1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 16 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/LowLevelType.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetLowering.h" 28 #include "llvm/CodeGen/TargetOpcodes.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include <tuple> 32 33 #define DEBUG_TYPE "gi-combiner" 34 35 using namespace llvm; 36 using namespace MIPatternMatch; 37 38 // Option to allow testing of the combiner while no targets know about indexed 39 // addressing. 40 static cl::opt<bool> 41 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 42 cl::desc("Force all indexed operations to be " 43 "legal for the GlobalISel combiner")); 44 45 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 46 MachineIRBuilder &B, GISelKnownBits *KB, 47 MachineDominatorTree *MDT, 48 const LegalizerInfo *LI) 49 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 50 KB(KB), MDT(MDT), LI(LI) { 51 (void)this->KB; 52 } 53 54 const TargetLowering &CombinerHelper::getTargetLowering() const { 55 return *Builder.getMF().getSubtarget().getTargetLowering(); 56 } 57 58 /// \returns The little endian in-memory byte position of byte \p I in a 59 /// \p ByteWidth bytes wide type. 60 /// 61 /// E.g. Given a 4-byte type x, x[0] -> byte 0 62 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 63 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 64 return I; 65 } 66 67 /// \returns The big endian in-memory byte position of byte \p I in a 68 /// \p ByteWidth bytes wide type. 69 /// 70 /// E.g. Given a 4-byte type x, x[0] -> byte 3 71 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 72 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 73 return ByteWidth - I - 1; 74 } 75 76 /// Given a map from byte offsets in memory to indices in a load/store, 77 /// determine if that map corresponds to a little or big endian byte pattern. 78 /// 79 /// \param MemOffset2Idx maps memory offsets to address offsets. 80 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 81 /// 82 /// \returns true if the map corresponds to a big endian byte pattern, false 83 /// if it corresponds to a little endian byte pattern, and None otherwise. 84 /// 85 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 86 /// are as follows: 87 /// 88 /// AddrOffset Little endian Big endian 89 /// 0 0 3 90 /// 1 1 2 91 /// 2 2 1 92 /// 3 3 0 93 static Optional<bool> 94 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 95 int64_t LowestIdx) { 96 // Need at least two byte positions to decide on endianness. 97 unsigned Width = MemOffset2Idx.size(); 98 if (Width < 2) 99 return None; 100 bool BigEndian = true, LittleEndian = true; 101 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 102 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 103 if (MemOffsetAndIdx == MemOffset2Idx.end()) 104 return None; 105 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 106 assert(Idx >= 0 && "Expected non-negative byte offset?"); 107 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 108 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 109 if (!BigEndian && !LittleEndian) 110 return None; 111 } 112 113 assert((BigEndian != LittleEndian) && 114 "Pattern cannot be both big and little endian!"); 115 return BigEndian; 116 } 117 118 bool CombinerHelper::isLegalOrBeforeLegalizer( 119 const LegalityQuery &Query) const { 120 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 121 } 122 123 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 124 Register ToReg) const { 125 Observer.changingAllUsesOfReg(MRI, FromReg); 126 127 if (MRI.constrainRegAttrs(ToReg, FromReg)) 128 MRI.replaceRegWith(FromReg, ToReg); 129 else 130 Builder.buildCopy(ToReg, FromReg); 131 132 Observer.finishedChangingAllUsesOfReg(); 133 } 134 135 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 136 MachineOperand &FromRegOp, 137 Register ToReg) const { 138 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 139 Observer.changingInstr(*FromRegOp.getParent()); 140 141 FromRegOp.setReg(ToReg); 142 143 Observer.changedInstr(*FromRegOp.getParent()); 144 } 145 146 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 147 if (matchCombineCopy(MI)) { 148 applyCombineCopy(MI); 149 return true; 150 } 151 return false; 152 } 153 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 154 if (MI.getOpcode() != TargetOpcode::COPY) 155 return false; 156 Register DstReg = MI.getOperand(0).getReg(); 157 Register SrcReg = MI.getOperand(1).getReg(); 158 return canReplaceReg(DstReg, SrcReg, MRI); 159 } 160 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 161 Register DstReg = MI.getOperand(0).getReg(); 162 Register SrcReg = MI.getOperand(1).getReg(); 163 MI.eraseFromParent(); 164 replaceRegWith(MRI, DstReg, SrcReg); 165 } 166 167 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 168 bool IsUndef = false; 169 SmallVector<Register, 4> Ops; 170 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 171 applyCombineConcatVectors(MI, IsUndef, Ops); 172 return true; 173 } 174 return false; 175 } 176 177 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 178 SmallVectorImpl<Register> &Ops) { 179 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 180 "Invalid instruction"); 181 IsUndef = true; 182 MachineInstr *Undef = nullptr; 183 184 // Walk over all the operands of concat vectors and check if they are 185 // build_vector themselves or undef. 186 // Then collect their operands in Ops. 187 for (const MachineOperand &MO : MI.uses()) { 188 Register Reg = MO.getReg(); 189 MachineInstr *Def = MRI.getVRegDef(Reg); 190 assert(Def && "Operand not defined"); 191 switch (Def->getOpcode()) { 192 case TargetOpcode::G_BUILD_VECTOR: 193 IsUndef = false; 194 // Remember the operands of the build_vector to fold 195 // them into the yet-to-build flattened concat vectors. 196 for (const MachineOperand &BuildVecMO : Def->uses()) 197 Ops.push_back(BuildVecMO.getReg()); 198 break; 199 case TargetOpcode::G_IMPLICIT_DEF: { 200 LLT OpType = MRI.getType(Reg); 201 // Keep one undef value for all the undef operands. 202 if (!Undef) { 203 Builder.setInsertPt(*MI.getParent(), MI); 204 Undef = Builder.buildUndef(OpType.getScalarType()); 205 } 206 assert(MRI.getType(Undef->getOperand(0).getReg()) == 207 OpType.getScalarType() && 208 "All undefs should have the same type"); 209 // Break the undef vector in as many scalar elements as needed 210 // for the flattening. 211 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 212 EltIdx != EltEnd; ++EltIdx) 213 Ops.push_back(Undef->getOperand(0).getReg()); 214 break; 215 } 216 default: 217 return false; 218 } 219 } 220 return true; 221 } 222 void CombinerHelper::applyCombineConcatVectors( 223 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 224 // We determined that the concat_vectors can be flatten. 225 // Generate the flattened build_vector. 226 Register DstReg = MI.getOperand(0).getReg(); 227 Builder.setInsertPt(*MI.getParent(), MI); 228 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 229 230 // Note: IsUndef is sort of redundant. We could have determine it by 231 // checking that at all Ops are undef. Alternatively, we could have 232 // generate a build_vector of undefs and rely on another combine to 233 // clean that up. For now, given we already gather this information 234 // in tryCombineConcatVectors, just save compile time and issue the 235 // right thing. 236 if (IsUndef) 237 Builder.buildUndef(NewDstReg); 238 else 239 Builder.buildBuildVector(NewDstReg, Ops); 240 MI.eraseFromParent(); 241 replaceRegWith(MRI, DstReg, NewDstReg); 242 } 243 244 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 245 SmallVector<Register, 4> Ops; 246 if (matchCombineShuffleVector(MI, Ops)) { 247 applyCombineShuffleVector(MI, Ops); 248 return true; 249 } 250 return false; 251 } 252 253 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 254 SmallVectorImpl<Register> &Ops) { 255 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 256 "Invalid instruction kind"); 257 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 258 Register Src1 = MI.getOperand(1).getReg(); 259 LLT SrcType = MRI.getType(Src1); 260 // As bizarre as it may look, shuffle vector can actually produce 261 // scalar! This is because at the IR level a <1 x ty> shuffle 262 // vector is perfectly valid. 263 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 264 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 265 266 // If the resulting vector is smaller than the size of the source 267 // vectors being concatenated, we won't be able to replace the 268 // shuffle vector into a concat_vectors. 269 // 270 // Note: We may still be able to produce a concat_vectors fed by 271 // extract_vector_elt and so on. It is less clear that would 272 // be better though, so don't bother for now. 273 // 274 // If the destination is a scalar, the size of the sources doesn't 275 // matter. we will lower the shuffle to a plain copy. This will 276 // work only if the source and destination have the same size. But 277 // that's covered by the next condition. 278 // 279 // TODO: If the size between the source and destination don't match 280 // we could still emit an extract vector element in that case. 281 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 282 return false; 283 284 // Check that the shuffle mask can be broken evenly between the 285 // different sources. 286 if (DstNumElts % SrcNumElts != 0) 287 return false; 288 289 // Mask length is a multiple of the source vector length. 290 // Check if the shuffle is some kind of concatenation of the input 291 // vectors. 292 unsigned NumConcat = DstNumElts / SrcNumElts; 293 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 294 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 295 for (unsigned i = 0; i != DstNumElts; ++i) { 296 int Idx = Mask[i]; 297 // Undef value. 298 if (Idx < 0) 299 continue; 300 // Ensure the indices in each SrcType sized piece are sequential and that 301 // the same source is used for the whole piece. 302 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 303 (ConcatSrcs[i / SrcNumElts] >= 0 && 304 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 305 return false; 306 // Remember which source this index came from. 307 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 308 } 309 310 // The shuffle is concatenating multiple vectors together. 311 // Collect the different operands for that. 312 Register UndefReg; 313 Register Src2 = MI.getOperand(2).getReg(); 314 for (auto Src : ConcatSrcs) { 315 if (Src < 0) { 316 if (!UndefReg) { 317 Builder.setInsertPt(*MI.getParent(), MI); 318 UndefReg = Builder.buildUndef(SrcType).getReg(0); 319 } 320 Ops.push_back(UndefReg); 321 } else if (Src == 0) 322 Ops.push_back(Src1); 323 else 324 Ops.push_back(Src2); 325 } 326 return true; 327 } 328 329 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 330 const ArrayRef<Register> Ops) { 331 Register DstReg = MI.getOperand(0).getReg(); 332 Builder.setInsertPt(*MI.getParent(), MI); 333 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 334 335 if (Ops.size() == 1) 336 Builder.buildCopy(NewDstReg, Ops[0]); 337 else 338 Builder.buildMerge(NewDstReg, Ops); 339 340 MI.eraseFromParent(); 341 replaceRegWith(MRI, DstReg, NewDstReg); 342 } 343 344 namespace { 345 346 /// Select a preference between two uses. CurrentUse is the current preference 347 /// while *ForCandidate is attributes of the candidate under consideration. 348 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 349 const LLT TyForCandidate, 350 unsigned OpcodeForCandidate, 351 MachineInstr *MIForCandidate) { 352 if (!CurrentUse.Ty.isValid()) { 353 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 354 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 355 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 356 return CurrentUse; 357 } 358 359 // We permit the extend to hoist through basic blocks but this is only 360 // sensible if the target has extending loads. If you end up lowering back 361 // into a load and extend during the legalizer then the end result is 362 // hoisting the extend up to the load. 363 364 // Prefer defined extensions to undefined extensions as these are more 365 // likely to reduce the number of instructions. 366 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 367 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 368 return CurrentUse; 369 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 370 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 371 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 372 373 // Prefer sign extensions to zero extensions as sign-extensions tend to be 374 // more expensive. 375 if (CurrentUse.Ty == TyForCandidate) { 376 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 377 OpcodeForCandidate == TargetOpcode::G_ZEXT) 378 return CurrentUse; 379 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 380 OpcodeForCandidate == TargetOpcode::G_SEXT) 381 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 382 } 383 384 // This is potentially target specific. We've chosen the largest type 385 // because G_TRUNC is usually free. One potential catch with this is that 386 // some targets have a reduced number of larger registers than smaller 387 // registers and this choice potentially increases the live-range for the 388 // larger value. 389 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 390 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 391 } 392 return CurrentUse; 393 } 394 395 /// Find a suitable place to insert some instructions and insert them. This 396 /// function accounts for special cases like inserting before a PHI node. 397 /// The current strategy for inserting before PHI's is to duplicate the 398 /// instructions for each predecessor. However, while that's ok for G_TRUNC 399 /// on most targets since it generally requires no code, other targets/cases may 400 /// want to try harder to find a dominating block. 401 static void InsertInsnsWithoutSideEffectsBeforeUse( 402 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 403 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 404 MachineOperand &UseMO)> 405 Inserter) { 406 MachineInstr &UseMI = *UseMO.getParent(); 407 408 MachineBasicBlock *InsertBB = UseMI.getParent(); 409 410 // If the use is a PHI then we want the predecessor block instead. 411 if (UseMI.isPHI()) { 412 MachineOperand *PredBB = std::next(&UseMO); 413 InsertBB = PredBB->getMBB(); 414 } 415 416 // If the block is the same block as the def then we want to insert just after 417 // the def instead of at the start of the block. 418 if (InsertBB == DefMI.getParent()) { 419 MachineBasicBlock::iterator InsertPt = &DefMI; 420 Inserter(InsertBB, std::next(InsertPt), UseMO); 421 return; 422 } 423 424 // Otherwise we want the start of the BB 425 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 426 } 427 } // end anonymous namespace 428 429 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 430 PreferredTuple Preferred; 431 if (matchCombineExtendingLoads(MI, Preferred)) { 432 applyCombineExtendingLoads(MI, Preferred); 433 return true; 434 } 435 return false; 436 } 437 438 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 439 PreferredTuple &Preferred) { 440 // We match the loads and follow the uses to the extend instead of matching 441 // the extends and following the def to the load. This is because the load 442 // must remain in the same position for correctness (unless we also add code 443 // to find a safe place to sink it) whereas the extend is freely movable. 444 // It also prevents us from duplicating the load for the volatile case or just 445 // for performance. 446 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 447 if (!LoadMI) 448 return false; 449 450 Register LoadReg = LoadMI->getDstReg(); 451 452 LLT LoadValueTy = MRI.getType(LoadReg); 453 if (!LoadValueTy.isScalar()) 454 return false; 455 456 // Most architectures are going to legalize <s8 loads into at least a 1 byte 457 // load, and the MMOs can only describe memory accesses in multiples of bytes. 458 // If we try to perform extload combining on those, we can end up with 459 // %a(s8) = extload %ptr (load 1 byte from %ptr) 460 // ... which is an illegal extload instruction. 461 if (LoadValueTy.getSizeInBits() < 8) 462 return false; 463 464 // For non power-of-2 types, they will very likely be legalized into multiple 465 // loads. Don't bother trying to match them into extending loads. 466 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 467 return false; 468 469 // Find the preferred type aside from the any-extends (unless it's the only 470 // one) and non-extending ops. We'll emit an extending load to that type and 471 // and emit a variant of (extend (trunc X)) for the others according to the 472 // relative type sizes. At the same time, pick an extend to use based on the 473 // extend involved in the chosen type. 474 unsigned PreferredOpcode = 475 isa<GLoad>(&MI) 476 ? TargetOpcode::G_ANYEXT 477 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 478 Preferred = {LLT(), PreferredOpcode, nullptr}; 479 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 480 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 481 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 482 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 483 const auto &MMO = LoadMI->getMMO(); 484 // For atomics, only form anyextending loads. 485 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 486 continue; 487 // Check for legality. 488 if (LI) { 489 LegalityQuery::MemDesc MMDesc; 490 MMDesc.MemoryTy = MMO.getMemoryType(); 491 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 492 MMDesc.Ordering = MMO.getSuccessOrdering(); 493 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 494 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 495 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 496 .Action != LegalizeActions::Legal) 497 continue; 498 } 499 Preferred = ChoosePreferredUse(Preferred, 500 MRI.getType(UseMI.getOperand(0).getReg()), 501 UseMI.getOpcode(), &UseMI); 502 } 503 } 504 505 // There were no extends 506 if (!Preferred.MI) 507 return false; 508 // It should be impossible to chose an extend without selecting a different 509 // type since by definition the result of an extend is larger. 