1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 15 #include "llvm/CodeGen/Analysis.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 #define DEBUG_TYPE "call-lowering" 29 30 using namespace llvm; 31 32 void CallLowering::anchor() {} 33 34 /// Helper function which updates \p Flags when \p AttrFn returns true. 35 static void 36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 37 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 38 if (AttrFn(Attribute::SExt)) 39 Flags.setSExt(); 40 if (AttrFn(Attribute::ZExt)) 41 Flags.setZExt(); 42 if (AttrFn(Attribute::InReg)) 43 Flags.setInReg(); 44 if (AttrFn(Attribute::StructRet)) 45 Flags.setSRet(); 46 if (AttrFn(Attribute::Nest)) 47 Flags.setNest(); 48 if (AttrFn(Attribute::ByVal)) 49 Flags.setByVal(); 50 if (AttrFn(Attribute::Preallocated)) 51 Flags.setPreallocated(); 52 if (AttrFn(Attribute::InAlloca)) 53 Flags.setInAlloca(); 54 if (AttrFn(Attribute::Returned)) 55 Flags.setReturned(); 56 if (AttrFn(Attribute::SwiftSelf)) 57 Flags.setSwiftSelf(); 58 if (AttrFn(Attribute::SwiftAsync)) 59 Flags.setSwiftAsync(); 60 if (AttrFn(Attribute::SwiftError)) 61 Flags.setSwiftError(); 62 } 63 64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 65 unsigned ArgIdx) const { 66 ISD::ArgFlagsTy Flags; 67 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 68 return Call.paramHasAttr(ArgIdx, Attr); 69 }); 70 return Flags; 71 } 72 73 ISD::ArgFlagsTy 74 CallLowering::getAttributesForReturn(const CallBase &Call) const { 75 ISD::ArgFlagsTy Flags; 76 addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) { 77 return Call.hasRetAttr(Attr); 78 }); 79 return Flags; 80 } 81 82 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 83 const AttributeList &Attrs, 84 unsigned OpIdx) const { 85 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 86 return Attrs.hasAttributeAtIndex(OpIdx, Attr); 87 }); 88 } 89 90 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 91 ArrayRef<Register> ResRegs, 92 ArrayRef<ArrayRef<Register>> ArgRegs, 93 Register SwiftErrorVReg, 94 std::function<unsigned()> GetCalleeReg) const { 95 CallLoweringInfo Info; 96 const DataLayout &DL = MIRBuilder.getDataLayout(); 97 MachineFunction &MF = MIRBuilder.getMF(); 98 MachineRegisterInfo &MRI = MF.getRegInfo(); 99 bool CanBeTailCalled = CB.isTailCall() && 100 isInTailCallPosition(CB, MF.getTarget()) && 101 (MF.getFunction() 102 .getFnAttribute("disable-tail-calls") 103 .getValueAsString() != "true"); 104 105 CallingConv::ID CallConv = CB.getCallingConv(); 106 Type *RetTy = CB.getType(); 107 bool IsVarArg = CB.getFunctionType()->isVarArg(); 108 109 SmallVector<BaseArgInfo, 4> SplitArgs; 110 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 111 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 112 113 Info.IsConvergent = CB.isConvergent(); 114 115 if (!Info.CanLowerReturn) { 116 // Callee requires sret demotion. 117 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 118 119 // The sret demotion isn't compatible with tail-calls, since the sret 120 // argument points into the caller's stack frame. 121 CanBeTailCalled = false; 122 } 123 124 125 // First step is to marshall all the function's parameters into the correct 126 // physregs and memory locations. Gather the sequence of argument types that 127 // we'll pass to the assigner function. 128 unsigned i = 0; 129 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 130 for (const auto &Arg : CB.args()) { 131 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 132 i < NumFixedArgs}; 133 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 134 135 // If we have an explicit sret argument that is an Instruction, (i.e., it 136 // might point to function-local memory), we can't meaningfully tail-call. 137 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 138 CanBeTailCalled = false; 139 140 Info.OrigArgs.push_back(OrigArg); 141 ++i; 142 } 143 144 // Try looking through a bitcast from one function type to another. 145 // Commonly happens with calls to objc_msgSend(). 146 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 147 if (const Function *F = dyn_cast<Function>(CalleeV)) 148 Info.Callee = MachineOperand::CreateGA(F, 0); 149 else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) { 150 // IR IFuncs and Aliases can't be forward declared (only defined), so the 151 // callee must be in the same TU and therefore we can direct-call it without 152 // worrying about it being out of range. 153 Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0); 154 } else 155 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 156 157 Register ReturnHintAlignReg; 158 Align ReturnHintAlign; 159 160 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)}; 161 162 if (!Info.OrigRet.Ty->isVoidTy()) { 163 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 164 165 if (MaybeAlign Alignment = CB.getRetAlign()) { 166 if (*Alignment > Align(1)) { 167 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]); 168 Info.OrigRet.Regs[0] = ReturnHintAlignReg; 169 ReturnHintAlign = *Alignment; 170 } 171 } 172 } 173 174 auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi); 175 if (Bundle && CB.isIndirectCall()) { 176 Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 177 assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 178 } 179 180 Info.CB = &CB; 181 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 182 Info.CallConv = CallConv; 183 Info.SwiftErrorVReg = SwiftErrorVReg; 184 Info.IsMustTailCall = CB.isMustTailCall(); 185 Info.IsTailCall = CanBeTailCalled; 186 Info.IsVarArg = IsVarArg; 187 if (!lowerCall(MIRBuilder, Info)) 188 return false; 189 190 if (ReturnHintAlignReg && !Info.IsTailCall) { 191 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg, 192 ReturnHintAlign); 193 } 194 195 return true; 196 } 197 198 template <typename FuncInfoTy> 199 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 200 const DataLayout &DL, 201 const FuncInfoTy &FuncInfo) const { 202 auto &Flags = Arg.Flags[0]; 203 const AttributeList &Attrs = FuncInfo.getAttributes(); 204 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 205 206 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 207 if (PtrTy) { 208 Flags.setPointer(); 209 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 210 } 211 212 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 213 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 214 assert(OpIdx >= AttributeList::FirstArgIndex); 215 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; 216 217 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); 218 if (!ElementTy) 219 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); 220 if (!ElementTy) 221 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); 222 assert(ElementTy && "Must have byval, inalloca or preallocated type"); 223 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 224 225 // For ByVal, alignment should be passed from FE. BE will guess if 226 // this info is not there but there are cases it cannot get right. 227 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) 228 MemAlign = *ParamAlign; 229 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) 230 MemAlign = *ParamAlign; 231 else 232 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 233 } else if (OpIdx >= AttributeList::FirstArgIndex) { 234 if (auto ParamAlign = 235 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 236 MemAlign = *ParamAlign; 237 } 238 Flags.setMemAlign(MemAlign); 239 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 240 241 // Don't try to use the returned attribute if the argument is marked as 242 // swiftself, since it won't be passed in x0. 243 if (Flags.isSwiftSelf()) 244 Flags.setReturned(false); 245 } 246 247 template void 248 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 249 const DataLayout &DL, 250 const Function &FuncInfo) const; 251 252 template void 253 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 254 const DataLayout &DL, 255 const CallBase &FuncInfo) const; 256 257 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 258 SmallVectorImpl<ArgInfo> &SplitArgs, 259 const DataLayout &DL, 260 CallingConv::ID CallConv, 261 SmallVectorImpl<uint64_t> *Offsets) const { 262 LLVMContext &Ctx = OrigArg.Ty->getContext(); 263 264 SmallVector<EVT, 4> SplitVTs; 265 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 266 267 if (SplitVTs.size() == 0) 268 return; 269 270 if (SplitVTs.size() == 1) { 271 // No splitting to do, but we want to replace the original type (e.g. [1 x 272 // double] -> double). 273 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 274 OrigArg.OrigArgIndex, OrigArg.Flags[0], 275 OrigArg.IsFixed, OrigArg.OrigValue); 276 return; 277 } 278 279 // Create one ArgInfo for each virtual register in the original ArgInfo. 280 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 281 282 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 283 OrigArg.Ty, CallConv, false, DL); 284 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 285 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 286 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 287 OrigArg.Flags[0], OrigArg.IsFixed); 288 if (NeedsRegBlock) 289 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 290 } 291 292 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 293 } 294 295 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 296 static MachineInstrBuilder 297 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 298 ArrayRef<Register> SrcRegs) { 299 MachineRegisterInfo &MRI = *B.getMRI(); 300 LLT LLTy = MRI.getType(DstRegs[0]); 301 LLT PartLLT = MRI.getType(SrcRegs[0]); 302 303 // Deal with v3s16 split into v2s16 304 LLT LCMTy = getCoverTy(LLTy, PartLLT); 305 if (LCMTy == LLTy) { 306 // Common case where no padding is needed. 307 assert(DstRegs.size() == 1); 308 return B.buildConcatVectors(DstRegs[0], SrcRegs); 309 } 310 311 // We need to create an unmerge to the result registers, which may require 312 // widening the original value. 313 Register UnmergeSrcReg; 314 if (LCMTy != PartLLT) { 315 assert(DstRegs.size() == 1); 316 return B.buildDeleteTrailingVectorElements( 317 DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs)); 318 } else { 319 // We don't need to widen anything if we're extracting a scalar which was 320 // promoted to a vector e.g. s8 -> v4s8 -> s8 321 assert(SrcRegs.size() == 1); 322 UnmergeSrcReg = SrcRegs[0]; 323 } 324 325 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 326 327 SmallVector<Register, 8> PadDstRegs(NumDst); 328 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 329 330 // Create the excess dead defs for the unmerge. 