10b57cec5SDimitry Andric //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 90b57cec5SDimitry Andric #include "llvm/CodeGen/GlobalISel/Combiner.h" 100b57cec5SDimitry Andric #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 11*8bcb0991SDimitry Andric #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 120b57cec5SDimitry Andric #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 130b57cec5SDimitry Andric #include "llvm/CodeGen/GlobalISel/Utils.h" 14*8bcb0991SDimitry Andric #include "llvm/CodeGen/MachineDominators.h" 15*8bcb0991SDimitry Andric #include "llvm/CodeGen/MachineFrameInfo.h" 160b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstr.h" 170b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h" 180b57cec5SDimitry Andric #include "llvm/CodeGen/TargetInstrInfo.h" 19*8bcb0991SDimitry Andric #include "llvm/CodeGen/TargetLowering.h" 20*8bcb0991SDimitry Andric #include "llvm/Target/TargetMachine.h" 210b57cec5SDimitry Andric 220b57cec5SDimitry Andric #define DEBUG_TYPE "gi-combiner" 230b57cec5SDimitry Andric 240b57cec5SDimitry Andric using namespace llvm; 250b57cec5SDimitry Andric 26*8bcb0991SDimitry Andric // Option to allow testing of the combiner while no targets know about indexed 27*8bcb0991SDimitry Andric // addressing. 28*8bcb0991SDimitry Andric static cl::opt<bool> 29*8bcb0991SDimitry Andric ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 30*8bcb0991SDimitry Andric cl::desc("Force all indexed operations to be " 31*8bcb0991SDimitry Andric "legal for the GlobalISel combiner")); 32*8bcb0991SDimitry Andric 33*8bcb0991SDimitry Andric 340b57cec5SDimitry Andric CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 35*8bcb0991SDimitry Andric MachineIRBuilder &B, GISelKnownBits *KB, 36*8bcb0991SDimitry Andric MachineDominatorTree *MDT) 37*8bcb0991SDimitry Andric : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 38*8bcb0991SDimitry Andric KB(KB), MDT(MDT) { 39*8bcb0991SDimitry Andric (void)this->KB; 40*8bcb0991SDimitry Andric } 410b57cec5SDimitry Andric 420b57cec5SDimitry Andric void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 430b57cec5SDimitry Andric Register ToReg) const { 440b57cec5SDimitry Andric Observer.changingAllUsesOfReg(MRI, FromReg); 450b57cec5SDimitry Andric 460b57cec5SDimitry Andric if (MRI.constrainRegAttrs(ToReg, FromReg)) 470b57cec5SDimitry Andric MRI.replaceRegWith(FromReg, ToReg); 480b57cec5SDimitry Andric else 490b57cec5SDimitry Andric Builder.buildCopy(ToReg, FromReg); 500b57cec5SDimitry Andric 510b57cec5SDimitry Andric Observer.finishedChangingAllUsesOfReg(); 520b57cec5SDimitry Andric } 530b57cec5SDimitry Andric 540b57cec5SDimitry Andric void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 550b57cec5SDimitry Andric MachineOperand &FromRegOp, 560b57cec5SDimitry Andric Register ToReg) const { 570b57cec5SDimitry Andric assert(FromRegOp.getParent() && "Expected an operand in an MI"); 580b57cec5SDimitry Andric Observer.changingInstr(*FromRegOp.getParent()); 590b57cec5SDimitry Andric 600b57cec5SDimitry Andric FromRegOp.setReg(ToReg); 610b57cec5SDimitry Andric 620b57cec5SDimitry Andric Observer.changedInstr(*FromRegOp.getParent()); 630b57cec5SDimitry Andric } 640b57cec5SDimitry Andric 650b57cec5SDimitry Andric bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 660b57cec5SDimitry Andric if (matchCombineCopy(MI)) { 670b57cec5SDimitry Andric applyCombineCopy(MI); 680b57cec5SDimitry Andric return true; 690b57cec5SDimitry Andric } 700b57cec5SDimitry Andric return false; 710b57cec5SDimitry Andric } 720b57cec5SDimitry Andric bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 730b57cec5SDimitry Andric if (MI.getOpcode() != TargetOpcode::COPY) 740b57cec5SDimitry Andric return false; 75*8bcb0991SDimitry Andric Register DstReg = MI.getOperand(0).getReg(); 76*8bcb0991SDimitry Andric Register SrcReg = MI.getOperand(1).getReg(); 770b57cec5SDimitry Andric LLT DstTy = MRI.getType(DstReg); 780b57cec5SDimitry Andric LLT SrcTy = MRI.getType(SrcReg); 790b57cec5SDimitry Andric // Simple Copy Propagation. 800b57cec5SDimitry Andric // a(sx) = COPY b(sx) -> Replace all uses of a with b. 810b57cec5SDimitry Andric if (DstTy.isValid() && SrcTy.isValid() && DstTy == SrcTy) 820b57cec5SDimitry Andric return true; 830b57cec5SDimitry Andric return false; 840b57cec5SDimitry Andric } 850b57cec5SDimitry Andric void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 86*8bcb0991SDimitry Andric Register DstReg = MI.getOperand(0).getReg(); 87*8bcb0991SDimitry Andric Register SrcReg = MI.getOperand(1).getReg(); 880b57cec5SDimitry Andric MI.eraseFromParent(); 890b57cec5SDimitry Andric replaceRegWith(MRI, DstReg, SrcReg); 900b57cec5SDimitry Andric } 910b57cec5SDimitry Andric 92*8bcb0991SDimitry Andric bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 93*8bcb0991SDimitry Andric bool IsUndef = false; 94*8bcb0991SDimitry Andric SmallVector<Register, 4> Ops; 95*8bcb0991SDimitry Andric if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 96*8bcb0991SDimitry Andric applyCombineConcatVectors(MI, IsUndef, Ops); 97*8bcb0991SDimitry Andric return true; 98*8bcb0991SDimitry Andric } 99*8bcb0991SDimitry Andric return false; 100*8bcb0991SDimitry Andric } 101*8bcb0991SDimitry Andric 102*8bcb0991SDimitry Andric bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 103*8bcb0991SDimitry Andric SmallVectorImpl<Register> &Ops) { 104*8bcb0991SDimitry Andric assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 105*8bcb0991SDimitry Andric "Invalid instruction"); 106*8bcb0991SDimitry Andric IsUndef = true; 107*8bcb0991SDimitry Andric MachineInstr *Undef = nullptr; 108*8bcb0991SDimitry Andric 109*8bcb0991SDimitry Andric // Walk over all the operands of concat vectors and check if they are 110*8bcb0991SDimitry Andric // build_vector themselves or undef. 111*8bcb0991SDimitry Andric // Then collect their operands in Ops. 112*8bcb0991SDimitry Andric for (const MachineOperand &MO : MI.operands()) { 113*8bcb0991SDimitry Andric // Skip the instruction definition. 114*8bcb0991SDimitry Andric if (MO.isDef()) 115*8bcb0991SDimitry Andric continue; 116*8bcb0991SDimitry Andric Register Reg = MO.getReg(); 117*8bcb0991SDimitry Andric MachineInstr *Def = MRI.getVRegDef(Reg); 118*8bcb0991SDimitry Andric assert(Def && "Operand not defined"); 119*8bcb0991SDimitry Andric switch (Def->getOpcode()) { 120*8bcb0991SDimitry Andric case TargetOpcode::G_BUILD_VECTOR: 121*8bcb0991SDimitry Andric IsUndef = false; 122*8bcb0991SDimitry Andric // Remember the operands of the build_vector to fold 123*8bcb0991SDimitry Andric // them into the yet-to-build flattened concat vectors. 124*8bcb0991SDimitry Andric for (const MachineOperand &BuildVecMO : Def->operands()) { 125*8bcb0991SDimitry Andric // Skip the definition. 126*8bcb0991SDimitry Andric if (BuildVecMO.isDef()) 127*8bcb0991SDimitry Andric continue; 128*8bcb0991SDimitry Andric Ops.push_back(BuildVecMO.getReg()); 129*8bcb0991SDimitry Andric } 130*8bcb0991SDimitry Andric break; 131*8bcb0991SDimitry Andric case TargetOpcode::G_IMPLICIT_DEF: { 132*8bcb0991SDimitry Andric LLT OpType = MRI.getType(Reg); 133*8bcb0991SDimitry Andric // Keep one undef value for all the undef operands. 134*8bcb0991SDimitry Andric if (!Undef) { 135*8bcb0991SDimitry Andric Builder.setInsertPt(*MI.getParent(), MI); 136*8bcb0991SDimitry Andric Undef = Builder.buildUndef(OpType.getScalarType()); 137*8bcb0991SDimitry Andric } 138*8bcb0991SDimitry Andric assert(MRI.getType(Undef->getOperand(0).getReg()) == 139*8bcb0991SDimitry Andric OpType.getScalarType() && 140*8bcb0991SDimitry Andric "All undefs should have the same type"); 141*8bcb0991SDimitry Andric // Break the undef vector in as many scalar elements as needed 142*8bcb0991SDimitry Andric // for the flattening. 143*8bcb0991SDimitry Andric for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 144*8bcb0991SDimitry Andric EltIdx != EltEnd; ++EltIdx) 145*8bcb0991SDimitry Andric Ops.push_back(Undef->getOperand(0).getReg()); 146*8bcb0991SDimitry Andric break; 147*8bcb0991SDimitry Andric } 148*8bcb0991SDimitry Andric default: 149*8bcb0991SDimitry Andric return false; 150*8bcb0991SDimitry Andric } 151*8bcb0991SDimitry Andric } 152*8bcb0991SDimitry Andric return true; 153*8bcb0991SDimitry Andric } 154*8bcb0991SDimitry Andric void CombinerHelper::applyCombineConcatVectors( 155*8bcb0991SDimitry Andric MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 156*8bcb0991SDimitry Andric // We determined that the concat_vectors can be flatten. 157*8bcb0991SDimitry Andric // Generate the flattened build_vector. 158*8bcb0991SDimitry Andric Register DstReg = MI.getOperand(0).getReg(); 159*8bcb0991SDimitry Andric Builder.setInsertPt(*MI.getParent(), MI); 160*8bcb0991SDimitry Andric Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 161*8bcb0991SDimitry Andric 162*8bcb0991SDimitry Andric // Note: IsUndef is sort of redundant. We could have determine it by 163*8bcb0991SDimitry Andric // checking that at all Ops are undef. Alternatively, we could have 164*8bcb0991SDimitry Andric // generate a build_vector of undefs and rely on another combine to 165*8bcb0991SDimitry Andric // clean that up. For now, given we already gather this information 166*8bcb0991SDimitry Andric // in tryCombineConcatVectors, just save compile time and issue the 167*8bcb0991SDimitry Andric // right thing. 