xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp (revision ac77b2621508c6a50ab01d07fe8d43795d908f05)
1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
9 #include "llvm/ADT/APFloat.h"
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SetVector.h"
12 #include "llvm/ADT/SmallBitVector.h"
13 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
14 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
15 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
17 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
18 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
19 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
20 #include "llvm/CodeGen/GlobalISel/Utils.h"
21 #include "llvm/CodeGen/LowLevelTypeUtils.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/RegisterBankInfo.h"
28 #include "llvm/CodeGen/TargetInstrInfo.h"
29 #include "llvm/CodeGen/TargetLowering.h"
30 #include "llvm/CodeGen/TargetOpcodes.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/DivisionByConstantInfo.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <cmath>
38 #include <optional>
39 #include <tuple>
40 
41 #define DEBUG_TYPE "gi-combiner"
42 
43 using namespace llvm;
44 using namespace MIPatternMatch;
45 
46 // Option to allow testing of the combiner while no targets know about indexed
47 // addressing.
48 static cl::opt<bool>
49     ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
50                        cl::desc("Force all indexed operations to be "
51                                 "legal for the GlobalISel combiner"));
52 
53 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
54                                MachineIRBuilder &B, bool IsPreLegalize,
55                                GISelKnownBits *KB, MachineDominatorTree *MDT,
56                                const LegalizerInfo *LI)
57     : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB),
58       MDT(MDT), IsPreLegalize(IsPreLegalize), LI(LI),
59       RBI(Builder.getMF().getSubtarget().getRegBankInfo()),
60       TRI(Builder.getMF().getSubtarget().getRegisterInfo()) {
61   (void)this->KB;
62 }
63 
64 const TargetLowering &CombinerHelper::getTargetLowering() const {
65   return *Builder.getMF().getSubtarget().getTargetLowering();
66 }
67 
68 /// \returns The little endian in-memory byte position of byte \p I in a
69 /// \p ByteWidth bytes wide type.
70 ///
71 /// E.g. Given a 4-byte type x, x[0] -> byte 0
72 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) {
73   assert(I < ByteWidth && "I must be in [0, ByteWidth)");
74   return I;
75 }
76 
77 /// Determines the LogBase2 value for a non-null input value using the
78 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
79 static Register buildLogBase2(Register V, MachineIRBuilder &MIB) {
80   auto &MRI = *MIB.getMRI();
81   LLT Ty = MRI.getType(V);
82   auto Ctlz = MIB.buildCTLZ(Ty, V);
83   auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1);
84   return MIB.buildSub(Ty, Base, Ctlz).getReg(0);
85 }
86 
87 /// \returns The big endian in-memory byte position of byte \p I in a
88 /// \p ByteWidth bytes wide type.
89 ///
90 /// E.g. Given a 4-byte type x, x[0] -> byte 3
91 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) {
92   assert(I < ByteWidth && "I must be in [0, ByteWidth)");
93   return ByteWidth - I - 1;
94 }
95 
96 /// Given a map from byte offsets in memory to indices in a load/store,
97 /// determine if that map corresponds to a little or big endian byte pattern.
98 ///
99 /// \param MemOffset2Idx maps memory offsets to address offsets.
100 /// \param LowestIdx is the lowest index in \p MemOffset2Idx.
101 ///
102 /// \returns true if the map corresponds to a big endian byte pattern, false if
103 /// it corresponds to a little endian byte pattern, and std::nullopt otherwise.
104 ///
105 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns
106 /// are as follows:
107 ///
108 /// AddrOffset   Little endian    Big endian
109 /// 0            0                3
110 /// 1            1                2
111 /// 2            2                1
112 /// 3            3                0
113 static std::optional<bool>
114 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
115             int64_t LowestIdx) {
116   // Need at least two byte positions to decide on endianness.
117   unsigned Width = MemOffset2Idx.size();
118   if (Width < 2)
119     return std::nullopt;
120   bool BigEndian = true, LittleEndian = true;
121   for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) {
122     auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset);
123     if (MemOffsetAndIdx == MemOffset2Idx.end())
124       return std::nullopt;
125     const int64_t Idx = MemOffsetAndIdx->second - LowestIdx;
126     assert(Idx >= 0 && "Expected non-negative byte offset?");
127     LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset);
128     BigEndian &= Idx == bigEndianByteAt(Width, MemOffset);
129     if (!BigEndian && !LittleEndian)
130       return std::nullopt;
131   }
132 
133   assert((BigEndian != LittleEndian) &&
134          "Pattern cannot be both big and little endian!");
135   return BigEndian;
136 }
137 
138 bool CombinerHelper::isPreLegalize() const { return IsPreLegalize; }
139 
140 bool CombinerHelper::isLegal(const LegalityQuery &Query) const {
141   assert(LI && "Must have LegalizerInfo to query isLegal!");
142   return LI->getAction(Query).Action == LegalizeActions::Legal;
143 }
144 
145 bool CombinerHelper::isLegalOrBeforeLegalizer(
146     const LegalityQuery &Query) const {
147   return isPreLegalize() || isLegal(Query);
148 }
149 
150 bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const {
151   if (!Ty.isVector())
152     return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}});
153   // Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs.
154   if (isPreLegalize())
155     return true;
156   LLT EltTy = Ty.getElementType();
157   return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) &&
158          isLegal({TargetOpcode::G_CONSTANT, {EltTy}});
159 }
160 
161 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
162                                     Register ToReg) const {
163   Observer.changingAllUsesOfReg(MRI, FromReg);
164 
165   if (MRI.constrainRegAttrs(ToReg, FromReg))
166     MRI.replaceRegWith(FromReg, ToReg);
167   else
168     Builder.buildCopy(ToReg, FromReg);
169 
170   Observer.finishedChangingAllUsesOfReg();
171 }
172 
173 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
174                                       MachineOperand &FromRegOp,
175                                       Register ToReg) const {
176   assert(FromRegOp.getParent() && "Expected an operand in an MI");
177   Observer.changingInstr(*FromRegOp.getParent());
178 
179   FromRegOp.setReg(ToReg);
180 
181   Observer.changedInstr(*FromRegOp.getParent());
182 }
183 
184 void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI,
185                                        unsigned ToOpcode) const {
186   Observer.changingInstr(FromMI);
187 
188   FromMI.setDesc(Builder.getTII().get(ToOpcode));
189 
190   Observer.changedInstr(FromMI);
191 }
192 
193 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const {
194   return RBI->getRegBank(Reg, MRI, *TRI);
195 }
196 
197 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) {
198   if (RegBank)
199     MRI.setRegBank(Reg, *RegBank);
200 }
201 
202 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
203   if (matchCombineCopy(MI)) {
204     applyCombineCopy(MI);
205     return true;
206   }
207   return false;
208 }
209 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
210   if (MI.getOpcode() != TargetOpcode::COPY)
211     return false;
212   Register DstReg = MI.getOperand(0).getReg();
213   Register SrcReg = MI.getOperand(1).getReg();
214   return canReplaceReg(DstReg, SrcReg, MRI);
215 }
216 void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
217   Register DstReg = MI.getOperand(0).getReg();
218   Register SrcReg = MI.getOperand(1).getReg();
219   MI.eraseFromParent();
220   replaceRegWith(MRI, DstReg, SrcReg);
221 }
222 
223 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) {
224   bool IsUndef = false;
225   SmallVector<Register, 4> Ops;
226   if (matchCombineConcatVectors(MI, IsUndef, Ops)) {
227     applyCombineConcatVectors(MI, IsUndef, Ops);
228     return true;
229   }
230   return false;
231 }
232 
233 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef,
234                                                SmallVectorImpl<Register> &Ops) {
235   assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
236          "Invalid instruction");
237   IsUndef = true;
238   MachineInstr *Undef = nullptr;
239 
240   // Walk over all the operands of concat vectors and check if they are
241   // build_vector themselves or undef.
242   // Then collect their operands in Ops.
243   for (const MachineOperand &MO : MI.uses()) {
244     Register Reg = MO.getReg();
245     MachineInstr *Def = MRI.getVRegDef(Reg);
246     assert(Def && "Operand not defined");
247     switch (Def->getOpcode()) {
248     case TargetOpcode::G_BUILD_VECTOR:
249       IsUndef = false;
250       // Remember the operands of the build_vector to fold
251       // them into the yet-to-build flattened concat vectors.
252       for (const MachineOperand &BuildVecMO : Def->uses())
253         Ops.push_back(BuildVecMO.getReg());
254       break;
255     case TargetOpcode::G_IMPLICIT_DEF: {
256       LLT OpType = MRI.getType(Reg);
257       // Keep one undef value for all the undef operands.
258       if (!Undef) {
259         Builder.setInsertPt(*MI.getParent(), MI);
260         Undef = Builder.buildUndef(OpType.getScalarType());
261       }
262       assert(MRI.getType(Undef->getOperand(0).getReg()) ==
263                  OpType.getScalarType() &&
264              "All undefs should have the same type");
265       // Break the undef vector in as many scalar elements as needed
266       // for the flattening.
267       for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
268            EltIdx != EltEnd; ++EltIdx)
269         Ops.push_back(Undef->getOperand(0).getReg());
270       break;
271     }
272     default:
273       return false;
274     }
275   }
276   return true;
277 }
278 void CombinerHelper::applyCombineConcatVectors(
279     MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) {
280   // We determined that the concat_vectors can be flatten.
281   // Generate the flattened build_vector.
282   Register DstReg = MI.getOperand(0).getReg();
283   Builder.setInsertPt(*MI.getParent(), MI);
284   Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
285 
286   // Note: IsUndef is sort of redundant. We could have determine it by
287   // checking that at all Ops are undef.  Alternatively, we could have
288   // generate a build_vector of undefs and rely on another combine to
289   // clean that up.  For now, given we already gather this information
290   // in tryCombineConcatVectors, just save compile time and issue the
291   // right thing.
292   if (IsUndef)
293     Builder.buildUndef(NewDstReg);
294   else
295     Builder.buildBuildVector(NewDstReg, Ops);
296   MI.eraseFromParent();
297   replaceRegWith(MRI, DstReg, NewDstReg);
298 }
299 
300 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
301   SmallVector<Register, 4> Ops;
302   if (matchCombineShuffleVector(MI, Ops)) {
303     applyCombineShuffleVector(MI, Ops);
304     return true;
305   }
306   return false;
307 }
308 
309 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
310                                                SmallVectorImpl<Register> &Ops) {
311   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
312          "Invalid instruction kind");
313   LLT DstType = MRI.getType(MI.getOperand(0).getReg());
314   Register Src1 = MI.getOperand(1).getReg();
315   LLT SrcType = MRI.getType(Src1);
316   // As bizarre as it may look, shuffle vector can actually produce
317   // scalar! This is because at the IR level a <1 x ty> shuffle
318   // vector is perfectly valid.
319   unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1;
320   unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1;
321 
322   // If the resulting vector is smaller than the size of the source
323   // vectors being concatenated, we won't be able to replace the
324   // shuffle vector into a concat_vectors.
325   //
326   // Note: We may still be able to produce a concat_vectors fed by
327   //       extract_vector_elt and so on. It is less clear that would
328   //       be better though, so don't bother for now.
329   //
330   // If the destination is a scalar, the size of the sources doesn't
331   // matter. we will lower the shuffle to a plain copy. This will
332   // work only if the source and destination have the same size. But
333   // that's covered by the next condition.
334   //
335   // TODO: If the size between the source and destination don't match
336   //       we could still emit an extract vector element in that case.
337   if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1)
338     return false;
339 
340   // Check that the shuffle mask can be broken evenly between the
341   // different sources.
342   if (DstNumElts % SrcNumElts != 0)
343     return false;
344 
345   // Mask length is a multiple of the source vector length.
346   // Check if the shuffle is some kind of concatenation of the input
347   // vectors.
348   unsigned NumConcat = DstNumElts / SrcNumElts;
349   SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
350   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
351   for (unsigned i = 0; i != DstNumElts; ++i) {
352     int Idx = Mask[i];
353     // Undef value.
354     if (Idx < 0)
355       continue;
356     // Ensure the indices in each SrcType sized piece are sequential and that
357     // the same source is used for the whole piece.
358     if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
359         (ConcatSrcs[i / SrcNumElts] >= 0 &&
360          ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
361       return false;
362     // Remember which source this index came from.
363     ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
364   }
365 
366   // The shuffle is concatenating multiple vectors together.
367   // Collect the different operands for that.
368   Register UndefReg;
369   Register Src2 = MI.getOperand(2).getReg();
370   for (auto Src : ConcatSrcs) {
371     if (Src < 0) {
372       if (!UndefReg) {
373         Builder.setInsertPt(*MI.getParent(), MI);
374         UndefReg = Builder.buildUndef(SrcType).getReg(0);
375       }
376       Ops.push_back(UndefReg);
377     } else if (Src == 0)
378       Ops.push_back(Src1);
379     else
380       Ops.push_back(Src2);
381   }
382   return true;
383 }
384 
385 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
386                                                const ArrayRef<Register> Ops) {
387   Register DstReg = MI.getOperand(0).getReg();
388   Builder.setInsertPt(*MI.getParent(), MI);
389   Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
390 
391   if (Ops.size() == 1)
392     Builder.buildCopy(NewDstReg, Ops[0]);
393   else
394     Builder.buildMergeLikeInstr(NewDstReg, Ops);
395 
396   MI.eraseFromParent();
397   replaceRegWith(MRI, DstReg, NewDstReg);
398 }
399 
400 bool CombinerHelper::matchShuffleToExtract(MachineInstr &MI) {
401   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
402          "Invalid instruction kind");
403 
404   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
405   return Mask.size() == 1;
406 }
407 
408 void CombinerHelper::applyShuffleToExtract(MachineInstr &MI) {
409   Register DstReg = MI.getOperand(0).getReg();
410   Builder.setInsertPt(*MI.getParent(), MI);
411 
412   int I = MI.getOperand(3).getShuffleMask()[0];
413   Register Src1 = MI.getOperand(1).getReg();
414   LLT Src1Ty = MRI.getType(Src1);
415   int Src1NumElts = Src1Ty.isVector() ? Src1Ty.getNumElements() : 1;
416   Register SrcReg;
417   if (I >= Src1NumElts) {
418     SrcReg = MI.getOperand(2).getReg();
419     I -= Src1NumElts;
420   } else if (I >= 0)
421     SrcReg = Src1;
422 
423   if (I < 0)
424     Builder.buildUndef(DstReg);
425   else if (!MRI.getType(SrcReg).isVector())
426     Builder.buildCopy(DstReg, SrcReg);
427   else
428     Builder.buildExtractVectorElementConstant(DstReg, SrcReg, I);
429 
430   MI.eraseFromParent();
431 }
432 
433 namespace {
434 
435 /// Select a preference between two uses. CurrentUse is the current preference
436 /// while *ForCandidate is attributes of the candidate under consideration.
437 PreferredTuple ChoosePreferredUse(MachineInstr &LoadMI,
438                                   PreferredTuple &CurrentUse,
439                                   const LLT TyForCandidate,
440                                   unsigned OpcodeForCandidate,
441                                   MachineInstr *MIForCandidate) {
442   if (!CurrentUse.Ty.isValid()) {
443     if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
444         CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
445       return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
446     return CurrentUse;
447   }
448 
449   // We permit the extend to hoist through basic blocks but this is only
450   // sensible if the target has extending loads. If you end up lowering back
451   // into a load and extend during the legalizer then the end result is
452   // hoisting the extend up to the load.
453 
454   // Prefer defined extensions to undefined extensions as these are more
455   // likely to reduce the number of instructions.
456   if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
457       CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
458     return CurrentUse;
459   else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
460            OpcodeForCandidate != TargetOpcode::G_ANYEXT)
461     return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
462 
463   // Prefer sign extensions to zero extensions as sign-extensions tend to be
464   // more expensive. Don't do this if the load is already a zero-extend load
465   // though, otherwise we'll rewrite a zero-extend load into a sign-extend
466   // later.
467   if (!isa<GZExtLoad>(LoadMI) && CurrentUse.Ty == TyForCandidate) {
468     if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
469         OpcodeForCandidate == TargetOpcode::G_ZEXT)
470       return CurrentUse;
471     else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
472              OpcodeForCandidate == TargetOpcode::G_SEXT)
473       return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
474   }
475 
476   // This is potentially target specific. We've chosen the largest type
477   // because G_TRUNC is usually free. One potential catch with this is that
478   // some targets have a reduced number of larger registers than smaller
479   // registers and this choice potentially increases the live-range for the
480   // larger value.
481   if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
482     return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
483   }
484   return CurrentUse;
485 }
486 
487 /// Find a suitable place to insert some instructions and insert them. This
488 /// function accounts for special cases like inserting before a PHI node.
489 /// The current strategy for inserting before PHI's is to duplicate the
490 /// instructions for each predecessor. However, while that's ok for G_TRUNC
491 /// on most targets since it generally requires no code, other targets/cases may
492 /// want to try harder to find a dominating block.
493 static void InsertInsnsWithoutSideEffectsBeforeUse(
494     MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
495     std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
496                        MachineOperand &UseMO)>
497         Inserter) {
498   MachineInstr &UseMI = *UseMO.getParent();
499 
500   MachineBasicBlock *InsertBB = UseMI.getParent();
501 
502   // If the use is a PHI then we want the predecessor block instead.
503   if (UseMI.isPHI()) {
504     MachineOperand *PredBB = std::next(&UseMO);
505     InsertBB = PredBB->getMBB();
506   }
507 
508   // If the block is the same block as the def then we want to insert just after
509   // the def instead of at the start of the block.
510   if (InsertBB == DefMI.getParent()) {
511     MachineBasicBlock::iterator InsertPt = &DefMI;
512     Inserter(InsertBB, std::next(InsertPt), UseMO);
513     return;
514   }
515 
516   // Otherwise we want the start of the BB
517   Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
518 }
519 } // end anonymous namespace
520 
521 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
522   PreferredTuple Preferred;
523   if (matchCombineExtendingLoads(MI, Preferred)) {
524     applyCombineExtendingLoads(MI, Preferred);
525     return true;
526   }
527   return false;
528 }
529 
530 static unsigned getExtLoadOpcForExtend(unsigned ExtOpc) {
531   unsigned CandidateLoadOpc;
532   switch (ExtOpc) {
533   case TargetOpcode::G_ANYEXT:
534     CandidateLoadOpc = TargetOpcode::G_LOAD;
535     break;
536   case TargetOpcode::G_SEXT:
537     CandidateLoadOpc = TargetOpcode::G_SEXTLOAD;
538     break;
539   case TargetOpcode::G_ZEXT:
540     CandidateLoadOpc = TargetOpcode::G_ZEXTLOAD;
541     break;
542   default:
543     llvm_unreachable("Unexpected extend opc");
544   }
545   return CandidateLoadOpc;
546 }
547 
548 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
549                                                 PreferredTuple &Preferred) {
550   // We match the loads and follow the uses to the extend instead of matching
551   // the extends and following the def to the load. This is because the load
552   // must remain in the same position for correctness (unless we also add code
553   // to find a safe place to sink it) whereas the extend is freely movable.
554   // It also prevents us from duplicating the load for the volatile case or just
555   // for performance.
556   GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI);
557   if (!LoadMI)
558     return false;
559 
560   Register LoadReg = LoadMI->getDstReg();
561 
562   LLT LoadValueTy = MRI.getType(LoadReg);
563   if (!LoadValueTy.isScalar())
564     return false;
565 
566   // Most architectures are going to legalize <s8 loads into at least a 1 byte
567   // load, and the MMOs can only describe memory accesses in multiples of bytes.
568   // If we try to perform extload combining on those, we can end up with
569   // %a(s8) = extload %ptr (load 1 byte from %ptr)
570   // ... which is an illegal extload instruction.
571   if (LoadValueTy.getSizeInBits() < 8)
572     return false;
573 
574   // For non power-of-2 types, they will very likely be legalized into multiple
575   // loads. Don't bother trying to match them into extending loads.
576   if (!llvm::has_single_bit<uint32_t>(LoadValueTy.getSizeInBits()))
577     return false;
578 
579   // Find the preferred type aside from the any-extends (unless it's the only
580   // one) and non-extending ops. We'll emit an extending load to that type and
581   // and emit a variant of (extend (trunc X)) for the others according to the
582   // relative type sizes. At the same time, pick an extend to use based on the
583   // extend involved in the chosen type.
584   unsigned PreferredOpcode =
585       isa<GLoad>(&MI)
586           ? TargetOpcode::G_ANYEXT
587           : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
588   Preferred = {LLT(), PreferredOpcode, nullptr};
589   for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) {
590     if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
591         UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
592         (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) {
593       const auto &MMO = LoadMI->getMMO();
594       // Don't do anything for atomics.
595       if (MMO.isAtomic())
596         continue;
597       // Check for legality.
598       if (!isPreLegalize()) {
599         LegalityQuery::MemDesc MMDesc(MMO);
600         unsigned CandidateLoadOpc = getExtLoadOpcForExtend(UseMI.getOpcode());
601         LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg());
602         LLT SrcTy = MRI.getType(LoadMI->getPointerReg());
603         if (LI->getAction({CandidateLoadOpc, {UseTy, SrcTy}, {MMDesc}})
604                 .Action != LegalizeActions::Legal)
605           continue;
606       }
607       Preferred = ChoosePreferredUse(MI, Preferred,
608                                      MRI.getType(UseMI.getOperand(0).getReg()),
609                                      UseMI.getOpcode(), &UseMI);
610     }
611   }
612 
613   // There were no extends
614   if (!Preferred.MI)
615     return false;
616   // It should be impossible to chose an extend without selecting a different
617   // type since by definition the result of an extend is larger.
618   assert(Preferred.Ty != LoadValueTy && "Extending to same type?");
619 
620   LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI);
621   return true;
622 }
623 
624 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
625                                                 PreferredTuple &Preferred) {
626   // Rewrite the load to the chosen extending load.
627   Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
628 
629   // Inserter to insert a truncate back to the original type at a given point
630   // with some basic CSE to limit truncate duplication to one per BB.
631   DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
632   auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
633                            MachineBasicBlock::iterator InsertBefore,
634                            MachineOperand &UseMO) {
635     MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
636     if (PreviouslyEmitted) {
637       Observer.changingInstr(*UseMO.getParent());
638       UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
639       Observer.changedInstr(*UseMO.getParent());
640       return;
641     }
642 
643     Builder.setInsertPt(*InsertIntoBB, InsertBefore);
644     Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
645     MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
646     EmittedInsns[InsertIntoBB] = NewMI;
647     replaceRegOpWith(MRI, UseMO, NewDstReg);
648   };
649 
650   Observer.changingInstr(MI);
651   unsigned LoadOpc = getExtLoadOpcForExtend(Preferred.ExtendOpcode);
652   MI.setDesc(Builder.getTII().get(LoadOpc));
653 
654   // Rewrite all the uses to fix up the types.
655   auto &LoadValue = MI.getOperand(0);
656   SmallVector<MachineOperand *, 4> Uses;
657   for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
658     Uses.push_back(&UseMO);
659 
660   for (auto *UseMO : Uses) {
661     MachineInstr *UseMI = UseMO->getParent();
662 
663     // If the extend is compatible with the preferred extend then we should fix
664     // up the type and extend so that it uses the preferred use.
665     if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
666         UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
667       Register UseDstReg = UseMI->getOperand(0).getReg();
668       MachineOperand &UseSrcMO = UseMI->getOperand(1);
669       const LLT UseDstTy = MRI.getType(UseDstReg);
670       if (UseDstReg != ChosenDstReg) {
671         if (Preferred.Ty == UseDstTy) {
672           // If the use has the same type as the preferred use, then merge
673           // the vregs and erase the extend. For example:
674           //    %1:_(s8) = G_LOAD ...
675           //    %2:_(s32) = G_SEXT %1(s8)
676           //    %3:_(s32) = G_ANYEXT %1(s8)
677           //    ... = ... %3(s32)
678           // rewrites to:
679           //    %2:_(s32) = G_SEXTLOAD ...
680           //    ... = ... %2(s32)
681           replaceRegWith(MRI, UseDstReg, ChosenDstReg);
682           Observer.erasingInstr(*UseMO->getParent());
683           UseMO->getParent()->eraseFromParent();
684         } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
685           // If the preferred size is smaller, then keep the extend but extend
686           // from the result of the extending load. For example:
687           //    %1:_(s8) = G_LOAD ...
688           //    %2:_(s32) = G_SEXT %1(s8)
689           //    %3:_(s64) = G_ANYEXT %1(s8)
690           //    ... = ... %3(s64)
691           /// rewrites to:
692           //    %2:_(s32) = G_SEXTLOAD ...
693           //    %3:_(s64) = G_ANYEXT %2:_(s32)
694           //    ... = ... %3(s64)
695           replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
696         } else {
697           // If the preferred size is large, then insert a truncate. For
698           // example:
699           //    %1:_(s8) = G_LOAD ...
700           //    %2:_(s64) = G_SEXT %1(s8)
701           //    %3:_(s32) = G_ZEXT %1(s8)
702           //    ... = ... %3(s32)
703           /// rewrites to:
704           //    %2:_(s64) = G_SEXTLOAD ...
705           //    %4:_(s8) = G_TRUNC %2:_(s32)
706           //    %3:_(s64) = G_ZEXT %2:_(s8)
707           //    ... = ... %3(s64)
708           InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
709                                                  InsertTruncAt);
710         }
711         continue;
712       }
713       // The use is (one of) the uses of the preferred use we chose earlier.
714       // We're going to update the load to def this value later so just erase
715       // the old extend.
716       Observer.erasingInstr(*UseMO->getParent());
717       UseMO->getParent()->eraseFromParent();
718       continue;
719     }
720 
721     // The use isn't an extend. Truncate back to the type we originally loaded.
722     // This is free on many targets.
723     InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
724   }
725 
726   MI.getOperand(0).setReg(ChosenDstReg);
727   Observer.changedInstr(MI);
728 }
729 
730 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI,
731                                                  BuildFnTy &MatchInfo) {
732   assert(MI.getOpcode() == TargetOpcode::G_AND);
733 
734   // If we have the following code:
735   //  %mask = G_CONSTANT 255
736   //  %ld   = G_LOAD %ptr, (load s16)
737   //  %and  = G_AND %ld, %mask
738   //
739   // Try to fold it into
740   //   %ld = G_ZEXTLOAD %ptr, (load s8)
741 
742   Register Dst = MI.getOperand(0).getReg();
743   if (MRI.getType(Dst).isVector())
744     return false;
745 
746   auto MaybeMask =
747       getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
748   if (!MaybeMask)
749     return false;
750 
751   APInt MaskVal = MaybeMask->Value;
752 
753   if (!MaskVal.isMask())
754     return false;
755 
756   Register SrcReg = MI.getOperand(1).getReg();
757   // Don't use getOpcodeDef() here since intermediate instructions may have
758   // multiple users.
759   GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(MRI.getVRegDef(SrcReg));
760   if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()))
761     return false;
762 
763   Register LoadReg = LoadMI->getDstReg();
764   LLT RegTy = MRI.getType(LoadReg);
765   Register PtrReg = LoadMI->getPointerReg();
766   unsigned RegSize = RegTy.getSizeInBits();
767   uint64_t LoadSizeBits = LoadMI->getMemSizeInBits();
768   unsigned MaskSizeBits = MaskVal.countr_one();
769 
770   // The mask may not be larger than the in-memory type, as it might cover sign
771   // extended bits
772   if (MaskSizeBits > LoadSizeBits)
773     return false;
774 
775   // If the mask covers the whole destination register, there's nothing to
776   // extend
777   if (MaskSizeBits >= RegSize)
778     return false;
779 
780   // Most targets cannot deal with loads of size < 8 and need to re-legalize to
781   // at least byte loads. Avoid creating such loads here
782   if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits))
783     return false;
784 
785   const MachineMemOperand &MMO = LoadMI->getMMO();
786   LegalityQuery::MemDesc MemDesc(MMO);
787 
788   // Don't modify the memory access size if this is atomic/volatile, but we can
789   // still adjust the opcode to indicate the high bit behavior.
790   if (LoadMI->isSimple())
791     MemDesc.MemoryTy = LLT::scalar(MaskSizeBits);
792   else if (LoadSizeBits > MaskSizeBits || LoadSizeBits == RegSize)
793     return false;
794 
795   // TODO: Could check if it's legal with the reduced or original memory size.
796   if (!isLegalOrBeforeLegalizer(
797           {TargetOpcode::G_ZEXTLOAD, {RegTy, MRI.getType(PtrReg)}, {MemDesc}}))
798     return false;
799 
800   MatchInfo = [=](MachineIRBuilder &B) {
801     B.setInstrAndDebugLoc(*LoadMI);
802     auto &MF = B.getMF();
803     auto PtrInfo = MMO.getPointerInfo();
804     auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MemDesc.MemoryTy);
805     B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO);
806     LoadMI->eraseFromParent();
807   };
808   return true;
809 }
810 
811 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI,
812                                    const MachineInstr &UseMI) {
813   assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
814          "shouldn't consider debug uses");
815   assert(DefMI.getParent() == UseMI.getParent());
816   if (&DefMI == &UseMI)
817     return true;
818   const MachineBasicBlock &MBB = *DefMI.getParent();
819   auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) {
820     return &MI == &DefMI || &MI == &UseMI;
821   });
822   if (DefOrUse == MBB.end())
823     llvm_unreachable("Block must contain both DefMI and UseMI!");
824   return &*DefOrUse == &DefMI;
825 }
826 
827 bool CombinerHelper::dominates(const MachineInstr &DefMI,
828                                const MachineInstr &UseMI) {
829   assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
830          "shouldn't consider debug uses");
831   if (MDT)
832     return MDT->dominates(&DefMI, &UseMI);
833   else if (DefMI.getParent() != UseMI.getParent())
834     return false;
835 
836   return isPredecessor(DefMI, UseMI);
837 }
838 
839 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) {
840   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
841   Register SrcReg = MI.getOperand(1).getReg();
842   Register LoadUser = SrcReg;
843 
844   if (MRI.getType(SrcReg).isVector())
845     return false;
846 
847   Register TruncSrc;
848   if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))))
849     LoadUser = TruncSrc;
850 
851   uint64_t SizeInBits = MI.getOperand(2).getImm();
852   // If the source is a G_SEXTLOAD from the same bit width, then we don't
853   // need any extend at all, just a truncate.
854   if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) {
855     // If truncating more than the original extended value, abort.
856     auto LoadSizeBits = LoadMI->getMemSizeInBits();
857     if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits)
858       return false;
859     if (LoadSizeBits == SizeInBits)
860       return true;
861   }
862   return false;
863 }
864 
865 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) {
866   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
867   Builder.setInstrAndDebugLoc(MI);
868   Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
869   MI.eraseFromParent();
870 }
871 
872 bool CombinerHelper::matchSextInRegOfLoad(
873     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
874   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
875 
876   Register DstReg = MI.getOperand(0).getReg();
877   LLT RegTy = MRI.getType(DstReg);
878 
879   // Only supports scalars for now.
880   if (RegTy.isVector())
881     return false;
882 
883   Register SrcReg = MI.getOperand(1).getReg();
884   auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI);
885   if (!LoadDef || !MRI.hasOneNonDBGUse(DstReg))
886     return false;
887 
888   uint64_t MemBits = LoadDef->getMemSizeInBits();
889 
890   // If the sign extend extends from a narrower width than the load's width,
891   // then we can narrow the load width when we combine to a G_SEXTLOAD.
892   // Avoid widening the load at all.
893   unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), MemBits);
894 
895   // Don't generate G_SEXTLOADs with a < 1 byte width.