510 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 511 512 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 513 return true; 514 } 515 516 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 517 PreferredTuple &Preferred) { 518 // Rewrite the load to the chosen extending load. 519 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 520 521 // Inserter to insert a truncate back to the original type at a given point 522 // with some basic CSE to limit truncate duplication to one per BB. 523 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 524 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 525 MachineBasicBlock::iterator InsertBefore, 526 MachineOperand &UseMO) { 527 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 528 if (PreviouslyEmitted) { 529 Observer.changingInstr(*UseMO.getParent()); 530 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 531 Observer.changedInstr(*UseMO.getParent()); 532 return; 533 } 534 535 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 536 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 537 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 538 EmittedInsns[InsertIntoBB] = NewMI; 539 replaceRegOpWith(MRI, UseMO, NewDstReg); 540 }; 541 542 Observer.changingInstr(MI); 543 MI.setDesc( 544 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 545 ? TargetOpcode::G_SEXTLOAD 546 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 547 ? TargetOpcode::G_ZEXTLOAD 548 : TargetOpcode::G_LOAD)); 549 550 // Rewrite all the uses to fix up the types. 551 auto &LoadValue = MI.getOperand(0); 552 SmallVector<MachineOperand *, 4> Uses; 553 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 554 Uses.push_back(&UseMO); 555 556 for (auto *UseMO : Uses) { 557 MachineInstr *UseMI = UseMO->getParent(); 558 559 // If the extend is compatible with the preferred extend then we should fix 560 // up the type and extend so that it uses the preferred use. 561 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 562 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 563 Register UseDstReg = UseMI->getOperand(0).getReg(); 564 MachineOperand &UseSrcMO = UseMI->getOperand(1); 565 const LLT UseDstTy = MRI.getType(UseDstReg); 566 if (UseDstReg != ChosenDstReg) { 567 if (Preferred.Ty == UseDstTy) { 568 // If the use has the same type as the preferred use, then merge 569 // the vregs and erase the extend. For example: 570 // %1:_(s8) = G_LOAD ... 571 // %2:_(s32) = G_SEXT %1(s8) 572 // %3:_(s32) = G_ANYEXT %1(s8) 573 // ... = ... %3(s32) 574 // rewrites to: 575 // %2:_(s32) = G_SEXTLOAD ... 576 // ... = ... %2(s32) 577 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 578 Observer.erasingInstr(*UseMO->getParent()); 579 UseMO->getParent()->eraseFromParent(); 580 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 581 // If the preferred size is smaller, then keep the extend but extend 582 // from the result of the extending load. For example: 583 // %1:_(s8) = G_LOAD ... 584 // %2:_(s32) = G_SEXT %1(s8) 585 // %3:_(s64) = G_ANYEXT %1(s8) 586 // ... = ... %3(s64) 587 /// rewrites to: 588 // %2:_(s32) = G_SEXTLOAD ... 589 // %3:_(s64) = G_ANYEXT %2:_(s32) 590 // ... = ... %3(s64) 591 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 592 } else { 593 // If the preferred size is large, then insert a truncate. For 594 // example: 595 // %1:_(s8) = G_LOAD ... 596 // %2:_(s64) = G_SEXT %1(s8) 597 // %3:_(s32) = G_ZEXT %1(s8) 598 // ... = ... %3(s32) 599 /// rewrites to: 600 // %2:_(s64) = G_SEXTLOAD ... 601 // %4:_(s8) = G_TRUNC %2:_(s32) 602 // %3:_(s64) = G_ZEXT %2:_(s8) 603 // ... = ... %3(s64) 604 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 605 InsertTruncAt); 606 } 607 continue; 608 } 609 // The use is (one of) the uses of the preferred use we chose earlier. 610 // We're going to update the load to def this value later so just erase 611 // the old extend. 612 Observer.erasingInstr(*UseMO->getParent()); 613 UseMO->getParent()->eraseFromParent(); 614 continue; 615 } 616 617 // The use isn't an extend. Truncate back to the type we originally loaded. 618 // This is free on many targets. 619 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 620 } 621 622 MI.getOperand(0).setReg(ChosenDstReg); 623 Observer.changedInstr(MI); 624 } 625 626 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 627 const MachineInstr &UseMI) { 628 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 629 "shouldn't consider debug uses"); 630 assert(DefMI.getParent() == UseMI.getParent()); 631 if (&DefMI == &UseMI) 632 return false; 633 const MachineBasicBlock &MBB = *DefMI.getParent(); 634 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 635 return &MI == &DefMI || &MI == &UseMI; 636 }); 637 if (DefOrUse == MBB.end()) 638 llvm_unreachable("Block must contain both DefMI and UseMI!"); 639 return &*DefOrUse == &DefMI; 640 } 641 642 bool CombinerHelper::dominates(const MachineInstr &DefMI, 643 const MachineInstr &UseMI) { 644 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 645 "shouldn't consider debug uses"); 646 if (MDT) 647 return MDT->dominates(&DefMI, &UseMI); 648 else if (DefMI.getParent() != UseMI.getParent()) 649 return false; 650 651 return isPredecessor(DefMI, UseMI); 652 } 653 654 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 655 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 656 Register SrcReg = MI.getOperand(1).getReg(); 657 Register LoadUser = SrcReg; 658 659 if (MRI.getType(SrcReg).isVector()) 660 return false; 661 662 Register TruncSrc; 663 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 664 LoadUser = TruncSrc; 665 666 uint64_t SizeInBits = MI.getOperand(2).getImm(); 667 // If the source is a G_SEXTLOAD from the same bit width, then we don't 668 // need any extend at all, just a truncate. 669 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 670 // If truncating more than the original extended value, abort. 671 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 672 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 673 return false; 674 if (LoadSizeBits == SizeInBits) 675 return true; 676 } 677 return false; 678 } 679 680 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 681 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 682 Builder.setInstrAndDebugLoc(MI); 683 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 684 MI.eraseFromParent(); 685 } 686 687 bool CombinerHelper::matchSextInRegOfLoad( 688 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 689 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 690 691 // Only supports scalars for now. 692 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 693 return false; 694 695 Register SrcReg = MI.getOperand(1).getReg(); 696 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 697 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || 698 !LoadDef->isSimple()) 699 return false; 700 701 // If the sign extend extends from a narrower width than the load's width, 702 // then we can narrow the load width when we combine to a G_SEXTLOAD. 703 // Avoid widening the load at all. 704 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), 705 LoadDef->getMemSizeInBits()); 706 707 // Don't generate G_SEXTLOADs with a < 1 byte width. 708 if (NewSizeBits < 8) 709 return false; 710 // Don't bother creating a non-power-2 sextload, it will likely be broken up 711 // anyway for most targets. 712 if (!isPowerOf2_32(NewSizeBits)) 713 return false; 714 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 715 return true; 716 } 717 718 void CombinerHelper::applySextInRegOfLoad( 719 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 720 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 721 Register LoadReg; 722 unsigned ScalarSizeBits; 723 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 724 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 725 726 // If we have the following: 727 // %ld = G_LOAD %ptr, (load 2) 728 // %ext = G_SEXT_INREG %ld, 8 729 // ==> 730 // %ld = G_SEXTLOAD %ptr (load 1) 731 732 auto &MMO = LoadDef->getMMO(); 733 Builder.setInstrAndDebugLoc(*LoadDef); 734 auto &MF = Builder.getMF(); 735 auto PtrInfo = MMO.getPointerInfo(); 736 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 737 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 738 LoadDef->getPointerReg(), *NewMMO); 739 MI.eraseFromParent(); 740 } 741 742 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 743 Register &Base, Register &Offset) { 744 auto &MF = *MI.getParent()->getParent(); 745 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 746 747 #ifndef NDEBUG 748 unsigned Opcode = MI.getOpcode(); 749 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 750 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 751 #endif 752 753 Base = MI.getOperand(1).getReg(); 754 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 755 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 756 return false; 757 758 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 759 // FIXME: The following use traversal needs a bail out for patholigical cases. 760 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 761 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 762 continue; 763 764 Offset = Use.getOperand(2).getReg(); 765 if (!ForceLegalIndexing && 766 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 767 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 768 << Use); 769 continue; 770 } 771 772 // Make sure the offset calculation is before the potentially indexed op. 773 // FIXME: we really care about dependency here. The offset calculation might 774 // be movable. 775 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 776 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 777 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 778 << Use); 779 continue; 780 } 781 782 // FIXME: check whether all uses of Base are load/store with foldable 783 // addressing modes. If so, using the normal addr-modes is better than 784 // forming an indexed one. 785 786 bool MemOpDominatesAddrUses = true; 787 for (auto &PtrAddUse : 788 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 789 if (!dominates(MI, PtrAddUse)) { 790 MemOpDominatesAddrUses = false; 791 break; 792 } 793 } 794 795 if (!MemOpDominatesAddrUses) { 796 LLVM_DEBUG( 797 dbgs() << " Ignoring candidate as memop does not dominate uses: " 798 << Use); 799 continue; 800 } 801 802 LLVM_DEBUG(dbgs() << " Found match: " << Use); 803 Addr = Use.getOperand(0).getReg(); 804 return true; 805 } 806 807 return false; 808 } 809 810 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 811 Register &Base, Register &Offset) { 812 auto &MF = *MI.getParent()->getParent(); 813 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 814 815 #ifndef NDEBUG 816 unsigned Opcode = MI.getOpcode(); 817 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 818 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 819 #endif 820 821 Addr = MI.getOperand(1).getReg(); 822 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 823 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 824 return false; 825 826 Base = AddrDef->getOperand(1).getReg(); 827 Offset = AddrDef->getOperand(2).getReg(); 828 829 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 830 831 if (!ForceLegalIndexing && 832 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 833 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 834 return false; 835 } 836 837 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 838 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 839 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 840 return false; 841 } 842 843 if (MI.getOpcode() == TargetOpcode::G_STORE) { 844 // Would require a copy. 845 if (Base == MI.getOperand(0).getReg()) { 846 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 847 return false; 848 } 849 850 // We're expecting one use of Addr in MI, but it could also be the 851 // value stored, which isn't actually dominated by the instruction. 852 if (MI.getOperand(0).getReg() == Addr) { 853 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 854 return false; 855 } 856 } 857 858 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 859 // That might allow us to end base's liveness here by adjusting the constant. 860 861 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 862 if (!dominates(MI, UseMI)) { 863 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 864 return false; 865 } 866 } 867 868 return true; 869 } 870 871 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 872 IndexedLoadStoreMatchInfo MatchInfo; 873 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 874 applyCombineIndexedLoadStore(MI, MatchInfo); 875 return true; 876 } 877 return false; 878 } 879 880 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 881 unsigned Opcode = MI.getOpcode(); 882 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 883 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 884 return false; 885 886 // For now, no targets actually support these opcodes so don't waste time 887 // running these unless we're forced to for testing. 888 if (!ForceLegalIndexing) 889 return false; 890 891 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 892 MatchInfo.Offset); 893 if (!MatchInfo.IsPre && 894 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 895 MatchInfo.Offset)) 896 return false; 897 898 return true; 899 } 900 901 void CombinerHelper::applyCombineIndexedLoadStore( 902 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 903 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 904 MachineIRBuilder MIRBuilder(MI); 905 unsigned Opcode = MI.getOpcode(); 906 bool IsStore = Opcode == TargetOpcode::G_STORE; 907 unsigned NewOpcode; 908 switch (Opcode) { 909 case TargetOpcode::G_LOAD: 910 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 911 break; 912 case TargetOpcode::G_SEXTLOAD: 913 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 914 break; 915 case TargetOpcode::G_ZEXTLOAD: 916 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 917 break; 918 case TargetOpcode::G_STORE: 919 NewOpcode = TargetOpcode::G_INDEXED_STORE; 920 break; 921 default: 922 llvm_unreachable("Unknown load/store opcode"); 923 } 924 925 auto MIB = MIRBuilder.buildInstr(NewOpcode); 926 if (IsStore) { 927 MIB.addDef(MatchInfo.Addr); 928 MIB.addUse(MI.getOperand(0).getReg()); 929 } else { 930 MIB.addDef(MI.getOperand(0).getReg()); 931 MIB.addDef(MatchInfo.Addr); 932 } 933 934 MIB.addUse(MatchInfo.Base); 935 MIB.addUse(MatchInfo.Offset); 936 MIB.addImm(MatchInfo.IsPre); 937 MI.eraseFromParent(); 938 AddrDef.eraseFromParent(); 939 940 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 941 } 942 943 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 944 MachineInstr *&OtherMI) { 945 unsigned Opcode = MI.getOpcode(); 946 bool IsDiv, IsSigned; 947 948 switch (Opcode) { 949 default: 950 llvm_unreachable("Unexpected opcode!"); 951 case TargetOpcode::G_SDIV: 952 case TargetOpcode::G_UDIV: { 953 IsDiv = true; 954 IsSigned = Opcode == TargetOpcode::G_SDIV; 955 break; 956 } 957 case TargetOpcode::G_SREM: 958 case TargetOpcode::G_UREM: { 959 IsDiv = false; 960 IsSigned = Opcode == TargetOpcode::G_SREM; 961 break; 962 } 963 } 964 965 Register Src1 = MI.getOperand(1).getReg(); 966 unsigned DivOpcode, RemOpcode, DivremOpcode; 967 if (IsSigned) { 968 DivOpcode = TargetOpcode::G_SDIV; 969 RemOpcode = TargetOpcode::G_SREM; 970 DivremOpcode = TargetOpcode::G_SDIVREM; 971 } else { 972 DivOpcode = TargetOpcode::G_UDIV; 973 RemOpcode = TargetOpcode::G_UREM; 974 DivremOpcode = TargetOpcode::G_UDIVREM; 975 } 976 977 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 978 return false; 979 980 // Combine: 981 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 982 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 983 // into: 984 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 985 986 // Combine: 987 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 988 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 989 // into: 990 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 991 992 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 993 if (MI.getParent() == UseMI.getParent() && 994 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 995 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 996 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 997 OtherMI = &UseMI; 998 return true; 999 } 1000 } 1001 1002 return false; 1003 } 1004 1005 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1006 MachineInstr *&OtherMI) { 1007 unsigned Opcode = MI.getOpcode(); 1008 assert(OtherMI && "OtherMI shouldn't be empty."); 1009 1010 Register DestDivReg, DestRemReg; 1011 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1012 DestDivReg = MI.getOperand(0).getReg(); 1013 DestRemReg = OtherMI->getOperand(0).getReg(); 1014 } else { 1015 DestDivReg = OtherMI->getOperand(0).getReg(); 1016 DestRemReg = MI.getOperand(0).getReg(); 1017 } 1018 1019 bool IsSigned = 1020 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1021 1022 // Check which instruction is first in the block so we don't break def-use 1023 // deps by "moving" the instruction incorrectly. 1024 if (dominates(MI, *OtherMI)) 1025 Builder.setInstrAndDebugLoc(MI); 1026 else 1027 Builder.setInstrAndDebugLoc(*OtherMI); 1028 1029 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1030 : TargetOpcode::G_UDIVREM, 1031 {DestDivReg, DestRemReg}, 1032 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1033 MI.eraseFromParent(); 1034 OtherMI->eraseFromParent(); 1035 } 1036 1037 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1038 MachineInstr *&BrCond) { 1039 assert(MI.getOpcode() == TargetOpcode::G_BR); 1040 1041 // Try to match the following: 1042 // bb1: 1043 // G_BRCOND %c1, %bb2 1044 // G_BR %bb3 1045 // bb2: 1046 // ... 1047 // bb3: 1048 1049 // The above pattern does not have a fall through to the successor bb2, always 1050 // resulting in a branch no matter which path is taken. Here we try to find 1051 // and replace that pattern with conditional branch to bb3 and otherwise 1052 // fallthrough to bb2. This is generally better for branch predictors. 1053 1054 MachineBasicBlock *MBB = MI.getParent(); 1055 MachineBasicBlock::iterator BrIt(MI); 1056 if (BrIt == MBB->begin()) 1057 return false; 1058 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1059 1060 BrCond = &*std::prev(BrIt); 1061 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1062 return false; 1063 1064 // Check that the next block is the conditional branch target. Also make sure 1065 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1066 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1067 return BrCondTarget != MI.getOperand(0).getMBB() && 1068 MBB->isLayoutSuccessor(BrCondTarget); 1069 } 1070 1071 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1072 MachineInstr *&BrCond) { 1073 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1074 Builder.setInstrAndDebugLoc(*BrCond); 1075 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1076 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1077 // this to i1 only since we might not know for sure what kind of 1078 // compare generated the condition value. 