331 for (int I = DstRegs.size(); I != NumDst; ++I) 332 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 333 334 if (PadDstRegs.size() == 1) 335 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg); 336 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 337 } 338 339 /// Create a sequence of instructions to combine pieces split into register 340 /// typed values to the original IR value. \p OrigRegs contains the destination 341 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 342 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 343 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 344 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 345 const ISD::ArgFlagsTy Flags) { 346 MachineRegisterInfo &MRI = *B.getMRI(); 347 348 if (PartLLT == LLTy) { 349 // We should have avoided introducing a new virtual register, and just 350 // directly assigned here. 351 assert(OrigRegs[0] == Regs[0]); 352 return; 353 } 354 355 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 356 Regs.size() == 1) { 357 B.buildBitcast(OrigRegs[0], Regs[0]); 358 return; 359 } 360 361 // A vector PartLLT needs extending to LLTy's element size. 362 // E.g. <2 x s64> = G_SEXT <2 x s32>. 363 if (PartLLT.isVector() == LLTy.isVector() && 364 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 365 (!PartLLT.isVector() || 366 PartLLT.getElementCount() == LLTy.getElementCount()) && 367 OrigRegs.size() == 1 && Regs.size() == 1) { 368 Register SrcReg = Regs[0]; 369 370 LLT LocTy = MRI.getType(SrcReg); 371 372 if (Flags.isSExt()) { 373 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 374 .getReg(0); 375 } else if (Flags.isZExt()) { 376 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 377 .getReg(0); 378 } 379 380 // Sometimes pointers are passed zero extended. 381 LLT OrigTy = MRI.getType(OrigRegs[0]); 382 if (OrigTy.isPointer()) { 383 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 384 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 385 return; 386 } 387 388 B.buildTrunc(OrigRegs[0], SrcReg); 389 return; 390 } 391 392 if (!LLTy.isVector() && !PartLLT.isVector()) { 393 assert(OrigRegs.size() == 1); 394 LLT OrigTy = MRI.getType(OrigRegs[0]); 395 396 unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size(); 397 if (SrcSize == OrigTy.getSizeInBits()) 398 B.buildMergeValues(OrigRegs[0], Regs); 399 else { 400 auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs); 401 B.buildTrunc(OrigRegs[0], Widened); 402 } 403 404 return; 405 } 406 407 if (PartLLT.isVector()) { 408 assert(OrigRegs.size() == 1); 409 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 410 411 // If PartLLT is a mismatched vector in both number of elements and element 412 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 413 // have the same elt type, i.e. v4s32. 414 // TODO: Extend this coersion to element multiples other than just 2. 415 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && 416 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 417 Regs.size() == 1) { 418 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 419 .changeElementCount(PartLLT.getElementCount() * 2); 420 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 421 PartLLT = NewTy; 422 } 423 424 if (LLTy.getScalarType() == PartLLT.getElementType()) { 425 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 426 } else { 427 unsigned I = 0; 428 LLT GCDTy = getGCDType(LLTy, PartLLT); 429 430 // We are both splitting a vector, and bitcasting its element types. Cast 431 // the source pieces into the appropriate number of pieces with the result 432 // element type. 433 for (Register SrcReg : CastRegs) 434 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 435 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 436 } 437 438 return; 439 } 440 441 assert(LLTy.isVector() && !PartLLT.isVector()); 442 443 LLT DstEltTy = LLTy.getElementType(); 444 445 // Pointer information was discarded. We'll need to coerce some register types 446 // to avoid violating type constraints. 447 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 448 449 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 450 451 if (DstEltTy == PartLLT) { 452 // Vector was trivially scalarized. 453 454 if (RealDstEltTy.isPointer()) { 455 for (Register Reg : Regs) 456 MRI.setType(Reg, RealDstEltTy); 457 } 458 459 B.buildBuildVector(OrigRegs[0], Regs); 460 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 461 // Deal with vector with 64-bit elements decomposed to 32-bit 462 // registers. Need to create intermediate 64-bit elements. 463 SmallVector<Register, 8> EltMerges; 464 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 465 466 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 467 468 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 469 auto Merge = 470 B.buildMergeLikeInstr(RealDstEltTy, Regs.take_front(PartsPerElt)); 471 // Fix the type in case this is really a vector of pointers. 472 MRI.setType(Merge.getReg(0), RealDstEltTy); 473 EltMerges.push_back(Merge.getReg(0)); 474 Regs = Regs.drop_front(PartsPerElt); 475 } 476 477 B.buildBuildVector(OrigRegs[0], EltMerges); 478 } else { 479 // Vector was split, and elements promoted to a wider type. 480 // FIXME: Should handle floating point promotions. 481 unsigned NumElts = LLTy.getNumElements(); 482 LLT BVType = LLT::fixed_vector(NumElts, PartLLT); 483 484 Register BuildVec; 485 if (NumElts == Regs.size()) 486 BuildVec = B.buildBuildVector(BVType, Regs).getReg(0); 487 else { 488 // Vector elements are packed in the inputs. 489 // e.g. we have a <4 x s16> but 2 x s32 in regs. 490 assert(NumElts > Regs.size()); 491 LLT SrcEltTy = MRI.getType(Regs[0]); 492 493 LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType(); 494 495 // Input registers contain packed elements. 