896   if (NewSizeBits < 8)
897     return false;
898   // Don't bother creating a non-power-2 sextload, it will likely be broken up
899   // anyway for most targets.
900   if (!isPowerOf2_32(NewSizeBits))
901     return false;
902 
903   const MachineMemOperand &MMO = LoadDef->getMMO();
904   LegalityQuery::MemDesc MMDesc(MMO);
905 
906   // Don't modify the memory access size if this is atomic/volatile, but we can
907   // still adjust the opcode to indicate the high bit behavior.
908   if (LoadDef->isSimple())
909     MMDesc.MemoryTy = LLT::scalar(NewSizeBits);
910   else if (MemBits > NewSizeBits || MemBits == RegTy.getSizeInBits())
911     return false;
912 
913   // TODO: Could check if it's legal with the reduced or original memory size.
914   if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD,
915                                  {MRI.getType(LoadDef->getDstReg()),
916                                   MRI.getType(LoadDef->getPointerReg())},
917                                  {MMDesc}}))
918     return false;
919 
920   MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits);
921   return true;
922 }
923 
924 void CombinerHelper::applySextInRegOfLoad(
925     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
926   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
927   Register LoadReg;
928   unsigned ScalarSizeBits;
929   std::tie(LoadReg, ScalarSizeBits) = MatchInfo;
930   GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg));
931 
932   // If we have the following:
933   // %ld = G_LOAD %ptr, (load 2)
934   // %ext = G_SEXT_INREG %ld, 8
935   //    ==>
936   // %ld = G_SEXTLOAD %ptr (load 1)
937 
938   auto &MMO = LoadDef->getMMO();
939   Builder.setInstrAndDebugLoc(*LoadDef);
940   auto &MF = Builder.getMF();
941   auto PtrInfo = MMO.getPointerInfo();
942   auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8);
943   Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(),
944                          LoadDef->getPointerReg(), *NewMMO);
945   MI.eraseFromParent();
946 }
947 
948 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
949   if (Ty.isVector())
950     return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
951                                 Ty.getNumElements());
952   return IntegerType::get(C, Ty.getSizeInBits());
953 }
954 
955 /// Return true if 'MI' is a load or a store that may be fold it's address
956 /// operand into the load / store addressing mode.
957 static bool canFoldInAddressingMode(GLoadStore *MI, const TargetLowering &TLI,
958                                     MachineRegisterInfo &MRI) {
959   TargetLowering::AddrMode AM;
960   auto *MF = MI->getMF();
961   auto *Addr = getOpcodeDef<GPtrAdd>(MI->getPointerReg(), MRI);
962   if (!Addr)
963     return false;
964 
965   AM.HasBaseReg = true;
966   if (auto CstOff = getIConstantVRegVal(Addr->getOffsetReg(), MRI))
967     AM.BaseOffs = CstOff->getSExtValue(); // [reg +/- imm]
968   else
969     AM.Scale = 1; // [reg +/- reg]
970 
971   return TLI.isLegalAddressingMode(
972       MF->getDataLayout(), AM,
973       getTypeForLLT(MI->getMMO().getMemoryType(),
974                     MF->getFunction().getContext()),
975       MI->getMMO().getAddrSpace());
976 }
977 
978 static unsigned getIndexedOpc(unsigned LdStOpc) {
979   switch (LdStOpc) {
980   case TargetOpcode::G_LOAD:
981     return TargetOpcode::G_INDEXED_LOAD;
982   case TargetOpcode::G_STORE:
983     return TargetOpcode::G_INDEXED_STORE;
984   case TargetOpcode::G_ZEXTLOAD:
985     return TargetOpcode::G_INDEXED_ZEXTLOAD;
986   case TargetOpcode::G_SEXTLOAD:
987     return TargetOpcode::G_INDEXED_SEXTLOAD;
988   default:
989     llvm_unreachable("Unexpected opcode");
990   }
991 }
992 
993 bool CombinerHelper::isIndexedLoadStoreLegal(GLoadStore &LdSt) const {
994   // Check for legality.
995   LLT PtrTy = MRI.getType(LdSt.getPointerReg());
996   LLT Ty = MRI.getType(LdSt.getReg(0));
997   LLT MemTy = LdSt.getMMO().getMemoryType();
998   SmallVector<LegalityQuery::MemDesc, 2> MemDescrs(
999       {{MemTy, MemTy.getSizeInBits(), AtomicOrdering::NotAtomic}});
1000   unsigned IndexedOpc = getIndexedOpc(LdSt.getOpcode());
1001   SmallVector<LLT> OpTys;
1002   if (IndexedOpc == TargetOpcode::G_INDEXED_STORE)
1003     OpTys = {PtrTy, Ty, Ty};
1004   else
1005     OpTys = {Ty, PtrTy}; // For G_INDEXED_LOAD, G_INDEXED_[SZ]EXTLOAD
1006 
1007   LegalityQuery Q(IndexedOpc, OpTys, MemDescrs);
1008   return isLegal(Q);
1009 }
1010 
1011 static cl::opt<unsigned> PostIndexUseThreshold(
1012     "post-index-use-threshold", cl::Hidden, cl::init(32),
1013     cl::desc("Number of uses of a base pointer to check before it is no longer "
1014              "considered for post-indexing."));
1015 
1016 bool CombinerHelper::findPostIndexCandidate(GLoadStore &LdSt, Register &Addr,
1017                                             Register &Base, Register &Offset,
1018                                             bool &RematOffset) {
1019   // We're looking for the following pattern, for either load or store:
1020   // %baseptr:_(p0) = ...
1021   // G_STORE %val(s64), %baseptr(p0)
1022   // %offset:_(s64) = G_CONSTANT i64 -256
1023   // %new_addr:_(p0) = G_PTR_ADD %baseptr, %offset(s64)
1024   const auto &TLI = getTargetLowering();
1025 
1026   Register Ptr = LdSt.getPointerReg();
1027   // If the store is the only use, don't bother.
1028   if (MRI.hasOneNonDBGUse(Ptr))
1029     return false;
1030 
1031   if (!isIndexedLoadStoreLegal(LdSt))
1032     return false;
1033 
1034   if (getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Ptr, MRI))
1035     return false;
1036 
1037   MachineInstr *StoredValDef = getDefIgnoringCopies(LdSt.getReg(0), MRI);
1038   auto *PtrDef = MRI.getVRegDef(Ptr);
1039 
1040   unsigned NumUsesChecked = 0;
1041   for (auto &Use : MRI.use_nodbg_instructions(Ptr)) {
1042     if (++NumUsesChecked > PostIndexUseThreshold)
1043       return false; // Try to avoid exploding compile time.
1044 
1045     auto *PtrAdd = dyn_cast<GPtrAdd>(&Use);
1046     // The use itself might be dead. This can happen during combines if DCE
1047     // hasn't had a chance to run yet. Don't allow it to form an indexed op.
1048     if (!PtrAdd || MRI.use_nodbg_empty(PtrAdd->getReg(0)))
1049       continue;
1050 
1051     // Check the user of this isn't the store, otherwise we'd be generate a
1052     // indexed store defining its own use.
1053     if (StoredValDef == &Use)
1054       continue;
1055 
1056     Offset = PtrAdd->getOffsetReg();
1057     if (!ForceLegalIndexing &&
1058         !TLI.isIndexingLegal(LdSt, PtrAdd->getBaseReg(), Offset,
1059                              /*IsPre*/ false, MRI))
1060       continue;
1061 
1062     // Make sure the offset calculation is before the potentially indexed op.
1063     MachineInstr *OffsetDef = MRI.getVRegDef(Offset);
1064     RematOffset = false;
1065     if (!dominates(*OffsetDef, LdSt)) {
1066       // If the offset however is just a G_CONSTANT, we can always just
1067       // rematerialize it where we need it.
1068       if (OffsetDef->getOpcode() != TargetOpcode::G_CONSTANT)
1069         continue;
1070       RematOffset = true;
1071     }
1072 
1073     for (auto &BasePtrUse : MRI.use_nodbg_instructions(PtrAdd->getBaseReg())) {
1074       if (&BasePtrUse == PtrDef)
1075         continue;
1076 
1077       // If the user is a later load/store that can be post-indexed, then don't
1078       // combine this one.
1079       auto *BasePtrLdSt = dyn_cast<GLoadStore>(&BasePtrUse);
1080       if (BasePtrLdSt && BasePtrLdSt != &LdSt &&
1081           dominates(LdSt, *BasePtrLdSt) &&
1082           isIndexedLoadStoreLegal(*BasePtrLdSt))
1083         return false;
1084 
1085       // Now we're looking for the key G_PTR_ADD instruction, which contains
1086       // the offset add that we want to fold.
1087       if (auto *BasePtrUseDef = dyn_cast<GPtrAdd>(&BasePtrUse)) {
1088         Register PtrAddDefReg = BasePtrUseDef->getReg(0);
1089         for (auto &BaseUseUse : MRI.use_nodbg_instructions(PtrAddDefReg)) {
1090           // If the use is in a different block, then we may produce worse code
1091           // due to the extra register pressure.
1092           if (BaseUseUse.getParent() != LdSt.getParent())
1093             return false;
1094 
1095           if (auto *UseUseLdSt = dyn_cast<GLoadStore>(&BaseUseUse))
1096             if (canFoldInAddressingMode(UseUseLdSt, TLI, MRI))
1097               return false;
1098         }
1099         if (!dominates(LdSt, BasePtrUse))
1100           return false; // All use must be dominated by the load/store.
1101       }
1102     }
1103 
1104     Addr = PtrAdd->getReg(0);
1105     Base = PtrAdd->getBaseReg();
1106     return true;
1107   }
1108 
1109   return false;
1110 }
1111 
1112 bool CombinerHelper::findPreIndexCandidate(GLoadStore &LdSt, Register &Addr,
1113                                            Register &Base, Register &Offset) {
1114   auto &MF = *LdSt.getParent()->getParent();
1115   const auto &TLI = *MF.getSubtarget().getTargetLowering();
1116 
1117   Addr = LdSt.getPointerReg();
1118   if (!mi_match(Addr, MRI, m_GPtrAdd(m_Reg(Base), m_Reg(Offset))) ||
1119       MRI.hasOneNonDBGUse(Addr))
1120     return false;
1121 
1122   if (!ForceLegalIndexing &&
1123       !TLI.isIndexingLegal(LdSt, Base, Offset, /*IsPre*/ true, MRI))
1124     return false;
1125 
1126   if (!isIndexedLoadStoreLegal(LdSt))
1127     return false;
1128 
1129   MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
1130   if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
1131     return false;
1132 
1133   if (auto *St = dyn_cast<GStore>(&LdSt)) {
1134     // Would require a copy.
1135     if (Base == St->getValueReg())
1136       return false;
1137 
1138     // We're expecting one use of Addr in MI, but it could also be the
1139     // value stored, which isn't actually dominated by the instruction.
1140     if (St->getValueReg() == Addr)
1141       return false;
1142   }
1143 
1144   // Avoid increasing cross-block register pressure.
1145   for (auto &AddrUse : MRI.use_nodbg_instructions(Addr))
1146     if (AddrUse.getParent() != LdSt.getParent())
1147       return false;
1148 
1149   // FIXME: check whether all uses of the base pointer are constant PtrAdds.
1150   // That might allow us to end base's liveness here by adjusting the constant.
1151   bool RealUse = false;
1152   for (auto &AddrUse : MRI.use_nodbg_instructions(Addr)) {
1153     if (!dominates(LdSt, AddrUse))
1154       return false; // All use must be dominated by the load/store.
1155 
1156     // If Ptr may be folded in addressing mode of other use, then it's
1157     // not profitable to do this transformation.
1158     if (auto *UseLdSt = dyn_cast<GLoadStore>(&AddrUse)) {
1159       if (!canFoldInAddressingMode(UseLdSt, TLI, MRI))
1160         RealUse = true;
1161     } else {
1162       RealUse = true;
1163     }
1164   }
1165   return RealUse;
1166 }
1167 
1168 bool CombinerHelper::matchCombineExtractedVectorLoad(MachineInstr &MI,
1169                                                      BuildFnTy &MatchInfo) {
1170   assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT);
1171 
1172   // Check if there is a load that defines the vector being extracted from.
1173   auto *LoadMI = getOpcodeDef<GLoad>(MI.getOperand(1).getReg(), MRI);
1174   if (!LoadMI)
1175     return false;
1176 
1177   Register Vector = MI.getOperand(1).getReg();
1178   LLT VecEltTy = MRI.getType(Vector).getElementType();
1179 
1180   assert(MRI.getType(MI.getOperand(0).getReg()) == VecEltTy);
1181 
1182   // Checking whether we should reduce the load width.
1183   if (!MRI.hasOneNonDBGUse(Vector))
1184     return false;
1185 
1186   // Check if the defining load is simple.
1187   if (!LoadMI->isSimple())
1188     return false;
1189 
1190   // If the vector element type is not a multiple of a byte then we are unable
1191   // to correctly compute an address to load only the extracted element as a
1192   // scalar.
1193   if (!VecEltTy.isByteSized())
1194     return false;
1195 
1196   // Check if the new load that we are going to create is legal
1197   // if we are in the post-legalization phase.
1198   MachineMemOperand MMO = LoadMI->getMMO();
1199   Align Alignment = MMO.getAlign();
1200   MachinePointerInfo PtrInfo;
1201   uint64_t Offset;
1202 
1203   // Finding the appropriate PtrInfo if offset is a known constant.
1204   // This is required to create the memory operand for the narrowed load.
1205   // This machine memory operand object helps us infer about legality
1206   // before we proceed to combine the instruction.
1207   if (auto CVal = getIConstantVRegVal(Vector, MRI)) {
1208     int Elt = CVal->getZExtValue();
1209     // FIXME: should be (ABI size)*Elt.
1210     Offset = VecEltTy.getSizeInBits() * Elt / 8;
1211     PtrInfo = MMO.getPointerInfo().getWithOffset(Offset);
1212   } else {
1213     // Discard the pointer info except the address space because the memory
1214     // operand can't represent this new access since the offset is variable.
1215     Offset = VecEltTy.getSizeInBits() / 8;
1216     PtrInfo = MachinePointerInfo(MMO.getPointerInfo().getAddrSpace());
1217   }
1218 
1219   Alignment = commonAlignment(Alignment, Offset);
1220 
1221   Register VecPtr = LoadMI->getPointerReg();
1222   LLT PtrTy = MRI.getType(VecPtr);
1223 
1224   MachineFunction &MF = *MI.getMF();
1225   auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, VecEltTy);
1226 
1227   LegalityQuery::MemDesc MMDesc(*NewMMO);
1228 
1229   LegalityQuery Q = {TargetOpcode::G_LOAD, {VecEltTy, PtrTy}, {MMDesc}};
1230 
1231   if (!isLegalOrBeforeLegalizer(Q))
1232     return false;
1233 
1234   // Load must be allowed and fast on the target.
1235   LLVMContext &C = MF.getFunction().getContext();
1236   auto &DL = MF.getDataLayout();
1237   unsigned Fast = 0;
1238   if (!getTargetLowering().allowsMemoryAccess(C, DL, VecEltTy, *NewMMO,
1239                                               &Fast) ||
1240       !Fast)
1241     return false;
1242 
1243   Register Result = MI.getOperand(0).getReg();
1244   Register Index = MI.getOperand(2).getReg();
1245 
1246   MatchInfo = [=](MachineIRBuilder &B) {
1247     GISelObserverWrapper DummyObserver;
1248     LegalizerHelper Helper(B.getMF(), DummyObserver, B);
1249     //// Get pointer to the vector element.
1250     Register finalPtr = Helper.getVectorElementPointer(
1251         LoadMI->getPointerReg(), MRI.getType(LoadMI->getOperand(0).getReg()),
1252         Index);
1253     // New G_LOAD instruction.
1254     B.buildLoad(Result, finalPtr, PtrInfo, Alignment);
1255     // Remove original GLOAD instruction.
1256     LoadMI->eraseFromParent();
1257   };
1258 
1259   return true;
1260 }
1261 
1262 bool CombinerHelper::matchCombineIndexedLoadStore(
1263     MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
1264   auto &LdSt = cast<GLoadStore>(MI);
1265 
1266   if (LdSt.isAtomic())
1267     return false;
1268 
1269   MatchInfo.IsPre = findPreIndexCandidate(LdSt, MatchInfo.Addr, MatchInfo.Base,
1270                                           MatchInfo.Offset);
1271   if (!MatchInfo.IsPre &&
1272       !findPostIndexCandidate(LdSt, MatchInfo.Addr, MatchInfo.Base,
1273                               MatchInfo.Offset, MatchInfo.RematOffset))
1274     return false;
1275 
1276   return true;
1277 }
1278 
1279 void CombinerHelper::applyCombineIndexedLoadStore(
1280     MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
1281   MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr);
1282   Builder.setInstrAndDebugLoc(MI);
1283   unsigned Opcode = MI.getOpcode();
1284   bool IsStore = Opcode == TargetOpcode::G_STORE;
1285   unsigned NewOpcode = getIndexedOpc(Opcode);
1286 
1287   // If the offset constant didn't happen to dominate the load/store, we can
1288   // just clone it as needed.
1289   if (MatchInfo.RematOffset) {
1290     auto *OldCst = MRI.getVRegDef(MatchInfo.Offset);
1291     auto NewCst = Builder.buildConstant(MRI.getType(MatchInfo.Offset),
1292                                         *OldCst->getOperand(1).getCImm());
1293     MatchInfo.Offset = NewCst.getReg(0);
1294   }
1295 
1296   auto MIB = Builder.buildInstr(NewOpcode);
1297   if (IsStore) {
1298     MIB.addDef(MatchInfo.Addr);
1299     MIB.addUse(MI.getOperand(0).getReg());
1300   } else {
1301     MIB.addDef(MI.getOperand(0).getReg());
1302     MIB.addDef(MatchInfo.Addr);
1303   }
1304 
1305   MIB.addUse(MatchInfo.Base);
1306   MIB.addUse(MatchInfo.Offset);
1307   MIB.addImm(MatchInfo.IsPre);
1308   MIB->cloneMemRefs(*MI.getMF(), MI);
1309   MI.eraseFromParent();
1310   AddrDef.eraseFromParent();
1311 
1312   LLVM_DEBUG(dbgs() << "    Combinined to indexed operation");
1313 }
1314 
1315 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI,
1316                                         MachineInstr *&OtherMI) {
1317   unsigned Opcode = MI.getOpcode();
1318   bool IsDiv, IsSigned;
1319 
1320   switch (Opcode) {
1321   default:
1322     llvm_unreachable("Unexpected opcode!");
1323   case TargetOpcode::G_SDIV:
1324   case TargetOpcode::G_UDIV: {
1325     IsDiv = true;
1326     IsSigned = Opcode == TargetOpcode::G_SDIV;
1327     break;
1328   }
1329   case TargetOpcode::G_SREM:
1330   case TargetOpcode::G_UREM: {
1331     IsDiv = false;
1332     IsSigned = Opcode == TargetOpcode::G_SREM;
1333     break;
1334   }
1335   }
1336 
1337   Register Src1 = MI.getOperand(1).getReg();
1338   unsigned DivOpcode, RemOpcode, DivremOpcode;
1339   if (IsSigned) {
1340     DivOpcode = TargetOpcode::G_SDIV;
1341     RemOpcode = TargetOpcode::G_SREM;
1342     DivremOpcode = TargetOpcode::G_SDIVREM;
1343   } else {
1344     DivOpcode = TargetOpcode::G_UDIV;
1345     RemOpcode = TargetOpcode::G_UREM;
1346     DivremOpcode = TargetOpcode::G_UDIVREM;
1347   }
1348 
1349   if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}}))
1350     return false;
1351 
1352   // Combine:
1353   //   %div:_ = G_[SU]DIV %src1:_, %src2:_
1354   //   %rem:_ = G_[SU]REM %src1:_, %src2:_
1355   // into:
1356   //  %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
1357 
1358   // Combine:
1359   //   %rem:_ = G_[SU]REM %src1:_, %src2:_
1360   //   %div:_ = G_[SU]DIV %src1:_, %src2:_
1361   // into:
1362   //  %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
1363 
1364   for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) {
1365     if (MI.getParent() == UseMI.getParent() &&
1366         ((IsDiv && UseMI.getOpcode() == RemOpcode) ||
1367          (!IsDiv && UseMI.getOpcode() == DivOpcode)) &&
1368         matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2)) &&
1369         matchEqualDefs(MI.getOperand(1), UseMI.getOperand(1))) {
1370       OtherMI = &UseMI;
1371       return true;
1372     }
1373   }
1374 
1375   return false;
1376 }
1377 
1378 void CombinerHelper::applyCombineDivRem(MachineInstr &MI,
1379                                         MachineInstr *&OtherMI) {
1380   unsigned Opcode = MI.getOpcode();
1381   assert(OtherMI && "OtherMI shouldn't be empty.");
1382 
1383   Register DestDivReg, DestRemReg;
1384   if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) {
1385     DestDivReg = MI.getOperand(0).getReg();
1386     DestRemReg = OtherMI->getOperand(0).getReg();
1387   } else {
1388     DestDivReg = OtherMI->getOperand(0).getReg();
1389     DestRemReg = MI.getOperand(0).getReg();
1390   }
1391 
1392   bool IsSigned =
1393       Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM;
1394 
1395   // Check which instruction is first in the block so we don't break def-use
1396   // deps by "moving" the instruction incorrectly. Also keep track of which
1397   // instruction is first so we pick it's operands, avoiding use-before-def
1398   // bugs.
1399   MachineInstr *FirstInst;
1400   if (dominates(MI, *OtherMI)) {
1401     Builder.setInstrAndDebugLoc(MI);
1402     FirstInst = &MI;
1403   } else {
1404     Builder.setInstrAndDebugLoc(*OtherMI);
1405     FirstInst = OtherMI;
1406   }
1407 
1408   Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM
1409                               : TargetOpcode::G_UDIVREM,
1410                      {DestDivReg, DestRemReg},
1411                      { FirstInst->getOperand(1), FirstInst->getOperand(2) });
1412   MI.eraseFromParent();
1413   OtherMI->eraseFromParent();
1414 }
1415 
1416 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI,
1417                                                    MachineInstr *&BrCond) {
1418   assert(MI.getOpcode() == TargetOpcode::G_BR);
1419 
1420   // Try to match the following:
1421   // bb1:
1422   //   G_BRCOND %c1, %bb2
1423   //   G_BR %bb3
1424   // bb2:
1425   // ...
1426   // bb3:
1427 
1428   // The above pattern does not have a fall through to the successor bb2, always
1429   // resulting in a branch no matter which path is taken. Here we try to find
1430   // and replace that pattern with conditional branch to bb3 and otherwise
1431   // fallthrough to bb2. This is generally better for branch predictors.
1432 
1433   MachineBasicBlock *MBB = MI.getParent();
1434   MachineBasicBlock::iterator BrIt(MI);
1435   if (BrIt == MBB->begin())
1436     return false;
1437   assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator");
1438 
1439   BrCond = &*std::prev(BrIt);
1440   if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
1441     return false;
1442 
1443   // Check that the next block is the conditional branch target. Also make sure
1444   // that it isn't the same as the G_BR's target (otherwise, this will loop.)
1445   MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB();
1446   return BrCondTarget != MI.getOperand(0).getMBB() &&
1447          MBB->isLayoutSuccessor(BrCondTarget);
1448 }
1449 
1450 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI,
1451                                                    MachineInstr *&BrCond) {
1452   MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
1453   Builder.setInstrAndDebugLoc(*BrCond);
1454   LLT Ty = MRI.getType(BrCond->getOperand(0).getReg());
1455   // FIXME: Does int/fp matter for this? If so, we might need to restrict
1456   // this to i1 only since we might not know for sure what kind of
1457   // compare generated the condition value.
1458   auto True = Builder.buildConstant(
1459       Ty, getICmpTrueVal(getTargetLowering(), false, false));
1460   auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True);
1461 
1462   auto *FallthroughBB = BrCond->getOperand(1).getMBB();
1463   Observer.changingInstr(MI);
1464   MI.getOperand(0).setMBB(FallthroughBB);
1465   Observer.changedInstr(MI);
1466 
1467   // Change the conditional branch to use the inverted condition and
1468   // new target block.
1469   Observer.changingInstr(*BrCond);
1470   BrCond->getOperand(0).setReg(Xor.getReg(0));
1471   BrCond->getOperand(1).setMBB(BrTarget);
1472   Observer.changedInstr(*BrCond);
1473 }
1474 
1475 
1476 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) {
1477   MachineIRBuilder HelperBuilder(MI);
1478   GISelObserverWrapper DummyObserver;
1479   LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
1480   return Helper.lowerMemcpyInline(MI) ==
1481          LegalizerHelper::LegalizeResult::Legalized;
1482 }
1483 
1484 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
1485   MachineIRBuilder HelperBuilder(MI);
1486   GISelObserverWrapper DummyObserver;
1487   LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
1488   return Helper.lowerMemCpyFamily(MI, MaxLen) ==
1489          LegalizerHelper::LegalizeResult::Legalized;
1490 }
1491 
1492 static APFloat constantFoldFpUnary(const MachineInstr &MI,
1493                                    const MachineRegisterInfo &MRI,
1494                                    const APFloat &Val) {
1495   APFloat Result(Val);
1496   switch (MI.getOpcode()) {
1497   default:
1498     llvm_unreachable("Unexpected opcode!");
1499   case TargetOpcode::G_FNEG: {
1500     Result.changeSign();
1501     return Result;
1502   }
1503   case TargetOpcode::G_FABS: {
1504     Result.clearSign();
1505     return Result;
1506   }
1507   case TargetOpcode::G_FPTRUNC: {
1508     bool Unused;
1509     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1510     Result.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven,
1511                    &Unused);
1512     return Result;
1513   }
1514   case TargetOpcode::G_FSQRT: {
1515     bool Unused;
1516     Result.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1517                    &Unused);
1518     Result = APFloat(sqrt(Result.convertToDouble()));
1519     break;
1520   }
1521   case TargetOpcode::G_FLOG2: {
1522     bool Unused;
1523     Result.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1524                    &Unused);
1525     Result = APFloat(log2(Result.convertToDouble()));
1526     break;
1527   }
1528   }
1529   // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise,
1530   // `buildFConstant` will assert on size mismatch. Only `G_FSQRT`, and
1531   // `G_FLOG2` reach here.
1532   bool Unused;
1533   Result.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &Unused);
1534   return Result;
1535 }
1536 
1537 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI,
1538                                                      const ConstantFP *Cst) {
1539   Builder.setInstrAndDebugLoc(MI);
1540   APFloat Folded = constantFoldFpUnary(MI, MRI, Cst->getValue());
1541   const ConstantFP *NewCst = ConstantFP::get(Builder.getContext(), Folded);
1542   Builder.buildFConstant(MI.getOperand(0), *NewCst);
1543   MI.eraseFromParent();
1544 }
1545 
1546 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI,
1547                                            PtrAddChain &MatchInfo) {
1548   // We're trying to match the following pattern:
1549   //   %t1 = G_PTR_ADD %base, G_CONSTANT imm1
1550   //   %root = G_PTR_ADD %t1, G_CONSTANT imm2
1551   // -->
1552   //   %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2)
1553 
1554   if (MI.getOpcode() != TargetOpcode::G_PTR_ADD)
1555     return false;
1556 
1557   Register Add2 = MI.getOperand(1).getReg();
1558   Register Imm1 = MI.getOperand(2).getReg();
1559   auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
1560   if (!MaybeImmVal)
1561     return false;
1562 
1563   MachineInstr *Add2Def = MRI.getVRegDef(Add2);
1564   if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD)
1565     return false;
1566 
1567   Register Base = Add2Def->getOperand(1).getReg();
1568   Register Imm2 = Add2Def->getOperand(2).getReg();
1569   auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
1570   if (!MaybeImm2Val)
1571     return false;
1572 
1573   // Check if the new combined immediate forms an illegal addressing mode.
1574   // Do not combine if it was legal before but would get illegal.
1575   // To do so, we need to find a load/store user of the pointer to get
1576   // the access type.
1577   Type *AccessTy = nullptr;
1578   auto &MF = *MI.getMF();
1579   for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) {
1580     if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) {
1581       AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)),
1582                                MF.getFunction().getContext());
1583       break;
1584     }
1585   }
1586   TargetLoweringBase::AddrMode AMNew;
1587   APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value;
1588   AMNew.BaseOffs = CombinedImm.getSExtValue();
1589   if (AccessTy) {
1590     AMNew.HasBaseReg = true;
1591     TargetLoweringBase::AddrMode AMOld;
1592     AMOld.BaseOffs = MaybeImmVal->Value.getSExtValue();
1593     AMOld.HasBaseReg = true;
1594     unsigned AS = MRI.getType(Add2).getAddressSpace();
1595     const auto &TLI = *MF.getSubtarget().getTargetLowering();
1596     if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) &&
1597         !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS))
1598       return false;
1599   }
1600 
1601   // Pass the combined immediate to the apply function.
1602   MatchInfo.Imm = AMNew.BaseOffs;
1603   MatchInfo.Base = Base;
1604   MatchInfo.Bank = getRegBank(Imm2);
1605   return true;
1606 }
1607 
1608 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI,
1609                                            PtrAddChain &MatchInfo) {
1610   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
1611   MachineIRBuilder MIB(MI);
1612   LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg());
1613   auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm);
1614   setRegBank(NewOffset.getReg(0), MatchInfo.Bank);
1615   Observer.changingInstr(MI);
1616   MI.getOperand(1).setReg(MatchInfo.Base);
1617   MI.getOperand(2).setReg(NewOffset.getReg(0));
1618   Observer.changedInstr(MI);
1619 }
1620 
1621 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI,
1622                                           RegisterImmPair &MatchInfo) {
1623   // We're trying to match the following pattern with any of
1624   // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions:
1625   //   %t1 = SHIFT %base, G_CONSTANT imm1
1626   //   %root = SHIFT %t1, G_CONSTANT imm2
1627   // -->
1628   //   %root = SHIFT %base, G_CONSTANT (imm1 + imm2)
1629 
1630   unsigned Opcode = MI.getOpcode();
1631   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1632           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1633           Opcode == TargetOpcode::G_USHLSAT) &&
1634          "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1635 
1636   Register Shl2 = MI.getOperand(1).getReg();
1637   Register Imm1 = MI.getOperand(2).getReg();
1638   auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
1639   if (!MaybeImmVal)
1640     return false;
1641 
1642   MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2);
1643   if (Shl2Def->getOpcode() != Opcode)
1644     return false;
1645 
1646   Register Base = Shl2Def->getOperand(1).getReg();
1647   Register Imm2 = Shl2Def->getOperand(2).getReg();
1648   auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
1649   if (!MaybeImm2Val)
1650     return false;
1651 
1652   // Pass the combined immediate to the apply function.
1653   MatchInfo.Imm =
1654       (MaybeImmVal->Value.getZExtValue() + MaybeImm2Val->Value).getZExtValue();
1655   MatchInfo.Reg = Base;
1656 
1657   // There is no simple replacement for a saturating unsigned left shift that
1658   // exceeds the scalar size.
1659   if (Opcode == TargetOpcode::G_USHLSAT &&
1660       MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits())
1661     return false;
1662 
1663   return true;
1664 }
1665 
1666 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI,
1667                                           RegisterImmPair &MatchInfo) {
1668   unsigned Opcode = MI.getOpcode();
1669   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1670           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1671           Opcode == TargetOpcode::G_USHLSAT) &&
1672          "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1673 
1674   Builder.setInstrAndDebugLoc(MI);
1675   LLT Ty = MRI.getType(MI.getOperand(1).getReg());
1676   unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits();
1677   auto Imm = MatchInfo.Imm;
1678 
1679   if (Imm >= ScalarSizeInBits) {
1680     // Any logical shift that exceeds scalar size will produce zero.
