1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 15 #include "llvm/CodeGen/Analysis.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 #define DEBUG_TYPE "call-lowering" 30 31 using namespace llvm; 32 33 void CallLowering::anchor() {} 34 35 /// Helper function which updates \p Flags when \p AttrFn returns true. 36 static void 37 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 38 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 39 // TODO: There are missing flags. Add them here. 40 if (AttrFn(Attribute::SExt)) 41 Flags.setSExt(); 42 if (AttrFn(Attribute::ZExt)) 43 Flags.setZExt(); 44 if (AttrFn(Attribute::InReg)) 45 Flags.setInReg(); 46 if (AttrFn(Attribute::StructRet)) 47 Flags.setSRet(); 48 if (AttrFn(Attribute::Nest)) 49 Flags.setNest(); 50 if (AttrFn(Attribute::ByVal)) 51 Flags.setByVal(); 52 if (AttrFn(Attribute::ByRef)) 53 Flags.setByRef(); 54 if (AttrFn(Attribute::Preallocated)) 55 Flags.setPreallocated(); 56 if (AttrFn(Attribute::InAlloca)) 57 Flags.setInAlloca(); 58 if (AttrFn(Attribute::Returned)) 59 Flags.setReturned(); 60 if (AttrFn(Attribute::SwiftSelf)) 61 Flags.setSwiftSelf(); 62 if (AttrFn(Attribute::SwiftAsync)) 63 Flags.setSwiftAsync(); 64 if (AttrFn(Attribute::SwiftError)) 65 Flags.setSwiftError(); 66 } 67 68 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 69 unsigned ArgIdx) const { 70 ISD::ArgFlagsTy Flags; 71 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 72 return Call.paramHasAttr(ArgIdx, Attr); 73 }); 74 return Flags; 75 } 76 77 ISD::ArgFlagsTy 78 CallLowering::getAttributesForReturn(const CallBase &Call) const { 79 ISD::ArgFlagsTy Flags; 80 addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) { 81 return Call.hasRetAttr(Attr); 82 }); 83 return Flags; 84 } 85 86 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 87 const AttributeList &Attrs, 88 unsigned OpIdx) const { 89 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 90 return Attrs.hasAttributeAtIndex(OpIdx, Attr); 91 }); 92 } 93 94 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 95 ArrayRef<Register> ResRegs, 96 ArrayRef<ArrayRef<Register>> ArgRegs, 97 Register SwiftErrorVReg, 98 std::optional<PtrAuthInfo> PAI, 99 Register ConvergenceCtrlToken, 100 std::function<unsigned()> GetCalleeReg) const { 101 CallLoweringInfo Info; 102 const DataLayout &DL = MIRBuilder.getDataLayout(); 103 MachineFunction &MF = MIRBuilder.getMF(); 104 MachineRegisterInfo &MRI = MF.getRegInfo(); 105 bool CanBeTailCalled = CB.isTailCall() && 106 isInTailCallPosition(CB, MF.getTarget()) && 107 (MF.getFunction() 108 .getFnAttribute("disable-tail-calls") 109 .getValueAsString() != "true"); 110 111 CallingConv::ID CallConv = CB.getCallingConv(); 112 Type *RetTy = CB.getType(); 113 bool IsVarArg = CB.getFunctionType()->isVarArg(); 114 115 SmallVector<BaseArgInfo, 4> SplitArgs; 116 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 117 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 118 119 Info.IsConvergent = CB.isConvergent(); 120 121 if (!Info.CanLowerReturn) { 122 // Callee requires sret demotion. 123 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 124 125 // The sret demotion isn't compatible with tail-calls, since the sret 126 // argument points into the caller's stack frame. 127 CanBeTailCalled = false; 128 } 129 130 // First step is to marshall all the function's parameters into the correct 131 // physregs and memory locations. Gather the sequence of argument types that 132 // we'll pass to the assigner function. 133 unsigned i = 0; 134 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 135 for (const auto &Arg : CB.args()) { 136 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 137 i < NumFixedArgs}; 138 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 139 140 // If we have an explicit sret argument that is an Instruction, (i.e., it 141 // might point to function-local memory), we can't meaningfully tail-call. 142 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 143 CanBeTailCalled = false; 144 145 Info.OrigArgs.push_back(OrigArg); 146 ++i; 147 } 148 149 // Try looking through a bitcast from one function type to another. 150 // Commonly happens with calls to objc_msgSend(). 151 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 152 153 // If IRTranslator chose to drop the ptrauth info, we can turn this into 154 // a direct call. 155 if (!PAI && CB.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 156 CalleeV = cast<ConstantPtrAuth>(CalleeV)->getPointer(); 157 assert(isa<Function>(CalleeV)); 158 } 159 160 if (const Function *F = dyn_cast<Function>(CalleeV)) { 161 if (F->hasFnAttribute(Attribute::NonLazyBind)) { 162 LLT Ty = getLLTForType(*F->getType(), DL); 163 Register Reg = MIRBuilder.buildGlobalValue(Ty, F).getReg(0); 164 Info.Callee = MachineOperand::CreateReg(Reg, false); 165 } else { 166 Info.Callee = MachineOperand::CreateGA(F, 0); 167 } 168 } else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) { 169 // IR IFuncs and Aliases can't be forward declared (only defined), so the 170 // callee must be in the same TU and therefore we can direct-call it without 171 // worrying about it being out of range. 172 Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0); 173 } else 174 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 175 176 Register ReturnHintAlignReg; 177 Align ReturnHintAlign; 178 179 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)}; 180 181 if (!Info.OrigRet.Ty->isVoidTy()) { 182 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 183 184 if (MaybeAlign Alignment = CB.getRetAlign()) { 185 if (*Alignment > Align(1)) { 186 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]); 187 Info.OrigRet.Regs[0] = ReturnHintAlignReg; 188 ReturnHintAlign = *Alignment; 189 } 190 } 191 } 192 193 auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi); 194 if (Bundle && CB.isIndirectCall()) { 195 Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 196 assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 197 } 198 199 Info.CB = &CB; 200 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 201 Info.CallConv = CallConv; 202 Info.SwiftErrorVReg = SwiftErrorVReg; 203 Info.PAI = PAI; 204 Info.ConvergenceCtrlToken = ConvergenceCtrlToken; 205 Info.IsMustTailCall = CB.isMustTailCall(); 206 Info.IsTailCall = CanBeTailCalled; 207 Info.IsVarArg = IsVarArg; 208 if (!lowerCall(MIRBuilder, Info)) 209 return false; 210 211 if (ReturnHintAlignReg && !Info.LoweredTailCall) { 212 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg, 213 ReturnHintAlign); 214 } 215 216 return true; 217 } 218 219 template <typename FuncInfoTy> 220 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 221 const DataLayout &DL, 222 const FuncInfoTy &FuncInfo) const { 223 auto &Flags = Arg.Flags[0]; 224 const AttributeList &Attrs = FuncInfo.getAttributes(); 225 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 226 227 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 228 if (PtrTy) { 229 Flags.setPointer(); 230 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 231 } 232 233 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 234 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 235 Flags.isByRef()) { 236 assert(OpIdx >= AttributeList::FirstArgIndex); 237 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; 238 239 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); 240 if (!ElementTy) 241 ElementTy = FuncInfo.getParamByRefType(ParamIdx); 242 if (!ElementTy) 243 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); 244 if (!ElementTy) 245 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); 246 247 assert(ElementTy && "Must have byval, inalloca or preallocated type"); 248 249 uint64_t MemSize = DL.getTypeAllocSize(ElementTy); 250 if (Flags.isByRef()) 251 Flags.setByRefSize(MemSize); 252 else 253 Flags.setByValSize(MemSize); 254 255 // For ByVal, alignment should be passed from FE. BE will guess if 256 // this info is not there but there are cases it cannot get right. 257 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) 258 MemAlign = *ParamAlign; 259 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) 260 MemAlign = *ParamAlign; 261 else 262 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 263 } else if (OpIdx >= AttributeList::FirstArgIndex) { 264 if (auto ParamAlign = 265 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 266 MemAlign = *ParamAlign; 267 } 268 Flags.setMemAlign(MemAlign); 269 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 270 271 // Don't try to use the returned attribute if the argument is marked as 272 // swiftself, since it won't be passed in x0. 273 if (Flags.isSwiftSelf()) 274 Flags.setReturned(false); 275 } 276 277 template void 278 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 279 const DataLayout &DL, 280 const Function &FuncInfo) const; 281 282 template void 283 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 284 const DataLayout &DL, 285 const CallBase &FuncInfo) const; 286 287 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 288 SmallVectorImpl<ArgInfo> &SplitArgs, 289 const DataLayout &DL, 290 CallingConv::ID CallConv, 291 SmallVectorImpl<uint64_t> *Offsets) const { 292 LLVMContext &Ctx = OrigArg.Ty->getContext(); 293 294 SmallVector<EVT, 4> SplitVTs; 295 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 296 297 if (SplitVTs.size() == 0) 298 return; 299 300 if (SplitVTs.size() == 1) { 301 // No splitting to do, but we want to replace the original type (e.g. [1 x 302 // double] -> double). 303 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 304 OrigArg.OrigArgIndex, OrigArg.Flags[0], 305 OrigArg.IsFixed, OrigArg.OrigValue); 306 return; 307 } 308 309 // Create one ArgInfo for each virtual register in the original ArgInfo. 310 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 311 312 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 313 OrigArg.Ty, CallConv, false, DL); 314 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 315 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 316 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 317 OrigArg.Flags[0], OrigArg.IsFixed); 318 if (NeedsRegBlock) 319 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 320 } 321 322 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 323 } 324 325 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 326 static MachineInstrBuilder 327 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 328 ArrayRef<Register> SrcRegs) { 329 MachineRegisterInfo &MRI = *B.getMRI(); 330 LLT LLTy = MRI.getType(DstRegs[0]); 331 LLT PartLLT = MRI.getType(SrcRegs[0]); 332 333 // Deal with v3s16 split into v2s16 334 LLT LCMTy = getCoverTy(LLTy, PartLLT); 335 if (LCMTy == LLTy) { 336 // Common case where no padding is needed. 337 assert(DstRegs.size() == 1); 338 return B.buildConcatVectors(DstRegs[0], SrcRegs); 339 } 340 341 // We need to create an unmerge to the result registers, which may require 342 // widening the original value. 343 Register UnmergeSrcReg; 344 if (LCMTy != PartLLT) { 345 assert(DstRegs.size() == 1); 346 return B.buildDeleteTrailingVectorElements( 347 DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs)); 348 } else { 349 // We don't need to widen anything if we're extracting a scalar which was 350 // promoted to a vector e.g. s8 -> v4s8 -> s8 351 assert(SrcRegs.size() == 1); 352 UnmergeSrcReg = SrcRegs[0]; 353 } 354 355 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 356 357 SmallVector<Register, 8> PadDstRegs(NumDst); 358 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 359 360 // Create the excess dead defs for the unmerge. 361 for (int I = DstRegs.size(); I != NumDst; ++I) 362 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 363 364 if (PadDstRegs.size() == 1) 365 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg); 366 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 367 } 368 369 /// Create a sequence of instructions to combine pieces split into register 370 /// typed values to the original IR value. \p OrigRegs contains the destination 371 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 372 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 373 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 374 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 375 const ISD::ArgFlagsTy Flags) { 376 MachineRegisterInfo &MRI = *B.getMRI(); 377 378 if (PartLLT == LLTy) { 379 // We should have avoided introducing a new virtual register, and just 380 // directly assigned here. 381 assert(OrigRegs[0] == Regs[0]); 382 return; 383 } 384 385 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 386 Regs.size() == 1) { 387 B.buildBitcast(OrigRegs[0], Regs[0]); 388 return; 389 } 390 391 // A vector PartLLT needs extending to LLTy's element size. 392 // E.g. <2 x s64> = G_SEXT <2 x s32>. 