xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp (revision 6ba2210ee039f2f12878c217bcf058e9c8b26b29)
1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
9 #include "llvm/CodeGen/GlobalISel/Combiner.h"
10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
12 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
13 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
14 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
15 #include "llvm/CodeGen/GlobalISel/Utils.h"
16 #include "llvm/CodeGen/MachineDominators.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineInstr.h"
19 #include "llvm/CodeGen/MachineMemOperand.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/Support/MathExtras.h"
24 #include "llvm/Target/TargetMachine.h"
25 
26 #define DEBUG_TYPE "gi-combiner"
27 
28 using namespace llvm;
29 using namespace MIPatternMatch;
30 
31 // Option to allow testing of the combiner while no targets know about indexed
32 // addressing.
33 static cl::opt<bool>
34     ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
35                        cl::desc("Force all indexed operations to be "
36                                 "legal for the GlobalISel combiner"));
37 
38 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
39                                MachineIRBuilder &B, GISelKnownBits *KB,
40                                MachineDominatorTree *MDT,
41                                const LegalizerInfo *LI)
42     : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer),
43       KB(KB), MDT(MDT), LI(LI) {
44   (void)this->KB;
45 }
46 
47 const TargetLowering &CombinerHelper::getTargetLowering() const {
48   return *Builder.getMF().getSubtarget().getTargetLowering();
49 }
50 
51 /// \returns The little endian in-memory byte position of byte \p I in a
52 /// \p ByteWidth bytes wide type.
53 ///
54 /// E.g. Given a 4-byte type x, x[0] -> byte 0
55 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) {
56   assert(I < ByteWidth && "I must be in [0, ByteWidth)");
57   return I;
58 }
59 
60 /// \returns The big endian in-memory byte position of byte \p I in a
61 /// \p ByteWidth bytes wide type.
62 ///
63 /// E.g. Given a 4-byte type x, x[0] -> byte 3
64 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) {
65   assert(I < ByteWidth && "I must be in [0, ByteWidth)");
66   return ByteWidth - I - 1;
67 }
68 
69 /// Given a map from byte offsets in memory to indices in a load/store,
70 /// determine if that map corresponds to a little or big endian byte pattern.
71 ///
72 /// \param MemOffset2Idx maps memory offsets to address offsets.
73 /// \param LowestIdx is the lowest index in \p MemOffset2Idx.
74 ///
75 /// \returns true if the map corresponds to a big endian byte pattern, false
76 /// if it corresponds to a little endian byte pattern, and None otherwise.
77 ///
78 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns
79 /// are as follows:
80 ///
81 /// AddrOffset   Little endian    Big endian
82 /// 0            0                3
83 /// 1            1                2
84 /// 2            2                1
85 /// 3            3                0
86 static Optional<bool>
87 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
88             int64_t LowestIdx) {
89   // Need at least two byte positions to decide on endianness.
90   unsigned Width = MemOffset2Idx.size();
91   if (Width < 2)
92     return None;
93   bool BigEndian = true, LittleEndian = true;
94   for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) {
95     auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset);
96     if (MemOffsetAndIdx == MemOffset2Idx.end())
97       return None;
98     const int64_t Idx = MemOffsetAndIdx->second - LowestIdx;
99     assert(Idx >= 0 && "Expected non-negative byte offset?");
100     LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset);
101     BigEndian &= Idx == bigEndianByteAt(Width, MemOffset);
102     if (!BigEndian && !LittleEndian)
103       return None;
104   }
105 
106   assert((BigEndian != LittleEndian) &&
107          "Pattern cannot be both big and little endian!");
108   return BigEndian;
109 }
110 
111 bool CombinerHelper::isLegalOrBeforeLegalizer(
112     const LegalityQuery &Query) const {
113   return !LI || LI->getAction(Query).Action == LegalizeActions::Legal;
114 }
115 
116 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
117                                     Register ToReg) const {
118   Observer.changingAllUsesOfReg(MRI, FromReg);
119 
120   if (MRI.constrainRegAttrs(ToReg, FromReg))
121     MRI.replaceRegWith(FromReg, ToReg);
122   else
123     Builder.buildCopy(ToReg, FromReg);
124 
125   Observer.finishedChangingAllUsesOfReg();
126 }
127 
128 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
129                                       MachineOperand &FromRegOp,
130                                       Register ToReg) const {
131   assert(FromRegOp.getParent() && "Expected an operand in an MI");
132   Observer.changingInstr(*FromRegOp.getParent());
133 
134   FromRegOp.setReg(ToReg);
135 
136   Observer.changedInstr(*FromRegOp.getParent());
137 }
138 
139 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
140   if (matchCombineCopy(MI)) {
141     applyCombineCopy(MI);
142     return true;
143   }
144   return false;
145 }
146 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
147   if (MI.getOpcode() != TargetOpcode::COPY)
148     return false;
149   Register DstReg = MI.getOperand(0).getReg();
150   Register SrcReg = MI.getOperand(1).getReg();
151   return canReplaceReg(DstReg, SrcReg, MRI);
152 }
153 void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
154   Register DstReg = MI.getOperand(0).getReg();
155   Register SrcReg = MI.getOperand(1).getReg();
156   MI.eraseFromParent();
157   replaceRegWith(MRI, DstReg, SrcReg);
158 }
159 
160 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) {
161   bool IsUndef = false;
162   SmallVector<Register, 4> Ops;
163   if (matchCombineConcatVectors(MI, IsUndef, Ops)) {
164     applyCombineConcatVectors(MI, IsUndef, Ops);
165     return true;
166   }
167   return false;
168 }
169 
170 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef,
171                                                SmallVectorImpl<Register> &Ops) {
172   assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
173          "Invalid instruction");
174   IsUndef = true;
175   MachineInstr *Undef = nullptr;
176 
177   // Walk over all the operands of concat vectors and check if they are
178   // build_vector themselves or undef.
179   // Then collect their operands in Ops.
180   for (const MachineOperand &MO : MI.uses()) {
181     Register Reg = MO.getReg();
182     MachineInstr *Def = MRI.getVRegDef(Reg);
183     assert(Def && "Operand not defined");
184     switch (Def->getOpcode()) {
185     case TargetOpcode::G_BUILD_VECTOR:
186       IsUndef = false;
187       // Remember the operands of the build_vector to fold
188       // them into the yet-to-build flattened concat vectors.
189       for (const MachineOperand &BuildVecMO : Def->uses())
190         Ops.push_back(BuildVecMO.getReg());
191       break;
192     case TargetOpcode::G_IMPLICIT_DEF: {
193       LLT OpType = MRI.getType(Reg);
194       // Keep one undef value for all the undef operands.
195       if (!Undef) {
196         Builder.setInsertPt(*MI.getParent(), MI);
197         Undef = Builder.buildUndef(OpType.getScalarType());
198       }
199       assert(MRI.getType(Undef->getOperand(0).getReg()) ==
200                  OpType.getScalarType() &&
201              "All undefs should have the same type");
202       // Break the undef vector in as many scalar elements as needed
203       // for the flattening.
204       for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
205            EltIdx != EltEnd; ++EltIdx)
206         Ops.push_back(Undef->getOperand(0).getReg());
207       break;
208     }
209     default:
210       return false;
211     }
212   }
213   return true;
214 }
215 void CombinerHelper::applyCombineConcatVectors(
216     MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) {
217   // We determined that the concat_vectors can be flatten.
218   // Generate the flattened build_vector.
219   Register DstReg = MI.getOperand(0).getReg();
220   Builder.setInsertPt(*MI.getParent(), MI);
221   Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
222 
223   // Note: IsUndef is sort of redundant. We could have determine it by
224   // checking that at all Ops are undef.  Alternatively, we could have
225   // generate a build_vector of undefs and rely on another combine to
226   // clean that up.  For now, given we already gather this information
227   // in tryCombineConcatVectors, just save compile time and issue the
228   // right thing.
229   if (IsUndef)
230     Builder.buildUndef(NewDstReg);
231   else
232     Builder.buildBuildVector(NewDstReg, Ops);
233   MI.eraseFromParent();
234   replaceRegWith(MRI, DstReg, NewDstReg);
235 }
236 
237 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
238   SmallVector<Register, 4> Ops;
239   if (matchCombineShuffleVector(MI, Ops)) {
240     applyCombineShuffleVector(MI, Ops);
241     return true;
242   }
243   return false;
244 }
245 
246 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
247                                                SmallVectorImpl<Register> &Ops) {
248   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
249          "Invalid instruction kind");
250   LLT DstType = MRI.getType(MI.getOperand(0).getReg());
251   Register Src1 = MI.getOperand(1).getReg();
252   LLT SrcType = MRI.getType(Src1);
253   // As bizarre as it may look, shuffle vector can actually produce
254   // scalar! This is because at the IR level a <1 x ty> shuffle
255   // vector is perfectly valid.
256   unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1;
257   unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1;
258 
259   // If the resulting vector is smaller than the size of the source
260   // vectors being concatenated, we won't be able to replace the
261   // shuffle vector into a concat_vectors.
262   //
263   // Note: We may still be able to produce a concat_vectors fed by
264   //       extract_vector_elt and so on. It is less clear that would
265   //       be better though, so don't bother for now.
266   //
267   // If the destination is a scalar, the size of the sources doesn't
268   // matter. we will lower the shuffle to a plain copy. This will
269   // work only if the source and destination have the same size. But
270   // that's covered by the next condition.
271   //
272   // TODO: If the size between the source and destination don't match
273   //       we could still emit an extract vector element in that case.
274   if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1)
275     return false;
276 
277   // Check that the shuffle mask can be broken evenly between the
278   // different sources.
279   if (DstNumElts % SrcNumElts != 0)
280     return false;
281 
282   // Mask length is a multiple of the source vector length.
283   // Check if the shuffle is some kind of concatenation of the input
284   // vectors.
285   unsigned NumConcat = DstNumElts / SrcNumElts;
286   SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
287   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
288   for (unsigned i = 0; i != DstNumElts; ++i) {
289     int Idx = Mask[i];
290     // Undef value.
291     if (Idx < 0)
292       continue;
293     // Ensure the indices in each SrcType sized piece are sequential and that
294     // the same source is used for the whole piece.
295     if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
296         (ConcatSrcs[i / SrcNumElts] >= 0 &&
297          ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
298       return false;
299     // Remember which source this index came from.
300     ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
301   }
302 
303   // The shuffle is concatenating multiple vectors together.
304   // Collect the different operands for that.
305   Register UndefReg;
306   Register Src2 = MI.getOperand(2).getReg();
307   for (auto Src : ConcatSrcs) {
308     if (Src < 0) {
309       if (!UndefReg) {
310         Builder.setInsertPt(*MI.getParent(), MI);
311         UndefReg = Builder.buildUndef(SrcType).getReg(0);
312       }
313       Ops.push_back(UndefReg);
314     } else if (Src == 0)
315       Ops.push_back(Src1);
316     else
317       Ops.push_back(Src2);
318   }
319   return true;
320 }
321 
322 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
323                                                const ArrayRef<Register> Ops) {
324   Register DstReg = MI.getOperand(0).getReg();
325   Builder.setInsertPt(*MI.getParent(), MI);
326   Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
327 
328   if (Ops.size() == 1)
329     Builder.buildCopy(NewDstReg, Ops[0]);
330   else
331     Builder.buildMerge(NewDstReg, Ops);
332 
333   MI.eraseFromParent();
334   replaceRegWith(MRI, DstReg, NewDstReg);
335 }
336 
337 namespace {
338 
339 /// Select a preference between two uses. CurrentUse is the current preference
340 /// while *ForCandidate is attributes of the candidate under consideration.
341 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse,
342                                   const LLT TyForCandidate,
343                                   unsigned OpcodeForCandidate,
344                                   MachineInstr *MIForCandidate) {
345   if (!CurrentUse.Ty.isValid()) {
346     if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
347         CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
348       return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
349     return CurrentUse;
350   }
351 
352   // We permit the extend to hoist through basic blocks but this is only
353   // sensible if the target has extending loads. If you end up lowering back
354   // into a load and extend during the legalizer then the end result is
355   // hoisting the extend up to the load.
356 
357   // Prefer defined extensions to undefined extensions as these are more
358   // likely to reduce the number of instructions.
359   if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
360       CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
361     return CurrentUse;
362   else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
363            OpcodeForCandidate != TargetOpcode::G_ANYEXT)
364     return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
365 
366   // Prefer sign extensions to zero extensions as sign-extensions tend to be
367   // more expensive.
368   if (CurrentUse.Ty == TyForCandidate) {
369     if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
370         OpcodeForCandidate == TargetOpcode::G_ZEXT)
371       return CurrentUse;
372     else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
373              OpcodeForCandidate == TargetOpcode::G_SEXT)
374       return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
375   }
376 
377   // This is potentially target specific. We've chosen the largest type
378   // because G_TRUNC is usually free. One potential catch with this is that
379   // some targets have a reduced number of larger registers than smaller
380   // registers and this choice potentially increases the live-range for the
381   // larger value.
382   if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
383     return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
384   }
385   return CurrentUse;
386 }
387 
388 /// Find a suitable place to insert some instructions and insert them. This
389 /// function accounts for special cases like inserting before a PHI node.
390 /// The current strategy for inserting before PHI's is to duplicate the
391 /// instructions for each predecessor. However, while that's ok for G_TRUNC
392 /// on most targets since it generally requires no code, other targets/cases may
393 /// want to try harder to find a dominating block.
394 static void InsertInsnsWithoutSideEffectsBeforeUse(
395     MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
396     std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
397                        MachineOperand &UseMO)>
398         Inserter) {
399   MachineInstr &UseMI = *UseMO.getParent();
400 
401   MachineBasicBlock *InsertBB = UseMI.getParent();
402 
403   // If the use is a PHI then we want the predecessor block instead.
404   if (UseMI.isPHI()) {
405     MachineOperand *PredBB = std::next(&UseMO);
406     InsertBB = PredBB->getMBB();
407   }
408 
409   // If the block is the same block as the def then we want to insert just after
410   // the def instead of at the start of the block.
411   if (InsertBB == DefMI.getParent()) {
412     MachineBasicBlock::iterator InsertPt = &DefMI;
413     Inserter(InsertBB, std::next(InsertPt), UseMO);
414     return;
415   }
416 
417   // Otherwise we want the start of the BB
418   Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
419 }
420 } // end anonymous namespace
421 
422 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
423   PreferredTuple Preferred;
424   if (matchCombineExtendingLoads(MI, Preferred)) {
425     applyCombineExtendingLoads(MI, Preferred);
426     return true;
427   }
428   return false;
429 }
430 
431 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
432                                                 PreferredTuple &Preferred) {
433   // We match the loads and follow the uses to the extend instead of matching
434   // the extends and following the def to the load. This is because the load
435   // must remain in the same position for correctness (unless we also add code
436   // to find a safe place to sink it) whereas the extend is freely movable.
437   // It also prevents us from duplicating the load for the volatile case or just
438   // for performance.
439 
440   if (MI.getOpcode() != TargetOpcode::G_LOAD &&
441       MI.getOpcode() != TargetOpcode::G_SEXTLOAD &&
442       MI.getOpcode() != TargetOpcode::G_ZEXTLOAD)
443     return false;
444 
445   auto &LoadValue = MI.getOperand(0);
446   assert(LoadValue.isReg() && "Result wasn't a register?");
447 
448   LLT LoadValueTy = MRI.getType(LoadValue.getReg());
449   if (!LoadValueTy.isScalar())
450     return false;
451 
452   // Most architectures are going to legalize <s8 loads into at least a 1 byte
453   // load, and the MMOs can only describe memory accesses in multiples of bytes.
454   // If we try to perform extload combining on those, we can end up with
455   // %a(s8) = extload %ptr (load 1 byte from %ptr)
456   // ... which is an illegal extload instruction.