168*8bcb0991SDimitry Andric if (IsUndef) 169*8bcb0991SDimitry Andric Builder.buildUndef(NewDstReg); 170*8bcb0991SDimitry Andric else 171*8bcb0991SDimitry Andric Builder.buildBuildVector(NewDstReg, Ops); 172*8bcb0991SDimitry Andric MI.eraseFromParent(); 173*8bcb0991SDimitry Andric replaceRegWith(MRI, DstReg, NewDstReg); 174*8bcb0991SDimitry Andric } 175*8bcb0991SDimitry Andric 176*8bcb0991SDimitry Andric bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 177*8bcb0991SDimitry Andric SmallVector<Register, 4> Ops; 178*8bcb0991SDimitry Andric if (matchCombineShuffleVector(MI, Ops)) { 179*8bcb0991SDimitry Andric applyCombineShuffleVector(MI, Ops); 180*8bcb0991SDimitry Andric return true; 181*8bcb0991SDimitry Andric } 182*8bcb0991SDimitry Andric return false; 183*8bcb0991SDimitry Andric } 184*8bcb0991SDimitry Andric 185*8bcb0991SDimitry Andric bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 186*8bcb0991SDimitry Andric SmallVectorImpl<Register> &Ops) { 187*8bcb0991SDimitry Andric assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 188*8bcb0991SDimitry Andric "Invalid instruction kind"); 189*8bcb0991SDimitry Andric LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 190*8bcb0991SDimitry Andric Register Src1 = MI.getOperand(1).getReg(); 191*8bcb0991SDimitry Andric LLT SrcType = MRI.getType(Src1); 192*8bcb0991SDimitry Andric unsigned DstNumElts = DstType.getNumElements(); 193*8bcb0991SDimitry Andric unsigned SrcNumElts = SrcType.getNumElements(); 194*8bcb0991SDimitry Andric 195*8bcb0991SDimitry Andric // If the resulting vector is smaller than the size of the source 196*8bcb0991SDimitry Andric // vectors being concatenated, we won't be able to replace the 197*8bcb0991SDimitry Andric // shuffle vector into a concat_vectors. 198*8bcb0991SDimitry Andric // 199*8bcb0991SDimitry Andric // Note: We may still be able to produce a concat_vectors fed by 200*8bcb0991SDimitry Andric // extract_vector_elt and so on. It is less clear that would 201*8bcb0991SDimitry Andric // be better though, so don't bother for now. 202*8bcb0991SDimitry Andric if (DstNumElts < 2 * SrcNumElts) 203*8bcb0991SDimitry Andric return false; 204*8bcb0991SDimitry Andric 205*8bcb0991SDimitry Andric // Check that the shuffle mask can be broken evenly between the 206*8bcb0991SDimitry Andric // different sources. 207*8bcb0991SDimitry Andric if (DstNumElts % SrcNumElts != 0) 208*8bcb0991SDimitry Andric return false; 209*8bcb0991SDimitry Andric 210*8bcb0991SDimitry Andric // Mask length is a multiple of the source vector length. 211*8bcb0991SDimitry Andric // Check if the shuffle is some kind of concatenation of the input 212*8bcb0991SDimitry Andric // vectors. 213*8bcb0991SDimitry Andric unsigned NumConcat = DstNumElts / SrcNumElts; 214*8bcb0991SDimitry Andric SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 215*8bcb0991SDimitry Andric SmallVector<int, 8> Mask; 216*8bcb0991SDimitry Andric ShuffleVectorInst::getShuffleMask(MI.getOperand(3).getShuffleMask(), Mask); 217*8bcb0991SDimitry Andric for (unsigned i = 0; i != DstNumElts; ++i) { 218*8bcb0991SDimitry Andric int Idx = Mask[i]; 219*8bcb0991SDimitry Andric // Undef value. 220*8bcb0991SDimitry Andric if (Idx < 0) 221*8bcb0991SDimitry Andric continue; 222*8bcb0991SDimitry Andric // Ensure the indices in each SrcType sized piece are sequential and that 223*8bcb0991SDimitry Andric // the same source is used for the whole piece. 224*8bcb0991SDimitry Andric if ((Idx % SrcNumElts != (i % SrcNumElts)) || 225*8bcb0991SDimitry Andric (ConcatSrcs[i / SrcNumElts] >= 0 && 226*8bcb0991SDimitry Andric ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 227*8bcb0991SDimitry Andric return false; 228*8bcb0991SDimitry Andric // Remember which source this index came from. 229*8bcb0991SDimitry Andric ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 230*8bcb0991SDimitry Andric } 231*8bcb0991SDimitry Andric 232*8bcb0991SDimitry Andric // The shuffle is concatenating multiple vectors together. 233*8bcb0991SDimitry Andric // Collect the different operands for that. 234*8bcb0991SDimitry Andric Register UndefReg; 235*8bcb0991SDimitry Andric Register Src2 = MI.getOperand(2).getReg(); 236*8bcb0991SDimitry Andric for (auto Src : ConcatSrcs) { 237*8bcb0991SDimitry Andric if (Src < 0) { 238*8bcb0991SDimitry Andric if (!UndefReg) { 239*8bcb0991SDimitry Andric Builder.setInsertPt(*MI.getParent(), MI); 240*8bcb0991SDimitry Andric UndefReg = Builder.buildUndef(SrcType).getReg(0); 241*8bcb0991SDimitry Andric } 242*8bcb0991SDimitry Andric Ops.push_back(UndefReg); 243*8bcb0991SDimitry Andric } else if (Src == 0) 244*8bcb0991SDimitry Andric Ops.push_back(Src1); 245*8bcb0991SDimitry Andric else 246*8bcb0991SDimitry Andric Ops.push_back(Src2); 247*8bcb0991SDimitry Andric } 248*8bcb0991SDimitry Andric return true; 249*8bcb0991SDimitry Andric } 250*8bcb0991SDimitry Andric 251*8bcb0991SDimitry Andric void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 252*8bcb0991SDimitry Andric const ArrayRef<Register> Ops) { 253*8bcb0991SDimitry Andric Register DstReg = MI.getOperand(0).getReg(); 254*8bcb0991SDimitry Andric Builder.setInsertPt(*MI.getParent(), MI); 255*8bcb0991SDimitry Andric Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 256*8bcb0991SDimitry Andric 257*8bcb0991SDimitry Andric Builder.buildConcatVectors(NewDstReg, Ops); 258*8bcb0991SDimitry Andric 259*8bcb0991SDimitry Andric MI.eraseFromParent(); 260*8bcb0991SDimitry Andric replaceRegWith(MRI, DstReg, NewDstReg); 261*8bcb0991SDimitry Andric } 262*8bcb0991SDimitry Andric 2630b57cec5SDimitry Andric namespace { 2640b57cec5SDimitry Andric 2650b57cec5SDimitry Andric /// Select a preference between two uses. CurrentUse is the current preference 2660b57cec5SDimitry Andric /// while *ForCandidate is attributes of the candidate under consideration. 2670b57cec5SDimitry Andric PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 2680b57cec5SDimitry Andric const LLT &TyForCandidate, 2690b57cec5SDimitry Andric unsigned OpcodeForCandidate, 2700b57cec5SDimitry Andric MachineInstr *MIForCandidate) { 2710b57cec5SDimitry Andric if (!CurrentUse.Ty.isValid()) { 2720b57cec5SDimitry Andric if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 2730b57cec5SDimitry Andric CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 2740b57cec5SDimitry Andric return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 2750b57cec5SDimitry Andric return CurrentUse; 2760b57cec5SDimitry Andric } 2770b57cec5SDimitry Andric 2780b57cec5SDimitry Andric // We permit the extend to hoist through basic blocks but this is only 2790b57cec5SDimitry Andric // sensible if the target has extending loads. If you end up lowering back 2800b57cec5SDimitry Andric // into a load and extend during the legalizer then the end result is 2810b57cec5SDimitry Andric // hoisting the extend up to the load. 2820b57cec5SDimitry Andric 2830b57cec5SDimitry Andric // Prefer defined extensions to undefined extensions as these are more 2840b57cec5SDimitry Andric // likely to reduce the number of instructions. 2850b57cec5SDimitry Andric if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 2860b57cec5SDimitry Andric CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 2870b57cec5SDimitry Andric return CurrentUse; 2880b57cec5SDimitry Andric else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 2890b57cec5SDimitry Andric OpcodeForCandidate != TargetOpcode::G_ANYEXT) 2900b57cec5SDimitry Andric return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 2910b57cec5SDimitry Andric 2920b57cec5SDimitry Andric // Prefer sign extensions to zero extensions as sign-extensions tend to be 2930b57cec5SDimitry Andric // more expensive. 2940b57cec5SDimitry Andric if (CurrentUse.Ty == TyForCandidate) { 2950b57cec5SDimitry Andric if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 2960b57cec5SDimitry Andric OpcodeForCandidate == TargetOpcode::G_ZEXT) 2970b57cec5SDimitry Andric return CurrentUse; 2980b57cec5SDimitry Andric else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 2990b57cec5SDimitry Andric OpcodeForCandidate == TargetOpcode::G_SEXT) 3000b57cec5SDimitry Andric return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 3010b57cec5SDimitry Andric } 3020b57cec5SDimitry Andric 3030b57cec5SDimitry Andric // This is potentially target specific. We've chosen the largest type 3040b57cec5SDimitry Andric // because G_TRUNC is usually free. One potential catch with this is that 3050b57cec5SDimitry Andric // some targets have a reduced number of larger registers than smaller 3060b57cec5SDimitry Andric // registers and this choice potentially increases the live-range for the 3070b57cec5SDimitry Andric // larger value. 3080b57cec5SDimitry Andric if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 3090b57cec5SDimitry Andric return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 3100b57cec5SDimitry Andric } 3110b57cec5SDimitry Andric return CurrentUse; 3120b57cec5SDimitry Andric } 3130b57cec5SDimitry Andric 3140b57cec5SDimitry Andric /// Find a suitable place to insert some instructions and insert them. This 3150b57cec5SDimitry Andric /// function accounts for special cases like inserting before a PHI node. 3160b57cec5SDimitry Andric /// The current strategy for inserting before PHI's is to duplicate the 3170b57cec5SDimitry Andric /// instructions for each predecessor. However, while that's ok for G_TRUNC 3180b57cec5SDimitry Andric /// on most targets since it generally requires no code, other targets/cases may 3190b57cec5SDimitry Andric /// want to try harder to find a dominating block. 3200b57cec5SDimitry Andric static void InsertInsnsWithoutSideEffectsBeforeUse( 3210b57cec5SDimitry Andric MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 3220b57cec5SDimitry Andric std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 3230b57cec5SDimitry Andric MachineOperand &UseMO)> 3240b57cec5SDimitry Andric Inserter) { 3250b57cec5SDimitry Andric MachineInstr &UseMI = *UseMO.getParent(); 3260b57cec5SDimitry Andric 3270b57cec5SDimitry Andric MachineBasicBlock *InsertBB = UseMI.getParent(); 3280b57cec5SDimitry Andric 3290b57cec5SDimitry Andric // If the use is a PHI then we want the predecessor block instead. 