMath || HasFMAD; 5058 // If the addition is not contractable, do not combine. 5059 if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract)) 5060 return false; 5061 5062 Aggressive = TLI.enableAggressiveFMAFusion(DstType); 5063 return true; 5064 } 5065 5066 bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA( 5067 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5068 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5069 5070 bool AllowFusionGlobally, HasFMAD, Aggressive; 5071 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5072 return false; 5073 5074 Register Op1 = MI.getOperand(1).getReg(); 5075 Register Op2 = MI.getOperand(2).getReg(); 5076 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5077 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5078 unsigned PreferredFusedOpcode = 5079 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5080 5081 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5082 // prefer to fold the multiply with fewer uses. 5083 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5084 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5085 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5086 std::swap(LHS, RHS); 5087 } 5088 5089 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 5090 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5091 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) { 5092 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5093 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5094 {LHS.MI->getOperand(1).getReg(), 5095 LHS.MI->getOperand(2).getReg(), RHS.Reg}); 5096 }; 5097 return true; 5098 } 5099 5100 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 5101 if (isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5102 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) { 5103 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5104 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5105 {RHS.MI->getOperand(1).getReg(), 5106 RHS.MI->getOperand(2).getReg(), LHS.Reg}); 5107 }; 5108 return true; 5109 } 5110 5111 return false; 5112 } 5113 5114 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA( 5115 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5116 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5117 5118 bool AllowFusionGlobally, HasFMAD, Aggressive; 5119 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5120 return false; 5121 5122 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5123 Register Op1 = MI.getOperand(1).getReg(); 5124 Register Op2 = MI.getOperand(2).getReg(); 5125 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5126 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5127 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5128 5129 unsigned PreferredFusedOpcode = 5130 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5131 5132 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5133 // prefer to fold the multiply with fewer uses. 5134 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5135 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5136 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5137 std::swap(LHS, RHS); 5138 } 5139 5140 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 5141 MachineInstr *FpExtSrc; 5142 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && 5143 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 5144 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5145 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 5146 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5147 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 5148 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 5149 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5150 {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg}); 5151 }; 5152 return true; 5153 } 5154 5155 // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z) 5156 // Note: Commutes FADD operands. 5157 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && 5158 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 5159 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5160 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 5161 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5162 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 5163 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 5164 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5165 {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg}); 5166 }; 5167 return true; 5168 } 5169 5170 return false; 5171 } 5172 5173 bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA( 5174 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5175 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5176 5177 bool AllowFusionGlobally, HasFMAD, Aggressive; 5178 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true)) 5179 return false; 5180 5181 Register Op1 = MI.getOperand(1).getReg(); 5182 Register Op2 = MI.getOperand(2).getReg(); 5183 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5184 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5185 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5186 5187 unsigned PreferredFusedOpcode = 5188 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5189 5190 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5191 // prefer to fold the multiply with fewer uses. 5192 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5193 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5194 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5195 std::swap(LHS, RHS); 5196 } 5197 5198 MachineInstr *FMA = nullptr; 5199 Register Z; 5200 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z)) 5201 if (LHS.MI->getOpcode() == PreferredFusedOpcode && 5202 (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() == 5203 TargetOpcode::G_FMUL) && 5204 MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) && 5205 MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) { 5206 FMA = LHS.MI; 5207 Z = RHS.Reg; 5208 } 5209 // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z)) 5210 else if (RHS.MI->getOpcode() == PreferredFusedOpcode && 5211 (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() == 5212 TargetOpcode::G_FMUL) && 5213 MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) && 5214 MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) { 5215 Z = LHS.Reg; 5216 FMA = RHS.MI; 5217 } 5218 5219 if (FMA) { 5220 MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg()); 5221 Register X = FMA->getOperand(1).getReg(); 5222 Register Y = FMA->getOperand(2).getReg(); 5223 Register U = FMulMI->getOperand(1).getReg(); 5224 Register V = FMulMI->getOperand(2).getReg(); 5225 5226 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5227 Register InnerFMA = MRI.createGenericVirtualRegister(DstTy); 5228 B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z}); 5229 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5230 {X, Y, InnerFMA}); 5231 }; 5232 return true; 5233 } 5234 5235 return false; 5236 } 5237 5238 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive( 5239 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5240 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5241 5242 bool AllowFusionGlobally, HasFMAD, Aggressive; 5243 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5244 return false; 5245 5246 if (!Aggressive) 5247 return false; 5248 5249 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5250 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5251 Register Op1 = MI.getOperand(1).getReg(); 5252 Register Op2 = MI.getOperand(2).getReg(); 5253 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5254 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5255 5256 unsigned PreferredFusedOpcode = 5257 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5258 5259 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5260 // prefer to fold the multiply with fewer uses. 5261 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5262 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5263 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5264 std::swap(LHS, RHS); 5265 } 5266 5267 // Builds: (fma x, y, (fma (fpext u), (fpext v), z)) 5268 auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X, 5269 Register Y, MachineIRBuilder &B) { 5270 Register FpExtU = B.buildFPExt(DstType, U).getReg(0); 5271 Register FpExtV = B.buildFPExt(DstType, V).getReg(0); 5272 Register InnerFMA = 5273 B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z}) 5274 .getReg(0); 5275 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5276 {X, Y, InnerFMA}); 5277 }; 5278 5279 MachineInstr *FMulMI, *FMAMI; 5280 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 5281 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5282 if (LHS.MI->getOpcode() == PreferredFusedOpcode && 5283 mi_match(LHS.MI->getOperand(3).getReg(), MRI, 5284 m_GFPExt(m_MInstr(FMulMI))) && 5285 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5286 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5287 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5288 MatchInfo = [=](MachineIRBuilder &B) { 5289 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5290 FMulMI->getOperand(2).getReg(), RHS.Reg, 5291 LHS.MI->getOperand(1).getReg(), 5292 LHS.MI->getOperand(2).getReg(), B); 5293 }; 5294 return true; 5295 } 5296 5297 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 5298 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5299 // FIXME: This turns two single-precision and one double-precision 5300 // operation into two double-precision operations, which might not be 5301 // interesting for all targets, especially GPUs. 5302 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && 5303 FMAMI->getOpcode() == PreferredFusedOpcode) { 5304 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 5305 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 5306 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5307 MRI.getType(FMAMI->getOperand(0).getReg()))) { 5308 MatchInfo = [=](MachineIRBuilder &B) { 5309 Register X = FMAMI->getOperand(1).getReg(); 5310 Register Y = FMAMI->getOperand(2).getReg(); 5311 X = B.buildFPExt(DstType, X).getReg(0); 5312 Y = B.buildFPExt(DstType, Y).getReg(0); 5313 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5314 FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B); 5315 }; 5316 5317 return true; 5318 } 5319 } 5320 5321 // fold (fadd z, (fma x, y, (fpext (fmul u, v))) 5322 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5323 if (RHS.MI->getOpcode() == PreferredFusedOpcode && 5324 mi_match(RHS.MI->getOperand(3).getReg(), MRI, 5325 m_GFPExt(m_MInstr(FMulMI))) && 5326 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5327 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5328 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5329 MatchInfo = [=](MachineIRBuilder &B) { 5330 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5331 FMulMI->getOperand(2).getReg(), LHS.Reg, 5332 RHS.MI->getOperand(1).getReg(), 5333 RHS.MI->getOperand(2).getReg(), B); 5334 }; 5335 return true; 5336 } 5337 5338 // fold (fadd z, (fpext (fma x, y, (fmul u, v))) 5339 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5340 // FIXME: This turns two single-precision and one double-precision 5341 // operation into two double-precision operations, which might not be 5342 // interesting for all targets, especially GPUs. 5343 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && 5344 FMAMI->getOpcode() == PreferredFusedOpcode) { 5345 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 5346 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 5347 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5348 MRI.getType(FMAMI->getOperand(0).getReg()))) { 5349 MatchInfo = [=](MachineIRBuilder &B) { 5350 Register X = FMAMI->getOperand(1).getReg(); 5351 Register Y = FMAMI->getOperand(2).getReg(); 5352 X = B.buildFPExt(DstType, X).getReg(0); 5353 Y = B.buildFPExt(DstType, Y).getReg(0); 5354 