xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/Utils.h"
18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
19 #include "llvm/CodeGen/MachineOperand.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Target/TargetMachine.h"
27 
28 #define DEBUG_TYPE "call-lowering"
29 
30 using namespace llvm;
31 
32 void CallLowering::anchor() {}
33 
34 /// Helper function which updates \p Flags when \p AttrFn returns true.
35 static void
36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
37                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
38   if (AttrFn(Attribute::SExt))
39     Flags.setSExt();
40   if (AttrFn(Attribute::ZExt))
41     Flags.setZExt();
42   if (AttrFn(Attribute::InReg))
43     Flags.setInReg();
44   if (AttrFn(Attribute::StructRet))
45     Flags.setSRet();
46   if (AttrFn(Attribute::Nest))
47     Flags.setNest();
48   if (AttrFn(Attribute::ByVal))
49     Flags.setByVal();
50   if (AttrFn(Attribute::Preallocated))
51     Flags.setPreallocated();
52   if (AttrFn(Attribute::InAlloca))
53     Flags.setInAlloca();
54   if (AttrFn(Attribute::Returned))
55     Flags.setReturned();
56   if (AttrFn(Attribute::SwiftSelf))
57     Flags.setSwiftSelf();
58   if (AttrFn(Attribute::SwiftAsync))
59     Flags.setSwiftAsync();
60   if (AttrFn(Attribute::SwiftError))
61     Flags.setSwiftError();
62 }
63 
64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
65                                                      unsigned ArgIdx) const {
66   ISD::ArgFlagsTy Flags;
67   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
68     return Call.paramHasAttr(ArgIdx, Attr);
69   });
70   return Flags;
71 }
72 
73 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
74                                              const AttributeList &Attrs,
75                                              unsigned OpIdx) const {
76   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
77     return Attrs.hasAttributeAtIndex(OpIdx, Attr);
78   });
79 }
80 
81 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
82                              ArrayRef<Register> ResRegs,
83                              ArrayRef<ArrayRef<Register>> ArgRegs,
84                              Register SwiftErrorVReg,
85                              std::function<unsigned()> GetCalleeReg) const {
86   CallLoweringInfo Info;
87   const DataLayout &DL = MIRBuilder.getDataLayout();
88   MachineFunction &MF = MIRBuilder.getMF();
89   bool CanBeTailCalled = CB.isTailCall() &&
90                          isInTailCallPosition(CB, MF.getTarget()) &&
91                          (MF.getFunction()
92                               .getFnAttribute("disable-tail-calls")
93                               .getValueAsString() != "true");
94 
95   CallingConv::ID CallConv = CB.getCallingConv();
96   Type *RetTy = CB.getType();
97   bool IsVarArg = CB.getFunctionType()->isVarArg();
98 
99   SmallVector<BaseArgInfo, 4> SplitArgs;
100   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
101   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
102 
103   if (!Info.CanLowerReturn) {
104     // Callee requires sret demotion.
105     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
106 
107     // The sret demotion isn't compatible with tail-calls, since the sret
108     // argument points into the caller's stack frame.
109     CanBeTailCalled = false;
110   }
111 
112   // First step is to marshall all the function's parameters into the correct
113   // physregs and memory locations. Gather the sequence of argument types that
114   // we'll pass to the assigner function.
115   unsigned i = 0;
116   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
117   for (auto &Arg : CB.args()) {
118     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
119                     i < NumFixedArgs};
120     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
121 
122     // If we have an explicit sret argument that is an Instruction, (i.e., it
123     // might point to function-local memory), we can't meaningfully tail-call.
124     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
125       CanBeTailCalled = false;
126 
127     Info.OrigArgs.push_back(OrigArg);
128     ++i;
129   }
130 
131   // Try looking through a bitcast from one function type to another.
132   // Commonly happens with calls to objc_msgSend().
133   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
134   if (const Function *F = dyn_cast<Function>(CalleeV))
135     Info.Callee = MachineOperand::CreateGA(F, 0);
136   else
137     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
138 
139   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};
140   if (!Info.OrigRet.Ty->isVoidTy())
141     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
142 
143   Info.CB = &CB;
144   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
145   Info.CallConv = CallConv;
146   Info.SwiftErrorVReg = SwiftErrorVReg;
147   Info.IsMustTailCall = CB.isMustTailCall();
148   Info.IsTailCall = CanBeTailCalled;
149   Info.IsVarArg = IsVarArg;
150   return lowerCall(MIRBuilder, Info);
151 }
152 
153 template <typename FuncInfoTy>
154 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
155                                const DataLayout &DL,
156                                const FuncInfoTy &FuncInfo) const {
157   auto &Flags = Arg.Flags[0];
158   const AttributeList &Attrs = FuncInfo.getAttributes();
159   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
160 
161   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
162   if (PtrTy) {
163     Flags.setPointer();
164     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
165   }
166 
167   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
168   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
169     assert(OpIdx >= AttributeList::FirstArgIndex);
170     unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
171 
172     Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
173     if (!ElementTy)
174       ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
175     if (!ElementTy)
176       ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
177     assert(ElementTy && "Must have byval, inalloca or preallocated type");
178     Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
179 
180     // For ByVal, alignment should be passed from FE.  BE will guess if
181     // this info is not there but there are cases it cannot get right.