1681     if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) {
1682       Builder.buildConstant(MI.getOperand(0), 0);
1683       MI.eraseFromParent();
1684       return;
1685     }
1686     // Arithmetic shift and saturating signed left shift have no effect beyond
1687     // scalar size.
1688     Imm = ScalarSizeInBits - 1;
1689   }
1690 
1691   LLT ImmTy = MRI.getType(MI.getOperand(2).getReg());
1692   Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0);
1693   Observer.changingInstr(MI);
1694   MI.getOperand(1).setReg(MatchInfo.Reg);
1695   MI.getOperand(2).setReg(NewImm);
1696   Observer.changedInstr(MI);
1697 }
1698 
1699 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI,
1700                                               ShiftOfShiftedLogic &MatchInfo) {
1701   // We're trying to match the following pattern with any of
1702   // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination
1703   // with any of G_AND/G_OR/G_XOR logic instructions.
1704   //   %t1 = SHIFT %X, G_CONSTANT C0
1705   //   %t2 = LOGIC %t1, %Y
1706   //   %root = SHIFT %t2, G_CONSTANT C1
1707   // -->
1708   //   %t3 = SHIFT %X, G_CONSTANT (C0+C1)
1709   //   %t4 = SHIFT %Y, G_CONSTANT C1
1710   //   %root = LOGIC %t3, %t4
1711   unsigned ShiftOpcode = MI.getOpcode();
1712   assert((ShiftOpcode == TargetOpcode::G_SHL ||
1713           ShiftOpcode == TargetOpcode::G_ASHR ||
1714           ShiftOpcode == TargetOpcode::G_LSHR ||
1715           ShiftOpcode == TargetOpcode::G_USHLSAT ||
1716           ShiftOpcode == TargetOpcode::G_SSHLSAT) &&
1717          "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1718 
1719   // Match a one-use bitwise logic op.
1720   Register LogicDest = MI.getOperand(1).getReg();
1721   if (!MRI.hasOneNonDBGUse(LogicDest))
1722     return false;
1723 
1724   MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest);
1725   unsigned LogicOpcode = LogicMI->getOpcode();
1726   if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR &&
1727       LogicOpcode != TargetOpcode::G_XOR)
1728     return false;
1729 
1730   // Find a matching one-use shift by constant.
1731   const Register C1 = MI.getOperand(2).getReg();
1732   auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI);
1733   if (!MaybeImmVal || MaybeImmVal->Value == 0)
1734     return false;
1735 
1736   const uint64_t C1Val = MaybeImmVal->Value.getZExtValue();
1737 
1738   auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) {
1739     // Shift should match previous one and should be a one-use.
1740     if (MI->getOpcode() != ShiftOpcode ||
1741         !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
1742       return false;
1743 
1744     // Must be a constant.
1745     auto MaybeImmVal =
1746         getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
1747     if (!MaybeImmVal)
1748       return false;
1749 
1750     ShiftVal = MaybeImmVal->Value.getSExtValue();
1751     return true;
1752   };
1753 
1754   // Logic ops are commutative, so check each operand for a match.
1755   Register LogicMIReg1 = LogicMI->getOperand(1).getReg();
1756   MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1);
1757   Register LogicMIReg2 = LogicMI->getOperand(2).getReg();
1758   MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2);
1759   uint64_t C0Val;
1760 
1761   if (matchFirstShift(LogicMIOp1, C0Val)) {
1762     MatchInfo.LogicNonShiftReg = LogicMIReg2;
1763     MatchInfo.Shift2 = LogicMIOp1;
1764   } else if (matchFirstShift(LogicMIOp2, C0Val)) {
1765     MatchInfo.LogicNonShiftReg = LogicMIReg1;
1766     MatchInfo.Shift2 = LogicMIOp2;
1767   } else
1768     return false;
1769 
1770   MatchInfo.ValSum = C0Val + C1Val;
1771 
1772   // The fold is not valid if the sum of the shift values exceeds bitwidth.
1773   if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits())
1774     return false;
1775 
1776   MatchInfo.Logic = LogicMI;
1777   return true;
1778 }
1779 
1780 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI,
1781                                               ShiftOfShiftedLogic &MatchInfo) {
1782   unsigned Opcode = MI.getOpcode();
1783   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1784           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT ||
1785           Opcode == TargetOpcode::G_SSHLSAT) &&
1786          "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1787 
1788   LLT ShlType = MRI.getType(MI.getOperand(2).getReg());
1789   LLT DestType = MRI.getType(MI.getOperand(0).getReg());
1790   Builder.setInstrAndDebugLoc(MI);
1791 
1792   Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0);
1793 
1794   Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg();
1795   Register Shift1 =
1796       Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0);
1797 
1798   // If LogicNonShiftReg is the same to Shift1Base, and shift1 const is the same
1799   // to MatchInfo.Shift2 const, CSEMIRBuilder will reuse the old shift1 when
1800   // build shift2. So, if we erase MatchInfo.Shift2 at the end, actually we
1801   // remove old shift1. And it will cause crash later. So erase it earlier to
1802   // avoid the crash.
1803   MatchInfo.Shift2->eraseFromParent();
1804 
1805   Register Shift2Const = MI.getOperand(2).getReg();
1806   Register Shift2 = Builder
1807                         .buildInstr(Opcode, {DestType},
1808                                     {MatchInfo.LogicNonShiftReg, Shift2Const})
1809                         .getReg(0);
1810 
1811   Register Dest = MI.getOperand(0).getReg();
1812   Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2});
1813 
1814   // This was one use so it's safe to remove it.
1815   MatchInfo.Logic->eraseFromParent();
1816 
1817   MI.eraseFromParent();
1818 }
1819 
1820 bool CombinerHelper::matchCommuteShift(MachineInstr &MI, BuildFnTy &MatchInfo) {
1821   assert(MI.getOpcode() == TargetOpcode::G_SHL && "Expected G_SHL");
1822   // Combine (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
1823   // Combine (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
1824   auto &Shl = cast<GenericMachineInstr>(MI);
1825   Register DstReg = Shl.getReg(0);
1826   Register SrcReg = Shl.getReg(1);
1827   Register ShiftReg = Shl.getReg(2);
1828   Register X, C1;
1829 
1830   if (!getTargetLowering().isDesirableToCommuteWithShift(MI, !isPreLegalize()))
1831     return false;
1832 
1833   if (!mi_match(SrcReg, MRI,
1834                 m_OneNonDBGUse(m_any_of(m_GAdd(m_Reg(X), m_Reg(C1)),
1835                                         m_GOr(m_Reg(X), m_Reg(C1))))))
1836     return false;
1837 
1838   APInt C1Val, C2Val;
1839   if (!mi_match(C1, MRI, m_ICstOrSplat(C1Val)) ||
1840       !mi_match(ShiftReg, MRI, m_ICstOrSplat(C2Val)))
1841     return false;
1842 
1843   auto *SrcDef = MRI.getVRegDef(SrcReg);
1844   assert((SrcDef->getOpcode() == TargetOpcode::G_ADD ||
1845           SrcDef->getOpcode() == TargetOpcode::G_OR) && "Unexpected op");
1846   LLT SrcTy = MRI.getType(SrcReg);
1847   MatchInfo = [=](MachineIRBuilder &B) {
1848     auto S1 = B.buildShl(SrcTy, X, ShiftReg);
1849     auto S2 = B.buildShl(SrcTy, C1, ShiftReg);
1850     B.buildInstr(SrcDef->getOpcode(), {DstReg}, {S1, S2});
1851   };
1852   return true;
1853 }
1854 
1855 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI,
1856                                           unsigned &ShiftVal) {
1857   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
1858   auto MaybeImmVal =
1859       getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
1860   if (!MaybeImmVal)
1861     return false;
1862 
1863   ShiftVal = MaybeImmVal->Value.exactLogBase2();
1864   return (static_cast<int32_t>(ShiftVal) != -1);
1865 }
1866 
1867 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI,
1868                                           unsigned &ShiftVal) {
1869   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
1870   MachineIRBuilder MIB(MI);
1871   LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg());
1872   auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal);
1873   Observer.changingInstr(MI);
1874   MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL));
1875   MI.getOperand(2).setReg(ShiftCst.getReg(0));
1876   Observer.changedInstr(MI);
1877 }
1878 
1879 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source
1880 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI,
1881                                              RegisterImmPair &MatchData) {
1882   assert(MI.getOpcode() == TargetOpcode::G_SHL && KB);
1883   if (!getTargetLowering().isDesirableToPullExtFromShl(MI))
1884     return false;
1885 
1886   Register LHS = MI.getOperand(1).getReg();
1887 
1888   Register ExtSrc;
1889   if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) &&
1890       !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) &&
1891       !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc))))
1892     return false;
1893 
1894   Register RHS = MI.getOperand(2).getReg();
1895   MachineInstr *MIShiftAmt = MRI.getVRegDef(RHS);
1896   auto MaybeShiftAmtVal = isConstantOrConstantSplatVector(*MIShiftAmt, MRI);
1897   if (!MaybeShiftAmtVal)
1898     return false;
1899 
1900   if (LI) {
1901     LLT SrcTy = MRI.getType(ExtSrc);
1902 
1903     // We only really care about the legality with the shifted value. We can
1904     // pick any type the constant shift amount, so ask the target what to
1905     // use. Otherwise we would have to guess and hope it is reported as legal.
1906     LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy);
1907     if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}}))
1908       return false;
1909   }
1910 
1911   int64_t ShiftAmt = MaybeShiftAmtVal->getSExtValue();
1912   MatchData.Reg = ExtSrc;
1913   MatchData.Imm = ShiftAmt;
1914 
1915   unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countl_one();
1916   unsigned SrcTySize = MRI.getType(ExtSrc).getScalarSizeInBits();
1917   return MinLeadingZeros >= ShiftAmt && ShiftAmt < SrcTySize;
1918 }
1919 
1920 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI,
1921                                              const RegisterImmPair &MatchData) {
1922   Register ExtSrcReg = MatchData.Reg;
1923   int64_t ShiftAmtVal = MatchData.Imm;
1924 
1925   LLT ExtSrcTy = MRI.getType(ExtSrcReg);
1926   Builder.setInstrAndDebugLoc(MI);
1927   auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal);
1928   auto NarrowShift =
1929       Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags());
1930   Builder.buildZExt(MI.getOperand(0), NarrowShift);
1931   MI.eraseFromParent();
1932 }
1933 
1934 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI,
1935                                               Register &MatchInfo) {
1936   GMerge &Merge = cast<GMerge>(MI);
1937   SmallVector<Register, 16> MergedValues;
1938   for (unsigned I = 0; I < Merge.getNumSources(); ++I)
1939     MergedValues.emplace_back(Merge.getSourceReg(I));
1940 
1941   auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI);
1942   if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources())
1943     return false;
1944 
1945   for (unsigned I = 0; I < MergedValues.size(); ++I)
1946     if (MergedValues[I] != Unmerge->getReg(I))
1947       return false;
1948 
1949   MatchInfo = Unmerge->getSourceReg();
1950   return true;
1951 }
1952 
1953 static Register peekThroughBitcast(Register Reg,
1954                                    const MachineRegisterInfo &MRI) {
1955   while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg))))
1956     ;
1957 
1958   return Reg;
1959 }
1960 
1961 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues(
1962     MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
1963   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1964          "Expected an unmerge");
1965   auto &Unmerge = cast<GUnmerge>(MI);
1966   Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI);
1967 
1968   auto *SrcInstr = getOpcodeDef<GMergeLikeInstr>(SrcReg, MRI);
1969   if (!SrcInstr)
1970     return false;
1971 
1972   // Check the source type of the merge.
1973   LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0));
1974   LLT Dst0Ty = MRI.getType(Unmerge.getReg(0));
1975   bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits();
1976   if (SrcMergeTy != Dst0Ty && !SameSize)
1977     return false;
1978   // They are the same now (modulo a bitcast).
1979   // We can collect all the src registers.
1980   for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx)
1981     Operands.push_back(SrcInstr->getSourceReg(Idx));
1982   return true;
1983 }
1984 
1985 void CombinerHelper::applyCombineUnmergeMergeToPlainValues(
1986     MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
1987   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1988          "Expected an unmerge");
1989   assert((MI.getNumOperands() - 1 == Operands.size()) &&
1990          "Not enough operands to replace all defs");
1991   unsigned NumElems = MI.getNumOperands() - 1;
1992 
1993   LLT SrcTy = MRI.getType(Operands[0]);
1994   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1995   bool CanReuseInputDirectly = DstTy == SrcTy;
1996   Builder.setInstrAndDebugLoc(MI);
1997   for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
1998     Register DstReg = MI.getOperand(Idx).getReg();
1999     Register SrcReg = Operands[Idx];
2000 
2001     // This combine may run after RegBankSelect, so we need to be aware of
2002     // register banks.
2003     const auto &DstCB = MRI.getRegClassOrRegBank(DstReg);
2004     if (!DstCB.isNull() && DstCB != MRI.getRegClassOrRegBank(SrcReg)) {
2005       SrcReg = Builder.buildCopy(MRI.getType(SrcReg), SrcReg).getReg(0);
2006       MRI.setRegClassOrRegBank(SrcReg, DstCB);
2007     }
2008 
2009     if (CanReuseInputDirectly)
2010       replaceRegWith(MRI, DstReg, SrcReg);
2011     else
2012       Builder.buildCast(DstReg, SrcReg);
2013   }
2014   MI.eraseFromParent();
2015 }
2016 
2017 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI,
2018                                                  SmallVectorImpl<APInt> &Csts) {
2019   unsigned SrcIdx = MI.getNumOperands() - 1;
2020   Register SrcReg = MI.getOperand(SrcIdx).getReg();
2021   MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
2022   if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT &&
2023       SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT)
2024     return false;
2025   // Break down the big constant in smaller ones.
2026   const MachineOperand &CstVal = SrcInstr->getOperand(1);
2027   APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT
2028                   ? CstVal.getCImm()->getValue()
2029                   : CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
2030 
2031   LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
2032   unsigned ShiftAmt = Dst0Ty.getSizeInBits();
2033   // Unmerge a constant.
2034   for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) {
2035     Csts.emplace_back(Val.trunc(ShiftAmt));
2036     Val = Val.lshr(ShiftAmt);
2037   }
2038 
2039   return true;
2040 }
2041 
2042 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI,
2043                                                  SmallVectorImpl<APInt> &Csts) {
2044   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2045          "Expected an unmerge");
2046   assert((MI.getNumOperands() - 1 == Csts.size()) &&
2047          "Not enough operands to replace all defs");
2048   unsigned NumElems = MI.getNumOperands() - 1;
2049   Builder.setInstrAndDebugLoc(MI);
2050   for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
2051     Register DstReg = MI.getOperand(Idx).getReg();
2052     Builder.buildConstant(DstReg, Csts[Idx]);
2053   }
2054 
2055   MI.eraseFromParent();
2056 }
2057 
2058 bool CombinerHelper::matchCombineUnmergeUndef(
2059     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
2060   unsigned SrcIdx = MI.getNumOperands() - 1;
2061   Register SrcReg = MI.getOperand(SrcIdx).getReg();
2062   MatchInfo = [&MI](MachineIRBuilder &B) {
2063     unsigned NumElems = MI.getNumOperands() - 1;
2064     for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
2065       Register DstReg = MI.getOperand(Idx).getReg();
2066       B.buildUndef(DstReg);
2067     }
2068   };
2069   return isa<GImplicitDef>(MRI.getVRegDef(SrcReg));
2070 }
2071 
2072 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
2073   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2074          "Expected an unmerge");
2075   // Check that all the lanes are dead except the first one.
2076   for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
2077     if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg()))
2078       return false;
2079   }
2080   return true;
2081 }
2082 
2083 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
2084   Builder.setInstrAndDebugLoc(MI);
2085   Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
2086   // Truncating a vector is going to truncate every single lane,
2087   // whereas we want the full lowbits.
2088   // Do the operation on a scalar instead.
2089   LLT SrcTy = MRI.getType(SrcReg);
2090   if (SrcTy.isVector())
2091     SrcReg =
2092         Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0);
2093 
2094   Register Dst0Reg = MI.getOperand(0).getReg();
2095   LLT Dst0Ty = MRI.getType(Dst0Reg);
2096   if (Dst0Ty.isVector()) {
2097     auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg);
2098     Builder.buildCast(Dst0Reg, MIB);
2099   } else
2100     Builder.buildTrunc(Dst0Reg, SrcReg);
2101   MI.eraseFromParent();
2102 }
2103 
2104 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) {
2105   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2106          "Expected an unmerge");
2107   Register Dst0Reg = MI.getOperand(0).getReg();
2108   LLT Dst0Ty = MRI.getType(Dst0Reg);
2109   // G_ZEXT on vector applies to each lane, so it will
2110   // affect all destinations. Therefore we won't be able
2111   // to simplify the unmerge to just the first definition.
2112   if (Dst0Ty.isVector())
2113     return false;
2114   Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
2115   LLT SrcTy = MRI.getType(SrcReg);
2116   if (SrcTy.isVector())
2117     return false;
2118 
2119   Register ZExtSrcReg;
2120   if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg))))
2121     return false;
2122 
2123   // Finally we can replace the first definition with
2124   // a zext of the source if the definition is big enough to hold
2125   // all of ZExtSrc bits.
2126   LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
2127   return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits();
2128 }
2129 
2130 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) {
2131   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2132          "Expected an unmerge");
2133 
2134   Register Dst0Reg = MI.getOperand(0).getReg();
2135 
2136   MachineInstr *ZExtInstr =
2137       MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg());
2138   assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT &&
2139          "Expecting a G_ZEXT");
2140 
2141   Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg();
2142   LLT Dst0Ty = MRI.getType(Dst0Reg);
2143   LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
2144 
2145   Builder.setInstrAndDebugLoc(MI);
2146 
2147   if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) {
2148     Builder.buildZExt(Dst0Reg, ZExtSrcReg);
2149   } else {
2150     assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() &&
2151            "ZExt src doesn't fit in destination");
2152     replaceRegWith(MRI, Dst0Reg, ZExtSrcReg);
2153   }
2154 
2155   Register ZeroReg;
2156   for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
2157     if (!ZeroReg)
2158       ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0);
2159     replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg);
2160   }
2161   MI.eraseFromParent();
2162 }
2163 
2164 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI,
2165                                                 unsigned TargetShiftSize,
2166                                                 unsigned &ShiftVal) {
2167   assert((MI.getOpcode() == TargetOpcode::G_SHL ||
2168           MI.getOpcode() == TargetOpcode::G_LSHR ||
2169           MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift");
2170 
2171   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2172   if (Ty.isVector()) // TODO:
2173     return false;
2174 
2175   // Don't narrow further than the requested size.
2176   unsigned Size = Ty.getSizeInBits();
2177   if (Size <= TargetShiftSize)
2178     return false;
2179 
2180   auto MaybeImmVal =
2181       getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
2182   if (!MaybeImmVal)
2183     return false;
2184 
2185   ShiftVal = MaybeImmVal->Value.getSExtValue();
2186   return ShiftVal >= Size / 2 && ShiftVal < Size;
2187 }
2188 
2189 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI,
2190                                                 const unsigned &ShiftVal) {
2191   Register DstReg = MI.getOperand(0).getReg();
2192   Register SrcReg = MI.getOperand(1).getReg();
2193   LLT Ty = MRI.getType(SrcReg);
2194   unsigned Size = Ty.getSizeInBits();
2195   unsigned HalfSize = Size / 2;
2196   assert(ShiftVal >= HalfSize);
2197 
2198   LLT HalfTy = LLT::scalar(HalfSize);
2199 
2200   Builder.setInstr(MI);
2201   auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg);
2202   unsigned NarrowShiftAmt = ShiftVal - HalfSize;
2203 
2204   if (MI.getOpcode() == TargetOpcode::G_LSHR) {
2205     Register Narrowed = Unmerge.getReg(1);
2206 
2207     //  dst = G_LSHR s64:x, C for C >= 32
2208     // =>
2209     //   lo, hi = G_UNMERGE_VALUES x
2210     //   dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0
2211 
2212     if (NarrowShiftAmt != 0) {
2213       Narrowed = Builder.buildLShr(HalfTy, Narrowed,
2214         Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
2215     }
2216 
2217     auto Zero = Builder.buildConstant(HalfTy, 0);
2218     Builder.buildMergeLikeInstr(DstReg, {Narrowed, Zero});
2219   } else if (MI.getOpcode() == TargetOpcode::G_SHL) {
2220     Register Narrowed = Unmerge.getReg(0);
2221     //  dst = G_SHL s64:x, C for C >= 32
2222     // =>
2223     //   lo, hi = G_UNMERGE_VALUES x
2224     //   dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32)
2225     if (NarrowShiftAmt != 0) {
2226       Narrowed = Builder.buildShl(HalfTy, Narrowed,
2227         Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
2228     }
2229 
2230     auto Zero = Builder.buildConstant(HalfTy, 0);
2231     Builder.buildMergeLikeInstr(DstReg, {Zero, Narrowed});
2232   } else {
2233     assert(MI.getOpcode() == TargetOpcode::G_ASHR);
2234     auto Hi = Builder.buildAShr(
2235       HalfTy, Unmerge.getReg(1),
2236       Builder.buildConstant(HalfTy, HalfSize - 1));
2237 
2238     if (ShiftVal == HalfSize) {
2239       // (G_ASHR i64:x, 32) ->
2240       //   G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31)
2241       Builder.buildMergeLikeInstr(DstReg, {Unmerge.getReg(1), Hi});
2242     } else if (ShiftVal == Size - 1) {
2243       // Don't need a second shift.
2244       // (G_ASHR i64:x, 63) ->
2245       //   %narrowed = (G_ASHR hi_32(x), 31)
2246       //   G_MERGE_VALUES %narrowed, %narrowed
2247       Builder.buildMergeLikeInstr(DstReg, {Hi, Hi});
2248     } else {
2249       auto Lo = Builder.buildAShr(
2250         HalfTy, Unmerge.getReg(1),
2251         Builder.buildConstant(HalfTy, ShiftVal - HalfSize));
2252 
2253       // (G_ASHR i64:x, C) ->, for C >= 32
2254       //   G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31)
2255       Builder.buildMergeLikeInstr(DstReg, {Lo, Hi});
2256     }
2257   }
2258 
2259   MI.eraseFromParent();
2260 }
2261 
2262 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI,
2263                                               unsigned TargetShiftAmount) {
2264   unsigned ShiftAmt;
2265   if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) {
2266     applyCombineShiftToUnmerge(MI, ShiftAmt);
2267     return true;
2268   }
2269 
2270   return false;
2271 }
2272 
2273 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2274   assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
2275   Register DstReg = MI.getOperand(0).getReg();
2276   LLT DstTy = MRI.getType(DstReg);
2277   Register SrcReg = MI.getOperand(1).getReg();
2278   return mi_match(SrcReg, MRI,
2279                   m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg))));
2280 }
2281 
2282 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2283   assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
2284   Register DstReg = MI.getOperand(0).getReg();
2285   Builder.setInstr(MI);
2286   Builder.buildCopy(DstReg, Reg);
2287   MI.eraseFromParent();
2288 }
2289 
2290 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2291   assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
2292   Register DstReg = MI.getOperand(0).getReg();
2293   Builder.setInstr(MI);
2294   Builder.buildZExtOrTrunc(DstReg, Reg);
2295   MI.eraseFromParent();
2296 }
2297 
2298 bool CombinerHelper::matchCombineAddP2IToPtrAdd(
2299     MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2300   assert(MI.getOpcode() == TargetOpcode::G_ADD);
2301   Register LHS = MI.getOperand(1).getReg();
2302   Register RHS = MI.getOperand(2).getReg();
2303   LLT IntTy = MRI.getType(LHS);
2304 
2305   // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the
2306   // instruction.
2307   PtrReg.second = false;
2308   for (Register SrcReg : {LHS, RHS}) {
2309     if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) {
2310       // Don't handle cases where the integer is implicitly converted to the
2311       // pointer width.
2312       LLT PtrTy = MRI.getType(PtrReg.first);
2313       if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits())
2314         return true;
2315     }
2316 
2317     PtrReg.second = true;
2318   }
2319 
2320   return false;
2321 }
2322 
2323 void CombinerHelper::applyCombineAddP2IToPtrAdd(
2324     MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2325   Register Dst = MI.getOperand(0).getReg();
2326   Register LHS = MI.getOperand(1).getReg();
2327   Register RHS = MI.getOperand(2).getReg();
2328 
2329   const bool DoCommute = PtrReg.second;
2330   if (DoCommute)
2331     std::swap(LHS, RHS);
2332   LHS = PtrReg.first;
2333 
2334   LLT PtrTy = MRI.getType(LHS);
2335 
2336   Builder.setInstrAndDebugLoc(MI);
2337   auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS);
2338   Builder.buildPtrToInt(Dst, PtrAdd);
2339   MI.eraseFromParent();
2340 }
2341 
2342 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI,
2343                                                   APInt &NewCst) {
2344   auto &PtrAdd = cast<GPtrAdd>(MI);
2345   Register LHS = PtrAdd.getBaseReg();
2346   Register RHS = PtrAdd.getOffsetReg();
2347   MachineRegisterInfo &MRI = Builder.getMF().getRegInfo();
2348 
2349   if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) {
2350     APInt Cst;
2351     if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) {
2352       auto DstTy = MRI.getType(PtrAdd.getReg(0));
2353       // G_INTTOPTR uses zero-extension
2354       NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits());
2355       NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits());
2356       return true;
2357     }
2358   }
2359 
2360   return false;
2361 }
2362 
2363 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI,
2364                                                   APInt &NewCst) {
2365   auto &PtrAdd = cast<GPtrAdd>(MI);
2366   Register Dst = PtrAdd.getReg(0);
2367 
2368   Builder.setInstrAndDebugLoc(MI);
2369   Builder.buildConstant(Dst, NewCst);
2370   PtrAdd.eraseFromParent();
2371 }
2372 
2373 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
2374   assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT");
2375   Register DstReg = MI.getOperand(0).getReg();
2376   Register SrcReg = MI.getOperand(1).getReg();
2377   Register OriginalSrcReg = getSrcRegIgnoringCopies(SrcReg, MRI);
2378   if (OriginalSrcReg.isValid())
2379     SrcReg = OriginalSrcReg;
2380   LLT DstTy = MRI.getType(DstReg);
2381   return mi_match(SrcReg, MRI,
2382                   m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))));
2383 }
2384 
2385 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) {
2386   assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT");
2387   Register DstReg = MI.getOperand(0).getReg();
2388   Register SrcReg = MI.getOperand(1).getReg();
2389   LLT DstTy = MRI.getType(DstReg);
2390   if (mi_match(SrcReg, MRI,
2391                m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) {
2392     unsigned DstSize = DstTy.getScalarSizeInBits();
2393     unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits();
2394     return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize;
2395   }
2396   return false;
2397 }
2398 
2399 bool CombinerHelper::matchCombineExtOfExt(
2400     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2401   assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2402           MI.getOpcode() == TargetOpcode::G_SEXT ||
2403           MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2404          "Expected a G_[ASZ]EXT");
2405   Register SrcReg = MI.getOperand(1).getReg();
2406   Register OriginalSrcReg = getSrcRegIgnoringCopies(SrcReg, MRI);
2407   if (OriginalSrcReg.isValid())
2408     SrcReg = OriginalSrcReg;
2409   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2410   // Match exts with the same opcode, anyext([sz]ext) and sext(zext).
2411   unsigned Opc = MI.getOpcode();
2412   unsigned SrcOpc = SrcMI->getOpcode();
2413   if (Opc == SrcOpc ||
2414       (Opc == TargetOpcode::G_ANYEXT &&
2415        (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) ||
2416       (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) {
2417     MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc);
2418     return true;
2419   }
2420   return false;
2421 }
2422 
2423 void CombinerHelper::applyCombineExtOfExt(
2424     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2425   assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2426           MI.getOpcode() == TargetOpcode::G_SEXT ||
2427           MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2428          "Expected a G_[ASZ]EXT");
2429 
2430   Register Reg = std::get<0>(MatchInfo);
2431   unsigned SrcExtOp = std::get<1>(MatchInfo);
2432 
2433   // Combine exts with the same opcode.
2434   if (MI.getOpcode() == SrcExtOp) {
2435     Observer.changingInstr(MI);
2436     MI.getOperand(1).setReg(Reg);
2437     Observer.changedInstr(MI);
2438     return;
2439   }
2440 
2441   // Combine:
2442   // - anyext([sz]ext x) to [sz]ext x
2443   // - sext(zext x) to zext x
2444   if (MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2445       (MI.getOpcode() == TargetOpcode::G_SEXT &&
2446        SrcExtOp == TargetOpcode::G_ZEXT)) {
2447     Register DstReg = MI.getOperand(0).getReg();
2448     Builder.setInstrAndDebugLoc(MI);
2449     Builder.buildInstr(SrcExtOp, {DstReg}, {Reg});
2450     MI.eraseFromParent();
2451   }
2452 }
2453 
2454 bool CombinerHelper::matchCombineTruncOfExt(
2455     MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2456   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2457   Register SrcReg = MI.getOperand(1).getReg();
2458   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2459   unsigned SrcOpc = SrcMI->getOpcode();
2460   if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT ||
2461       SrcOpc == TargetOpcode::G_ZEXT) {
2462     MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc);
2463     return true;
2464   }
2465   return false;
2466 }
2467 
2468 void CombinerHelper::applyCombineTruncOfExt(
2469     MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2470   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2471   Register SrcReg = MatchInfo.first;
2472   unsigned SrcExtOp = MatchInfo.second;
2473   Register DstReg = MI.getOperand(0).getReg();
2474   LLT SrcTy = MRI.getType(SrcReg);
2475   LLT DstTy = MRI.getType(DstReg);
2476   if (SrcTy == DstTy) {
2477     MI.eraseFromParent();
2478     replaceRegWith(MRI, DstReg, SrcReg);
2479     return;
2480   }
2481   Builder.setInstrAndDebugLoc(MI);
2482   if (SrcTy.getSizeInBits() < DstTy.getSizeInBits())
2483     Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg});
2484   else
2485     Builder.buildTrunc(DstReg, SrcReg);
2486   MI.eraseFromParent();
2487 }
2488 
2489 static LLT getMidVTForTruncRightShiftCombine(LLT ShiftTy, LLT TruncTy) {
2490   const unsigned ShiftSize = ShiftTy.getScalarSizeInBits();
2491   const unsigned TruncSize = TruncTy.getScalarSizeInBits();
2492 
2493   // ShiftTy > 32 > TruncTy -> 32
2494   if (ShiftSize > 32 && TruncSize < 32)
2495     return ShiftTy.changeElementSize(32);
2496 
2497   // TODO: We could also reduce to 16 bits, but that's more target-dependent.
2498   //  Some targets like it, some don't, some only like it under certain
2499   //  conditions/processor versions, etc.
2500   //  A TL hook might be needed for this.