457   if (LoadValueTy.getSizeInBits() < 8)
458     return false;
459 
460   // For non power-of-2 types, they will very likely be legalized into multiple
461   // loads. Don't bother trying to match them into extending loads.
462   if (!isPowerOf2_32(LoadValueTy.getSizeInBits()))
463     return false;
464 
465   // Find the preferred type aside from the any-extends (unless it's the only
466   // one) and non-extending ops. We'll emit an extending load to that type and
467   // and emit a variant of (extend (trunc X)) for the others according to the
468   // relative type sizes. At the same time, pick an extend to use based on the
469   // extend involved in the chosen type.
470   unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD
471                                  ? TargetOpcode::G_ANYEXT
472                                  : MI.getOpcode() == TargetOpcode::G_SEXTLOAD
473                                        ? TargetOpcode::G_SEXT
474                                        : TargetOpcode::G_ZEXT;
475   Preferred = {LLT(), PreferredOpcode, nullptr};
476   for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) {
477     if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
478         UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
479         (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) {
480       // Check for legality.
481       if (LI) {
482         LegalityQuery::MemDesc MMDesc;
483         const auto &MMO = **MI.memoperands_begin();
484         MMDesc.SizeInBits = MMO.getSizeInBits();
485         MMDesc.AlignInBits = MMO.getAlign().value() * 8;
486         MMDesc.Ordering = MMO.getOrdering();
487         LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg());
488         LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
489         if (LI->getAction({MI.getOpcode(), {UseTy, SrcTy}, {MMDesc}}).Action !=
490             LegalizeActions::Legal)
491           continue;
492       }
493       Preferred = ChoosePreferredUse(Preferred,
494                                      MRI.getType(UseMI.getOperand(0).getReg()),
495                                      UseMI.getOpcode(), &UseMI);
496     }
497   }
498 
499   // There were no extends
500   if (!Preferred.MI)
501     return false;
502   // It should be impossible to chose an extend without selecting a different
503   // type since by definition the result of an extend is larger.
504   assert(Preferred.Ty != LoadValueTy && "Extending to same type?");
505 
506   LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI);
507   return true;
508 }
509 
510 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
511                                                 PreferredTuple &Preferred) {
512   // Rewrite the load to the chosen extending load.
513   Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
514 
515   // Inserter to insert a truncate back to the original type at a given point
516   // with some basic CSE to limit truncate duplication to one per BB.
517   DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
518   auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
519                            MachineBasicBlock::iterator InsertBefore,
520                            MachineOperand &UseMO) {
521     MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
522     if (PreviouslyEmitted) {
523       Observer.changingInstr(*UseMO.getParent());
524       UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
525       Observer.changedInstr(*UseMO.getParent());
526       return;
527     }
528 
529     Builder.setInsertPt(*InsertIntoBB, InsertBefore);
530     Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
531     MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
532     EmittedInsns[InsertIntoBB] = NewMI;
533     replaceRegOpWith(MRI, UseMO, NewDstReg);
534   };
535 
536   Observer.changingInstr(MI);
537   MI.setDesc(
538       Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT
539                                ? TargetOpcode::G_SEXTLOAD
540                                : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT
541                                      ? TargetOpcode::G_ZEXTLOAD
542                                      : TargetOpcode::G_LOAD));
543 
544   // Rewrite all the uses to fix up the types.
545   auto &LoadValue = MI.getOperand(0);
546   SmallVector<MachineOperand *, 4> Uses;
547   for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
548     Uses.push_back(&UseMO);
549 
550   for (auto *UseMO : Uses) {
551     MachineInstr *UseMI = UseMO->getParent();
552 
553     // If the extend is compatible with the preferred extend then we should fix
554     // up the type and extend so that it uses the preferred use.
555     if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
556         UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
557       Register UseDstReg = UseMI->getOperand(0).getReg();
558       MachineOperand &UseSrcMO = UseMI->getOperand(1);
559       const LLT UseDstTy = MRI.getType(UseDstReg);
560       if (UseDstReg != ChosenDstReg) {
561         if (Preferred.Ty == UseDstTy) {
562           // If the use has the same type as the preferred use, then merge
563           // the vregs and erase the extend. For example:
564           //    %1:_(s8) = G_LOAD ...
565           //    %2:_(s32) = G_SEXT %1(s8)
566           //    %3:_(s32) = G_ANYEXT %1(s8)
567           //    ... = ... %3(s32)
568           // rewrites to:
569           //    %2:_(s32) = G_SEXTLOAD ...
570           //    ... = ... %2(s32)
571           replaceRegWith(MRI, UseDstReg, ChosenDstReg);
572           Observer.erasingInstr(*UseMO->getParent());
573           UseMO->getParent()->eraseFromParent();
574         } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
575           // If the preferred size is smaller, then keep the extend but extend
576           // from the result of the extending load. For example:
577           //    %1:_(s8) = G_LOAD ...
578           //    %2:_(s32) = G_SEXT %1(s8)
579           //    %3:_(s64) = G_ANYEXT %1(s8)
580           //    ... = ... %3(s64)
581           /// rewrites to:
582           //    %2:_(s32) = G_SEXTLOAD ...
583           //    %3:_(s64) = G_ANYEXT %2:_(s32)
584           //    ... = ... %3(s64)
585           replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
586         } else {
587           // If the preferred size is large, then insert a truncate. For
588           // example:
589           //    %1:_(s8) = G_LOAD ...
590           //    %2:_(s64) = G_SEXT %1(s8)
591           //    %3:_(s32) = G_ZEXT %1(s8)
592           //    ... = ... %3(s32)
593           /// rewrites to:
594           //    %2:_(s64) = G_SEXTLOAD ...
595           //    %4:_(s8) = G_TRUNC %2:_(s32)
596           //    %3:_(s64) = G_ZEXT %2:_(s8)
597           //    ... = ... %3(s64)
598           InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
599                                                  InsertTruncAt);
600         }
601         continue;
602       }
603       // The use is (one of) the uses of the preferred use we chose earlier.
604       // We're going to update the load to def this value later so just erase
605       // the old extend.
606       Observer.erasingInstr(*UseMO->getParent());
607       UseMO->getParent()->eraseFromParent();
608       continue;
609     }
610 
611     // The use isn't an extend. Truncate back to the type we originally loaded.
612     // This is free on many targets.
613     InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
614   }
615 
616   MI.getOperand(0).setReg(ChosenDstReg);
617   Observer.changedInstr(MI);
618 }
619 
620 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI,
621                                    const MachineInstr &UseMI) {
622   assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
623          "shouldn't consider debug uses");
624   assert(DefMI.getParent() == UseMI.getParent());
625   if (&DefMI == &UseMI)
626     return false;
627   const MachineBasicBlock &MBB = *DefMI.getParent();
628   auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) {
629     return &MI == &DefMI || &MI == &UseMI;
630   });
631   if (DefOrUse == MBB.end())
632     llvm_unreachable("Block must contain both DefMI and UseMI!");
633   return &*DefOrUse == &DefMI;
634 }
635 
636 bool CombinerHelper::dominates(const MachineInstr &DefMI,
637                                const MachineInstr &UseMI) {
638   assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
639          "shouldn't consider debug uses");
640   if (MDT)
641     return MDT->dominates(&DefMI, &UseMI);
642   else if (DefMI.getParent() != UseMI.getParent())
643     return false;
644 
645   return isPredecessor(DefMI, UseMI);
646 }
647 
648 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) {
649   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
650   Register SrcReg = MI.getOperand(1).getReg();
651   Register LoadUser = SrcReg;
652 
653   if (MRI.getType(SrcReg).isVector())
654     return false;
655 
656   Register TruncSrc;
657   if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))))
658     LoadUser = TruncSrc;
659 
660   uint64_t SizeInBits = MI.getOperand(2).getImm();
661   // If the source is a G_SEXTLOAD from the same bit width, then we don't
662   // need any extend at all, just a truncate.
663   if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) {
664     const auto &MMO = **LoadMI->memoperands_begin();
665     // If truncating more than the original extended value, abort.
666     if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits())
667       return false;
668     if (MMO.getSizeInBits() == SizeInBits)
669       return true;
670   }
671   return false;
672 }
673 
674 bool CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) {
675   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
676   Builder.setInstrAndDebugLoc(MI);
677   Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
678   MI.eraseFromParent();
679   return true;
680 }
681 
682 bool CombinerHelper::matchSextInRegOfLoad(
683     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
684   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
685 
686   // Only supports scalars for now.
687   if (MRI.getType(MI.getOperand(0).getReg()).isVector())
688     return false;
689 
690   Register SrcReg = MI.getOperand(1).getReg();
691   MachineInstr *LoadDef = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI);
692   if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()))
693     return false;
694 
695   // If the sign extend extends from a narrower width than the load's width,
696   // then we can narrow the load width when we combine to a G_SEXTLOAD.
697   auto &MMO = **LoadDef->memoperands_begin();
698   // Don't do this for non-simple loads.
699   if (MMO.isAtomic() || MMO.isVolatile())
700     return false;
701 
702   // Avoid widening the load at all.
703   unsigned NewSizeBits =
704       std::min((uint64_t)MI.getOperand(2).getImm(), MMO.getSizeInBits());
705 
706   // Don't generate G_SEXTLOADs with a < 1 byte width.
707   if (NewSizeBits < 8)
708     return false;
709   // Don't bother creating a non-power-2 sextload, it will likely be broken up
710   // anyway for most targets.
711   if (!isPowerOf2_32(NewSizeBits))
712     return false;
713   MatchInfo = std::make_tuple(LoadDef->getOperand(0).getReg(), NewSizeBits);
714   return true;
715 }
716 
717 bool CombinerHelper::applySextInRegOfLoad(
718     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
719   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
720   Register LoadReg;
721   unsigned ScalarSizeBits;
722   std::tie(LoadReg, ScalarSizeBits) = MatchInfo;
723   auto *LoadDef = MRI.getVRegDef(LoadReg);
724   assert(LoadDef && "Expected a load reg");
725 
726   // If we have the following:
727   // %ld = G_LOAD %ptr, (load 2)
728   // %ext = G_SEXT_INREG %ld, 8
729   //    ==>
730   // %ld = G_SEXTLOAD %ptr (load 1)
731 
732   auto &MMO = **LoadDef->memoperands_begin();
733   Builder.setInstrAndDebugLoc(MI);
734   auto &MF = Builder.getMF();
735   auto PtrInfo = MMO.getPointerInfo();
736   auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8);
737   Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(),
738                          LoadDef->getOperand(1).getReg(), *NewMMO);
739   MI.eraseFromParent();
740   return true;
741 }
742 
743 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr,
744                                             Register &Base, Register &Offset) {
745   auto &MF = *MI.getParent()->getParent();
746   const auto &TLI = *MF.getSubtarget().getTargetLowering();
747 
748 #ifndef NDEBUG
749   unsigned Opcode = MI.getOpcode();
750   assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
751          Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
752 #endif
753 
754   Base = MI.getOperand(1).getReg();
755   MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base);
756   if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
757     return false;
758 
759   LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI);
760   // FIXME: The following use traversal needs a bail out for patholigical cases.
761   for (auto &Use : MRI.use_nodbg_instructions(Base)) {
762     if (Use.getOpcode() != TargetOpcode::G_PTR_ADD)
763       continue;
764 
765     Offset = Use.getOperand(2).getReg();
766     if (!ForceLegalIndexing &&
767         !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) {
768       LLVM_DEBUG(dbgs() << "    Ignoring candidate with illegal addrmode: "
769                         << Use);
770       continue;
771     }
772 
773     // Make sure the offset calculation is before the potentially indexed op.
774     // FIXME: we really care about dependency here. The offset calculation might
775     // be movable.
776     MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset);
777     if (!OffsetDef || !dominates(*OffsetDef, MI)) {
778       LLVM_DEBUG(dbgs() << "    Ignoring candidate with offset after mem-op: "
779                         << Use);
780       continue;
781     }
782 
783     // FIXME: check whether all uses of Base are load/store with foldable
784     // addressing modes. If so, using the normal addr-modes is better than
785     // forming an indexed one.
786 
787     bool MemOpDominatesAddrUses = true;
788     for (auto &PtrAddUse :
789          MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) {
790       if (!dominates(MI, PtrAddUse)) {
791         MemOpDominatesAddrUses = false;
792         break;
793       }
794     }
795 
796     if (!MemOpDominatesAddrUses) {
797       LLVM_DEBUG(
798           dbgs() << "    Ignoring candidate as memop does not dominate uses: "
799                  << Use);
800       continue;
801     }
802 
803     LLVM_DEBUG(dbgs() << "    Found match: " << Use);
804     Addr = Use.getOperand(0).getReg();
805     return true;
806   }
807 
808   return false;
809 }
810 
811 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr,
812                                            Register &Base, Register &Offset) {
813   auto &MF = *MI.getParent()->getParent();
814   const auto &TLI = *MF.getSubtarget().getTargetLowering();
815 
816 #ifndef NDEBUG
817   unsigned Opcode = MI.getOpcode();
818   assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
819          Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
820 #endif
821 
822   Addr = MI.getOperand(1).getReg();
823   MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI);
824   if (!AddrDef || MRI.hasOneNonDBGUse(Addr))
825     return false;
826 
827   Base = AddrDef->getOperand(1).getReg();
828   Offset = AddrDef->getOperand(2).getReg();
829 
830   LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI);
831 
832   if (!ForceLegalIndexing &&
833       !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) {
834     LLVM_DEBUG(dbgs() << "    Skipping, not legal for target");
835     return false;
836   }
837 
838   MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
839   if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
840     LLVM_DEBUG(dbgs() << "    Skipping, frame index would need copy anyway.");
841     return false;
842   }
843 
844   if (MI.getOpcode() == TargetOpcode::G_STORE) {
845     // Would require a copy.
846     if (Base == MI.getOperand(0).getReg()) {
847       LLVM_DEBUG(dbgs() << "    Skipping, storing base so need copy anyway.");
848       return false;
849     }
850 
851     // We're expecting one use of Addr in MI, but it could also be the
852     // value stored, which isn't actually dominated by the instruction.
853     if (MI.getOperand(0).getReg() == Addr) {
854       LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses");
855       return false;
856     }
857   }
858 
859   // FIXME: check whether all uses of the base pointer are constant PtrAdds.
860   // That might allow us to end base's liveness here by adjusting the constant.
861 
862   for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) {
863     if (!dominates(MI, UseMI)) {
864       LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses.");
865       return false;
866     }
867   }
868 
869   return true;
870 }
871 
872 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) {
873   IndexedLoadStoreMatchInfo MatchInfo;
874   if (matchCombineIndexedLoadStore(MI, MatchInfo)) {
875     applyCombineIndexedLoadStore(MI, MatchInfo);
876     return true;
877   }
878   return false;
879 }
880 
881 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
882   unsigned Opcode = MI.getOpcode();
883   if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD &&
884       Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE)
885     return false;
886 
887   // For now, no targets actually support these opcodes so don't waste time
888   // running these unless we're forced to for testing.