182     if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
183       MemAlign = *ParamAlign;
184     else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
185       MemAlign = *ParamAlign;
186     else
187       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
188   } else if (OpIdx >= AttributeList::FirstArgIndex) {
189     if (auto ParamAlign =
190             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
191       MemAlign = *ParamAlign;
192   }
193   Flags.setMemAlign(MemAlign);
194   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
195 
196   // Don't try to use the returned attribute if the argument is marked as
197   // swiftself, since it won't be passed in x0.
198   if (Flags.isSwiftSelf())
199     Flags.setReturned(false);
200 }
201 
202 template void
203 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
204                                     const DataLayout &DL,
205                                     const Function &FuncInfo) const;
206 
207 template void
208 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
209                                     const DataLayout &DL,
210                                     const CallBase &FuncInfo) const;
211 
212 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
213                                      SmallVectorImpl<ArgInfo> &SplitArgs,
214                                      const DataLayout &DL,
215                                      CallingConv::ID CallConv,
216                                      SmallVectorImpl<uint64_t> *Offsets) const {
217   LLVMContext &Ctx = OrigArg.Ty->getContext();
218 
219   SmallVector<EVT, 4> SplitVTs;
220   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
221 
222   if (SplitVTs.size() == 0)
223     return;
224 
225   if (SplitVTs.size() == 1) {
226     // No splitting to do, but we want to replace the original type (e.g. [1 x
227     // double] -> double).
228     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
229                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
230                            OrigArg.IsFixed, OrigArg.OrigValue);
231     return;
232   }
233 
234   // Create one ArgInfo for each virtual register in the original ArgInfo.
235   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
236 
237   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
238       OrigArg.Ty, CallConv, false, DL);
239   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
240     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
241     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
242                            OrigArg.Flags[0], OrigArg.IsFixed);
243     if (NeedsRegBlock)
244       SplitArgs.back().Flags[0].setInConsecutiveRegs();
245   }
246 
247   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
248 }
249 
250 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
251 static MachineInstrBuilder
252 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
253                             ArrayRef<Register> SrcRegs) {
254   MachineRegisterInfo &MRI = *B.getMRI();
255   LLT LLTy = MRI.getType(DstRegs[0]);
256   LLT PartLLT = MRI.getType(SrcRegs[0]);
257 
258   // Deal with v3s16 split into v2s16
259   LLT LCMTy = getLCMType(LLTy, PartLLT);
260   if (LCMTy == LLTy) {
261     // Common case where no padding is needed.
262     assert(DstRegs.size() == 1);
263     return B.buildConcatVectors(DstRegs[0], SrcRegs);
264   }
265 
266   // We need to create an unmerge to the result registers, which may require
267   // widening the original value.
268   Register UnmergeSrcReg;
269   if (LCMTy != PartLLT) {
270     // e.g. A <3 x s16> value was split to <2 x s16>
271     // %register_value0:_(<2 x s16>)
272     // %register_value1:_(<2 x s16>)
273     // %undef:_(<2 x s16>) = G_IMPLICIT_DEF
274     // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef
275     // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat
276     const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
277     Register Undef = B.buildUndef(PartLLT).getReg(0);
278 
279     // Build vector of undefs.
280     SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
281 
282     // Replace the first sources with the real registers.
283     std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
284     UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0);
285   } else {
286     // We don't need to widen anything if we're extracting a scalar which was
287     // promoted to a vector e.g. s8 -> v4s8 -> s8
288     assert(SrcRegs.size() == 1);
289     UnmergeSrcReg = SrcRegs[0];
290   }
291 
292   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
293 
294   SmallVector<Register, 8> PadDstRegs(NumDst);
295   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
296 
297   // Create the excess dead defs for the unmerge.
298   for (int I = DstRegs.size(); I != NumDst; ++I)
299     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
300 
301   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
302 }
303 
304 /// Create a sequence of instructions to combine pieces split into register
305 /// typed values to the original IR value. \p OrigRegs contains the destination
306 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
307 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
308 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
309                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
310                               const ISD::ArgFlagsTy Flags) {
311   MachineRegisterInfo &MRI = *B.getMRI();
312 
313   if (PartLLT == LLTy) {
314     // We should have avoided introducing a new virtual register, and just
315     // directly assigned here.