1079 auto True = Builder.buildConstant( 1080 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1081 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1082 1083 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1084 Observer.changingInstr(MI); 1085 MI.getOperand(0).setMBB(FallthroughBB); 1086 Observer.changedInstr(MI); 1087 1088 // Change the conditional branch to use the inverted condition and 1089 // new target block. 1090 Observer.changingInstr(*BrCond); 1091 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1092 BrCond->getOperand(1).setMBB(BrTarget); 1093 Observer.changedInstr(*BrCond); 1094 } 1095 1096 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 1097 // On Darwin, -Os means optimize for size without hurting performance, so 1098 // only really optimize for size when -Oz (MinSize) is used. 1099 if (MF.getTarget().getTargetTriple().isOSDarwin()) 1100 return MF.getFunction().hasMinSize(); 1101 return MF.getFunction().hasOptSize(); 1102 } 1103 1104 // Returns a list of types to use for memory op lowering in MemOps. A partial 1105 // port of findOptimalMemOpLowering in TargetLowering. 1106 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 1107 unsigned Limit, const MemOp &Op, 1108 unsigned DstAS, unsigned SrcAS, 1109 const AttributeList &FuncAttributes, 1110 const TargetLowering &TLI) { 1111 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 1112 return false; 1113 1114 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 1115 1116 if (Ty == LLT()) { 1117 // Use the largest scalar type whose alignment constraints are satisfied. 1118 // We only need to check DstAlign here as SrcAlign is always greater or 1119 // equal to DstAlign (or zero). 1120 Ty = LLT::scalar(64); 1121 if (Op.isFixedDstAlign()) 1122 while (Op.getDstAlign() < Ty.getSizeInBytes() && 1123 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 1124 Ty = LLT::scalar(Ty.getSizeInBytes()); 1125 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 1126 // FIXME: check for the largest legal type we can load/store to. 1127 } 1128 1129 unsigned NumMemOps = 0; 1130 uint64_t Size = Op.size(); 1131 while (Size) { 1132 unsigned TySize = Ty.getSizeInBytes(); 1133 while (TySize > Size) { 1134 // For now, only use non-vector load / store's for the left-over pieces. 1135 LLT NewTy = Ty; 1136 // FIXME: check for mem op safety and legality of the types. Not all of 1137 // SDAGisms map cleanly to GISel concepts. 1138 if (NewTy.isVector()) 1139 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 1140 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 1141 unsigned NewTySize = NewTy.getSizeInBytes(); 1142 assert(NewTySize > 0 && "Could not find appropriate type"); 1143 1144 // If the new LLT cannot cover all of the remaining bits, then consider 1145 // issuing a (or a pair of) unaligned and overlapping load / store. 1146 bool Fast; 1147 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 1148 MVT VT = getMVTForLLT(Ty); 1149 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 1150 TLI.allowsMisalignedMemoryAccesses( 1151 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 1152 MachineMemOperand::MONone, &Fast) && 1153 Fast) 1154 TySize = Size; 1155 else { 1156 Ty = NewTy; 1157 TySize = NewTySize; 1158 } 1159 } 1160 1161 if (++NumMemOps > Limit) 1162 return false; 1163 1164 MemOps.push_back(Ty); 1165 Size -= TySize; 1166 } 1167 1168 return true; 1169 } 1170 1171 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1172 if (Ty.isVector()) 1173 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1174 Ty.getNumElements()); 1175 return IntegerType::get(C, Ty.getSizeInBits()); 1176 } 1177 1178 // Get a vectorized representation of the memset value operand, GISel edition. 1179 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 1180 MachineRegisterInfo &MRI = *MIB.getMRI(); 1181 unsigned NumBits = Ty.getScalarSizeInBits(); 1182 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1183 if (!Ty.isVector() && ValVRegAndVal) { 1184 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 1185 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 1186 return MIB.buildConstant(Ty, SplatVal).getReg(0); 1187 } 1188 1189 // Extend the byte value to the larger type, and then multiply by a magic 1190 // value 0x010101... in order to replicate it across every byte. 1191 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 1192 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 1193 return MIB.buildConstant(Ty, 0).getReg(0); 1194 } 1195 1196 LLT ExtType = Ty.getScalarType(); 1197 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 1198 if (NumBits > 8) { 1199 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 1200 auto MagicMI = MIB.buildConstant(ExtType, Magic); 1201 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 1202 } 1203 1204 // For vector types create a G_BUILD_VECTOR. 1205 if (Ty.isVector()) 1206 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 1207 1208 return Val; 1209 } 1210 1211 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 1212 Register Val, uint64_t KnownLen, 1213 Align Alignment, bool IsVolatile) { 1214 auto &MF = *MI.getParent()->getParent(); 1215 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1216 auto &DL = MF.getDataLayout(); 1217 LLVMContext &C = MF.getFunction().getContext(); 1218 1219 assert(KnownLen != 0 && "Have a zero length memset length!"); 1220 1221 bool DstAlignCanChange = false; 1222 MachineFrameInfo &MFI = MF.getFrameInfo(); 1223 bool OptSize = shouldLowerMemFuncForSize(MF); 1224 1225 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1226 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1227 DstAlignCanChange = true; 1228 1229 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1230 std::vector<LLT> MemOps; 1231 1232 const auto &DstMMO = **MI.memoperands_begin(); 1233 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1234 1235 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1236 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1237 1238 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1239 MemOp::Set(KnownLen, DstAlignCanChange, 1240 Alignment, 1241 /*IsZeroMemset=*/IsZeroVal, 1242 /*IsVolatile=*/IsVolatile), 1243 DstPtrInfo.getAddrSpace(), ~0u, 1244 MF.getFunction().getAttributes(), TLI)) 1245 return false; 1246 1247 if (DstAlignCanChange) { 1248 // Get an estimate of the type from the LLT. 1249 Type *IRTy = getTypeForLLT(MemOps[0], C); 1250 Align NewAlign = DL.getABITypeAlign(IRTy); 1251 if (NewAlign > Alignment) { 1252 Alignment = NewAlign; 1253 unsigned FI = FIDef->getOperand(1).getIndex(); 1254 // Give the stack frame object a larger alignment if needed. 1255 if (MFI.getObjectAlign(FI) < Alignment) 1256 MFI.setObjectAlignment(FI, Alignment); 1257 } 1258 } 1259 1260 MachineIRBuilder MIB(MI); 1261 // Find the largest store and generate the bit pattern for it. 1262 LLT LargestTy = MemOps[0]; 1263 for (unsigned i = 1; i < MemOps.size(); i++) 1264 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1265 LargestTy = MemOps[i]; 1266 1267 // The memset stored value is always defined as an s8, so in order to make it 1268 // work with larger store types we need to repeat the bit pattern across the 1269 // wider type. 1270 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1271 1272 if (!MemSetValue) 1273 return false; 1274 1275 // Generate the stores. For each store type in the list, we generate the 1276 // matching store of that type to the destination address. 1277 LLT PtrTy = MRI.getType(Dst); 1278 unsigned DstOff = 0; 1279 unsigned Size = KnownLen; 1280 for (unsigned I = 0; I < MemOps.size(); I++) { 1281 LLT Ty = MemOps[I]; 1282 unsigned TySize = Ty.getSizeInBytes(); 1283 if (TySize > Size) { 1284 // Issuing an unaligned load / store pair that overlaps with the previous 1285 // pair. Adjust the offset accordingly. 1286 assert(I == MemOps.size() - 1 && I != 0); 1287 DstOff -= TySize - Size; 1288 } 1289 1290 // If this store is smaller than the largest store see whether we can get 1291 // the smaller value for free with a truncate. 1292 Register Value = MemSetValue; 1293 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1294 MVT VT = getMVTForLLT(Ty); 1295 MVT LargestVT = getMVTForLLT(LargestTy); 1296 if (!LargestTy.isVector() && !Ty.isVector() && 1297 TLI.isTruncateFree(LargestVT, VT)) 1298 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1299 else 1300 Value = getMemsetValue(Val, Ty, MIB); 1301 if (!Value) 1302 return false; 1303 } 1304 1305 auto *StoreMMO = 1306 MF.getMachineMemOperand(&DstMMO, DstOff, Ty); 1307 1308 Register Ptr = Dst; 1309 if (DstOff != 0) { 1310 auto Offset = 1311 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1312 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1313 } 1314 1315 MIB.buildStore(Value, Ptr, *StoreMMO); 1316 DstOff += Ty.getSizeInBytes(); 1317 Size -= TySize; 1318 } 1319 1320 MI.eraseFromParent(); 1321 return true; 1322 } 1323 1324 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1325 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 1326 1327 Register Dst = MI.getOperand(0).getReg(); 1328 Register Src = MI.getOperand(1).getReg(); 1329 Register Len = MI.getOperand(2).getReg(); 1330 1331 const auto *MMOIt = MI.memoperands_begin(); 1332 const MachineMemOperand *MemOp = *MMOIt; 1333 bool IsVolatile = MemOp->isVolatile(); 1334 1335 // See if this is a constant length copy 1336 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1337 // FIXME: support dynamically sized G_MEMCPY_INLINE 1338 assert(LenVRegAndVal.hasValue() && 1339 "inline memcpy with dynamic size is not yet supported"); 1340 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 1341 if (KnownLen == 0) { 1342 MI.eraseFromParent(); 1343 return true; 1344 } 1345 1346 const auto &DstMMO = **MI.memoperands_begin(); 1347 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1348 Align DstAlign = DstMMO.getBaseAlign(); 1349 Align SrcAlign = SrcMMO.getBaseAlign(); 1350 1351 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 1352 IsVolatile); 1353 } 1354 1355 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI, Register Dst, 1356 Register Src, uint64_t KnownLen, 1357 Align DstAlign, Align SrcAlign, 1358 bool IsVolatile) { 1359 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 1360 return optimizeMemcpy(MI, Dst, Src, KnownLen, 1361 std::numeric_limits<uint64_t>::max(), DstAlign, 1362 SrcAlign, IsVolatile); 1363 } 1364 1365 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1366 Register Src, uint64_t KnownLen, 1367 uint64_t Limit, Align DstAlign, 1368 Align SrcAlign, bool IsVolatile) { 1369 auto &MF = *MI.getParent()->getParent(); 1370 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1371 auto &DL = MF.getDataLayout(); 1372 LLVMContext &C = MF.getFunction().getContext(); 1373 1374 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1375 1376 bool DstAlignCanChange = false; 1377 MachineFrameInfo &MFI = MF.getFrameInfo(); 1378 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1379 1380 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1381 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1382 DstAlignCanChange = true; 1383 1384 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1385 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1386 // if the memcpy is in a tail call position. 1387 1388 std::vector<LLT> MemOps; 1389 1390 const auto &DstMMO = **MI.memoperands_begin(); 1391 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1392 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1393 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1394 1395 if (!findGISelOptimalMemOpLowering( 1396 MemOps, Limit, 1397 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1398 IsVolatile), 1399 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1400 MF.getFunction().getAttributes(), TLI)) 1401 return false; 1402 1403 if (DstAlignCanChange) { 1404 // Get an estimate of the type from the LLT. 1405 Type *IRTy = getTypeForLLT(MemOps[0], C); 1406 Align NewAlign = DL.getABITypeAlign(IRTy); 1407 1408 // Don't promote to an alignment that would require dynamic stack 1409 // realignment. 1410 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1411 if (!TRI->hasStackRealignment(MF)) 1412 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1413 NewAlign = NewAlign / 2; 1414 1415 if (NewAlign > Alignment) { 1416 Alignment = NewAlign; 1417 unsigned FI = FIDef->getOperand(1).getIndex(); 1418 // Give the stack frame object a larger alignment if needed. 1419 if (MFI.getObjectAlign(FI) < Alignment) 1420 MFI.setObjectAlignment(FI, Alignment); 1421 } 1422 } 1423 1424 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1425 1426 MachineIRBuilder MIB(MI); 1427 // Now we need to emit a pair of load and stores for each of the types we've 1428 // collected. I.e. for each type, generate a load from the source pointer of 1429 // that type width, and then generate a corresponding store to the dest buffer 1430 // of that value loaded. This can result in a sequence of loads and stores 1431 // mixed types, depending on what the target specifies as good types to use. 1432 unsigned CurrOffset = 0; 1433 LLT PtrTy = MRI.getType(Src); 1434 unsigned Size = KnownLen; 1435 for (auto CopyTy : MemOps) { 1436 // Issuing an unaligned load / store pair that overlaps with the previous 1437 // pair. Adjust the offset accordingly. 1438 if (CopyTy.getSizeInBytes() > Size) 1439 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1440 1441 // Construct MMOs for the accesses. 1442 auto *LoadMMO = 1443 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1444 auto *StoreMMO = 1445 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1446 1447 // Create the load. 1448 Register LoadPtr = Src; 1449 Register Offset; 1450 if (CurrOffset != 0) { 1451 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1452 .getReg(0); 1453 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1454 } 1455 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1456 1457 // Create the store. 1458 Register StorePtr = 1459 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1460 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1461 CurrOffset += CopyTy.getSizeInBytes(); 1462 Size -= CopyTy.getSizeInBytes(); 1463 } 1464 1465 MI.eraseFromParent(); 1466 return true; 1467 } 1468 1469 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1470 Register Src, uint64_t KnownLen, 1471 Align DstAlign, Align SrcAlign, 1472 bool IsVolatile) { 1473 auto &MF = *MI.getParent()->getParent(); 1474 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1475 auto &DL = MF.getDataLayout(); 1476 LLVMContext &C = MF.getFunction().getContext(); 1477 1478 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1479 1480 bool DstAlignCanChange = false; 1481 MachineFrameInfo &MFI = MF.getFrameInfo(); 1482 bool OptSize = shouldLowerMemFuncForSize(MF); 1483 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1484 1485 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1486 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1487 DstAlignCanChange = true; 1488 1489 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1490 std::vector<LLT> MemOps; 1491 1492 const auto &DstMMO = **MI.memoperands_begin(); 1493 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1494 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1495 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1496 1497 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1498 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1499 // same thing here. 1500 if (!findGISelOptimalMemOpLowering( 1501 MemOps, Limit, 1502 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1503 /*IsVolatile*/ true), 1504 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1505 MF.getFunction().getAttributes(), TLI)) 1506 return false; 1507 1508 if (DstAlignCanChange) { 1509 // Get an estimate of the type from the LLT. 1510 Type *IRTy = getTypeForLLT(MemOps[0], C); 1511 Align NewAlign = DL.getABITypeAlign(IRTy); 1512 1513 // Don't promote to an alignment that would require dynamic stack 1514 // realignment. 1515 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1516 if (!TRI->hasStackRealignment(MF)) 1517 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1518 NewAlign = NewAlign / 2; 1519 1520 if (NewAlign > Alignment) { 1521 Alignment = NewAlign; 1522 unsigned FI = FIDef->getOperand(1).getIndex(); 1523 // Give the stack frame object a larger alignment if needed. 1524 if (MFI.getObjectAlign(FI) < Alignment) 1525 MFI.setObjectAlignment(FI, Alignment); 1526 } 1527 } 1528 1529 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1530 1531 MachineIRBuilder MIB(MI); 1532 // Memmove requires that we perform the loads first before issuing the stores. 1533 // Apart from that, this loop is pretty much doing the same thing as the 1534 // memcpy codegen function. 1535 unsigned CurrOffset = 0; 1536 LLT PtrTy = MRI.getType(Src); 1537 SmallVector<Register, 16> LoadVals; 1538 for (auto CopyTy : MemOps) { 1539 // Construct MMO for the load. 1540 auto *LoadMMO = 1541 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1542 1543 // Create the load. 1544 Register LoadPtr = Src; 1545 if (CurrOffset != 0) { 1546 auto Offset = 1547 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1548 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1549 } 1550 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1551 CurrOffset += CopyTy.getSizeInBytes(); 1552 } 1553 1554 CurrOffset = 0; 1555 for (unsigned I = 0; I < MemOps.size(); ++I) { 1556 LLT CopyTy = MemOps[I]; 1557 // Now store the values loaded. 1558 auto *StoreMMO = 1559 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1560 1561 Register StorePtr = Dst; 1562 if (CurrOffset != 0) { 1563 auto Offset = 1564 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1565 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1566 } 1567 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1568 CurrOffset += CopyTy.getSizeInBytes(); 1569 } 1570 MI.eraseFromParent(); 1571 return true; 1572 } 1573 1574 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1575 const unsigned Opc = MI.getOpcode(); 1576 // This combine is fairly complex so it's not written with a separate 1577 // matcher function. 1578 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 1579 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); 1580 1581 auto MMOIt = MI.memoperands_begin(); 1582 const MachineMemOperand *MemOp = *MMOIt; 1583 1584 Align DstAlign = MemOp->getBaseAlign(); 1585 Align SrcAlign; 1586 Register Dst = MI.getOperand(0).getReg(); 1587 Register Src = MI.getOperand(1).getReg(); 1588 Register Len = MI.getOperand(2).getReg(); 1589 1590 if (Opc != TargetOpcode::G_MEMSET) { 1591 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1592 MemOp = *(++MMOIt); 1593 SrcAlign = MemOp->getBaseAlign(); 1594 } 1595 1596 // See if this is a constant length copy 1597 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1598 if (!LenVRegAndVal) 1599 return false; // Leave it to the legalizer to lower it to a libcall. 