3300b57cec5SDimitry Andric if (UseMI.isPHI()) { 3310b57cec5SDimitry Andric MachineOperand *PredBB = std::next(&UseMO); 3320b57cec5SDimitry Andric InsertBB = PredBB->getMBB(); 3330b57cec5SDimitry Andric } 3340b57cec5SDimitry Andric 3350b57cec5SDimitry Andric // If the block is the same block as the def then we want to insert just after 3360b57cec5SDimitry Andric // the def instead of at the start of the block. 3370b57cec5SDimitry Andric if (InsertBB == DefMI.getParent()) { 3380b57cec5SDimitry Andric MachineBasicBlock::iterator InsertPt = &DefMI; 3390b57cec5SDimitry Andric Inserter(InsertBB, std::next(InsertPt), UseMO); 3400b57cec5SDimitry Andric return; 3410b57cec5SDimitry Andric } 3420b57cec5SDimitry Andric 3430b57cec5SDimitry Andric // Otherwise we want the start of the BB 3440b57cec5SDimitry Andric Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 3450b57cec5SDimitry Andric } 3460b57cec5SDimitry Andric } // end anonymous namespace 3470b57cec5SDimitry Andric 3480b57cec5SDimitry Andric bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 3490b57cec5SDimitry Andric PreferredTuple Preferred; 3500b57cec5SDimitry Andric if (matchCombineExtendingLoads(MI, Preferred)) { 3510b57cec5SDimitry Andric applyCombineExtendingLoads(MI, Preferred); 3520b57cec5SDimitry Andric return true; 3530b57cec5SDimitry Andric } 3540b57cec5SDimitry Andric return false; 3550b57cec5SDimitry Andric } 3560b57cec5SDimitry Andric 3570b57cec5SDimitry Andric bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 3580b57cec5SDimitry Andric PreferredTuple &Preferred) { 3590b57cec5SDimitry Andric // We match the loads and follow the uses to the extend instead of matching 3600b57cec5SDimitry Andric // the extends and following the def to the load. This is because the load 3610b57cec5SDimitry Andric // must remain in the same position for correctness (unless we also add code 3620b57cec5SDimitry Andric // to find a safe place to sink it) whereas the extend is freely movable. 3630b57cec5SDimitry Andric // It also prevents us from duplicating the load for the volatile case or just 3640b57cec5SDimitry Andric // for performance. 3650b57cec5SDimitry Andric 3660b57cec5SDimitry Andric if (MI.getOpcode() != TargetOpcode::G_LOAD && 3670b57cec5SDimitry Andric MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 3680b57cec5SDimitry Andric MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 3690b57cec5SDimitry Andric return false; 3700b57cec5SDimitry Andric 3710b57cec5SDimitry Andric auto &LoadValue = MI.getOperand(0); 3720b57cec5SDimitry Andric assert(LoadValue.isReg() && "Result wasn't a register?"); 3730b57cec5SDimitry Andric 3740b57cec5SDimitry Andric LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 3750b57cec5SDimitry Andric if (!LoadValueTy.isScalar()) 3760b57cec5SDimitry Andric return false; 3770b57cec5SDimitry Andric 3780b57cec5SDimitry Andric // Most architectures are going to legalize <s8 loads into at least a 1 byte 3790b57cec5SDimitry Andric // load, and the MMOs can only describe memory accesses in multiples of bytes. 3800b57cec5SDimitry Andric // If we try to perform extload combining on those, we can end up with 3810b57cec5SDimitry Andric // %a(s8) = extload %ptr (load 1 byte from %ptr) 3820b57cec5SDimitry Andric // ... which is an illegal extload instruction. 3830b57cec5SDimitry Andric if (LoadValueTy.getSizeInBits() < 8) 3840b57cec5SDimitry Andric return false; 3850b57cec5SDimitry Andric 3860b57cec5SDimitry Andric // For non power-of-2 types, they will very likely be legalized into multiple 3870b57cec5SDimitry Andric // loads. Don't bother trying to match them into extending loads. 3880b57cec5SDimitry Andric if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 3890b57cec5SDimitry Andric return false; 3900b57cec5SDimitry Andric 3910b57cec5SDimitry Andric // Find the preferred type aside from the any-extends (unless it's the only 3920b57cec5SDimitry Andric // one) and non-extending ops. We'll emit an extending load to that type and 3930b57cec5SDimitry Andric // and emit a variant of (extend (trunc X)) for the others according to the 3940b57cec5SDimitry Andric // relative type sizes. At the same time, pick an extend to use based on the 3950b57cec5SDimitry Andric // extend involved in the chosen type. 3960b57cec5SDimitry Andric unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 3970b57cec5SDimitry Andric ? TargetOpcode::G_ANYEXT 3980b57cec5SDimitry Andric : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 3990b57cec5SDimitry Andric ? TargetOpcode::G_SEXT 4000b57cec5SDimitry Andric : TargetOpcode::G_ZEXT; 4010b57cec5SDimitry Andric Preferred = {LLT(), PreferredOpcode, nullptr}; 4020b57cec5SDimitry Andric for (auto &UseMI : MRI.use_instructions(LoadValue.getReg())) { 4030b57cec5SDimitry Andric if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 4040b57cec5SDimitry Andric UseMI.getOpcode() == TargetOpcode::G_ZEXT || 4050b57cec5SDimitry Andric UseMI.getOpcode() == TargetOpcode::G_ANYEXT) { 4060b57cec5SDimitry Andric Preferred = ChoosePreferredUse(Preferred, 4070b57cec5SDimitry Andric MRI.getType(UseMI.getOperand(0).getReg()), 4080b57cec5SDimitry Andric UseMI.getOpcode(), &UseMI); 4090b57cec5SDimitry Andric } 4100b57cec5SDimitry Andric } 4110b57cec5SDimitry Andric 4120b57cec5SDimitry Andric // There were no extends 4130b57cec5SDimitry Andric if (!Preferred.MI) 4140b57cec5SDimitry Andric return false; 4150b57cec5SDimitry Andric // It should be impossible to chose an extend without selecting a different 4160b57cec5SDimitry Andric // type since by definition the result of an extend is larger. 4170b57cec5SDimitry Andric assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 4180b57cec5SDimitry Andric 4190b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 4200b57cec5SDimitry Andric return true; 4210b57cec5SDimitry Andric } 4220b57cec5SDimitry Andric 4230b57cec5SDimitry Andric void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 4240b57cec5SDimitry Andric PreferredTuple &Preferred) { 4250b57cec5SDimitry Andric // Rewrite the load to the chosen extending load. 4260b57cec5SDimitry Andric Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 4270b57cec5SDimitry Andric 4280b57cec5SDimitry Andric // Inserter to insert a truncate back to the original type at a given point 4290b57cec5SDimitry Andric // with some basic CSE to limit truncate duplication to one per BB. 4300b57cec5SDimitry Andric DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 4310b57cec5SDimitry Andric auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 4320b57cec5SDimitry Andric MachineBasicBlock::iterator InsertBefore, 4330b57cec5SDimitry Andric MachineOperand &UseMO) { 4340b57cec5SDimitry Andric MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 4350b57cec5SDimitry Andric if (PreviouslyEmitted) { 4360b57cec5SDimitry Andric Observer.changingInstr(*UseMO.getParent()); 4370b57cec5SDimitry Andric UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 4380b57cec5SDimitry Andric Observer.changedInstr(*UseMO.getParent()); 4390b57cec5SDimitry Andric return; 4400b57cec5SDimitry Andric } 4410b57cec5SDimitry Andric 4420b57cec5SDimitry Andric Builder.setInsertPt(*InsertIntoBB, InsertBefore); 4430b57cec5SDimitry Andric Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 4440b57cec5SDimitry Andric MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 4450b57cec5SDimitry Andric EmittedInsns[InsertIntoBB] = NewMI; 4460b57cec5SDimitry Andric replaceRegOpWith(MRI, UseMO, NewDstReg); 4470b57cec5SDimitry Andric }; 4480b57cec5SDimitry Andric 4490b57cec5SDimitry Andric Observer.changingInstr(MI); 4500b57cec5SDimitry Andric MI.setDesc( 4510b57cec5SDimitry Andric Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 4520b57cec5SDimitry Andric ? TargetOpcode::G_SEXTLOAD 4530b57cec5SDimitry Andric : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 4540b57cec5SDimitry Andric ? TargetOpcode::G_ZEXTLOAD 4550b57cec5SDimitry Andric : TargetOpcode::G_LOAD)); 4560b57cec5SDimitry Andric 4570b57cec5SDimitry Andric // Rewrite all the uses to fix up the types. 4580b57cec5SDimitry Andric auto &LoadValue = MI.getOperand(0); 4590b57cec5SDimitry Andric SmallVector<MachineOperand *, 4> Uses; 4600b57cec5SDimitry Andric for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 4610b57cec5SDimitry Andric Uses.push_back(&UseMO); 4620b57cec5SDimitry Andric 4630b57cec5SDimitry Andric for (auto *UseMO : Uses) { 4640b57cec5SDimitry Andric MachineInstr *UseMI = UseMO->getParent(); 4650b57cec5SDimitry Andric 4660b57cec5SDimitry Andric // If the extend is compatible with the preferred extend then we should fix 4670b57cec5SDimitry Andric // up the type and extend so that it uses the preferred use. 4680b57cec5SDimitry Andric if (UseMI->getOpcode() == Preferred.ExtendOpcode || 4690b57cec5SDimitry Andric UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 470*8bcb0991SDimitry Andric Register UseDstReg = UseMI->getOperand(0).getReg(); 4710b57cec5SDimitry Andric MachineOperand &UseSrcMO = UseMI->getOperand(1); 4720b57cec5SDimitry Andric const LLT &UseDstTy = MRI.getType(UseDstReg); 4730b57cec5SDimitry Andric if (UseDstReg != ChosenDstReg) { 4740b57cec5SDimitry Andric if (Preferred.Ty == UseDstTy) { 4750b57cec5SDimitry Andric // If the use has the same type as the preferred use, then merge 4760b57cec5SDimitry Andric // the vregs and erase the extend. For example: 4770b57cec5SDimitry Andric // %1:_(s8) = G_LOAD ... 4780b57cec5SDimitry Andric // %2:_(s32) = G_SEXT %1(s8) 4790b57cec5SDimitry Andric // %3:_(s32) = G_ANYEXT %1(s8) 4800b57cec5SDimitry Andric // ... = ... %3(s32) 4810b57cec5SDimitry Andric // rewrites to: 4820b57cec5SDimitry Andric // %2:_(s32) = G_SEXTLOAD ... 