393 if (PartLLT.isVector() == LLTy.isVector() && 394 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 395 (!PartLLT.isVector() || 396 PartLLT.getElementCount() == LLTy.getElementCount()) && 397 OrigRegs.size() == 1 && Regs.size() == 1) { 398 Register SrcReg = Regs[0]; 399 400 LLT LocTy = MRI.getType(SrcReg); 401 402 if (Flags.isSExt()) { 403 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 404 .getReg(0); 405 } else if (Flags.isZExt()) { 406 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 407 .getReg(0); 408 } 409 410 // Sometimes pointers are passed zero extended. 411 LLT OrigTy = MRI.getType(OrigRegs[0]); 412 if (OrigTy.isPointer()) { 413 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 414 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 415 return; 416 } 417 418 B.buildTrunc(OrigRegs[0], SrcReg); 419 return; 420 } 421 422 if (!LLTy.isVector() && !PartLLT.isVector()) { 423 assert(OrigRegs.size() == 1); 424 LLT OrigTy = MRI.getType(OrigRegs[0]); 425 426 unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size(); 427 if (SrcSize == OrigTy.getSizeInBits()) 428 B.buildMergeValues(OrigRegs[0], Regs); 429 else { 430 auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs); 431 B.buildTrunc(OrigRegs[0], Widened); 432 } 433 434 return; 435 } 436 437 if (PartLLT.isVector()) { 438 assert(OrigRegs.size() == 1); 439 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 440 441 // If PartLLT is a mismatched vector in both number of elements and element 442 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 443 // have the same elt type, i.e. v4s32. 444 // TODO: Extend this coersion to element multiples other than just 2. 445 if (TypeSize::isKnownGT(PartLLT.getSizeInBits(), LLTy.getSizeInBits()) && 446 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 447 Regs.size() == 1) { 448 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 449 .changeElementCount(PartLLT.getElementCount() * 2); 450 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 451 PartLLT = NewTy; 452 } 453 454 if (LLTy.getScalarType() == PartLLT.getElementType()) { 455 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 456 } else { 457 unsigned I = 0; 458 LLT GCDTy = getGCDType(LLTy, PartLLT); 459 460 // We are both splitting a vector, and bitcasting its element types. Cast 461 // the source pieces into the appropriate number of pieces with the result 462 // element type. 463 for (Register SrcReg : CastRegs) 464 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 465 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 466 } 467 468 return; 469 } 470 471 assert(LLTy.isVector() && !PartLLT.isVector()); 472 473 LLT DstEltTy = LLTy.getElementType(); 474 475 // Pointer information was discarded. We'll need to coerce some register types 476 // to avoid violating type constraints. 477 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 478 479 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 480 481 if (DstEltTy == PartLLT) { 482 // Vector was trivially scalarized. 483 484 if (RealDstEltTy.isPointer()) { 485 for (Register Reg : Regs) 486 MRI.setType(Reg, RealDstEltTy); 487 } 488 489 B.buildBuildVector(OrigRegs[0], Regs); 490 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 491 // Deal with vector with 64-bit elements decomposed to 32-bit 492 // registers. Need to create intermediate 64-bit elements. 493 SmallVector<Register, 8> EltMerges; 494 int PartsPerElt = 495 divideCeil(DstEltTy.getSizeInBits(), PartLLT.getSizeInBits()); 496 LLT ExtendedPartTy = LLT::scalar(PartLLT.getSizeInBits() * PartsPerElt); 497 498 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 499 auto Merge = 500 B.buildMergeLikeInstr(ExtendedPartTy, Regs.take_front(PartsPerElt)); 501 if (ExtendedPartTy.getSizeInBits() > RealDstEltTy.getSizeInBits()) 502 Merge = B.buildTrunc(RealDstEltTy, Merge); 503 // Fix the type in case this is really a vector of pointers. 504 MRI.setType(Merge.getReg(0), RealDstEltTy); 505 EltMerges.push_back(Merge.getReg(0)); 506 Regs = Regs.drop_front(PartsPerElt); 507 } 508 509 B.buildBuildVector(OrigRegs[0], EltMerges); 510 } else { 511 // Vector was split, and elements promoted to a wider type. 512 // FIXME: Should handle floating point promotions. 513 unsigned NumElts = LLTy.getNumElements(); 514 LLT BVType = LLT::fixed_vector(NumElts, PartLLT); 515 516 Register BuildVec; 517 if (NumElts == Regs.size()) 518 BuildVec = B.buildBuildVector(BVType, Regs).getReg(0); 519 else { 520 // Vector elements are packed in the inputs. 521 // e.g. we have a <4 x s16> but 2 x s32 in regs. 522 assert(NumElts > Regs.size()); 523 LLT SrcEltTy = MRI.getType(Regs[0]); 524 525 LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType(); 526 527 // Input registers contain packed elements. 528 // Determine how many elements per reg. 529 assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0); 530 unsigned EltPerReg = 531 (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits()); 532 533 SmallVector<Register, 0> BVRegs; 534 BVRegs.reserve(Regs.size() * EltPerReg); 535 for (Register R : Regs) { 536 auto Unmerge = B.buildUnmerge(OriginalEltTy, R); 537 for (unsigned K = 0; K < EltPerReg; ++K) 538 BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0)); 539 } 540 541 // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces 542 // for a <3 x s16> vector. We should have less than EltPerReg extra items. 543 if (BVRegs.size() > NumElts) { 544 assert((BVRegs.size() - NumElts) < EltPerReg); 545 BVRegs.truncate(NumElts); 546 } 547 BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0); 548 } 549 B.buildTrunc(OrigRegs[0], BuildVec); 550 } 551 } 552 553 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 554 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 555 /// contain the type of scalar value extension if necessary. 