889   if (!ForceLegalIndexing)
890     return false;
891 
892   MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
893                                           MatchInfo.Offset);
894   if (!MatchInfo.IsPre &&
895       !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
896                               MatchInfo.Offset))
897     return false;
898 
899   return true;
900 }
901 
902 void CombinerHelper::applyCombineIndexedLoadStore(
903     MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
904   MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr);
905   MachineIRBuilder MIRBuilder(MI);
906   unsigned Opcode = MI.getOpcode();
907   bool IsStore = Opcode == TargetOpcode::G_STORE;
908   unsigned NewOpcode;
909   switch (Opcode) {
910   case TargetOpcode::G_LOAD:
911     NewOpcode = TargetOpcode::G_INDEXED_LOAD;
912     break;
913   case TargetOpcode::G_SEXTLOAD:
914     NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD;
915     break;
916   case TargetOpcode::G_ZEXTLOAD:
917     NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD;
918     break;
919   case TargetOpcode::G_STORE:
920     NewOpcode = TargetOpcode::G_INDEXED_STORE;
921     break;
922   default:
923     llvm_unreachable("Unknown load/store opcode");
924   }
925 
926   auto MIB = MIRBuilder.buildInstr(NewOpcode);
927   if (IsStore) {
928     MIB.addDef(MatchInfo.Addr);
929     MIB.addUse(MI.getOperand(0).getReg());
930   } else {
931     MIB.addDef(MI.getOperand(0).getReg());
932     MIB.addDef(MatchInfo.Addr);
933   }
934 
935   MIB.addUse(MatchInfo.Base);
936   MIB.addUse(MatchInfo.Offset);
937   MIB.addImm(MatchInfo.IsPre);
938   MI.eraseFromParent();
939   AddrDef.eraseFromParent();
940 
941   LLVM_DEBUG(dbgs() << "    Combinined to indexed operation");
942 }
943 
944 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI) {
945   if (MI.getOpcode() != TargetOpcode::G_BR)
946     return false;
947 
948   // Try to match the following:
949   // bb1:
950   //   G_BRCOND %c1, %bb2
951   //   G_BR %bb3
952   // bb2:
953   // ...
954   // bb3:
955 
956   // The above pattern does not have a fall through to the successor bb2, always
957   // resulting in a branch no matter which path is taken. Here we try to find
958   // and replace that pattern with conditional branch to bb3 and otherwise
959   // fallthrough to bb2. This is generally better for branch predictors.
960 
961   MachineBasicBlock *MBB = MI.getParent();
962   MachineBasicBlock::iterator BrIt(MI);
963   if (BrIt == MBB->begin())
964     return false;
965   assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator");
966 
967   MachineInstr *BrCond = &*std::prev(BrIt);
968   if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
969     return false;
970 
971   // Check that the next block is the conditional branch target. Also make sure
972   // that it isn't the same as the G_BR's target (otherwise, this will loop.)
973   MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB();
974   return BrCondTarget != MI.getOperand(0).getMBB() &&
975          MBB->isLayoutSuccessor(BrCondTarget);
976 }
977 
978 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI) {
979   MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
980   MachineBasicBlock::iterator BrIt(MI);
981   MachineInstr *BrCond = &*std::prev(BrIt);
982 
983   Builder.setInstrAndDebugLoc(*BrCond);
984   LLT Ty = MRI.getType(BrCond->getOperand(0).getReg());
985   // FIXME: Does int/fp matter for this? If so, we might need to restrict
986   // this to i1 only since we might not know for sure what kind of
987   // compare generated the condition value.
988   auto True = Builder.buildConstant(
989       Ty, getICmpTrueVal(getTargetLowering(), false, false));
990   auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True);
991 
992   auto *FallthroughBB = BrCond->getOperand(1).getMBB();
993   Observer.changingInstr(MI);
994   MI.getOperand(0).setMBB(FallthroughBB);
995   Observer.changedInstr(MI);
996 
997   // Change the conditional branch to use the inverted condition and
998   // new target block.
999   Observer.changingInstr(*BrCond);
1000   BrCond->getOperand(0).setReg(Xor.getReg(0));
1001   BrCond->getOperand(1).setMBB(BrTarget);
1002   Observer.changedInstr(*BrCond);
1003 }
1004 
1005 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
1006   // On Darwin, -Os means optimize for size without hurting performance, so
1007   // only really optimize for size when -Oz (MinSize) is used.
1008   if (MF.getTarget().getTargetTriple().isOSDarwin())
1009     return MF.getFunction().hasMinSize();
1010   return MF.getFunction().hasOptSize();
1011 }
1012 
1013 // Returns a list of types to use for memory op lowering in MemOps. A partial
1014 // port of findOptimalMemOpLowering in TargetLowering.
1015 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps,
1016                                           unsigned Limit, const MemOp &Op,
1017                                           unsigned DstAS, unsigned SrcAS,
1018                                           const AttributeList &FuncAttributes,
1019                                           const TargetLowering &TLI) {
1020   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
1021     return false;
1022 
1023   LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes);
1024 
1025   if (Ty == LLT()) {
1026     // Use the largest scalar type whose alignment constraints are satisfied.
1027     // We only need to check DstAlign here as SrcAlign is always greater or
1028     // equal to DstAlign (or zero).
1029     Ty = LLT::scalar(64);
1030     if (Op.isFixedDstAlign())
1031       while (Op.getDstAlign() < Ty.getSizeInBytes() &&
1032              !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign()))
1033         Ty = LLT::scalar(Ty.getSizeInBytes());
1034     assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
1035     // FIXME: check for the largest legal type we can load/store to.
1036   }
1037 
1038   unsigned NumMemOps = 0;
1039   uint64_t Size = Op.size();
1040   while (Size) {
1041     unsigned TySize = Ty.getSizeInBytes();
1042     while (TySize > Size) {
1043       // For now, only use non-vector load / store's for the left-over pieces.
1044       LLT NewTy = Ty;
1045       // FIXME: check for mem op safety and legality of the types. Not all of
1046       // SDAGisms map cleanly to GISel concepts.
1047       if (NewTy.isVector())
1048         NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
1049       NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
1050       unsigned NewTySize = NewTy.getSizeInBytes();
1051       assert(NewTySize > 0 && "Could not find appropriate type");
1052 
1053       // If the new LLT cannot cover all of the remaining bits, then consider
1054       // issuing a (or a pair of) unaligned and overlapping load / store.
1055       bool Fast;
1056       // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
1057       MVT VT = getMVTForLLT(Ty);
1058       if (NumMemOps && Op.allowOverlap() && NewTySize < Size &&
1059           TLI.allowsMisalignedMemoryAccesses(
1060               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
1061               MachineMemOperand::MONone, &Fast) &&
1062           Fast)
1063         TySize = Size;
1064       else {
1065         Ty = NewTy;
1066         TySize = NewTySize;
1067       }
1068     }
1069 
1070     if (++NumMemOps > Limit)
1071       return false;
1072 
1073     MemOps.push_back(Ty);
1074     Size -= TySize;
1075   }
1076 
1077   return true;
1078 }
1079 
1080 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
1081   if (Ty.isVector())
1082     return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
1083                                 Ty.getNumElements());
1084   return IntegerType::get(C, Ty.getSizeInBits());
1085 }
1086 
1087 // Get a vectorized representation of the memset value operand, GISel edition.
1088 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
1089   MachineRegisterInfo &MRI = *MIB.getMRI();
1090   unsigned NumBits = Ty.getScalarSizeInBits();
1091   auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
1092   if (!Ty.isVector() && ValVRegAndVal) {
1093     APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8);
1094     APInt SplatVal = APInt::getSplat(NumBits, Scalar);
1095     return MIB.buildConstant(Ty, SplatVal).getReg(0);
1096   }
1097 
1098   // Extend the byte value to the larger type, and then multiply by a magic
1099   // value 0x010101... in order to replicate it across every byte.
1100   // Unless it's zero, in which case just emit a larger G_CONSTANT 0.
1101   if (ValVRegAndVal && ValVRegAndVal->Value == 0) {
1102     return MIB.buildConstant(Ty, 0).getReg(0);
1103   }
1104 
1105   LLT ExtType = Ty.getScalarType();
1106   auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
1107   if (NumBits > 8) {
1108     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
1109     auto MagicMI = MIB.buildConstant(ExtType, Magic);
1110     Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
1111   }
1112 
1113   // For vector types create a G_BUILD_VECTOR.
1114   if (Ty.isVector())
1115     Val = MIB.buildSplatVector(Ty, Val).getReg(0);
1116 
1117   return Val;
1118 }
1119 
1120 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst,
1121                                     Register Val, unsigned KnownLen,
1122                                     Align Alignment, bool IsVolatile) {
1123   auto &MF = *MI.getParent()->getParent();
1124   const auto &TLI = *MF.getSubtarget().getTargetLowering();
1125   auto &DL = MF.getDataLayout();
1126   LLVMContext &C = MF.getFunction().getContext();
1127 
1128   assert(KnownLen != 0 && "Have a zero length memset length!");
1129 
1130   bool DstAlignCanChange = false;
1131   MachineFrameInfo &MFI = MF.getFrameInfo();
1132   bool OptSize = shouldLowerMemFuncForSize(MF);
1133 
1134   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
1135   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
1136     DstAlignCanChange = true;
1137 
1138   unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
1139   std::vector<LLT> MemOps;
1140 
1141   const auto &DstMMO = **MI.memoperands_begin();
1142   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
1143 
1144   auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
1145   bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
1146 
1147   if (!findGISelOptimalMemOpLowering(MemOps, Limit,
1148                                      MemOp::Set(KnownLen, DstAlignCanChange,
1149                                                 Alignment,
1150                                                 /*IsZeroMemset=*/IsZeroVal,
1151                                                 /*IsVolatile=*/IsVolatile),
1152                                      DstPtrInfo.getAddrSpace(), ~0u,
1153                                      MF.getFunction().getAttributes(), TLI))
1154     return false;
1155 
1156   if (DstAlignCanChange) {
1157     // Get an estimate of the type from the LLT.
1158     Type *IRTy = getTypeForLLT(MemOps[0], C);
1159     Align NewAlign = DL.getABITypeAlign(IRTy);
1160     if (NewAlign > Alignment) {
1161       Alignment = NewAlign;
1162       unsigned FI = FIDef->getOperand(1).getIndex();
1163       // Give the stack frame object a larger alignment if needed.
1164       if (MFI.getObjectAlign(FI) < Alignment)
1165         MFI.setObjectAlignment(FI, Alignment);
1166     }
1167   }
1168 
1169   MachineIRBuilder MIB(MI);
1170   // Find the largest store and generate the bit pattern for it.
1171   LLT LargestTy = MemOps[0];
1172   for (unsigned i = 1; i < MemOps.size(); i++)
1173     if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
1174       LargestTy = MemOps[i];
1175 
1176   // The memset stored value is always defined as an s8, so in order to make it
1177   // work with larger store types we need to repeat the bit pattern across the
1178   // wider type.
1179   Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
1180 
1181   if (!MemSetValue)
1182     return false;
1183 
1184   // Generate the stores. For each store type in the list, we generate the
1185   // matching store of that type to the destination address.
1186   LLT PtrTy = MRI.getType(Dst);
1187   unsigned DstOff = 0;
1188   unsigned Size = KnownLen;
1189   for (unsigned I = 0; I < MemOps.size(); I++) {
1190     LLT Ty = MemOps[I];
1191     unsigned TySize = Ty.getSizeInBytes();
1192     if (TySize > Size) {
1193       // Issuing an unaligned load / store pair that overlaps with the previous
1194       // pair. Adjust the offset accordingly.
1195       assert(I == MemOps.size() - 1 && I != 0);
1196       DstOff -= TySize - Size;
1197     }
1198 
1199     // If this store is smaller than the largest store see whether we can get
1200     // the smaller value for free with a truncate.
1201     Register Value = MemSetValue;
1202     if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
1203       MVT VT = getMVTForLLT(Ty);
1204       MVT LargestVT = getMVTForLLT(LargestTy);
1205       if (!LargestTy.isVector() && !Ty.isVector() &&
1206           TLI.isTruncateFree(LargestVT, VT))
1207         Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
1208       else
1209         Value = getMemsetValue(Val, Ty, MIB);
1210       if (!Value)
1211         return false;
1212     }
1213 
1214     auto *StoreMMO =
1215         MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes());
1216 
1217     Register Ptr = Dst;
1218     if (DstOff != 0) {
1219       auto Offset =
1220           MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
1221       Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
1222     }
1223 
1224     MIB.buildStore(Value, Ptr, *StoreMMO);
1225     DstOff += Ty.getSizeInBytes();
1226     Size -= TySize;
1227   }
1228 
1229   MI.eraseFromParent();
1230   return true;
1231 }
1232 
1233 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst,
1234                                     Register Src, unsigned KnownLen,
1235                                     Align DstAlign, Align SrcAlign,
1236                                     bool IsVolatile) {
1237   auto &MF = *MI.getParent()->getParent();
1238   const auto &TLI = *MF.getSubtarget().getTargetLowering();
1239   auto &DL = MF.getDataLayout();
1240   LLVMContext &C = MF.getFunction().getContext();
1241 
1242   assert(KnownLen != 0 && "Have a zero length memcpy length!");
1243 
1244   bool DstAlignCanChange = false;
1245   MachineFrameInfo &MFI = MF.getFrameInfo();
1246   bool OptSize = shouldLowerMemFuncForSize(MF);
1247   Align Alignment = commonAlignment(DstAlign, SrcAlign);
1248 
1249   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
1250   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
1251     DstAlignCanChange = true;
1252 
1253   // FIXME: infer better src pointer alignment like SelectionDAG does here.
1254   // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
1255   // if the memcpy is in a tail call position.
1256 
1257   unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize);
1258   std::vector<LLT> MemOps;
1259 
1260   const auto &DstMMO = **MI.memoperands_begin();
1261   const auto &SrcMMO = **std::next(MI.memoperands_begin());
1262   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
1263   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
1264 
1265   if (!findGISelOptimalMemOpLowering(
1266           MemOps, Limit,
1267           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
1268                       IsVolatile),
1269           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
1270           MF.getFunction().getAttributes(), TLI))
1271     return false;
1272 
1273   if (DstAlignCanChange) {
1274     // Get an estimate of the type from the LLT.
1275     Type *IRTy = getTypeForLLT(MemOps[0], C);
1276     Align NewAlign = DL.getABITypeAlign(IRTy);
1277 
1278     // Don't promote to an alignment that would require dynamic stack
1279     // realignment.
1280     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1281     if (!TRI->needsStackRealignment(MF))
1282       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
1283         NewAlign = NewAlign / 2;
1284 
1285     if (NewAlign > Alignment) {
1286       Alignment = NewAlign;
1287       unsigned FI = FIDef->getOperand(1).getIndex();
1288       // Give the stack frame object a larger alignment if needed.
1289       if (MFI.getObjectAlign(FI) < Alignment)
1290         MFI.setObjectAlignment(FI, Alignment);
1291     }
1292   }
1293 
1294   LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");
1295 
1296   MachineIRBuilder MIB(MI);
1297   // Now we need to emit a pair of load and stores for each of the types we've
1298   // collected. I.e. for each type, generate a load from the source pointer of
1299   // that type width, and then generate a corresponding store to the dest buffer
1300   // of that value loaded. This can result in a sequence of loads and stores
1301   // mixed types, depending on what the target specifies as good types to use.
1302   unsigned CurrOffset = 0;
1303   LLT PtrTy = MRI.getType(Src);
1304   unsigned Size = KnownLen;
1305   for (auto CopyTy : MemOps) {
1306     // Issuing an unaligned load / store pair  that overlaps with the previous
1307     // pair. Adjust the offset accordingly.
1308     if (CopyTy.getSizeInBytes() > Size)
1309       CurrOffset -= CopyTy.getSizeInBytes() - Size;
1310 
1311     // Construct MMOs for the accesses.
1312     auto *LoadMMO =
1313         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
1314     auto *StoreMMO =
1315         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
1316 
1317     // Create the load.
1318     Register LoadPtr = Src;
1319     Register Offset;
1320     if (CurrOffset != 0) {
1321       Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset)
1322                    .getReg(0);
1323       LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0);
1324     }
1325     auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
1326 
1327     // Create the store.