496 // Determine how many elements per reg. 497 assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0); 498 unsigned EltPerReg = 499 (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits()); 500 501 SmallVector<Register, 0> BVRegs; 502 BVRegs.reserve(Regs.size() * EltPerReg); 503 for (Register R : Regs) { 504 auto Unmerge = B.buildUnmerge(OriginalEltTy, R); 505 for (unsigned K = 0; K < EltPerReg; ++K) 506 BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0)); 507 } 508 509 // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces 510 // for a <3 x s16> vector. We should have less than EltPerReg extra items. 511 if (BVRegs.size() > NumElts) { 512 assert((BVRegs.size() - NumElts) < EltPerReg); 513 BVRegs.truncate(NumElts); 514 } 515 BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0); 516 } 517 B.buildTrunc(OrigRegs[0], BuildVec); 518 } 519 } 520 521 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 522 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 523 /// contain the type of scalar value extension if necessary. 524 /// 525 /// This is used for outgoing values (vregs to physregs) 526 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 527 Register SrcReg, LLT SrcTy, LLT PartTy, 528 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 529 // We could just insert a regular copy, but this is unreachable at the moment. 530 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 531 532 const unsigned PartSize = PartTy.getSizeInBits(); 533 534 if (PartTy.isVector() == SrcTy.isVector() && 535 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 536 assert(DstRegs.size() == 1); 537 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 538 return; 539 } 540 541 if (SrcTy.isVector() && !PartTy.isVector() && 542 PartSize > SrcTy.getElementType().getSizeInBits()) { 543 // Vector was scalarized, and the elements extended. 544 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 545 for (int i = 0, e = DstRegs.size(); i != e; ++i) 546 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 547 return; 548 } 549 550 if (SrcTy.isVector() && PartTy.isVector() && 551 PartTy.getScalarSizeInBits() == SrcTy.getScalarSizeInBits() && 552 SrcTy.getNumElements() < PartTy.getNumElements()) { 553 // A coercion like: v2f32 -> v4f32. 554 Register DstReg = DstRegs.front(); 555 B.buildPadVectorWithUndefElements(DstReg, SrcReg); 556 return; 557 } 558 559 LLT GCDTy = getGCDType(SrcTy, PartTy); 560 if (GCDTy == PartTy) { 561 // If this already evenly divisible, we can create a simple unmerge. 562 B.buildUnmerge(DstRegs, SrcReg); 563 return; 564 } 565 566 MachineRegisterInfo &MRI = *B.getMRI(); 567 LLT DstTy = MRI.getType(DstRegs[0]); 568 LLT LCMTy = getCoverTy(SrcTy, PartTy); 569 570 if (PartTy.isVector() && LCMTy == PartTy) { 571 assert(DstRegs.size() == 1); 572 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg); 573 return; 574 } 575 576 const unsigned DstSize = DstTy.getSizeInBits(); 577 const unsigned SrcSize = SrcTy.getSizeInBits(); 578 unsigned CoveringSize = LCMTy.getSizeInBits(); 579 580 Register UnmergeSrc = SrcReg; 581 582 if (!LCMTy.isVector() && CoveringSize != SrcSize) { 583 // For scalars, it's common to be able to use a simple extension. 584 if (SrcTy.isScalar() && DstTy.isScalar()) { 585 CoveringSize = alignTo(SrcSize, DstSize); 586 LLT CoverTy = LLT::scalar(CoveringSize); 587 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 588 } else { 589 // Widen to the common type. 590 // FIXME: This should respect the extend type 591 Register Undef = B.buildUndef(SrcTy).getReg(0); 592 SmallVector<Register, 8> MergeParts(1, SrcReg); 593 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 594 MergeParts.push_back(Undef); 595 UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0); 596 } 597 } 598 599 if (LCMTy.isVector() && CoveringSize != SrcSize) 600 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0); 601 602 B.buildUnmerge(DstRegs, UnmergeSrc); 603 } 604 605 bool CallLowering::determineAndHandleAssignments( 606 ValueHandler &Handler, ValueAssigner &Assigner, 607 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 608 CallingConv::ID CallConv, bool IsVarArg, 609 ArrayRef<Register> ThisReturnRegs) const { 610 MachineFunction &MF = MIRBuilder.getMF(); 611 const Function &F = MF.getFunction(); 612 SmallVector<CCValAssign, 16> ArgLocs; 613 614 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 615 if (!determineAssignments(Assigner, Args, CCInfo)) 616 return false; 617 618 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 619 ThisReturnRegs); 620 } 621 622 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 623 if (Flags.isSExt()) 624 return TargetOpcode::G_SEXT; 625 if (Flags.isZExt()) 626 return TargetOpcode::G_ZEXT; 627 return TargetOpcode::G_ANYEXT; 628 } 629 630 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 631 SmallVectorImpl<ArgInfo> &Args, 632 CCState &CCInfo) const { 633 LLVMContext &Ctx = CCInfo.getContext(); 634 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 635 636 unsigned NumArgs = Args.size(); 637 for (unsigned i = 0; i != NumArgs; ++i) { 638 EVT CurVT = EVT::getEVT(Args[i].Ty); 639 640 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 641 642 // If we need to split the type over multiple regs, check it's a scenario 643 // we currently support. 