316     assert(OrigRegs[0] == Regs[0]);
317     return;
318   }
319 
320   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
321       Regs.size() == 1) {
322     B.buildBitcast(OrigRegs[0], Regs[0]);
323     return;
324   }
325 
326   // A vector PartLLT needs extending to LLTy's element size.
327   // E.g. <2 x s64> = G_SEXT <2 x s32>.
328   if (PartLLT.isVector() == LLTy.isVector() &&
329       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
330       (!PartLLT.isVector() ||
331        PartLLT.getNumElements() == LLTy.getNumElements()) &&
332       OrigRegs.size() == 1 && Regs.size() == 1) {
333     Register SrcReg = Regs[0];
334 
335     LLT LocTy = MRI.getType(SrcReg);
336 
337     if (Flags.isSExt()) {
338       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
339                    .getReg(0);
340     } else if (Flags.isZExt()) {
341       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
342                    .getReg(0);
343     }
344 
345     // Sometimes pointers are passed zero extended.
346     LLT OrigTy = MRI.getType(OrigRegs[0]);
347     if (OrigTy.isPointer()) {
348       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
349       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
350       return;
351     }
352 
353     B.buildTrunc(OrigRegs[0], SrcReg);
354     return;
355   }
356 
357   if (!LLTy.isVector() && !PartLLT.isVector()) {
358     assert(OrigRegs.size() == 1);
359     LLT OrigTy = MRI.getType(OrigRegs[0]);
360 
361     unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
362     if (SrcSize == OrigTy.getSizeInBits())
363       B.buildMerge(OrigRegs[0], Regs);
364     else {
365       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
366       B.buildTrunc(OrigRegs[0], Widened);
367     }
368 
369     return;
370   }
371 
372   if (PartLLT.isVector()) {
373     assert(OrigRegs.size() == 1);
374     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
375 
376     // If PartLLT is a mismatched vector in both number of elements and element
377     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
378     // have the same elt type, i.e. v4s32.
379     if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
380         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
381         Regs.size() == 1) {
382       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
383                       .changeElementCount(PartLLT.getElementCount() * 2);
384       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
385       PartLLT = NewTy;
386     }
387 
388     if (LLTy.getScalarType() == PartLLT.getElementType()) {
389       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
390     } else {
391       unsigned I = 0;
392       LLT GCDTy = getGCDType(LLTy, PartLLT);
393 
394       // We are both splitting a vector, and bitcasting its element types. Cast
395       // the source pieces into the appropriate number of pieces with the result
396       // element type.
397       for (Register SrcReg : CastRegs)
398         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
399       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
400     }
401 
402     return;
403   }
404 
405   assert(LLTy.isVector() && !PartLLT.isVector());
406 
407   LLT DstEltTy = LLTy.getElementType();
408 
409   // Pointer information was discarded. We'll need to coerce some register types
410   // to avoid violating type constraints.
411   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
412 
413   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
414 
415   if (DstEltTy == PartLLT) {
416     // Vector was trivially scalarized.
417 
418     if (RealDstEltTy.isPointer()) {
419       for (Register Reg : Regs)
420         MRI.setType(Reg, RealDstEltTy);
421     }
422 
423     B.buildBuildVector(OrigRegs[0], Regs);
424   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
425     // Deal with vector with 64-bit elements decomposed to 32-bit
426     // registers. Need to create intermediate 64-bit elements.
427     SmallVector<Register, 8> EltMerges;
428     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
429 
430     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
431 
432     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
433       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
434       // Fix the type in case this is really a vector of pointers.
435       MRI.setType(Merge.getReg(0), RealDstEltTy);
436       EltMerges.push_back(Merge.getReg(0));
437       Regs = Regs.drop_front(PartsPerElt);
438     }
439 
440     B.buildBuildVector(OrigRegs[0], EltMerges);
441   } else {
442     // Vector was split, and elements promoted to a wider type.
443     // FIXME: Should handle floating point promotions.
444     LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
445     auto BV = B.buildBuildVector(BVType, Regs);
446     B.buildTrunc(OrigRegs[0], BV);
447   }
448 }
449 
450 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
451 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
452 /// contain the type of scalar value extension if necessary.
453 ///
454 /// This is used for outgoing values (vregs to physregs)
455 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
456                             Register SrcReg, LLT SrcTy, LLT PartTy,
457                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
458   // We could just insert a regular copy, but this is unreachable at the moment.