1600 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 1601 1602 if (KnownLen == 0) { 1603 MI.eraseFromParent(); 1604 return true; 1605 } 1606 1607 bool IsVolatile = MemOp->isVolatile(); 1608 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 1609 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 1610 IsVolatile); 1611 1612 // Don't try to optimize volatile. 1613 if (IsVolatile) 1614 return false; 1615 1616 if (MaxLen && KnownLen > MaxLen) 1617 return false; 1618 1619 if (Opc == TargetOpcode::G_MEMCPY) { 1620 auto &MF = *MI.getParent()->getParent(); 1621 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1622 bool OptSize = shouldLowerMemFuncForSize(MF); 1623 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1624 return optimizeMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 1625 IsVolatile); 1626 } 1627 if (Opc == TargetOpcode::G_MEMMOVE) 1628 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1629 if (Opc == TargetOpcode::G_MEMSET) 1630 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1631 return false; 1632 } 1633 1634 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1635 const Register Op, 1636 const MachineRegisterInfo &MRI) { 1637 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1638 if (!MaybeCst) 1639 return None; 1640 1641 APFloat V = MaybeCst->getValueAPF(); 1642 switch (Opcode) { 1643 default: 1644 llvm_unreachable("Unexpected opcode!"); 1645 case TargetOpcode::G_FNEG: { 1646 V.changeSign(); 1647 return V; 1648 } 1649 case TargetOpcode::G_FABS: { 1650 V.clearSign(); 1651 return V; 1652 } 1653 case TargetOpcode::G_FPTRUNC: 1654 break; 1655 case TargetOpcode::G_FSQRT: { 1656 bool Unused; 1657 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1658 V = APFloat(sqrt(V.convertToDouble())); 1659 break; 1660 } 1661 case TargetOpcode::G_FLOG2: { 1662 bool Unused; 1663 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1664 V = APFloat(log2(V.convertToDouble())); 1665 break; 1666 } 1667 } 1668 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1669 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1670 // and `G_FLOG2` reach here. 1671 bool Unused; 1672 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1673 return V; 1674 } 1675 1676 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1677 Optional<APFloat> &Cst) { 1678 Register DstReg = MI.getOperand(0).getReg(); 1679 Register SrcReg = MI.getOperand(1).getReg(); 1680 LLT DstTy = MRI.getType(DstReg); 1681 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1682 return Cst.hasValue(); 1683 } 1684 1685 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1686 Optional<APFloat> &Cst) { 1687 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1688 Builder.setInstrAndDebugLoc(MI); 1689 MachineFunction &MF = Builder.getMF(); 1690 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1691 Register DstReg = MI.getOperand(0).getReg(); 1692 Builder.buildFConstant(DstReg, *FPVal); 1693 MI.eraseFromParent(); 1694 } 1695 1696 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1697 PtrAddChain &MatchInfo) { 1698 // We're trying to match the following pattern: 1699 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1700 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1701 // --> 1702 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1703 1704 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1705 return false; 1706 1707 Register Add2 = MI.getOperand(1).getReg(); 1708 Register Imm1 = MI.getOperand(2).getReg(); 1709 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1710 if (!MaybeImmVal) 1711 return false; 1712 1713 // Don't do this combine if there multiple uses of the first PTR_ADD, 1714 // since we may be able to compute the second PTR_ADD as an immediate 1715 // offset anyway. Folding the first offset into the second may cause us 1716 // to go beyond the bounds of our legal addressing modes. 1717 if (!MRI.hasOneNonDBGUse(Add2)) 1718 return false; 1719 1720 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1721 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1722 return false; 1723 1724 Register Base = Add2Def->getOperand(1).getReg(); 1725 Register Imm2 = Add2Def->getOperand(2).getReg(); 1726 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1727 if (!MaybeImm2Val) 1728 return false; 1729 1730 // Pass the combined immediate to the apply function. 1731 MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue(); 1732 MatchInfo.Base = Base; 1733 return true; 1734 } 1735 1736 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1737 PtrAddChain &MatchInfo) { 1738 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1739 MachineIRBuilder MIB(MI); 1740 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1741 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1742 Observer.changingInstr(MI); 1743 MI.getOperand(1).setReg(MatchInfo.Base); 1744 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1745 Observer.changedInstr(MI); 1746 } 1747 1748 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1749 RegisterImmPair &MatchInfo) { 1750 // We're trying to match the following pattern with any of 1751 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1752 // %t1 = SHIFT %base, G_CONSTANT imm1 1753 // %root = SHIFT %t1, G_CONSTANT imm2 1754 // --> 1755 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1756 1757 unsigned Opcode = MI.getOpcode(); 1758 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1759 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1760 Opcode == TargetOpcode::G_USHLSAT) && 1761 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1762 1763 Register Shl2 = MI.getOperand(1).getReg(); 1764 Register Imm1 = MI.getOperand(2).getReg(); 1765 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1766 if (!MaybeImmVal) 1767 return false; 1768 1769 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1770 if (Shl2Def->getOpcode() != Opcode) 1771 return false; 1772 1773 Register Base = Shl2Def->getOperand(1).getReg(); 1774 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1775 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1776 if (!MaybeImm2Val) 1777 return false; 1778 1779 // Pass the combined immediate to the apply function. 1780 MatchInfo.Imm = 1781 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1782 MatchInfo.Reg = Base; 1783 1784 // There is no simple replacement for a saturating unsigned left shift that 1785 // exceeds the scalar size. 1786 if (Opcode == TargetOpcode::G_USHLSAT && 1787 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1788 return false; 1789 1790 return true; 1791 } 1792 1793 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1794 RegisterImmPair &MatchInfo) { 1795 unsigned Opcode = MI.getOpcode(); 1796 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1797 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1798 Opcode == TargetOpcode::G_USHLSAT) && 1799 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1800 1801 Builder.setInstrAndDebugLoc(MI); 1802 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1803 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1804 auto Imm = MatchInfo.Imm; 1805 1806 if (Imm >= ScalarSizeInBits) { 1807 // Any logical shift that exceeds scalar size will produce zero. 1808 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1809 Builder.buildConstant(MI.getOperand(0), 0); 1810 MI.eraseFromParent(); 1811 return; 1812 } 1813 // Arithmetic shift and saturating signed left shift have no effect beyond 1814 // scalar size. 1815 Imm = ScalarSizeInBits - 1; 1816 } 1817 1818 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1819 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1820 Observer.changingInstr(MI); 1821 MI.getOperand(1).setReg(MatchInfo.Reg); 1822 MI.getOperand(2).setReg(NewImm); 1823 Observer.changedInstr(MI); 1824 } 1825 1826 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1827 ShiftOfShiftedLogic &MatchInfo) { 1828 // We're trying to match the following pattern with any of 1829 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1830 // with any of G_AND/G_OR/G_XOR logic instructions. 1831 // %t1 = SHIFT %X, G_CONSTANT C0 1832 // %t2 = LOGIC %t1, %Y 1833 // %root = SHIFT %t2, G_CONSTANT C1 1834 // --> 1835 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1836 // %t4 = SHIFT %Y, G_CONSTANT C1 1837 // %root = LOGIC %t3, %t4 1838 unsigned ShiftOpcode = MI.getOpcode(); 1839 assert((ShiftOpcode == TargetOpcode::G_SHL || 1840 ShiftOpcode == TargetOpcode::G_ASHR || 1841 ShiftOpcode == TargetOpcode::G_LSHR || 1842 ShiftOpcode == TargetOpcode::G_USHLSAT || 1843 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1844 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1845 1846 // Match a one-use bitwise logic op. 1847 Register LogicDest = MI.getOperand(1).getReg(); 1848 if (!MRI.hasOneNonDBGUse(LogicDest)) 1849 return false; 1850 1851 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1852 unsigned LogicOpcode = LogicMI->getOpcode(); 1853 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1854 LogicOpcode != TargetOpcode::G_XOR) 1855 return false; 1856 1857 // Find a matching one-use shift by constant. 1858 const Register C1 = MI.getOperand(2).getReg(); 1859 auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); 1860 if (!MaybeImmVal) 1861 return false; 1862 1863 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1864 1865 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1866 // Shift should match previous one and should be a one-use. 1867 if (MI->getOpcode() != ShiftOpcode || 1868 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1869 return false; 1870 1871 // Must be a constant. 1872 auto MaybeImmVal = 1873 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1874 if (!MaybeImmVal) 1875 return false; 1876 1877 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1878 return true; 1879 }; 1880 1881 // Logic ops are commutative, so check each operand for a match. 1882 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1883 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1884 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1885 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1886 uint64_t C0Val; 1887 1888 if (matchFirstShift(LogicMIOp1, C0Val)) { 1889 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1890 MatchInfo.Shift2 = LogicMIOp1; 1891 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1892 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1893 MatchInfo.Shift2 = LogicMIOp2; 1894 } else 1895 return false; 1896 1897 MatchInfo.ValSum = C0Val + C1Val; 1898 1899 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1900 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1901 return false; 1902 1903 MatchInfo.Logic = LogicMI; 1904 return true; 1905 } 1906 1907 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1908 ShiftOfShiftedLogic &MatchInfo) { 1909 unsigned Opcode = MI.getOpcode(); 1910 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1911 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1912 Opcode == TargetOpcode::G_SSHLSAT) && 1913 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1914 1915 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1916 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1917 Builder.setInstrAndDebugLoc(MI); 1918 1919 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1920 1921 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1922 Register Shift1 = 1923 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1924 1925 Register Shift2Const = MI.getOperand(2).getReg(); 1926 Register Shift2 = Builder 1927 .buildInstr(Opcode, {DestType}, 1928 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1929 .getReg(0); 1930 1931 Register Dest = MI.getOperand(0).getReg(); 1932 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1933 1934 // These were one use so it's safe to remove them. 1935 MatchInfo.Shift2->eraseFromParent(); 1936 MatchInfo.Logic->eraseFromParent(); 1937 1938 MI.eraseFromParent(); 1939 } 1940 1941 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1942 unsigned &ShiftVal) { 1943 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1944 auto MaybeImmVal = 1945 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1946 if (!MaybeImmVal) 1947 return false; 1948 1949 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1950 return (static_cast<int32_t>(ShiftVal) != -1); 1951 } 1952 1953 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1954 unsigned &ShiftVal) { 1955 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1956 MachineIRBuilder MIB(MI); 1957 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1958 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1959 Observer.changingInstr(MI); 1960 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1961 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1962 Observer.changedInstr(MI); 1963 } 1964 1965 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1966 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1967 RegisterImmPair &MatchData) { 1968 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1969 1970 Register LHS = MI.getOperand(1).getReg(); 1971 1972 Register ExtSrc; 1973 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1974 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1975 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1976 return false; 1977 1978 // TODO: Should handle vector splat. 1979 Register RHS = MI.getOperand(2).getReg(); 1980 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 1981 if (!MaybeShiftAmtVal) 1982 return false; 1983 1984 if (LI) { 1985 LLT SrcTy = MRI.getType(ExtSrc); 1986 1987 // We only really care about the legality with the shifted value. We can 1988 // pick any type the constant shift amount, so ask the target what to 1989 // use. Otherwise we would have to guess and hope it is reported as legal. 1990 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1991 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1992 return false; 1993 } 1994 1995 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1996 MatchData.Reg = ExtSrc; 1997 MatchData.Imm = ShiftAmt; 1998 1999 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 2000 return MinLeadingZeros >= ShiftAmt; 2001 } 2002 2003 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 2004 const RegisterImmPair &MatchData) { 2005 Register ExtSrcReg = MatchData.Reg; 2006 int64_t ShiftAmtVal = MatchData.Imm; 2007 2008 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 2009 Builder.setInstrAndDebugLoc(MI); 2010 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 2011 auto NarrowShift = 2012 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 2013 Builder.buildZExt(MI.getOperand(0), NarrowShift); 2014 MI.eraseFromParent(); 2015 } 2016 2017 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 2018 Register &MatchInfo) { 2019 GMerge &Merge = cast<GMerge>(MI); 2020 SmallVector<Register, 16> MergedValues; 2021 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 2022 MergedValues.emplace_back(Merge.getSourceReg(I)); 2023 2024 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 2025 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 2026 return false; 2027 2028 for (unsigned I = 0; I < MergedValues.size(); ++I) 2029 if (MergedValues[I] != Unmerge->getReg(I)) 2030 return false; 2031 2032 MatchInfo = Unmerge->getSourceReg(); 2033 return true; 2034 } 2035 2036 static Register peekThroughBitcast(Register Reg, 2037 const MachineRegisterInfo &MRI) { 2038 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 2039 ; 2040 2041 return Reg; 2042 } 2043 2044 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 2045 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2046 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2047 "Expected an unmerge"); 2048 Register SrcReg = 2049 peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI); 2050 2051 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 2052 if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES && 2053 SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR && 2054 SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS) 2055 return false; 2056 2057 // Check the source type of the merge. 2058 LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg()); 2059 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 2060 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 2061 if (SrcMergeTy != Dst0Ty && !SameSize) 2062 return false; 2063 // They are the same now (modulo a bitcast). 2064 // We can collect all the src registers. 2065 for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx; 2066 ++Idx) 2067 Operands.push_back(SrcInstr->getOperand(Idx).getReg()); 2068 return true; 2069 } 2070 2071 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 2072 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 2073 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2074 "Expected an unmerge"); 2075 assert((MI.getNumOperands() - 1 == Operands.size()) && 2076 "Not enough operands to replace all defs"); 2077 unsigned NumElems = MI.getNumOperands() - 1; 2078 2079 LLT SrcTy = MRI.getType(Operands[0]); 2080 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2081 bool CanReuseInputDirectly = DstTy == SrcTy; 2082 Builder.setInstrAndDebugLoc(MI); 2083 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2084 Register DstReg = MI.getOperand(Idx).getReg(); 2085 Register SrcReg = Operands[Idx]; 2086 if (CanReuseInputDirectly) 2087 replaceRegWith(MRI, DstReg, SrcReg); 2088 else 2089 Builder.buildCast(DstReg, SrcReg); 2090 } 2091 MI.eraseFromParent(); 2092 } 2093 2094 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 2095 SmallVectorImpl<APInt> &Csts) { 2096 unsigned SrcIdx = MI.getNumOperands() - 1; 2097 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 2098 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 2099 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 2100 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 2101 return false; 2102 // Break down the big constant in smaller ones. 2103 const MachineOperand &CstVal = SrcInstr->getOperand(1); 2104 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 2105 ? CstVal.getCImm()->getValue() 2106 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 2107 2108 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 2109 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 2110 // Unmerge a constant. 