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5355 FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B); 5356 }; 5357 return true; 5358 } 5359 } 5360 5361 return false; 5362 } 5363 5364 bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA( 5365 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5366 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5367 5368 bool AllowFusionGlobally, HasFMAD, Aggressive; 5369 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5370 return false; 5371 5372 Register Op1 = MI.getOperand(1).getReg(); 5373 Register Op2 = MI.getOperand(2).getReg(); 5374 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5375 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5376 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5377 5378 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5379 // prefer to fold the multiply with fewer uses. 5380 int FirstMulHasFewerUses = true; 5381 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5382 isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5383 hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5384 FirstMulHasFewerUses = false; 5385 5386 unsigned PreferredFusedOpcode = 5387 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5388 5389 // fold (fsub (fmul x, y), z) -> (fma x, y, -z) 5390 if (FirstMulHasFewerUses && 5391 (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5392 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) { 5393 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5394 Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0); 5395 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5396 {LHS.MI->getOperand(1).getReg(), 5397 LHS.MI->getOperand(2).getReg(), NegZ}); 5398 }; 5399 return true; 5400 } 5401 // fold (fsub x, (fmul y, z)) -> (fma -y, z, x) 5402 else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5403 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) { 5404 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5405 Register NegY = 5406 B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0); 5407 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5408 {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg}); 5409 }; 5410 return true; 5411 } 5412 5413 return false; 5414 } 5415 5416 bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA( 5417 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5418 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5419 5420 bool AllowFusionGlobally, HasFMAD, Aggressive; 5421 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5422 return false; 5423 5424 Register LHSReg = MI.getOperand(1).getReg(); 5425 Register RHSReg = MI.getOperand(2).getReg(); 5426 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5427 5428 unsigned PreferredFusedOpcode = 5429 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5430 5431 MachineInstr *FMulMI; 5432 // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z)) 5433 if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 5434 (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) && 5435 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 5436 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 5437 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5438 Register NegX = 5439 B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5440 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 5441 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5442 {NegX, FMulMI->getOperand(2).getReg(), NegZ}); 5443 }; 5444 return true; 5445 } 5446 5447 // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x) 5448 if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 5449 (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) && 5450 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 5451 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 5452 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5453 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5454 {FMulMI->getOperand(1).getReg(), 5455 FMulMI->getOperand(2).getReg(), LHSReg}); 5456 }; 5457 return true; 5458 } 5459 5460 return false; 5461 } 5462 5463 bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA( 5464 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5465 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5466 5467 bool AllowFusionGlobally, HasFMAD, Aggressive; 5468 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5469 return false; 5470 5471 Register LHSReg = MI.getOperand(1).getReg(); 5472 Register RHSReg = MI.getOperand(2).getReg(); 5473 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5474 5475 unsigned PreferredFusedOpcode = 5476 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5477 5478 MachineInstr *FMulMI; 5479 // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z)) 5480 if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 5481 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5482 (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) { 5483 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5484 Register FpExtX = 5485 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5486 Register FpExtY = 5487 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 5488 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 5489 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5490 {FpExtX, FpExtY, NegZ}); 5491 }; 5492 return true; 5493 } 5494 5495 // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x) 5496 if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 5497 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5498 (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) { 5499 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5500 Register FpExtY = 5501 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5502 Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0); 5503 Register FpExtZ = 5504 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 5505 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5506 {NegY, FpExtZ, LHSReg}); 5507 }; 5508 return true; 5509 } 5510 5511 return