556 /// 557 /// This is used for outgoing values (vregs to physregs) 558 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 559 Register SrcReg, LLT SrcTy, LLT PartTy, 560 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 561 // We could just insert a regular copy, but this is unreachable at the moment. 562 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 563 564 const TypeSize PartSize = PartTy.getSizeInBits(); 565 566 if (PartTy.isVector() == SrcTy.isVector() && 567 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 568 assert(DstRegs.size() == 1); 569 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 570 return; 571 } 572 573 if (SrcTy.isVector() && !PartTy.isVector() && 574 TypeSize::isKnownGT(PartSize, SrcTy.getElementType().getSizeInBits())) { 575 // Vector was scalarized, and the elements extended. 576 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 577 for (int i = 0, e = DstRegs.size(); i != e; ++i) 578 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 579 return; 580 } 581 582 if (SrcTy.isVector() && PartTy.isVector() && 583 PartTy.getSizeInBits() == SrcTy.getSizeInBits() && 584 ElementCount::isKnownLT(SrcTy.getElementCount(), 585 PartTy.getElementCount())) { 586 // A coercion like: v2f32 -> v4f32 or nxv2f32 -> nxv4f32 587 Register DstReg = DstRegs.front(); 588 B.buildPadVectorWithUndefElements(DstReg, SrcReg); 589 return; 590 } 591 592 LLT GCDTy = getGCDType(SrcTy, PartTy); 593 if (GCDTy == PartTy) { 594 // If this already evenly divisible, we can create a simple unmerge. 595 B.buildUnmerge(DstRegs, SrcReg); 596 return; 597 } 598 599 if (SrcTy.isVector() && !PartTy.isVector() && 600 SrcTy.getScalarSizeInBits() > PartTy.getSizeInBits()) { 601 LLT ExtTy = 602 LLT::vector(SrcTy.getElementCount(), 603 LLT::scalar(PartTy.getScalarSizeInBits() * DstRegs.size() / 604 SrcTy.getNumElements())); 605 auto Ext = B.buildAnyExt(ExtTy, SrcReg); 606 B.buildUnmerge(DstRegs, Ext); 607 return; 608 } 609 610 MachineRegisterInfo &MRI = *B.getMRI(); 611 LLT DstTy = MRI.getType(DstRegs[0]); 612 LLT LCMTy = getCoverTy(SrcTy, PartTy); 613 614 if (PartTy.isVector() && LCMTy == PartTy) { 615 assert(DstRegs.size() == 1); 616 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg); 617 return; 618 } 619 620 const unsigned DstSize = DstTy.getSizeInBits(); 621 const unsigned SrcSize = SrcTy.getSizeInBits(); 622 unsigned CoveringSize = LCMTy.getSizeInBits(); 623 624 Register UnmergeSrc = SrcReg; 625 626 if (!LCMTy.isVector() && CoveringSize != SrcSize) { 627 // For scalars, it's common to be able to use a simple extension. 628 if (SrcTy.isScalar() && DstTy.isScalar()) { 629 CoveringSize = alignTo(SrcSize, DstSize); 630 LLT CoverTy = LLT::scalar(CoveringSize); 631 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 632 } else { 633 // Widen to the common type. 634 // FIXME: This should respect the extend type 635 Register Undef = B.buildUndef(SrcTy).getReg(0); 636 SmallVector<Register, 8> MergeParts(1, SrcReg); 637 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 638 MergeParts.push_back(Undef); 639 UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0); 640 } 641 } 642 643 if (LCMTy.isVector() && CoveringSize != SrcSize) 644 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0); 645 646 B.buildUnmerge(DstRegs, UnmergeSrc); 647 } 648 649 bool CallLowering::determineAndHandleAssignments( 650 ValueHandler &Handler, ValueAssigner &Assigner, 651 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 652 CallingConv::ID CallConv, bool IsVarArg, 653 ArrayRef<Register> ThisReturnRegs) const { 654 MachineFunction &MF = MIRBuilder.getMF(); 655 const Function &F = MF.getFunction(); 656 SmallVector<CCValAssign, 16> ArgLocs; 657 658 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 659 if (!determineAssignments(Assigner, Args, CCInfo)) 660 return false; 661 662 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 663 ThisReturnRegs); 664 } 665 666 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 667 if (Flags.isSExt()) 668 return TargetOpcode::G_SEXT; 669 if (Flags.isZExt()) 670 return TargetOpcode::G_ZEXT; 671 return TargetOpcode::G_ANYEXT; 672 } 673 674 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 675 SmallVectorImpl<ArgInfo> &Args, 676 CCState &CCInfo) const { 677 LLVMContext &Ctx = CCInfo.getContext(); 678 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 679 680 unsigned NumArgs = Args.size(); 681 for (unsigned i = 0; i != NumArgs; ++i) { 682 EVT CurVT = EVT::getEVT(Args[i].Ty); 683 684 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 685 686 // If we need to split the type over multiple regs, check it's a scenario 687 // we currently support. 688 unsigned NumParts = 689 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 690 691 if (NumParts == 1) { 692 // Try to use the register type if we couldn't assign the VT. 693 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 694 Args[i].Flags[0], CCInfo)) 695 return false; 696 continue; 697 } 698 699 // For incoming arguments (physregs to vregs), we could have values in 700 // physregs (or memlocs) which we want to extract and copy to vregs. 701 // During this, we might have to deal with the LLT being split across 702 // multiple regs, so we have to record this information for later. 703 // 704 // If we have outgoing args, then we have the opposite case. We have a 705 // vreg with an LLT which we want to assign to a physical location, and 706 // we might have to record that the value has to be split later. 707 708 // We're handling an incoming arg which is split over multiple regs. 709 // E.g. passing an s128 on AArch64. 710 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 711 Args[i].Flags.clear(); 712 713 for (unsigned Part = 0; Part < NumParts; ++Part) { 714 ISD::ArgFlagsTy Flags = OrigFlags; 715 if (Part == 0) { 716 Flags.setSplit(); 717 } else { 718 Flags.setOrigAlign(Align(1)); 719 if (Part == NumParts - 1) 720 Flags.setSplitEnd(); 721 } 722 723 Args[i].Flags.push_back(Flags); 724 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 725 Args[i].Flags[Part], CCInfo)) { 726 // Still couldn't assign this smaller part type for some reason. 