4830b57cec5SDimitry Andric // ... = ... %2(s32) 4840b57cec5SDimitry Andric replaceRegWith(MRI, UseDstReg, ChosenDstReg); 4850b57cec5SDimitry Andric Observer.erasingInstr(*UseMO->getParent()); 4860b57cec5SDimitry Andric UseMO->getParent()->eraseFromParent(); 4870b57cec5SDimitry Andric } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 4880b57cec5SDimitry Andric // If the preferred size is smaller, then keep the extend but extend 4890b57cec5SDimitry Andric // from the result of the extending load. For example: 4900b57cec5SDimitry Andric // %1:_(s8) = G_LOAD ... 4910b57cec5SDimitry Andric // %2:_(s32) = G_SEXT %1(s8) 4920b57cec5SDimitry Andric // %3:_(s64) = G_ANYEXT %1(s8) 4930b57cec5SDimitry Andric // ... = ... %3(s64) 4940b57cec5SDimitry Andric /// rewrites to: 4950b57cec5SDimitry Andric // %2:_(s32) = G_SEXTLOAD ... 4960b57cec5SDimitry Andric // %3:_(s64) = G_ANYEXT %2:_(s32) 4970b57cec5SDimitry Andric // ... = ... %3(s64) 4980b57cec5SDimitry Andric replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 4990b57cec5SDimitry Andric } else { 5000b57cec5SDimitry Andric // If the preferred size is large, then insert a truncate. For 5010b57cec5SDimitry Andric // example: 5020b57cec5SDimitry Andric // %1:_(s8) = G_LOAD ... 5030b57cec5SDimitry Andric // %2:_(s64) = G_SEXT %1(s8) 5040b57cec5SDimitry Andric // %3:_(s32) = G_ZEXT %1(s8) 5050b57cec5SDimitry Andric // ... = ... %3(s32) 5060b57cec5SDimitry Andric /// rewrites to: 5070b57cec5SDimitry Andric // %2:_(s64) = G_SEXTLOAD ... 5080b57cec5SDimitry Andric // %4:_(s8) = G_TRUNC %2:_(s32) 5090b57cec5SDimitry Andric // %3:_(s64) = G_ZEXT %2:_(s8) 5100b57cec5SDimitry Andric // ... = ... %3(s64) 5110b57cec5SDimitry Andric InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 5120b57cec5SDimitry Andric InsertTruncAt); 5130b57cec5SDimitry Andric } 5140b57cec5SDimitry Andric continue; 5150b57cec5SDimitry Andric } 5160b57cec5SDimitry Andric // The use is (one of) the uses of the preferred use we chose earlier. 5170b57cec5SDimitry Andric // We're going to update the load to def this value later so just erase 5180b57cec5SDimitry Andric // the old extend. 5190b57cec5SDimitry Andric Observer.erasingInstr(*UseMO->getParent()); 5200b57cec5SDimitry Andric UseMO->getParent()->eraseFromParent(); 5210b57cec5SDimitry Andric continue; 5220b57cec5SDimitry Andric } 5230b57cec5SDimitry Andric 5240b57cec5SDimitry Andric // The use isn't an extend. Truncate back to the type we originally loaded. 5250b57cec5SDimitry Andric // This is free on many targets. 5260b57cec5SDimitry Andric InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 5270b57cec5SDimitry Andric } 5280b57cec5SDimitry Andric 5290b57cec5SDimitry Andric MI.getOperand(0).setReg(ChosenDstReg); 5300b57cec5SDimitry Andric Observer.changedInstr(MI); 5310b57cec5SDimitry Andric } 5320b57cec5SDimitry Andric 533*8bcb0991SDimitry Andric bool CombinerHelper::isPredecessor(MachineInstr &DefMI, MachineInstr &UseMI) { 534*8bcb0991SDimitry Andric assert(DefMI.getParent() == UseMI.getParent()); 535*8bcb0991SDimitry Andric if (&DefMI == &UseMI) 536*8bcb0991SDimitry Andric return false; 537*8bcb0991SDimitry Andric 538*8bcb0991SDimitry Andric // Loop through the basic block until we find one of the instructions. 539*8bcb0991SDimitry Andric MachineBasicBlock::const_iterator I = DefMI.getParent()->begin(); 540*8bcb0991SDimitry Andric for (; &*I != &DefMI && &*I != &UseMI; ++I) 541*8bcb0991SDimitry Andric return &*I == &DefMI; 542*8bcb0991SDimitry Andric 543*8bcb0991SDimitry Andric llvm_unreachable("Block must contain instructions"); 544*8bcb0991SDimitry Andric } 545*8bcb0991SDimitry Andric 546*8bcb0991SDimitry Andric bool CombinerHelper::dominates(MachineInstr &DefMI, MachineInstr &UseMI) { 547*8bcb0991SDimitry Andric if (MDT) 548*8bcb0991SDimitry Andric return MDT->dominates(&DefMI, &UseMI); 549*8bcb0991SDimitry Andric else if (DefMI.getParent() != UseMI.getParent()) 550*8bcb0991SDimitry Andric return false; 551*8bcb0991SDimitry Andric 552*8bcb0991SDimitry Andric return isPredecessor(DefMI, UseMI); 553*8bcb0991SDimitry Andric } 554*8bcb0991SDimitry Andric 555*8bcb0991SDimitry Andric bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 556*8bcb0991SDimitry Andric Register &Base, Register &Offset) { 557*8bcb0991SDimitry Andric auto &MF = *MI.getParent()->getParent(); 558*8bcb0991SDimitry Andric const auto &TLI = *MF.getSubtarget().getTargetLowering(); 559*8bcb0991SDimitry Andric 560*8bcb0991SDimitry Andric #ifndef NDEBUG 561*8bcb0991SDimitry Andric unsigned Opcode = MI.getOpcode(); 562*8bcb0991SDimitry Andric assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 563*8bcb0991SDimitry Andric Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 564*8bcb0991SDimitry Andric #endif 565*8bcb0991SDimitry Andric 566*8bcb0991SDimitry Andric Base = MI.getOperand(1).getReg(); 567*8bcb0991SDimitry Andric MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 568*8bcb0991SDimitry Andric if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 569*8bcb0991SDimitry Andric return false; 570*8bcb0991SDimitry Andric 571*8bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 572*8bcb0991SDimitry Andric 573*8bcb0991SDimitry Andric for (auto &Use : MRI.use_instructions(Base)) { 574*8bcb0991SDimitry Andric if (Use.getOpcode() != TargetOpcode::G_GEP) 575*8bcb0991SDimitry Andric continue; 576*8bcb0991SDimitry Andric 577*8bcb0991SDimitry Andric Offset = Use.getOperand(2).getReg(); 578*8bcb0991SDimitry Andric if (!ForceLegalIndexing && 579*8bcb0991SDimitry Andric !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 580*8bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 581*8bcb0991SDimitry Andric << Use); 582*8bcb0991SDimitry Andric continue; 583*8bcb0991SDimitry Andric } 584*8bcb0991SDimitry Andric 585*8bcb0991SDimitry Andric // Make sure the offset calculation is before the potentially indexed op. 586*8bcb0991SDimitry Andric // FIXME: we really care about dependency here. The offset calculation might 587*8bcb0991SDimitry Andric // be movable. 588*8bcb0991SDimitry Andric MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 589*8bcb0991SDimitry Andric if (!OffsetDef || !dominates(*OffsetDef, MI)) { 590*8bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 591*8bcb0991SDimitry Andric << Use); 592*8bcb0991SDimitry Andric continue; 593*8bcb0991SDimitry Andric } 594*8bcb0991SDimitry Andric 595*8bcb0991SDimitry Andric // FIXME: check whether all uses of Base are load/store with foldable 596*8bcb0991SDimitry Andric // addressing modes. If so, using the normal addr-modes is better than 597*8bcb0991SDimitry Andric // forming an indexed one. 598*8bcb0991SDimitry Andric 599*8bcb0991SDimitry Andric bool MemOpDominatesAddrUses = true; 600*8bcb0991SDimitry Andric for (auto &GEPUse : MRI.use_instructions(Use.getOperand(0).getReg())) { 601*8bcb0991SDimitry Andric if (!dominates(MI, GEPUse)) { 602*8bcb0991SDimitry Andric MemOpDominatesAddrUses = false; 603*8bcb0991SDimitry Andric break; 604*8bcb0991SDimitry Andric } 605*8bcb0991SDimitry Andric } 606*8bcb0991SDimitry Andric 607*8bcb0991SDimitry Andric if (!MemOpDominatesAddrUses) { 608*8bcb0991SDimitry Andric LLVM_DEBUG( 609*8bcb0991SDimitry Andric dbgs() << " Ignoring candidate as memop does not dominate uses: " 610*8bcb0991SDimitry Andric << Use); 611*8bcb0991SDimitry Andric continue; 612*8bcb0991SDimitry Andric } 613*8bcb0991SDimitry Andric 614*8bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << " Found match: " << Use); 615*8bcb0991SDimitry Andric Addr = Use.getOperand(0).getReg(); 616*8bcb0991SDimitry Andric return true; 617*8bcb0991SDimitry Andric } 618*8bcb0991SDimitry Andric 619*8bcb0991SDimitry Andric return false; 620*8bcb0991SDimitry Andric } 621*8bcb0991SDimitry Andric 622*8bcb0991SDimitry Andric bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 623*8bcb0991SDimitry Andric Register &Base, Register &Offset) { 624*8bcb0991SDimitry Andric auto &MF = *MI.getParent()->getParent(); 625*8bcb0991SDimitry Andric const auto &TLI = *MF.getSubtarget().getTargetLowering(); 626*8bcb0991SDimitry Andric 627*8bcb0991SDimitry Andric #ifndef NDEBUG 628*8bcb0991SDimitry Andric unsigned Opcode = MI.getOpcode(); 629*8bcb0991SDimitry Andric assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 630*8bcb0991SDimitry Andric Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 631*8bcb0991SDimitry Andric #endif 632*8bcb0991SDimitry Andric 633*8bcb0991SDimitry Andric Addr = MI.getOperand(1).getReg(); 634*8bcb0991SDimitry Andric MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_GEP, Addr, MRI); 635*8bcb0991SDimitry Andric if (!AddrDef || MRI.hasOneUse(Addr)) 636*8bcb0991SDimitry Andric return false; 637*8bcb0991SDimitry Andric 638*8bcb0991SDimitry Andric Base = AddrDef->getOperand(1).getReg(); 639*8bcb0991SDimitry Andric Offset = AddrDef->getOperand(2).getReg(); 640*8bcb0991SDimitry Andric 641*8bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 642*8bcb0991SDimitry Andric 643*8bcb0991SDimitry Andric if (!ForceLegalIndexing && 644*8bcb0991SDimitry Andric !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 645*8bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 646*8bcb0991SDimitry Andric return false; 647*8bcb0991SDimitry Andric } 648*8bcb0991SDimitry Andric 649*8bcb0991SDimitry Andric MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 650*8bcb0991SDimitry Andric if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 651*8bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 652*8bcb0991SDimitry Andric return false; 653*8bcb0991SDimitry Andric } 654*8bcb0991SDimitry Andric 655*8bcb0991SDimitry Andric if (MI.getOpcode() == TargetOpcode::G_STORE) { 656*8bcb0991SDimitry Andric // Would require a copy. 657*8bcb0991SDimitry Andric if (Base == MI.getOperand(0).getReg()) { 658*8bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 659*8bcb0991SDimitry Andric return false; 660*8bcb0991SDimitry Andric } 661*8bcb0991SDimitry Andric 662*8bcb0991SDimitry Andric // We're expecting one use of Addr in MI, but it could also be the 663*8bcb0991SDimitry Andric // value stored, which isn't actually dominated by the instruction. 