2111 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 2112 Csts.emplace_back(Val.trunc(ShiftAmt)); 2113 Val = Val.lshr(ShiftAmt); 2114 } 2115 2116 return true; 2117 } 2118 2119 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 2120 SmallVectorImpl<APInt> &Csts) { 2121 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2122 "Expected an unmerge"); 2123 assert((MI.getNumOperands() - 1 == Csts.size()) && 2124 "Not enough operands to replace all defs"); 2125 unsigned NumElems = MI.getNumOperands() - 1; 2126 Builder.setInstrAndDebugLoc(MI); 2127 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 2128 Register DstReg = MI.getOperand(Idx).getReg(); 2129 Builder.buildConstant(DstReg, Csts[Idx]); 2130 } 2131 2132 MI.eraseFromParent(); 2133 } 2134 2135 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2136 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2137 "Expected an unmerge"); 2138 // Check that all the lanes are dead except the first one. 2139 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2140 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 2141 return false; 2142 } 2143 return true; 2144 } 2145 2146 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 2147 Builder.setInstrAndDebugLoc(MI); 2148 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2149 // Truncating a vector is going to truncate every single lane, 2150 // whereas we want the full lowbits. 2151 // Do the operation on a scalar instead. 2152 LLT SrcTy = MRI.getType(SrcReg); 2153 if (SrcTy.isVector()) 2154 SrcReg = 2155 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 2156 2157 Register Dst0Reg = MI.getOperand(0).getReg(); 2158 LLT Dst0Ty = MRI.getType(Dst0Reg); 2159 if (Dst0Ty.isVector()) { 2160 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 2161 Builder.buildCast(Dst0Reg, MIB); 2162 } else 2163 Builder.buildTrunc(Dst0Reg, SrcReg); 2164 MI.eraseFromParent(); 2165 } 2166 2167 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 2168 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2169 "Expected an unmerge"); 2170 Register Dst0Reg = MI.getOperand(0).getReg(); 2171 LLT Dst0Ty = MRI.getType(Dst0Reg); 2172 // G_ZEXT on vector applies to each lane, so it will 2173 // affect all destinations. Therefore we won't be able 2174 // to simplify the unmerge to just the first definition. 2175 if (Dst0Ty.isVector()) 2176 return false; 2177 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2178 LLT SrcTy = MRI.getType(SrcReg); 2179 if (SrcTy.isVector()) 2180 return false; 2181 2182 Register ZExtSrcReg; 2183 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 2184 return false; 2185 2186 // Finally we can replace the first definition with 2187 // a zext of the source if the definition is big enough to hold 2188 // all of ZExtSrc bits. 2189 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2190 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 2191 } 2192 2193 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 2194 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2195 "Expected an unmerge"); 2196 2197 Register Dst0Reg = MI.getOperand(0).getReg(); 2198 2199 MachineInstr *ZExtInstr = 2200 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 2201 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 2202 "Expecting a G_ZEXT"); 2203 2204 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 2205 LLT Dst0Ty = MRI.getType(Dst0Reg); 2206 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2207 2208 Builder.setInstrAndDebugLoc(MI); 2209 2210 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 2211 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 2212 } else { 2213 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 2214 "ZExt src doesn't fit in destination"); 2215 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 2216 } 2217 2218 Register ZeroReg; 2219 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2220 if (!ZeroReg) 2221 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 2222 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 2223 } 2224 MI.eraseFromParent(); 2225 } 2226 2227 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 2228 unsigned TargetShiftSize, 2229 unsigned &ShiftVal) { 2230 assert((MI.getOpcode() == TargetOpcode::G_SHL || 2231 MI.getOpcode() == TargetOpcode::G_LSHR || 2232 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 2233 2234 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2235 if (Ty.isVector()) // TODO: 2236 return false; 2237 2238 // Don't narrow further than the requested size. 2239 unsigned Size = Ty.getSizeInBits(); 2240 if (Size <= TargetShiftSize) 2241 return false; 2242 2243 auto MaybeImmVal = 2244 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 2245 if (!MaybeImmVal) 2246 return false; 2247 2248 ShiftVal = MaybeImmVal->Value.getSExtValue(); 2249 return ShiftVal >= Size / 2 && ShiftVal < Size; 2250 } 2251 2252 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 2253 const unsigned &ShiftVal) { 2254 Register DstReg = MI.getOperand(0).getReg(); 2255 Register SrcReg = MI.getOperand(1).getReg(); 2256 LLT Ty = MRI.getType(SrcReg); 2257 unsigned Size = Ty.getSizeInBits(); 2258 unsigned HalfSize = Size / 2; 2259 assert(ShiftVal >= HalfSize); 2260 2261 LLT HalfTy = LLT::scalar(HalfSize); 2262 2263 Builder.setInstr(MI); 2264 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 2265 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 2266 2267 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2268 Register Narrowed = Unmerge.getReg(1); 2269 2270 // dst = G_LSHR s64:x, C for C >= 32 2271 // => 2272 // lo, hi = G_UNMERGE_VALUES x 2273 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 2274 2275 if (NarrowShiftAmt != 0) { 2276 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 2277 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2278 } 2279 2280 auto Zero = Builder.buildConstant(HalfTy, 0); 2281 Builder.buildMerge(DstReg, { Narrowed, Zero }); 2282 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 2283 Register Narrowed = Unmerge.getReg(0); 2284 // dst = G_SHL s64:x, C for C >= 32 2285 // => 2286 // lo, hi = G_UNMERGE_VALUES x 2287 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 2288 if (NarrowShiftAmt != 0) { 2289 Narrowed = Builder.buildShl(HalfTy, Narrowed, 2290 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2291 } 2292 2293 auto Zero = Builder.buildConstant(HalfTy, 0); 2294 Builder.buildMerge(DstReg, { Zero, Narrowed }); 2295 } else { 2296 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2297 auto Hi = Builder.buildAShr( 2298 HalfTy, Unmerge.getReg(1), 2299 Builder.buildConstant(HalfTy, HalfSize - 1)); 2300 2301 if (ShiftVal == HalfSize) { 2302 // (G_ASHR i64:x, 32) -> 2303 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 2304 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 2305 } else if (ShiftVal == Size - 1) { 2306 // Don't need a second shift. 2307 // (G_ASHR i64:x, 63) -> 2308 // %narrowed = (G_ASHR hi_32(x), 31) 2309 // G_MERGE_VALUES %narrowed, %narrowed 2310 Builder.buildMerge(DstReg, { Hi, Hi }); 2311 } else { 2312 auto Lo = Builder.buildAShr( 2313 HalfTy, Unmerge.getReg(1), 2314 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 2315 2316 // (G_ASHR i64:x, C) ->, for C >= 32 2317 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 2318 Builder.buildMerge(DstReg, { Lo, Hi }); 2319 } 2320 } 2321 2322 MI.eraseFromParent(); 2323 } 2324 2325 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 2326 unsigned TargetShiftAmount) { 2327 unsigned ShiftAmt; 2328 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 2329 applyCombineShiftToUnmerge(MI, ShiftAmt); 2330 return true; 2331 } 2332 2333 return false; 2334 } 2335 2336 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2337 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2338 Register DstReg = MI.getOperand(0).getReg(); 2339 LLT DstTy = MRI.getType(DstReg); 2340 Register SrcReg = MI.getOperand(1).getReg(); 2341 return mi_match(SrcReg, MRI, 2342 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2343 } 2344 2345 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2346 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2347 Register DstReg = MI.getOperand(0).getReg(); 2348 Builder.setInstr(MI); 2349 Builder.buildCopy(DstReg, Reg); 2350 MI.eraseFromParent(); 2351 } 2352 2353 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2354 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2355 Register SrcReg = MI.getOperand(1).getReg(); 2356 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2357 } 2358 2359 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2360 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2361 Register DstReg = MI.getOperand(0).getReg(); 2362 Builder.setInstr(MI); 2363 Builder.buildZExtOrTrunc(DstReg, Reg); 2364 MI.eraseFromParent(); 2365 } 2366 2367 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2368 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2369 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2370 Register LHS = MI.getOperand(1).getReg(); 2371 Register RHS = MI.getOperand(2).getReg(); 2372 LLT IntTy = MRI.getType(LHS); 2373 2374 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2375 // instruction. 2376 PtrReg.second = false; 2377 for (Register SrcReg : {LHS, RHS}) { 2378 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2379 // Don't handle cases where the integer is implicitly converted to the 2380 // pointer width. 2381 LLT PtrTy = MRI.getType(PtrReg.first); 2382 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2383 return true; 2384 } 2385 2386 PtrReg.second = true; 2387 } 2388 2389 return false; 2390 } 2391 2392 void CombinerHelper::applyCombineAddP2IToPtrAdd( 2393 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2394 Register Dst = MI.getOperand(0).getReg(); 2395 Register LHS = MI.getOperand(1).getReg(); 2396 Register RHS = MI.getOperand(2).getReg(); 2397 2398 const bool DoCommute = PtrReg.second; 2399 if (DoCommute) 2400 std::swap(LHS, RHS); 2401 LHS = PtrReg.first; 2402 2403 LLT PtrTy = MRI.getType(LHS); 2404 2405 Builder.setInstrAndDebugLoc(MI); 2406 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2407 Builder.buildPtrToInt(Dst, PtrAdd); 2408 MI.eraseFromParent(); 2409 } 2410 2411 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2412 int64_t &NewCst) { 2413 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2414 Register LHS = MI.getOperand(1).getReg(); 2415 Register RHS = MI.getOperand(2).getReg(); 2416 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2417 2418 if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { 2419 int64_t Cst; 2420 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2421 NewCst = Cst + *RHSCst; 2422 return true; 2423 } 2424 } 2425 2426 return false; 2427 } 2428 2429 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2430 int64_t &NewCst) { 2431 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2432 Register Dst = MI.getOperand(0).getReg(); 2433 2434 Builder.setInstrAndDebugLoc(MI); 2435 Builder.buildConstant(Dst, NewCst); 2436 MI.eraseFromParent(); 2437 } 2438 2439 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2440 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2441 Register DstReg = MI.getOperand(0).getReg(); 2442 Register SrcReg = MI.getOperand(1).getReg(); 2443 LLT DstTy = MRI.getType(DstReg); 2444 return mi_match(SrcReg, MRI, 2445 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2446 } 2447 2448 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2449 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2450 Register DstReg = MI.getOperand(0).getReg(); 2451 Register SrcReg = MI.getOperand(1).getReg(); 2452 LLT DstTy = MRI.getType(DstReg); 2453 if (mi_match(SrcReg, MRI, 2454 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2455 unsigned DstSize = DstTy.getScalarSizeInBits(); 2456 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2457 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2458 } 2459 return false; 2460 } 2461 2462 bool CombinerHelper::matchCombineExtOfExt( 2463 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2464 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2465 MI.getOpcode() == TargetOpcode::G_SEXT || 2466 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2467 "Expected a G_[ASZ]EXT"); 2468 Register SrcReg = MI.getOperand(1).getReg(); 2469 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2470 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2471 unsigned Opc = MI.getOpcode(); 2472 unsigned SrcOpc = SrcMI->getOpcode(); 2473 if (Opc == SrcOpc || 2474 (Opc == TargetOpcode::G_ANYEXT && 2475 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2476 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2477 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2478 return true; 2479 } 2480 return false; 2481 } 2482 2483 void CombinerHelper::applyCombineExtOfExt( 2484 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2485 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2486 MI.getOpcode() == TargetOpcode::G_SEXT || 2487 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2488 "Expected a G_[ASZ]EXT"); 2489 2490 Register Reg = std::get<0>(MatchInfo); 2491 unsigned SrcExtOp = std::get<1>(MatchInfo); 2492 2493 // Combine exts with the same opcode. 2494 if (MI.getOpcode() == SrcExtOp) { 2495 Observer.changingInstr(MI); 2496 MI.getOperand(1).setReg(Reg); 2497 Observer.changedInstr(MI); 2498 return; 2499 } 2500 2501 // Combine: 2502 // - anyext([sz]ext x) to [sz]ext x 2503 // - sext(zext x) to zext x 2504 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2505 (MI.getOpcode() == TargetOpcode::G_SEXT && 2506 SrcExtOp == TargetOpcode::G_ZEXT)) { 2507 Register DstReg = MI.getOperand(0).getReg(); 2508 Builder.setInstrAndDebugLoc(MI); 2509 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2510 MI.eraseFromParent(); 2511 } 2512 } 2513 2514 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2515 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2516 Register DstReg = MI.getOperand(0).getReg(); 2517 Register SrcReg = MI.getOperand(1).getReg(); 2518 LLT DstTy = MRI.getType(DstReg); 2519 2520 Builder.setInstrAndDebugLoc(MI); 2521 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2522 MI.getFlags()); 2523 MI.eraseFromParent(); 2524 } 2525 2526 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2527 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2528 Register SrcReg = MI.getOperand(1).getReg(); 2529 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2530 } 2531 2532 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2533 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2534 Src = MI.getOperand(1).getReg(); 2535 Register AbsSrc; 2536 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2537 } 2538 2539 bool CombinerHelper::matchCombineTruncOfExt( 2540 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2541 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2542 Register SrcReg = MI.getOperand(1).getReg(); 2543 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2544 unsigned SrcOpc = SrcMI->getOpcode(); 2545 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2546 SrcOpc == TargetOpcode::G_ZEXT) { 2547 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2548 return true; 2549 } 2550 return false; 2551 } 2552 2553 void CombinerHelper::applyCombineTruncOfExt( 2554 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2555 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2556 Register SrcReg = MatchInfo.first; 2557 unsigned SrcExtOp = MatchInfo.second; 2558 Register DstReg = MI.getOperand(0).getReg(); 2559 LLT SrcTy = MRI.getType(SrcReg); 2560 LLT DstTy = MRI.getType(DstReg); 2561 if (SrcTy == DstTy) { 2562 MI.eraseFromParent(); 2563 replaceRegWith(MRI, DstReg, SrcReg); 2564 return; 2565 } 2566 Builder.setInstrAndDebugLoc(MI); 2567 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2568 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2569 else 2570 Builder.buildTrunc(DstReg, SrcReg); 2571 MI.eraseFromParent(); 2572 } 2573 2574 bool CombinerHelper::matchCombineTruncOfShl( 2575 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2576 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2577 Register DstReg = MI.getOperand(0).getReg(); 2578 Register SrcReg = MI.getOperand(1).getReg(); 2579 LLT DstTy = MRI.getType(DstReg); 2580 Register ShiftSrc; 2581 Register ShiftAmt; 2582 2583 if (MRI.hasOneNonDBGUse(SrcReg) && 2584 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2585 isLegalOrBeforeLegalizer( 2586 {TargetOpcode::G_SHL, 2587 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2588 KnownBits Known = KB->getKnownBits(ShiftAmt); 2589 unsigned Size = DstTy.getSizeInBits(); 2590 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2591 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2592 return true; 2593 } 2594 } 2595 return false; 2596 } 2597 2598 void CombinerHelper::applyCombineTruncOfShl( 2599 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2600 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2601 Register DstReg = MI.getOperand(0).getReg(); 2602 Register SrcReg = MI.getOperand(1).getReg(); 2603 LLT DstTy = MRI.getType(DstReg); 2604 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2605 2606 Register ShiftSrc = MatchInfo.first; 2607 Register ShiftAmt = MatchInfo.second; 2608 Builder.setInstrAndDebugLoc(MI); 2609 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2610 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2611 MI.eraseFromParent(); 2612 } 2613 2614 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2615 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2616 return MO.isReg() && 2617 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2618 }); 2619 } 2620 2621 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2622 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2623 return !MO.isReg() || 2624 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2625 }); 2626 } 2627 2628 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2629 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2630 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2631 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2632 } 2633 2634 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2635 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2636 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2637 MRI); 2638 } 2639 2640 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2641 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2642 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2643 MRI); 2644 } 2645 2646 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2647 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2648 if (auto MaybeCstCmp = 2649 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2650 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; 2651 return true; 2652 } 2653 return false; 2654 } 2655 2656 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2657 MI.eraseFromParent(); 2658 return true; 2659 } 2660 2661 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2662 const MachineOperand &MOP2) { 2663 if (!MOP1.isReg() || !MOP2.isReg()) 2664 return false; 2665 MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); 2666 if (!I1) 2667 return false; 2668 MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); 2669 if (!I2) 2670 return false; 2671 2672 // Handle a case like this: 2673 // 2674 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2675 // 2676 // Even though %0 and %1 are produced by the same instruction they are not 2677 // the same values. 