1328     Register StorePtr =
1329         CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
1330     MIB.buildStore(LdVal, StorePtr, *StoreMMO);
1331     CurrOffset += CopyTy.getSizeInBytes();
1332     Size -= CopyTy.getSizeInBytes();
1333   }
1334 
1335   MI.eraseFromParent();
1336   return true;
1337 }
1338 
1339 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst,
1340                                      Register Src, unsigned KnownLen,
1341                                      Align DstAlign, Align SrcAlign,
1342                                      bool IsVolatile) {
1343   auto &MF = *MI.getParent()->getParent();
1344   const auto &TLI = *MF.getSubtarget().getTargetLowering();
1345   auto &DL = MF.getDataLayout();
1346   LLVMContext &C = MF.getFunction().getContext();
1347 
1348   assert(KnownLen != 0 && "Have a zero length memmove length!");
1349 
1350   bool DstAlignCanChange = false;
1351   MachineFrameInfo &MFI = MF.getFrameInfo();
1352   bool OptSize = shouldLowerMemFuncForSize(MF);
1353   Align Alignment = commonAlignment(DstAlign, SrcAlign);
1354 
1355   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
1356   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
1357     DstAlignCanChange = true;
1358 
1359   unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
1360   std::vector<LLT> MemOps;
1361 
1362   const auto &DstMMO = **MI.memoperands_begin();
1363   const auto &SrcMMO = **std::next(MI.memoperands_begin());
1364   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
1365   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
1366 
1367   // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
1368   // to a bug in it's findOptimalMemOpLowering implementation. For now do the
1369   // same thing here.
1370   if (!findGISelOptimalMemOpLowering(
1371           MemOps, Limit,
1372           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
1373                       /*IsVolatile*/ true),
1374           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
1375           MF.getFunction().getAttributes(), TLI))
1376     return false;
1377 
1378   if (DstAlignCanChange) {
1379     // Get an estimate of the type from the LLT.
1380     Type *IRTy = getTypeForLLT(MemOps[0], C);
1381     Align NewAlign = DL.getABITypeAlign(IRTy);
1382 
1383     // Don't promote to an alignment that would require dynamic stack
1384     // realignment.
1385     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1386     if (!TRI->needsStackRealignment(MF))
1387       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
1388         NewAlign = NewAlign / 2;
1389 
1390     if (NewAlign > Alignment) {
1391       Alignment = NewAlign;
1392       unsigned FI = FIDef->getOperand(1).getIndex();
1393       // Give the stack frame object a larger alignment if needed.
1394       if (MFI.getObjectAlign(FI) < Alignment)
1395         MFI.setObjectAlignment(FI, Alignment);
1396     }
1397   }
1398 
1399   LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");
1400 
1401   MachineIRBuilder MIB(MI);
1402   // Memmove requires that we perform the loads first before issuing the stores.
1403   // Apart from that, this loop is pretty much doing the same thing as the
1404   // memcpy codegen function.
1405   unsigned CurrOffset = 0;
1406   LLT PtrTy = MRI.getType(Src);
1407   SmallVector<Register, 16> LoadVals;
1408   for (auto CopyTy : MemOps) {
1409     // Construct MMO for the load.
1410     auto *LoadMMO =
1411         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
1412 
1413     // Create the load.
1414     Register LoadPtr = Src;
1415     if (CurrOffset != 0) {
1416       auto Offset =
1417           MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
1418       LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0);
1419     }
1420     LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
1421     CurrOffset += CopyTy.getSizeInBytes();
1422   }
1423 
1424   CurrOffset = 0;
1425   for (unsigned I = 0; I < MemOps.size(); ++I) {
1426     LLT CopyTy = MemOps[I];
1427     // Now store the values loaded.
1428     auto *StoreMMO =
1429         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
1430 
1431     Register StorePtr = Dst;
1432     if (CurrOffset != 0) {
1433       auto Offset =
1434           MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
1435       StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
1436     }
1437     MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
1438     CurrOffset += CopyTy.getSizeInBytes();
1439   }
1440   MI.eraseFromParent();
1441   return true;
1442 }
1443 
1444 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
1445   const unsigned Opc = MI.getOpcode();
1446   // This combine is fairly complex so it's not written with a separate
1447   // matcher function.
1448   assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE ||
1449           Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction");
1450 
1451   auto MMOIt = MI.memoperands_begin();
1452   const MachineMemOperand *MemOp = *MMOIt;
1453   bool IsVolatile = MemOp->isVolatile();
1454   // Don't try to optimize volatile.
1455   if (IsVolatile)
1456     return false;
1457 
1458   Align DstAlign = MemOp->getBaseAlign();
1459   Align SrcAlign;
1460   Register Dst = MI.getOperand(0).getReg();
1461   Register Src = MI.getOperand(1).getReg();
1462   Register Len = MI.getOperand(2).getReg();
1463 
1464   if (Opc != TargetOpcode::G_MEMSET) {
1465     assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
1466     MemOp = *(++MMOIt);
1467     SrcAlign = MemOp->getBaseAlign();
1468   }
1469 
1470   // See if this is a constant length copy
1471   auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI);
1472   if (!LenVRegAndVal)
1473     return false; // Leave it to the legalizer to lower it to a libcall.
1474   unsigned KnownLen = LenVRegAndVal->Value.getZExtValue();
1475 
1476   if (KnownLen == 0) {
1477     MI.eraseFromParent();
1478     return true;
1479   }
1480 
1481   if (MaxLen && KnownLen > MaxLen)
1482     return false;
1483 
1484   if (Opc == TargetOpcode::G_MEMCPY)
1485     return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
1486   if (Opc == TargetOpcode::G_MEMMOVE)
1487     return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
1488   if (Opc == TargetOpcode::G_MEMSET)
1489     return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
1490   return false;
1491 }
1492 
1493 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy,
1494                                              const Register Op,
1495                                              const MachineRegisterInfo &MRI) {
1496   const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI);
1497   if (!MaybeCst)
1498     return None;
1499 
1500   APFloat V = MaybeCst->getValueAPF();
1501   switch (Opcode) {
1502   default:
1503     llvm_unreachable("Unexpected opcode!");
1504   case TargetOpcode::G_FNEG: {
1505     V.changeSign();
1506     return V;
1507   }
1508   case TargetOpcode::G_FABS: {
1509     V.clearSign();
1510     return V;
1511   }
1512   case TargetOpcode::G_FPTRUNC:
1513     break;
1514   case TargetOpcode::G_FSQRT: {
1515     bool Unused;
1516     V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1517     V = APFloat(sqrt(V.convertToDouble()));
1518     break;
1519   }
1520   case TargetOpcode::G_FLOG2: {
1521     bool Unused;
1522     V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1523     V = APFloat(log2(V.convertToDouble()));
1524     break;
1525   }
1526   }
1527   // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise,
1528   // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`,
1529   // and `G_FLOG2` reach here.
1530   bool Unused;
1531   V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused);
1532   return V;
1533 }
1534 
1535 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI,
1536                                                      Optional<APFloat> &Cst) {
1537   Register DstReg = MI.getOperand(0).getReg();
1538   Register SrcReg = MI.getOperand(1).getReg();
1539   LLT DstTy = MRI.getType(DstReg);
1540   Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI);
1541   return Cst.hasValue();
1542 }
1543 
1544 bool CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI,
1545                                                      Optional<APFloat> &Cst) {
1546   assert(Cst.hasValue() && "Optional is unexpectedly empty!");
1547   Builder.setInstrAndDebugLoc(MI);
1548   MachineFunction &MF = Builder.getMF();
1549   auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst);
1550   Register DstReg = MI.getOperand(0).getReg();
1551   Builder.buildFConstant(DstReg, *FPVal);
1552   MI.eraseFromParent();
1553   return true;
1554 }
1555 
1556 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI,
1557                                            PtrAddChain &MatchInfo) {
1558   // We're trying to match the following pattern:
1559   //   %t1 = G_PTR_ADD %base, G_CONSTANT imm1
1560   //   %root = G_PTR_ADD %t1, G_CONSTANT imm2
1561   // -->
1562   //   %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2)
1563 
1564   if (MI.getOpcode() != TargetOpcode::G_PTR_ADD)
1565     return false;
1566 
1567   Register Add2 = MI.getOperand(1).getReg();
1568   Register Imm1 = MI.getOperand(2).getReg();
1569   auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI);
1570   if (!MaybeImmVal)
1571     return false;
1572 
1573   MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2);
1574   if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD)
1575     return false;
1576 
1577   Register Base = Add2Def->getOperand(1).getReg();
1578   Register Imm2 = Add2Def->getOperand(2).getReg();
1579   auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI);
1580   if (!MaybeImm2Val)
1581     return false;
1582 
1583   // Pass the combined immediate to the apply function.
1584   MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue();
1585   MatchInfo.Base = Base;
1586   return true;
1587 }
1588 
1589 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI,
1590                                            PtrAddChain &MatchInfo) {
1591   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
1592   MachineIRBuilder MIB(MI);
1593   LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg());
1594   auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm);
1595   Observer.changingInstr(MI);
1596   MI.getOperand(1).setReg(MatchInfo.Base);
1597   MI.getOperand(2).setReg(NewOffset.getReg(0));
1598   Observer.changedInstr(MI);
1599   return true;
1600 }
1601 
1602 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI,
1603                                           RegisterImmPair &MatchInfo) {
1604   // We're trying to match the following pattern with any of
1605   // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions:
1606   //   %t1 = SHIFT %base, G_CONSTANT imm1
1607   //   %root = SHIFT %t1, G_CONSTANT imm2
1608   // -->
1609   //   %root = SHIFT %base, G_CONSTANT (imm1 + imm2)
1610 
1611   unsigned Opcode = MI.getOpcode();
1612   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1613           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1614           Opcode == TargetOpcode::G_USHLSAT) &&
1615          "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1616 
1617   Register Shl2 = MI.getOperand(1).getReg();
1618   Register Imm1 = MI.getOperand(2).getReg();
1619   auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI);
1620   if (!MaybeImmVal)
1621     return false;
1622 
1623   MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2);
1624   if (Shl2Def->getOpcode() != Opcode)
1625     return false;
1626 
1627   Register Base = Shl2Def->getOperand(1).getReg();
1628   Register Imm2 = Shl2Def->getOperand(2).getReg();
1629   auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI);
1630   if (!MaybeImm2Val)
1631     return false;
1632 
1633   // Pass the combined immediate to the apply function.
1634   MatchInfo.Imm =
1635       (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue();
1636   MatchInfo.Reg = Base;
1637 
1638   // There is no simple replacement for a saturating unsigned left shift that
1639   // exceeds the scalar size.
1640   if (Opcode == TargetOpcode::G_USHLSAT &&
1641       MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits())
1642     return false;
1643 
1644   return true;
1645 }
1646 
1647 bool CombinerHelper::applyShiftImmedChain(MachineInstr &MI,
1648                                           RegisterImmPair &MatchInfo) {
1649   unsigned Opcode = MI.getOpcode();
1650   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1651           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1652           Opcode == TargetOpcode::G_USHLSAT) &&
1653          "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1654 
1655   Builder.setInstrAndDebugLoc(MI);
1656   LLT Ty = MRI.getType(MI.getOperand(1).getReg());
1657   unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits();
1658   auto Imm = MatchInfo.Imm;
1659 
1660   if (Imm >= ScalarSizeInBits) {
1661     // Any logical shift that exceeds scalar size will produce zero.
1662     if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) {
1663       Builder.buildConstant(MI.getOperand(0), 0);
1664       MI.eraseFromParent();
1665       return true;
1666     }
1667     // Arithmetic shift and saturating signed left shift have no effect beyond
1668     // scalar size.
1669     Imm = ScalarSizeInBits - 1;
1670   }
1671 
1672   LLT ImmTy = MRI.getType(MI.getOperand(2).getReg());
1673   Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0);
1674   Observer.changingInstr(MI);
1675   MI.getOperand(1).setReg(MatchInfo.Reg);
1676   MI.getOperand(2).setReg(NewImm);
1677   Observer.changedInstr(MI);
1678   return true;
1679 }
1680 
1681 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI,
1682                                               ShiftOfShiftedLogic &MatchInfo) {
1683   // We're trying to match the following pattern with any of
1684   // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination
1685   // with any of G_AND/G_OR/G_XOR logic instructions.
1686   //   %t1 = SHIFT %X, G_CONSTANT C0
1687   //   %t2 = LOGIC %t1, %Y
1688   //   %root = SHIFT %t2, G_CONSTANT C1
1689   // -->
1690   //   %t3 = SHIFT %X, G_CONSTANT (C0+C1)
1691   //   %t4 = SHIFT %Y, G_CONSTANT C1
1692   //   %root = LOGIC %t3, %t4
1693   unsigned ShiftOpcode = MI.getOpcode();
1694   assert((ShiftOpcode == TargetOpcode::G_SHL ||
1695           ShiftOpcode == TargetOpcode::G_ASHR ||
1696           ShiftOpcode == TargetOpcode::G_LSHR ||
1697           ShiftOpcode == TargetOpcode::G_USHLSAT ||
1698           ShiftOpcode == TargetOpcode::G_SSHLSAT) &&
1699          "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1700 
1701   // Match a one-use bitwise logic op.
1702   Register LogicDest = MI.getOperand(1).getReg();
1703   if (!MRI.hasOneNonDBGUse(LogicDest))
1704     return false;
1705 
1706   MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest);
1707   unsigned LogicOpcode = LogicMI->getOpcode();
1708   if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR &&
1709       LogicOpcode != TargetOpcode::G_XOR)
1710     return false;
1711 
1712   // Find a matching one-use shift by constant.
1713   const Register C1 = MI.getOperand(2).getReg();
1714   auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI);
1715   if (!MaybeImmVal)
1716     return false;
1717 
1718   const uint64_t C1Val = MaybeImmVal->Value.getZExtValue();
1719 
1720   auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) {
1721     // Shift should match previous one and should be a one-use.
1722     if (MI->getOpcode() != ShiftOpcode ||
1723         !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
1724       return false;
1725 
1726     // Must be a constant.
1727     auto MaybeImmVal =
1728         getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
1729     if (!MaybeImmVal)
1730       return false;
1731 
1732     ShiftVal = MaybeImmVal->Value.getSExtValue();
1733     return true;
1734   };
1735 
1736   // Logic ops are commutative, so check each operand for a match.
1737   Register LogicMIReg1 = LogicMI->getOperand(1).getReg();
1738   MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1);
1739   Register LogicMIReg2 = LogicMI->getOperand(2).getReg();
1740   MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2);
1741   uint64_t C0Val;
1742 
1743   if (matchFirstShift(LogicMIOp1, C0Val)) {
1744     MatchInfo.LogicNonShiftReg = LogicMIReg2;
1745     MatchInfo.Shift2 = LogicMIOp1;
1746   } else if (matchFirstShift(LogicMIOp2, C0Val)) {
1747     MatchInfo.LogicNonShiftReg = LogicMIReg1;
1748     MatchInfo.Shift2 = LogicMIOp2;
1749   } else
1750     return false;
1751 
1752   MatchInfo.ValSum = C0Val + C1Val;
1753 
1754   // The fold is not valid if the sum of the shift values exceeds bitwidth.
1755   if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits())
1756     return false;
1757 
1758   MatchInfo.Logic = LogicMI;
1759   return true;
1760 }
1761 
1762 bool CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI,
1763                                               ShiftOfShiftedLogic &MatchInfo) {
1764   unsigned Opcode = MI.getOpcode();
1765   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1766           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT ||
1767           Opcode == TargetOpcode::G_SSHLSAT) &&
1768          "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1769 
1770   LLT ShlType = MRI.getType(MI.getOperand(2).getReg());
1771   LLT DestType = MRI.getType(MI.getOperand(0).getReg());
1772   Builder.setInstrAndDebugLoc(MI);
1773 
1774   Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0);
1775 
1776   Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg();
1777   Register Shift1 =
1778       Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0);
1779 
1780   Register Shift2Const = MI.getOperand(2).getReg();
1781   Register Shift2 = Builder
1782                         .buildInstr(Opcode, {DestType},
1783                                     {MatchInfo.LogicNonShiftReg, Shift2Const})
1784                         .getReg(0);
1785 
1786   Register Dest = MI.getOperand(0).getReg();
1787   Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2});
1788 
1789   // These were one use so it's safe to remove them.