664*8bcb0991SDimitry Andric if (MI.getOperand(0).getReg() == Addr) { 665*8bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 666*8bcb0991SDimitry Andric return false; 667*8bcb0991SDimitry Andric } 668*8bcb0991SDimitry Andric } 669*8bcb0991SDimitry Andric 670*8bcb0991SDimitry Andric // FIXME: check whether all uses of the base pointer are constant GEPs. That 671*8bcb0991SDimitry Andric // might allow us to end base's liveness here by adjusting the constant. 672*8bcb0991SDimitry Andric 673*8bcb0991SDimitry Andric for (auto &UseMI : MRI.use_instructions(Addr)) { 674*8bcb0991SDimitry Andric if (!dominates(MI, UseMI)) { 675*8bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 676*8bcb0991SDimitry Andric return false; 677*8bcb0991SDimitry Andric } 678*8bcb0991SDimitry Andric } 679*8bcb0991SDimitry Andric 680*8bcb0991SDimitry Andric return true; 681*8bcb0991SDimitry Andric } 682*8bcb0991SDimitry Andric 683*8bcb0991SDimitry Andric bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 684*8bcb0991SDimitry Andric unsigned Opcode = MI.getOpcode(); 685*8bcb0991SDimitry Andric if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 686*8bcb0991SDimitry Andric Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 687*8bcb0991SDimitry Andric return false; 688*8bcb0991SDimitry Andric 689*8bcb0991SDimitry Andric bool IsStore = Opcode == TargetOpcode::G_STORE; 690*8bcb0991SDimitry Andric Register Addr, Base, Offset; 691*8bcb0991SDimitry Andric bool IsPre = findPreIndexCandidate(MI, Addr, Base, Offset); 692*8bcb0991SDimitry Andric if (!IsPre && !findPostIndexCandidate(MI, Addr, Base, Offset)) 693*8bcb0991SDimitry Andric return false; 694*8bcb0991SDimitry Andric 695*8bcb0991SDimitry Andric 696*8bcb0991SDimitry Andric unsigned NewOpcode; 697*8bcb0991SDimitry Andric switch (Opcode) { 698*8bcb0991SDimitry Andric case TargetOpcode::G_LOAD: 699*8bcb0991SDimitry Andric NewOpcode = TargetOpcode::G_INDEXED_LOAD; 700*8bcb0991SDimitry Andric break; 701*8bcb0991SDimitry Andric case TargetOpcode::G_SEXTLOAD: 702*8bcb0991SDimitry Andric NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 703*8bcb0991SDimitry Andric break; 704*8bcb0991SDimitry Andric case TargetOpcode::G_ZEXTLOAD: 705*8bcb0991SDimitry Andric NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 706*8bcb0991SDimitry Andric break; 707*8bcb0991SDimitry Andric case TargetOpcode::G_STORE: 708*8bcb0991SDimitry Andric NewOpcode = TargetOpcode::G_INDEXED_STORE; 709*8bcb0991SDimitry Andric break; 710*8bcb0991SDimitry Andric default: 711*8bcb0991SDimitry Andric llvm_unreachable("Unknown load/store opcode"); 712*8bcb0991SDimitry Andric } 713*8bcb0991SDimitry Andric 714*8bcb0991SDimitry Andric MachineInstr &AddrDef = *MRI.getUniqueVRegDef(Addr); 715*8bcb0991SDimitry Andric MachineIRBuilder MIRBuilder(MI); 716*8bcb0991SDimitry Andric auto MIB = MIRBuilder.buildInstr(NewOpcode); 717*8bcb0991SDimitry Andric if (IsStore) { 718*8bcb0991SDimitry Andric MIB.addDef(Addr); 719*8bcb0991SDimitry Andric MIB.addUse(MI.getOperand(0).getReg()); 720*8bcb0991SDimitry Andric } else { 721*8bcb0991SDimitry Andric MIB.addDef(MI.getOperand(0).getReg()); 722*8bcb0991SDimitry Andric MIB.addDef(Addr); 723*8bcb0991SDimitry Andric } 724*8bcb0991SDimitry Andric 725*8bcb0991SDimitry Andric MIB.addUse(Base); 726*8bcb0991SDimitry Andric MIB.addUse(Offset); 727*8bcb0991SDimitry Andric MIB.addImm(IsPre); 728*8bcb0991SDimitry Andric MI.eraseFromParent(); 729*8bcb0991SDimitry Andric AddrDef.eraseFromParent(); 730*8bcb0991SDimitry Andric 731*8bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 732*8bcb0991SDimitry Andric return true; 733*8bcb0991SDimitry Andric } 734*8bcb0991SDimitry Andric 735*8bcb0991SDimitry Andric bool CombinerHelper::matchElideBrByInvertingCond(MachineInstr &MI) { 736*8bcb0991SDimitry Andric if (MI.getOpcode() != TargetOpcode::G_BR) 737*8bcb0991SDimitry Andric return false; 738*8bcb0991SDimitry Andric 7390b57cec5SDimitry Andric // Try to match the following: 7400b57cec5SDimitry Andric // bb1: 7410b57cec5SDimitry Andric // %c(s32) = G_ICMP pred, %a, %b 7420b57cec5SDimitry Andric // %c1(s1) = G_TRUNC %c(s32) 7430b57cec5SDimitry Andric // G_BRCOND %c1, %bb2 7440b57cec5SDimitry Andric // G_BR %bb3 7450b57cec5SDimitry Andric // bb2: 7460b57cec5SDimitry Andric // ... 7470b57cec5SDimitry Andric // bb3: 7480b57cec5SDimitry Andric 7490b57cec5SDimitry Andric // The above pattern does not have a fall through to the successor bb2, always 7500b57cec5SDimitry Andric // resulting in a branch no matter which path is taken. Here we try to find 7510b57cec5SDimitry Andric // and replace that pattern with conditional branch to bb3 and otherwise 7520b57cec5SDimitry Andric // fallthrough to bb2. 7530b57cec5SDimitry Andric 7540b57cec5SDimitry Andric MachineBasicBlock *MBB = MI.getParent(); 7550b57cec5SDimitry Andric MachineBasicBlock::iterator BrIt(MI); 7560b57cec5SDimitry Andric if (BrIt == MBB->begin()) 7570b57cec5SDimitry Andric return false; 7580b57cec5SDimitry Andric assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 7590b57cec5SDimitry Andric 7600b57cec5SDimitry Andric MachineInstr *BrCond = &*std::prev(BrIt); 7610b57cec5SDimitry Andric if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 7620b57cec5SDimitry Andric return false; 7630b57cec5SDimitry Andric 7640b57cec5SDimitry Andric // Check that the next block is the conditional branch target. 7650b57cec5SDimitry Andric if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB())) 7660b57cec5SDimitry Andric return false; 7670b57cec5SDimitry Andric 7680b57cec5SDimitry Andric MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 7690b57cec5SDimitry Andric if (!CmpMI || CmpMI->getOpcode() != TargetOpcode::G_ICMP || 7700b57cec5SDimitry Andric !MRI.hasOneUse(CmpMI->getOperand(0).getReg())) 7710b57cec5SDimitry Andric return false; 7720b57cec5SDimitry Andric return true; 7730b57cec5SDimitry Andric } 7740b57cec5SDimitry Andric 775*8bcb0991SDimitry Andric bool CombinerHelper::tryElideBrByInvertingCond(MachineInstr &MI) { 776*8bcb0991SDimitry Andric if (!matchElideBrByInvertingCond(MI)) 7770b57cec5SDimitry Andric return false; 778*8bcb0991SDimitry Andric applyElideBrByInvertingCond(MI); 779*8bcb0991SDimitry Andric return true; 780*8bcb0991SDimitry Andric } 781*8bcb0991SDimitry Andric 782*8bcb0991SDimitry Andric void CombinerHelper::applyElideBrByInvertingCond(MachineInstr &MI) { 7830b57cec5SDimitry Andric MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 7840b57cec5SDimitry Andric MachineBasicBlock::iterator BrIt(MI); 7850b57cec5SDimitry Andric MachineInstr *BrCond = &*std::prev(BrIt); 7860b57cec5SDimitry Andric MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 7870b57cec5SDimitry Andric 7880b57cec5SDimitry Andric CmpInst::Predicate InversePred = CmpInst::getInversePredicate( 7890b57cec5SDimitry Andric (CmpInst::Predicate)CmpMI->getOperand(1).getPredicate()); 7900b57cec5SDimitry Andric 7910b57cec5SDimitry Andric // Invert the G_ICMP condition. 7920b57cec5SDimitry Andric Observer.changingInstr(*CmpMI); 7930b57cec5SDimitry Andric CmpMI->getOperand(1).setPredicate(InversePred); 7940b57cec5SDimitry Andric Observer.changedInstr(*CmpMI); 7950b57cec5SDimitry Andric 7960b57cec5SDimitry Andric // Change the conditional branch target. 7970b57cec5SDimitry Andric Observer.changingInstr(*BrCond); 7980b57cec5SDimitry Andric BrCond->getOperand(1).setMBB(BrTarget); 7990b57cec5SDimitry Andric Observer.changedInstr(*BrCond); 8000b57cec5SDimitry Andric MI.eraseFromParent(); 801*8bcb0991SDimitry Andric } 802*8bcb0991SDimitry Andric 803*8bcb0991SDimitry Andric static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 804*8bcb0991SDimitry Andric // On Darwin, -Os means optimize for size without hurting performance, so 805*8bcb0991SDimitry Andric // only really optimize for size when -Oz (MinSize) is used. 806*8bcb0991SDimitry Andric if (MF.getTarget().getTargetTriple().isOSDarwin()) 807*8bcb0991SDimitry Andric return MF.getFunction().hasMinSize(); 808*8bcb0991SDimitry Andric return MF.getFunction().hasOptSize(); 809*8bcb0991SDimitry Andric } 810*8bcb0991SDimitry Andric 811*8bcb0991SDimitry Andric // Returns a list of types to use for memory op lowering in MemOps. A partial 812*8bcb0991SDimitry Andric // port of findOptimalMemOpLowering in TargetLowering. 813*8bcb0991SDimitry Andric static bool findGISelOptimalMemOpLowering( 814*8bcb0991SDimitry Andric std::vector<LLT> &MemOps, unsigned Limit, uint64_t Size, unsigned DstAlign, 815*8bcb0991SDimitry Andric unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, 816*8bcb0991SDimitry Andric bool AllowOverlap, unsigned DstAS, unsigned SrcAS, 817*8bcb0991SDimitry Andric const AttributeList &FuncAttributes, const TargetLowering &TLI) { 818*8bcb0991SDimitry Andric // If 'SrcAlign' is zero, that means the memory operation does not need to 819*8bcb0991SDimitry Andric // load the value, i.e. memset or memcpy from constant string. Otherwise, 820*8bcb0991SDimitry Andric // it's the inferred alignment of the source. 'DstAlign', on the other hand, 821*8bcb0991SDimitry Andric // is the specified alignment of the memory operation. If it is zero, that 822*8bcb0991SDimitry Andric // means it's possible to change the alignment of the destination. 