2678 if (I1 == I2) 2679 return MOP1.getReg() == MOP2.getReg(); 2680 2681 // If we have an instruction which loads or stores, we can't guarantee that 2682 // it is identical. 2683 // 2684 // For example, we may have 2685 // 2686 // %x1 = G_LOAD %addr (load N from @somewhere) 2687 // ... 2688 // call @foo 2689 // ... 2690 // %x2 = G_LOAD %addr (load N from @somewhere) 2691 // ... 2692 // %or = G_OR %x1, %x2 2693 // 2694 // It's possible that @foo will modify whatever lives at the address we're 2695 // loading from. To be safe, let's just assume that all loads and stores 2696 // are different (unless we have something which is guaranteed to not 2697 // change.) 2698 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2699 return false; 2700 2701 // Check for physical registers on the instructions first to avoid cases 2702 // like this: 2703 // 2704 // %a = COPY $physreg 2705 // ... 2706 // SOMETHING implicit-def $physreg 2707 // ... 2708 // %b = COPY $physreg 2709 // 2710 // These copies are not equivalent. 2711 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2712 return MO.isReg() && MO.getReg().isPhysical(); 2713 })) { 2714 // Check if we have a case like this: 2715 // 2716 // %a = COPY $physreg 2717 // %b = COPY %a 2718 // 2719 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2720 // From that, we know that they must have the same value, since they must 2721 // have come from the same COPY. 2722 return I1->isIdenticalTo(*I2); 2723 } 2724 2725 // We don't have any physical registers, so we don't necessarily need the 2726 // same vreg defs. 2727 // 2728 // On the off-chance that there's some target instruction feeding into the 2729 // instruction, let's use produceSameValue instead of isIdenticalTo. 2730 return Builder.getTII().produceSameValue(*I1, *I2, &MRI); 2731 } 2732 2733 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2734 if (!MOP.isReg()) 2735 return false; 2736 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2737 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2738 return ValAndVReg && ValAndVReg->Value == C; 2739 } 2740 2741 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2742 unsigned OpIdx) { 2743 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2744 Register OldReg = MI.getOperand(0).getReg(); 2745 Register Replacement = MI.getOperand(OpIdx).getReg(); 2746 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2747 MI.eraseFromParent(); 2748 replaceRegWith(MRI, OldReg, Replacement); 2749 return true; 2750 } 2751 2752 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2753 Register Replacement) { 2754 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2755 Register OldReg = MI.getOperand(0).getReg(); 2756 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2757 MI.eraseFromParent(); 2758 replaceRegWith(MRI, OldReg, Replacement); 2759 return true; 2760 } 2761 2762 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2763 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2764 // Match (cond ? x : x) 2765 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2766 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2767 MRI); 2768 } 2769 2770 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2771 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2772 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2773 MRI); 2774 } 2775 2776 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2777 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2778 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2779 MRI); 2780 } 2781 2782 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2783 MachineOperand &MO = MI.getOperand(OpIdx); 2784 return MO.isReg() && 2785 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2786 } 2787 2788 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2789 unsigned OpIdx) { 2790 MachineOperand &MO = MI.getOperand(OpIdx); 2791 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2792 } 2793 2794 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2795 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2796 Builder.setInstr(MI); 2797 Builder.buildFConstant(MI.getOperand(0), C); 2798 MI.eraseFromParent(); 2799 return true; 2800 } 2801 2802 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2803 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2804 Builder.setInstr(MI); 2805 Builder.buildConstant(MI.getOperand(0), C); 2806 MI.eraseFromParent(); 2807 return true; 2808 } 2809 2810 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2811 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2812 Builder.setInstr(MI); 2813 Builder.buildConstant(MI.getOperand(0), C); 2814 MI.eraseFromParent(); 2815 return true; 2816 } 2817 2818 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2819 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2820 Builder.setInstr(MI); 2821 Builder.buildUndef(MI.getOperand(0)); 2822 MI.eraseFromParent(); 2823 return true; 2824 } 2825 2826 bool CombinerHelper::matchSimplifyAddToSub( 2827 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2828 Register LHS = MI.getOperand(1).getReg(); 2829 Register RHS = MI.getOperand(2).getReg(); 2830 Register &NewLHS = std::get<0>(MatchInfo); 2831 Register &NewRHS = std::get<1>(MatchInfo); 2832 2833 // Helper lambda to check for opportunities for 2834 // ((0-A) + B) -> B - A 2835 // (A + (0-B)) -> A - B 2836 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2837 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2838 return false; 2839 NewLHS = MaybeNewLHS; 2840 return true; 2841 }; 2842 2843 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2844 } 2845 2846 bool CombinerHelper::matchCombineInsertVecElts( 2847 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2848 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2849 "Invalid opcode"); 2850 Register DstReg = MI.getOperand(0).getReg(); 2851 LLT DstTy = MRI.getType(DstReg); 2852 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2853 unsigned NumElts = DstTy.getNumElements(); 2854 // If this MI is part of a sequence of insert_vec_elts, then 2855 // don't do the combine in the middle of the sequence. 2856 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2857 TargetOpcode::G_INSERT_VECTOR_ELT) 2858 return false; 2859 MachineInstr *CurrInst = &MI; 2860 MachineInstr *TmpInst; 2861 int64_t IntImm; 2862 Register TmpReg; 2863 MatchInfo.resize(NumElts); 2864 while (mi_match( 2865 CurrInst->getOperand(0).getReg(), MRI, 2866 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2867 if (IntImm >= NumElts) 2868 return false; 2869 if (!MatchInfo[IntImm]) 2870 MatchInfo[IntImm] = TmpReg; 2871 CurrInst = TmpInst; 2872 } 2873 // Variable index. 2874 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2875 return false; 2876 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2877 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2878 if (!MatchInfo[I - 1].isValid()) 2879 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2880 } 2881 return true; 2882 } 2883 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2884 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2885 } 2886 2887 void CombinerHelper::applyCombineInsertVecElts( 2888 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2889 Builder.setInstr(MI); 2890 Register UndefReg; 2891 auto GetUndef = [&]() { 2892 if (UndefReg) 2893 return UndefReg; 2894 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2895 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2896 return UndefReg; 2897 }; 2898 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2899 if (!MatchInfo[I]) 2900 MatchInfo[I] = GetUndef(); 2901 } 2902 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2903 MI.eraseFromParent(); 2904 } 2905 2906 void CombinerHelper::applySimplifyAddToSub( 2907 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2908 Builder.setInstr(MI); 2909 Register SubLHS, SubRHS; 2910 std::tie(SubLHS, SubRHS) = MatchInfo; 2911 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2912 MI.eraseFromParent(); 2913 } 2914 2915 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2916 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2917 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2918 // 2919 // Creates the new hand + logic instruction (but does not insert them.) 2920 // 2921 // On success, MatchInfo is populated with the new instructions. These are 2922 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2923 unsigned LogicOpcode = MI.getOpcode(); 2924 assert(LogicOpcode == TargetOpcode::G_AND || 2925 LogicOpcode == TargetOpcode::G_OR || 2926 LogicOpcode == TargetOpcode::G_XOR); 2927 MachineIRBuilder MIB(MI); 2928 Register Dst = MI.getOperand(0).getReg(); 2929 Register LHSReg = MI.getOperand(1).getReg(); 2930 Register RHSReg = MI.getOperand(2).getReg(); 2931 2932 // Don't recompute anything. 2933 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2934 return false; 2935 2936 // Make sure we have (hand x, ...), (hand y, ...) 2937 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2938 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2939 if (!LeftHandInst || !RightHandInst) 2940 return false; 2941 unsigned HandOpcode = LeftHandInst->getOpcode(); 2942 if (HandOpcode != RightHandInst->getOpcode()) 2943 return false; 2944 if (!LeftHandInst->getOperand(1).isReg() || 2945 !RightHandInst->getOperand(1).isReg()) 2946 return false; 2947 2948 // Make sure the types match up, and if we're doing this post-legalization, 2949 // we end up with legal types. 2950 Register X = LeftHandInst->getOperand(1).getReg(); 2951 Register Y = RightHandInst->getOperand(1).getReg(); 2952 LLT XTy = MRI.getType(X); 2953 LLT YTy = MRI.getType(Y); 2954 if (XTy != YTy) 2955 return false; 2956 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2957 return false; 2958 2959 // Optional extra source register. 2960 Register ExtraHandOpSrcReg; 2961 switch (HandOpcode) { 2962 default: 2963 return false; 2964 case TargetOpcode::G_ANYEXT: 2965 case TargetOpcode::G_SEXT: 2966 case TargetOpcode::G_ZEXT: { 2967 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2968 break; 2969 } 2970 case TargetOpcode::G_AND: 2971 case TargetOpcode::G_ASHR: 2972 case TargetOpcode::G_LSHR: 2973 case TargetOpcode::G_SHL: { 2974 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2975 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2976 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2977 return false; 2978 ExtraHandOpSrcReg = ZOp.getReg(); 2979 break; 2980 } 2981 } 2982 2983 // Record the steps to build the new instructions. 2984 // 2985 // Steps to build (logic x, y) 2986 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2987 OperandBuildSteps LogicBuildSteps = { 2988 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2989 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2990 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2991 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2992 2993 // Steps to build hand (logic x, y), ...z 2994 OperandBuildSteps HandBuildSteps = { 2995 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2996 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2997 if (ExtraHandOpSrcReg.isValid()) 2998 HandBuildSteps.push_back( 2999 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 3000 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 3001 3002 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 3003 return true; 3004 } 3005 3006 void CombinerHelper::applyBuildInstructionSteps( 3007 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 3008 assert(MatchInfo.InstrsToBuild.size() && 3009 "Expected at least one instr to build?"); 3010 Builder.setInstr(MI); 3011 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 3012 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 3013 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 3014 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 3015 for (auto &OperandFn : InstrToBuild.OperandFns) 3016 OperandFn(Instr); 3017 } 3018 MI.eraseFromParent(); 3019 } 3020 3021 bool CombinerHelper::matchAshrShlToSextInreg( 3022 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 3023 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 3024 int64_t ShlCst, AshrCst; 3025 Register Src; 3026 // FIXME: detect splat constant vectors. 3027 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3028 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 3029 return false; 3030 if (ShlCst != AshrCst) 3031 return false; 3032 if (!isLegalOrBeforeLegalizer( 3033 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 3034 return false; 3035 MatchInfo = std::make_tuple(Src, ShlCst); 3036 return true; 3037 } 3038 3039 void CombinerHelper::applyAshShlToSextInreg( 3040 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 3041 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 3042 Register Src; 3043 int64_t ShiftAmt; 3044 std::tie(Src, ShiftAmt) = MatchInfo; 3045 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 3046 Builder.setInstrAndDebugLoc(MI); 3047 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 3048 MI.eraseFromParent(); 3049 } 3050 3051 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 3052 bool CombinerHelper::matchOverlappingAnd( 3053 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3054 assert(MI.getOpcode() == TargetOpcode::G_AND); 3055 3056 Register Dst = MI.getOperand(0).getReg(); 3057 LLT Ty = MRI.getType(Dst); 3058 3059 Register R; 3060 int64_t C1; 3061 int64_t C2; 3062 if (!mi_match( 3063 Dst, MRI, 3064 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 3065 return false; 3066 3067 MatchInfo = [=](MachineIRBuilder &B) { 3068 if (C1 & C2) { 3069 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 3070 return; 3071 } 3072 auto Zero = B.buildConstant(Ty, 0); 3073 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 3074 }; 3075 return true; 3076 } 3077 3078 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 3079 Register &Replacement) { 3080 // Given 3081 // 3082 // %y:_(sN) = G_SOMETHING 3083 // %x:_(sN) = G_SOMETHING 3084 // %res:_(sN) = G_AND %x, %y 3085 // 3086 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 3087 // 3088 // Patterns like this can appear as a result of legalization. E.g. 3089 // 3090 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 3091 // %one:_(s32) = G_CONSTANT i32 1 3092 // %and:_(s32) = G_AND %cmp, %one 3093 // 3094 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 3095 assert(MI.getOpcode() == TargetOpcode::G_AND); 3096 if (!KB) 3097 return false; 3098 3099 Register AndDst = MI.getOperand(0).getReg(); 3100 LLT DstTy = MRI.getType(AndDst); 3101 3102 // FIXME: This should be removed once GISelKnownBits supports vectors. 3103 if (DstTy.isVector()) 3104 return false; 3105 3106 Register LHS = MI.getOperand(1).getReg(); 3107 Register RHS = MI.getOperand(2).getReg(); 3108 KnownBits LHSBits = KB->getKnownBits(LHS); 3109 KnownBits RHSBits = KB->getKnownBits(RHS); 3110 3111 // Check that x & Mask == x. 3112 // x & 1 == x, always 3113 // x & 0 == x, only if x is also 0 3114 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 3115 // 3116 // Check if we can replace AndDst with the LHS of the G_AND 3117 if (canReplaceReg(AndDst, LHS, MRI) && 3118 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3119 Replacement = LHS; 3120 return true; 3121 } 3122 3123 // Check if we can replace AndDst with the RHS of the G_AND 3124 if (canReplaceReg(AndDst, RHS, MRI) && 3125 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3126 Replacement = RHS; 3127 return true; 3128 } 3129 3130 return false; 3131 } 3132 3133 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 3134 // Given 3135 // 3136 // %y:_(sN) = G_SOMETHING 3137 // %x:_(sN) = G_SOMETHING 3138 // %res:_(sN) = G_OR %x, %y 3139 // 3140 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 3141 assert(MI.getOpcode() == TargetOpcode::G_OR); 3142 if (!KB) 3143 return false; 3144 3145 Register OrDst = MI.getOperand(0).getReg(); 3146 LLT DstTy = MRI.getType(OrDst); 3147 3148 // FIXME: This should be removed once GISelKnownBits supports vectors. 3149 if (DstTy.isVector()) 3150 return false; 3151 3152 Register LHS = MI.getOperand(1).getReg(); 3153 Register RHS = MI.getOperand(2).getReg(); 3154 KnownBits LHSBits = KB->getKnownBits(LHS); 3155 KnownBits RHSBits = KB->getKnownBits(RHS); 3156 3157 // Check that x | Mask == x. 3158 // x | 0 == x, always 3159 // x | 1 == x, only if x is also 1 3160 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 3161 // 3162 // Check if we can replace OrDst with the LHS of the G_OR 3163 if (canReplaceReg(OrDst, LHS, MRI) && 3164 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 3165 Replacement = LHS; 3166 return true; 3167 } 3168 3169 // Check if we can replace OrDst with the RHS of the G_OR 3170 if (canReplaceReg(OrDst, RHS, MRI) && 3171 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 3172 Replacement = RHS; 3173 return true; 3174 } 3175 3176 return false; 3177 } 3178 3179 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 3180 // If the input is already sign extended, just drop the extension. 3181 Register Src = MI.getOperand(1).getReg(); 3182 unsigned ExtBits = MI.getOperand(2).getImm(); 3183 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 3184 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 3185 } 3186 3187 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 3188 int64_t Cst, bool IsVector, bool IsFP) { 3189 // For i1, Cst will always be -1 regardless of boolean contents. 3190 return (ScalarSizeBits == 1 && Cst == -1) || 3191 isConstTrueVal(TLI, Cst, IsVector, IsFP); 3192 } 3193 3194 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 3195 SmallVectorImpl<Register> &RegsToNegate) { 3196 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3197 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3198 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 3199 Register XorSrc; 3200 Register CstReg; 3201 // We match xor(src, true) here. 3202 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3203 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 3204 return false; 3205 3206 if (!MRI.hasOneNonDBGUse(XorSrc)) 3207 return false; 3208 3209 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 3210 // and ORs. The suffix of RegsToNegate starting from index I is used a work 3211 // list of tree nodes to visit. 3212 RegsToNegate.push_back(XorSrc); 3213 // Remember whether the comparisons are all integer or all floating point. 