1790   MatchInfo.Shift2->eraseFromParent();
1791   MatchInfo.Logic->eraseFromParent();
1792 
1793   MI.eraseFromParent();
1794   return true;
1795 }
1796 
1797 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI,
1798                                           unsigned &ShiftVal) {
1799   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
1800   auto MaybeImmVal =
1801       getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
1802   if (!MaybeImmVal)
1803     return false;
1804 
1805   ShiftVal = MaybeImmVal->Value.exactLogBase2();
1806   return (static_cast<int32_t>(ShiftVal) != -1);
1807 }
1808 
1809 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI,
1810                                           unsigned &ShiftVal) {
1811   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
1812   MachineIRBuilder MIB(MI);
1813   LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg());
1814   auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal);
1815   Observer.changingInstr(MI);
1816   MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL));
1817   MI.getOperand(2).setReg(ShiftCst.getReg(0));
1818   Observer.changedInstr(MI);
1819   return true;
1820 }
1821 
1822 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source
1823 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI,
1824                                              RegisterImmPair &MatchData) {
1825   assert(MI.getOpcode() == TargetOpcode::G_SHL && KB);
1826 
1827   Register LHS = MI.getOperand(1).getReg();
1828 
1829   Register ExtSrc;
1830   if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) &&
1831       !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) &&
1832       !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc))))
1833     return false;
1834 
1835   // TODO: Should handle vector splat.
1836   Register RHS = MI.getOperand(2).getReg();
1837   auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI);
1838   if (!MaybeShiftAmtVal)
1839     return false;
1840 
1841   if (LI) {
1842     LLT SrcTy = MRI.getType(ExtSrc);
1843 
1844     // We only really care about the legality with the shifted value. We can
1845     // pick any type the constant shift amount, so ask the target what to
1846     // use. Otherwise we would have to guess and hope it is reported as legal.
1847     LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy);
1848     if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}}))
1849       return false;
1850   }
1851 
1852   int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue();
1853   MatchData.Reg = ExtSrc;
1854   MatchData.Imm = ShiftAmt;
1855 
1856   unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes();
1857   return MinLeadingZeros >= ShiftAmt;
1858 }
1859 
1860 bool CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI,
1861                                              const RegisterImmPair &MatchData) {
1862   Register ExtSrcReg = MatchData.Reg;
1863   int64_t ShiftAmtVal = MatchData.Imm;
1864 
1865   LLT ExtSrcTy = MRI.getType(ExtSrcReg);
1866   Builder.setInstrAndDebugLoc(MI);
1867   auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal);
1868   auto NarrowShift =
1869       Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags());
1870   Builder.buildZExt(MI.getOperand(0), NarrowShift);
1871   MI.eraseFromParent();
1872   return true;
1873 }
1874 
1875 static Register peekThroughBitcast(Register Reg,
1876                                    const MachineRegisterInfo &MRI) {
1877   while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg))))
1878     ;
1879 
1880   return Reg;
1881 }
1882 
1883 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues(
1884     MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
1885   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1886          "Expected an unmerge");
1887   Register SrcReg =
1888       peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI);
1889 
1890   MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
1891   if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES &&
1892       SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR &&
1893       SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS)
1894     return false;
1895 
1896   // Check the source type of the merge.
1897   LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg());
1898   LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
1899   bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits();
1900   if (SrcMergeTy != Dst0Ty && !SameSize)
1901     return false;
1902   // They are the same now (modulo a bitcast).
1903   // We can collect all the src registers.
1904   for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx;
1905        ++Idx)
1906     Operands.push_back(SrcInstr->getOperand(Idx).getReg());
1907   return true;
1908 }
1909 
1910 bool CombinerHelper::applyCombineUnmergeMergeToPlainValues(
1911     MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
1912   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1913          "Expected an unmerge");
1914   assert((MI.getNumOperands() - 1 == Operands.size()) &&
1915          "Not enough operands to replace all defs");
1916   unsigned NumElems = MI.getNumOperands() - 1;
1917 
1918   LLT SrcTy = MRI.getType(Operands[0]);
1919   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1920   bool CanReuseInputDirectly = DstTy == SrcTy;
1921   Builder.setInstrAndDebugLoc(MI);
1922   for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
1923     Register DstReg = MI.getOperand(Idx).getReg();
1924     Register SrcReg = Operands[Idx];
1925     if (CanReuseInputDirectly)
1926       replaceRegWith(MRI, DstReg, SrcReg);
1927     else
1928       Builder.buildCast(DstReg, SrcReg);
1929   }
1930   MI.eraseFromParent();
1931   return true;
1932 }
1933 
1934 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI,
1935                                                  SmallVectorImpl<APInt> &Csts) {
1936   unsigned SrcIdx = MI.getNumOperands() - 1;
1937   Register SrcReg = MI.getOperand(SrcIdx).getReg();
1938   MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
1939   if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT &&
1940       SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT)
1941     return false;
1942   // Break down the big constant in smaller ones.
1943   const MachineOperand &CstVal = SrcInstr->getOperand(1);
1944   APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT
1945                   ? CstVal.getCImm()->getValue()
1946                   : CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
1947 
1948   LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
1949   unsigned ShiftAmt = Dst0Ty.getSizeInBits();
1950   // Unmerge a constant.
1951   for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) {
1952     Csts.emplace_back(Val.trunc(ShiftAmt));
1953     Val = Val.lshr(ShiftAmt);
1954   }
1955 
1956   return true;
1957 }
1958 
1959 bool CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI,
1960                                                  SmallVectorImpl<APInt> &Csts) {
1961   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1962          "Expected an unmerge");
1963   assert((MI.getNumOperands() - 1 == Csts.size()) &&
1964          "Not enough operands to replace all defs");
1965   unsigned NumElems = MI.getNumOperands() - 1;
1966   Builder.setInstrAndDebugLoc(MI);
1967   for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
1968     Register DstReg = MI.getOperand(Idx).getReg();
1969     Builder.buildConstant(DstReg, Csts[Idx]);
1970   }
1971 
1972   MI.eraseFromParent();
1973   return true;
1974 }
1975 
1976 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
1977   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1978          "Expected an unmerge");
1979   // Check that all the lanes are dead except the first one.
1980   for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
1981     if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg()))
1982       return false;
1983   }
1984   return true;
1985 }
1986 
1987 bool CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
1988   Builder.setInstrAndDebugLoc(MI);
1989   Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
1990   // Truncating a vector is going to truncate every single lane,
1991   // whereas we want the full lowbits.
1992   // Do the operation on a scalar instead.
1993   LLT SrcTy = MRI.getType(SrcReg);
1994   if (SrcTy.isVector())
1995     SrcReg =
1996         Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0);
1997 
1998   Register Dst0Reg = MI.getOperand(0).getReg();
1999   LLT Dst0Ty = MRI.getType(Dst0Reg);
2000   if (Dst0Ty.isVector()) {
2001     auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg);
2002     Builder.buildCast(Dst0Reg, MIB);
2003   } else
2004     Builder.buildTrunc(Dst0Reg, SrcReg);
2005   MI.eraseFromParent();
2006   return true;
2007 }
2008 
2009 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) {
2010   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2011          "Expected an unmerge");
2012   Register Dst0Reg = MI.getOperand(0).getReg();
2013   LLT Dst0Ty = MRI.getType(Dst0Reg);
2014   // G_ZEXT on vector applies to each lane, so it will
2015   // affect all destinations. Therefore we won't be able
2016   // to simplify the unmerge to just the first definition.
2017   if (Dst0Ty.isVector())
2018     return false;
2019   Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
2020   LLT SrcTy = MRI.getType(SrcReg);
2021   if (SrcTy.isVector())
2022     return false;
2023 
2024   Register ZExtSrcReg;
2025   if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg))))
2026     return false;
2027 
2028   // Finally we can replace the first definition with
2029   // a zext of the source if the definition is big enough to hold
2030   // all of ZExtSrc bits.
2031   LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
2032   return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits();
2033 }
2034 
2035 bool CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) {
2036   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2037          "Expected an unmerge");
2038 
2039   Register Dst0Reg = MI.getOperand(0).getReg();
2040 
2041   MachineInstr *ZExtInstr =
2042       MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg());
2043   assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT &&
2044          "Expecting a G_ZEXT");
2045 
2046   Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg();
2047   LLT Dst0Ty = MRI.getType(Dst0Reg);
2048   LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
2049 
2050   Builder.setInstrAndDebugLoc(MI);
2051 
2052   if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) {
2053     Builder.buildZExt(Dst0Reg, ZExtSrcReg);
2054   } else {
2055     assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() &&
2056            "ZExt src doesn't fit in destination");
2057     replaceRegWith(MRI, Dst0Reg, ZExtSrcReg);
2058   }
2059 
2060   Register ZeroReg;
2061   for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
2062     if (!ZeroReg)
2063       ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0);
2064     replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg);
2065   }
2066   MI.eraseFromParent();
2067   return true;
2068 }
2069 
2070 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI,
2071                                                 unsigned TargetShiftSize,
2072                                                 unsigned &ShiftVal) {
2073   assert((MI.getOpcode() == TargetOpcode::G_SHL ||
2074           MI.getOpcode() == TargetOpcode::G_LSHR ||
2075           MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift");
2076 
2077   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2078   if (Ty.isVector()) // TODO:
2079     return false;
2080 
2081   // Don't narrow further than the requested size.
2082   unsigned Size = Ty.getSizeInBits();
2083   if (Size <= TargetShiftSize)
2084     return false;
2085 
2086   auto MaybeImmVal =
2087     getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
2088   if (!MaybeImmVal)
2089     return false;
2090 
2091   ShiftVal = MaybeImmVal->Value.getSExtValue();
2092   return ShiftVal >= Size / 2 && ShiftVal < Size;
2093 }
2094 
2095 bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI,
2096                                                 const unsigned &ShiftVal) {
2097   Register DstReg = MI.getOperand(0).getReg();
2098   Register SrcReg = MI.getOperand(1).getReg();
2099   LLT Ty = MRI.getType(SrcReg);
2100   unsigned Size = Ty.getSizeInBits();
2101   unsigned HalfSize = Size / 2;
2102   assert(ShiftVal >= HalfSize);
2103 
2104   LLT HalfTy = LLT::scalar(HalfSize);
2105 
2106   Builder.setInstr(MI);
2107   auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg);
2108   unsigned NarrowShiftAmt = ShiftVal - HalfSize;
2109 
2110   if (MI.getOpcode() == TargetOpcode::G_LSHR) {
2111     Register Narrowed = Unmerge.getReg(1);
2112 
2113     //  dst = G_LSHR s64:x, C for C >= 32
2114     // =>
2115     //   lo, hi = G_UNMERGE_VALUES x
2116     //   dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0
2117 
2118     if (NarrowShiftAmt != 0) {
2119       Narrowed = Builder.buildLShr(HalfTy, Narrowed,
2120         Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
2121     }
2122 
2123     auto Zero = Builder.buildConstant(HalfTy, 0);
2124     Builder.buildMerge(DstReg, { Narrowed, Zero });
2125   } else if (MI.getOpcode() == TargetOpcode::G_SHL) {
2126     Register Narrowed = Unmerge.getReg(0);
2127     //  dst = G_SHL s64:x, C for C >= 32
2128     // =>
2129     //   lo, hi = G_UNMERGE_VALUES x
2130     //   dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32)
2131     if (NarrowShiftAmt != 0) {
2132       Narrowed = Builder.buildShl(HalfTy, Narrowed,
2133         Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
2134     }
2135 
2136     auto Zero = Builder.buildConstant(HalfTy, 0);
2137     Builder.buildMerge(DstReg, { Zero, Narrowed });
2138   } else {
2139     assert(MI.getOpcode() == TargetOpcode::G_ASHR);
2140     auto Hi = Builder.buildAShr(
2141       HalfTy, Unmerge.getReg(1),
2142       Builder.buildConstant(HalfTy, HalfSize - 1));
2143 
2144     if (ShiftVal == HalfSize) {
2145       // (G_ASHR i64:x, 32) ->
2146       //   G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31)
2147       Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi });
2148     } else if (ShiftVal == Size - 1) {
2149       // Don't need a second shift.
2150       // (G_ASHR i64:x, 63) ->
2151       //   %narrowed = (G_ASHR hi_32(x), 31)
2152       //   G_MERGE_VALUES %narrowed, %narrowed
2153       Builder.buildMerge(DstReg, { Hi, Hi });
2154     } else {
2155       auto Lo = Builder.buildAShr(
2156         HalfTy, Unmerge.getReg(1),
2157         Builder.buildConstant(HalfTy, ShiftVal - HalfSize));
2158 
2159       // (G_ASHR i64:x, C) ->, for C >= 32
2160       //   G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31)
2161       Builder.buildMerge(DstReg, { Lo, Hi });
2162     }
2163   }
2164 
2165   MI.eraseFromParent();
2166   return true;
2167 }
2168 
2169 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI,
2170                                               unsigned TargetShiftAmount) {
2171   unsigned ShiftAmt;
2172   if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) {
2173     applyCombineShiftToUnmerge(MI, ShiftAmt);
2174     return true;
2175   }
2176 
2177   return false;
2178 }
2179 
2180 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2181   assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
2182   Register DstReg = MI.getOperand(0).getReg();
2183   LLT DstTy = MRI.getType(DstReg);
2184   Register SrcReg = MI.getOperand(1).getReg();
2185   return mi_match(SrcReg, MRI,
2186                   m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg))));
2187 }
2188 
2189 bool CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2190   assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
2191   Register DstReg = MI.getOperand(0).getReg();
2192   Builder.setInstr(MI);
2193   Builder.buildCopy(DstReg, Reg);
2194   MI.eraseFromParent();
2195   return true;
2196 }
2197 
2198 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2199   assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
2200   Register SrcReg = MI.getOperand(1).getReg();
2201   return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg)));
2202 }
2203 
2204 bool CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2205   assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
2206   Register DstReg = MI.getOperand(0).getReg();
2207   Builder.setInstr(MI);
2208   Builder.buildZExtOrTrunc(DstReg, Reg);
2209   MI.eraseFromParent();
2210   return true;
2211 }
2212 
2213 bool CombinerHelper::matchCombineAddP2IToPtrAdd(
2214     MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2215   assert(MI.getOpcode() == TargetOpcode::G_ADD);
2216   Register LHS = MI.getOperand(1).getReg();
2217   Register RHS = MI.getOperand(2).getReg();
2218   LLT IntTy = MRI.getType(LHS);
2219 
2220   // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the
2221   // instruction.
2222   PtrReg.second = false;
2223   for (Register SrcReg : {LHS, RHS}) {
2224     if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) {
2225       // Don't handle cases where the integer is implicitly converted to the
2226       // pointer width.