2501 
2502   // Don't combine
2503   return ShiftTy;
2504 }
2505 
2506 bool CombinerHelper::matchCombineTruncOfShift(
2507     MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) {
2508   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2509   Register DstReg = MI.getOperand(0).getReg();
2510   Register SrcReg = MI.getOperand(1).getReg();
2511 
2512   if (!MRI.hasOneNonDBGUse(SrcReg))
2513     return false;
2514 
2515   LLT SrcTy = MRI.getType(SrcReg);
2516   LLT DstTy = MRI.getType(DstReg);
2517 
2518   MachineInstr *SrcMI = getDefIgnoringCopies(SrcReg, MRI);
2519   const auto &TL = getTargetLowering();
2520 
2521   LLT NewShiftTy;
2522   switch (SrcMI->getOpcode()) {
2523   default:
2524     return false;
2525   case TargetOpcode::G_SHL: {
2526     NewShiftTy = DstTy;
2527 
2528     // Make sure new shift amount is legal.
2529     KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg());
2530     if (Known.getMaxValue().uge(NewShiftTy.getScalarSizeInBits()))
2531       return false;
2532     break;
2533   }
2534   case TargetOpcode::G_LSHR:
2535   case TargetOpcode::G_ASHR: {
2536     // For right shifts, we conservatively do not do the transform if the TRUNC
2537     // has any STORE users. The reason is that if we change the type of the
2538     // shift, we may break the truncstore combine.
2539     //
2540     // TODO: Fix truncstore combine to handle (trunc(lshr (trunc x), k)).
2541     for (auto &User : MRI.use_instructions(DstReg))
2542       if (User.getOpcode() == TargetOpcode::G_STORE)
2543         return false;
2544 
2545     NewShiftTy = getMidVTForTruncRightShiftCombine(SrcTy, DstTy);
2546     if (NewShiftTy == SrcTy)
2547       return false;
2548 
2549     // Make sure we won't lose information by truncating the high bits.
2550     KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg());
2551     if (Known.getMaxValue().ugt(NewShiftTy.getScalarSizeInBits() -
2552                                 DstTy.getScalarSizeInBits()))
2553       return false;
2554     break;
2555   }
2556   }
2557 
2558   if (!isLegalOrBeforeLegalizer(
2559           {SrcMI->getOpcode(),
2560            {NewShiftTy, TL.getPreferredShiftAmountTy(NewShiftTy)}}))
2561     return false;
2562 
2563   MatchInfo = std::make_pair(SrcMI, NewShiftTy);
2564   return true;
2565 }
2566 
2567 void CombinerHelper::applyCombineTruncOfShift(
2568     MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) {
2569   Builder.setInstrAndDebugLoc(MI);
2570 
2571   MachineInstr *ShiftMI = MatchInfo.first;
2572   LLT NewShiftTy = MatchInfo.second;
2573 
2574   Register Dst = MI.getOperand(0).getReg();
2575   LLT DstTy = MRI.getType(Dst);
2576 
2577   Register ShiftAmt = ShiftMI->getOperand(2).getReg();
2578   Register ShiftSrc = ShiftMI->getOperand(1).getReg();
2579   ShiftSrc = Builder.buildTrunc(NewShiftTy, ShiftSrc).getReg(0);
2580 
2581   Register NewShift =
2582       Builder
2583           .buildInstr(ShiftMI->getOpcode(), {NewShiftTy}, {ShiftSrc, ShiftAmt})
2584           .getReg(0);
2585 
2586   if (NewShiftTy == DstTy)
2587     replaceRegWith(MRI, Dst, NewShift);
2588   else
2589     Builder.buildTrunc(Dst, NewShift);
2590 
2591   eraseInst(MI);
2592 }
2593 
2594 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) {
2595   return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2596     return MO.isReg() &&
2597            getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2598   });
2599 }
2600 
2601 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) {
2602   return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2603     return !MO.isReg() ||
2604            getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2605   });
2606 }
2607 
2608 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) {
2609   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
2610   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
2611   return all_of(Mask, [](int Elt) { return Elt < 0; });
2612 }
2613 
2614 bool CombinerHelper::matchUndefStore(MachineInstr &MI) {
2615   assert(MI.getOpcode() == TargetOpcode::G_STORE);
2616   return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(),
2617                       MRI);
2618 }
2619 
2620 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) {
2621   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2622   return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(),
2623                       MRI);
2624 }
2625 
2626 bool CombinerHelper::matchInsertExtractVecEltOutOfBounds(MachineInstr &MI) {
2627   assert((MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT ||
2628           MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) &&
2629          "Expected an insert/extract element op");
2630   LLT VecTy = MRI.getType(MI.getOperand(1).getReg());
2631   unsigned IdxIdx =
2632       MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
2633   auto Idx = getIConstantVRegVal(MI.getOperand(IdxIdx).getReg(), MRI);
2634   if (!Idx)
2635     return false;
2636   return Idx->getZExtValue() >= VecTy.getNumElements();
2637 }
2638 
2639 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) {
2640   GSelect &SelMI = cast<GSelect>(MI);
2641   auto Cst =
2642       isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI);
2643   if (!Cst)
2644     return false;
2645   OpIdx = Cst->isZero() ? 3 : 2;
2646   return true;
2647 }
2648 
2649 void CombinerHelper::eraseInst(MachineInstr &MI) { MI.eraseFromParent(); }
2650 
2651 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1,
2652                                     const MachineOperand &MOP2) {
2653   if (!MOP1.isReg() || !MOP2.isReg())
2654     return false;
2655   auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI);
2656   if (!InstAndDef1)
2657     return false;
2658   auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI);
2659   if (!InstAndDef2)
2660     return false;
2661   MachineInstr *I1 = InstAndDef1->MI;
2662   MachineInstr *I2 = InstAndDef2->MI;
2663 
2664   // Handle a case like this:
2665   //
2666   // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>)
2667   //
2668   // Even though %0 and %1 are produced by the same instruction they are not
2669   // the same values.
2670   if (I1 == I2)
2671     return MOP1.getReg() == MOP2.getReg();
2672 
2673   // If we have an instruction which loads or stores, we can't guarantee that
2674   // it is identical.
2675   //
2676   // For example, we may have
2677   //
2678   // %x1 = G_LOAD %addr (load N from @somewhere)
2679   // ...
2680   // call @foo
2681   // ...
2682   // %x2 = G_LOAD %addr (load N from @somewhere)
2683   // ...
2684   // %or = G_OR %x1, %x2
2685   //
2686   // It's possible that @foo will modify whatever lives at the address we're
2687   // loading from. To be safe, let's just assume that all loads and stores
2688   // are different (unless we have something which is guaranteed to not
2689   // change.)
2690   if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad())
2691     return false;
2692 
2693   // If both instructions are loads or stores, they are equal only if both
2694   // are dereferenceable invariant loads with the same number of bits.
2695   if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) {
2696     GLoadStore *LS1 = dyn_cast<GLoadStore>(I1);
2697     GLoadStore *LS2 = dyn_cast<GLoadStore>(I2);
2698     if (!LS1 || !LS2)
2699       return false;
2700 
2701     if (!I2->isDereferenceableInvariantLoad() ||
2702         (LS1->getMemSizeInBits() != LS2->getMemSizeInBits()))
2703       return false;
2704   }
2705 
2706   // Check for physical registers on the instructions first to avoid cases
2707   // like this:
2708   //
2709   // %a = COPY $physreg
2710   // ...
2711   // SOMETHING implicit-def $physreg
2712   // ...
2713   // %b = COPY $physreg
2714   //
2715   // These copies are not equivalent.
2716   if (any_of(I1->uses(), [](const MachineOperand &MO) {
2717         return MO.isReg() && MO.getReg().isPhysical();
2718       })) {
2719     // Check if we have a case like this:
2720     //
2721     // %a = COPY $physreg
2722     // %b = COPY %a
2723     //
2724     // In this case, I1 and I2 will both be equal to %a = COPY $physreg.
2725     // From that, we know that they must have the same value, since they must
2726     // have come from the same COPY.
2727     return I1->isIdenticalTo(*I2);
2728   }
2729 
2730   // We don't have any physical registers, so we don't necessarily need the
2731   // same vreg defs.
2732   //
2733   // On the off-chance that there's some target instruction feeding into the
2734   // instruction, let's use produceSameValue instead of isIdenticalTo.
2735   if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) {
2736     // Handle instructions with multiple defs that produce same values. Values
2737     // are same for operands with same index.
2738     // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
2739     // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
2740     // I1 and I2 are different instructions but produce same values,
2741     // %1 and %6 are same, %1 and %7 are not the same value.
2742     return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) ==
2743            I2->findRegisterDefOperandIdx(InstAndDef2->Reg);
2744   }
2745   return false;
2746 }
2747 
2748 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) {
2749   if (!MOP.isReg())
2750     return false;
2751   auto *MI = MRI.getVRegDef(MOP.getReg());
2752   auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI);
2753   return MaybeCst && MaybeCst->getBitWidth() <= 64 &&
2754          MaybeCst->getSExtValue() == C;
2755 }
2756 
2757 bool CombinerHelper::matchConstantFPOp(const MachineOperand &MOP, double C) {
2758   if (!MOP.isReg())
2759     return false;
2760   std::optional<FPValueAndVReg> MaybeCst;
2761   if (!mi_match(MOP.getReg(), MRI, m_GFCstOrSplat(MaybeCst)))
2762     return false;
2763 
2764   return MaybeCst->Value.isExactlyValue(C);
2765 }
2766 
2767 void CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI,
2768                                                      unsigned OpIdx) {
2769   assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2770   Register OldReg = MI.getOperand(0).getReg();
2771   Register Replacement = MI.getOperand(OpIdx).getReg();
2772   assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2773   MI.eraseFromParent();
2774   replaceRegWith(MRI, OldReg, Replacement);
2775 }
2776 
2777 void CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI,
2778                                                  Register Replacement) {
2779   assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2780   Register OldReg = MI.getOperand(0).getReg();
2781   assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2782   MI.eraseFromParent();
2783   replaceRegWith(MRI, OldReg, Replacement);
2784 }
2785 
2786 bool CombinerHelper::matchConstantLargerBitWidth(MachineInstr &MI,
2787                                                  unsigned ConstIdx) {
2788   Register ConstReg = MI.getOperand(ConstIdx).getReg();
2789   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2790 
2791   // Get the shift amount
2792   auto VRegAndVal = getIConstantVRegValWithLookThrough(ConstReg, MRI);
2793   if (!VRegAndVal)
2794     return false;
2795 
2796   // Return true of shift amount >= Bitwidth
2797   return (VRegAndVal->Value.uge(DstTy.getSizeInBits()));
2798 }
2799 
2800 void CombinerHelper::applyFunnelShiftConstantModulo(MachineInstr &MI) {
2801   assert((MI.getOpcode() == TargetOpcode::G_FSHL ||
2802           MI.getOpcode() == TargetOpcode::G_FSHR) &&
2803          "This is not a funnel shift operation");
2804 
2805   Register ConstReg = MI.getOperand(3).getReg();
2806   LLT ConstTy = MRI.getType(ConstReg);
2807   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2808 
2809   auto VRegAndVal = getIConstantVRegValWithLookThrough(ConstReg, MRI);
2810   assert((VRegAndVal) && "Value is not a constant");
2811 
2812   // Calculate the new Shift Amount = Old Shift Amount % BitWidth
2813   APInt NewConst = VRegAndVal->Value.urem(
2814       APInt(ConstTy.getSizeInBits(), DstTy.getScalarSizeInBits()));
2815 
2816   Builder.setInstrAndDebugLoc(MI);
2817   auto NewConstInstr = Builder.buildConstant(ConstTy, NewConst.getZExtValue());
2818   Builder.buildInstr(
2819       MI.getOpcode(), {MI.getOperand(0)},
2820       {MI.getOperand(1), MI.getOperand(2), NewConstInstr.getReg(0)});
2821 
2822   MI.eraseFromParent();
2823 }
2824 
2825 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) {
2826   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2827   // Match (cond ? x : x)
2828   return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) &&
2829          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(),
2830                        MRI);
2831 }
2832 
2833 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) {
2834   return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) &&
2835          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
2836                        MRI);
2837 }
2838 
2839 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) {
2840   return matchConstantOp(MI.getOperand(OpIdx), 0) &&
2841          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(),
2842                        MRI);
2843 }
2844 
2845 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) {
2846   MachineOperand &MO = MI.getOperand(OpIdx);
2847   return MO.isReg() &&
2848          getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2849 }
2850 
2851 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI,
2852                                                         unsigned OpIdx) {
2853   MachineOperand &MO = MI.getOperand(OpIdx);
2854   return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB);
2855 }
2856 
2857 void CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) {
2858   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2859   Builder.setInstr(MI);
2860   Builder.buildFConstant(MI.getOperand(0), C);
2861   MI.eraseFromParent();
2862 }
2863 
2864 void CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) {
2865   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2866   Builder.setInstr(MI);
2867   Builder.buildConstant(MI.getOperand(0), C);
2868   MI.eraseFromParent();
2869 }
2870 
2871 void CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) {
2872   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2873   Builder.setInstr(MI);
2874   Builder.buildConstant(MI.getOperand(0), C);
2875   MI.eraseFromParent();
2876 }
2877 
2878 void CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, ConstantFP *CFP) {
2879   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2880   Builder.setInstr(MI);
2881   Builder.buildFConstant(MI.getOperand(0), CFP->getValueAPF());
2882   MI.eraseFromParent();
2883 }
2884 
2885 void CombinerHelper::replaceInstWithUndef(MachineInstr &MI) {
2886   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2887   Builder.setInstr(MI);
2888   Builder.buildUndef(MI.getOperand(0));
2889   MI.eraseFromParent();
2890 }
2891 
2892 bool CombinerHelper::matchSimplifyAddToSub(
2893     MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2894   Register LHS = MI.getOperand(1).getReg();
2895   Register RHS = MI.getOperand(2).getReg();
2896   Register &NewLHS = std::get<0>(MatchInfo);
2897   Register &NewRHS = std::get<1>(MatchInfo);
2898 
2899   // Helper lambda to check for opportunities for
2900   // ((0-A) + B) -> B - A
2901   // (A + (0-B)) -> A - B
2902   auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) {
2903     if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS))))
2904       return false;
2905     NewLHS = MaybeNewLHS;
2906     return true;
2907   };
2908 
2909   return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
2910 }
2911 
2912 bool CombinerHelper::matchCombineInsertVecElts(
2913     MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2914   assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT &&
2915          "Invalid opcode");
2916   Register DstReg = MI.getOperand(0).getReg();
2917   LLT DstTy = MRI.getType(DstReg);
2918   assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?");
2919   unsigned NumElts = DstTy.getNumElements();
2920   // If this MI is part of a sequence of insert_vec_elts, then
2921   // don't do the combine in the middle of the sequence.
2922   if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() ==
2923                                    TargetOpcode::G_INSERT_VECTOR_ELT)
2924     return false;
2925   MachineInstr *CurrInst = &MI;
2926   MachineInstr *TmpInst;
2927   int64_t IntImm;
2928   Register TmpReg;
2929   MatchInfo.resize(NumElts);
2930   while (mi_match(
2931       CurrInst->getOperand(0).getReg(), MRI,
2932       m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) {
2933     if (IntImm >= NumElts || IntImm < 0)
2934       return false;
2935     if (!MatchInfo[IntImm])
2936       MatchInfo[IntImm] = TmpReg;
2937     CurrInst = TmpInst;
2938   }
2939   // Variable index.
2940   if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
2941     return false;
2942   if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
2943     for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) {
2944       if (!MatchInfo[I - 1].isValid())
2945         MatchInfo[I - 1] = TmpInst->getOperand(I).getReg();
2946     }
2947     return true;
2948   }
2949   // If we didn't end in a G_IMPLICIT_DEF, bail out.
2950   return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF;
2951 }
2952 
2953 void CombinerHelper::applyCombineInsertVecElts(
2954     MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2955   Builder.setInstr(MI);
2956   Register UndefReg;
2957   auto GetUndef = [&]() {
2958     if (UndefReg)
2959       return UndefReg;
2960     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2961     UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0);
2962     return UndefReg;
2963   };
2964   for (unsigned I = 0; I < MatchInfo.size(); ++I) {
2965     if (!MatchInfo[I])
2966       MatchInfo[I] = GetUndef();
2967   }
2968   Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo);
2969   MI.eraseFromParent();
2970 }
2971 
2972 void CombinerHelper::applySimplifyAddToSub(
2973     MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2974   Builder.setInstr(MI);
2975   Register SubLHS, SubRHS;
2976   std::tie(SubLHS, SubRHS) = MatchInfo;
2977   Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS);
2978   MI.eraseFromParent();
2979 }
2980 
2981 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands(
2982     MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
2983   // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ...
2984   //
2985   // Creates the new hand + logic instruction (but does not insert them.)
2986   //
2987   // On success, MatchInfo is populated with the new instructions. These are
2988   // inserted in applyHoistLogicOpWithSameOpcodeHands.
2989   unsigned LogicOpcode = MI.getOpcode();
2990   assert(LogicOpcode == TargetOpcode::G_AND ||
2991          LogicOpcode == TargetOpcode::G_OR ||
2992          LogicOpcode == TargetOpcode::G_XOR);
2993   MachineIRBuilder MIB(MI);
2994   Register Dst = MI.getOperand(0).getReg();
2995   Register LHSReg = MI.getOperand(1).getReg();
2996   Register RHSReg = MI.getOperand(2).getReg();
2997 
2998   // Don't recompute anything.
2999   if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg))
3000     return false;
3001 
3002   // Make sure we have (hand x, ...), (hand y, ...)
3003   MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI);
3004   MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI);
3005   if (!LeftHandInst || !RightHandInst)
3006     return false;
3007   unsigned HandOpcode = LeftHandInst->getOpcode();
3008   if (HandOpcode != RightHandInst->getOpcode())
3009     return false;
3010   if (!LeftHandInst->getOperand(1).isReg() ||
3011       !RightHandInst->getOperand(1).isReg())
3012     return false;
3013 
3014   // Make sure the types match up, and if we're doing this post-legalization,
3015   // we end up with legal types.
3016   Register X = LeftHandInst->getOperand(1).getReg();
3017   Register Y = RightHandInst->getOperand(1).getReg();
3018   LLT XTy = MRI.getType(X);
3019   LLT YTy = MRI.getType(Y);
3020   if (!XTy.isValid() || XTy != YTy)
3021     return false;
3022 
3023   // Optional extra source register.
3024   Register ExtraHandOpSrcReg;
3025   switch (HandOpcode) {
3026   default:
3027     return false;
3028   case TargetOpcode::G_ANYEXT:
3029   case TargetOpcode::G_SEXT:
3030   case TargetOpcode::G_ZEXT: {
3031     // Match: logic (ext X), (ext Y) --> ext (logic X, Y)
3032     break;
3033   }
3034   case TargetOpcode::G_AND:
3035   case TargetOpcode::G_ASHR:
3036   case TargetOpcode::G_LSHR:
3037   case TargetOpcode::G_SHL: {
3038     // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z
3039     MachineOperand &ZOp = LeftHandInst->getOperand(2);
3040     if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2)))
3041       return false;
3042     ExtraHandOpSrcReg = ZOp.getReg();
3043     break;
3044   }
3045   }
3046 
3047   if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}}))
3048     return false;
3049 
3050   // Record the steps to build the new instructions.
3051   //
3052   // Steps to build (logic x, y)
3053   auto NewLogicDst = MRI.createGenericVirtualRegister(XTy);
3054   OperandBuildSteps LogicBuildSteps = {
3055       [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); },
3056       [=](MachineInstrBuilder &MIB) { MIB.addReg(X); },
3057       [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }};
3058   InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps);
3059 
3060   // Steps to build hand (logic x, y), ...z
3061   OperandBuildSteps HandBuildSteps = {
3062       [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); },
3063       [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }};
3064   if (ExtraHandOpSrcReg.isValid())
3065     HandBuildSteps.push_back(
3066         [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); });
3067   InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps);
3068 
3069   MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps});
3070   return true;
3071 }
3072 
3073 void CombinerHelper::applyBuildInstructionSteps(
3074     MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
3075   assert(MatchInfo.InstrsToBuild.size() &&
3076          "Expected at least one instr to build?");
3077   Builder.setInstr(MI);
3078   for (auto &InstrToBuild : MatchInfo.InstrsToBuild) {
3079     assert(InstrToBuild.Opcode && "Expected a valid opcode?");
3080     assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?");
3081     MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode);
3082     for (auto &OperandFn : InstrToBuild.OperandFns)
3083       OperandFn(Instr);
3084   }
3085   MI.eraseFromParent();
3086 }
3087 
3088 bool CombinerHelper::matchAshrShlToSextInreg(
3089     MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
3090   assert(MI.getOpcode() == TargetOpcode::G_ASHR);
3091   int64_t ShlCst, AshrCst;
3092   Register Src;
3093   if (!mi_match(MI.getOperand(0).getReg(), MRI,
3094                 m_GAShr(m_GShl(m_Reg(Src), m_ICstOrSplat(ShlCst)),
3095                         m_ICstOrSplat(AshrCst))))
3096     return false;
3097   if (ShlCst != AshrCst)
3098     return false;
3099   if (!isLegalOrBeforeLegalizer(
3100           {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}}))
3101     return false;
3102   MatchInfo = std::make_tuple(Src, ShlCst);
3103   return true;
3104 }
3105 
3106 void CombinerHelper::applyAshShlToSextInreg(
3107     MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
3108   assert(MI.getOpcode() == TargetOpcode::G_ASHR);
3109   Register Src;
3110   int64_t ShiftAmt;
3111   std::tie(Src, ShiftAmt) = MatchInfo;
3112   unsigned Size = MRI.getType(Src).getScalarSizeInBits();
3113   Builder.setInstrAndDebugLoc(MI);
3114   Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt);
3115   MI.eraseFromParent();
3116 }
3117 
3118 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0
3119 bool CombinerHelper::matchOverlappingAnd(
3120     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3121   assert(MI.getOpcode() == TargetOpcode::G_AND);
3122 
3123   Register Dst = MI.getOperand(0).getReg();
3124   LLT Ty = MRI.getType(Dst);
3125 
3126   Register R;
3127   int64_t C1;
3128   int64_t C2;
3129   if (!mi_match(
3130           Dst, MRI,
3131           m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2))))
3132     return false;
3133 
3134   MatchInfo = [=](MachineIRBuilder &B) {
3135     if (C1 & C2) {
3136       B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2));
3137       return;
3138     }
3139     auto Zero = B.buildConstant(Ty, 0);
3140     replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg());
3141   };
3142   return true;
3143 }
3144 
3145 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI,
3146                                        Register &Replacement) {
3147   // Given
3148   //
3149   // %y:_(sN) = G_SOMETHING
3150   // %x:_(sN) = G_SOMETHING
3151   // %res:_(sN) = G_AND %x, %y
3152   //
3153   // Eliminate the G_AND when it is known that x & y == x or x & y == y.
3154   //
3155   // Patterns like this can appear as a result of legalization. E.g.
3156   //
3157   // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y
3158   // %one:_(s32) = G_CONSTANT i32 1
3159   // %and:_(s32) = G_AND %cmp, %one
3160   //
3161   // In this case, G_ICMP only produces a single bit, so x & 1 == x.
3162   assert(MI.getOpcode() == TargetOpcode::G_AND);
3163   if (!KB)
3164     return false;
3165 
3166   Register AndDst = MI.getOperand(0).getReg();
3167   Register LHS = MI.getOperand(1).getReg();
3168   Register RHS = MI.getOperand(2).getReg();
3169   KnownBits LHSBits = KB->getKnownBits(LHS);
3170   KnownBits RHSBits = KB->getKnownBits(RHS);
3171 
3172   // Check that x & Mask == x.
3173   // x & 1 == x, always
3174   // x & 0 == x, only if x is also 0
3175   // Meaning Mask has no effect if every bit is either one in Mask or zero in x.
3176   //
3177   // Check if we can replace AndDst with the LHS of the G_AND
3178   if (canReplaceReg(AndDst, LHS, MRI) &&
3179       (LHSBits.Zero | RHSBits.One).isAllOnes()) {
3180     Replacement = LHS;
3181     return true;
3182   }
3183 
3184   // Check if we can replace AndDst with the RHS of the G_AND
3185   if (canReplaceReg(AndDst, RHS, MRI) &&
3186       (LHSBits.One | RHSBits.Zero).isAllOnes()) {
3187     Replacement = RHS;
3188     return true;
3189   }
3190 
3191   return false;
3192 }
3193 
3194 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) {
3195   // Given
3196   //
3197   // %y:_(sN) = G_SOMETHING
3198   // %x:_(sN) = G_SOMETHING
3199   // %res:_(sN) = G_OR %x, %y
3200   //
3201   // Eliminate the G_OR when it is known that x | y == x or x | y == y.
3202   assert(MI.getOpcode() == TargetOpcode::G_OR);
3203   if (!KB)
3204     return false;
3205 
3206   Register OrDst = MI.getOperand(0).getReg();
3207   Register LHS = MI.getOperand(1).getReg();
3208   Register RHS = MI.getOperand(2).getReg();
3209   KnownBits LHSBits = KB->getKnownBits(LHS);
3210   KnownBits RHSBits = KB->getKnownBits(RHS);
3211 
3212   // Check that x | Mask == x.
3213   // x | 0 == x, always
3214   // x | 1 == x, only if x is also 1
3215   // Meaning Mask has no effect if every bit is either zero in Mask or one in x.
3216   //
3217   // Check if we can replace OrDst with the LHS of the G_OR
3218   if (canReplaceReg(OrDst, LHS, MRI) &&
3219       (LHSBits.One | RHSBits.Zero).isAllOnes()) {
3220     Replacement = LHS;
3221     return true;
3222   }
3223 
3224   // Check if we can replace OrDst with the RHS of the G_OR
3225   if (canReplaceReg(OrDst, RHS, MRI) &&
3226       (LHSBits.Zero | RHSBits.One).isAllOnes()) {
3227     Replacement = RHS;
3228     return true;
3229   }
3230 
3231   return false;
3232 }
3233 
3234 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) {
3235   // If the input is already sign extended, just drop the extension.
3236   Register Src = MI.getOperand(1).getReg();
3237   unsigned ExtBits = MI.getOperand(2).getImm();
3238   unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits();
3239   return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1);
3240 }
3241 
3242 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits,
3243                              int64_t Cst, bool IsVector, bool IsFP) {
3244   // For i1, Cst will always be -1 regardless of boolean contents.
3245   return (ScalarSizeBits == 1 && Cst == -1) ||
3246          isConstTrueVal(TLI, Cst, IsVector, IsFP);
3247 }
3248 
3249 bool CombinerHelper::matchNotCmp(MachineInstr &MI,
3250                                  SmallVectorImpl<Register> &RegsToNegate) {
3251   assert(MI.getOpcode() == TargetOpcode::G_XOR);
3252   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3253   const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering();
3254   Register XorSrc;
3255   Register CstReg;
3256   // We match xor(src, true) here.
3257   if (!mi_match(MI.getOperand(0).getReg(), MRI,
3258                 m_GXor(m_Reg(XorSrc), m_Reg(CstReg))))
3259     return false;
3260 
3261   if (!MRI.hasOneNonDBGUse(XorSrc))
3262     return false;
3263 
3264   // Check that XorSrc is the root of a tree of comparisons combined with ANDs
3265   // and ORs. The suffix of RegsToNegate starting from index I is used a work
3266   // list of tree nodes to visit.
3267   RegsToNegate.push_back(XorSrc);
3268   // Remember whether the comparisons are all integer or all floating point.
3269   bool IsInt = false;
3270   bool IsFP = false;
3271   for (unsigned I = 0; I < RegsToNegate.size(); ++I) {
3272     Register Reg = RegsToNegate[I];
3273     if (!MRI.hasOneNonDBGUse(Reg))
3274       return false;
3275     MachineInstr *Def = MRI.getVRegDef(Reg);
3276     switch (Def->getOpcode()) {
3277     default:
3278       // Don't match if the tree contains anything other than ANDs, ORs and
3279       // comparisons.
3280       return false;
3281     case TargetOpcode::G_ICMP:
3282       if (IsFP)
3283         return false;
3284       IsInt = true;
3285       // When we apply the combine we will invert the predicate.
3286       break;
3287     case TargetOpcode::G_FCMP:
3288       if (IsInt)
3289         return false;
3290       IsFP = true;
3291       // When we apply the combine we will invert the predicate.
3292       break;
3293     case TargetOpcode::G_AND:
3294     case TargetOpcode::G_OR:
3295       // Implement De Morgan's laws:
3296       // ~(x & y) -> ~x | ~y
3297       // ~(x | y) -> ~x & ~y
3298       // When we apply the combine we will change the opcode and recursively
3299       // negate the operands.
3300       RegsToNegate.push_back(Def->getOperand(1).getReg());
3301       RegsToNegate.push_back(Def->getOperand(2).getReg());
3302       break;
3303     }
3304   }
3305 
3306   // Now we know whether the comparisons are integer or floating point, check
3307   // the constant in the xor.
3308   int64_t Cst;
3309   if (Ty.isVector()) {
3310     MachineInstr *CstDef = MRI.getVRegDef(CstReg);
3311     auto MaybeCst = getIConstantSplatSExtVal(*CstDef, MRI);
3312     if (!MaybeCst)
3313       return false;
3314     if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP))
3315       return false;
3316   } else {
3317     if (!mi_match(CstReg, MRI, m_ICst(Cst)))
3318       return false;
3319     if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP))
3320       return false;
3321   }
3322 
3323   return true;
3324 }
3325 
3326 void CombinerHelper::applyNotCmp(MachineInstr &MI,
3327                                  SmallVectorImpl<Register> &RegsToNegate) {
3328   for (Register Reg : RegsToNegate) {
3329     MachineInstr *Def = MRI.getVRegDef(Reg);
3330     Observer.changingInstr(*Def);
3331     // For each comparison, invert the opcode. For each AND and OR, change the
3332     // opcode.
3333     switch (Def->getOpcode()) {
3334     default:
3335       llvm_unreachable("Unexpected opcode");
3336     case TargetOpcode::G_ICMP:
3337     case TargetOpcode::G_FCMP: {
3338       MachineOperand &PredOp = Def->getOperand(1);
3339       CmpInst::Predicate NewP = CmpInst::getInversePredicate(
3340           (CmpInst::Predicate)PredOp.getPredicate());
3341       PredOp.setPredicate(NewP);
3342       break;
3343     }
3344     case TargetOpcode::G_AND:
3345       Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR));
3346       break;
3347     case TargetOpcode::G_OR:
3348       Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3349       break;
3350     }
3351     Observer.changedInstr(*Def);
3352   }
3353 
3354   replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
3355   MI.eraseFromParent();
3356 }
3357 
3358 bool CombinerHelper::matchXorOfAndWithSameReg(
3359     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3360   // Match (xor (and x, y), y) (or any of its commuted cases)
3361   assert(MI.getOpcode() == TargetOpcode::G_XOR);
3362   Register &X = MatchInfo.first;
3363   Register &Y = MatchInfo.second;
3364   Register AndReg = MI.getOperand(1).getReg();
3365   Register SharedReg = MI.getOperand(2).getReg();
3366 
3367   // Find a G_AND on either side of the G_XOR.
3368   // Look for one of
3369   //
3370   // (xor (and x, y), SharedReg)
3371   // (xor SharedReg, (and x, y))
3372   if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) {
3373     std::swap(AndReg, SharedReg);
3374     if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y))))
3375       return false;
3376   }
3377 
3378   // Only do this if we'll eliminate the G_AND.
3379   if (!MRI.hasOneNonDBGUse(AndReg))
3380     return false;
3381 
3382   // We can combine if SharedReg is the same as either the LHS or RHS of the
3383   // G_AND.