823*8bcb0991SDimitry Andric // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 824*8bcb0991SDimitry Andric // not need to be loaded. 825*8bcb0991SDimitry Andric if (SrcAlign != 0 && SrcAlign < DstAlign) 826*8bcb0991SDimitry Andric return false; 827*8bcb0991SDimitry Andric 828*8bcb0991SDimitry Andric LLT Ty = TLI.getOptimalMemOpLLT(Size, DstAlign, SrcAlign, IsMemset, 829*8bcb0991SDimitry Andric ZeroMemset, MemcpyStrSrc, FuncAttributes); 830*8bcb0991SDimitry Andric 831*8bcb0991SDimitry Andric if (Ty == LLT()) { 832*8bcb0991SDimitry Andric // Use the largest scalar type whose alignment constraints are satisfied. 833*8bcb0991SDimitry Andric // We only need to check DstAlign here as SrcAlign is always greater or 834*8bcb0991SDimitry Andric // equal to DstAlign (or zero). 835*8bcb0991SDimitry Andric Ty = LLT::scalar(64); 836*8bcb0991SDimitry Andric while (DstAlign && DstAlign < Ty.getSizeInBytes() && 837*8bcb0991SDimitry Andric !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, DstAlign)) 838*8bcb0991SDimitry Andric Ty = LLT::scalar(Ty.getSizeInBytes()); 839*8bcb0991SDimitry Andric assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 840*8bcb0991SDimitry Andric // FIXME: check for the largest legal type we can load/store to. 841*8bcb0991SDimitry Andric } 842*8bcb0991SDimitry Andric 843*8bcb0991SDimitry Andric unsigned NumMemOps = 0; 844*8bcb0991SDimitry Andric while (Size != 0) { 845*8bcb0991SDimitry Andric unsigned TySize = Ty.getSizeInBytes(); 846*8bcb0991SDimitry Andric while (TySize > Size) { 847*8bcb0991SDimitry Andric // For now, only use non-vector load / store's for the left-over pieces. 848*8bcb0991SDimitry Andric LLT NewTy = Ty; 849*8bcb0991SDimitry Andric // FIXME: check for mem op safety and legality of the types. Not all of 850*8bcb0991SDimitry Andric // SDAGisms map cleanly to GISel concepts. 851*8bcb0991SDimitry Andric if (NewTy.isVector()) 852*8bcb0991SDimitry Andric NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 853*8bcb0991SDimitry Andric NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 854*8bcb0991SDimitry Andric unsigned NewTySize = NewTy.getSizeInBytes(); 855*8bcb0991SDimitry Andric assert(NewTySize > 0 && "Could not find appropriate type"); 856*8bcb0991SDimitry Andric 857*8bcb0991SDimitry Andric // If the new LLT cannot cover all of the remaining bits, then consider 858*8bcb0991SDimitry Andric // issuing a (or a pair of) unaligned and overlapping load / store. 859*8bcb0991SDimitry Andric bool Fast; 860*8bcb0991SDimitry Andric // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 861*8bcb0991SDimitry Andric MVT VT = getMVTForLLT(Ty); 862*8bcb0991SDimitry Andric if (NumMemOps && AllowOverlap && NewTySize < Size && 863*8bcb0991SDimitry Andric TLI.allowsMisalignedMemoryAccesses( 864*8bcb0991SDimitry Andric VT, DstAS, DstAlign, MachineMemOperand::MONone, &Fast) && 865*8bcb0991SDimitry Andric Fast) 866*8bcb0991SDimitry Andric TySize = Size; 867*8bcb0991SDimitry Andric else { 868*8bcb0991SDimitry Andric Ty = NewTy; 869*8bcb0991SDimitry Andric TySize = NewTySize; 870*8bcb0991SDimitry Andric } 871*8bcb0991SDimitry Andric } 872*8bcb0991SDimitry Andric 873*8bcb0991SDimitry Andric if (++NumMemOps > Limit) 874*8bcb0991SDimitry Andric return false; 875*8bcb0991SDimitry Andric 876*8bcb0991SDimitry Andric MemOps.push_back(Ty); 877*8bcb0991SDimitry Andric Size -= TySize; 878*8bcb0991SDimitry Andric } 879*8bcb0991SDimitry Andric 8800b57cec5SDimitry Andric return true; 8810b57cec5SDimitry Andric } 8820b57cec5SDimitry Andric 883*8bcb0991SDimitry Andric static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 884*8bcb0991SDimitry Andric if (Ty.isVector()) 885*8bcb0991SDimitry Andric return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 886*8bcb0991SDimitry Andric Ty.getNumElements()); 887*8bcb0991SDimitry Andric return IntegerType::get(C, Ty.getSizeInBits()); 888*8bcb0991SDimitry Andric } 889*8bcb0991SDimitry Andric 890*8bcb0991SDimitry Andric // Get a vectorized representation of the memset value operand, GISel edition. 891*8bcb0991SDimitry Andric static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 892*8bcb0991SDimitry Andric MachineRegisterInfo &MRI = *MIB.getMRI(); 893*8bcb0991SDimitry Andric unsigned NumBits = Ty.getScalarSizeInBits(); 894*8bcb0991SDimitry Andric auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 895*8bcb0991SDimitry Andric if (!Ty.isVector() && ValVRegAndVal) { 896*8bcb0991SDimitry Andric unsigned KnownVal = ValVRegAndVal->Value; 897*8bcb0991SDimitry Andric APInt Scalar = APInt(8, KnownVal); 898*8bcb0991SDimitry Andric APInt SplatVal = APInt::getSplat(NumBits, Scalar); 899*8bcb0991SDimitry Andric return MIB.buildConstant(Ty, SplatVal).getReg(0); 900*8bcb0991SDimitry Andric } 901*8bcb0991SDimitry Andric // FIXME: for vector types create a G_BUILD_VECTOR. 902*8bcb0991SDimitry Andric if (Ty.isVector()) 903*8bcb0991SDimitry Andric return Register(); 904*8bcb0991SDimitry Andric 905*8bcb0991SDimitry Andric // Extend the byte value to the larger type, and then multiply by a magic 906*8bcb0991SDimitry Andric // value 0x010101... in order to replicate it across every byte. 907*8bcb0991SDimitry Andric LLT ExtType = Ty.getScalarType(); 908*8bcb0991SDimitry Andric auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 909*8bcb0991SDimitry Andric if (NumBits > 8) { 910*8bcb0991SDimitry Andric APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 911*8bcb0991SDimitry Andric auto MagicMI = MIB.buildConstant(ExtType, Magic); 912*8bcb0991SDimitry Andric Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 913*8bcb0991SDimitry Andric } 914*8bcb0991SDimitry Andric 915*8bcb0991SDimitry Andric assert(ExtType == Ty && "Vector memset value type not supported yet"); 916*8bcb0991SDimitry Andric return Val; 917*8bcb0991SDimitry Andric } 918*8bcb0991SDimitry Andric 919*8bcb0991SDimitry Andric bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, Register Val, 920*8bcb0991SDimitry Andric unsigned KnownLen, unsigned Align, 921*8bcb0991SDimitry Andric bool IsVolatile) { 922*8bcb0991SDimitry Andric auto &MF = *MI.getParent()->getParent(); 923*8bcb0991SDimitry Andric const auto &TLI = *MF.getSubtarget().getTargetLowering(); 924*8bcb0991SDimitry Andric auto &DL = MF.getDataLayout(); 925*8bcb0991SDimitry Andric LLVMContext &C = MF.getFunction().getContext(); 926*8bcb0991SDimitry Andric 927*8bcb0991SDimitry Andric assert(KnownLen != 0 && "Have a zero length memset length!"); 928*8bcb0991SDimitry Andric 929*8bcb0991SDimitry Andric bool DstAlignCanChange = false; 930*8bcb0991SDimitry Andric MachineFrameInfo &MFI = MF.getFrameInfo(); 931*8bcb0991SDimitry Andric bool OptSize = shouldLowerMemFuncForSize(MF); 932*8bcb0991SDimitry Andric 933*8bcb0991SDimitry Andric MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 934*8bcb0991SDimitry Andric if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 935*8bcb0991SDimitry Andric DstAlignCanChange = true; 936*8bcb0991SDimitry Andric 937*8bcb0991SDimitry Andric unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 938*8bcb0991SDimitry Andric std::vector<LLT> MemOps; 939*8bcb0991SDimitry Andric 940*8bcb0991SDimitry Andric const auto &DstMMO = **MI.memoperands_begin(); 941*8bcb0991SDimitry Andric MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 942*8bcb0991SDimitry Andric 943*8bcb0991SDimitry Andric auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 944*8bcb0991SDimitry Andric bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 945*8bcb0991SDimitry Andric 946*8bcb0991SDimitry Andric if (!findGISelOptimalMemOpLowering( 947*8bcb0991SDimitry Andric MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Align), 0, 948*8bcb0991SDimitry Andric /*IsMemset=*/true, 949*8bcb0991SDimitry Andric /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false, 950*8bcb0991SDimitry Andric /*AllowOverlap=*/!IsVolatile, DstPtrInfo.getAddrSpace(), ~0u, 951*8bcb0991SDimitry Andric MF.getFunction().getAttributes(), TLI)) 952*8bcb0991SDimitry Andric return false; 953*8bcb0991SDimitry Andric 954*8bcb0991SDimitry Andric if (DstAlignCanChange) { 955*8bcb0991SDimitry Andric // Get an estimate of the type from the LLT. 956*8bcb0991SDimitry Andric Type *IRTy = getTypeForLLT(MemOps[0], C); 957*8bcb0991SDimitry Andric unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy); 958*8bcb0991SDimitry Andric if (NewAlign > Align) { 959*8bcb0991SDimitry Andric Align = NewAlign; 960*8bcb0991SDimitry Andric unsigned FI = FIDef->getOperand(1).getIndex(); 961*8bcb0991SDimitry Andric // Give the stack frame object a larger alignment if needed. 962*8bcb0991SDimitry Andric if (MFI.getObjectAlignment(FI) < Align) 963*8bcb0991SDimitry Andric MFI.setObjectAlignment(FI, Align); 964*8bcb0991SDimitry Andric } 965*8bcb0991SDimitry Andric } 966*8bcb0991SDimitry Andric 967*8bcb0991SDimitry Andric MachineIRBuilder MIB(MI); 968*8bcb0991SDimitry Andric // Find the largest store and generate the bit pattern for it. 969*8bcb0991SDimitry Andric LLT LargestTy = MemOps[0]; 970*8bcb0991SDimitry Andric for (unsigned i = 1; i < MemOps.size(); i++) 971*8bcb0991SDimitry Andric if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 972*8bcb0991SDimitry Andric LargestTy = MemOps[i]; 973*8bcb0991SDimitry Andric 974*8bcb0991SDimitry Andric // The memset stored value is always defined as an s8, so in order to make it 975*8bcb0991SDimitry Andric // work with larger store types we need to repeat the bit pattern across the 976*8bcb0991SDimitry Andric // wider type. 977*8bcb0991SDimitry Andric Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 978*8bcb0991SDimitry Andric 979*8bcb0991SDimitry Andric if (!MemSetValue) 980*8bcb0991SDimitry Andric return false; 981*8bcb0991SDimitry Andric 982*8bcb0991SDimitry Andric // Generate the stores. For each store type in the list, we generate the 983*8bcb0991SDimitry Andric // matching store of that type to the destination address. 