727 return false; 728 } 729 } 730 } 731 732 return true; 733 } 734 735 bool CallLowering::handleAssignments(ValueHandler &Handler, 736 SmallVectorImpl<ArgInfo> &Args, 737 CCState &CCInfo, 738 SmallVectorImpl<CCValAssign> &ArgLocs, 739 MachineIRBuilder &MIRBuilder, 740 ArrayRef<Register> ThisReturnRegs) const { 741 MachineFunction &MF = MIRBuilder.getMF(); 742 MachineRegisterInfo &MRI = MF.getRegInfo(); 743 const Function &F = MF.getFunction(); 744 const DataLayout &DL = F.getDataLayout(); 745 746 const unsigned NumArgs = Args.size(); 747 748 // Stores thunks for outgoing register assignments. This is used so we delay 749 // generating register copies until mem loc assignments are done. We do this 750 // so that if the target is using the delayed stack protector feature, we can 751 // find the split point of the block accurately. E.g. if we have: 752 // G_STORE %val, %memloc 753 // $x0 = COPY %foo 754 // $x1 = COPY %bar 755 // CALL func 756 // ... then the split point for the block will correctly be at, and including, 757 // the copy to $x0. If instead the G_STORE instruction immediately precedes 758 // the CALL, then we'd prematurely choose the CALL as the split point, thus 759 // generating a split block with a CALL that uses undefined physregs. 760 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments; 761 762 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 763 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 764 CCValAssign &VA = ArgLocs[j]; 765 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 766 767 if (VA.needsCustom()) { 768 std::function<void()> Thunk; 769 unsigned NumArgRegs = Handler.assignCustomValue( 770 Args[i], ArrayRef(ArgLocs).slice(j), &Thunk); 771 if (Thunk) 772 DelayedOutgoingRegAssignments.emplace_back(Thunk); 773 if (!NumArgRegs) 774 return false; 775 j += (NumArgRegs - 1); 776 continue; 777 } 778 779 auto AllocaAddressSpace = MF.getDataLayout().getAllocaAddrSpace(); 780 781 const MVT ValVT = VA.getValVT(); 782 const MVT LocVT = VA.getLocVT(); 783 784 const LLT LocTy(LocVT); 785 const LLT ValTy(ValVT); 786 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 787 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 788 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 789 const LLT PointerTy = LLT::pointer( 790 AllocaAddressSpace, DL.getPointerSizeInBits(AllocaAddressSpace)); 791 792 // Expected to be multiple regs for a single incoming arg. 793 // There should be Regs.size() ArgLocs per argument. 794 // This should be the same as getNumRegistersForCallingConv 795 const unsigned NumParts = Args[i].Flags.size(); 796 797 // Now split the registers into the assigned types. 798 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 799 800 if (NumParts != 1 || NewLLT != OrigTy) { 801 // If we can't directly assign the register, we need one or more 802 // intermediate values. 803 Args[i].Regs.resize(NumParts); 804 805 // When we have indirect parameter passing we are receiving a pointer, 806 // that points to the actual value, so we need one "temporary" pointer. 807 if (VA.getLocInfo() == CCValAssign::Indirect) { 808 if (Handler.isIncomingArgumentHandler()) 809 Args[i].Regs[0] = MRI.createGenericVirtualRegister(PointerTy); 810 } else { 811 // For each split register, create and assign a vreg that will store 812 // the incoming component of the larger value. These will later be 813 // merged to form the final vreg. 814 for (unsigned Part = 0; Part < NumParts; ++Part) 815 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 816 } 817 } 818 819 assert((j + (NumParts - 1)) < ArgLocs.size() && 820 "Too many regs for number of args"); 821 822 // Coerce into outgoing value types before register assignment. 823 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy && 824 VA.getLocInfo() != CCValAssign::Indirect) { 825 assert(Args[i].OrigRegs.size() == 1); 826 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 827 ValTy, extendOpFromFlags(Args[i].Flags[0])); 828 } 829 830 bool IndirectParameterPassingHandled = false; 831 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL); 832 for (unsigned Part = 0; Part < NumParts; ++Part) { 833 assert((VA.getLocInfo() != CCValAssign::Indirect || Part == 0) && 834 "Only the first parameter should be processed when " 835 "handling indirect passing!"); 836 Register ArgReg = Args[i].Regs[Part]; 837 // There should be Regs.size() ArgLocs per argument. 838 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part; 839 CCValAssign &VA = ArgLocs[j + Idx]; 840 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 841 842 // We found an indirect parameter passing, and we have an 843 // OutgoingValueHandler as our handler (so we are at the call site or the 844 // return value). In this case, start the construction of the following 845 // GMIR, that is responsible for the preparation of indirect parameter 846 // passing: 847 // 848 // %1(indirectly passed type) = The value to pass 849 // %3(pointer) = G_FRAME_INDEX %stack.0 850 // G_STORE %1, %3 :: (store (s128), align 8) 851 // 852 // After this GMIR, the remaining part of the loop body will decide how 853 // to get the value to the caller and we break out of the loop. 854 if (VA.getLocInfo() == CCValAssign::Indirect && 855 !Handler.isIncomingArgumentHandler()) { 856 Align AlignmentForStored = DL.getPrefTypeAlign(Args[i].Ty); 857 MachineFrameInfo &MFI = MF.getFrameInfo(); 858 // Get some space on the stack for the value, so later we can pass it 859 // as a reference. 860 int FrameIdx = MFI.CreateStackObject(OrigTy.getScalarSizeInBits(), 861 AlignmentForStored, false); 862 Register PointerToStackReg = 863 MIRBuilder.buildFrameIndex(PointerTy, FrameIdx).getReg(0); 864 MachinePointerInfo StackPointerMPO = 865 MachinePointerInfo::getFixedStack(MF, FrameIdx); 866 // Store the value in the previously created stack space. 