3384   if (Y != SharedReg)
3385     std::swap(X, Y);
3386   return Y == SharedReg;
3387 }
3388 
3389 void CombinerHelper::applyXorOfAndWithSameReg(
3390     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3391   // Fold (xor (and x, y), y) -> (and (not x), y)
3392   Builder.setInstrAndDebugLoc(MI);
3393   Register X, Y;
3394   std::tie(X, Y) = MatchInfo;
3395   auto Not = Builder.buildNot(MRI.getType(X), X);
3396   Observer.changingInstr(MI);
3397   MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3398   MI.getOperand(1).setReg(Not->getOperand(0).getReg());
3399   MI.getOperand(2).setReg(Y);
3400   Observer.changedInstr(MI);
3401 }
3402 
3403 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) {
3404   auto &PtrAdd = cast<GPtrAdd>(MI);
3405   Register DstReg = PtrAdd.getReg(0);
3406   LLT Ty = MRI.getType(DstReg);
3407   const DataLayout &DL = Builder.getMF().getDataLayout();
3408 
3409   if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace()))
3410     return false;
3411 
3412   if (Ty.isPointer()) {
3413     auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI);
3414     return ConstVal && *ConstVal == 0;
3415   }
3416 
3417   assert(Ty.isVector() && "Expecting a vector type");
3418   const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg());
3419   return isBuildVectorAllZeros(*VecMI, MRI);
3420 }
3421 
3422 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) {
3423   auto &PtrAdd = cast<GPtrAdd>(MI);
3424   Builder.setInstrAndDebugLoc(PtrAdd);
3425   Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg());
3426   PtrAdd.eraseFromParent();
3427 }
3428 
3429 /// The second source operand is known to be a power of 2.
3430 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) {
3431   Register DstReg = MI.getOperand(0).getReg();
3432   Register Src0 = MI.getOperand(1).getReg();
3433   Register Pow2Src1 = MI.getOperand(2).getReg();
3434   LLT Ty = MRI.getType(DstReg);
3435   Builder.setInstrAndDebugLoc(MI);
3436 
3437   // Fold (urem x, pow2) -> (and x, pow2-1)
3438   auto NegOne = Builder.buildConstant(Ty, -1);
3439   auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne);
3440   Builder.buildAnd(DstReg, Src0, Add);
3441   MI.eraseFromParent();
3442 }
3443 
3444 bool CombinerHelper::matchFoldBinOpIntoSelect(MachineInstr &MI,
3445                                               unsigned &SelectOpNo) {
3446   Register LHS = MI.getOperand(1).getReg();
3447   Register RHS = MI.getOperand(2).getReg();
3448 
3449   Register OtherOperandReg = RHS;
3450   SelectOpNo = 1;
3451   MachineInstr *Select = MRI.getVRegDef(LHS);
3452 
3453   // Don't do this unless the old select is going away. We want to eliminate the
3454   // binary operator, not replace a binop with a select.
3455   if (Select->getOpcode() != TargetOpcode::G_SELECT ||
3456       !MRI.hasOneNonDBGUse(LHS)) {
3457     OtherOperandReg = LHS;
3458     SelectOpNo = 2;
3459     Select = MRI.getVRegDef(RHS);
3460     if (Select->getOpcode() != TargetOpcode::G_SELECT ||
3461         !MRI.hasOneNonDBGUse(RHS))
3462       return false;
3463   }
3464 
3465   MachineInstr *SelectLHS = MRI.getVRegDef(Select->getOperand(2).getReg());
3466   MachineInstr *SelectRHS = MRI.getVRegDef(Select->getOperand(3).getReg());
3467 
3468   if (!isConstantOrConstantVector(*SelectLHS, MRI,
3469                                   /*AllowFP*/ true,
3470                                   /*AllowOpaqueConstants*/ false))
3471     return false;
3472   if (!isConstantOrConstantVector(*SelectRHS, MRI,
3473                                   /*AllowFP*/ true,
3474                                   /*AllowOpaqueConstants*/ false))
3475     return false;
3476 
3477   unsigned BinOpcode = MI.getOpcode();
3478 
3479   // We know that one of the operands is a select of constants. Now verify that
3480   // the other binary operator operand is either a constant, or we can handle a
3481   // variable.
3482   bool CanFoldNonConst =
3483       (BinOpcode == TargetOpcode::G_AND || BinOpcode == TargetOpcode::G_OR) &&
3484       (isNullOrNullSplat(*SelectLHS, MRI) ||
3485        isAllOnesOrAllOnesSplat(*SelectLHS, MRI)) &&
3486       (isNullOrNullSplat(*SelectRHS, MRI) ||
3487        isAllOnesOrAllOnesSplat(*SelectRHS, MRI));
3488   if (CanFoldNonConst)
3489     return true;
3490 
3491   return isConstantOrConstantVector(*MRI.getVRegDef(OtherOperandReg), MRI,
3492                                     /*AllowFP*/ true,
3493                                     /*AllowOpaqueConstants*/ false);
3494 }
3495 
3496 /// \p SelectOperand is the operand in binary operator \p MI that is the select
3497 /// to fold.
3498 void CombinerHelper::applyFoldBinOpIntoSelect(MachineInstr &MI,
3499                                               const unsigned &SelectOperand) {
3500   Builder.setInstrAndDebugLoc(MI);
3501 
3502   Register Dst = MI.getOperand(0).getReg();
3503   Register LHS = MI.getOperand(1).getReg();
3504   Register RHS = MI.getOperand(2).getReg();
3505   MachineInstr *Select = MRI.getVRegDef(MI.getOperand(SelectOperand).getReg());
3506 
3507   Register SelectCond = Select->getOperand(1).getReg();
3508   Register SelectTrue = Select->getOperand(2).getReg();
3509   Register SelectFalse = Select->getOperand(3).getReg();
3510 
3511   LLT Ty = MRI.getType(Dst);
3512   unsigned BinOpcode = MI.getOpcode();
3513 
3514   Register FoldTrue, FoldFalse;
3515 
3516   // We have a select-of-constants followed by a binary operator with a
3517   // constant. Eliminate the binop by pulling the constant math into the select.
3518   // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
3519   if (SelectOperand == 1) {
3520     // TODO: SelectionDAG verifies this actually constant folds before
3521     // committing to the combine.
3522 
3523     FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {SelectTrue, RHS}).getReg(0);
3524     FoldFalse =
3525         Builder.buildInstr(BinOpcode, {Ty}, {SelectFalse, RHS}).getReg(0);
3526   } else {
3527     FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectTrue}).getReg(0);
3528     FoldFalse =
3529         Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectFalse}).getReg(0);
3530   }
3531 
3532   Builder.buildSelect(Dst, SelectCond, FoldTrue, FoldFalse, MI.getFlags());
3533   MI.eraseFromParent();
3534 }
3535 
3536 std::optional<SmallVector<Register, 8>>
3537 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const {
3538   assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!");
3539   // We want to detect if Root is part of a tree which represents a bunch
3540   // of loads being merged into a larger load. We'll try to recognize patterns
3541   // like, for example:
3542   //
3543   //  Reg   Reg
3544   //   \    /
3545   //    OR_1   Reg
3546   //     \    /
3547   //      OR_2
3548   //        \     Reg
3549   //         .. /
3550   //        Root
3551   //
3552   //  Reg   Reg   Reg   Reg
3553   //     \ /       \   /
3554   //     OR_1      OR_2
3555   //       \       /
3556   //        \    /
3557   //         ...
3558   //         Root
3559   //
3560   // Each "Reg" may have been produced by a load + some arithmetic. This
3561   // function will save each of them.
3562   SmallVector<Register, 8> RegsToVisit;
3563   SmallVector<const MachineInstr *, 7> Ors = {Root};
3564 
3565   // In the "worst" case, we're dealing with a load for each byte. So, there
3566   // are at most #bytes - 1 ORs.
3567   const unsigned MaxIter =
3568       MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1;
3569   for (unsigned Iter = 0; Iter < MaxIter; ++Iter) {
3570     if (Ors.empty())
3571       break;
3572     const MachineInstr *Curr = Ors.pop_back_val();
3573     Register OrLHS = Curr->getOperand(1).getReg();
3574     Register OrRHS = Curr->getOperand(2).getReg();
3575 
3576     // In the combine, we want to elimate the entire tree.
3577     if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS))
3578       return std::nullopt;
3579 
3580     // If it's a G_OR, save it and continue to walk. If it's not, then it's
3581     // something that may be a load + arithmetic.
3582     if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI))
3583       Ors.push_back(Or);
3584     else
3585       RegsToVisit.push_back(OrLHS);
3586     if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI))
3587       Ors.push_back(Or);
3588     else
3589       RegsToVisit.push_back(OrRHS);
3590   }
3591 
3592   // We're going to try and merge each register into a wider power-of-2 type,
3593   // so we ought to have an even number of registers.
3594   if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0)
3595     return std::nullopt;
3596   return RegsToVisit;
3597 }
3598 
3599 /// Helper function for findLoadOffsetsForLoadOrCombine.
3600 ///
3601 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value,
3602 /// and then moving that value into a specific byte offset.
3603 ///
3604 /// e.g. x[i] << 24
3605 ///
3606 /// \returns The load instruction and the byte offset it is moved into.
3607 static std::optional<std::pair<GZExtLoad *, int64_t>>
3608 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits,
3609                          const MachineRegisterInfo &MRI) {
3610   assert(MRI.hasOneNonDBGUse(Reg) &&
3611          "Expected Reg to only have one non-debug use?");
3612   Register MaybeLoad;
3613   int64_t Shift;
3614   if (!mi_match(Reg, MRI,
3615                 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) {
3616     Shift = 0;
3617     MaybeLoad = Reg;
3618   }
3619 
3620   if (Shift % MemSizeInBits != 0)
3621     return std::nullopt;
3622 
3623   // TODO: Handle other types of loads.
3624   auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI);
3625   if (!Load)
3626     return std::nullopt;
3627 
3628   if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits)
3629     return std::nullopt;
3630 
3631   return std::make_pair(Load, Shift / MemSizeInBits);
3632 }
3633 
3634 std::optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>>
3635 CombinerHelper::findLoadOffsetsForLoadOrCombine(
3636     SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
3637     const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) {
3638 
3639   // Each load found for the pattern. There should be one for each RegsToVisit.
3640   SmallSetVector<const MachineInstr *, 8> Loads;
3641 
3642   // The lowest index used in any load. (The lowest "i" for each x[i].)
3643   int64_t LowestIdx = INT64_MAX;
3644 
3645   // The load which uses the lowest index.
3646   GZExtLoad *LowestIdxLoad = nullptr;
3647 
3648   // Keeps track of the load indices we see. We shouldn't see any indices twice.
3649   SmallSet<int64_t, 8> SeenIdx;
3650 
3651   // Ensure each load is in the same MBB.
3652   // TODO: Support multiple MachineBasicBlocks.
3653   MachineBasicBlock *MBB = nullptr;
3654   const MachineMemOperand *MMO = nullptr;
3655 
3656   // Earliest instruction-order load in the pattern.
3657   GZExtLoad *EarliestLoad = nullptr;
3658 
3659   // Latest instruction-order load in the pattern.
3660   GZExtLoad *LatestLoad = nullptr;
3661 
3662   // Base pointer which every load should share.
3663   Register BasePtr;
3664 
3665   // We want to find a load for each register. Each load should have some
3666   // appropriate bit twiddling arithmetic. During this loop, we will also keep
3667   // track of the load which uses the lowest index. Later, we will check if we
3668   // can use its pointer in the final, combined load.
3669   for (auto Reg : RegsToVisit) {
3670     // Find the load, and find the position that it will end up in (e.g. a
3671     // shifted) value.
3672     auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI);
3673     if (!LoadAndPos)
3674       return std::nullopt;
3675     GZExtLoad *Load;
3676     int64_t DstPos;
3677     std::tie(Load, DstPos) = *LoadAndPos;
3678 
3679     // TODO: Handle multiple MachineBasicBlocks. Currently not handled because
3680     // it is difficult to check for stores/calls/etc between loads.
3681     MachineBasicBlock *LoadMBB = Load->getParent();
3682     if (!MBB)
3683       MBB = LoadMBB;
3684     if (LoadMBB != MBB)
3685       return std::nullopt;
3686 
3687     // Make sure that the MachineMemOperands of every seen load are compatible.
3688     auto &LoadMMO = Load->getMMO();
3689     if (!MMO)
3690       MMO = &LoadMMO;
3691     if (MMO->getAddrSpace() != LoadMMO.getAddrSpace())
3692       return std::nullopt;
3693 
3694     // Find out what the base pointer and index for the load is.
3695     Register LoadPtr;
3696     int64_t Idx;
3697     if (!mi_match(Load->getOperand(1).getReg(), MRI,
3698                   m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) {
3699       LoadPtr = Load->getOperand(1).getReg();
3700       Idx = 0;
3701     }
3702 
3703     // Don't combine things like a[i], a[i] -> a bigger load.
3704     if (!SeenIdx.insert(Idx).second)
3705       return std::nullopt;
3706 
3707     // Every load must share the same base pointer; don't combine things like:
3708     //
3709     // a[i], b[i + 1] -> a bigger load.
3710     if (!BasePtr.isValid())
3711       BasePtr = LoadPtr;
3712     if (BasePtr != LoadPtr)
3713       return std::nullopt;
3714 
3715     if (Idx < LowestIdx) {
3716       LowestIdx = Idx;
3717       LowestIdxLoad = Load;
3718     }
3719 
3720     // Keep track of the byte offset that this load ends up at. If we have seen
3721     // the byte offset, then stop here. We do not want to combine:
3722     //
3723     // a[i] << 16, a[i + k] << 16 -> a bigger load.
3724     if (!MemOffset2Idx.try_emplace(DstPos, Idx).second)
3725       return std::nullopt;
3726     Loads.insert(Load);
3727 
3728     // Keep track of the position of the earliest/latest loads in the pattern.
3729     // We will check that there are no load fold barriers between them later
3730     // on.
3731     //
3732     // FIXME: Is there a better way to check for load fold barriers?
3733     if (!EarliestLoad || dominates(*Load, *EarliestLoad))
3734       EarliestLoad = Load;
3735     if (!LatestLoad || dominates(*LatestLoad, *Load))
3736       LatestLoad = Load;
3737   }
3738 
3739   // We found a load for each register. Let's check if each load satisfies the
3740   // pattern.
3741   assert(Loads.size() == RegsToVisit.size() &&
3742          "Expected to find a load for each register?");
3743   assert(EarliestLoad != LatestLoad && EarliestLoad &&
3744          LatestLoad && "Expected at least two loads?");
3745 
3746   // Check if there are any stores, calls, etc. between any of the loads. If
3747   // there are, then we can't safely perform the combine.
3748   //
3749   // MaxIter is chosen based off the (worst case) number of iterations it
3750   // typically takes to succeed in the LLVM test suite plus some padding.
3751   //
3752   // FIXME: Is there a better way to check for load fold barriers?
3753   const unsigned MaxIter = 20;
3754   unsigned Iter = 0;
3755   for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(),
3756                                                  LatestLoad->getIterator())) {
3757     if (Loads.count(&MI))
3758       continue;
3759     if (MI.isLoadFoldBarrier())
3760       return std::nullopt;
3761     if (Iter++ == MaxIter)
3762       return std::nullopt;
3763   }
3764 
3765   return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad);
3766 }
3767 
3768 bool CombinerHelper::matchLoadOrCombine(
3769     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3770   assert(MI.getOpcode() == TargetOpcode::G_OR);
3771   MachineFunction &MF = *MI.getMF();
3772   // Assuming a little-endian target, transform:
3773   //  s8 *a = ...
3774   //  s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
3775   // =>
3776   //  s32 val = *((i32)a)
3777   //
3778   //  s8 *a = ...
3779   //  s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
3780   // =>
3781   //  s32 val = BSWAP(*((s32)a))
3782   Register Dst = MI.getOperand(0).getReg();
3783   LLT Ty = MRI.getType(Dst);
3784   if (Ty.isVector())
3785     return false;
3786 
3787   // We need to combine at least two loads into this type. Since the smallest
3788   // possible load is into a byte, we need at least a 16-bit wide type.
3789   const unsigned WideMemSizeInBits = Ty.getSizeInBits();
3790   if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0)
3791     return false;
3792 
3793   // Match a collection of non-OR instructions in the pattern.
3794   auto RegsToVisit = findCandidatesForLoadOrCombine(&MI);
3795   if (!RegsToVisit)
3796     return false;
3797 
3798   // We have a collection of non-OR instructions. Figure out how wide each of
3799   // the small loads should be based off of the number of potential loads we
3800   // found.
3801   const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size();
3802   if (NarrowMemSizeInBits % 8 != 0)
3803     return false;
3804 
3805   // Check if each register feeding into each OR is a load from the same
3806   // base pointer + some arithmetic.
3807   //
3808   // e.g. a[0], a[1] << 8, a[2] << 16, etc.
3809   //
3810   // Also verify that each of these ends up putting a[i] into the same memory
3811   // offset as a load into a wide type would.
3812   SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx;
3813   GZExtLoad *LowestIdxLoad, *LatestLoad;
3814   int64_t LowestIdx;
3815   auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine(
3816       MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits);
3817   if (!MaybeLoadInfo)
3818     return false;
3819   std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo;
3820 
3821   // We have a bunch of loads being OR'd together. Using the addresses + offsets
3822   // we found before, check if this corresponds to a big or little endian byte
3823   // pattern. If it does, then we can represent it using a load + possibly a
3824   // BSWAP.
3825   bool IsBigEndianTarget = MF.getDataLayout().isBigEndian();
3826   std::optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx);
3827   if (!IsBigEndian)
3828     return false;
3829   bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian;
3830   if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}}))
3831     return false;
3832 
3833   // Make sure that the load from the lowest index produces offset 0 in the
3834   // final value.
3835   //
3836   // This ensures that we won't combine something like this:
3837   //
3838   // load x[i] -> byte 2
3839   // load x[i+1] -> byte 0 ---> wide_load x[i]
3840   // load x[i+2] -> byte 1
3841   const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits;
3842   const unsigned ZeroByteOffset =
3843       *IsBigEndian
3844           ? bigEndianByteAt(NumLoadsInTy, 0)
3845           : littleEndianByteAt(NumLoadsInTy, 0);
3846   auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset);
3847   if (ZeroOffsetIdx == MemOffset2Idx.end() ||
3848       ZeroOffsetIdx->second != LowestIdx)
3849     return false;
3850 
3851   // We wil reuse the pointer from the load which ends up at byte offset 0. It
3852   // may not use index 0.
3853   Register Ptr = LowestIdxLoad->getPointerReg();
3854   const MachineMemOperand &MMO = LowestIdxLoad->getMMO();
3855   LegalityQuery::MemDesc MMDesc(MMO);
3856   MMDesc.MemoryTy = Ty;
3857   if (!isLegalOrBeforeLegalizer(
3858           {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}}))
3859     return false;
3860   auto PtrInfo = MMO.getPointerInfo();
3861   auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8);
3862 
3863   // Load must be allowed and fast on the target.
3864   LLVMContext &C = MF.getFunction().getContext();
3865   auto &DL = MF.getDataLayout();
3866   unsigned Fast = 0;
3867   if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) ||
3868       !Fast)
3869     return false;
3870 
3871   MatchInfo = [=](MachineIRBuilder &MIB) {
3872     MIB.setInstrAndDebugLoc(*LatestLoad);
3873     Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst;
3874     MIB.buildLoad(LoadDst, Ptr, *NewMMO);
3875     if (NeedsBSwap)
3876       MIB.buildBSwap(Dst, LoadDst);
3877   };
3878   return true;
3879 }
3880 
3881 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI,
3882                                             MachineInstr *&ExtMI) {
3883   auto &PHI = cast<GPhi>(MI);
3884   Register DstReg = PHI.getReg(0);
3885 
3886   // TODO: Extending a vector may be expensive, don't do this until heuristics
3887   // are better.
3888   if (MRI.getType(DstReg).isVector())
3889     return false;
3890 
3891   // Try to match a phi, whose only use is an extend.
3892   if (!MRI.hasOneNonDBGUse(DstReg))
3893     return false;
3894   ExtMI = &*MRI.use_instr_nodbg_begin(DstReg);
3895   switch (ExtMI->getOpcode()) {
3896   case TargetOpcode::G_ANYEXT:
3897     return true; // G_ANYEXT is usually free.
3898   case TargetOpcode::G_ZEXT:
3899   case TargetOpcode::G_SEXT:
3900     break;
3901   default:
3902     return false;
3903   }
3904 
3905   // If the target is likely to fold this extend away, don't propagate.
3906   if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI))
3907     return false;
3908 
3909   // We don't want to propagate the extends unless there's a good chance that
3910   // they'll be optimized in some way.
3911   // Collect the unique incoming values.
3912   SmallPtrSet<MachineInstr *, 4> InSrcs;
3913   for (unsigned I = 0; I < PHI.getNumIncomingValues(); ++I) {
3914     auto *DefMI = getDefIgnoringCopies(PHI.getIncomingValue(I), MRI);
3915     switch (DefMI->getOpcode()) {
3916     case TargetOpcode::G_LOAD:
3917     case TargetOpcode::G_TRUNC:
3918     case TargetOpcode::G_SEXT:
3919     case TargetOpcode::G_ZEXT:
3920     case TargetOpcode::G_ANYEXT:
3921     case TargetOpcode::G_CONSTANT:
3922       InSrcs.insert(DefMI);
3923       // Don't try to propagate if there are too many places to create new
3924       // extends, chances are it'll increase code size.
3925       if (InSrcs.size() > 2)
3926         return false;
3927       break;
3928     default:
3929       return false;
3930     }
3931   }
3932   return true;
3933 }
3934 
3935 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI,
3936                                             MachineInstr *&ExtMI) {
3937   auto &PHI = cast<GPhi>(MI);
3938   Register DstReg = ExtMI->getOperand(0).getReg();
3939   LLT ExtTy = MRI.getType(DstReg);
3940 
3941   // Propagate the extension into the block of each incoming reg's block.
3942   // Use a SetVector here because PHIs can have duplicate edges, and we want
3943   // deterministic iteration order.
3944   SmallSetVector<MachineInstr *, 8> SrcMIs;
3945   SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap;
3946   for (unsigned I = 0; I < PHI.getNumIncomingValues(); ++I) {
3947     auto SrcReg = PHI.getIncomingValue(I);
3948     auto *SrcMI = MRI.getVRegDef(SrcReg);
3949     if (!SrcMIs.insert(SrcMI))
3950       continue;
3951 
3952     // Build an extend after each src inst.
3953     auto *MBB = SrcMI->getParent();
3954     MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator();
3955     if (InsertPt != MBB->end() && InsertPt->isPHI())
3956       InsertPt = MBB->getFirstNonPHI();
3957 
3958     Builder.setInsertPt(*SrcMI->getParent(), InsertPt);
3959     Builder.setDebugLoc(MI.getDebugLoc());
3960     auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, SrcReg);
3961     OldToNewSrcMap[SrcMI] = NewExt;
3962   }
3963 
3964   // Create a new phi with the extended inputs.
3965   Builder.setInstrAndDebugLoc(MI);
3966   auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI);
3967   NewPhi.addDef(DstReg);
3968   for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
3969     if (!MO.isReg()) {
3970       NewPhi.addMBB(MO.getMBB());
3971       continue;
3972     }
3973     auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())];
3974     NewPhi.addUse(NewSrc->getOperand(0).getReg());
3975   }
3976   Builder.insertInstr(NewPhi);
3977   ExtMI->eraseFromParent();
3978 }
3979 
3980 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI,
3981                                                 Register &Reg) {
3982   assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT);
3983   // If we have a constant index, look for a G_BUILD_VECTOR source
3984   // and find the source register that the index maps to.
3985   Register SrcVec = MI.getOperand(1).getReg();
3986   LLT SrcTy = MRI.getType(SrcVec);
3987 
3988   auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
3989   if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements())
3990     return false;
3991 
3992   unsigned VecIdx = Cst->Value.getZExtValue();
3993 
3994   // Check if we have a build_vector or build_vector_trunc with an optional
3995   // trunc in front.
3996   MachineInstr *SrcVecMI = MRI.getVRegDef(SrcVec);
3997   if (SrcVecMI->getOpcode() == TargetOpcode::G_TRUNC) {
3998     SrcVecMI = MRI.getVRegDef(SrcVecMI->getOperand(1).getReg());
3999   }
4000 
4001   if (SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR &&
4002       SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR_TRUNC)
4003     return false;
4004 
4005   EVT Ty(getMVTForLLT(SrcTy));
4006   if (!MRI.hasOneNonDBGUse(SrcVec) &&
4007       !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty))
4008     return false;
4009 
4010   Reg = SrcVecMI->getOperand(VecIdx + 1).getReg();
4011   return true;
4012 }
4013 
4014 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI,
4015                                                 Register &Reg) {
4016   // Check the type of the register, since it may have come from a
4017   // G_BUILD_VECTOR_TRUNC.
4018   LLT ScalarTy = MRI.getType(Reg);
4019   Register DstReg = MI.getOperand(0).getReg();
4020   LLT DstTy = MRI.getType(DstReg);
4021 
4022   Builder.setInstrAndDebugLoc(MI);
4023   if (ScalarTy != DstTy) {
4024     assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits());
4025     Builder.buildTrunc(DstReg, Reg);
4026     MI.eraseFromParent();
4027     return;
4028   }
4029   replaceSingleDefInstWithReg(MI, Reg);
4030 }
4031 
4032 bool CombinerHelper::matchExtractAllEltsFromBuildVector(
4033     MachineInstr &MI,
4034     SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
4035   assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
4036   // This combine tries to find build_vector's which have every source element
4037   // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like
4038   // the masked load scalarization is run late in the pipeline. There's already
4039   // a combine for a similar pattern starting from the extract, but that
4040   // doesn't attempt to do it if there are multiple uses of the build_vector,
4041   // which in this case is true. Starting the combine from the build_vector
4042   // feels more natural than trying to find sibling nodes of extracts.
4043   // E.g.
4044   //  %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4
4045   //  %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0
4046   //  %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1
4047   //  %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2
4048   //  %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3
4049   // ==>
4050   // replace ext{1,2,3,4} with %s{1,2,3,4}
4051 
4052   Register DstReg = MI.getOperand(0).getReg();
4053   LLT DstTy = MRI.getType(DstReg);
4054   unsigned NumElts = DstTy.getNumElements();
4055 
4056   SmallBitVector ExtractedElts(NumElts);
4057   for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) {
4058     if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT)
4059       return false;
4060     auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI);
4061     if (!Cst)
4062       return false;
4063     unsigned Idx = Cst->getZExtValue();
4064     if (Idx >= NumElts)
4065       return false; // Out of range.
4066     ExtractedElts.set(Idx);
4067     SrcDstPairs.emplace_back(
4068         std::make_pair(MI.getOperand(Idx + 1).getReg(), &II));
4069   }
4070   // Match if every element was extracted.
4071   return ExtractedElts.all();
4072 }
4073 
4074 void CombinerHelper::applyExtractAllEltsFromBuildVector(
4075     MachineInstr &MI,
4076     SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
4077   assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
4078   for (auto &Pair : SrcDstPairs) {
4079     auto *ExtMI = Pair.second;
4080     replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first);
4081     ExtMI->eraseFromParent();
4082   }
4083   MI.eraseFromParent();
4084 }
4085 
4086 void CombinerHelper::applyBuildFn(
4087     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4088   Builder.setInstrAndDebugLoc(MI);
4089   MatchInfo(Builder);
4090   MI.eraseFromParent();
4091 }
4092 
4093 void CombinerHelper::applyBuildFnNoErase(
4094     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4095   Builder.setInstrAndDebugLoc(MI);
4096   MatchInfo(Builder);
4097 }
4098 
4099 bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI,
4100                                                BuildFnTy &MatchInfo) {
4101   assert(MI.getOpcode() == TargetOpcode::G_OR);
4102 
4103   Register Dst = MI.getOperand(0).getReg();
4104   LLT Ty = MRI.getType(Dst);
4105   unsigned BitWidth = Ty.getScalarSizeInBits();
4106 
4107   Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt;
4108   unsigned FshOpc = 0;
4109 
4110   // Match (or (shl ...), (lshr ...)).
4111   if (!mi_match(Dst, MRI,
4112                 // m_GOr() handles the commuted version as well.
4113                 m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)),
4114                       m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt)))))
4115     return false;
4116 
4117   // Given constants C0 and C1 such that C0 + C1 is bit-width:
4118   // (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1)
4119   int64_t CstShlAmt, CstLShrAmt;
4120   if (mi_match(ShlAmt, MRI, m_ICstOrSplat(CstShlAmt)) &&
4121       mi_match(LShrAmt, MRI, m_ICstOrSplat(CstLShrAmt)) &&
4122       CstShlAmt + CstLShrAmt == BitWidth) {
4123     FshOpc = TargetOpcode::G_FSHR;
4124     Amt = LShrAmt;
4125 
4126   } else if (mi_match(LShrAmt, MRI,
4127                       m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
4128              ShlAmt == Amt) {
4129     // (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt)
4130     FshOpc = TargetOpcode::G_FSHL;
4131 
4132   } else if (mi_match(ShlAmt, MRI,
4133                       m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
4134              LShrAmt == Amt) {
4135     // (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt)
4136     FshOpc = TargetOpcode::G_FSHR;
4137 
4138   } else {
4139     return false;
4140   }
4141 
4142   LLT AmtTy = MRI.getType(Amt);
4143   if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}}))
4144     return false;
4145 
4146   MatchInfo = [=](MachineIRBuilder &B) {
4147     B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt});
4148   };
4149   return true;
4150 }
4151 
4152 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate.