2227       LLT PtrTy = MRI.getType(PtrReg.first);
2228       if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits())
2229         return true;
2230     }
2231 
2232     PtrReg.second = true;
2233   }
2234 
2235   return false;
2236 }
2237 
2238 bool CombinerHelper::applyCombineAddP2IToPtrAdd(
2239     MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2240   Register Dst = MI.getOperand(0).getReg();
2241   Register LHS = MI.getOperand(1).getReg();
2242   Register RHS = MI.getOperand(2).getReg();
2243 
2244   const bool DoCommute = PtrReg.second;
2245   if (DoCommute)
2246     std::swap(LHS, RHS);
2247   LHS = PtrReg.first;
2248 
2249   LLT PtrTy = MRI.getType(LHS);
2250 
2251   Builder.setInstrAndDebugLoc(MI);
2252   auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS);
2253   Builder.buildPtrToInt(Dst, PtrAdd);
2254   MI.eraseFromParent();
2255   return true;
2256 }
2257 
2258 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI,
2259                                                   int64_t &NewCst) {
2260   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD");
2261   Register LHS = MI.getOperand(1).getReg();
2262   Register RHS = MI.getOperand(2).getReg();
2263   MachineRegisterInfo &MRI = Builder.getMF().getRegInfo();
2264 
2265   if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) {
2266     int64_t Cst;
2267     if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) {
2268       NewCst = Cst + *RHSCst;
2269       return true;
2270     }
2271   }
2272 
2273   return false;
2274 }
2275 
2276 bool CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI,
2277                                                   int64_t &NewCst) {
2278   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD");
2279   Register Dst = MI.getOperand(0).getReg();
2280 
2281   Builder.setInstrAndDebugLoc(MI);
2282   Builder.buildConstant(Dst, NewCst);
2283   MI.eraseFromParent();
2284   return true;
2285 }
2286 
2287 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
2288   assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT");
2289   Register DstReg = MI.getOperand(0).getReg();
2290   Register SrcReg = MI.getOperand(1).getReg();
2291   LLT DstTy = MRI.getType(DstReg);
2292   return mi_match(SrcReg, MRI,
2293                   m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))));
2294 }
2295 
2296 bool CombinerHelper::applyCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
2297   assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT");
2298   Register DstReg = MI.getOperand(0).getReg();
2299   MI.eraseFromParent();
2300   replaceRegWith(MRI, DstReg, Reg);
2301   return true;
2302 }
2303 
2304 bool CombinerHelper::matchCombineExtOfExt(
2305     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2306   assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2307           MI.getOpcode() == TargetOpcode::G_SEXT ||
2308           MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2309          "Expected a G_[ASZ]EXT");
2310   Register SrcReg = MI.getOperand(1).getReg();
2311   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2312   // Match exts with the same opcode, anyext([sz]ext) and sext(zext).
2313   unsigned Opc = MI.getOpcode();
2314   unsigned SrcOpc = SrcMI->getOpcode();
2315   if (Opc == SrcOpc ||
2316       (Opc == TargetOpcode::G_ANYEXT &&
2317        (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) ||
2318       (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) {
2319     MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc);
2320     return true;
2321   }
2322   return false;
2323 }
2324 
2325 bool CombinerHelper::applyCombineExtOfExt(
2326     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2327   assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2328           MI.getOpcode() == TargetOpcode::G_SEXT ||
2329           MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2330          "Expected a G_[ASZ]EXT");
2331 
2332   Register Reg = std::get<0>(MatchInfo);
2333   unsigned SrcExtOp = std::get<1>(MatchInfo);
2334 
2335   // Combine exts with the same opcode.
2336   if (MI.getOpcode() == SrcExtOp) {
2337     Observer.changingInstr(MI);
2338     MI.getOperand(1).setReg(Reg);
2339     Observer.changedInstr(MI);
2340     return true;
2341   }
2342 
2343   // Combine:
2344   // - anyext([sz]ext x) to [sz]ext x
2345   // - sext(zext x) to zext x
2346   if (MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2347       (MI.getOpcode() == TargetOpcode::G_SEXT &&
2348        SrcExtOp == TargetOpcode::G_ZEXT)) {
2349     Register DstReg = MI.getOperand(0).getReg();
2350     Builder.setInstrAndDebugLoc(MI);
2351     Builder.buildInstr(SrcExtOp, {DstReg}, {Reg});
2352     MI.eraseFromParent();
2353     return true;
2354   }
2355 
2356   return false;
2357 }
2358 
2359 bool CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) {
2360   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
2361   Register DstReg = MI.getOperand(0).getReg();
2362   Register SrcReg = MI.getOperand(1).getReg();
2363   LLT DstTy = MRI.getType(DstReg);
2364 
2365   Builder.setInstrAndDebugLoc(MI);
2366   Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg,
2367                    MI.getFlags());
2368   MI.eraseFromParent();
2369   return true;
2370 }
2371 
2372 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) {
2373   assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG");
2374   Register SrcReg = MI.getOperand(1).getReg();
2375   return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg)));
2376 }
2377 
2378 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) {
2379   assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS");
2380   Src = MI.getOperand(1).getReg();
2381   Register AbsSrc;
2382   return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc)));
2383 }
2384 
2385 bool CombinerHelper::applyCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) {
2386   assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS");
2387   Register Dst = MI.getOperand(0).getReg();
2388   MI.eraseFromParent();
2389   replaceRegWith(MRI, Dst, Src);
2390   return true;
2391 }
2392 
2393 bool CombinerHelper::matchCombineTruncOfExt(
2394     MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2395   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2396   Register SrcReg = MI.getOperand(1).getReg();
2397   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2398   unsigned SrcOpc = SrcMI->getOpcode();
2399   if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT ||
2400       SrcOpc == TargetOpcode::G_ZEXT) {
2401     MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc);
2402     return true;
2403   }
2404   return false;
2405 }
2406 
2407 bool CombinerHelper::applyCombineTruncOfExt(
2408     MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2409   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2410   Register SrcReg = MatchInfo.first;
2411   unsigned SrcExtOp = MatchInfo.second;
2412   Register DstReg = MI.getOperand(0).getReg();
2413   LLT SrcTy = MRI.getType(SrcReg);
2414   LLT DstTy = MRI.getType(DstReg);
2415   if (SrcTy == DstTy) {
2416     MI.eraseFromParent();
2417     replaceRegWith(MRI, DstReg, SrcReg);
2418     return true;
2419   }
2420   Builder.setInstrAndDebugLoc(MI);
2421   if (SrcTy.getSizeInBits() < DstTy.getSizeInBits())
2422     Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg});
2423   else
2424     Builder.buildTrunc(DstReg, SrcReg);
2425   MI.eraseFromParent();
2426   return true;
2427 }
2428 
2429 bool CombinerHelper::matchCombineTruncOfShl(
2430     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
2431   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2432   Register DstReg = MI.getOperand(0).getReg();
2433   Register SrcReg = MI.getOperand(1).getReg();
2434   LLT DstTy = MRI.getType(DstReg);
2435   Register ShiftSrc;
2436   Register ShiftAmt;
2437 
2438   if (MRI.hasOneNonDBGUse(SrcReg) &&
2439       mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) &&
2440       isLegalOrBeforeLegalizer(
2441           {TargetOpcode::G_SHL,
2442            {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) {
2443     KnownBits Known = KB->getKnownBits(ShiftAmt);
2444     unsigned Size = DstTy.getSizeInBits();
2445     if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
2446       MatchInfo = std::make_pair(ShiftSrc, ShiftAmt);
2447       return true;
2448     }
2449   }
2450   return false;
2451 }
2452 
2453 bool CombinerHelper::applyCombineTruncOfShl(
2454     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
2455   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2456   Register DstReg = MI.getOperand(0).getReg();
2457   Register SrcReg = MI.getOperand(1).getReg();
2458   LLT DstTy = MRI.getType(DstReg);
2459   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2460 
2461   Register ShiftSrc = MatchInfo.first;
2462   Register ShiftAmt = MatchInfo.second;
2463   Builder.setInstrAndDebugLoc(MI);
2464   auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc);
2465   Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags());
2466   MI.eraseFromParent();
2467   return true;
2468 }
2469 
2470 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) {
2471   return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2472     return MO.isReg() &&
2473            getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2474   });
2475 }
2476 
2477 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) {
2478   return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2479     return !MO.isReg() ||
2480            getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2481   });
2482 }
2483 
2484 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) {
2485   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
2486   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
2487   return all_of(Mask, [](int Elt) { return Elt < 0; });
2488 }
2489 
2490 bool CombinerHelper::matchUndefStore(MachineInstr &MI) {
2491   assert(MI.getOpcode() == TargetOpcode::G_STORE);
2492   return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(),
2493                       MRI);
2494 }
2495 
2496 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) {
2497   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2498   return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(),
2499                       MRI);
2500 }
2501 
2502 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) {
2503   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2504   if (auto MaybeCstCmp =
2505           getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) {
2506     OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2;
2507     return true;
2508   }
2509   return false;
2510 }
2511 
2512 bool CombinerHelper::eraseInst(MachineInstr &MI) {
2513   MI.eraseFromParent();
2514   return true;
2515 }
2516 
2517 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1,
2518                                     const MachineOperand &MOP2) {
2519   if (!MOP1.isReg() || !MOP2.isReg())
2520     return false;
2521   MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI);
2522   if (!I1)
2523     return false;
2524   MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI);
2525   if (!I2)
2526     return false;
2527 
2528   // Handle a case like this:
2529   //
2530   // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>)
2531   //
2532   // Even though %0 and %1 are produced by the same instruction they are not
2533   // the same values.
2534   if (I1 == I2)
2535     return MOP1.getReg() == MOP2.getReg();
2536 
2537   // If we have an instruction which loads or stores, we can't guarantee that
2538   // it is identical.
2539   //
2540   // For example, we may have
2541   //
2542   // %x1 = G_LOAD %addr (load N from @somewhere)
2543   // ...
2544   // call @foo
2545   // ...
2546   // %x2 = G_LOAD %addr (load N from @somewhere)
2547   // ...
2548   // %or = G_OR %x1, %x2
2549   //
2550   // It's possible that @foo will modify whatever lives at the address we're
2551   // loading from. To be safe, let's just assume that all loads and stores
2552   // are different (unless we have something which is guaranteed to not
2553   // change.)
2554   if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr))
2555     return false;
2556 
2557   // Check for physical registers on the instructions first to avoid cases
2558   // like this:
2559   //
2560   // %a = COPY $physreg
2561   // ...
2562   // SOMETHING implicit-def $physreg
2563   // ...
2564   // %b = COPY $physreg
2565   //
2566   // These copies are not equivalent.
2567   if (any_of(I1->uses(), [](const MachineOperand &MO) {
2568         return MO.isReg() && MO.getReg().isPhysical();
2569       })) {
2570     // Check if we have a case like this:
2571     //
2572     // %a = COPY $physreg
2573     // %b = COPY %a
2574     //
2575     // In this case, I1 and I2 will both be equal to %a = COPY $physreg.
2576     // From that, we know that they must have the same value, since they must
2577     // have come from the same COPY.
2578     return I1->isIdenticalTo(*I2);
2579   }
2580 
2581   // We don't have any physical registers, so we don't necessarily need the
2582   // same vreg defs.
2583   //
2584   // On the off-chance that there's some target instruction feeding into the
2585   // instruction, let's use produceSameValue instead of isIdenticalTo.
2586   return Builder.getTII().produceSameValue(*I1, *I2, &MRI);
2587 }
2588 
2589 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) {
2590   if (!MOP.isReg())
2591     return false;
2592   // MIPatternMatch doesn't let us look through G_ZEXT etc.
2593   auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI);
2594   return ValAndVReg && ValAndVReg->Value == C;
2595 }
2596 
2597 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI,
2598                                                      unsigned OpIdx) {
2599   assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2600   Register OldReg = MI.getOperand(0).getReg();
2601   Register Replacement = MI.getOperand(OpIdx).getReg();
2602   assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2603   MI.eraseFromParent();
2604   replaceRegWith(MRI, OldReg, Replacement);
2605   return true;
2606 }
2607 
2608 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI,
2609                                                  Register Replacement) {
2610   assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2611   Register OldReg = MI.getOperand(0).getReg();
2612   assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2613   MI.eraseFromParent();
2614   replaceRegWith(MRI, OldReg, Replacement);
2615   return true;
2616 }
2617 
2618 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) {
2619   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2620   // Match (cond ? x : x)
2621   return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) &&
2622          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(),
2623                        MRI);
2624 }
2625 
2626 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) {
2627   return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) &&
2628          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
2629                        MRI);
2630 }
2631 
2632 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) {
2633   return matchConstantOp(MI.getOperand(OpIdx), 0) &&
2634          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(),
2635                        MRI);
2636 }
2637 
2638 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) {
2639   MachineOperand &MO = MI.getOperand(OpIdx);
2640   return MO.isReg() &&
2641          getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2642 }
2643 
2644 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI,
2645                                                         unsigned OpIdx) {
2646   MachineOperand &MO = MI.getOperand(OpIdx);
2647   return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB);
2648 }
2649 
2650 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) {
2651   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2652   Builder.setInstr(MI);
2653   Builder.buildFConstant(MI.getOperand(0), C);
2654   MI.eraseFromParent();
2655   return true;
2656 }
2657 
2658 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) {
2659   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2660   Builder.setInstr(MI);
2661   Builder.buildConstant(MI.getOperand(0), C);
2662   MI.eraseFromParent();
2663   return true;
2664 }
2665 
2666 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) {
2667   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2668   Builder.setInstr(MI);
2669   Builder.buildUndef(MI.getOperand(0));
2670   MI.eraseFromParent();
2671   return true;
2672 }
2673 
2674 bool CombinerHelper::matchSimplifyAddToSub(
2675     MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2676   Register LHS = MI.getOperand(1).getReg();
2677   Register RHS = MI.getOperand(2).getReg();
2678   Register &NewLHS = std::get<0>(MatchInfo);
2679   Register &NewRHS = std::get<1>(MatchInfo);
2680 
2681   // Helper lambda to check for opportunities for
2682   // ((0-A) + B) -> B - A
2683   // (A + (0-B)) -> A - B
2684   auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) {
2685     if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS))))
2686       return false;
2687     NewLHS = MaybeNewLHS;
2688     return true;
2689   };
2690 
2691   return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
2692 }
2693 
2694 bool CombinerHelper::matchCombineInsertVecElts(
2695     MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2696   assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT &&
2697          "Invalid opcode");
2698   Register DstReg = MI.getOperand(0).getReg();
2699   LLT DstTy = MRI.getType(DstReg);
2700   assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?");
2701   unsigned NumElts = DstTy.getNumElements();
2702   // If this MI is part of a sequence of insert_vec_elts, then
2703   // don't do the combine in the middle of the sequence.
2704   if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() ==
2705                                    TargetOpcode::G_INSERT_VECTOR_ELT)
2706     return false;
2707   MachineInstr *CurrInst = &MI;
2708   MachineInstr *TmpInst;
2709   int64_t IntImm;
2710   Register TmpReg;
2711   MatchInfo.resize(NumElts);
2712   while (mi_match(
2713       CurrInst->getOperand(0).getReg(), MRI,
2714       m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) {
2715     if (IntImm >= NumElts)
2716       return false;
2717     if (!MatchInfo[IntImm])
2718       MatchInfo[IntImm] = TmpReg;
2719     CurrInst = TmpInst;
2720   }
2721   // Variable index.
2722   if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
2723     return false;
2724   if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
2725     for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) {
2726       if (!MatchInfo[I - 1].isValid())
2727         MatchInfo[I - 1] = TmpInst->getOperand(I).getReg();
2728     }
2729     return true;
2730   }
2731   // If we didn't end in a G_IMPLICIT_DEF, bail out.
2732   return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF;
2733 }
2734 
2735 bool CombinerHelper::applyCombineInsertVecElts(
2736     MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2737   Builder.setInstr(MI);
2738   Register UndefReg;
2739   auto GetUndef = [&]() {
2740     if (UndefReg)
2741       return UndefReg;
2742     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2743     UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0);
2744     return UndefReg;
2745   };
2746   for (unsigned I = 0; I < MatchInfo.size(); ++I) {
2747     if (!MatchInfo[I])
2748       MatchInfo[I] = GetUndef();
2749   }
2750   Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo);
2751   MI.eraseFromParent();
2752   return true;
2753 }
2754 
2755 bool CombinerHelper::applySimplifyAddToSub(
2756     MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2757   Builder.setInstr(MI);
2758   Register SubLHS, SubRHS;
2759   std::tie(SubLHS, SubRHS) = MatchInfo;
2760   Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS);
2761   MI.eraseFromParent();
2762   return true;
2763 }
2764 
2765 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands(
2766     MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
2767   // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ...