false; 5512 } 5513 5514 bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA( 5515 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5516 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5517 5518 bool AllowFusionGlobally, HasFMAD, Aggressive; 5519 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5520 return false; 5521 5522 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5523 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5524 Register LHSReg = MI.getOperand(1).getReg(); 5525 Register RHSReg = MI.getOperand(2).getReg(); 5526 5527 unsigned PreferredFusedOpcode = 5528 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5529 5530 auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z, 5531 MachineIRBuilder &B) { 5532 Register FpExtX = B.buildFPExt(DstTy, X).getReg(0); 5533 Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0); 5534 B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z}); 5535 }; 5536 5537 MachineInstr *FMulMI; 5538 // fold (fsub (fpext (fneg (fmul x, y))), z) -> 5539 // (fneg (fma (fpext x), (fpext y), z)) 5540 // fold (fsub (fneg (fpext (fmul x, y))), z) -> 5541 // (fneg (fma (fpext x), (fpext y), z)) 5542 if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 5543 mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 5544 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5545 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 5546 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5547 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5548 Register FMAReg = MRI.createGenericVirtualRegister(DstTy); 5549 buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(), 5550 FMulMI->getOperand(2).getReg(), RHSReg, B); 5551 B.buildFNeg(MI.getOperand(0).getReg(), FMAReg); 5552 }; 5553 return true; 5554 } 5555 5556 // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 5557 // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 5558 if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 5559 mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 5560 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5561 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 5562 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5563 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5564 buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(), 5565 FMulMI->getOperand(2).getReg(), LHSReg, B); 5566 }; 5567 return true; 5568 } 5569 5570 return false; 5571 } 5572 5573 bool CombinerHelper::matchSelectToLogical(MachineInstr &MI, 5574 BuildFnTy &MatchInfo) { 5575 GSelect &Sel = cast<GSelect>(MI); 5576 Register DstReg = Sel.getReg(0); 5577 Register Cond = Sel.getCondReg(); 5578 Register TrueReg = Sel.getTrueReg(); 5579 Register FalseReg = Sel.getFalseReg(); 5580 5581 auto *TrueDef = getDefIgnoringCopies(TrueReg, MRI); 5582 auto *FalseDef = getDefIgnoringCopies(FalseReg, MRI); 5583 5584 const LLT CondTy = MRI.getType(Cond); 5585 const LLT OpTy = MRI.getType(TrueReg); 5586 if (CondTy != OpTy || OpTy.getScalarSizeInBits() != 1) 5587 return false; 5588 5589 // We have a boolean select. 5590 5591 // select Cond, Cond, F --> or Cond, F 5592 // select Cond, 1, F --> or Cond, F 5593 auto MaybeCstTrue = isConstantOrConstantSplatVector(*TrueDef, MRI); 5594 if (Cond == TrueReg || (MaybeCstTrue && MaybeCstTrue->isOne())) { 5595 MatchInfo = [=](MachineIRBuilder &MIB) { 5596 MIB.buildOr(DstReg, Cond, FalseReg); 5597 }; 5598 return true; 5599 } 5600 5601 // select Cond, T, Cond --> and Cond, T 5602 // select Cond, T, 0 --> and Cond, T 5603 auto MaybeCstFalse = isConstantOrConstantSplatVector(*FalseDef, MRI); 5604 if (Cond == FalseReg || (MaybeCstFalse && MaybeCstFalse->isZero())) { 5605 MatchInfo = [=](MachineIRBuilder &MIB) { 5606 MIB.buildAnd(DstReg, Cond, TrueReg); 5607 }; 5608 return true; 5609 } 5610 5611 // select Cond, T, 1 --> or (not Cond), T 5612 if (MaybeCstFalse && MaybeCstFalse->isOne()) { 5613 MatchInfo = [=](MachineIRBuilder &MIB) { 5614 MIB.buildOr(DstReg, MIB.buildNot(OpTy, Cond), TrueReg); 5615 }; 5616 return true; 5617 } 5618 5619 // select Cond, 0, F --> and (not Cond), F 5620 if (MaybeCstTrue && MaybeCstTrue->isZero()) { 5621 MatchInfo = [=](MachineIRBuilder &MIB) { 5622 MIB.buildAnd(DstReg, MIB.buildNot(OpTy, Cond), FalseReg); 5623 }; 5624 return true; 5625 } 5626 return false; 5627 } 5628 5629 bool CombinerHelper::matchCombineFMinMaxNaN(MachineInstr &MI, 5630 unsigned &IdxToPropagate) { 5631 bool PropagateNaN; 5632 switch (MI.getOpcode()) { 5633 default: 5634 return false; 5635 case TargetOpcode::G_FMINNUM: 5636 case TargetOpcode::G_FMAXNUM: 5637 PropagateNaN = false; 5638 break; 5639 case TargetOpcode::G_FMINIMUM: 5640 case TargetOpcode::G_FMAXIMUM: 5641 PropagateNaN = true; 5642 break; 5643 } 5644 5645 auto MatchNaN = [&](unsigned Idx) { 5646 Register MaybeNaNReg = MI.getOperand(Idx).getReg(); 5647 const ConstantFP *MaybeCst = getConstantFPVRegVal(MaybeNaNReg, MRI); 5648 if (!MaybeCst || !MaybeCst->getValueAPF().isNaN()) 5649 return false; 5650 IdxToPropagate = PropagateNaN ? Idx : (Idx == 1 ? 2 : 1); 5651 return true; 5652 }; 5653 5654 return MatchNaN(1) || MatchNaN(2); 5655 } 5656 5657 bool CombinerHelper::matchAddSubSameReg(MachineInstr &MI, Register &Src) { 5658 assert(MI.getOpcode() == TargetOpcode::G_ADD && "Expected a G_ADD"); 5659 Register LHS = MI.getOperand(1).getReg(); 5660 Register RHS = MI.getOperand(2).getReg(); 5661 5662 // Helper lambda to check for opportunities for 5663 // A + (B - A) -> B 5664 // (B - A) + A -> B 5665 auto CheckFold = [&](Register MaybeSub, Register MaybeSameReg) { 5666 Register Reg; 5667 return mi_match(MaybeSub, MRI, m_GSub(m_Reg(Src), m_Reg(Reg))) && 5668 Reg == MaybeSameReg; 5669 }; 5670 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 5671 } 5672 5673 bool CombinerHelper::tryCombine(MachineInstr &MI) { 5674 if (tryCombineCopy(MI)) 5675 return true; 5676 if (tryCombineExtendingLoads(MI)) 5677 return true; 5678 if (tryCombineIndexedLoadStore(MI)) 5679 return true; 5680 return false; 5681 } 5682