4153 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) {
4154   unsigned Opc = MI.getOpcode();
4155   assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
4156   Register X = MI.getOperand(1).getReg();
4157   Register Y = MI.getOperand(2).getReg();
4158   if (X != Y)
4159     return false;
4160   unsigned RotateOpc =
4161       Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR;
4162   return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}});
4163 }
4164 
4165 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) {
4166   unsigned Opc = MI.getOpcode();
4167   assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
4168   bool IsFSHL = Opc == TargetOpcode::G_FSHL;
4169   Observer.changingInstr(MI);
4170   MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL
4171                                          : TargetOpcode::G_ROTR));
4172   MI.removeOperand(2);
4173   Observer.changedInstr(MI);
4174 }
4175 
4176 // Fold (rot x, c) -> (rot x, c % BitSize)
4177 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) {
4178   assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
4179          MI.getOpcode() == TargetOpcode::G_ROTR);
4180   unsigned Bitsize =
4181       MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
4182   Register AmtReg = MI.getOperand(2).getReg();
4183   bool OutOfRange = false;
4184   auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) {
4185     if (auto *CI = dyn_cast<ConstantInt>(C))
4186       OutOfRange |= CI->getValue().uge(Bitsize);
4187     return true;
4188   };
4189   return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange;
4190 }
4191 
4192 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) {
4193   assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
4194          MI.getOpcode() == TargetOpcode::G_ROTR);
4195   unsigned Bitsize =
4196       MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
4197   Builder.setInstrAndDebugLoc(MI);
4198   Register Amt = MI.getOperand(2).getReg();
4199   LLT AmtTy = MRI.getType(Amt);
4200   auto Bits = Builder.buildConstant(AmtTy, Bitsize);
4201   Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0);
4202   Observer.changingInstr(MI);
4203   MI.getOperand(2).setReg(Amt);
4204   Observer.changedInstr(MI);
4205 }
4206 
4207 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI,
4208                                                    int64_t &MatchInfo) {
4209   assert(MI.getOpcode() == TargetOpcode::G_ICMP);
4210   auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
4211   auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg());
4212   auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg());
4213   std::optional<bool> KnownVal;
4214   switch (Pred) {
4215   default:
4216     llvm_unreachable("Unexpected G_ICMP predicate?");
4217   case CmpInst::ICMP_EQ:
4218     KnownVal = KnownBits::eq(KnownLHS, KnownRHS);
4219     break;
4220   case CmpInst::ICMP_NE:
4221     KnownVal = KnownBits::ne(KnownLHS, KnownRHS);
4222     break;
4223   case CmpInst::ICMP_SGE:
4224     KnownVal = KnownBits::sge(KnownLHS, KnownRHS);
4225     break;
4226   case CmpInst::ICMP_SGT:
4227     KnownVal = KnownBits::sgt(KnownLHS, KnownRHS);
4228     break;
4229   case CmpInst::ICMP_SLE:
4230     KnownVal = KnownBits::sle(KnownLHS, KnownRHS);
4231     break;
4232   case CmpInst::ICMP_SLT:
4233     KnownVal = KnownBits::slt(KnownLHS, KnownRHS);
4234     break;
4235   case CmpInst::ICMP_UGE:
4236     KnownVal = KnownBits::uge(KnownLHS, KnownRHS);
4237     break;
4238   case CmpInst::ICMP_UGT:
4239     KnownVal = KnownBits::ugt(KnownLHS, KnownRHS);
4240     break;
4241   case CmpInst::ICMP_ULE:
4242     KnownVal = KnownBits::ule(KnownLHS, KnownRHS);
4243     break;
4244   case CmpInst::ICMP_ULT:
4245     KnownVal = KnownBits::ult(KnownLHS, KnownRHS);
4246     break;
4247   }
4248   if (!KnownVal)
4249     return false;
4250   MatchInfo =
4251       *KnownVal
4252           ? getICmpTrueVal(getTargetLowering(),
4253                            /*IsVector = */
4254                            MRI.getType(MI.getOperand(0).getReg()).isVector(),
4255                            /* IsFP = */ false)
4256           : 0;
4257   return true;
4258 }
4259 
4260 bool CombinerHelper::matchICmpToLHSKnownBits(
4261     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4262   assert(MI.getOpcode() == TargetOpcode::G_ICMP);
4263   // Given:
4264   //
4265   // %x = G_WHATEVER (... x is known to be 0 or 1 ...)
4266   // %cmp = G_ICMP ne %x, 0
4267   //
4268   // Or:
4269   //
4270   // %x = G_WHATEVER (... x is known to be 0 or 1 ...)
4271   // %cmp = G_ICMP eq %x, 1
4272   //
4273   // We can replace %cmp with %x assuming true is 1 on the target.
4274   auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
4275   if (!CmpInst::isEquality(Pred))
4276     return false;
4277   Register Dst = MI.getOperand(0).getReg();
4278   LLT DstTy = MRI.getType(Dst);
4279   if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(),
4280                      /* IsFP = */ false) != 1)
4281     return false;
4282   int64_t OneOrZero = Pred == CmpInst::ICMP_EQ;
4283   if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero)))
4284     return false;
4285   Register LHS = MI.getOperand(2).getReg();
4286   auto KnownLHS = KB->getKnownBits(LHS);
4287   if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1)
4288     return false;
4289   // Make sure replacing Dst with the LHS is a legal operation.
4290   LLT LHSTy = MRI.getType(LHS);
4291   unsigned LHSSize = LHSTy.getSizeInBits();
4292   unsigned DstSize = DstTy.getSizeInBits();
4293   unsigned Op = TargetOpcode::COPY;
4294   if (DstSize != LHSSize)
4295     Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT;
4296   if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}}))
4297     return false;
4298   MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); };
4299   return true;
4300 }
4301 
4302 // Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0
4303 bool CombinerHelper::matchAndOrDisjointMask(
4304     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4305   assert(MI.getOpcode() == TargetOpcode::G_AND);
4306 
4307   // Ignore vector types to simplify matching the two constants.
4308   // TODO: do this for vectors and scalars via a demanded bits analysis.
4309   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
4310   if (Ty.isVector())
4311     return false;
4312 
4313   Register Src;
4314   Register AndMaskReg;
4315   int64_t AndMaskBits;
4316   int64_t OrMaskBits;
4317   if (!mi_match(MI, MRI,
4318                 m_GAnd(m_GOr(m_Reg(Src), m_ICst(OrMaskBits)),
4319                        m_all_of(m_ICst(AndMaskBits), m_Reg(AndMaskReg)))))
4320     return false;
4321 
4322   // Check if OrMask could turn on any bits in Src.
4323   if (AndMaskBits & OrMaskBits)
4324     return false;
4325 
4326   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4327     Observer.changingInstr(MI);
4328     // Canonicalize the result to have the constant on the RHS.
4329     if (MI.getOperand(1).getReg() == AndMaskReg)
4330       MI.getOperand(2).setReg(AndMaskReg);
4331     MI.getOperand(1).setReg(Src);
4332     Observer.changedInstr(MI);
4333   };
4334   return true;
4335 }
4336 
4337 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift.
4338 bool CombinerHelper::matchBitfieldExtractFromSExtInReg(
4339     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4340   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
4341   Register Dst = MI.getOperand(0).getReg();
4342   Register Src = MI.getOperand(1).getReg();
4343   LLT Ty = MRI.getType(Src);
4344   LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4345   if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}}))
4346     return false;
4347   int64_t Width = MI.getOperand(2).getImm();
4348   Register ShiftSrc;
4349   int64_t ShiftImm;
4350   if (!mi_match(
4351           Src, MRI,
4352           m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)),
4353                                   m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm))))))
4354     return false;
4355   if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits())
4356     return false;
4357 
4358   MatchInfo = [=](MachineIRBuilder &B) {
4359     auto Cst1 = B.buildConstant(ExtractTy, ShiftImm);
4360     auto Cst2 = B.buildConstant(ExtractTy, Width);
4361     B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2);
4362   };
4363   return true;
4364 }
4365 
4366 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants.
4367 bool CombinerHelper::matchBitfieldExtractFromAnd(
4368     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4369   assert(MI.getOpcode() == TargetOpcode::G_AND);
4370   Register Dst = MI.getOperand(0).getReg();
4371   LLT Ty = MRI.getType(Dst);
4372   LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4373   if (LI && !LI->isLegalOrCustom({TargetOpcode::G_UBFX, {Ty, ExtractTy}}))
4374     return false;
4375 
4376   int64_t AndImm, LSBImm;
4377   Register ShiftSrc;
4378   const unsigned Size = Ty.getScalarSizeInBits();
4379   if (!mi_match(MI.getOperand(0).getReg(), MRI,
4380                 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))),
4381                        m_ICst(AndImm))))
4382     return false;
4383 
4384   // The mask is a mask of the low bits iff imm & (imm+1) == 0.
4385   auto MaybeMask = static_cast<uint64_t>(AndImm);
4386   if (MaybeMask & (MaybeMask + 1))
4387     return false;
4388 
4389   // LSB must fit within the register.
4390   if (static_cast<uint64_t>(LSBImm) >= Size)
4391     return false;
4392 
4393   uint64_t Width = APInt(Size, AndImm).countr_one();
4394   MatchInfo = [=](MachineIRBuilder &B) {
4395     auto WidthCst = B.buildConstant(ExtractTy, Width);
4396     auto LSBCst = B.buildConstant(ExtractTy, LSBImm);
4397     B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst});
4398   };
4399   return true;
4400 }
4401 
4402 bool CombinerHelper::matchBitfieldExtractFromShr(
4403     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4404   const unsigned Opcode = MI.getOpcode();
4405   assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR);
4406 
4407   const Register Dst = MI.getOperand(0).getReg();
4408 
4409   const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR
4410                                   ? TargetOpcode::G_SBFX
4411                                   : TargetOpcode::G_UBFX;
4412 
4413   // Check if the type we would use for the extract is legal
4414   LLT Ty = MRI.getType(Dst);
4415   LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4416   if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}}))
4417     return false;
4418 
4419   Register ShlSrc;
4420   int64_t ShrAmt;
4421   int64_t ShlAmt;
4422   const unsigned Size = Ty.getScalarSizeInBits();
4423 
4424   // Try to match shr (shl x, c1), c2
4425   if (!mi_match(Dst, MRI,
4426                 m_BinOp(Opcode,
4427                         m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))),
4428                         m_ICst(ShrAmt))))
4429     return false;
4430 
4431   // Make sure that the shift sizes can fit a bitfield extract
4432   if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size)
4433     return false;
4434 
4435   // Skip this combine if the G_SEXT_INREG combine could handle it
4436   if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt)
4437     return false;
4438 
4439   // Calculate start position and width of the extract
4440   const int64_t Pos = ShrAmt - ShlAmt;
4441   const int64_t Width = Size - ShrAmt;
4442 
4443   MatchInfo = [=](MachineIRBuilder &B) {
4444     auto WidthCst = B.buildConstant(ExtractTy, Width);
4445     auto PosCst = B.buildConstant(ExtractTy, Pos);
4446     B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst});
4447   };
4448   return true;
4449 }
4450 
4451 bool CombinerHelper::matchBitfieldExtractFromShrAnd(
4452     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4453   const unsigned Opcode = MI.getOpcode();
4454   assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR);
4455 
4456   const Register Dst = MI.getOperand(0).getReg();
4457   LLT Ty = MRI.getType(Dst);
4458   LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4459   if (LI && !LI->isLegalOrCustom({TargetOpcode::G_UBFX, {Ty, ExtractTy}}))
4460     return false;
4461 
4462   // Try to match shr (and x, c1), c2
4463   Register AndSrc;
4464   int64_t ShrAmt;
4465   int64_t SMask;
4466   if (!mi_match(Dst, MRI,
4467                 m_BinOp(Opcode,
4468                         m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))),
4469                         m_ICst(ShrAmt))))
4470     return false;
4471 
4472   const unsigned Size = Ty.getScalarSizeInBits();
4473   if (ShrAmt < 0 || ShrAmt >= Size)
4474     return false;
4475 
4476   // If the shift subsumes the mask, emit the 0 directly.
4477   if (0 == (SMask >> ShrAmt)) {
4478     MatchInfo = [=](MachineIRBuilder &B) {
4479       B.buildConstant(Dst, 0);
4480     };
4481     return true;
4482   }
4483 
4484   // Check that ubfx can do the extraction, with no holes in the mask.
4485   uint64_t UMask = SMask;
4486   UMask |= maskTrailingOnes<uint64_t>(ShrAmt);
4487   UMask &= maskTrailingOnes<uint64_t>(Size);
4488   if (!isMask_64(UMask))
4489     return false;
4490 
4491   // Calculate start position and width of the extract.
4492   const int64_t Pos = ShrAmt;
4493   const int64_t Width = llvm::countr_one(UMask) - ShrAmt;
4494 
4495   // It's preferable to keep the shift, rather than form G_SBFX.
4496   // TODO: remove the G_AND via demanded bits analysis.
4497   if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size)
4498     return false;
4499 
4500   MatchInfo = [=](MachineIRBuilder &B) {
4501     auto WidthCst = B.buildConstant(ExtractTy, Width);
4502     auto PosCst = B.buildConstant(ExtractTy, Pos);
4503     B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst});
4504   };
4505   return true;
4506 }
4507 
4508 bool CombinerHelper::reassociationCanBreakAddressingModePattern(
4509     MachineInstr &MI) {
4510   auto &PtrAdd = cast<GPtrAdd>(MI);
4511 
4512   Register Src1Reg = PtrAdd.getBaseReg();
4513   auto *Src1Def = getOpcodeDef<GPtrAdd>(Src1Reg, MRI);
4514   if (!Src1Def)
4515     return false;
4516 
4517   Register Src2Reg = PtrAdd.getOffsetReg();
4518 
4519   if (MRI.hasOneNonDBGUse(Src1Reg))
4520     return false;
4521 
4522   auto C1 = getIConstantVRegVal(Src1Def->getOffsetReg(), MRI);
4523   if (!C1)
4524     return false;
4525   auto C2 = getIConstantVRegVal(Src2Reg, MRI);
4526   if (!C2)
4527     return false;
4528 
4529   const APInt &C1APIntVal = *C1;
4530   const APInt &C2APIntVal = *C2;
4531   const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue();
4532 
4533   for (auto &UseMI : MRI.use_nodbg_instructions(PtrAdd.getReg(0))) {
4534     // This combine may end up running before ptrtoint/inttoptr combines
4535     // manage to eliminate redundant conversions, so try to look through them.
4536     MachineInstr *ConvUseMI = &UseMI;
4537     unsigned ConvUseOpc = ConvUseMI->getOpcode();
4538     while (ConvUseOpc == TargetOpcode::G_INTTOPTR ||
4539            ConvUseOpc == TargetOpcode::G_PTRTOINT) {
4540       Register DefReg = ConvUseMI->getOperand(0).getReg();
4541       if (!MRI.hasOneNonDBGUse(DefReg))
4542         break;
4543       ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg);
4544       ConvUseOpc = ConvUseMI->getOpcode();
4545     }
4546     auto *LdStMI = dyn_cast<GLoadStore>(ConvUseMI);
4547     if (!LdStMI)
4548       continue;
4549     // Is x[offset2] already not a legal addressing mode? If so then
4550     // reassociating the constants breaks nothing (we test offset2 because
4551     // that's the one we hope to fold into the load or store).
4552     TargetLoweringBase::AddrMode AM;
4553     AM.HasBaseReg = true;
4554     AM.BaseOffs = C2APIntVal.getSExtValue();
4555     unsigned AS = MRI.getType(LdStMI->getPointerReg()).getAddressSpace();
4556     Type *AccessTy = getTypeForLLT(LdStMI->getMMO().getMemoryType(),
4557                                    PtrAdd.getMF()->getFunction().getContext());
4558     const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering();
4559     if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4560                                    AccessTy, AS))
4561       continue;
4562 
4563     // Would x[offset1+offset2] still be a legal addressing mode?
4564     AM.BaseOffs = CombinedValue;
4565     if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4566                                    AccessTy, AS))
4567       return true;
4568   }
4569 
4570   return false;
4571 }
4572 
4573 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI,
4574                                                   MachineInstr *RHS,
4575                                                   BuildFnTy &MatchInfo) {
4576   // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
4577   Register Src1Reg = MI.getOperand(1).getReg();
4578   if (RHS->getOpcode() != TargetOpcode::G_ADD)
4579     return false;
4580   auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI);
4581   if (!C2)
4582     return false;
4583 
4584   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4585     LLT PtrTy = MRI.getType(MI.getOperand(0).getReg());
4586 
4587     auto NewBase =
4588         Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg());
4589     Observer.changingInstr(MI);
4590     MI.getOperand(1).setReg(NewBase.getReg(0));
4591     MI.getOperand(2).setReg(RHS->getOperand(2).getReg());
4592     Observer.changedInstr(MI);
4593   };
4594   return !reassociationCanBreakAddressingModePattern(MI);
4595 }
4596 
4597 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI,
4598                                                   MachineInstr *LHS,
4599                                                   MachineInstr *RHS,
4600                                                   BuildFnTy &MatchInfo) {
4601   // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C)
4602   // if and only if (G_PTR_ADD X, C) has one use.
4603   Register LHSBase;
4604   std::optional<ValueAndVReg> LHSCstOff;
4605   if (!mi_match(MI.getBaseReg(), MRI,
4606                 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff)))))
4607     return false;
4608 
4609   auto *LHSPtrAdd = cast<GPtrAdd>(LHS);
4610   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4611     // When we change LHSPtrAdd's offset register we might cause it to use a reg
4612     // before its def. Sink the instruction so the outer PTR_ADD to ensure this
4613     // doesn't happen.
4614     LHSPtrAdd->moveBefore(&MI);
4615     Register RHSReg = MI.getOffsetReg();
4616     // set VReg will cause type mismatch if it comes from extend/trunc
4617     auto NewCst = B.buildConstant(MRI.getType(RHSReg), LHSCstOff->Value);
4618     Observer.changingInstr(MI);
4619     MI.getOperand(2).setReg(NewCst.getReg(0));
4620     Observer.changedInstr(MI);
4621     Observer.changingInstr(*LHSPtrAdd);
4622     LHSPtrAdd->getOperand(2).setReg(RHSReg);
4623     Observer.changedInstr(*LHSPtrAdd);
4624   };
4625   return !reassociationCanBreakAddressingModePattern(MI);
4626 }
4627 
4628 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI,
4629                                                         MachineInstr *LHS,
4630                                                         MachineInstr *RHS,
4631                                                         BuildFnTy &MatchInfo) {
4632   // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
4633   auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS);
4634   if (!LHSPtrAdd)
4635     return false;
4636 
4637   Register Src2Reg = MI.getOperand(2).getReg();
4638   Register LHSSrc1 = LHSPtrAdd->getBaseReg();
4639   Register LHSSrc2 = LHSPtrAdd->getOffsetReg();
4640   auto C1 = getIConstantVRegVal(LHSSrc2, MRI);
4641   if (!C1)
4642     return false;
4643   auto C2 = getIConstantVRegVal(Src2Reg, MRI);
4644   if (!C2)
4645     return false;
4646 
4647   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4648     auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2);
4649     Observer.changingInstr(MI);
4650     MI.getOperand(1).setReg(LHSSrc1);
4651     MI.getOperand(2).setReg(NewCst.getReg(0));
4652     Observer.changedInstr(MI);
4653   };
4654   return !reassociationCanBreakAddressingModePattern(MI);
4655 }
4656 
4657 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI,
4658                                         BuildFnTy &MatchInfo) {
4659   auto &PtrAdd = cast<GPtrAdd>(MI);
4660   // We're trying to match a few pointer computation patterns here for
4661   // re-association opportunities.
4662   // 1) Isolating a constant operand to be on the RHS, e.g.:
4663   // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
4664   //
4665   // 2) Folding two constants in each sub-tree as long as such folding
4666   // doesn't break a legal addressing mode.
4667   // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
4668   //
4669   // 3) Move a constant from the LHS of an inner op to the RHS of the outer.
4670   // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C)
4671   // iif (G_PTR_ADD X, C) has one use.
4672   MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg());
4673   MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg());
4674 
4675   // Try to match example 2.
4676   if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo))
4677     return true;
4678 
4679   // Try to match example 3.
4680   if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo))
4681     return true;
4682 
4683   // Try to match example 1.
4684   if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo))
4685     return true;
4686 
4687   return false;
4688 }
4689 bool CombinerHelper::tryReassocBinOp(unsigned Opc, Register DstReg,
4690                                      Register OpLHS, Register OpRHS,
4691                                      BuildFnTy &MatchInfo) {
4692   LLT OpRHSTy = MRI.getType(OpRHS);
4693   MachineInstr *OpLHSDef = MRI.getVRegDef(OpLHS);
4694 
4695   if (OpLHSDef->getOpcode() != Opc)
4696     return false;
4697 
4698   MachineInstr *OpRHSDef = MRI.getVRegDef(OpRHS);
4699   Register OpLHSLHS = OpLHSDef->getOperand(1).getReg();
4700   Register OpLHSRHS = OpLHSDef->getOperand(2).getReg();
4701 
4702   // If the inner op is (X op C), pull the constant out so it can be folded with
4703   // other constants in the expression tree. Folding is not guaranteed so we
4704   // might have (C1 op C2). In that case do not pull a constant out because it
4705   // won't help and can lead to infinite loops.
4706   if (isConstantOrConstantSplatVector(*MRI.getVRegDef(OpLHSRHS), MRI) &&
4707       !isConstantOrConstantSplatVector(*MRI.getVRegDef(OpLHSLHS), MRI)) {
4708     if (isConstantOrConstantSplatVector(*OpRHSDef, MRI)) {
4709       // (Opc (Opc X, C1), C2) -> (Opc X, (Opc C1, C2))
4710       MatchInfo = [=](MachineIRBuilder &B) {
4711         auto NewCst = B.buildInstr(Opc, {OpRHSTy}, {OpLHSRHS, OpRHS});
4712         B.buildInstr(Opc, {DstReg}, {OpLHSLHS, NewCst});
4713       };
4714       return true;
4715     }
4716     if (getTargetLowering().isReassocProfitable(MRI, OpLHS, OpRHS)) {
4717       // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
4718       //              iff (op x, c1) has one use
4719       MatchInfo = [=](MachineIRBuilder &B) {
4720         auto NewLHSLHS = B.buildInstr(Opc, {OpRHSTy}, {OpLHSLHS, OpRHS});
4721         B.buildInstr(Opc, {DstReg}, {NewLHSLHS, OpLHSRHS});
4722       };
4723       return true;
4724     }
4725   }
4726 
4727   return false;
4728 }
4729 
4730 bool CombinerHelper::matchReassocCommBinOp(MachineInstr &MI,
4731                                            BuildFnTy &MatchInfo) {
4732   // We don't check if the reassociation will break a legal addressing mode
4733   // here since pointer arithmetic is handled by G_PTR_ADD.
4734   unsigned Opc = MI.getOpcode();
4735   Register DstReg = MI.getOperand(0).getReg();
4736   Register LHSReg = MI.getOperand(1).getReg();
4737   Register RHSReg = MI.getOperand(2).getReg();
4738 
4739   if (tryReassocBinOp(Opc, DstReg, LHSReg, RHSReg, MatchInfo))
4740     return true;
4741   if (tryReassocBinOp(Opc, DstReg, RHSReg, LHSReg, MatchInfo))
4742     return true;
4743   return false;
4744 }
4745 
4746 bool CombinerHelper::matchConstantFoldCastOp(MachineInstr &MI, APInt &MatchInfo) {
4747   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4748   Register SrcOp = MI.getOperand(1).getReg();
4749 
4750   if (auto MaybeCst = ConstantFoldCastOp(MI.getOpcode(), DstTy, SrcOp, MRI)) {
4751     MatchInfo = *MaybeCst;
4752     return true;
4753   }
4754 
4755   return false;
4756 }
4757 
4758 bool CombinerHelper::matchConstantFoldBinOp(MachineInstr &MI, APInt &MatchInfo) {
4759   Register Op1 = MI.getOperand(1).getReg();
4760   Register Op2 = MI.getOperand(2).getReg();
4761   auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI);
4762   if (!MaybeCst)
4763     return false;
4764   MatchInfo = *MaybeCst;
4765   return true;
4766 }
4767 
4768 bool CombinerHelper::matchConstantFoldFPBinOp(MachineInstr &MI, ConstantFP* &MatchInfo) {
4769   Register Op1 = MI.getOperand(1).getReg();
4770   Register Op2 = MI.getOperand(2).getReg();
4771   auto MaybeCst = ConstantFoldFPBinOp(MI.getOpcode(), Op1, Op2, MRI);
4772   if (!MaybeCst)
4773     return false;
4774   MatchInfo =
4775       ConstantFP::get(MI.getMF()->getFunction().getContext(), *MaybeCst);
4776   return true;
4777 }
4778 
4779 bool CombinerHelper::matchConstantFoldFMA(MachineInstr &MI,
4780                                           ConstantFP *&MatchInfo) {
4781   assert(MI.getOpcode() == TargetOpcode::G_FMA ||
4782          MI.getOpcode() == TargetOpcode::G_FMAD);
4783   auto [_, Op1, Op2, Op3] = MI.getFirst4Regs();
4784 
4785   const ConstantFP *Op3Cst = getConstantFPVRegVal(Op3, MRI);
4786   if (!Op3Cst)
4787     return false;
4788 
4789   const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI);
4790   if (!Op2Cst)
4791     return false;
4792 
4793   const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI);
4794   if (!Op1Cst)
4795     return false;
4796 
4797   APFloat Op1F = Op1Cst->getValueAPF();
4798   Op1F.fusedMultiplyAdd(Op2Cst->getValueAPF(), Op3Cst->getValueAPF(),
4799                         APFloat::rmNearestTiesToEven);
4800   MatchInfo = ConstantFP::get(MI.getMF()->getFunction().getContext(), Op1F);
4801   return true;
4802 }
4803 
4804 bool CombinerHelper::matchNarrowBinopFeedingAnd(
4805     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4806   // Look for a binop feeding into an AND with a mask:
4807   //
4808   // %add = G_ADD %lhs, %rhs
4809   // %and = G_AND %add, 000...11111111
4810   //
4811   // Check if it's possible to perform the binop at a narrower width and zext
4812   // back to the original width like so:
4813   //
4814   // %narrow_lhs = G_TRUNC %lhs
4815   // %narrow_rhs = G_TRUNC %rhs
4816   // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs
4817   // %new_add = G_ZEXT %narrow_add
4818   // %and = G_AND %new_add, 000...11111111
4819   //
4820   // This can allow later combines to eliminate the G_AND if it turns out
4821   // that the mask is irrelevant.
4822   assert(MI.getOpcode() == TargetOpcode::G_AND);
4823   Register Dst = MI.getOperand(0).getReg();
4824   Register AndLHS = MI.getOperand(1).getReg();
4825   Register AndRHS = MI.getOperand(2).getReg();
4826   LLT WideTy = MRI.getType(Dst);
4827 
4828   // If the potential binop has more than one use, then it's possible that one
4829   // of those uses will need its full width.
4830   if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS))
4831     return false;
4832 
4833   // Check if the LHS feeding the AND is impacted by the high bits that we're
4834   // masking out.
4835   //
4836   // e.g. for 64-bit x, y:
4837   //
4838   // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535
4839   MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI);
4840   if (!LHSInst)
4841     return false;
4842   unsigned LHSOpc = LHSInst->getOpcode();
4843   switch (LHSOpc) {
4844   default:
4845     return false;
4846   case TargetOpcode::G_ADD:
4847   case TargetOpcode::G_SUB:
4848   case TargetOpcode::G_MUL:
4849   case TargetOpcode::G_AND:
4850   case TargetOpcode::G_OR:
4851   case TargetOpcode::G_XOR:
4852     break;
4853   }
4854 
4855   // Find the mask on the RHS.
4856   auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI);
4857   if (!Cst)
4858     return false;
4859   auto Mask = Cst->Value;
4860   if (!Mask.isMask())
4861     return false;
4862 
4863   // No point in combining if there's nothing to truncate.
4864   unsigned NarrowWidth = Mask.countr_one();
4865   if (NarrowWidth == WideTy.getSizeInBits())
4866     return false;
4867   LLT NarrowTy = LLT::scalar(NarrowWidth);
4868 
4869   // Check if adding the zext + truncates could be harmful.
4870   auto &MF = *MI.getMF();
4871   const auto &TLI = getTargetLowering();
4872   LLVMContext &Ctx = MF.getFunction().getContext();
4873   auto &DL = MF.getDataLayout();
4874   if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) ||
4875       !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx))
4876     return false;
4877   if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) ||
4878       !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}}))
4879     return false;
4880   Register BinOpLHS = LHSInst->getOperand(1).getReg();
4881   Register BinOpRHS = LHSInst->getOperand(2).getReg();
4882   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4883     auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS);
4884     auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS);
4885     auto NarrowBinOp =
4886         Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS});
4887     auto Ext = Builder.buildZExt(WideTy, NarrowBinOp);
4888     Observer.changingInstr(MI);
4889     MI.getOperand(1).setReg(Ext.getReg(0));
4890     Observer.changedInstr(MI);
4891   };
4892   return true;
4893 }
4894 
4895 bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) {
4896   unsigned Opc = MI.getOpcode();
4897   assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO);
4898 
4899   if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2)))
4900     return false;
4901 
4902   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4903     Observer.changingInstr(MI);
4904     unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO
4905                                                    : TargetOpcode::G_SADDO;
4906     MI.setDesc(Builder.getTII().get(NewOpc));
4907     MI.getOperand(3).setReg(MI.getOperand(2).getReg());
4908     Observer.changedInstr(MI);
4909   };
4910   return true;
4911 }
4912 
4913 bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) {
4914   // (G_*MULO x, 0) -> 0 + no carry out
4915   assert(MI.getOpcode() == TargetOpcode::G_UMULO ||
4916          MI.getOpcode() == TargetOpcode::G_SMULO);
4917   if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0)))
4918     return false;
4919   Register Dst = MI.getOperand(0).getReg();
4920   Register Carry = MI.getOperand(1).getReg();
4921   if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) ||
4922       !isConstantLegalOrBeforeLegalizer(MRI.getType(Carry)))
4923     return false;
4924   MatchInfo = [=](MachineIRBuilder &B) {
4925     B.buildConstant(Dst, 0);
4926     B.buildConstant(Carry, 0);
4927   };
4928   return true;
4929 }
4930 
4931 bool CombinerHelper::matchAddOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) {
4932   // (G_*ADDO x, 0) -> x + no carry out
4933   assert(MI.getOpcode() == TargetOpcode::G_UADDO ||
4934          MI.getOpcode() == TargetOpcode::G_SADDO);
4935   if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0)))
4936     return false;
4937   Register Carry = MI.getOperand(1).getReg();
4938   if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry)))
4939     return false;
4940   Register Dst = MI.getOperand(0).getReg();
4941   Register LHS = MI.getOperand(2).getReg();
4942   MatchInfo = [=](MachineIRBuilder &B) {
4943     B.buildCopy(Dst, LHS);
4944     B.buildConstant(Carry, 0);
4945   };
4946   return true;
4947 }
4948 
4949 bool CombinerHelper::matchAddEToAddO(MachineInstr &MI, BuildFnTy &MatchInfo) {
4950   // (G_*ADDE x, y, 0) -> (G_*ADDO x, y)
4951   // (G_*SUBE x, y, 0) -> (G_*SUBO x, y)
4952   assert(MI.getOpcode() == TargetOpcode::G_UADDE ||
4953          MI.getOpcode() == TargetOpcode::G_SADDE ||
4954          MI.getOpcode() == TargetOpcode::G_USUBE ||
4955          MI.getOpcode() == TargetOpcode::G_SSUBE);
4956   if (!mi_match(MI.getOperand(4).getReg(), MRI, m_SpecificICstOrSplat(0)))
4957     return false;
4958   MatchInfo = [&](MachineIRBuilder &B) {
4959     unsigned NewOpcode;
4960     switch (MI.getOpcode()) {
4961     case TargetOpcode::G_UADDE:
4962       NewOpcode = TargetOpcode::G_UADDO;
4963       break;
4964     case TargetOpcode::G_SADDE:
4965       NewOpcode = TargetOpcode::G_SADDO;
4966       break;
4967     case TargetOpcode::G_USUBE:
4968       NewOpcode = TargetOpcode::G_USUBO;
4969       break;
4970     case TargetOpcode::G_SSUBE:
4971       NewOpcode = TargetOpcode::G_SSUBO;
4972       break;
4973     }
4974     Observer.changingInstr(MI);
4975     MI.setDesc(B.getTII().get(NewOpcode));
4976     MI.removeOperand(4);
4977     Observer.changedInstr(MI);
4978   };
4979   return true;
4980 }
4981 
4982 bool CombinerHelper::matchSubAddSameReg(MachineInstr &MI,
4983                                         BuildFnTy &MatchInfo) {
4984   assert(MI.getOpcode() == TargetOpcode::G_SUB);
4985   Register Dst = MI.getOperand(0).getReg();
4986   // (x + y) - z -> x (if y == z)
4987   // (x + y) - z -> y (if x == z)
4988   Register X, Y, Z;
4989   if (mi_match(Dst, MRI, m_GSub(m_GAdd(m_Reg(X), m_Reg(Y)), m_Reg(Z)))) {
4990     Register ReplaceReg;
4991     int64_t CstX, CstY;
4992     if (Y == Z || (mi_match(Y, MRI, m_ICstOrSplat(CstY)) &&
4993                    mi_match(Z, MRI, m_SpecificICstOrSplat(CstY))))
4994       ReplaceReg = X;
4995     else if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
4996                         mi_match(Z, MRI, m_SpecificICstOrSplat(CstX))))
4997       ReplaceReg = Y;
4998     if (ReplaceReg) {
4999       MatchInfo = [=](MachineIRBuilder &B) { B.buildCopy(Dst, ReplaceReg); };
5000       return true;
5001     }
5002   }
5003 
5004   // x - (y + z) -> 0 - y (if x == z)
5005   // x - (y + z) -> 0 - z (if x == y)
5006   if (mi_match(Dst, MRI, m_GSub(m_Reg(X), m_GAdd(m_Reg(Y), m_Reg(Z))))) {
5007     Register ReplaceReg;
5008     int64_t CstX;
5009     if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
5010                    mi_match(Z, MRI, m_SpecificICstOrSplat(CstX))))
5011       ReplaceReg = Y;
5012     else if (X == Y || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
5013                         mi_match(Y, MRI, m_SpecificICstOrSplat(CstX))))
5014       ReplaceReg = Z;
5015     if (ReplaceReg) {
5016       MatchInfo = [=](MachineIRBuilder &B) {
5017         auto Zero = B.buildConstant(MRI.getType(Dst), 0);
5018         B.buildSub(Dst, Zero, ReplaceReg);
5019       };
5020       return true;
5021     }
5022   }
5023   return false;
5024 }
5025 
5026 MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) {
5027   assert(MI.getOpcode() == TargetOpcode::G_UDIV);
5028   auto &UDiv = cast<GenericMachineInstr>(MI);
5029   Register Dst = UDiv.getReg(0);
5030   Register LHS = UDiv.getReg(1);
5031   Register RHS = UDiv.getReg(2);
5032   LLT Ty = MRI.getType(Dst);
5033   LLT ScalarTy = Ty.getScalarType();
5034   const unsigned EltBits = ScalarTy.getScalarSizeInBits();
5035   LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
5036   LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType();
5037   auto &MIB = Builder;
5038   MIB.setInstrAndDebugLoc(MI);
5039 
5040   bool UseNPQ = false;
5041   SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5042 
5043   auto BuildUDIVPattern = [&](const Constant *C) {
5044     auto *CI = cast<ConstantInt>(C);
5045     const APInt &Divisor = CI->getValue();
5046 
5047     bool SelNPQ = false;
5048     APInt Magic(Divisor.getBitWidth(), 0);
5049     unsigned PreShift = 0, PostShift = 0;
5050 
5051     // Magic algorithm doesn't work for division by 1. We need to emit a select
5052     // at the end.