984*8bcb0991SDimitry Andric LLT PtrTy = MRI.getType(Dst); 985*8bcb0991SDimitry Andric unsigned DstOff = 0; 986*8bcb0991SDimitry Andric unsigned Size = KnownLen; 987*8bcb0991SDimitry Andric for (unsigned I = 0; I < MemOps.size(); I++) { 988*8bcb0991SDimitry Andric LLT Ty = MemOps[I]; 989*8bcb0991SDimitry Andric unsigned TySize = Ty.getSizeInBytes(); 990*8bcb0991SDimitry Andric if (TySize > Size) { 991*8bcb0991SDimitry Andric // Issuing an unaligned load / store pair that overlaps with the previous 992*8bcb0991SDimitry Andric // pair. Adjust the offset accordingly. 993*8bcb0991SDimitry Andric assert(I == MemOps.size() - 1 && I != 0); 994*8bcb0991SDimitry Andric DstOff -= TySize - Size; 995*8bcb0991SDimitry Andric } 996*8bcb0991SDimitry Andric 997*8bcb0991SDimitry Andric // If this store is smaller than the largest store see whether we can get 998*8bcb0991SDimitry Andric // the smaller value for free with a truncate. 999*8bcb0991SDimitry Andric Register Value = MemSetValue; 1000*8bcb0991SDimitry Andric if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1001*8bcb0991SDimitry Andric MVT VT = getMVTForLLT(Ty); 1002*8bcb0991SDimitry Andric MVT LargestVT = getMVTForLLT(LargestTy); 1003*8bcb0991SDimitry Andric if (!LargestTy.isVector() && !Ty.isVector() && 1004*8bcb0991SDimitry Andric TLI.isTruncateFree(LargestVT, VT)) 1005*8bcb0991SDimitry Andric Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1006*8bcb0991SDimitry Andric else 1007*8bcb0991SDimitry Andric Value = getMemsetValue(Val, Ty, MIB); 1008*8bcb0991SDimitry Andric if (!Value) 1009*8bcb0991SDimitry Andric return false; 1010*8bcb0991SDimitry Andric } 1011*8bcb0991SDimitry Andric 1012*8bcb0991SDimitry Andric auto *StoreMMO = 1013*8bcb0991SDimitry Andric MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1014*8bcb0991SDimitry Andric 1015*8bcb0991SDimitry Andric Register Ptr = Dst; 1016*8bcb0991SDimitry Andric if (DstOff != 0) { 1017*8bcb0991SDimitry Andric auto Offset = 1018*8bcb0991SDimitry Andric MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1019*8bcb0991SDimitry Andric Ptr = MIB.buildGEP(PtrTy, Dst, Offset).getReg(0); 1020*8bcb0991SDimitry Andric } 1021*8bcb0991SDimitry Andric 1022*8bcb0991SDimitry Andric MIB.buildStore(Value, Ptr, *StoreMMO); 1023*8bcb0991SDimitry Andric DstOff += Ty.getSizeInBytes(); 1024*8bcb0991SDimitry Andric Size -= TySize; 1025*8bcb0991SDimitry Andric } 1026*8bcb0991SDimitry Andric 1027*8bcb0991SDimitry Andric MI.eraseFromParent(); 1028*8bcb0991SDimitry Andric return true; 1029*8bcb0991SDimitry Andric } 1030*8bcb0991SDimitry Andric 1031*8bcb0991SDimitry Andric 1032*8bcb0991SDimitry Andric bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1033*8bcb0991SDimitry Andric Register Src, unsigned KnownLen, 1034*8bcb0991SDimitry Andric unsigned DstAlign, unsigned SrcAlign, 1035*8bcb0991SDimitry Andric bool IsVolatile) { 1036*8bcb0991SDimitry Andric auto &MF = *MI.getParent()->getParent(); 1037*8bcb0991SDimitry Andric const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1038*8bcb0991SDimitry Andric auto &DL = MF.getDataLayout(); 1039*8bcb0991SDimitry Andric LLVMContext &C = MF.getFunction().getContext(); 1040*8bcb0991SDimitry Andric 1041*8bcb0991SDimitry Andric assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1042*8bcb0991SDimitry Andric 1043*8bcb0991SDimitry Andric bool DstAlignCanChange = false; 1044*8bcb0991SDimitry Andric MachineFrameInfo &MFI = MF.getFrameInfo(); 1045*8bcb0991SDimitry Andric bool OptSize = shouldLowerMemFuncForSize(MF); 1046*8bcb0991SDimitry Andric unsigned Alignment = MinAlign(DstAlign, SrcAlign); 1047*8bcb0991SDimitry Andric 1048*8bcb0991SDimitry Andric MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1049*8bcb0991SDimitry Andric if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1050*8bcb0991SDimitry Andric DstAlignCanChange = true; 1051*8bcb0991SDimitry Andric 1052*8bcb0991SDimitry Andric // FIXME: infer better src pointer alignment like SelectionDAG does here. 1053*8bcb0991SDimitry Andric // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1054*8bcb0991SDimitry Andric // if the memcpy is in a tail call position. 1055*8bcb0991SDimitry Andric 1056*8bcb0991SDimitry Andric unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1057*8bcb0991SDimitry Andric std::vector<LLT> MemOps; 1058*8bcb0991SDimitry Andric 1059*8bcb0991SDimitry Andric const auto &DstMMO = **MI.memoperands_begin(); 1060*8bcb0991SDimitry Andric const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1061*8bcb0991SDimitry Andric MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1062*8bcb0991SDimitry Andric MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1063*8bcb0991SDimitry Andric 1064*8bcb0991SDimitry Andric if (!findGISelOptimalMemOpLowering( 1065*8bcb0991SDimitry Andric MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Alignment), 1066*8bcb0991SDimitry Andric SrcAlign, 1067*8bcb0991SDimitry Andric /*IsMemset=*/false, 1068*8bcb0991SDimitry Andric /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, 1069*8bcb0991SDimitry Andric /*AllowOverlap=*/!IsVolatile, DstPtrInfo.getAddrSpace(), 1070*8bcb0991SDimitry Andric SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI)) 1071*8bcb0991SDimitry Andric return false; 1072*8bcb0991SDimitry Andric 1073*8bcb0991SDimitry Andric if (DstAlignCanChange) { 1074*8bcb0991SDimitry Andric // Get an estimate of the type from the LLT. 1075*8bcb0991SDimitry Andric Type *IRTy = getTypeForLLT(MemOps[0], C); 1076*8bcb0991SDimitry Andric unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy); 1077*8bcb0991SDimitry Andric 1078*8bcb0991SDimitry Andric // Don't promote to an alignment that would require dynamic stack 1079*8bcb0991SDimitry Andric // realignment. 1080*8bcb0991SDimitry Andric const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1081*8bcb0991SDimitry Andric if (!TRI->needsStackRealignment(MF)) 1082*8bcb0991SDimitry Andric while (NewAlign > Alignment && 1083*8bcb0991SDimitry Andric DL.exceedsNaturalStackAlignment(Align(NewAlign))) 1084*8bcb0991SDimitry Andric NewAlign /= 2; 1085*8bcb0991SDimitry Andric 1086*8bcb0991SDimitry Andric if (NewAlign > Alignment) { 1087*8bcb0991SDimitry Andric Alignment = NewAlign; 1088*8bcb0991SDimitry Andric unsigned FI = FIDef->getOperand(1).getIndex(); 1089*8bcb0991SDimitry Andric // Give the stack frame object a larger alignment if needed. 1090*8bcb0991SDimitry Andric if (MFI.getObjectAlignment(FI) < Alignment) 1091*8bcb0991SDimitry Andric MFI.setObjectAlignment(FI, Alignment); 1092*8bcb0991SDimitry Andric } 1093*8bcb0991SDimitry Andric } 1094*8bcb0991SDimitry Andric 1095*8bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1096*8bcb0991SDimitry Andric 1097*8bcb0991SDimitry Andric MachineIRBuilder MIB(MI); 1098*8bcb0991SDimitry Andric // Now we need to emit a pair of load and stores for each of the types we've 1099*8bcb0991SDimitry Andric // collected. I.e. for each type, generate a load from the source pointer of 1100*8bcb0991SDimitry Andric // that type width, and then generate a corresponding store to the dest buffer 1101*8bcb0991SDimitry Andric // of that value loaded. This can result in a sequence of loads and stores 1102*8bcb0991SDimitry Andric // mixed types, depending on what the target specifies as good types to use. 1103*8bcb0991SDimitry Andric unsigned CurrOffset = 0; 1104*8bcb0991SDimitry Andric LLT PtrTy = MRI.getType(Src); 1105*8bcb0991SDimitry Andric unsigned Size = KnownLen; 1106*8bcb0991SDimitry Andric for (auto CopyTy : MemOps) { 1107*8bcb0991SDimitry Andric // Issuing an unaligned load / store pair that overlaps with the previous 1108*8bcb0991SDimitry Andric // pair. Adjust the offset accordingly. 1109*8bcb0991SDimitry Andric if (CopyTy.getSizeInBytes() > Size) 1110*8bcb0991SDimitry Andric CurrOffset -= CopyTy.getSizeInBytes() - Size; 1111*8bcb0991SDimitry Andric 1112*8bcb0991SDimitry Andric // Construct MMOs for the accesses. 1113*8bcb0991SDimitry Andric auto *LoadMMO = 1114*8bcb0991SDimitry Andric MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1115*8bcb0991SDimitry Andric auto *StoreMMO = 1116*8bcb0991SDimitry Andric MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1117*8bcb0991SDimitry Andric 1118*8bcb0991SDimitry Andric // Create the load. 1119*8bcb0991SDimitry Andric Register LoadPtr = Src; 1120*8bcb0991SDimitry Andric Register Offset; 1121*8bcb0991SDimitry Andric if (CurrOffset != 0) { 1122*8bcb0991SDimitry Andric Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1123*8bcb0991SDimitry Andric .getReg(0); 1124*8bcb0991SDimitry Andric LoadPtr = MIB.buildGEP(PtrTy, Src, Offset).getReg(0); 1125*8bcb0991SDimitry Andric } 1126*8bcb0991SDimitry Andric auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1127*8bcb0991SDimitry Andric 1128*8bcb0991SDimitry Andric // Create the store. 