867 MIRBuilder.buildStore(Args[i].OrigRegs[Part], PointerToStackReg, 868 StackPointerMPO, 869 inferAlignFromPtrInfo(MF, StackPointerMPO)); 870 871 ArgReg = PointerToStackReg; 872 IndirectParameterPassingHandled = true; 873 } 874 875 if (VA.isMemLoc() && !Flags.isByVal()) { 876 // Individual pieces may have been spilled to the stack and others 877 // passed in registers. 878 879 // TODO: The memory size may be larger than the value we need to 880 // store. We may need to adjust the offset for big endian targets. 881 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 882 883 MachinePointerInfo MPO; 884 Register StackAddr = 885 Handler.getStackAddress(VA.getLocInfo() == CCValAssign::Indirect 886 ? PointerTy.getSizeInBytes() 887 : MemTy.getSizeInBytes(), 888 VA.getLocMemOffset(), MPO, Flags); 889 890 // Finish the handling of indirect passing from the passers 891 // (OutgoingParameterHandler) side. 892 // This branch is needed, so the pointer to the value is loaded onto the 893 // stack. 894 if (VA.getLocInfo() == CCValAssign::Indirect) 895 Handler.assignValueToAddress(ArgReg, StackAddr, PointerTy, MPO, VA); 896 else 897 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, 898 VA); 899 } else if (VA.isMemLoc() && Flags.isByVal()) { 900 assert(Args[i].Regs.size() == 1 && "didn't expect split byval pointer"); 901 902 if (Handler.isIncomingArgumentHandler()) { 903 // We just need to copy the frame index value to the pointer. 904 MachinePointerInfo MPO; 905 Register StackAddr = Handler.getStackAddress( 906 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 907 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 908 } else { 909 // For outgoing byval arguments, insert the implicit copy byval 910 // implies, such that writes in the callee do not modify the caller's 911 // value. 912 uint64_t MemSize = Flags.getByValSize(); 913 int64_t Offset = VA.getLocMemOffset(); 914 915 MachinePointerInfo DstMPO; 916 Register StackAddr = 917 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 918 919 MachinePointerInfo SrcMPO(Args[i].OrigValue); 920 if (!Args[i].OrigValue) { 921 // We still need to accurately track the stack address space if we 922 // don't know the underlying value. 923 const LLT PtrTy = MRI.getType(StackAddr); 924 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 925 } 926 927 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 928 inferAlignFromPtrInfo(MF, DstMPO)); 929 930 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 931 inferAlignFromPtrInfo(MF, SrcMPO)); 932 933 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 934 DstMPO, DstAlign, SrcMPO, SrcAlign, 935 MemSize, VA); 936 } 937 } else if (i == 0 && !ThisReturnRegs.empty() && 938 Handler.isIncomingArgumentHandler() && 939 isTypeIsValidForThisReturn(ValVT)) { 940 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA); 941 } else if (Handler.isIncomingArgumentHandler()) { 942 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 943 } else { 944 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { 945 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 946 }); 947 } 948 949 // Finish the handling of indirect parameter passing when receiving 950 // the value (we are in the called function or the caller when receiving 951 // the return value). 952 if (VA.getLocInfo() == CCValAssign::Indirect && 953 Handler.isIncomingArgumentHandler()) { 954 Align Alignment = DL.getABITypeAlign(Args[i].Ty); 955 MachinePointerInfo MPO = MachinePointerInfo::getUnknownStack(MF); 956 957 // Since we are doing indirect parameter passing, we know that the value 958 // in the temporary register is not the value passed to the function, 959 // but rather a pointer to that value. Let's load that value into the 960 // virtual register where the parameter should go. 961 MIRBuilder.buildLoad(Args[i].OrigRegs[0], Args[i].Regs[0], MPO, 962 Alignment); 963 964 IndirectParameterPassingHandled = true; 965 } 966 967 if (IndirectParameterPassingHandled) 968 break; 969 } 970 971 // Now that all pieces have been assigned, re-pack the register typed values 972 // into the original value typed registers. This is only necessary, when 973 // the value was passed in multiple registers, not indirectly. 974 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT && 975 !IndirectParameterPassingHandled) { 976 // Merge the split registers into the expected larger result vregs of 977 // the original call. 978 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 979 LocTy, Args[i].Flags[0]); 980 } 981 982 j += NumParts - 1; 983 } 984 for (auto &Fn : DelayedOutgoingRegAssignments) 985 Fn(); 986 987 return true; 988 } 989 990 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 991 ArrayRef<Register> VRegs, Register DemoteReg, 992 int FI) const { 993 MachineFunction &MF = MIRBuilder.getMF(); 994 MachineRegisterInfo &MRI = MF.getRegInfo(); 995 const DataLayout &DL = MF.getDataLayout(); 996 997 SmallVector<EVT, 4> SplitVTs; 998 SmallVector<uint64_t, 4> Offsets; 999 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 1000 1001 assert(VRegs.size() == SplitVTs.size()); 1002 1003 unsigned NumValues = SplitVTs.size(); 1004 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 1005 Type *RetPtrTy = 1006 PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace()); 1007 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL); 1008 1009 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 1010 1011 for (unsigned I = 0; I < NumValues; ++I) { 1012 Register Addr; 1013 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 1014 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 1015 MRI.getType(VRegs[I]), 1016 commonAlignment(BaseAlign, Offsets[I])); 1017 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 1018 } 1019 } 1020 1021 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 1022 ArrayRef<Register> VRegs, 1023 Register DemoteReg) const { 1024 MachineFunction &MF = MIRBuilder.getMF(); 1025 MachineRegisterInfo &MRI = MF.getRegInfo(); 1026 const DataLayout &DL = MF.getDataLayout(); 1027 1028 SmallVector<EVT, 4> SplitVTs; 1029 SmallVector<uint64_t, 4> Offsets; 1030 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 1031 1032 assert(VRegs.size() == SplitVTs.size()); 