5053     // TODO: Use undef values for divisor of 1.
5054     if (!Divisor.isOne()) {
5055       UnsignedDivisionByConstantInfo magics =
5056           UnsignedDivisionByConstantInfo::get(Divisor);
5057 
5058       Magic = std::move(magics.Magic);
5059 
5060       assert(magics.PreShift < Divisor.getBitWidth() &&
5061              "We shouldn't generate an undefined shift!");
5062       assert(magics.PostShift < Divisor.getBitWidth() &&
5063              "We shouldn't generate an undefined shift!");
5064       assert((!magics.IsAdd || magics.PreShift == 0) && "Unexpected pre-shift");
5065       PreShift = magics.PreShift;
5066       PostShift = magics.PostShift;
5067       SelNPQ = magics.IsAdd;
5068     }
5069 
5070     PreShifts.push_back(
5071         MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0));
5072     MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0));
5073     NPQFactors.push_back(
5074         MIB.buildConstant(ScalarTy,
5075                           SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5076                                  : APInt::getZero(EltBits))
5077             .getReg(0));
5078     PostShifts.push_back(
5079         MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0));
5080     UseNPQ |= SelNPQ;
5081     return true;
5082   };
5083 
5084   // Collect the shifts/magic values from each element.
5085   bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern);
5086   (void)Matched;
5087   assert(Matched && "Expected unary predicate match to succeed");
5088 
5089   Register PreShift, PostShift, MagicFactor, NPQFactor;
5090   auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI);
5091   if (RHSDef) {
5092     PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0);
5093     MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0);
5094     NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0);
5095     PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0);
5096   } else {
5097     assert(MRI.getType(RHS).isScalar() &&
5098            "Non-build_vector operation should have been a scalar");
5099     PreShift = PreShifts[0];
5100     MagicFactor = MagicFactors[0];
5101     PostShift = PostShifts[0];
5102   }
5103 
5104   Register Q = LHS;
5105   Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0);
5106 
5107   // Multiply the numerator (operand 0) by the magic value.
5108   Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0);
5109 
5110   if (UseNPQ) {
5111     Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0);
5112 
5113     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5114     // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero.
5115     if (Ty.isVector())
5116       NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0);
5117     else
5118       NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0);
5119 
5120     Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0);
5121   }
5122 
5123   Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0);
5124   auto One = MIB.buildConstant(Ty, 1);
5125   auto IsOne = MIB.buildICmp(
5126       CmpInst::Predicate::ICMP_EQ,
5127       Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One);
5128   return MIB.buildSelect(Ty, IsOne, LHS, Q);
5129 }
5130 
5131 bool CombinerHelper::matchUDivByConst(MachineInstr &MI) {
5132   assert(MI.getOpcode() == TargetOpcode::G_UDIV);
5133   Register Dst = MI.getOperand(0).getReg();
5134   Register RHS = MI.getOperand(2).getReg();
5135   LLT DstTy = MRI.getType(Dst);
5136   auto *RHSDef = MRI.getVRegDef(RHS);
5137   if (!isConstantOrConstantVector(*RHSDef, MRI))
5138     return false;
5139 
5140   auto &MF = *MI.getMF();
5141   AttributeList Attr = MF.getFunction().getAttributes();
5142   const auto &TLI = getTargetLowering();
5143   LLVMContext &Ctx = MF.getFunction().getContext();
5144   auto &DL = MF.getDataLayout();
5145   if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr))
5146     return false;
5147 
5148   // Don't do this for minsize because the instruction sequence is usually
5149   // larger.
5150   if (MF.getFunction().hasMinSize())
5151     return false;
5152 
5153   // Don't do this if the types are not going to be legal.
5154   if (LI) {
5155     if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}}))
5156       return false;
5157     if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}}))
5158       return false;
5159     if (!isLegalOrBeforeLegalizer(
5160             {TargetOpcode::G_ICMP,
5161              {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1),
5162               DstTy}}))
5163       return false;
5164   }
5165 
5166   auto CheckEltValue = [&](const Constant *C) {
5167     if (auto *CI = dyn_cast_or_null<ConstantInt>(C))
5168       return !CI->isZero();
5169     return false;
5170   };
5171   return matchUnaryPredicate(MRI, RHS, CheckEltValue);
5172 }
5173 
5174 void CombinerHelper::applyUDivByConst(MachineInstr &MI) {
5175   auto *NewMI = buildUDivUsingMul(MI);
5176   replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg());
5177 }
5178 
5179 bool CombinerHelper::matchSDivByConst(MachineInstr &MI) {
5180   assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV");
5181   Register Dst = MI.getOperand(0).getReg();
5182   Register RHS = MI.getOperand(2).getReg();
5183   LLT DstTy = MRI.getType(Dst);
5184 
5185   auto &MF = *MI.getMF();
5186   AttributeList Attr = MF.getFunction().getAttributes();
5187   const auto &TLI = getTargetLowering();
5188   LLVMContext &Ctx = MF.getFunction().getContext();
5189   auto &DL = MF.getDataLayout();
5190   if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr))
5191     return false;
5192 
5193   // Don't do this for minsize because the instruction sequence is usually
5194   // larger.
5195   if (MF.getFunction().hasMinSize())
5196     return false;
5197 
5198   // If the sdiv has an 'exact' flag we can use a simpler lowering.
5199   if (MI.getFlag(MachineInstr::MIFlag::IsExact)) {
5200     return matchUnaryPredicate(
5201         MRI, RHS, [](const Constant *C) { return C && !C->isZeroValue(); });
5202   }
5203 
5204   // Don't support the general case for now.
5205   return false;
5206 }
5207 
5208 void CombinerHelper::applySDivByConst(MachineInstr &MI) {
5209   auto *NewMI = buildSDivUsingMul(MI);
5210   replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg());
5211 }
5212 
5213 MachineInstr *CombinerHelper::buildSDivUsingMul(MachineInstr &MI) {
5214   assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV");
5215   auto &SDiv = cast<GenericMachineInstr>(MI);
5216   Register Dst = SDiv.getReg(0);
5217   Register LHS = SDiv.getReg(1);
5218   Register RHS = SDiv.getReg(2);
5219   LLT Ty = MRI.getType(Dst);
5220   LLT ScalarTy = Ty.getScalarType();
5221   LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
5222   LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType();
5223   auto &MIB = Builder;
5224   MIB.setInstrAndDebugLoc(MI);
5225 
5226   bool UseSRA = false;
5227   SmallVector<Register, 16> Shifts, Factors;
5228 
5229   auto *RHSDef = cast<GenericMachineInstr>(getDefIgnoringCopies(RHS, MRI));
5230   bool IsSplat = getIConstantSplatVal(*RHSDef, MRI).has_value();
5231 
5232   auto BuildSDIVPattern = [&](const Constant *C) {
5233     // Don't recompute inverses for each splat element.
5234     if (IsSplat && !Factors.empty()) {
5235       Shifts.push_back(Shifts[0]);
5236       Factors.push_back(Factors[0]);
5237       return true;
5238     }
5239 
5240     auto *CI = cast<ConstantInt>(C);
5241     APInt Divisor = CI->getValue();
5242     unsigned Shift = Divisor.countr_zero();
5243     if (Shift) {
5244       Divisor.ashrInPlace(Shift);
5245       UseSRA = true;
5246     }
5247 
5248     // Calculate the multiplicative inverse modulo BW.
5249     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5250     unsigned W = Divisor.getBitWidth();
5251     APInt Factor = Divisor.zext(W + 1)
5252                        .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5253                        .trunc(W);
5254     Shifts.push_back(MIB.buildConstant(ScalarShiftAmtTy, Shift).getReg(0));
5255     Factors.push_back(MIB.buildConstant(ScalarTy, Factor).getReg(0));
5256     return true;
5257   };
5258 
5259   // Collect all magic values from the build vector.
5260   bool Matched = matchUnaryPredicate(MRI, RHS, BuildSDIVPattern);
5261   (void)Matched;
5262   assert(Matched && "Expected unary predicate match to succeed");
5263 
5264   Register Shift, Factor;
5265   if (Ty.isVector()) {
5266     Shift = MIB.buildBuildVector(ShiftAmtTy, Shifts).getReg(0);
5267     Factor = MIB.buildBuildVector(Ty, Factors).getReg(0);
5268   } else {
5269     Shift = Shifts[0];
5270     Factor = Factors[0];
5271   }
5272 
5273   Register Res = LHS;
5274 
5275   if (UseSRA)
5276     Res = MIB.buildAShr(Ty, Res, Shift, MachineInstr::IsExact).getReg(0);
5277 
5278   return MIB.buildMul(Ty, Res, Factor);
5279 }
5280 
5281 bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) {
5282   assert(MI.getOpcode() == TargetOpcode::G_UMULH);
5283   Register RHS = MI.getOperand(2).getReg();
5284   Register Dst = MI.getOperand(0).getReg();
5285   LLT Ty = MRI.getType(Dst);
5286   LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
5287   auto MatchPow2ExceptOne = [&](const Constant *C) {
5288     if (auto *CI = dyn_cast<ConstantInt>(C))
5289       return CI->getValue().isPowerOf2() && !CI->getValue().isOne();
5290     return false;
5291   };
5292   if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false))
5293     return false;
5294   return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}});
5295 }
5296 
5297 void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) {
5298   Register LHS = MI.getOperand(1).getReg();
5299   Register RHS = MI.getOperand(2).getReg();
5300   Register Dst = MI.getOperand(0).getReg();
5301   LLT Ty = MRI.getType(Dst);
5302   LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
5303   unsigned NumEltBits = Ty.getScalarSizeInBits();
5304 
5305   Builder.setInstrAndDebugLoc(MI);
5306   auto LogBase2 = buildLogBase2(RHS, Builder);
5307   auto ShiftAmt =
5308       Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2);
5309   auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt);
5310   Builder.buildLShr(Dst, LHS, Trunc);
5311   MI.eraseFromParent();
5312 }
5313 
5314 bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI,
5315                                                BuildFnTy &MatchInfo) {
5316   unsigned Opc = MI.getOpcode();
5317   assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB ||
5318          Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||
5319          Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA);
5320 
5321   Register Dst = MI.getOperand(0).getReg();
5322   Register X = MI.getOperand(1).getReg();
5323   Register Y = MI.getOperand(2).getReg();
5324   LLT Type = MRI.getType(Dst);
5325 
5326   // fold (fadd x, fneg(y)) -> (fsub x, y)
5327   // fold (fadd fneg(y), x) -> (fsub x, y)
5328   // G_ADD is commutative so both cases are checked by m_GFAdd
5329   if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
5330       isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) {
5331     Opc = TargetOpcode::G_FSUB;
5332   }
5333   /// fold (fsub x, fneg(y)) -> (fadd x, y)
5334   else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
5335            isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) {
5336     Opc = TargetOpcode::G_FADD;
5337   }
5338   // fold (fmul fneg(x), fneg(y)) -> (fmul x, y)
5339   // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y)
5340   // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z)
5341   // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z)
5342   else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||
5343             Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) &&
5344            mi_match(X, MRI, m_GFNeg(m_Reg(X))) &&
5345            mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) {
5346     // no opcode change
5347   } else
5348     return false;
5349 
5350   MatchInfo = [=, &MI](MachineIRBuilder &B) {
5351     Observer.changingInstr(MI);
5352     MI.setDesc(B.getTII().get(Opc));
5353     MI.getOperand(1).setReg(X);
5354     MI.getOperand(2).setReg(Y);
5355     Observer.changedInstr(MI);
5356   };
5357   return true;
5358 }
5359 
5360 bool CombinerHelper::matchFsubToFneg(MachineInstr &MI, Register &MatchInfo) {
5361   assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5362 
5363   Register LHS = MI.getOperand(1).getReg();
5364   MatchInfo = MI.getOperand(2).getReg();
5365   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
5366 
5367   const auto LHSCst = Ty.isVector()
5368                           ? getFConstantSplat(LHS, MRI, /* allowUndef */ true)
5369                           : getFConstantVRegValWithLookThrough(LHS, MRI);
5370   if (!LHSCst)
5371     return false;
5372 
5373   // -0.0 is always allowed
5374   if (LHSCst->Value.isNegZero())
5375     return true;
5376 
5377   // +0.0 is only allowed if nsz is set.
5378   if (LHSCst->Value.isPosZero())
5379     return MI.getFlag(MachineInstr::FmNsz);
5380 
5381   return false;
5382 }
5383 
5384 void CombinerHelper::applyFsubToFneg(MachineInstr &MI, Register &MatchInfo) {
5385   Builder.setInstrAndDebugLoc(MI);
5386   Register Dst = MI.getOperand(0).getReg();
5387   Builder.buildFNeg(
5388       Dst, Builder.buildFCanonicalize(MRI.getType(Dst), MatchInfo).getReg(0));
5389   eraseInst(MI);
5390 }
5391 
5392 /// Checks if \p MI is TargetOpcode::G_FMUL and contractable either
5393 /// due to global flags or MachineInstr flags.
5394 static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) {
5395   if (MI.getOpcode() != TargetOpcode::G_FMUL)
5396     return false;
5397   return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract);
5398 }
5399 
5400 static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1,
5401                         const MachineRegisterInfo &MRI) {
5402   return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()),
5403                        MRI.use_instr_nodbg_end()) >
5404          std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()),
5405                        MRI.use_instr_nodbg_end());
5406 }
5407 
5408 bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI,
5409                                          bool &AllowFusionGlobally,
5410                                          bool &HasFMAD, bool &Aggressive,
5411                                          bool CanReassociate) {
5412 
5413   auto *MF = MI.getMF();
5414   const auto &TLI = *MF->getSubtarget().getTargetLowering();
5415   const TargetOptions &Options = MF->getTarget().Options;
5416   LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5417 
5418   if (CanReassociate &&
5419       !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc)))
5420     return false;
5421 
5422   // Floating-point multiply-add with intermediate rounding.
5423   HasFMAD = (!isPreLegalize() && TLI.isFMADLegal(MI, DstType));
5424   // Floating-point multiply-add without intermediate rounding.
5425   bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) &&
5426                 isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}});
5427   // No valid opcode, do not combine.
5428   if (!HasFMAD && !HasFMA)
5429     return false;
5430 
5431   AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast ||
5432                         Options.UnsafeFPMath || HasFMAD;
5433   // If the addition is not contractable, do not combine.
5434   if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract))
5435     return false;
5436 
5437   Aggressive = TLI.enableAggressiveFMAFusion(DstType);
5438   return true;
5439 }
5440 
5441 bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA(
5442     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5443   assert(MI.getOpcode() == TargetOpcode::G_FADD);
5444 
5445   bool AllowFusionGlobally, HasFMAD, Aggressive;
5446   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5447     return false;
5448 
5449   Register Op1 = MI.getOperand(1).getReg();
5450   Register Op2 = MI.getOperand(2).getReg();
5451   DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5452   DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5453   unsigned PreferredFusedOpcode =
5454       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5455 
5456   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5457   // prefer to fold the multiply with fewer uses.
5458   if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5459       isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5460     if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5461       std::swap(LHS, RHS);
5462   }
5463 
5464   // fold (fadd (fmul x, y), z) -> (fma x, y, z)
5465   if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5466       (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) {
5467     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5468       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5469                    {LHS.MI->getOperand(1).getReg(),
5470                     LHS.MI->getOperand(2).getReg(), RHS.Reg});
5471     };
5472     return true;
5473   }
5474 
5475   // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
5476   if (isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
5477       (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) {
5478     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5479       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5480                    {RHS.MI->getOperand(1).getReg(),
5481                     RHS.MI->getOperand(2).getReg(), LHS.Reg});
5482     };
5483     return true;
5484   }
5485 
5486   return false;
5487 }
5488 
5489 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA(
5490     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5491   assert(MI.getOpcode() == TargetOpcode::G_FADD);
5492 
5493   bool AllowFusionGlobally, HasFMAD, Aggressive;
5494   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5495     return false;
5496 
5497   const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
5498   Register Op1 = MI.getOperand(1).getReg();
5499   Register Op2 = MI.getOperand(2).getReg();
5500   DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5501   DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5502   LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5503 
5504   unsigned PreferredFusedOpcode =
5505       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5506 
5507   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5508   // prefer to fold the multiply with fewer uses.
5509   if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5510       isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5511     if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5512       std::swap(LHS, RHS);
5513   }
5514 
5515   // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
5516   MachineInstr *FpExtSrc;
5517   if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
5518       isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
5519       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5520                           MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
5521     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5522       auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
5523       auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
5524       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5525                    {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg});
5526     };
5527     return true;
5528   }
5529 
5530   // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z)
5531   // Note: Commutes FADD operands.
5532   if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
5533       isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
5534       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5535                           MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
5536     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5537       auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
5538       auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
5539       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5540                    {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg});
5541     };
5542     return true;
5543   }
5544 
5545   return false;
5546 }
5547 
5548 bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA(
5549     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5550   assert(MI.getOpcode() == TargetOpcode::G_FADD);
5551 
5552   bool AllowFusionGlobally, HasFMAD, Aggressive;
5553   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true))
5554     return false;
5555 
5556   Register Op1 = MI.getOperand(1).getReg();
5557   Register Op2 = MI.getOperand(2).getReg();
5558   DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5559   DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5560   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5561 
5562   unsigned PreferredFusedOpcode =
5563       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5564 
5565   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5566   // prefer to fold the multiply with fewer uses.
5567   if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5568       isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5569     if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5570       std::swap(LHS, RHS);
5571   }
5572 
5573   MachineInstr *FMA = nullptr;
5574   Register Z;
5575   // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z))
5576   if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
5577       (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() ==
5578        TargetOpcode::G_FMUL) &&
5579       MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) &&
5580       MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) {
5581     FMA = LHS.MI;
5582     Z = RHS.Reg;
5583   }
5584   // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z))
5585   else if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
5586            (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() ==
5587             TargetOpcode::G_FMUL) &&
5588            MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) &&
5589            MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) {
5590     Z = LHS.Reg;
5591     FMA = RHS.MI;
5592   }
5593 
5594   if (FMA) {
5595     MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg());
5596     Register X = FMA->getOperand(1).getReg();
5597     Register Y = FMA->getOperand(2).getReg();
5598     Register U = FMulMI->getOperand(1).getReg();
5599     Register V = FMulMI->getOperand(2).getReg();
5600 
5601     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5602       Register InnerFMA = MRI.createGenericVirtualRegister(DstTy);
5603       B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z});
5604       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5605                    {X, Y, InnerFMA});
5606     };
5607     return true;
5608   }
5609 
5610   return false;
5611 }
5612 
5613 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive(
5614     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5615   assert(MI.getOpcode() == TargetOpcode::G_FADD);
5616 
5617   bool AllowFusionGlobally, HasFMAD, Aggressive;
5618   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5619     return false;
5620 
5621   if (!Aggressive)
5622     return false;
5623 
5624   const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
5625   LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5626   Register Op1 = MI.getOperand(1).getReg();
5627   Register Op2 = MI.getOperand(2).getReg();
5628   DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5629   DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5630 
5631   unsigned PreferredFusedOpcode =
5632       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5633 
5634   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5635   // prefer to fold the multiply with fewer uses.
5636   if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5637       isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5638     if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5639       std::swap(LHS, RHS);
5640   }
5641 
5642   // Builds: (fma x, y, (fma (fpext u), (fpext v), z))
5643   auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X,
5644                                  Register Y, MachineIRBuilder &B) {
5645     Register FpExtU = B.buildFPExt(DstType, U).getReg(0);
5646     Register FpExtV = B.buildFPExt(DstType, V).getReg(0);
5647     Register InnerFMA =
5648         B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z})
5649             .getReg(0);
5650     B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5651                  {X, Y, InnerFMA});
5652   };
5653 
5654   MachineInstr *FMulMI, *FMAMI;
5655   // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
5656   //   -> (fma x, y, (fma (fpext u), (fpext v), z))
5657   if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
5658       mi_match(LHS.MI->getOperand(3).getReg(), MRI,
5659                m_GFPExt(m_MInstr(FMulMI))) &&
5660       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5661       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5662                           MRI.getType(FMulMI->getOperand(0).getReg()))) {
5663     MatchInfo = [=](MachineIRBuilder &B) {
5664       buildMatchInfo(FMulMI->getOperand(1).getReg(),
5665                      FMulMI->getOperand(2).getReg(), RHS.Reg,
5666                      LHS.MI->getOperand(1).getReg(),
5667                      LHS.MI->getOperand(2).getReg(), B);
5668     };
5669     return true;
5670   }
5671 
5672   // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
5673   //   -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
5674   // FIXME: This turns two single-precision and one double-precision
5675   // operation into two double-precision operations, which might not be
5676   // interesting for all targets, especially GPUs.
5677   if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
5678       FMAMI->getOpcode() == PreferredFusedOpcode) {
5679     MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
5680     if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5681         TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5682                             MRI.getType(FMAMI->getOperand(0).getReg()))) {
5683       MatchInfo = [=](MachineIRBuilder &B) {
5684         Register X = FMAMI->getOperand(1).getReg();
5685         Register Y = FMAMI->getOperand(2).getReg();
5686         X = B.buildFPExt(DstType, X).getReg(0);
5687         Y = B.buildFPExt(DstType, Y).getReg(0);
5688         buildMatchInfo(FMulMI->getOperand(1).getReg(),
5689                        FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B);
5690       };
5691 
5692       return true;
5693     }
5694   }
5695 
5696   // fold (fadd z, (fma x, y, (fpext (fmul u, v)))
5697   //   -> (fma x, y, (fma (fpext u), (fpext v), z))
5698   if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
5699       mi_match(RHS.MI->getOperand(3).getReg(), MRI,
5700                m_GFPExt(m_MInstr(FMulMI))) &&
5701       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5702       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5703                           MRI.getType(FMulMI->getOperand(0).getReg()))) {
5704     MatchInfo = [=](MachineIRBuilder &B) {
5705       buildMatchInfo(FMulMI->getOperand(1).getReg(),
5706                      FMulMI->getOperand(2).getReg(), LHS.Reg,
5707                      RHS.MI->getOperand(1).getReg(),
5708                      RHS.MI->getOperand(2).getReg(), B);
5709     };
5710     return true;
5711   }
5712 
5713   // fold (fadd z, (fpext (fma x, y, (fmul u, v)))
5714   //   -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
5715   // FIXME: This turns two single-precision and one double-precision
5716   // operation into two double-precision operations, which might not be
5717   // interesting for all targets, especially GPUs.
5718   if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
5719       FMAMI->getOpcode() == PreferredFusedOpcode) {
5720     MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
5721     if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5722         TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5723                             MRI.getType(FMAMI->getOperand(0).getReg()))) {
5724       MatchInfo = [=](MachineIRBuilder &B) {
5725         Register X = FMAMI->getOperand(1).getReg();
5726         Register Y = FMAMI->getOperand(2).getReg();
5727         X = B.buildFPExt(DstType, X).getReg(0);
5728         Y = B.buildFPExt(DstType, Y).getReg(0);
5729         buildMatchInfo(FMulMI->getOperand(1).getReg(),
5730                        FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B);
5731       };
5732       return true;
5733     }
5734   }
5735 
5736   return false;
5737 }
5738 
5739 bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA(
5740     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5741   assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5742 
5743   bool AllowFusionGlobally, HasFMAD, Aggressive;
5744   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5745     return false;
5746 
5747   Register Op1 = MI.getOperand(1).getReg();
5748   Register Op2 = MI.getOperand(2).getReg();
5749   DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5750   DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5751   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5752 
5753   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5754   // prefer to fold the multiply with fewer uses.
5755   int FirstMulHasFewerUses = true;
5756   if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5757       isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
5758       hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5759     FirstMulHasFewerUses = false;
5760 
5761   unsigned PreferredFusedOpcode =
5762       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5763 
5764   // fold (fsub (fmul x, y), z) -> (fma x, y, -z)
5765   if (FirstMulHasFewerUses &&
5766       (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5767        (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) {
5768     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5769       Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0);
5770       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5771                    {LHS.MI->getOperand(1).getReg(),
5772                     LHS.MI->getOperand(2).getReg(), NegZ});
5773     };
5774     return true;
5775   }
5776   // fold (fsub x, (fmul y, z)) -> (fma -y, z, x)
5777   else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
5778             (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) {
5779     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5780       Register NegY =
5781           B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0);
5782       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5783                    {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg});
5784     };
5785     return true;
5786   }
5787 
5788   return false;
5789 }
5790 
5791 bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA(
5792     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5793   assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5794 
5795   bool AllowFusionGlobally, HasFMAD, Aggressive;
5796   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5797     return false;
5798 
5799   Register LHSReg = MI.getOperand(1).getReg();
5800   Register RHSReg = MI.getOperand(2).getReg();
5801   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5802 
5803   unsigned PreferredFusedOpcode =
5804       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5805 
5806   MachineInstr *FMulMI;
5807   // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z))
5808   if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
5809       (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) &&
5810                       MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
5811       isContractableFMul(*FMulMI, AllowFusionGlobally)) {
5812     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5813       Register NegX =
5814           B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
5815       Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0);
5816       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5817                    {NegX, FMulMI->getOperand(2).getReg(), NegZ});
5818     };
5819     return true;
5820   }
5821 
5822   // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x)
5823   if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
5824       (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) &&
5825                       MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
5826       isContractableFMul(*FMulMI, AllowFusionGlobally)) {
5827     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5828       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5829                    {FMulMI->getOperand(1).getReg(),
5830                     FMulMI->getOperand(2).getReg(), LHSReg});
5831     };
5832     return true;
5833   }
5834 
5835   return false;
5836 }
5837 
5838 bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA(
5839     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5840   assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5841 
5842   bool AllowFusionGlobally, HasFMAD, Aggressive;
5843   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5844     return false;
5845 
5846   Register LHSReg = MI.getOperand(1).getReg();
5847   Register RHSReg = MI.getOperand(2).getReg();
5848   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5849 
5850   unsigned PreferredFusedOpcode =
5851       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5852 
5853   MachineInstr *FMulMI;
5854   // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z))
5855   if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) &&
5856       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5857       (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) {
5858     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5859       Register FpExtX =
5860           B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
5861       Register FpExtY =
5862           B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0);
5863       Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0);
5864       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5865                    {FpExtX, FpExtY, NegZ});
5866     };
5867     return true;
5868   }
5869 
5870   // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x)
5871   if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) &&
5872       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5873       (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) {
5874     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5875       Register FpExtY =
5876           B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
5877       Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0);
5878       Register FpExtZ =
5879           B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0);
5880       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5881                    {NegY, FpExtZ, LHSReg});
5882     };
5883     return true;
5884   }
5885 
5886   return false;
5887 }
5888 
5889 bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA(
5890     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5891   assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5892 
5893   bool AllowFusionGlobally, HasFMAD, Aggressive;
5894   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5895     return false;
5896 
5897   const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
5898   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5899   Register LHSReg = MI.getOperand(1).getReg();
5900   Register RHSReg = MI.getOperand(2).getReg();
5901 
5902   unsigned PreferredFusedOpcode =
5903       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5904 
5905   auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z,
5906                             MachineIRBuilder &B) {
5907     Register FpExtX = B.buildFPExt(DstTy, X).getReg(0);
5908     Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0);
5909     B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z});
5910   };
5911 
5912   MachineInstr *FMulMI;
5913   // fold (fsub (fpext (fneg (fmul x, y))), z) ->
5914   //      (fneg (fma (fpext x), (fpext y), z))
5915   // fold (fsub (fneg (fpext (fmul x, y))), z) ->
5916   //      (fneg (fma (fpext x), (fpext y), z))
5917   if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) ||
5918        mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) &&
5919       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5920       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy,
5921                           MRI.getType(FMulMI->getOperand(0).getReg()))) {
5922     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5923       Register FMAReg = MRI.createGenericVirtualRegister(DstTy);
5924       buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(),
5925                      FMulMI->getOperand(2).getReg(), RHSReg, B);
5926       B.buildFNeg(MI.getOperand(0).getReg(), FMAReg);
5927     };
5928     return true;
5929   }
5930 
5931   // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x)
5932   // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x)
5933   if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) ||
5934        mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) &&
5935       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5936       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy,
5937                           MRI.getType(FMulMI->getOperand(0).getReg()))) {
5938     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5939       buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(),
5940                      FMulMI->getOperand(2).getReg(), LHSReg, B);
5941     };
5942     return true;
5943   }
5944 
5945   return false;
5946 }
5947 
5948 bool CombinerHelper::matchCombineFMinMaxNaN(MachineInstr &MI,
5949                                             unsigned &IdxToPropagate) {
5950   bool PropagateNaN;
5951   switch (MI.getOpcode()) {
5952   default:
5953     return false;
5954   case TargetOpcode::G_FMINNUM:
5955   case TargetOpcode::G_FMAXNUM:
5956     PropagateNaN = false;
5957     break;
5958   case TargetOpcode::G_FMINIMUM:
5959   case TargetOpcode::G_FMAXIMUM:
5960     PropagateNaN = true;
5961     break;
5962   }
5963 
5964   auto MatchNaN = [&](unsigned Idx) {
5965     Register MaybeNaNReg = MI.getOperand(Idx).getReg();
5966     const ConstantFP *MaybeCst = getConstantFPVRegVal(MaybeNaNReg, MRI);
5967     if (!MaybeCst || !MaybeCst->getValueAPF().isNaN())
5968       return false;
5969     IdxToPropagate = PropagateNaN ? Idx : (Idx == 1 ? 2 : 1);
5970     return true;
5971   };
5972 
5973   return MatchNaN(1) || MatchNaN(2);
5974 }
5975 
5976 bool CombinerHelper::matchAddSubSameReg(MachineInstr &MI, Register &Src) {
5977   assert(MI.getOpcode() == TargetOpcode::G_ADD && "Expected a G_ADD");
5978   Register LHS = MI.getOperand(1).getReg();
5979   Register RHS = MI.getOperand(2).getReg();
5980 
5981   // Helper lambda to check for opportunities for
5982   // A + (B - A) -> B
5983   // (B - A) + A -> B
5984   auto CheckFold = [&](Register MaybeSub, Register MaybeSameReg) {
5985     Register Reg;
5986     return mi_match(MaybeSub, MRI, m_GSub(m_Reg(Src), m_Reg(Reg))) &&
5987            Reg == MaybeSameReg;
5988   };
5989   return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
5990 }
5991 
5992 bool CombinerHelper::matchBuildVectorIdentityFold(MachineInstr &MI,
5993                                                   Register &MatchInfo) {
5994   // This combine folds the following patterns:
5995   //
5996   //  G_BUILD_VECTOR_TRUNC (G_BITCAST(x), G_LSHR(G_BITCAST(x), k))
5997   //  G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), G_TRUNC(G_LSHR(G_BITCAST(x), k)))
5998   //    into
5999   //      x
6000   //    if
6001   //      k == sizeof(VecEltTy)/2
6002   //      type(x) == type(dst)
6003   //
6004   //  G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), undef)
6005   //    into
6006   //      x
6007   //    if
6008   //      type(x) == type(dst)
6009 
6010   LLT DstVecTy = MRI.getType(MI.getOperand(0).getReg());
6011   LLT DstEltTy = DstVecTy.getElementType();
6012 
6013   Register Lo, Hi;
6014 
6015   if (mi_match(
6016           MI, MRI,
6017           m_GBuildVector(m_GTrunc(m_GBitcast(m_Reg(Lo))), m_GImplicitDef()))) {
6018     MatchInfo = Lo;
6019     return MRI.getType(MatchInfo) == DstVecTy;
6020   }
6021 
6022   std::optional<ValueAndVReg> ShiftAmount;
6023   const auto LoPattern = m_GBitcast(m_Reg(Lo));
6024   const auto HiPattern = m_GLShr(m_GBitcast(m_Reg(Hi)), m_GCst(ShiftAmount));
6025   if (mi_match(
6026           MI, MRI,
6027           m_any_of(m_GBuildVectorTrunc(LoPattern, HiPattern),
6028                    m_GBuildVector(m_GTrunc(LoPattern), m_GTrunc(HiPattern))))) {
6029     if (Lo == Hi && ShiftAmount->Value == DstEltTy.getSizeInBits()) {
6030       MatchInfo = Lo;
6031       return MRI.getType(MatchInfo) == DstVecTy;
6032     }
6033   }
6034 
6035   return false;
6036 }
6037 
6038 bool CombinerHelper::matchTruncBuildVectorFold(MachineInstr &MI,
6039                                                Register &MatchInfo) {
6040   // Replace (G_TRUNC (G_BITCAST (G_BUILD_VECTOR x, y)) with just x
6041   // if type(x) == type(G_TRUNC)
6042   if (!mi_match(MI.getOperand(1).getReg(), MRI,
6043                 m_GBitcast(m_GBuildVector(m_Reg(MatchInfo), m_Reg()))))
6044     return false;
6045 
6046   return MRI.getType(MatchInfo) == MRI.getType(MI.getOperand(0).getReg());
6047 }
6048 
6049 bool CombinerHelper::matchTruncLshrBuildVectorFold(MachineInstr &MI,
6050                                                    Register &MatchInfo) {
6051   // Replace (G_TRUNC (G_LSHR (G_BITCAST (G_BUILD_VECTOR x, y)), K)) with
6052   //    y if K == size of vector element type
6053   std::optional<ValueAndVReg> ShiftAmt;
6054   if (!mi_match(MI.getOperand(1).getReg(), MRI,
6055                 m_GLShr(m_GBitcast(m_GBuildVector(m_Reg(), m_Reg(MatchInfo))),
6056                         m_GCst(ShiftAmt))))
6057     return false;
6058 
6059   LLT MatchTy = MRI.getType(MatchInfo);
6060   return ShiftAmt->Value.getZExtValue() == MatchTy.getSizeInBits() &&
6061          MatchTy == MRI.getType(MI.getOperand(0).getReg());
6062 }
6063 
6064 unsigned CombinerHelper::getFPMinMaxOpcForSelect(
6065     CmpInst::Predicate Pred, LLT DstTy,
6066     SelectPatternNaNBehaviour VsNaNRetVal) const {
6067   assert(VsNaNRetVal != SelectPatternNaNBehaviour::NOT_APPLICABLE &&
6068          "Expected a NaN behaviour?");
6069   // Choose an opcode based off of legality or the behaviour when one of the
6070   // LHS/RHS may be NaN.