2768   //
2769   // Creates the new hand + logic instruction (but does not insert them.)
2770   //
2771   // On success, MatchInfo is populated with the new instructions. These are
2772   // inserted in applyHoistLogicOpWithSameOpcodeHands.
2773   unsigned LogicOpcode = MI.getOpcode();
2774   assert(LogicOpcode == TargetOpcode::G_AND ||
2775          LogicOpcode == TargetOpcode::G_OR ||
2776          LogicOpcode == TargetOpcode::G_XOR);
2777   MachineIRBuilder MIB(MI);
2778   Register Dst = MI.getOperand(0).getReg();
2779   Register LHSReg = MI.getOperand(1).getReg();
2780   Register RHSReg = MI.getOperand(2).getReg();
2781 
2782   // Don't recompute anything.
2783   if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg))
2784     return false;
2785 
2786   // Make sure we have (hand x, ...), (hand y, ...)
2787   MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI);
2788   MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI);
2789   if (!LeftHandInst || !RightHandInst)
2790     return false;
2791   unsigned HandOpcode = LeftHandInst->getOpcode();
2792   if (HandOpcode != RightHandInst->getOpcode())
2793     return false;
2794   if (!LeftHandInst->getOperand(1).isReg() ||
2795       !RightHandInst->getOperand(1).isReg())
2796     return false;
2797 
2798   // Make sure the types match up, and if we're doing this post-legalization,
2799   // we end up with legal types.
2800   Register X = LeftHandInst->getOperand(1).getReg();
2801   Register Y = RightHandInst->getOperand(1).getReg();
2802   LLT XTy = MRI.getType(X);
2803   LLT YTy = MRI.getType(Y);
2804   if (XTy != YTy)
2805     return false;
2806   if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}}))
2807     return false;
2808 
2809   // Optional extra source register.
2810   Register ExtraHandOpSrcReg;
2811   switch (HandOpcode) {
2812   default:
2813     return false;
2814   case TargetOpcode::G_ANYEXT:
2815   case TargetOpcode::G_SEXT:
2816   case TargetOpcode::G_ZEXT: {
2817     // Match: logic (ext X), (ext Y) --> ext (logic X, Y)
2818     break;
2819   }
2820   case TargetOpcode::G_AND:
2821   case TargetOpcode::G_ASHR:
2822   case TargetOpcode::G_LSHR:
2823   case TargetOpcode::G_SHL: {
2824     // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z
2825     MachineOperand &ZOp = LeftHandInst->getOperand(2);
2826     if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2)))
2827       return false;
2828     ExtraHandOpSrcReg = ZOp.getReg();
2829     break;
2830   }
2831   }
2832 
2833   // Record the steps to build the new instructions.
2834   //
2835   // Steps to build (logic x, y)
2836   auto NewLogicDst = MRI.createGenericVirtualRegister(XTy);
2837   OperandBuildSteps LogicBuildSteps = {
2838       [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); },
2839       [=](MachineInstrBuilder &MIB) { MIB.addReg(X); },
2840       [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }};
2841   InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps);
2842 
2843   // Steps to build hand (logic x, y), ...z
2844   OperandBuildSteps HandBuildSteps = {
2845       [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); },
2846       [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }};
2847   if (ExtraHandOpSrcReg.isValid())
2848     HandBuildSteps.push_back(
2849         [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); });
2850   InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps);
2851 
2852   MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps});
2853   return true;
2854 }
2855 
2856 bool CombinerHelper::applyBuildInstructionSteps(
2857     MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
2858   assert(MatchInfo.InstrsToBuild.size() &&
2859          "Expected at least one instr to build?");
2860   Builder.setInstr(MI);
2861   for (auto &InstrToBuild : MatchInfo.InstrsToBuild) {
2862     assert(InstrToBuild.Opcode && "Expected a valid opcode?");
2863     assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?");
2864     MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode);
2865     for (auto &OperandFn : InstrToBuild.OperandFns)
2866       OperandFn(Instr);
2867   }
2868   MI.eraseFromParent();
2869   return true;
2870 }
2871 
2872 bool CombinerHelper::matchAshrShlToSextInreg(
2873     MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
2874   assert(MI.getOpcode() == TargetOpcode::G_ASHR);
2875   int64_t ShlCst, AshrCst;
2876   Register Src;
2877   // FIXME: detect splat constant vectors.
2878   if (!mi_match(MI.getOperand(0).getReg(), MRI,
2879                 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst))))
2880     return false;
2881   if (ShlCst != AshrCst)
2882     return false;
2883   if (!isLegalOrBeforeLegalizer(
2884           {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}}))
2885     return false;
2886   MatchInfo = std::make_tuple(Src, ShlCst);
2887   return true;
2888 }
2889 bool CombinerHelper::applyAshShlToSextInreg(
2890     MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
2891   assert(MI.getOpcode() == TargetOpcode::G_ASHR);
2892   Register Src;
2893   int64_t ShiftAmt;
2894   std::tie(Src, ShiftAmt) = MatchInfo;
2895   unsigned Size = MRI.getType(Src).getScalarSizeInBits();
2896   Builder.setInstrAndDebugLoc(MI);
2897   Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt);
2898   MI.eraseFromParent();
2899   return true;
2900 }
2901 
2902 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI,
2903                                        Register &Replacement) {
2904   // Given
2905   //
2906   // %y:_(sN) = G_SOMETHING
2907   // %x:_(sN) = G_SOMETHING
2908   // %res:_(sN) = G_AND %x, %y
2909   //
2910   // Eliminate the G_AND when it is known that x & y == x or x & y == y.
2911   //
2912   // Patterns like this can appear as a result of legalization. E.g.
2913   //
2914   // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y
2915   // %one:_(s32) = G_CONSTANT i32 1
2916   // %and:_(s32) = G_AND %cmp, %one
2917   //
2918   // In this case, G_ICMP only produces a single bit, so x & 1 == x.
2919   assert(MI.getOpcode() == TargetOpcode::G_AND);
2920   if (!KB)
2921     return false;
2922 
2923   Register AndDst = MI.getOperand(0).getReg();
2924   LLT DstTy = MRI.getType(AndDst);
2925 
2926   // FIXME: This should be removed once GISelKnownBits supports vectors.
2927   if (DstTy.isVector())
2928     return false;
2929 
2930   Register LHS = MI.getOperand(1).getReg();
2931   Register RHS = MI.getOperand(2).getReg();
2932   KnownBits LHSBits = KB->getKnownBits(LHS);
2933   KnownBits RHSBits = KB->getKnownBits(RHS);
2934 
2935   // Check that x & Mask == x.
2936   // x & 1 == x, always
2937   // x & 0 == x, only if x is also 0
2938   // Meaning Mask has no effect if every bit is either one in Mask or zero in x.
2939   //
2940   // Check if we can replace AndDst with the LHS of the G_AND
2941   if (canReplaceReg(AndDst, LHS, MRI) &&
2942       (LHSBits.Zero | RHSBits.One).isAllOnesValue()) {
2943     Replacement = LHS;
2944     return true;
2945   }
2946 
2947   // Check if we can replace AndDst with the RHS of the G_AND
2948   if (canReplaceReg(AndDst, RHS, MRI) &&
2949       (LHSBits.One | RHSBits.Zero).isAllOnesValue()) {
2950     Replacement = RHS;
2951     return true;
2952   }
2953 
2954   return false;
2955 }
2956 
2957 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) {
2958   // Given
2959   //
2960   // %y:_(sN) = G_SOMETHING
2961   // %x:_(sN) = G_SOMETHING
2962   // %res:_(sN) = G_OR %x, %y
2963   //
2964   // Eliminate the G_OR when it is known that x | y == x or x | y == y.
2965   assert(MI.getOpcode() == TargetOpcode::G_OR);
2966   if (!KB)
2967     return false;
2968 
2969   Register OrDst = MI.getOperand(0).getReg();
2970   LLT DstTy = MRI.getType(OrDst);
2971 
2972   // FIXME: This should be removed once GISelKnownBits supports vectors.
2973   if (DstTy.isVector())
2974     return false;
2975 
2976   Register LHS = MI.getOperand(1).getReg();
2977   Register RHS = MI.getOperand(2).getReg();
2978   KnownBits LHSBits = KB->getKnownBits(LHS);
2979   KnownBits RHSBits = KB->getKnownBits(RHS);
2980 
2981   // Check that x | Mask == x.
2982   // x | 0 == x, always
2983   // x | 1 == x, only if x is also 1
2984   // Meaning Mask has no effect if every bit is either zero in Mask or one in x.
2985   //
2986   // Check if we can replace OrDst with the LHS of the G_OR
2987   if (canReplaceReg(OrDst, LHS, MRI) &&
2988       (LHSBits.One | RHSBits.Zero).isAllOnesValue()) {
2989     Replacement = LHS;
2990     return true;
2991   }
2992 
2993   // Check if we can replace OrDst with the RHS of the G_OR
2994   if (canReplaceReg(OrDst, RHS, MRI) &&
2995       (LHSBits.Zero | RHSBits.One).isAllOnesValue()) {
2996     Replacement = RHS;
2997     return true;
2998   }
2999 
3000   return false;
3001 }
3002 
3003 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) {
3004   // If the input is already sign extended, just drop the extension.
3005   Register Src = MI.getOperand(1).getReg();
3006   unsigned ExtBits = MI.getOperand(2).getImm();
3007   unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits();
3008   return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1);
3009 }
3010 
3011 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits,
3012                              int64_t Cst, bool IsVector, bool IsFP) {
3013   // For i1, Cst will always be -1 regardless of boolean contents.
3014   return (ScalarSizeBits == 1 && Cst == -1) ||
3015          isConstTrueVal(TLI, Cst, IsVector, IsFP);
3016 }
3017 
3018 bool CombinerHelper::matchNotCmp(MachineInstr &MI,
3019                                  SmallVectorImpl<Register> &RegsToNegate) {
3020   assert(MI.getOpcode() == TargetOpcode::G_XOR);
3021   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3022   const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering();
3023   Register XorSrc;
3024   Register CstReg;
3025   // We match xor(src, true) here.
3026   if (!mi_match(MI.getOperand(0).getReg(), MRI,
3027                 m_GXor(m_Reg(XorSrc), m_Reg(CstReg))))
3028     return false;
3029 
3030   if (!MRI.hasOneNonDBGUse(XorSrc))
3031     return false;
3032 
3033   // Check that XorSrc is the root of a tree of comparisons combined with ANDs
3034   // and ORs. The suffix of RegsToNegate starting from index I is used a work
3035   // list of tree nodes to visit.
3036   RegsToNegate.push_back(XorSrc);
3037   // Remember whether the comparisons are all integer or all floating point.
3038   bool IsInt = false;
3039   bool IsFP = false;
3040   for (unsigned I = 0; I < RegsToNegate.size(); ++I) {
3041     Register Reg = RegsToNegate[I];
3042     if (!MRI.hasOneNonDBGUse(Reg))
3043       return false;
3044     MachineInstr *Def = MRI.getVRegDef(Reg);
3045     switch (Def->getOpcode()) {
3046     default:
3047       // Don't match if the tree contains anything other than ANDs, ORs and
3048       // comparisons.
3049       return false;
3050     case TargetOpcode::G_ICMP:
3051       if (IsFP)
3052         return false;
3053       IsInt = true;
3054       // When we apply the combine we will invert the predicate.
3055       break;
3056     case TargetOpcode::G_FCMP:
3057       if (IsInt)
3058         return false;
3059       IsFP = true;
3060       // When we apply the combine we will invert the predicate.
3061       break;
3062     case TargetOpcode::G_AND:
3063     case TargetOpcode::G_OR:
3064       // Implement De Morgan's laws:
3065       // ~(x & y) -> ~x | ~y
3066       // ~(x | y) -> ~x & ~y
3067       // When we apply the combine we will change the opcode and recursively
3068       // negate the operands.
3069       RegsToNegate.push_back(Def->getOperand(1).getReg());
3070       RegsToNegate.push_back(Def->getOperand(2).getReg());
3071       break;
3072     }
3073   }
3074 
3075   // Now we know whether the comparisons are integer or floating point, check
3076   // the constant in the xor.
3077   int64_t Cst;
3078   if (Ty.isVector()) {
3079     MachineInstr *CstDef = MRI.getVRegDef(CstReg);
3080     auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI);
3081     if (!MaybeCst)
3082       return false;
3083     if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP))
3084       return false;
3085   } else {
3086     if (!mi_match(CstReg, MRI, m_ICst(Cst)))
3087       return false;
3088     if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP))
3089       return false;
3090   }
3091 
3092   return true;
3093 }
3094 
3095 bool CombinerHelper::applyNotCmp(MachineInstr &MI,
3096                                  SmallVectorImpl<Register> &RegsToNegate) {
3097   for (Register Reg : RegsToNegate) {
3098     MachineInstr *Def = MRI.getVRegDef(Reg);
3099     Observer.changingInstr(*Def);
3100     // For each comparison, invert the opcode. For each AND and OR, change the
3101     // opcode.
3102     switch (Def->getOpcode()) {
3103     default:
3104       llvm_unreachable("Unexpected opcode");
3105     case TargetOpcode::G_ICMP:
3106     case TargetOpcode::G_FCMP: {
3107       MachineOperand &PredOp = Def->getOperand(1);
3108       CmpInst::Predicate NewP = CmpInst::getInversePredicate(
3109           (CmpInst::Predicate)PredOp.getPredicate());
3110       PredOp.setPredicate(NewP);
3111       break;
3112     }
3113     case TargetOpcode::G_AND:
3114       Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR));
3115       break;
3116     case TargetOpcode::G_OR:
3117       Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3118       break;
3119     }
3120     Observer.changedInstr(*Def);
3121   }
3122 
3123   replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
3124   MI.eraseFromParent();
3125   return true;
3126 }
3127 
3128 bool CombinerHelper::matchXorOfAndWithSameReg(
3129     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3130   // Match (xor (and x, y), y) (or any of its commuted cases)
3131   assert(MI.getOpcode() == TargetOpcode::G_XOR);
3132   Register &X = MatchInfo.first;
3133   Register &Y = MatchInfo.second;
3134   Register AndReg = MI.getOperand(1).getReg();
3135   Register SharedReg = MI.getOperand(2).getReg();
3136 
3137   // Find a G_AND on either side of the G_XOR.
3138   // Look for one of
3139   //
3140   // (xor (and x, y), SharedReg)
3141   // (xor SharedReg, (and x, y))
3142   if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) {
3143     std::swap(AndReg, SharedReg);
3144     if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y))))
3145       return false;
3146   }
3147 
3148   // Only do this if we'll eliminate the G_AND.
3149   if (!MRI.hasOneNonDBGUse(AndReg))
3150     return false;
3151 
3152   // We can combine if SharedReg is the same as either the LHS or RHS of the
3153   // G_AND.