644 unsigned NumParts = 645 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 646 647 if (NumParts == 1) { 648 // Try to use the register type if we couldn't assign the VT. 649 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 650 Args[i].Flags[0], CCInfo)) 651 return false; 652 continue; 653 } 654 655 // For incoming arguments (physregs to vregs), we could have values in 656 // physregs (or memlocs) which we want to extract and copy to vregs. 657 // During this, we might have to deal with the LLT being split across 658 // multiple regs, so we have to record this information for later. 659 // 660 // If we have outgoing args, then we have the opposite case. We have a 661 // vreg with an LLT which we want to assign to a physical location, and 662 // we might have to record that the value has to be split later. 663 664 // We're handling an incoming arg which is split over multiple regs. 665 // E.g. passing an s128 on AArch64. 666 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 667 Args[i].Flags.clear(); 668 669 for (unsigned Part = 0; Part < NumParts; ++Part) { 670 ISD::ArgFlagsTy Flags = OrigFlags; 671 if (Part == 0) { 672 Flags.setSplit(); 673 } else { 674 Flags.setOrigAlign(Align(1)); 675 if (Part == NumParts - 1) 676 Flags.setSplitEnd(); 677 } 678 679 Args[i].Flags.push_back(Flags); 680 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 681 Args[i].Flags[Part], CCInfo)) { 682 // Still couldn't assign this smaller part type for some reason. 683 return false; 684 } 685 } 686 } 687 688 return true; 689 } 690 691 bool CallLowering::handleAssignments(ValueHandler &Handler, 692 SmallVectorImpl<ArgInfo> &Args, 693 CCState &CCInfo, 694 SmallVectorImpl<CCValAssign> &ArgLocs, 695 MachineIRBuilder &MIRBuilder, 696 ArrayRef<Register> ThisReturnRegs) const { 697 MachineFunction &MF = MIRBuilder.getMF(); 698 MachineRegisterInfo &MRI = MF.getRegInfo(); 699 const Function &F = MF.getFunction(); 700 const DataLayout &DL = F.getParent()->getDataLayout(); 701 702 const unsigned NumArgs = Args.size(); 703 704 // Stores thunks for outgoing register assignments. This is used so we delay 705 // generating register copies until mem loc assignments are done. We do this 706 // so that if the target is using the delayed stack protector feature, we can 707 // find the split point of the block accurately. E.g. if we have: 708 // G_STORE %val, %memloc 709 // $x0 = COPY %foo 710 // $x1 = COPY %bar 711 // CALL func 712 // ... then the split point for the block will correctly be at, and including, 713 // the copy to $x0. If instead the G_STORE instruction immediately precedes 714 // the CALL, then we'd prematurely choose the CALL as the split point, thus 715 // generating a split block with a CALL that uses undefined physregs. 716 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments; 717 718 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 719 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 720 CCValAssign &VA = ArgLocs[j]; 721 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 722 723 if (VA.needsCustom()) { 724 std::function<void()> Thunk; 725 unsigned NumArgRegs = Handler.assignCustomValue( 726 Args[i], ArrayRef(ArgLocs).slice(j), &Thunk); 727 if (Thunk) 728 DelayedOutgoingRegAssignments.emplace_back(Thunk); 729 if (!NumArgRegs) 730 return false; 731 j += (NumArgRegs - 1); 732 continue; 733 } 734 735 const MVT ValVT = VA.getValVT(); 736 const MVT LocVT = VA.getLocVT(); 737 738 const LLT LocTy(LocVT); 739 const LLT ValTy(ValVT); 740 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 741 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 742 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 743 744 // Expected to be multiple regs for a single incoming arg. 745 // There should be Regs.size() ArgLocs per argument. 746 // This should be the same as getNumRegistersForCallingConv 747 const unsigned NumParts = Args[i].Flags.size(); 748 749 // Now split the registers into the assigned types. 750 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 751 752 if (NumParts != 1 || NewLLT != OrigTy) { 753 // If we can't directly assign the register, we need one or more 754 // intermediate values. 755 Args[i].Regs.resize(NumParts); 756 757 // For each split register, create and assign a vreg that will store 758 // the incoming component of the larger value. These will later be 759 // merged to form the final vreg. 760 for (unsigned Part = 0; Part < NumParts; ++Part) 761 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 762 } 763 764 assert((j + (NumParts - 1)) < ArgLocs.size() && 765 "Too many regs for number of args"); 766 767 // Coerce into outgoing value types before register assignment. 768 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 769 assert(Args[i].OrigRegs.size() == 1); 770 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 771 ValTy, extendOpFromFlags(Args[i].Flags[0])); 772 } 773 774 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL); 775 for (unsigned Part = 0; Part < NumParts; ++Part) { 776 Register ArgReg = Args[i].Regs[Part]; 777 // There should be Regs.size() ArgLocs per argument. 778 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part; 779 CCValAssign &VA = ArgLocs[j + Idx]; 780 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 781 782 if (VA.isMemLoc() && !Flags.isByVal()) { 783 // Individual pieces may have been spilled to the stack and others 784 // passed in registers. 785 786 // TODO: The memory size may be larger than the value we need to 787 // store. We may need to adjust the offset for big endian targets. 