459   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
460 
461   const unsigned PartSize = PartTy.getSizeInBits();
462 
463   if (PartTy.isVector() == SrcTy.isVector() &&
464       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
465     assert(DstRegs.size() == 1);
466     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
467     return;
468   }
469 
470   if (SrcTy.isVector() && !PartTy.isVector() &&
471       PartSize > SrcTy.getElementType().getSizeInBits()) {
472     // Vector was scalarized, and the elements extended.
473     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
474     for (int i = 0, e = DstRegs.size(); i != e; ++i)
475       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
476     return;
477   }
478 
479   LLT GCDTy = getGCDType(SrcTy, PartTy);
480   if (GCDTy == PartTy) {
481     // If this already evenly divisible, we can create a simple unmerge.
482     B.buildUnmerge(DstRegs, SrcReg);
483     return;
484   }
485 
486   MachineRegisterInfo &MRI = *B.getMRI();
487   LLT DstTy = MRI.getType(DstRegs[0]);
488   LLT LCMTy = getLCMType(SrcTy, PartTy);
489 
490   const unsigned DstSize = DstTy.getSizeInBits();
491   const unsigned SrcSize = SrcTy.getSizeInBits();
492   unsigned CoveringSize = LCMTy.getSizeInBits();
493 
494   Register UnmergeSrc = SrcReg;
495 
496   if (CoveringSize != SrcSize) {
497     // For scalars, it's common to be able to use a simple extension.
498     if (SrcTy.isScalar() && DstTy.isScalar()) {
499       CoveringSize = alignTo(SrcSize, DstSize);
500       LLT CoverTy = LLT::scalar(CoveringSize);
501       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
502     } else {
503       // Widen to the common type.
504       // FIXME: This should respect the extend type
505       Register Undef = B.buildUndef(SrcTy).getReg(0);
506       SmallVector<Register, 8> MergeParts(1, SrcReg);
507       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
508         MergeParts.push_back(Undef);
509       UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
510     }
511   }
512 
513   // Unmerge to the original registers and pad with dead defs.
514   SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end());
515   for (unsigned Size = DstSize * DstRegs.size(); Size != CoveringSize;
516        Size += DstSize) {
517     UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy));
518   }
519 
520   B.buildUnmerge(UnmergeResults, UnmergeSrc);
521 }
522 
523 bool CallLowering::determineAndHandleAssignments(
524     ValueHandler &Handler, ValueAssigner &Assigner,
525     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
526     CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const {
527   MachineFunction &MF = MIRBuilder.getMF();
528   const Function &F = MF.getFunction();
529   SmallVector<CCValAssign, 16> ArgLocs;
530 
531   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
532   if (!determineAssignments(Assigner, Args, CCInfo))
533     return false;
534 
535   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
536                            ThisReturnReg);
537 }
538 
539 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
540   if (Flags.isSExt())
541     return TargetOpcode::G_SEXT;
542   if (Flags.isZExt())
543     return TargetOpcode::G_ZEXT;
544   return TargetOpcode::G_ANYEXT;
545 }
546 
547 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
548                                         SmallVectorImpl<ArgInfo> &Args,
549                                         CCState &CCInfo) const {
550   LLVMContext &Ctx = CCInfo.getContext();
551   const CallingConv::ID CallConv = CCInfo.getCallingConv();
552 
553   unsigned NumArgs = Args.size();
554   for (unsigned i = 0; i != NumArgs; ++i) {
555     EVT CurVT = EVT::getEVT(Args[i].Ty);
556 
557     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
558 
559     // If we need to split the type over multiple regs, check it's a scenario
560     // we currently support.
561     unsigned NumParts =
562         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
563 
564     if (NumParts == 1) {
565       // Try to use the register type if we couldn't assign the VT.
566       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
567                              Args[i].Flags[0], CCInfo))
568         return false;
569       continue;
570     }
571 
572     // For incoming arguments (physregs to vregs), we could have values in
573     // physregs (or memlocs) which we want to extract and copy to vregs.
574     // During this, we might have to deal with the LLT being split across
575     // multiple regs, so we have to record this information for later.
576     //
577     // If we have outgoing args, then we have the opposite case. We have a
578     // vreg with an LLT which we want to assign to a physical location, and
579     // we might have to record that the value has to be split later.
580 
581     // We're handling an incoming arg which is split over multiple regs.
582     // E.g. passing an s128 on AArch64.
583     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
584     Args[i].Flags.clear();
585 
586     for (unsigned Part = 0; Part < NumParts; ++Part) {
587       ISD::ArgFlagsTy Flags = OrigFlags;
588       if (Part == 0) {
589         Flags.setSplit();
590       } else {
591         Flags.setOrigAlign(Align(1));
592         if (Part == NumParts - 1)
593           Flags.setSplitEnd();
594       }
595 
596       Args[i].Flags.push_back(Flags);
597       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
598                              Args[i].Flags[Part], CCInfo)) {
599         // Still couldn't assign this smaller part type for some reason.