1033 1034 unsigned NumValues = SplitVTs.size(); 1035 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 1036 unsigned AS = DL.getAllocaAddrSpace(); 1037 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL); 1038 1039 MachinePointerInfo PtrInfo(AS); 1040 1041 for (unsigned I = 0; I < NumValues; ++I) { 1042 Register Addr; 1043 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 1044 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 1045 MRI.getType(VRegs[I]), 1046 commonAlignment(BaseAlign, Offsets[I])); 1047 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 1048 } 1049 } 1050 1051 void CallLowering::insertSRetIncomingArgument( 1052 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 1053 MachineRegisterInfo &MRI, const DataLayout &DL) const { 1054 unsigned AS = DL.getAllocaAddrSpace(); 1055 DemoteReg = MRI.createGenericVirtualRegister( 1056 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 1057 1058 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 1059 1060 SmallVector<EVT, 1> ValueVTs; 1061 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 1062 1063 // NOTE: Assume that a pointer won't get split into more than one VT. 1064 assert(ValueVTs.size() == 1); 1065 1066 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 1067 ArgInfo::NoArgIndex); 1068 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 1069 DemoteArg.Flags[0].setSRet(); 1070 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 1071 } 1072 1073 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 1074 const CallBase &CB, 1075 CallLoweringInfo &Info) const { 1076 const DataLayout &DL = MIRBuilder.getDataLayout(); 1077 Type *RetTy = CB.getType(); 1078 unsigned AS = DL.getAllocaAddrSpace(); 1079 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1080 1081 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 1082 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 1083 1084 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 1085 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 1086 ArgInfo::NoArgIndex); 1087 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 1088 DemoteArg.Flags[0].setSRet(); 1089 1090 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 1091 Info.DemoteStackIndex = FI; 1092 Info.DemoteRegister = DemoteReg; 1093 } 1094 1095 bool CallLowering::checkReturn(CCState &CCInfo, 1096 SmallVectorImpl<BaseArgInfo> &Outs, 1097 CCAssignFn *Fn) const { 1098 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 1099 MVT VT = MVT::getVT(Outs[I].Ty); 1100 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 1101 return false; 1102 } 1103 return true; 1104 } 1105 1106 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 1107 AttributeList Attrs, 1108 SmallVectorImpl<BaseArgInfo> &Outs, 1109 const DataLayout &DL) const { 1110 LLVMContext &Context = RetTy->getContext(); 1111 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1112 1113 SmallVector<EVT, 4> SplitVTs; 1114 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 1115 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 1116 1117 for (EVT VT : SplitVTs) { 1118 unsigned NumParts = 1119 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 1120 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 1121 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 1122 1123 for (unsigned I = 0; I < NumParts; ++I) { 1124 Outs.emplace_back(PartTy, Flags); 1125 } 1126 } 1127 } 1128 1129 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 1130 const auto &F = MF.getFunction(); 1131 Type *ReturnType = F.getReturnType(); 1132 CallingConv::ID CallConv = F.getCallingConv(); 1133 1134 SmallVector<BaseArgInfo, 4> SplitArgs; 1135 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 1136 MF.getDataLayout()); 1137 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 1138 } 1139 1140 bool CallLowering::parametersInCSRMatch( 1141 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 1142 const SmallVectorImpl<CCValAssign> &OutLocs, 1143 const SmallVectorImpl<ArgInfo> &OutArgs) const { 1144 for (unsigned i = 0; i < OutLocs.size(); ++i) { 1145 const auto &ArgLoc = OutLocs[i]; 1146 // If it's not a register, it's fine. 1147 if (!ArgLoc.isRegLoc()) 1148 continue; 1149 1150 MCRegister PhysReg = ArgLoc.getLocReg(); 1151 1152 // Only look at callee-saved registers. 1153 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 1154 continue; 1155 1156 LLVM_DEBUG( 1157 dbgs() 1158 << "... Call has an argument passed in a callee-saved register.\n"); 1159 1160 // Check if it was copied from. 1161 const ArgInfo &OutInfo = OutArgs[i]; 1162 1163 if (OutInfo.Regs.size() > 1) { 1164 LLVM_DEBUG( 1165 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 1166 return false; 1167 } 1168 1169 // Check if we copy the register, walking through copies from virtual 1170 // registers. Note that getDefIgnoringCopies does not ignore copies from 1171 // physical registers. 1172 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 1173 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 1174 LLVM_DEBUG( 1175 dbgs() 1176 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 1177 return false; 1178 } 1179 1180 // Got a copy. Verify that it's the same as the register we want. 1181 Register CopyRHS = RegDef->getOperand(1).getReg(); 1182 if (CopyRHS != PhysReg) { 1183 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 1184 "VReg, cannot tail call.