3214 bool IsInt = false; 3215 bool IsFP = false; 3216 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 3217 Register Reg = RegsToNegate[I]; 3218 if (!MRI.hasOneNonDBGUse(Reg)) 3219 return false; 3220 MachineInstr *Def = MRI.getVRegDef(Reg); 3221 switch (Def->getOpcode()) { 3222 default: 3223 // Don't match if the tree contains anything other than ANDs, ORs and 3224 // comparisons. 3225 return false; 3226 case TargetOpcode::G_ICMP: 3227 if (IsFP) 3228 return false; 3229 IsInt = true; 3230 // When we apply the combine we will invert the predicate. 3231 break; 3232 case TargetOpcode::G_FCMP: 3233 if (IsInt) 3234 return false; 3235 IsFP = true; 3236 // When we apply the combine we will invert the predicate. 3237 break; 3238 case TargetOpcode::G_AND: 3239 case TargetOpcode::G_OR: 3240 // Implement De Morgan's laws: 3241 // ~(x & y) -> ~x | ~y 3242 // ~(x | y) -> ~x & ~y 3243 // When we apply the combine we will change the opcode and recursively 3244 // negate the operands. 3245 RegsToNegate.push_back(Def->getOperand(1).getReg()); 3246 RegsToNegate.push_back(Def->getOperand(2).getReg()); 3247 break; 3248 } 3249 } 3250 3251 // Now we know whether the comparisons are integer or floating point, check 3252 // the constant in the xor. 3253 int64_t Cst; 3254 if (Ty.isVector()) { 3255 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 3256 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 3257 if (!MaybeCst) 3258 return false; 3259 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 3260 return false; 3261 } else { 3262 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 3263 return false; 3264 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 3265 return false; 3266 } 3267 3268 return true; 3269 } 3270 3271 void CombinerHelper::applyNotCmp(MachineInstr &MI, 3272 SmallVectorImpl<Register> &RegsToNegate) { 3273 for (Register Reg : RegsToNegate) { 3274 MachineInstr *Def = MRI.getVRegDef(Reg); 3275 Observer.changingInstr(*Def); 3276 // For each comparison, invert the opcode. For each AND and OR, change the 3277 // opcode. 3278 switch (Def->getOpcode()) { 3279 default: 3280 llvm_unreachable("Unexpected opcode"); 3281 case TargetOpcode::G_ICMP: 3282 case TargetOpcode::G_FCMP: { 3283 MachineOperand &PredOp = Def->getOperand(1); 3284 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 3285 (CmpInst::Predicate)PredOp.getPredicate()); 3286 PredOp.setPredicate(NewP); 3287 break; 3288 } 3289 case TargetOpcode::G_AND: 3290 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3291 break; 3292 case TargetOpcode::G_OR: 3293 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3294 break; 3295 } 3296 Observer.changedInstr(*Def); 3297 } 3298 3299 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3300 MI.eraseFromParent(); 3301 } 3302 3303 bool CombinerHelper::matchXorOfAndWithSameReg( 3304 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3305 // Match (xor (and x, y), y) (or any of its commuted cases) 3306 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3307 Register &X = MatchInfo.first; 3308 Register &Y = MatchInfo.second; 3309 Register AndReg = MI.getOperand(1).getReg(); 3310 Register SharedReg = MI.getOperand(2).getReg(); 3311 3312 // Find a G_AND on either side of the G_XOR. 3313 // Look for one of 3314 // 3315 // (xor (and x, y), SharedReg) 3316 // (xor SharedReg, (and x, y)) 3317 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3318 std::swap(AndReg, SharedReg); 3319 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3320 return false; 3321 } 3322 3323 // Only do this if we'll eliminate the G_AND. 3324 if (!MRI.hasOneNonDBGUse(AndReg)) 3325 return false; 3326 3327 // We can combine if SharedReg is the same as either the LHS or RHS of the 3328 // G_AND. 3329 if (Y != SharedReg) 3330 std::swap(X, Y); 3331 return Y == SharedReg; 3332 } 3333 3334 void CombinerHelper::applyXorOfAndWithSameReg( 3335 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3336 // Fold (xor (and x, y), y) -> (and (not x), y) 3337 Builder.setInstrAndDebugLoc(MI); 3338 Register X, Y; 3339 std::tie(X, Y) = MatchInfo; 3340 auto Not = Builder.buildNot(MRI.getType(X), X); 3341 Observer.changingInstr(MI); 3342 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3343 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3344 MI.getOperand(2).setReg(Y); 3345 Observer.changedInstr(MI); 3346 } 3347 3348 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3349 Register DstReg = MI.getOperand(0).getReg(); 3350 LLT Ty = MRI.getType(DstReg); 3351 const DataLayout &DL = Builder.getMF().getDataLayout(); 3352 3353 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3354 return false; 3355 3356 if (Ty.isPointer()) { 3357 auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI); 3358 return ConstVal && *ConstVal == 0; 3359 } 3360 3361 assert(Ty.isVector() && "Expecting a vector type"); 3362 const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg()); 3363 return isBuildVectorAllZeros(*VecMI, MRI); 3364 } 3365 3366 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3367 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 3368 Builder.setInstrAndDebugLoc(MI); 3369 Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2)); 3370 MI.eraseFromParent(); 3371 } 3372 3373 /// The second source operand is known to be a power of 2. 3374 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3375 Register DstReg = MI.getOperand(0).getReg(); 3376 Register Src0 = MI.getOperand(1).getReg(); 3377 Register Pow2Src1 = MI.getOperand(2).getReg(); 3378 LLT Ty = MRI.getType(DstReg); 3379 Builder.setInstrAndDebugLoc(MI); 3380 3381 // Fold (urem x, pow2) -> (and x, pow2-1) 3382 auto NegOne = Builder.buildConstant(Ty, -1); 3383 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3384 Builder.buildAnd(DstReg, Src0, Add); 3385 MI.eraseFromParent(); 3386 } 3387 3388 Optional<SmallVector<Register, 8>> 3389 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3390 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3391 // We want to detect if Root is part of a tree which represents a bunch 3392 // of loads being merged into a larger load. We'll try to recognize patterns 3393 // like, for example: 3394 // 3395 // Reg Reg 3396 // \ / 3397 // OR_1 Reg 3398 // \ / 3399 // OR_2 3400 // \ Reg 3401 // .. / 3402 // Root 3403 // 3404 // Reg Reg Reg Reg 3405 // \ / \ / 3406 // OR_1 OR_2 3407 // \ / 3408 // \ / 3409 // ... 3410 // Root 3411 // 3412 // Each "Reg" may have been produced by a load + some arithmetic. This 3413 // function will save each of them. 3414 SmallVector<Register, 8> RegsToVisit; 3415 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3416 3417 // In the "worst" case, we're dealing with a load for each byte. So, there 3418 // are at most #bytes - 1 ORs. 3419 const unsigned MaxIter = 3420 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3421 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3422 if (Ors.empty()) 3423 break; 3424 const MachineInstr *Curr = Ors.pop_back_val(); 3425 Register OrLHS = Curr->getOperand(1).getReg(); 3426 Register OrRHS = Curr->getOperand(2).getReg(); 3427 3428 // In the combine, we want to elimate the entire tree. 3429 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3430 return None; 3431 3432 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3433 // something that may be a load + arithmetic. 3434 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3435 Ors.push_back(Or); 3436 else 3437 RegsToVisit.push_back(OrLHS); 3438 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3439 Ors.push_back(Or); 3440 else 3441 RegsToVisit.push_back(OrRHS); 3442 } 3443 3444 // We're going to try and merge each register into a wider power-of-2 type, 3445 // so we ought to have an even number of registers. 3446 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3447 return None; 3448 return RegsToVisit; 3449 } 3450 3451 /// Helper function for findLoadOffsetsForLoadOrCombine. 3452 /// 3453 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3454 /// and then moving that value into a specific byte offset. 3455 /// 3456 /// e.g. x[i] << 24 3457 /// 3458 /// \returns The load instruction and the byte offset it is moved into. 3459 static Optional<std::pair<GZExtLoad *, int64_t>> 3460 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3461 const MachineRegisterInfo &MRI) { 3462 assert(MRI.hasOneNonDBGUse(Reg) && 3463 "Expected Reg to only have one non-debug use?"); 3464 Register MaybeLoad; 3465 int64_t Shift; 3466 if (!mi_match(Reg, MRI, 3467 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3468 Shift = 0; 3469 MaybeLoad = Reg; 3470 } 3471 3472 if (Shift % MemSizeInBits != 0) 3473 return None; 3474 3475 // TODO: Handle other types of loads. 3476 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3477 if (!Load) 3478 return None; 3479 3480 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3481 return None; 3482 3483 return std::make_pair(Load, Shift / MemSizeInBits); 3484 } 3485 3486 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3487 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3488 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3489 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3490 3491 // Each load found for the pattern. There should be one for each RegsToVisit. 3492 SmallSetVector<const MachineInstr *, 8> Loads; 3493 3494 // The lowest index used in any load. (The lowest "i" for each x[i].) 3495 int64_t LowestIdx = INT64_MAX; 3496 3497 // The load which uses the lowest index. 3498 GZExtLoad *LowestIdxLoad = nullptr; 3499 3500 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3501 SmallSet<int64_t, 8> SeenIdx; 3502 3503 // Ensure each load is in the same MBB. 3504 // TODO: Support multiple MachineBasicBlocks. 3505 MachineBasicBlock *MBB = nullptr; 3506 const MachineMemOperand *MMO = nullptr; 3507 3508 // Earliest instruction-order load in the pattern. 3509 GZExtLoad *EarliestLoad = nullptr; 3510 3511 // Latest instruction-order load in the pattern. 3512 GZExtLoad *LatestLoad = nullptr; 3513 3514 // Base pointer which every load should share. 3515 Register BasePtr; 3516 3517 // We want to find a load for each register. Each load should have some 3518 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3519 // track of the load which uses the lowest index. Later, we will check if we 3520 // can use its pointer in the final, combined load. 3521 for (auto Reg : RegsToVisit) { 3522 // Find the load, and find the position that it will end up in (e.g. a 3523 // shifted) value. 3524 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3525 if (!LoadAndPos) 3526 return None; 3527 GZExtLoad *Load; 3528 int64_t DstPos; 3529 std::tie(Load, DstPos) = *LoadAndPos; 3530 3531 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3532 // it is difficult to check for stores/calls/etc between loads. 3533 MachineBasicBlock *LoadMBB = Load->getParent(); 3534 if (!MBB) 3535 MBB = LoadMBB; 3536 if (LoadMBB != MBB) 3537 return None; 3538 3539 // Make sure that the MachineMemOperands of every seen load are compatible. 3540 auto &LoadMMO = Load->getMMO(); 3541 if (!MMO) 3542 MMO = &LoadMMO; 3543 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3544 return None; 3545 3546 // Find out what the base pointer and index for the load is. 3547 Register LoadPtr; 3548 int64_t Idx; 3549 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3550 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3551 LoadPtr = Load->getOperand(1).getReg(); 3552 Idx = 0; 3553 } 3554 3555 // Don't combine things like a[i], a[i] -> a bigger load. 3556 if (!SeenIdx.insert(Idx).second) 3557 return None; 3558 3559 // Every load must share the same base pointer; don't combine things like: 3560 // 3561 // a[i], b[i + 1] -> a bigger load. 3562 if (!BasePtr.isValid()) 3563 BasePtr = LoadPtr; 3564 if (BasePtr != LoadPtr) 3565 return None; 3566 3567 if (Idx < LowestIdx) { 3568 LowestIdx = Idx; 3569 LowestIdxLoad = Load; 3570 } 3571 3572 // Keep track of the byte offset that this load ends up at. If we have seen 3573 // the byte offset, then stop here. We do not want to combine: 3574 // 3575 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3576 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3577 return None; 3578 Loads.insert(Load); 3579 3580 // Keep track of the position of the earliest/latest loads in the pattern. 3581 // We will check that there are no load fold barriers between them later 3582 // on. 3583 // 3584 // FIXME: Is there a better way to check for load fold barriers? 3585 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3586 EarliestLoad = Load; 3587 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3588 LatestLoad = Load; 3589 } 3590 3591 // We found a load for each register. Let's check if each load satisfies the 3592 // pattern. 3593 assert(Loads.size() == RegsToVisit.size() && 3594 "Expected to find a load for each register?"); 3595 assert(EarliestLoad != LatestLoad && EarliestLoad && 3596 LatestLoad && "Expected at least two loads?"); 3597 3598 // Check if there are any stores, calls, etc. between any of the loads. If 3599 // there are, then we can't safely perform the combine. 3600 // 3601 // MaxIter is chosen based off the (worst case) number of iterations it 3602 // typically takes to succeed in the LLVM test suite plus some padding. 3603 // 3604 // FIXME: Is there a better way to check for load fold barriers? 3605 const unsigned MaxIter = 20; 3606 unsigned Iter = 0; 3607 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3608 LatestLoad->getIterator())) { 3609 if (Loads.count(&MI)) 3610 continue; 3611 if (MI.isLoadFoldBarrier()) 3612 return None; 3613 if (Iter++ == MaxIter) 3614 return None; 3615 } 3616 3617 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3618 } 3619 3620 bool CombinerHelper::matchLoadOrCombine( 3621 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3622 assert(MI.getOpcode() == TargetOpcode::G_OR); 3623 MachineFunction &MF = *MI.getMF(); 3624 // Assuming a little-endian target, transform: 3625 // s8 *a = ... 3626 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3627 // => 3628 // s32 val = *((i32)a) 3629 // 3630 // s8 *a = ... 3631 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3632 // => 3633 // s32 val = BSWAP(*((s32)a)) 3634 Register Dst = MI.getOperand(0).getReg(); 3635 LLT Ty = MRI.getType(Dst); 3636 if (Ty.isVector()) 3637 return false; 3638 3639 // We need to combine at least two loads into this type. Since the smallest 3640 // possible load is into a byte, we need at least a 16-bit wide type. 3641 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3642 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3643 return false; 3644 3645 // Match a collection of non-OR instructions in the pattern. 3646 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3647 if (!RegsToVisit) 3648 return false; 3649 3650 // We have a collection of non-OR instructions. Figure out how wide each of 3651 // the small loads should be based off of the number of potential loads we 3652 // found. 3653 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3654 if (NarrowMemSizeInBits % 8 != 0) 3655 return false; 3656 3657 // Check if each register feeding into each OR is a load from the same 3658 // base pointer + some arithmetic. 3659 // 3660 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3661 // 3662 // Also verify that each of these ends up putting a[i] into the same memory 3663 // offset as a load into a wide type would. 3664 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3665 GZExtLoad *LowestIdxLoad, *LatestLoad; 3666 int64_t LowestIdx; 3667 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3668 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3669 if (!MaybeLoadInfo) 3670 return false; 3671 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3672 3673 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3674 // we found before, check if this corresponds to a big or little endian byte 3675 // pattern. If it does, then we can represent it using a load + possibly a 3676 // BSWAP. 3677 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3678 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3679 if (!IsBigEndian.hasValue()) 3680 return false; 3681 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3682 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3683 return false; 3684 3685 // Make sure that the load from the lowest index produces offset 0 in the 3686 // final value. 3687 // 3688 // This ensures that we won't combine something like this: 3689 // 3690 // load x[i] -> byte 2 3691 // load x[i+1] -> byte 0 ---> wide_load x[i] 3692 // load x[i+2] -> byte 1 3693 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3694 const unsigned ZeroByteOffset = 3695 *IsBigEndian 3696 ? bigEndianByteAt(NumLoadsInTy, 0) 3697 : littleEndianByteAt(NumLoadsInTy, 0); 3698 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3699 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3700 ZeroOffsetIdx->second != LowestIdx) 3701 return false; 3702 3703 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3704 // may not use index 0. 3705 Register Ptr = LowestIdxLoad->getPointerReg(); 3706 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3707 LegalityQuery::MemDesc MMDesc; 3708 MMDesc.MemoryTy = Ty; 3709 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 3710 MMDesc.Ordering = MMO.getSuccessOrdering(); 3711 if (!isLegalOrBeforeLegalizer( 3712 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3713 return false; 3714 auto PtrInfo = MMO.getPointerInfo(); 3715 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3716 3717 // Load must be allowed and fast on the target. 3718 LLVMContext &C = MF.getFunction().getContext(); 3719 auto &DL = MF.getDataLayout(); 3720 bool Fast = false; 3721 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3722 !Fast) 3723 return false; 3724 3725 MatchInfo = [=](MachineIRBuilder &MIB) { 3726 MIB.setInstrAndDebugLoc(*LatestLoad); 3727 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3728 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3729 if (NeedsBSwap) 3730 MIB.buildBSwap(Dst, LoadDst); 3731 }; 3732 return true; 3733 } 3734 3735 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3736 MachineInstr *&ExtMI) { 3737 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3738 3739 Register DstReg = MI.getOperand(0).getReg(); 3740 3741 // TODO: Extending a vector may be expensive, don't do this until heuristics 3742 // are better. 3743 if (MRI.getType(DstReg).isVector()) 3744 return false; 3745 3746 // Try to match a phi, whose only use is an extend. 3747 if (!MRI.hasOneNonDBGUse(DstReg)) 3748 return false; 3749 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3750 switch (ExtMI->getOpcode()) { 3751 case TargetOpcode::G_ANYEXT: 3752 return true; // G_ANYEXT is usually free. 3753 case TargetOpcode::G_ZEXT: 3754 case TargetOpcode::G_SEXT: 3755 break; 3756 default: 3757 return false; 3758 } 3759 3760 // If the target is likely to fold this extend away, don't propagate. 