600         return false;
601       }
602     }
603   }
604 
605   return true;
606 }
607 
608 bool CallLowering::handleAssignments(ValueHandler &Handler,
609                                      SmallVectorImpl<ArgInfo> &Args,
610                                      CCState &CCInfo,
611                                      SmallVectorImpl<CCValAssign> &ArgLocs,
612                                      MachineIRBuilder &MIRBuilder,
613                                      Register ThisReturnReg) const {
614   MachineFunction &MF = MIRBuilder.getMF();
615   MachineRegisterInfo &MRI = MF.getRegInfo();
616   const Function &F = MF.getFunction();
617   const DataLayout &DL = F.getParent()->getDataLayout();
618 
619   const unsigned NumArgs = Args.size();
620 
621   // Stores thunks for outgoing register assignments. This is used so we delay
622   // generating register copies until mem loc assignments are done. We do this
623   // so that if the target is using the delayed stack protector feature, we can
624   // find the split point of the block accurately. E.g. if we have:
625   // G_STORE %val, %memloc
626   // $x0 = COPY %foo
627   // $x1 = COPY %bar
628   // CALL func
629   // ... then the split point for the block will correctly be at, and including,
630   // the copy to $x0. If instead the G_STORE instruction immediately precedes
631   // the CALL, then we'd prematurely choose the CALL as the split point, thus
632   // generating a split block with a CALL that uses undefined physregs.
633   SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
634 
635   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
636     assert(j < ArgLocs.size() && "Skipped too many arg locs");
637     CCValAssign &VA = ArgLocs[j];
638     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
639 
640     if (VA.needsCustom()) {
641       std::function<void()> Thunk;
642       unsigned NumArgRegs = Handler.assignCustomValue(
643           Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk);
644       if (Thunk)
645         DelayedOutgoingRegAssignments.emplace_back(Thunk);
646       if (!NumArgRegs)
647         return false;
648       j += NumArgRegs;
649       continue;
650     }
651 
652     const MVT ValVT = VA.getValVT();
653     const MVT LocVT = VA.getLocVT();
654 
655     const LLT LocTy(LocVT);
656     const LLT ValTy(ValVT);
657     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
658     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
659     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
660 
661     // Expected to be multiple regs for a single incoming arg.
662     // There should be Regs.size() ArgLocs per argument.
663     // This should be the same as getNumRegistersForCallingConv
664     const unsigned NumParts = Args[i].Flags.size();
665 
666     // Now split the registers into the assigned types.
667     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
668 
669     if (NumParts != 1 || NewLLT != OrigTy) {
670       // If we can't directly assign the register, we need one or more
671       // intermediate values.
672       Args[i].Regs.resize(NumParts);
673 
674       // For each split register, create and assign a vreg that will store
675       // the incoming component of the larger value. These will later be
676       // merged to form the final vreg.
677       for (unsigned Part = 0; Part < NumParts; ++Part)
678         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
679     }
680 
681     assert((j + (NumParts - 1)) < ArgLocs.size() &&
682            "Too many regs for number of args");
683 
684     // Coerce into outgoing value types before register assignment.
685     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
686       assert(Args[i].OrigRegs.size() == 1);
687       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
688                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
689     }
690 
691     for (unsigned Part = 0; Part < NumParts; ++Part) {
692       Register ArgReg = Args[i].Regs[Part];
693       // There should be Regs.size() ArgLocs per argument.
694       VA = ArgLocs[j + Part];
695       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
696 
697       if (VA.isMemLoc() && !Flags.isByVal()) {
698         // Individual pieces may have been spilled to the stack and others
699         // passed in registers.
700 
701         // TODO: The memory size may be larger than the value we need to
702         // store. We may need to adjust the offset for big endian targets.
703         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
704 
705         MachinePointerInfo MPO;
706         Register StackAddr = Handler.getStackAddress(
707             MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
708 
709         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
710         continue;
711       }
712 
713       if (VA.isMemLoc() && Flags.isByVal()) {
714         assert(Args[i].Regs.size() == 1 &&
715                "didn't expect split byval pointer");
716 
717         if (Handler.isIncomingArgumentHandler()) {
718           // We just need to copy the frame index value to the pointer.
719           MachinePointerInfo MPO;
720           Register StackAddr = Handler.getStackAddress(
721               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
722           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
723         } else {
724           // For outgoing byval arguments, insert the implicit copy byval
725           // implies, such that writes in the callee do not modify the caller's
726           // value.