1129*8bcb0991SDimitry Andric Register StorePtr = 1130*8bcb0991SDimitry Andric CurrOffset == 0 ? Dst : MIB.buildGEP(PtrTy, Dst, Offset).getReg(0); 1131*8bcb0991SDimitry Andric MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1132*8bcb0991SDimitry Andric CurrOffset += CopyTy.getSizeInBytes(); 1133*8bcb0991SDimitry Andric Size -= CopyTy.getSizeInBytes(); 1134*8bcb0991SDimitry Andric } 1135*8bcb0991SDimitry Andric 1136*8bcb0991SDimitry Andric MI.eraseFromParent(); 1137*8bcb0991SDimitry Andric return true; 1138*8bcb0991SDimitry Andric } 1139*8bcb0991SDimitry Andric 1140*8bcb0991SDimitry Andric bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1141*8bcb0991SDimitry Andric Register Src, unsigned KnownLen, 1142*8bcb0991SDimitry Andric unsigned DstAlign, unsigned SrcAlign, 1143*8bcb0991SDimitry Andric bool IsVolatile) { 1144*8bcb0991SDimitry Andric auto &MF = *MI.getParent()->getParent(); 1145*8bcb0991SDimitry Andric const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1146*8bcb0991SDimitry Andric auto &DL = MF.getDataLayout(); 1147*8bcb0991SDimitry Andric LLVMContext &C = MF.getFunction().getContext(); 1148*8bcb0991SDimitry Andric 1149*8bcb0991SDimitry Andric assert(KnownLen != 0 && "Have a zero length memmove length!"); 1150*8bcb0991SDimitry Andric 1151*8bcb0991SDimitry Andric bool DstAlignCanChange = false; 1152*8bcb0991SDimitry Andric MachineFrameInfo &MFI = MF.getFrameInfo(); 1153*8bcb0991SDimitry Andric bool OptSize = shouldLowerMemFuncForSize(MF); 1154*8bcb0991SDimitry Andric unsigned Alignment = MinAlign(DstAlign, SrcAlign); 1155*8bcb0991SDimitry Andric 1156*8bcb0991SDimitry Andric MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1157*8bcb0991SDimitry Andric if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1158*8bcb0991SDimitry Andric DstAlignCanChange = true; 1159*8bcb0991SDimitry Andric 1160*8bcb0991SDimitry Andric unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1161*8bcb0991SDimitry Andric std::vector<LLT> MemOps; 1162*8bcb0991SDimitry Andric 1163*8bcb0991SDimitry Andric const auto &DstMMO = **MI.memoperands_begin(); 1164*8bcb0991SDimitry Andric const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1165*8bcb0991SDimitry Andric MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1166*8bcb0991SDimitry Andric MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1167*8bcb0991SDimitry Andric 1168*8bcb0991SDimitry Andric // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1169*8bcb0991SDimitry Andric // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1170*8bcb0991SDimitry Andric // same thing here. 1171*8bcb0991SDimitry Andric if (!findGISelOptimalMemOpLowering( 1172*8bcb0991SDimitry Andric MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Alignment), 1173*8bcb0991SDimitry Andric SrcAlign, 1174*8bcb0991SDimitry Andric /*IsMemset=*/false, 1175*8bcb0991SDimitry Andric /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, 1176*8bcb0991SDimitry Andric /*AllowOverlap=*/false, DstPtrInfo.getAddrSpace(), 1177*8bcb0991SDimitry Andric SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI)) 1178*8bcb0991SDimitry Andric return false; 1179*8bcb0991SDimitry Andric 1180*8bcb0991SDimitry Andric if (DstAlignCanChange) { 1181*8bcb0991SDimitry Andric // Get an estimate of the type from the LLT. 1182*8bcb0991SDimitry Andric Type *IRTy = getTypeForLLT(MemOps[0], C); 1183*8bcb0991SDimitry Andric unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy); 1184*8bcb0991SDimitry Andric 1185*8bcb0991SDimitry Andric // Don't promote to an alignment that would require dynamic stack 1186*8bcb0991SDimitry Andric // realignment. 1187*8bcb0991SDimitry Andric const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1188*8bcb0991SDimitry Andric if (!TRI->needsStackRealignment(MF)) 1189*8bcb0991SDimitry Andric while (NewAlign > Alignment && 1190*8bcb0991SDimitry Andric DL.exceedsNaturalStackAlignment(Align(NewAlign))) 1191*8bcb0991SDimitry Andric NewAlign /= 2; 1192*8bcb0991SDimitry Andric 1193*8bcb0991SDimitry Andric if (NewAlign > Alignment) { 1194*8bcb0991SDimitry Andric Alignment = NewAlign; 1195*8bcb0991SDimitry Andric unsigned FI = FIDef->getOperand(1).getIndex(); 1196*8bcb0991SDimitry Andric // Give the stack frame object a larger alignment if needed. 1197*8bcb0991SDimitry Andric if (MFI.getObjectAlignment(FI) < Alignment) 1198*8bcb0991SDimitry Andric MFI.setObjectAlignment(FI, Alignment); 1199*8bcb0991SDimitry Andric } 1200*8bcb0991SDimitry Andric } 1201*8bcb0991SDimitry Andric 1202*8bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1203*8bcb0991SDimitry Andric 1204*8bcb0991SDimitry Andric MachineIRBuilder MIB(MI); 1205*8bcb0991SDimitry Andric // Memmove requires that we perform the loads first before issuing the stores. 1206*8bcb0991SDimitry Andric // Apart from that, this loop is pretty much doing the same thing as the 1207*8bcb0991SDimitry Andric // memcpy codegen function. 1208*8bcb0991SDimitry Andric unsigned CurrOffset = 0; 1209*8bcb0991SDimitry Andric LLT PtrTy = MRI.getType(Src); 1210*8bcb0991SDimitry Andric SmallVector<Register, 16> LoadVals; 1211*8bcb0991SDimitry Andric for (auto CopyTy : MemOps) { 1212*8bcb0991SDimitry Andric // Construct MMO for the load. 1213*8bcb0991SDimitry Andric auto *LoadMMO = 1214*8bcb0991SDimitry Andric MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1215*8bcb0991SDimitry Andric 1216*8bcb0991SDimitry Andric // Create the load. 1217*8bcb0991SDimitry Andric Register LoadPtr = Src; 1218*8bcb0991SDimitry Andric if (CurrOffset != 0) { 1219*8bcb0991SDimitry Andric auto Offset = 1220*8bcb0991SDimitry Andric MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1221*8bcb0991SDimitry Andric LoadPtr = MIB.buildGEP(PtrTy, Src, Offset).getReg(0); 1222*8bcb0991SDimitry Andric } 1223*8bcb0991SDimitry Andric LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1224*8bcb0991SDimitry Andric CurrOffset += CopyTy.getSizeInBytes(); 1225*8bcb0991SDimitry Andric } 1226*8bcb0991SDimitry Andric 1227*8bcb0991SDimitry Andric CurrOffset = 0; 1228*8bcb0991SDimitry Andric for (unsigned I = 0; I < MemOps.size(); ++I) { 1229*8bcb0991SDimitry Andric LLT CopyTy = MemOps[I]; 1230*8bcb0991SDimitry Andric // Now store the values loaded. 1231*8bcb0991SDimitry Andric auto *StoreMMO = 1232*8bcb0991SDimitry Andric MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1233*8bcb0991SDimitry Andric 1234*8bcb0991SDimitry Andric Register StorePtr = Dst; 1235*8bcb0991SDimitry Andric if (CurrOffset != 0) { 1236*8bcb0991SDimitry Andric auto Offset = 1237*8bcb0991SDimitry Andric MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1238*8bcb0991SDimitry Andric StorePtr = MIB.buildGEP(PtrTy, Dst, Offset).getReg(0); 1239*8bcb0991SDimitry Andric } 1240*8bcb0991SDimitry Andric MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1241*8bcb0991SDimitry Andric CurrOffset += CopyTy.getSizeInBytes(); 1242*8bcb0991SDimitry Andric } 1243*8bcb0991SDimitry Andric MI.eraseFromParent(); 1244*8bcb0991SDimitry Andric return true; 1245*8bcb0991SDimitry Andric } 1246*8bcb0991SDimitry Andric 1247*8bcb0991SDimitry Andric bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1248*8bcb0991SDimitry Andric // This combine is fairly complex so it's not written with a separate 1249*8bcb0991SDimitry Andric // matcher function. 1250*8bcb0991SDimitry Andric assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 1251*8bcb0991SDimitry Andric Intrinsic::ID ID = (Intrinsic::ID)MI.getIntrinsicID(); 1252*8bcb0991SDimitry Andric assert((ID == Intrinsic::memcpy || ID == Intrinsic::memmove || 1253*8bcb0991SDimitry Andric ID == Intrinsic::memset) && 1254*8bcb0991SDimitry Andric "Expected a memcpy like intrinsic"); 1255*8bcb0991SDimitry Andric 1256*8bcb0991SDimitry Andric auto MMOIt = MI.memoperands_begin(); 1257*8bcb0991SDimitry Andric const MachineMemOperand *MemOp = *MMOIt; 1258*8bcb0991SDimitry Andric bool IsVolatile = MemOp->isVolatile(); 1259*8bcb0991SDimitry Andric // Don't try to optimize volatile. 1260*8bcb0991SDimitry Andric if (IsVolatile) 1261*8bcb0991SDimitry Andric return false; 1262*8bcb0991SDimitry Andric 1263*8bcb0991SDimitry Andric unsigned DstAlign = MemOp->getBaseAlignment(); 1264*8bcb0991SDimitry Andric unsigned SrcAlign = 0; 1265*8bcb0991SDimitry Andric Register Dst = MI.getOperand(1).getReg(); 1266*8bcb0991SDimitry Andric Register Src = MI.getOperand(2).getReg(); 1267*8bcb0991SDimitry Andric Register Len = MI.getOperand(3).getReg(); 1268*8bcb0991SDimitry Andric 1269*8bcb0991SDimitry Andric if (ID != Intrinsic::memset) { 1270*8bcb0991SDimitry Andric assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1271*8bcb0991SDimitry Andric MemOp = *(++MMOIt); 1272*8bcb0991SDimitry Andric SrcAlign = MemOp->getBaseAlignment(); 1273*8bcb0991SDimitry Andric } 1274*8bcb0991SDimitry Andric 1275*8bcb0991SDimitry Andric // See if this is a constant length copy 1276*8bcb0991SDimitry Andric auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1277*8bcb0991SDimitry Andric if (!LenVRegAndVal) 1278*8bcb0991SDimitry Andric return false; // Leave it to the legalizer to lower it to a libcall. 1279*8bcb0991SDimitry Andric unsigned KnownLen = LenVRegAndVal->Value; 1280*8bcb0991SDimitry Andric 1281*8bcb0991SDimitry Andric if (KnownLen == 0) { 1282*8bcb0991SDimitry Andric MI.eraseFromParent(); 1283*8bcb0991SDimitry Andric return true; 1284*8bcb0991SDimitry Andric } 1285*8bcb0991SDimitry Andric 1286*8bcb0991SDimitry Andric if (MaxLen && KnownLen > MaxLen) 1287*8bcb0991SDimitry Andric return false; 1288*8bcb0991SDimitry Andric 1289*8bcb0991SDimitry Andric if (ID == Intrinsic::memcpy) 1290*8bcb0991SDimitry Andric return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1291*8bcb0991SDimitry Andric if (ID == Intrinsic::memmove) 1292*8bcb0991SDimitry Andric return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1293*8bcb0991SDimitry Andric if (ID == Intrinsic::memset) 1294*8bcb0991SDimitry Andric return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1295*8bcb0991SDimitry Andric return false; 1296*8bcb0991SDimitry Andric } 1297*8bcb0991SDimitry Andric 12980b57cec5SDimitry Andric bool CombinerHelper::tryCombine(MachineInstr &MI) { 12990b57cec5SDimitry Andric if (tryCombineCopy(MI)) 13000b57cec5SDimitry Andric return true; 1301*8bcb0991SDimitry Andric if (tryCombineExtendingLoads(MI)) 1302*8bcb0991SDimitry Andric return true; 1303*8bcb0991SDimitry Andric if (tryCombineIndexedLoadStore(MI)) 1304*8bcb0991SDimitry Andric return true; 1305*8bcb0991SDimitry Andric return false; 13060b57cec5SDimitry Andric } 1307