788 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 789 790 MachinePointerInfo MPO; 791 Register StackAddr = Handler.getStackAddress( 792 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 793 794 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 795 continue; 796 } 797 798 if (VA.isMemLoc() && Flags.isByVal()) { 799 assert(Args[i].Regs.size() == 1 && 800 "didn't expect split byval pointer"); 801 802 if (Handler.isIncomingArgumentHandler()) { 803 // We just need to copy the frame index value to the pointer. 804 MachinePointerInfo MPO; 805 Register StackAddr = Handler.getStackAddress( 806 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 807 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 808 } else { 809 // For outgoing byval arguments, insert the implicit copy byval 810 // implies, such that writes in the callee do not modify the caller's 811 // value. 812 uint64_t MemSize = Flags.getByValSize(); 813 int64_t Offset = VA.getLocMemOffset(); 814 815 MachinePointerInfo DstMPO; 816 Register StackAddr = 817 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 818 819 MachinePointerInfo SrcMPO(Args[i].OrigValue); 820 if (!Args[i].OrigValue) { 821 // We still need to accurately track the stack address space if we 822 // don't know the underlying value. 823 const LLT PtrTy = MRI.getType(StackAddr); 824 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 825 } 826 827 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 828 inferAlignFromPtrInfo(MF, DstMPO)); 829 830 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 831 inferAlignFromPtrInfo(MF, SrcMPO)); 832 833 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 834 DstMPO, DstAlign, SrcMPO, SrcAlign, 835 MemSize, VA); 836 } 837 continue; 838 } 839 840 assert(!VA.needsCustom() && "custom loc should have been handled already"); 841 842 if (i == 0 && !ThisReturnRegs.empty() && 843 Handler.isIncomingArgumentHandler() && 844 isTypeIsValidForThisReturn(ValVT)) { 845 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA); 846 continue; 847 } 848 849 if (Handler.isIncomingArgumentHandler()) 850 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 851 else { 852 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { 853 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 854 }); 855 } 856 } 857 858 // Now that all pieces have been assigned, re-pack the register typed values 859 // into the original value typed registers. 860 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 861 // Merge the split registers into the expected larger result vregs of 862 // the original call. 863 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 864 LocTy, Args[i].Flags[0]); 865 } 866 867 j += NumParts - 1; 868 } 869 for (auto &Fn : DelayedOutgoingRegAssignments) 870 Fn(); 871 872 return true; 873 } 874 875 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 876 ArrayRef<Register> VRegs, Register DemoteReg, 877 int FI) const { 878 MachineFunction &MF = MIRBuilder.getMF(); 879 MachineRegisterInfo &MRI = MF.getRegInfo(); 880 const DataLayout &DL = MF.getDataLayout(); 881 882 SmallVector<EVT, 4> SplitVTs; 883 SmallVector<uint64_t, 4> Offsets; 884 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 885 886 assert(VRegs.size() == SplitVTs.size()); 887 888 unsigned NumValues = SplitVTs.size(); 889 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 890 Type *RetPtrTy = 891 PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace()); 892 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL); 893 894 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 895 896 for (unsigned I = 0; I < NumValues; ++I) { 897 Register Addr; 898 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 899 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 900 MRI.getType(VRegs[I]), 901 commonAlignment(BaseAlign, Offsets[I])); 902 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 903 } 904 } 905 906 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 907 ArrayRef<Register> VRegs, 908 Register DemoteReg) const { 909 MachineFunction &MF = MIRBuilder.getMF(); 910 MachineRegisterInfo &MRI = MF.getRegInfo(); 911 const DataLayout &DL = MF.getDataLayout(); 912 913 SmallVector<EVT, 4> SplitVTs; 914 SmallVector<uint64_t, 4> Offsets; 915 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 916 917 assert(VRegs.size() == SplitVTs.size()); 918 919 unsigned NumValues = SplitVTs.size(); 920 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 921 unsigned AS = DL.getAllocaAddrSpace(); 922 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL); 923 924 MachinePointerInfo PtrInfo(AS); 925 926 for (unsigned I = 0; I < NumValues; ++I) { 927 Register Addr; 928 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 929 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 930 MRI.getType(VRegs[I]), 931 commonAlignment(BaseAlign, Offsets[I])); 932 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 933 } 934 } 935 936 void CallLowering::insertSRetIncomingArgument( 937 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 938 MachineRegisterInfo &MRI, const DataLayout &DL) const { 939 unsigned AS = DL.getAllocaAddrSpace(); 940 DemoteReg = MRI.createGenericVirtualRegister( 941 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 942 943 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 944 945 SmallVector<EVT, 1> ValueVTs; 946 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 947 948 // NOTE: Assume that a pointer won't get split into more than one VT. 949 assert(ValueVTs.size() == 1); 950 951 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 