727           uint64_t MemSize = Flags.getByValSize();
728           int64_t Offset = VA.getLocMemOffset();
729 
730           MachinePointerInfo DstMPO;
731           Register StackAddr =
732               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
733 
734           MachinePointerInfo SrcMPO(Args[i].OrigValue);
735           if (!Args[i].OrigValue) {
736             // We still need to accurately track the stack address space if we
737             // don't know the underlying value.
738             const LLT PtrTy = MRI.getType(StackAddr);
739             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
740           }
741 
742           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
743                                     inferAlignFromPtrInfo(MF, DstMPO));
744 
745           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
746                                     inferAlignFromPtrInfo(MF, SrcMPO));
747 
748           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
749                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
750                                      MemSize, VA);
751         }
752         continue;
753       }
754 
755       assert(!VA.needsCustom() && "custom loc should have been handled already");
756 
757       if (i == 0 && ThisReturnReg.isValid() &&
758           Handler.isIncomingArgumentHandler() &&
759           isTypeIsValidForThisReturn(ValVT)) {
760         Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA);
761         continue;
762       }
763 
764       if (Handler.isIncomingArgumentHandler())
765         Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
766       else {
767         DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
768           Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
769         });
770       }
771     }
772 
773     // Now that all pieces have been assigned, re-pack the register typed values
774     // into the original value typed registers.
775     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
776       // Merge the split registers into the expected larger result vregs of
777       // the original call.
778       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
779                         LocTy, Args[i].Flags[0]);
780     }
781 
782     j += NumParts - 1;
783   }
784   for (auto &Fn : DelayedOutgoingRegAssignments)
785     Fn();
786 
787   return true;
788 }
789 
790 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
791                                    ArrayRef<Register> VRegs, Register DemoteReg,
792                                    int FI) const {
793   MachineFunction &MF = MIRBuilder.getMF();
794   MachineRegisterInfo &MRI = MF.getRegInfo();
795   const DataLayout &DL = MF.getDataLayout();
796 
797   SmallVector<EVT, 4> SplitVTs;
798   SmallVector<uint64_t, 4> Offsets;
799   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
800 
801   assert(VRegs.size() == SplitVTs.size());
802 
803   unsigned NumValues = SplitVTs.size();
804   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
805   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
806   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
807 
808   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
809 
810   for (unsigned I = 0; I < NumValues; ++I) {
811     Register Addr;
812     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
813     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
814                                         MRI.getType(VRegs[I]),
815                                         commonAlignment(BaseAlign, Offsets[I]));
816     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
817   }
818 }
819 
820 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
821                                     ArrayRef<Register> VRegs,
822                                     Register DemoteReg) const {
823   MachineFunction &MF = MIRBuilder.getMF();
824   MachineRegisterInfo &MRI = MF.getRegInfo();
825   const DataLayout &DL = MF.getDataLayout();
826 
827   SmallVector<EVT, 4> SplitVTs;
828   SmallVector<uint64_t, 4> Offsets;
829   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
830 
831   assert(VRegs.size() == SplitVTs.size());
832 
833   unsigned NumValues = SplitVTs.size();
834   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
835   unsigned AS = DL.getAllocaAddrSpace();
836   LLT OffsetLLTy =
837       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
838 
839   MachinePointerInfo PtrInfo(AS);
840 
841   for (unsigned I = 0; I < NumValues; ++I) {
842     Register Addr;
843     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
844     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
845                                         MRI.getType(VRegs[I]),
846                                         commonAlignment(BaseAlign, Offsets[I]));
847     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
848   }
849 }
850 
851 void CallLowering::insertSRetIncomingArgument(
852     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
853     MachineRegisterInfo &MRI, const DataLayout &DL) const {
854   unsigned AS = DL.getAllocaAddrSpace();
855   DemoteReg = MRI.createGenericVirtualRegister(
856       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
857 
858   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
859 
860   SmallVector<EVT, 1> ValueVTs;
861   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
862 
863   // NOTE: Assume that a pointer won't get split into more than one VT.