3761 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3762 return false; 3763 3764 // We don't want to propagate the extends unless there's a good chance that 3765 // they'll be optimized in some way. 3766 // Collect the unique incoming values. 3767 SmallPtrSet<MachineInstr *, 4> InSrcs; 3768 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3769 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3770 switch (DefMI->getOpcode()) { 3771 case TargetOpcode::G_LOAD: 3772 case TargetOpcode::G_TRUNC: 3773 case TargetOpcode::G_SEXT: 3774 case TargetOpcode::G_ZEXT: 3775 case TargetOpcode::G_ANYEXT: 3776 case TargetOpcode::G_CONSTANT: 3777 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3778 // Don't try to propagate if there are too many places to create new 3779 // extends, chances are it'll increase code size. 3780 if (InSrcs.size() > 2) 3781 return false; 3782 break; 3783 default: 3784 return false; 3785 } 3786 } 3787 return true; 3788 } 3789 3790 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3791 MachineInstr *&ExtMI) { 3792 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3793 Register DstReg = ExtMI->getOperand(0).getReg(); 3794 LLT ExtTy = MRI.getType(DstReg); 3795 3796 // Propagate the extension into the block of each incoming reg's block. 3797 // Use a SetVector here because PHIs can have duplicate edges, and we want 3798 // deterministic iteration order. 3799 SmallSetVector<MachineInstr *, 8> SrcMIs; 3800 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3801 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3802 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3803 if (!SrcMIs.insert(SrcMI)) 3804 continue; 3805 3806 // Build an extend after each src inst. 3807 auto *MBB = SrcMI->getParent(); 3808 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3809 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3810 InsertPt = MBB->getFirstNonPHI(); 3811 3812 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3813 Builder.setDebugLoc(MI.getDebugLoc()); 3814 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3815 SrcMI->getOperand(0).getReg()); 3816 OldToNewSrcMap[SrcMI] = NewExt; 3817 } 3818 3819 // Create a new phi with the extended inputs. 3820 Builder.setInstrAndDebugLoc(MI); 3821 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3822 NewPhi.addDef(DstReg); 3823 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { 3824 auto &MO = MI.getOperand(SrcIdx); 3825 if (!MO.isReg()) { 3826 NewPhi.addMBB(MO.getMBB()); 3827 continue; 3828 } 3829 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3830 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3831 } 3832 Builder.insertInstr(NewPhi); 3833 ExtMI->eraseFromParent(); 3834 } 3835 3836 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3837 Register &Reg) { 3838 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3839 // If we have a constant index, look for a G_BUILD_VECTOR source 3840 // and find the source register that the index maps to. 3841 Register SrcVec = MI.getOperand(1).getReg(); 3842 LLT SrcTy = MRI.getType(SrcVec); 3843 if (!isLegalOrBeforeLegalizer( 3844 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3845 return false; 3846 3847 auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3848 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3849 return false; 3850 3851 unsigned VecIdx = Cst->Value.getZExtValue(); 3852 MachineInstr *BuildVecMI = 3853 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3854 if (!BuildVecMI) { 3855 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3856 if (!BuildVecMI) 3857 return false; 3858 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3859 if (!isLegalOrBeforeLegalizer( 3860 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3861 return false; 3862 } 3863 3864 EVT Ty(getMVTForLLT(SrcTy)); 3865 if (!MRI.hasOneNonDBGUse(SrcVec) && 3866 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3867 return false; 3868 3869 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3870 return true; 3871 } 3872 3873 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3874 Register &Reg) { 3875 // Check the type of the register, since it may have come from a 3876 // G_BUILD_VECTOR_TRUNC. 3877 LLT ScalarTy = MRI.getType(Reg); 3878 Register DstReg = MI.getOperand(0).getReg(); 3879 LLT DstTy = MRI.getType(DstReg); 3880 3881 Builder.setInstrAndDebugLoc(MI); 3882 if (ScalarTy != DstTy) { 3883 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3884 Builder.buildTrunc(DstReg, Reg); 3885 MI.eraseFromParent(); 3886 return; 3887 } 3888 replaceSingleDefInstWithReg(MI, Reg); 3889 } 3890 3891 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3892 MachineInstr &MI, 3893 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3894 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3895 // This combine tries to find build_vector's which have every source element 3896 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3897 // the masked load scalarization is run late in the pipeline. There's already 3898 // a combine for a similar pattern starting from the extract, but that 3899 // doesn't attempt to do it if there are multiple uses of the build_vector, 3900 // which in this case is true. Starting the combine from the build_vector 3901 // feels more natural than trying to find sibling nodes of extracts. 3902 // E.g. 3903 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3904 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3905 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3906 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3907 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3908 // ==> 3909 // replace ext{1,2,3,4} with %s{1,2,3,4} 3910 3911 Register DstReg = MI.getOperand(0).getReg(); 3912 LLT DstTy = MRI.getType(DstReg); 3913 unsigned NumElts = DstTy.getNumElements(); 3914 3915 SmallBitVector ExtractedElts(NumElts); 3916 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), 3917 MRI.use_instr_nodbg_end())) { 3918 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3919 return false; 3920 auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI); 3921 if (!Cst) 3922 return false; 3923 unsigned Idx = Cst.getValue().getZExtValue(); 3924 if (Idx >= NumElts) 3925 return false; // Out of range. 3926 ExtractedElts.set(Idx); 3927 SrcDstPairs.emplace_back( 3928 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3929 } 3930 // Match if every element was extracted. 3931 return ExtractedElts.all(); 3932 } 3933 3934 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3935 MachineInstr &MI, 3936 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3937 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3938 for (auto &Pair : SrcDstPairs) { 3939 auto *ExtMI = Pair.second; 3940 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3941 ExtMI->eraseFromParent(); 3942 } 3943 MI.eraseFromParent(); 3944 } 3945 3946 void CombinerHelper::applyBuildFn( 3947 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3948 Builder.setInstrAndDebugLoc(MI); 3949 MatchInfo(Builder); 3950 MI.eraseFromParent(); 3951 } 3952 3953 void CombinerHelper::applyBuildFnNoErase( 3954 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3955 Builder.setInstrAndDebugLoc(MI); 3956 MatchInfo(Builder); 3957 } 3958 3959 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3960 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3961 unsigned Opc = MI.getOpcode(); 3962 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3963 Register X = MI.getOperand(1).getReg(); 3964 Register Y = MI.getOperand(2).getReg(); 3965 if (X != Y) 3966 return false; 3967 unsigned RotateOpc = 3968 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3969 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3970 } 3971 3972 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3973 unsigned Opc = MI.getOpcode(); 3974 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3975 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3976 Observer.changingInstr(MI); 3977 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3978 : TargetOpcode::G_ROTR)); 3979 MI.RemoveOperand(2); 3980 Observer.changedInstr(MI); 3981 } 3982 3983 // Fold (rot x, c) -> (rot x, c % BitSize) 3984 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3985 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3986 MI.getOpcode() == TargetOpcode::G_ROTR); 3987 unsigned Bitsize = 3988 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3989 Register AmtReg = MI.getOperand(2).getReg(); 3990 bool OutOfRange = false; 3991 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 3992 if (auto *CI = dyn_cast<ConstantInt>(C)) 3993 OutOfRange |= CI->getValue().uge(Bitsize); 3994 return true; 3995 }; 3996 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 3997 } 3998 3999 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 4000 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4001 MI.getOpcode() == TargetOpcode::G_ROTR); 4002 unsigned Bitsize = 4003 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4004 Builder.setInstrAndDebugLoc(MI); 4005 Register Amt = MI.getOperand(2).getReg(); 4006 LLT AmtTy = MRI.getType(Amt); 4007 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 4008 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 4009 Observer.changingInstr(MI); 4010 MI.getOperand(2).setReg(Amt); 4011 Observer.changedInstr(MI); 4012 } 4013 4014 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 4015 int64_t &MatchInfo) { 4016 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4017 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4018 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 4019 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 4020 Optional<bool> KnownVal; 4021 switch (Pred) { 4022 default: 4023 llvm_unreachable("Unexpected G_ICMP predicate?"); 4024 case CmpInst::ICMP_EQ: 4025 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 4026 break; 4027 case CmpInst::ICMP_NE: 4028 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 4029 break; 4030 case CmpInst::ICMP_SGE: 4031 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 4032 break; 4033 case CmpInst::ICMP_SGT: 4034 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 4035 break; 4036 case CmpInst::ICMP_SLE: 4037 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 4038 break; 4039 case CmpInst::ICMP_SLT: 4040 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 4041 break; 4042 case CmpInst::ICMP_UGE: 4043 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 4044 break; 4045 case CmpInst::ICMP_UGT: 4046 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 4047 break; 4048 case CmpInst::ICMP_ULE: 4049 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 4050 break; 4051 case CmpInst::ICMP_ULT: 4052 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 4053 break; 4054 } 4055 if (!KnownVal) 4056 return false; 4057 MatchInfo = 4058 *KnownVal 4059 ? getICmpTrueVal(getTargetLowering(), 4060 /*IsVector = */ 4061 MRI.getType(MI.getOperand(0).getReg()).isVector(), 4062 /* IsFP = */ false) 4063 : 0; 4064 return true; 4065 } 4066 4067 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4068 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4069 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4070 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4071 Register Dst = MI.getOperand(0).getReg(); 4072 Register Src = MI.getOperand(1).getReg(); 4073 LLT Ty = MRI.getType(Src); 4074 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4075 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4076 return false; 4077 int64_t Width = MI.getOperand(2).getImm(); 4078 Register ShiftSrc; 4079 int64_t ShiftImm; 4080 if (!mi_match( 4081 Src, MRI, 4082 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4083 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4084 return false; 4085 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4086 return false; 4087 4088 MatchInfo = [=](MachineIRBuilder &B) { 4089 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4090 auto Cst2 = B.buildConstant(ExtractTy, Width); 4091 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4092 }; 4093 return true; 4094 } 4095 4096 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4097 bool CombinerHelper::matchBitfieldExtractFromAnd( 4098 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4099 assert(MI.getOpcode() == TargetOpcode::G_AND); 4100 Register Dst = MI.getOperand(0).getReg(); 4101 LLT Ty = MRI.getType(Dst); 4102 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 4103 TargetOpcode::G_UBFX, Ty, Ty)) 4104 return false; 4105 4106 int64_t AndImm, LSBImm; 4107 Register ShiftSrc; 4108 const unsigned Size = Ty.getScalarSizeInBits(); 4109 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4110 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4111 m_ICst(AndImm)))) 4112 return false; 4113 4114 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4115 auto MaybeMask = static_cast<uint64_t>(AndImm); 4116 if (MaybeMask & (MaybeMask + 1)) 4117 return false; 4118 4119 // LSB must fit within the register. 4120 if (static_cast<uint64_t>(LSBImm) >= Size) 4121 return false; 4122 4123 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4124 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4125 MatchInfo = [=](MachineIRBuilder &B) { 4126 auto WidthCst = B.buildConstant(ExtractTy, Width); 4127 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4128 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4129 }; 4130 return true; 4131 } 4132 4133 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4134 MachineInstr &PtrAdd) { 4135 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4136 4137 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4138 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4139 if (!Src1Def) 4140 return false; 4141 4142 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4143 4144 if (MRI.hasOneNonDBGUse(Src1Reg)) 4145 return false; 4146 4147 auto C1 = getConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4148 if (!C1) 4149 return false; 4150 auto C2 = getConstantVRegVal(Src2Reg, MRI); 4151 if (!C2) 4152 return false; 4153 4154 const APInt &C1APIntVal = *C1; 4155 const APInt &C2APIntVal = *C2; 4156 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4157 4158 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4159 // This combine may end up running before ptrtoint/inttoptr combines 4160 // manage to eliminate redundant conversions, so try to look through them. 4161 MachineInstr *ConvUseMI = &UseMI; 4162 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4163 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4164 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4165 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4166 if (!MRI.hasOneNonDBGUse(DefReg)) 4167 break; 4168 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4169 ConvUseOpc = ConvUseMI->getOpcode(); 4170 } 4171 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4172 ConvUseOpc == TargetOpcode::G_STORE; 4173 if (!LoadStore) 4174 continue; 4175 // Is x[offset2] already not a legal addressing mode? If so then 4176 // reassociating the constants breaks nothing (we test offset2 because 4177 // that's the one we hope to fold into the load or store). 4178 TargetLoweringBase::AddrMode AM; 4179 AM.HasBaseReg = true; 4180 AM.BaseOffs = C2APIntVal.getSExtValue(); 4181 unsigned AS = 4182 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4183 Type *AccessTy = 4184 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4185 PtrAdd.getMF()->getFunction().getContext()); 4186 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4187 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4188 AccessTy, AS)) 4189 continue; 4190 4191 // Would x[offset1+offset2] still be a legal addressing mode? 4192 AM.BaseOffs = CombinedValue; 4193 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4194 AccessTy, AS)) 4195 return true; 4196 } 4197 4198 return false; 4199 } 4200 4201 bool CombinerHelper::matchReassocPtrAdd( 4202 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4203 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 4204 // We're trying to match a few pointer computation patterns here for 4205 // re-association opportunities. 4206 // 1) Isolating a constant operand to be on the RHS, e.g.: 4207 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4208 // 4209 // 2) Folding two constants in each sub-tree as long as such folding 4210 // doesn't break a legal addressing mode. 4211 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4212 Register Src1Reg = MI.getOperand(1).getReg(); 4213 Register Src2Reg = MI.getOperand(2).getReg(); 4214 MachineInstr *LHS = MRI.getVRegDef(Src1Reg); 4215 MachineInstr *RHS = MRI.getVRegDef(Src2Reg); 4216 4217 if (LHS->getOpcode() != TargetOpcode::G_PTR_ADD) { 4218 // Try to match example 1). 4219 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4220 return false; 4221 auto C2 = getConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4222 if (!C2) 4223 return false; 4224 4225 MatchInfo = [=,&MI](MachineIRBuilder &B) { 4226 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4227 4228 auto NewBase = 4229 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4230 Observer.changingInstr(MI); 4231 MI.getOperand(1).setReg(NewBase.getReg(0)); 4232 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4233 Observer.changedInstr(MI); 4234 }; 4235 } else { 4236 // Try to match example 2. 4237 Register LHSSrc1 = LHS->getOperand(1).getReg(); 4238 Register LHSSrc2 = LHS->getOperand(2).getReg(); 4239 auto C1 = getConstantVRegVal(LHSSrc2, MRI); 4240 if (!C1) 4241 return false; 4242 auto C2 = getConstantVRegVal(Src2Reg, MRI); 4243 if (!C2) 4244 return false; 4245 4246 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4247 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4248 Observer.changingInstr(MI); 4249 MI.getOperand(1).setReg(LHSSrc1); 4250 MI.getOperand(2).setReg(NewCst.getReg(0)); 4251 Observer.changedInstr(MI); 4252 }; 4253 } 4254 return !reassociationCanBreakAddressingModePattern(MI); 4255 } 4256 4257 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4258 Register Op1 = MI.getOperand(1).getReg(); 4259 Register Op2 = MI.getOperand(2).getReg(); 4260 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4261 if (!MaybeCst) 4262 return false; 4263 MatchInfo = *MaybeCst; 4264 return true; 4265 } 4266 4267 bool CombinerHelper::tryCombine(MachineInstr &MI) { 4268 if (tryCombineCopy(MI)) 4269 return true; 4270 if (tryCombineExtendingLoads(MI)) 4271 return true; 4272 if (tryCombineIndexedLoadStore(MI)) 4273 return true; 4274 return false; 4275 } 4276