952 ArgInfo::NoArgIndex); 953 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 954 DemoteArg.Flags[0].setSRet(); 955 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 956 } 957 958 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 959 const CallBase &CB, 960 CallLoweringInfo &Info) const { 961 const DataLayout &DL = MIRBuilder.getDataLayout(); 962 Type *RetTy = CB.getType(); 963 unsigned AS = DL.getAllocaAddrSpace(); 964 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 965 966 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 967 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 968 969 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 970 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 971 ArgInfo::NoArgIndex); 972 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 973 DemoteArg.Flags[0].setSRet(); 974 975 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 976 Info.DemoteStackIndex = FI; 977 Info.DemoteRegister = DemoteReg; 978 } 979 980 bool CallLowering::checkReturn(CCState &CCInfo, 981 SmallVectorImpl<BaseArgInfo> &Outs, 982 CCAssignFn *Fn) const { 983 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 984 MVT VT = MVT::getVT(Outs[I].Ty); 985 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 986 return false; 987 } 988 return true; 989 } 990 991 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 992 AttributeList Attrs, 993 SmallVectorImpl<BaseArgInfo> &Outs, 994 const DataLayout &DL) const { 995 LLVMContext &Context = RetTy->getContext(); 996 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 997 998 SmallVector<EVT, 4> SplitVTs; 999 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 1000 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 1001 1002 for (EVT VT : SplitVTs) { 1003 unsigned NumParts = 1004 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 1005 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 1006 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 1007 1008 for (unsigned I = 0; I < NumParts; ++I) { 1009 Outs.emplace_back(PartTy, Flags); 1010 } 1011 } 1012 } 1013 1014 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 1015 const auto &F = MF.getFunction(); 1016 Type *ReturnType = F.getReturnType(); 1017 CallingConv::ID CallConv = F.getCallingConv(); 1018 1019 SmallVector<BaseArgInfo, 4> SplitArgs; 1020 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 1021 MF.getDataLayout()); 1022 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 1023 } 1024 1025 bool CallLowering::parametersInCSRMatch( 1026 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 1027 const SmallVectorImpl<CCValAssign> &OutLocs, 1028 const SmallVectorImpl<ArgInfo> &OutArgs) const { 1029 for (unsigned i = 0; i < OutLocs.size(); ++i) { 1030 const auto &ArgLoc = OutLocs[i]; 1031 // If it's not a register, it's fine. 1032 if (!ArgLoc.isRegLoc()) 1033 continue; 1034 1035 MCRegister PhysReg = ArgLoc.getLocReg(); 1036 1037 // Only look at callee-saved registers. 1038 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 1039 continue; 1040 1041 LLVM_DEBUG( 1042 dbgs() 1043 << "... Call has an argument passed in a callee-saved register.\n"); 1044 1045 // Check if it was copied from. 1046 const ArgInfo &OutInfo = OutArgs[i]; 1047 1048 if (OutInfo.Regs.size() > 1) { 1049 LLVM_DEBUG( 1050 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 1051 return false; 1052 } 1053 1054 // Check if we copy the register, walking through copies from virtual 1055 // registers. Note that getDefIgnoringCopies does not ignore copies from 1056 // physical registers. 1057 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 1058 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 1059 LLVM_DEBUG( 1060 dbgs() 1061 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 1062 return false; 1063 } 1064 1065 // Got a copy. Verify that it's the same as the register we want. 1066 Register CopyRHS = RegDef->getOperand(1).getReg(); 1067 if (CopyRHS != PhysReg) { 1068 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 1069 "VReg, cannot tail call.\n"); 1070 return false; 1071 } 1072 } 1073 1074 return true; 1075 } 1076 1077 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 1078 MachineFunction &MF, 1079 SmallVectorImpl<ArgInfo> &InArgs, 1080 ValueAssigner &CalleeAssigner, 1081 ValueAssigner &CallerAssigner) const { 1082 const Function &F = MF.getFunction(); 1083 CallingConv::ID CalleeCC = Info.CallConv; 1084 CallingConv::ID CallerCC = F.getCallingConv(); 1085 1086 if (CallerCC == CalleeCC) 1087 return true; 1088 1089 SmallVector<CCValAssign, 16> ArgLocs1; 1090 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 1091 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 1092 return false; 1093 1094 SmallVector<CCValAssign, 16> ArgLocs2; 1095 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 1096 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 1097 return false; 1098 1099 // We need the argument locations to match up exactly. If there's more in 1100 // one than the other, then we are done. 1101 if (ArgLocs1.size() != ArgLocs2.size()) 1102 return false; 1103 1104 // Make sure that each location is passed in exactly the same way. 1105 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1106 const CCValAssign &Loc1 = ArgLocs1[i]; 1107 const CCValAssign &Loc2 = ArgLocs2[i]; 1108 1109 // We need both of them to be the same. So if one is a register and one 1110 // isn't, we're done. 1111 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1112 return false; 1113 1114 if (Loc1.isRegLoc()) { 1115 // If they don't have the same register location, we're done. 1116 if (Loc1.getLocReg() != Loc2.getLocReg()) 1117 return false; 1118 1119 // They matched, so we can move to the next ArgLoc. 