6071   switch (Pred) {
6072   default:
6073     return 0;
6074   case CmpInst::FCMP_UGT:
6075   case CmpInst::FCMP_UGE:
6076   case CmpInst::FCMP_OGT:
6077   case CmpInst::FCMP_OGE:
6078     if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER)
6079       return TargetOpcode::G_FMAXNUM;
6080     if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN)
6081       return TargetOpcode::G_FMAXIMUM;
6082     if (isLegal({TargetOpcode::G_FMAXNUM, {DstTy}}))
6083       return TargetOpcode::G_FMAXNUM;
6084     if (isLegal({TargetOpcode::G_FMAXIMUM, {DstTy}}))
6085       return TargetOpcode::G_FMAXIMUM;
6086     return 0;
6087   case CmpInst::FCMP_ULT:
6088   case CmpInst::FCMP_ULE:
6089   case CmpInst::FCMP_OLT:
6090   case CmpInst::FCMP_OLE:
6091     if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER)
6092       return TargetOpcode::G_FMINNUM;
6093     if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN)
6094       return TargetOpcode::G_FMINIMUM;
6095     if (isLegal({TargetOpcode::G_FMINNUM, {DstTy}}))
6096       return TargetOpcode::G_FMINNUM;
6097     if (!isLegal({TargetOpcode::G_FMINIMUM, {DstTy}}))
6098       return 0;
6099     return TargetOpcode::G_FMINIMUM;
6100   }
6101 }
6102 
6103 CombinerHelper::SelectPatternNaNBehaviour
6104 CombinerHelper::computeRetValAgainstNaN(Register LHS, Register RHS,
6105                                         bool IsOrderedComparison) const {
6106   bool LHSSafe = isKnownNeverNaN(LHS, MRI);
6107   bool RHSSafe = isKnownNeverNaN(RHS, MRI);
6108   // Completely unsafe.
6109   if (!LHSSafe && !RHSSafe)
6110     return SelectPatternNaNBehaviour::NOT_APPLICABLE;
6111   if (LHSSafe && RHSSafe)
6112     return SelectPatternNaNBehaviour::RETURNS_ANY;
6113   // An ordered comparison will return false when given a NaN, so it
6114   // returns the RHS.
6115   if (IsOrderedComparison)
6116     return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_NAN
6117                    : SelectPatternNaNBehaviour::RETURNS_OTHER;
6118   // An unordered comparison will return true when given a NaN, so it
6119   // returns the LHS.
6120   return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_OTHER
6121                  : SelectPatternNaNBehaviour::RETURNS_NAN;
6122 }
6123 
6124 bool CombinerHelper::matchFPSelectToMinMax(Register Dst, Register Cond,
6125                                            Register TrueVal, Register FalseVal,
6126                                            BuildFnTy &MatchInfo) {
6127   // Match: select (fcmp cond x, y) x, y
6128   //        select (fcmp cond x, y) y, x
6129   // And turn it into fminnum/fmaxnum or fmin/fmax based off of the condition.
6130   LLT DstTy = MRI.getType(Dst);
6131   // Bail out early on pointers, since we'll never want to fold to a min/max.
6132   if (DstTy.isPointer())
6133     return false;
6134   // Match a floating point compare with a less-than/greater-than predicate.
6135   // TODO: Allow multiple users of the compare if they are all selects.
6136   CmpInst::Predicate Pred;
6137   Register CmpLHS, CmpRHS;
6138   if (!mi_match(Cond, MRI,
6139                 m_OneNonDBGUse(
6140                     m_GFCmp(m_Pred(Pred), m_Reg(CmpLHS), m_Reg(CmpRHS)))) ||
6141       CmpInst::isEquality(Pred))
6142     return false;
6143   SelectPatternNaNBehaviour ResWithKnownNaNInfo =
6144       computeRetValAgainstNaN(CmpLHS, CmpRHS, CmpInst::isOrdered(Pred));
6145   if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::NOT_APPLICABLE)
6146     return false;
6147   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
6148     std::swap(CmpLHS, CmpRHS);
6149     Pred = CmpInst::getSwappedPredicate(Pred);
6150     if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_NAN)
6151       ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_OTHER;
6152     else if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_OTHER)
6153       ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_NAN;
6154   }
6155   if (TrueVal != CmpLHS || FalseVal != CmpRHS)
6156     return false;
6157   // Decide what type of max/min this should be based off of the predicate.
6158   unsigned Opc = getFPMinMaxOpcForSelect(Pred, DstTy, ResWithKnownNaNInfo);
6159   if (!Opc || !isLegal({Opc, {DstTy}}))
6160     return false;
6161   // Comparisons between signed zero and zero may have different results...
6162   // unless we have fmaximum/fminimum. In that case, we know -0 < 0.
6163   if (Opc != TargetOpcode::G_FMAXIMUM && Opc != TargetOpcode::G_FMINIMUM) {
6164     // We don't know if a comparison between two 0s will give us a consistent
6165     // result. Be conservative and only proceed if at least one side is
6166     // non-zero.
6167     auto KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpLHS, MRI);
6168     if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero()) {
6169       KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpRHS, MRI);
6170       if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero())
6171         return false;
6172     }
6173   }
6174   MatchInfo = [=](MachineIRBuilder &B) {
6175     B.buildInstr(Opc, {Dst}, {CmpLHS, CmpRHS});
6176   };
6177   return true;
6178 }
6179 
6180 bool CombinerHelper::matchSimplifySelectToMinMax(MachineInstr &MI,
6181                                                  BuildFnTy &MatchInfo) {
6182   // TODO: Handle integer cases.
6183   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
6184   // Condition may be fed by a truncated compare.
6185   Register Cond = MI.getOperand(1).getReg();
6186   Register MaybeTrunc;
6187   if (mi_match(Cond, MRI, m_OneNonDBGUse(m_GTrunc(m_Reg(MaybeTrunc)))))
6188     Cond = MaybeTrunc;
6189   Register Dst = MI.getOperand(0).getReg();
6190   Register TrueVal = MI.getOperand(2).getReg();
6191   Register FalseVal = MI.getOperand(3).getReg();
6192   return matchFPSelectToMinMax(Dst, Cond, TrueVal, FalseVal, MatchInfo);
6193 }
6194 
6195 bool CombinerHelper::matchRedundantBinOpInEquality(MachineInstr &MI,
6196                                                    BuildFnTy &MatchInfo) {
6197   assert(MI.getOpcode() == TargetOpcode::G_ICMP);
6198   // (X + Y) == X --> Y == 0
6199   // (X + Y) != X --> Y != 0
6200   // (X - Y) == X --> Y == 0
6201   // (X - Y) != X --> Y != 0
6202   // (X ^ Y) == X --> Y == 0
6203   // (X ^ Y) != X --> Y != 0
6204   Register Dst = MI.getOperand(0).getReg();
6205   CmpInst::Predicate Pred;
6206   Register X, Y, OpLHS, OpRHS;
6207   bool MatchedSub = mi_match(
6208       Dst, MRI,
6209       m_c_GICmp(m_Pred(Pred), m_Reg(X), m_GSub(m_Reg(OpLHS), m_Reg(Y))));
6210   if (MatchedSub && X != OpLHS)
6211     return false;
6212   if (!MatchedSub) {
6213     if (!mi_match(Dst, MRI,
6214                   m_c_GICmp(m_Pred(Pred), m_Reg(X),
6215                             m_any_of(m_GAdd(m_Reg(OpLHS), m_Reg(OpRHS)),
6216                                      m_GXor(m_Reg(OpLHS), m_Reg(OpRHS))))))
6217       return false;
6218     Y = X == OpLHS ? OpRHS : X == OpRHS ? OpLHS : Register();
6219   }
6220   MatchInfo = [=](MachineIRBuilder &B) {
6221     auto Zero = B.buildConstant(MRI.getType(Y), 0);
6222     B.buildICmp(Pred, Dst, Y, Zero);
6223   };
6224   return CmpInst::isEquality(Pred) && Y.isValid();
6225 }
6226 
6227 bool CombinerHelper::matchShiftsTooBig(MachineInstr &MI) {
6228   Register ShiftReg = MI.getOperand(2).getReg();
6229   LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
6230   auto IsShiftTooBig = [&](const Constant *C) {
6231     auto *CI = dyn_cast<ConstantInt>(C);
6232     return CI && CI->uge(ResTy.getScalarSizeInBits());
6233   };
6234   return matchUnaryPredicate(MRI, ShiftReg, IsShiftTooBig);
6235 }
6236 
6237 bool CombinerHelper::matchCommuteConstantToRHS(MachineInstr &MI) {
6238   Register LHS = MI.getOperand(1).getReg();
6239   Register RHS = MI.getOperand(2).getReg();
6240   auto *LHSDef = MRI.getVRegDef(LHS);
6241   if (getIConstantVRegVal(LHS, MRI).has_value())
6242     return true;
6243 
6244   // LHS may be a G_CONSTANT_FOLD_BARRIER. If so we commute
6245   // as long as we don't already have a constant on the RHS.
6246   if (LHSDef->getOpcode() != TargetOpcode::G_CONSTANT_FOLD_BARRIER)
6247     return false;
6248   return MRI.getVRegDef(RHS)->getOpcode() !=
6249              TargetOpcode::G_CONSTANT_FOLD_BARRIER &&
6250          !getIConstantVRegVal(RHS, MRI);
6251 }
6252 
6253 bool CombinerHelper::matchCommuteFPConstantToRHS(MachineInstr &MI) {
6254   Register LHS = MI.getOperand(1).getReg();
6255   Register RHS = MI.getOperand(2).getReg();
6256   std::optional<FPValueAndVReg> ValAndVReg;
6257   if (!mi_match(LHS, MRI, m_GFCstOrSplat(ValAndVReg)))
6258     return false;
6259   return !mi_match(RHS, MRI, m_GFCstOrSplat(ValAndVReg));
6260 }
6261 
6262 void CombinerHelper::applyCommuteBinOpOperands(MachineInstr &MI) {
6263   Observer.changingInstr(MI);
6264   Register LHSReg = MI.getOperand(1).getReg();
6265   Register RHSReg = MI.getOperand(2).getReg();
6266   MI.getOperand(1).setReg(RHSReg);
6267   MI.getOperand(2).setReg(LHSReg);
6268   Observer.changedInstr(MI);
6269 }
6270 
6271 bool CombinerHelper::isOneOrOneSplat(Register Src, bool AllowUndefs) {
6272   LLT SrcTy = MRI.getType(Src);
6273   if (SrcTy.isFixedVector())
6274     return isConstantSplatVector(Src, 1, AllowUndefs);
6275   if (SrcTy.isScalar()) {
6276     if (AllowUndefs && getOpcodeDef<GImplicitDef>(Src, MRI) != nullptr)
6277       return true;
6278     auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI);
6279     return IConstant && IConstant->Value == 1;
6280   }
6281   return false; // scalable vector
6282 }
6283 
6284 bool CombinerHelper::isZeroOrZeroSplat(Register Src, bool AllowUndefs) {
6285   LLT SrcTy = MRI.getType(Src);
6286   if (SrcTy.isFixedVector())
6287     return isConstantSplatVector(Src, 0, AllowUndefs);
6288   if (SrcTy.isScalar()) {
6289     if (AllowUndefs && getOpcodeDef<GImplicitDef>(Src, MRI) != nullptr)
6290       return true;
6291     auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI);
6292     return IConstant && IConstant->Value == 0;
6293   }
6294   return false; // scalable vector
6295 }
6296 
6297 // Ignores COPYs during conformance checks.
6298 // FIXME scalable vectors.
6299 bool CombinerHelper::isConstantSplatVector(Register Src, int64_t SplatValue,
6300                                            bool AllowUndefs) {
6301   GBuildVector *BuildVector = getOpcodeDef<GBuildVector>(Src, MRI);
6302   if (!BuildVector)
6303     return false;
6304   unsigned NumSources = BuildVector->getNumSources();
6305 
6306   for (unsigned I = 0; I < NumSources; ++I) {
6307     GImplicitDef *ImplicitDef =
6308         getOpcodeDef<GImplicitDef>(BuildVector->getSourceReg(I), MRI);
6309     if (ImplicitDef && AllowUndefs)
6310       continue;
6311     if (ImplicitDef && !AllowUndefs)
6312       return false;
6313     std::optional<ValueAndVReg> IConstant =
6314         getIConstantVRegValWithLookThrough(BuildVector->getSourceReg(I), MRI);
6315     if (IConstant && IConstant->Value == SplatValue)
6316       continue;
6317     return false;
6318   }
6319   return true;
6320 }
6321 
6322 // Ignores COPYs during lookups.
6323 // FIXME scalable vectors
6324 std::optional<APInt>
6325 CombinerHelper::getConstantOrConstantSplatVector(Register Src) {
6326   auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI);
6327   if (IConstant)
6328     return IConstant->Value;
6329 
6330   GBuildVector *BuildVector = getOpcodeDef<GBuildVector>(Src, MRI);
6331   if (!BuildVector)
6332     return std::nullopt;
6333   unsigned NumSources = BuildVector->getNumSources();
6334 
6335   std::optional<APInt> Value = std::nullopt;
6336   for (unsigned I = 0; I < NumSources; ++I) {
6337     std::optional<ValueAndVReg> IConstant =
6338         getIConstantVRegValWithLookThrough(BuildVector->getSourceReg(I), MRI);
6339     if (!IConstant)
6340       return std::nullopt;
6341     if (!Value)
6342       Value = IConstant->Value;
6343     else if (*Value != IConstant->Value)
6344       return std::nullopt;
6345   }
6346   return Value;
6347 }
6348 
6349 // TODO: use knownbits to determine zeros
6350 bool CombinerHelper::tryFoldSelectOfConstants(GSelect *Select,
6351                                               BuildFnTy &MatchInfo) {
6352   uint32_t Flags = Select->getFlags();
6353   Register Dest = Select->getReg(0);
6354   Register Cond = Select->getCondReg();
6355   Register True = Select->getTrueReg();
6356   Register False = Select->getFalseReg();
6357   LLT CondTy = MRI.getType(Select->getCondReg());
6358   LLT TrueTy = MRI.getType(Select->getTrueReg());
6359 
6360   // We only do this combine for scalar boolean conditions.
6361   if (CondTy != LLT::scalar(1))
6362     return false;
6363 
6364   // Both are scalars.
6365   std::optional<ValueAndVReg> TrueOpt =
6366       getIConstantVRegValWithLookThrough(True, MRI);
6367   std::optional<ValueAndVReg> FalseOpt =
6368       getIConstantVRegValWithLookThrough(False, MRI);
6369 
6370   if (!TrueOpt || !FalseOpt)
6371     return false;
6372 
6373   APInt TrueValue = TrueOpt->Value;
6374   APInt FalseValue = FalseOpt->Value;
6375 
6376   // select Cond, 1, 0 --> zext (Cond)
6377   if (TrueValue.isOne() && FalseValue.isZero()) {
6378     MatchInfo = [=](MachineIRBuilder &B) {
6379       B.setInstrAndDebugLoc(*Select);
6380       B.buildZExtOrTrunc(Dest, Cond);
6381     };
6382     return true;
6383   }
6384 
6385   // select Cond, -1, 0 --> sext (Cond)
6386   if (TrueValue.isAllOnes() && FalseValue.isZero()) {
6387     MatchInfo = [=](MachineIRBuilder &B) {
6388       B.setInstrAndDebugLoc(*Select);
6389       B.buildSExtOrTrunc(Dest, Cond);
6390     };
6391     return true;
6392   }
6393 
6394   // select Cond, 0, 1 --> zext (!Cond)
6395   if (TrueValue.isZero() && FalseValue.isOne()) {
6396     MatchInfo = [=](MachineIRBuilder &B) {
6397       B.setInstrAndDebugLoc(*Select);
6398       Register Inner = MRI.createGenericVirtualRegister(CondTy);
6399       B.buildNot(Inner, Cond);
6400       B.buildZExtOrTrunc(Dest, Inner);
6401     };
6402     return true;
6403   }
6404 
6405   // select Cond, 0, -1 --> sext (!Cond)
6406   if (TrueValue.isZero() && FalseValue.isAllOnes()) {
6407     MatchInfo = [=](MachineIRBuilder &B) {
6408       B.setInstrAndDebugLoc(*Select);
6409       Register Inner = MRI.createGenericVirtualRegister(CondTy);
6410       B.buildNot(Inner, Cond);
6411       B.buildSExtOrTrunc(Dest, Inner);
6412     };
6413     return true;
6414   }
6415 
6416   // select Cond, C1, C1-1 --> add (zext Cond), C1-1
6417   if (TrueValue - 1 == FalseValue) {
6418     MatchInfo = [=](MachineIRBuilder &B) {
6419       B.setInstrAndDebugLoc(*Select);
6420       Register Inner = MRI.createGenericVirtualRegister(TrueTy);
6421       B.buildZExtOrTrunc(Inner, Cond);
6422       B.buildAdd(Dest, Inner, False);
6423     };
6424     return true;
6425   }
6426 
6427   // select Cond, C1, C1+1 --> add (sext Cond), C1+1
6428   if (TrueValue + 1 == FalseValue) {
6429     MatchInfo = [=](MachineIRBuilder &B) {
6430       B.setInstrAndDebugLoc(*Select);
6431       Register Inner = MRI.createGenericVirtualRegister(TrueTy);
6432       B.buildSExtOrTrunc(Inner, Cond);
6433       B.buildAdd(Dest, Inner, False);
6434     };
6435     return true;
6436   }
6437 
6438   // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2)
6439   if (TrueValue.isPowerOf2() && FalseValue.isZero()) {
6440     MatchInfo = [=](MachineIRBuilder &B) {
6441       B.setInstrAndDebugLoc(*Select);
6442       Register Inner = MRI.createGenericVirtualRegister(TrueTy);
6443       B.buildZExtOrTrunc(Inner, Cond);
6444       // The shift amount must be scalar.
6445       LLT ShiftTy = TrueTy.isVector() ? TrueTy.getElementType() : TrueTy;
6446       auto ShAmtC = B.buildConstant(ShiftTy, TrueValue.exactLogBase2());
6447       B.buildShl(Dest, Inner, ShAmtC, Flags);
6448     };
6449     return true;
6450   }
6451   // select Cond, -1, C --> or (sext Cond), C
6452   if (TrueValue.isAllOnes()) {
6453     MatchInfo = [=](MachineIRBuilder &B) {
6454       B.setInstrAndDebugLoc(*Select);
6455       Register Inner = MRI.createGenericVirtualRegister(TrueTy);
6456       B.buildSExtOrTrunc(Inner, Cond);
6457       B.buildOr(Dest, Inner, False, Flags);
6458     };
6459     return true;
6460   }
6461 
6462   // select Cond, C, -1 --> or (sext (not Cond)), C
6463   if (FalseValue.isAllOnes()) {
6464     MatchInfo = [=](MachineIRBuilder &B) {
6465       B.setInstrAndDebugLoc(*Select);
6466       Register Not = MRI.createGenericVirtualRegister(CondTy);
6467       B.buildNot(Not, Cond);
6468       Register Inner = MRI.createGenericVirtualRegister(TrueTy);
6469       B.buildSExtOrTrunc(Inner, Not);
6470       B.buildOr(Dest, Inner, True, Flags);
6471     };
6472     return true;
6473   }
6474 
6475   return false;
6476 }
6477 
6478 // TODO: use knownbits to determine zeros
6479 bool CombinerHelper::tryFoldBoolSelectToLogic(GSelect *Select,
6480                                               BuildFnTy &MatchInfo) {
6481   uint32_t Flags = Select->getFlags();
6482   Register DstReg = Select->getReg(0);
6483   Register Cond = Select->getCondReg();
6484   Register True = Select->getTrueReg();
6485   Register False = Select->getFalseReg();
6486   LLT CondTy = MRI.getType(Select->getCondReg());
6487   LLT TrueTy = MRI.getType(Select->getTrueReg());
6488 
6489   // Boolean or fixed vector of booleans.
6490   if (CondTy.isScalableVector() ||
6491       (CondTy.isFixedVector() &&
6492        CondTy.getElementType().getScalarSizeInBits() != 1) ||
6493       CondTy.getScalarSizeInBits() != 1)
6494     return false;
6495 
6496   if (CondTy != TrueTy)
6497     return false;
6498 
6499   // select Cond, Cond, F --> or Cond, F
6500   // select Cond, 1, F    --> or Cond, F
6501   if ((Cond == True) || isOneOrOneSplat(True, /* AllowUndefs */ true)) {
6502     MatchInfo = [=](MachineIRBuilder &B) {
6503       B.setInstrAndDebugLoc(*Select);
6504       Register Ext = MRI.createGenericVirtualRegister(TrueTy);
6505       B.buildZExtOrTrunc(Ext, Cond);
6506       B.buildOr(DstReg, Ext, False, Flags);
6507     };
6508     return true;
6509   }
6510 
6511   // select Cond, T, Cond --> and Cond, T
6512   // select Cond, T, 0    --> and Cond, T
6513   if ((Cond == False) || isZeroOrZeroSplat(False, /* AllowUndefs */ true)) {
6514     MatchInfo = [=](MachineIRBuilder &B) {
6515       B.setInstrAndDebugLoc(*Select);
6516       Register Ext = MRI.createGenericVirtualRegister(TrueTy);
6517       B.buildZExtOrTrunc(Ext, Cond);
6518       B.buildAnd(DstReg, Ext, True);
6519     };
6520     return true;
6521   }
6522 
6523   // select Cond, T, 1 --> or (not Cond), T
6524   if (isOneOrOneSplat(False, /* AllowUndefs */ true)) {
6525     MatchInfo = [=](MachineIRBuilder &B) {
6526       B.setInstrAndDebugLoc(*Select);
6527       // First the not.
6528       Register Inner = MRI.createGenericVirtualRegister(CondTy);
6529       B.buildNot(Inner, Cond);
6530       // Then an ext to match the destination register.
6531       Register Ext = MRI.createGenericVirtualRegister(TrueTy);
6532       B.buildZExtOrTrunc(Ext, Inner);
6533       B.buildOr(DstReg, Ext, True, Flags);
6534     };
6535     return true;
6536   }
6537 
6538   // select Cond, 0, F --> and (not Cond), F
6539   if (isZeroOrZeroSplat(True, /* AllowUndefs */ true)) {
6540     MatchInfo = [=](MachineIRBuilder &B) {
6541       B.setInstrAndDebugLoc(*Select);
6542       // First the not.
6543       Register Inner = MRI.createGenericVirtualRegister(CondTy);
6544       B.buildNot(Inner, Cond);
6545       // Then an ext to match the destination register.
6546       Register Ext = MRI.createGenericVirtualRegister(TrueTy);
6547       B.buildZExtOrTrunc(Ext, Inner);
6548       B.buildAnd(DstReg, Ext, False);
6549     };
6550     return true;
6551   }
6552 
6553   return false;
6554 }
6555 
6556 bool CombinerHelper::tryFoldSelectToIntMinMax(GSelect *Select,
6557                                               BuildFnTy &MatchInfo) {
6558   Register DstReg = Select->getReg(0);
6559   Register Cond = Select->getCondReg();
6560   Register True = Select->getTrueReg();
6561   Register False = Select->getFalseReg();
6562   LLT DstTy = MRI.getType(DstReg);
6563 
6564   if (DstTy.isPointer())
6565     return false;
6566 
6567   // We need an G_ICMP on the condition register.
6568   GICmp *Cmp = getOpcodeDef<GICmp>(Cond, MRI);
6569   if (!Cmp)
6570     return false;
6571 
6572   // We want to fold the icmp and replace the select.
6573   if (!MRI.hasOneNonDBGUse(Cmp->getReg(0)))
6574     return false;
6575 
6576   CmpInst::Predicate Pred = Cmp->getCond();
6577   // We need a larger or smaller predicate for
6578   // canonicalization.
6579   if (CmpInst::isEquality(Pred))
6580     return false;
6581 
6582   Register CmpLHS = Cmp->getLHSReg();
6583   Register CmpRHS = Cmp->getRHSReg();
6584 
6585   // We can swap CmpLHS and CmpRHS for higher hitrate.
6586   if (True == CmpRHS && False == CmpLHS) {
6587     std::swap(CmpLHS, CmpRHS);
6588     Pred = CmpInst::getSwappedPredicate(Pred);
6589   }
6590 
6591   // (icmp X, Y) ? X : Y -> integer minmax.
6592   // see matchSelectPattern in ValueTracking.
6593   // Legality between G_SELECT and integer minmax can differ.
6594   if (True == CmpLHS && False == CmpRHS) {
6595     switch (Pred) {
6596     case ICmpInst::ICMP_UGT:
6597     case ICmpInst::ICMP_UGE: {
6598       if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMAX, DstTy}))
6599         return false;
6600       MatchInfo = [=](MachineIRBuilder &B) {
6601         B.buildUMax(DstReg, True, False);
6602       };
6603       return true;
6604     }
6605     case ICmpInst::ICMP_SGT:
6606     case ICmpInst::ICMP_SGE: {
6607       if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SMAX, DstTy}))
6608         return false;
6609       MatchInfo = [=](MachineIRBuilder &B) {
6610         B.buildSMax(DstReg, True, False);
6611       };
6612       return true;
6613     }
6614     case ICmpInst::ICMP_ULT:
6615     case ICmpInst::ICMP_ULE: {
6616       if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMIN, DstTy}))
6617         return false;
6618       MatchInfo = [=](MachineIRBuilder &B) {
6619         B.buildUMin(DstReg, True, False);
6620       };
6621       return true;
6622     }
6623     case ICmpInst::ICMP_SLT:
6624     case ICmpInst::ICMP_SLE: {
6625       if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SMIN, DstTy}))
6626         return false;
6627       MatchInfo = [=](MachineIRBuilder &B) {
6628         B.buildSMin(DstReg, True, False);
6629       };
6630       return true;
6631     }
6632     default:
6633       return false;
6634     }
6635   }
6636 
6637   return false;
6638 }
6639 
6640 bool CombinerHelper::matchSelect(MachineInstr &MI, BuildFnTy &MatchInfo) {
6641   GSelect *Select = cast<GSelect>(&MI);
6642 
6643   if (tryFoldSelectOfConstants(Select, MatchInfo))
6644     return true;
6645 
6646   if (tryFoldBoolSelectToLogic(Select, MatchInfo))
6647     return true;
6648 
6649   if (tryFoldSelectToIntMinMax(Select, MatchInfo))
6650     return true;
6651 
6652   return false;
6653 }
6654