864   assert(ValueVTs.size() == 1);
865 
866   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
867                     ArgInfo::NoArgIndex);
868   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
869   DemoteArg.Flags[0].setSRet();
870   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
871 }
872 
873 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
874                                               const CallBase &CB,
875                                               CallLoweringInfo &Info) const {
876   const DataLayout &DL = MIRBuilder.getDataLayout();
877   Type *RetTy = CB.getType();
878   unsigned AS = DL.getAllocaAddrSpace();
879   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
880 
881   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
882       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
883 
884   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
885   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
886                     ArgInfo::NoArgIndex);
887   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
888   DemoteArg.Flags[0].setSRet();
889 
890   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
891   Info.DemoteStackIndex = FI;
892   Info.DemoteRegister = DemoteReg;
893 }
894 
895 bool CallLowering::checkReturn(CCState &CCInfo,
896                                SmallVectorImpl<BaseArgInfo> &Outs,
897                                CCAssignFn *Fn) const {
898   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
899     MVT VT = MVT::getVT(Outs[I].Ty);
900     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
901       return false;
902   }
903   return true;
904 }
905 
906 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
907                                  AttributeList Attrs,
908                                  SmallVectorImpl<BaseArgInfo> &Outs,
909                                  const DataLayout &DL) const {
910   LLVMContext &Context = RetTy->getContext();
911   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
912 
913   SmallVector<EVT, 4> SplitVTs;
914   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
915   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
916 
917   for (EVT VT : SplitVTs) {
918     unsigned NumParts =
919         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
920     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
921     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
922 
923     for (unsigned I = 0; I < NumParts; ++I) {
924       Outs.emplace_back(PartTy, Flags);
925     }
926   }
927 }
928 
929 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
930   const auto &F = MF.getFunction();
931   Type *ReturnType = F.getReturnType();
932   CallingConv::ID CallConv = F.getCallingConv();
933 
934   SmallVector<BaseArgInfo, 4> SplitArgs;
935   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
936                 MF.getDataLayout());
937   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
938 }
939 
940 bool CallLowering::parametersInCSRMatch(
941     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
942     const SmallVectorImpl<CCValAssign> &OutLocs,
943     const SmallVectorImpl<ArgInfo> &OutArgs) const {
944   for (unsigned i = 0; i < OutLocs.size(); ++i) {
945     auto &ArgLoc = OutLocs[i];
946     // If it's not a register, it's fine.
947     if (!ArgLoc.isRegLoc())
948       continue;
949 
950     MCRegister PhysReg = ArgLoc.getLocReg();
951 
952     // Only look at callee-saved registers.
953     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
954       continue;
955 
956     LLVM_DEBUG(
957         dbgs()
958         << "... Call has an argument passed in a callee-saved register.\n");
959 
960     // Check if it was copied from.
961     const ArgInfo &OutInfo = OutArgs[i];
962 
963     if (OutInfo.Regs.size() > 1) {
964       LLVM_DEBUG(
965           dbgs() << "... Cannot handle arguments in multiple registers.\n");
966       return false;
967     }
968 
969     // Check if we copy the register, walking through copies from virtual
970     // registers. Note that getDefIgnoringCopies does not ignore copies from
971     // physical registers.
972     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
973     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
974       LLVM_DEBUG(
975           dbgs()
976           << "... Parameter was not copied into a VReg, cannot tail call.\n");
977       return false;
978     }
979 
980     // Got a copy. Verify that it's the same as the register we want.
981     Register CopyRHS = RegDef->getOperand(1).getReg();
982     if (CopyRHS != PhysReg) {
983       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
984                            "VReg, cannot tail call.\n");
985       return false;
986     }
987   }
988 
989   return true;
990 }
991 
992 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
993                                      MachineFunction &MF,
994                                      SmallVectorImpl<ArgInfo> &InArgs,
995                                      ValueAssigner &CalleeAssigner,
996                                      ValueAssigner &CallerAssigner) const {
997   const Function &F = MF.getFunction();
998   CallingConv::ID CalleeCC = Info.CallConv;
999   CallingConv::ID CallerCC = F.getCallingConv();
1000 
1001   if (CallerCC == CalleeCC)
1002     return true;
1003 
1004   SmallVector<CCValAssign, 16> ArgLocs1;
1005   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1006   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1007     return false;
1008 
1009   SmallVector<CCValAssign, 16> ArgLocs2;
1010   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1011   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1012     return false;
1013 
1014   // We need the argument locations to match up exactly. If there's more in
1015   // one than the other, then we are done.
1016   if (ArgLocs1.size() != ArgLocs2.size())
1017     return false;
1018 
1019   // Make sure that each location is passed in exactly the same way.
1020   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1021     const CCValAssign &Loc1 = ArgLocs1[i];
1022     const CCValAssign &Loc2 = ArgLocs2[i];
1023 
1024     // We need both of them to be the same. So if one is a register and one
1025     // isn't, we're done.
1026     if (Loc1.isRegLoc() != Loc2.isRegLoc())
1027       return false;
1028 
1029     if (Loc1.isRegLoc()) {
1030       // If they don't have the same register location, we're done.
1031       if (Loc1.getLocReg() != Loc2.getLocReg())
1032         return false;
1033 
1034       // They matched, so we can move to the next ArgLoc.