\n"); 1185 return false; 1186 } 1187 } 1188 1189 return true; 1190 } 1191 1192 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 1193 MachineFunction &MF, 1194 SmallVectorImpl<ArgInfo> &InArgs, 1195 ValueAssigner &CalleeAssigner, 1196 ValueAssigner &CallerAssigner) const { 1197 const Function &F = MF.getFunction(); 1198 CallingConv::ID CalleeCC = Info.CallConv; 1199 CallingConv::ID CallerCC = F.getCallingConv(); 1200 1201 if (CallerCC == CalleeCC) 1202 return true; 1203 1204 SmallVector<CCValAssign, 16> ArgLocs1; 1205 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 1206 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 1207 return false; 1208 1209 SmallVector<CCValAssign, 16> ArgLocs2; 1210 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 1211 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 1212 return false; 1213 1214 // We need the argument locations to match up exactly. If there's more in 1215 // one than the other, then we are done. 1216 if (ArgLocs1.size() != ArgLocs2.size()) 1217 return false; 1218 1219 // Make sure that each location is passed in exactly the same way. 1220 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1221 const CCValAssign &Loc1 = ArgLocs1[i]; 1222 const CCValAssign &Loc2 = ArgLocs2[i]; 1223 1224 // We need both of them to be the same. So if one is a register and one 1225 // isn't, we're done. 1226 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1227 return false; 1228 1229 if (Loc1.isRegLoc()) { 1230 // If they don't have the same register location, we're done. 1231 if (Loc1.getLocReg() != Loc2.getLocReg()) 1232 return false; 1233 1234 // They matched, so we can move to the next ArgLoc. 1235 continue; 1236 } 1237 1238 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1239 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1240 return false; 1241 } 1242 1243 return true; 1244 } 1245 1246 LLT CallLowering::ValueHandler::getStackValueStoreType( 1247 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1248 const MVT ValVT = VA.getValVT(); 1249 if (ValVT != MVT::iPTR) { 1250 LLT ValTy(ValVT); 1251 1252 // We lost the pointeriness going through CCValAssign, so try to restore it 1253 // based on the flags. 1254 if (Flags.isPointer()) { 1255 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1256 ValTy.getScalarSizeInBits()); 1257 if (ValVT.isVector()) 1258 return LLT::vector(ValTy.getElementCount(), PtrTy); 1259 return PtrTy; 1260 } 1261 1262 return ValTy; 1263 } 1264 1265 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1266 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1267 } 1268 1269 void CallLowering::ValueHandler::copyArgumentMemory( 1270 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1271 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1272 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1273 CCValAssign &VA) const { 1274 MachineFunction &MF = MIRBuilder.getMF(); 1275 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1276 SrcPtrInfo, 1277 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1278 SrcAlign); 1279 1280 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1281 DstPtrInfo, 1282 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1283 MemSize, DstAlign); 1284 1285 const LLT PtrTy = MRI.getType(DstPtr); 1286 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1287 1288 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1289 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1290 } 1291 1292 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1293 const CCValAssign &VA, 1294 unsigned MaxSizeBits) { 1295 LLT LocTy{VA.getLocVT()}; 1296 LLT ValTy{VA.getValVT()}; 1297 1298 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1299 return ValReg; 1300 1301 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1302 if (MaxSizeBits <= ValTy.getSizeInBits()) 1303 return ValReg; 1304 LocTy = LLT::scalar(MaxSizeBits); 1305 } 1306 1307 const LLT ValRegTy = MRI.getType(ValReg); 1308 if (ValRegTy.isPointer()) { 1309 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1310 // we have to cast to do the extension. 1311 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1312 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1313 } 1314 1315 switch (VA.getLocInfo()) { 1316 default: 1317 break; 1318 case CCValAssign::Full: 1319 case CCValAssign::BCvt: 1320 // FIXME: bitconverting between vector types may or may not be a 1321 // nop in big-endian situations. 1322 return ValReg; 1323 case CCValAssign::AExt: { 1324 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1325 return MIB.getReg(0); 1326 } 1327 case CCValAssign::SExt: { 1328 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1329 MIRBuilder.buildSExt(NewReg, ValReg); 1330 return NewReg; 1331 } 1332 case CCValAssign::ZExt: { 1333 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1334 MIRBuilder.buildZExt(NewReg, ValReg); 1335 return NewReg; 1336 } 1337 } 1338 llvm_unreachable("unable to extend register"); 1339 } 1340 1341 void CallLowering::ValueAssigner::anchor() {} 1342 1343 Register CallLowering::IncomingValueHandler::buildExtensionHint( 1344 const CCValAssign &VA, Register SrcReg, LLT NarrowTy) { 1345 switch (VA.getLocInfo()) { 1346 case CCValAssign::LocInfo::ZExt: { 1347 return MIRBuilder 1348 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1349 NarrowTy.getScalarSizeInBits()) 1350 .getReg(0); 1351 } 1352 case CCValAssign::LocInfo::SExt: { 1353 return MIRBuilder 1354 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1355 NarrowTy.getScalarSizeInBits()) 1356 .getReg(0); 1357 break; 1358 } 1359 default: 1360 return SrcReg; 1361 } 1362 } 1363 1364 /// Check if we can use a basic COPY instruction between the two types. 1365 /// 1366 /// We're currently building on top of the infrastructure using MVT, which loses 1367 /// pointer information in the CCValAssign. We accept copies from physical 1368 /// registers that have been reported as integers if it's to an equivalent sized 1369 /// pointer LLT. 1370 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1371 if (SrcTy == DstTy) 1372 return true; 1373 1374 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1375 return false; 1376 1377 SrcTy = SrcTy.getScalarType(); 1378 DstTy = DstTy.getScalarType(); 1379 1380 return (SrcTy.isPointer() && DstTy.isScalar()) || 1381 (DstTy.isPointer() && SrcTy.isScalar()); 1382 } 1383 1384 void CallLowering::IncomingValueHandler::assignValueToReg( 1385 Register ValVReg, Register PhysReg, const CCValAssign &VA) { 1386 const MVT LocVT = VA.getLocVT(); 1387 const LLT LocTy(LocVT); 1388 const LLT RegTy = MRI.getType(ValVReg); 1389 1390 if (isCopyCompatibleType(RegTy, LocTy)) { 1391 MIRBuilder.buildCopy(ValVReg, PhysReg); 1392 return; 1393 } 1394 1395 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1396 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1397 MIRBuilder.buildTrunc(ValVReg, Hint); 1398 } 1399