1120 continue; 1121 } 1122 1123 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1124 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1125 return false; 1126 } 1127 1128 return true; 1129 } 1130 1131 LLT CallLowering::ValueHandler::getStackValueStoreType( 1132 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1133 const MVT ValVT = VA.getValVT(); 1134 if (ValVT != MVT::iPTR) { 1135 LLT ValTy(ValVT); 1136 1137 // We lost the pointeriness going through CCValAssign, so try to restore it 1138 // based on the flags. 1139 if (Flags.isPointer()) { 1140 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1141 ValTy.getScalarSizeInBits()); 1142 if (ValVT.isVector()) 1143 return LLT::vector(ValTy.getElementCount(), PtrTy); 1144 return PtrTy; 1145 } 1146 1147 return ValTy; 1148 } 1149 1150 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1151 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1152 } 1153 1154 void CallLowering::ValueHandler::copyArgumentMemory( 1155 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1156 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1157 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1158 CCValAssign &VA) const { 1159 MachineFunction &MF = MIRBuilder.getMF(); 1160 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1161 SrcPtrInfo, 1162 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1163 SrcAlign); 1164 1165 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1166 DstPtrInfo, 1167 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1168 MemSize, DstAlign); 1169 1170 const LLT PtrTy = MRI.getType(DstPtr); 1171 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1172 1173 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1174 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1175 } 1176 1177 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1178 const CCValAssign &VA, 1179 unsigned MaxSizeBits) { 1180 LLT LocTy{VA.getLocVT()}; 1181 LLT ValTy{VA.getValVT()}; 1182 1183 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1184 return ValReg; 1185 1186 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1187 if (MaxSizeBits <= ValTy.getSizeInBits()) 1188 return ValReg; 1189 LocTy = LLT::scalar(MaxSizeBits); 1190 } 1191 1192 const LLT ValRegTy = MRI.getType(ValReg); 1193 if (ValRegTy.isPointer()) { 1194 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1195 // we have to cast to do the extension. 1196 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1197 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1198 } 1199 1200 switch (VA.getLocInfo()) { 1201 default: break; 1202 case CCValAssign::Full: 1203 case CCValAssign::BCvt: 1204 // FIXME: bitconverting between vector types may or may not be a 1205 // nop in big-endian situations. 1206 return ValReg; 1207 case CCValAssign::AExt: { 1208 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1209 return MIB.getReg(0); 1210 } 1211 case CCValAssign::SExt: { 1212 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1213 MIRBuilder.buildSExt(NewReg, ValReg); 1214 return NewReg; 1215 } 1216 case CCValAssign::ZExt: { 1217 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1218 MIRBuilder.buildZExt(NewReg, ValReg); 1219 return NewReg; 1220 } 1221 } 1222 llvm_unreachable("unable to extend register"); 1223 } 1224 1225 void CallLowering::ValueAssigner::anchor() {} 1226 1227 Register CallLowering::IncomingValueHandler::buildExtensionHint( 1228 const CCValAssign &VA, Register SrcReg, LLT NarrowTy) { 1229 switch (VA.getLocInfo()) { 1230 case CCValAssign::LocInfo::ZExt: { 1231 return MIRBuilder 1232 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1233 NarrowTy.getScalarSizeInBits()) 1234 .getReg(0); 1235 } 1236 case CCValAssign::LocInfo::SExt: { 1237 return MIRBuilder 1238 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1239 NarrowTy.getScalarSizeInBits()) 1240 .getReg(0); 1241 break; 1242 } 1243 default: 1244 return SrcReg; 1245 } 1246 } 1247 1248 /// Check if we can use a basic COPY instruction between the two types. 1249 /// 1250 /// We're currently building on top of the infrastructure using MVT, which loses 1251 /// pointer information in the CCValAssign. We accept copies from physical 1252 /// registers that have been reported as integers if it's to an equivalent sized 1253 /// pointer LLT. 1254 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1255 if (SrcTy == DstTy) 1256 return true; 1257 1258 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1259 return false; 1260 1261 SrcTy = SrcTy.getScalarType(); 1262 DstTy = DstTy.getScalarType(); 1263 1264 return (SrcTy.isPointer() && DstTy.isScalar()) || 1265 (DstTy.isPointer() && SrcTy.isScalar()); 1266 } 1267 1268 void CallLowering::IncomingValueHandler::assignValueToReg( 1269 Register ValVReg, Register PhysReg, const CCValAssign &VA) { 1270 const MVT LocVT = VA.getLocVT(); 1271 const LLT LocTy(LocVT); 1272 const LLT RegTy = MRI.getType(ValVReg); 1273 1274 if (isCopyCompatibleType(RegTy, LocTy)) { 1275 MIRBuilder.buildCopy(ValVReg, PhysReg); 1276 return; 1277 } 1278 1279 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1280 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1281 MIRBuilder.buildTrunc(ValVReg, Hint); 1282 } 1283