1035       continue;
1036     }
1037 
1038     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1039     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1040       return false;
1041   }
1042 
1043   return true;
1044 }
1045 
1046 LLT CallLowering::ValueHandler::getStackValueStoreType(
1047     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1048   const MVT ValVT = VA.getValVT();
1049   if (ValVT != MVT::iPTR) {
1050     LLT ValTy(ValVT);
1051 
1052     // We lost the pointeriness going through CCValAssign, so try to restore it
1053     // based on the flags.
1054     if (Flags.isPointer()) {
1055       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1056                                ValTy.getScalarSizeInBits());
1057       if (ValVT.isVector())
1058         return LLT::vector(ValTy.getElementCount(), PtrTy);
1059       return PtrTy;
1060     }
1061 
1062     return ValTy;
1063   }
1064 
1065   unsigned AddrSpace = Flags.getPointerAddrSpace();
1066   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1067 }
1068 
1069 void CallLowering::ValueHandler::copyArgumentMemory(
1070     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1071     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1072     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1073     CCValAssign &VA) const {
1074   MachineFunction &MF = MIRBuilder.getMF();
1075   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1076       SrcPtrInfo,
1077       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1078       SrcAlign);
1079 
1080   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1081       DstPtrInfo,
1082       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1083       MemSize, DstAlign);
1084 
1085   const LLT PtrTy = MRI.getType(DstPtr);
1086   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1087 
1088   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1089   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1090 }
1091 
1092 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1093                                                     CCValAssign &VA,
1094                                                     unsigned MaxSizeBits) {
1095   LLT LocTy{VA.getLocVT()};
1096   LLT ValTy{VA.getValVT()};
1097 
1098   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1099     return ValReg;
1100 
1101   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1102     if (MaxSizeBits <= ValTy.getSizeInBits())
1103       return ValReg;
1104     LocTy = LLT::scalar(MaxSizeBits);
1105   }
1106 
1107   const LLT ValRegTy = MRI.getType(ValReg);
1108   if (ValRegTy.isPointer()) {
1109     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1110     // we have to cast to do the extension.
1111     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1112     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1113   }
1114 
1115   switch (VA.getLocInfo()) {
1116   default: break;
1117   case CCValAssign::Full:
1118   case CCValAssign::BCvt:
1119     // FIXME: bitconverting between vector types may or may not be a
1120     // nop in big-endian situations.
1121     return ValReg;
1122   case CCValAssign::AExt: {
1123     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1124     return MIB.getReg(0);
1125   }
1126   case CCValAssign::SExt: {
1127     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1128     MIRBuilder.buildSExt(NewReg, ValReg);
1129     return NewReg;
1130   }
1131   case CCValAssign::ZExt: {
1132     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1133     MIRBuilder.buildZExt(NewReg, ValReg);
1134     return NewReg;
1135   }
1136   }
1137   llvm_unreachable("unable to extend register");
1138 }
1139 
1140 void CallLowering::ValueAssigner::anchor() {}
1141 
1142 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1143                                                                 Register SrcReg,
1144                                                                 LLT NarrowTy) {
1145   switch (VA.getLocInfo()) {
1146   case CCValAssign::LocInfo::ZExt: {
1147     return MIRBuilder
1148         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1149                          NarrowTy.getScalarSizeInBits())
1150         .getReg(0);
1151   }
1152   case CCValAssign::LocInfo::SExt: {
1153     return MIRBuilder
1154         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1155                          NarrowTy.getScalarSizeInBits())
1156         .getReg(0);
1157     break;
1158   }
1159   default:
1160     return SrcReg;
1161   }
1162 }
1163 
1164 /// Check if we can use a basic COPY instruction between the two types.
1165 ///
1166 /// We're currently building on top of the infrastructure using MVT, which loses
1167 /// pointer information in the CCValAssign. We accept copies from physical
1168 /// registers that have been reported as integers if it's to an equivalent sized
1169 /// pointer LLT.
1170 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1171   if (SrcTy == DstTy)
1172     return true;
1173 
1174   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1175     return false;
1176 
1177   SrcTy = SrcTy.getScalarType();
1178   DstTy = DstTy.getScalarType();
1179 
1180   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1181          (DstTy.isScalar() && SrcTy.isPointer());
1182 }
1183 
1184 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1185                                                           Register PhysReg,
1186                                                           CCValAssign VA) {
1187   const MVT LocVT = VA.getLocVT();
1188   const LLT LocTy(LocVT);
1189   const LLT RegTy = MRI.getType(ValVReg);
1190 
1191   if (isCopyCompatibleType(RegTy, LocTy)) {
1192     MIRBuilder.buildCopy(ValVReg, PhysReg);
1193     return;
1194   }
1195 
1196   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1197   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1198   MIRBuilder.buildTrunc(ValVReg, Hint);
1199 }
1200