3154   if (Y != SharedReg)
3155     std::swap(X, Y);
3156   return Y == SharedReg;
3157 }
3158 
3159 bool CombinerHelper::applyXorOfAndWithSameReg(
3160     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3161   // Fold (xor (and x, y), y) -> (and (not x), y)
3162   Builder.setInstrAndDebugLoc(MI);
3163   Register X, Y;
3164   std::tie(X, Y) = MatchInfo;
3165   auto Not = Builder.buildNot(MRI.getType(X), X);
3166   Observer.changingInstr(MI);
3167   MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3168   MI.getOperand(1).setReg(Not->getOperand(0).getReg());
3169   MI.getOperand(2).setReg(Y);
3170   Observer.changedInstr(MI);
3171   return true;
3172 }
3173 
3174 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) {
3175   Register DstReg = MI.getOperand(0).getReg();
3176   LLT Ty = MRI.getType(DstReg);
3177   const DataLayout &DL = Builder.getMF().getDataLayout();
3178 
3179   if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace()))
3180     return false;
3181 
3182   if (Ty.isPointer()) {
3183     auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI);
3184     return ConstVal && *ConstVal == 0;
3185   }
3186 
3187   assert(Ty.isVector() && "Expecting a vector type");
3188   const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg());
3189   return isBuildVectorAllZeros(*VecMI, MRI);
3190 }
3191 
3192 bool CombinerHelper::applyPtrAddZero(MachineInstr &MI) {
3193   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD);
3194   Builder.setInstrAndDebugLoc(MI);
3195   Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2));
3196   MI.eraseFromParent();
3197   return true;
3198 }
3199 
3200 /// The second source operand is known to be a power of 2.
3201 bool CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) {
3202   Register DstReg = MI.getOperand(0).getReg();
3203   Register Src0 = MI.getOperand(1).getReg();
3204   Register Pow2Src1 = MI.getOperand(2).getReg();
3205   LLT Ty = MRI.getType(DstReg);
3206   Builder.setInstrAndDebugLoc(MI);
3207 
3208   // Fold (urem x, pow2) -> (and x, pow2-1)
3209   auto NegOne = Builder.buildConstant(Ty, -1);
3210   auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne);
3211   Builder.buildAnd(DstReg, Src0, Add);
3212   MI.eraseFromParent();
3213   return true;
3214 }
3215 
3216 Optional<SmallVector<Register, 8>>
3217 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const {
3218   assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!");
3219   // We want to detect if Root is part of a tree which represents a bunch
3220   // of loads being merged into a larger load. We'll try to recognize patterns
3221   // like, for example:
3222   //
3223   //  Reg   Reg
3224   //   \    /
3225   //    OR_1   Reg
3226   //     \    /
3227   //      OR_2
3228   //        \     Reg
3229   //         .. /
3230   //        Root
3231   //
3232   //  Reg   Reg   Reg   Reg
3233   //     \ /       \   /
3234   //     OR_1      OR_2
3235   //       \       /
3236   //        \    /
3237   //         ...
3238   //         Root
3239   //
3240   // Each "Reg" may have been produced by a load + some arithmetic. This
3241   // function will save each of them.
3242   SmallVector<Register, 8> RegsToVisit;
3243   SmallVector<const MachineInstr *, 7> Ors = {Root};
3244 
3245   // In the "worst" case, we're dealing with a load for each byte. So, there
3246   // are at most #bytes - 1 ORs.
3247   const unsigned MaxIter =
3248       MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1;
3249   for (unsigned Iter = 0; Iter < MaxIter; ++Iter) {
3250     if (Ors.empty())
3251       break;
3252     const MachineInstr *Curr = Ors.pop_back_val();
3253     Register OrLHS = Curr->getOperand(1).getReg();
3254     Register OrRHS = Curr->getOperand(2).getReg();
3255 
3256     // In the combine, we want to elimate the entire tree.
3257     if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS))
3258       return None;
3259 
3260     // If it's a G_OR, save it and continue to walk. If it's not, then it's
3261     // something that may be a load + arithmetic.
3262     if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI))
3263       Ors.push_back(Or);
3264     else
3265       RegsToVisit.push_back(OrLHS);
3266     if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI))
3267       Ors.push_back(Or);
3268     else
3269       RegsToVisit.push_back(OrRHS);
3270   }
3271 
3272   // We're going to try and merge each register into a wider power-of-2 type,
3273   // so we ought to have an even number of registers.
3274   if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0)
3275     return None;
3276   return RegsToVisit;
3277 }
3278 
3279 /// Helper function for findLoadOffsetsForLoadOrCombine.
3280 ///
3281 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value,
3282 /// and then moving that value into a specific byte offset.
3283 ///
3284 /// e.g. x[i] << 24
3285 ///
3286 /// \returns The load instruction and the byte offset it is moved into.
3287 static Optional<std::pair<MachineInstr *, int64_t>>
3288 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits,
3289                          const MachineRegisterInfo &MRI) {
3290   assert(MRI.hasOneNonDBGUse(Reg) &&
3291          "Expected Reg to only have one non-debug use?");
3292   Register MaybeLoad;
3293   int64_t Shift;
3294   if (!mi_match(Reg, MRI,
3295                 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) {
3296     Shift = 0;
3297     MaybeLoad = Reg;
3298   }
3299 
3300   if (Shift % MemSizeInBits != 0)
3301     return None;
3302 
3303   // TODO: Handle other types of loads.
3304   auto *Load = getOpcodeDef(TargetOpcode::G_ZEXTLOAD, MaybeLoad, MRI);
3305   if (!Load)
3306     return None;
3307 
3308   const auto &MMO = **Load->memoperands_begin();
3309   if (!MMO.isUnordered() || MMO.getSizeInBits() != MemSizeInBits)
3310     return None;
3311 
3312   return std::make_pair(Load, Shift / MemSizeInBits);
3313 }
3314 
3315 Optional<std::pair<MachineInstr *, int64_t>>
3316 CombinerHelper::findLoadOffsetsForLoadOrCombine(
3317     SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
3318     const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) {
3319 
3320   // Each load found for the pattern. There should be one for each RegsToVisit.
3321   SmallSetVector<const MachineInstr *, 8> Loads;
3322 
3323   // The lowest index used in any load. (The lowest "i" for each x[i].)
3324   int64_t LowestIdx = INT64_MAX;
3325 
3326   // The load which uses the lowest index.
3327   MachineInstr *LowestIdxLoad = nullptr;
3328 
3329   // Keeps track of the load indices we see. We shouldn't see any indices twice.
3330   SmallSet<int64_t, 8> SeenIdx;
3331 
3332   // Ensure each load is in the same MBB.
3333   // TODO: Support multiple MachineBasicBlocks.
3334   MachineBasicBlock *MBB = nullptr;
3335   const MachineMemOperand *MMO = nullptr;
3336 
3337   // Earliest instruction-order load in the pattern.
3338   MachineInstr *EarliestLoad = nullptr;
3339 
3340   // Latest instruction-order load in the pattern.
3341   MachineInstr *LatestLoad = nullptr;
3342 
3343   // Base pointer which every load should share.
3344   Register BasePtr;
3345 
3346   // We want to find a load for each register. Each load should have some
3347   // appropriate bit twiddling arithmetic. During this loop, we will also keep
3348   // track of the load which uses the lowest index. Later, we will check if we
3349   // can use its pointer in the final, combined load.
3350   for (auto Reg : RegsToVisit) {
3351     // Find the load, and find the position that it will end up in (e.g. a
3352     // shifted) value.
3353     auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI);
3354     if (!LoadAndPos)
3355       return None;
3356     MachineInstr *Load;
3357     int64_t DstPos;
3358     std::tie(Load, DstPos) = *LoadAndPos;
3359 
3360     // TODO: Handle multiple MachineBasicBlocks. Currently not handled because
3361     // it is difficult to check for stores/calls/etc between loads.
3362     MachineBasicBlock *LoadMBB = Load->getParent();
3363     if (!MBB)
3364       MBB = LoadMBB;
3365     if (LoadMBB != MBB)
3366       return None;
3367 
3368     // Make sure that the MachineMemOperands of every seen load are compatible.
3369     const MachineMemOperand *LoadMMO = *Load->memoperands_begin();
3370     if (!MMO)
3371       MMO = LoadMMO;
3372     if (MMO->getAddrSpace() != LoadMMO->getAddrSpace())
3373       return None;
3374 
3375     // Find out what the base pointer and index for the load is.
3376     Register LoadPtr;
3377     int64_t Idx;
3378     if (!mi_match(Load->getOperand(1).getReg(), MRI,
3379                   m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) {
3380       LoadPtr = Load->getOperand(1).getReg();
3381       Idx = 0;
3382     }
3383 
3384     // Don't combine things like a[i], a[i] -> a bigger load.
3385     if (!SeenIdx.insert(Idx).second)
3386       return None;
3387 
3388     // Every load must share the same base pointer; don't combine things like:
3389     //
3390     // a[i], b[i + 1] -> a bigger load.
3391     if (!BasePtr.isValid())
3392       BasePtr = LoadPtr;
3393     if (BasePtr != LoadPtr)
3394       return None;
3395 
3396     if (Idx < LowestIdx) {
3397       LowestIdx = Idx;
3398       LowestIdxLoad = Load;
3399     }
3400 
3401     // Keep track of the byte offset that this load ends up at. If we have seen
3402     // the byte offset, then stop here. We do not want to combine:
3403     //
3404     // a[i] << 16, a[i + k] << 16 -> a bigger load.
3405     if (!MemOffset2Idx.try_emplace(DstPos, Idx).second)
3406       return None;
3407     Loads.insert(Load);
3408 
3409     // Keep track of the position of the earliest/latest loads in the pattern.
3410     // We will check that there are no load fold barriers between them later
3411     // on.
3412     //
3413     // FIXME: Is there a better way to check for load fold barriers?
3414     if (!EarliestLoad || dominates(*Load, *EarliestLoad))
3415       EarliestLoad = Load;
3416     if (!LatestLoad || dominates(*LatestLoad, *Load))
3417       LatestLoad = Load;
3418   }
3419 
3420   // We found a load for each register. Let's check if each load satisfies the
3421   // pattern.
3422   assert(Loads.size() == RegsToVisit.size() &&
3423          "Expected to find a load for each register?");
3424   assert(EarliestLoad != LatestLoad && EarliestLoad &&
3425          LatestLoad && "Expected at least two loads?");
3426 
3427   // Check if there are any stores, calls, etc. between any of the loads. If
3428   // there are, then we can't safely perform the combine.
3429   //
3430   // MaxIter is chosen based off the (worst case) number of iterations it
3431   // typically takes to succeed in the LLVM test suite plus some padding.
3432   //
3433   // FIXME: Is there a better way to check for load fold barriers?
3434   const unsigned MaxIter = 20;
3435   unsigned Iter = 0;
3436   for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(),
3437                                                  LatestLoad->getIterator())) {
3438     if (Loads.count(&MI))
3439       continue;
3440     if (MI.isLoadFoldBarrier())
3441       return None;
3442     if (Iter++ == MaxIter)
3443       return None;
3444   }
3445 
3446   return std::make_pair(LowestIdxLoad, LowestIdx);
3447 }
3448 
3449 bool CombinerHelper::matchLoadOrCombine(
3450     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3451   assert(MI.getOpcode() == TargetOpcode::G_OR);
3452   MachineFunction &MF = *MI.getMF();
3453   // Assuming a little-endian target, transform:
3454   //  s8 *a = ...
3455   //  s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
3456   // =>
3457   //  s32 val = *((i32)a)
3458   //
3459   //  s8 *a = ...
3460   //  s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
3461   // =>
3462   //  s32 val = BSWAP(*((s32)a))
3463   Register Dst = MI.getOperand(0).getReg();
3464   LLT Ty = MRI.getType(Dst);
3465   if (Ty.isVector())
3466     return false;
3467 
3468   // We need to combine at least two loads into this type. Since the smallest
3469   // possible load is into a byte, we need at least a 16-bit wide type.
3470   const unsigned WideMemSizeInBits = Ty.getSizeInBits();
3471   if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0)
3472     return false;
3473 
3474   // Match a collection of non-OR instructions in the pattern.
3475   auto RegsToVisit = findCandidatesForLoadOrCombine(&MI);
3476   if (!RegsToVisit)
3477     return false;
3478 
3479   // We have a collection of non-OR instructions. Figure out how wide each of
3480   // the small loads should be based off of the number of potential loads we
3481   // found.
3482   const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size();
3483   if (NarrowMemSizeInBits % 8 != 0)
3484     return false;
3485 
3486   // Check if each register feeding into each OR is a load from the same
3487   // base pointer + some arithmetic.
3488   //
3489   // e.g. a[0], a[1] << 8, a[2] << 16, etc.
3490   //
3491   // Also verify that each of these ends up putting a[i] into the same memory
3492   // offset as a load into a wide type would.
3493   SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx;
3494   MachineInstr *LowestIdxLoad;
3495   int64_t LowestIdx;
3496   auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine(
3497       MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits);
3498   if (!MaybeLoadInfo)
3499     return false;
3500   std::tie(LowestIdxLoad, LowestIdx) = *MaybeLoadInfo;
3501 
3502   // We have a bunch of loads being OR'd together. Using the addresses + offsets
3503   // we found before, check if this corresponds to a big or little endian byte
3504   // pattern. If it does, then we can represent it using a load + possibly a
3505   // BSWAP.
3506   bool IsBigEndianTarget = MF.getDataLayout().isBigEndian();
3507   Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx);
3508   if (!IsBigEndian.hasValue())
3509     return false;
3510   bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian;
3511   if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}}))
3512     return false;
3513 
3514   // Make sure that the load from the lowest index produces offset 0 in the
3515   // final value.
3516   //
3517   // This ensures that we won't combine something like this:
3518   //
3519   // load x[i] -> byte 2
3520   // load x[i+1] -> byte 0 ---> wide_load x[i]
3521   // load x[i+2] -> byte 1
3522   const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits;
3523   const unsigned ZeroByteOffset =
3524       *IsBigEndian
3525           ? bigEndianByteAt(NumLoadsInTy, 0)
3526           : littleEndianByteAt(NumLoadsInTy, 0);
3527   auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset);
3528   if (ZeroOffsetIdx == MemOffset2Idx.end() ||
3529       ZeroOffsetIdx->second != LowestIdx)
3530     return false;
3531 
3532   // We wil reuse the pointer from the load which ends up at byte offset 0. It
3533   // may not use index 0.
3534   Register Ptr = LowestIdxLoad->getOperand(1).getReg();
3535   const MachineMemOperand &MMO = **LowestIdxLoad->memoperands_begin();
3536   LegalityQuery::MemDesc MMDesc;
3537   MMDesc.SizeInBits = WideMemSizeInBits;
3538   MMDesc.AlignInBits = MMO.getAlign().value() * 8;
3539   MMDesc.Ordering = MMO.getOrdering();
3540   if (!isLegalOrBeforeLegalizer(
3541           {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}}))
3542     return false;
3543   auto PtrInfo = MMO.getPointerInfo();
3544   auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8);
3545 
3546   // Load must be allowed and fast on the target.
3547   LLVMContext &C = MF.getFunction().getContext();
3548   auto &DL = MF.getDataLayout();
3549   bool Fast = false;
3550   if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) ||
3551       !Fast)
3552     return false;
3553 
3554   MatchInfo = [=](MachineIRBuilder &MIB) {
3555     Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst;
3556     MIB.buildLoad(LoadDst, Ptr, *NewMMO);
3557     if (NeedsBSwap)
3558       MIB.buildBSwap(Dst, LoadDst);
3559   };
3560   return true;
3561 }
3562 
3563 bool CombinerHelper::applyLoadOrCombine(
3564     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3565   Builder.setInstrAndDebugLoc(MI);
3566   MatchInfo(Builder);
3567   MI.eraseFromParent();
3568   return true;
3569 }
3570 
3571 bool CombinerHelper::tryCombine(MachineInstr &MI) {
3572   if (tryCombineCopy(MI))
3573     return true;
3574   if (tryCombineExtendingLoads(MI))
3575     return true;
3576   if (tryCombineIndexedLoadStore(MI))
3577     return true;
3578   return false;
3579 }
3580