1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/Utils.h" 18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 19 #include "llvm/CodeGen/MachineOperand.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 #define DEBUG_TYPE "call-lowering" 29 30 using namespace llvm; 31 32 void CallLowering::anchor() {} 33 34 /// Helper function which updates \p Flags when \p AttrFn returns true. 35 static void 36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 37 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 38 if (AttrFn(Attribute::SExt)) 39 Flags.setSExt(); 40 if (AttrFn(Attribute::ZExt)) 41 Flags.setZExt(); 42 if (AttrFn(Attribute::InReg)) 43 Flags.setInReg(); 44 if (AttrFn(Attribute::StructRet)) 45 Flags.setSRet(); 46 if (AttrFn(Attribute::Nest)) 47 Flags.setNest(); 48 if (AttrFn(Attribute::ByVal)) 49 Flags.setByVal(); 50 if (AttrFn(Attribute::Preallocated)) 51 Flags.setPreallocated(); 52 if (AttrFn(Attribute::InAlloca)) 53 Flags.setInAlloca(); 54 if (AttrFn(Attribute::Returned)) 55 Flags.setReturned(); 56 if (AttrFn(Attribute::SwiftSelf)) 57 Flags.setSwiftSelf(); 58 if (AttrFn(Attribute::SwiftAsync)) 59 Flags.setSwiftAsync(); 60 if (AttrFn(Attribute::SwiftError)) 61 Flags.setSwiftError(); 62 } 63 64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 65 unsigned ArgIdx) const { 66 ISD::ArgFlagsTy Flags; 67 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 68 return Call.paramHasAttr(ArgIdx, Attr); 69 }); 70 return Flags; 71 } 72 73 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 74 const AttributeList &Attrs, 75 unsigned OpIdx) const { 76 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 77 return Attrs.hasAttributeAtIndex(OpIdx, Attr); 78 }); 79 } 80 81 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 82 ArrayRef<Register> ResRegs, 83 ArrayRef<ArrayRef<Register>> ArgRegs, 84 Register SwiftErrorVReg, 85 std::function<unsigned()> GetCalleeReg) const { 86 CallLoweringInfo Info; 87 const DataLayout &DL = MIRBuilder.getDataLayout(); 88 MachineFunction &MF = MIRBuilder.getMF(); 89 bool CanBeTailCalled = CB.isTailCall() && 90 isInTailCallPosition(CB, MF.getTarget()) && 91 (MF.getFunction() 92 .getFnAttribute("disable-tail-calls") 93 .getValueAsString() != "true"); 94 95 CallingConv::ID CallConv = CB.getCallingConv(); 96 Type *RetTy = CB.getType(); 97 bool IsVarArg = CB.getFunctionType()->isVarArg(); 98 99 SmallVector<BaseArgInfo, 4> SplitArgs; 100 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 101 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 102 103 if (!Info.CanLowerReturn) { 104 // Callee requires sret demotion. 105 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 106 107 // The sret demotion isn't compatible with tail-calls, since the sret 108 // argument points into the caller's stack frame. 109 CanBeTailCalled = false; 110 } 111 112 // First step is to marshall all the function's parameters into the correct 113 // physregs and memory locations. Gather the sequence of argument types that 114 // we'll pass to the assigner function. 115 unsigned i = 0; 116 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 117 for (auto &Arg : CB.args()) { 118 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 119 i < NumFixedArgs}; 120 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 121 122 // If we have an explicit sret argument that is an Instruction, (i.e., it 123 // might point to function-local memory), we can't meaningfully tail-call. 124 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 125 CanBeTailCalled = false; 126 127 Info.OrigArgs.push_back(OrigArg); 128 ++i; 129 } 130 131 // Try looking through a bitcast from one function type to another. 132 // Commonly happens with calls to objc_msgSend(). 133 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 134 if (const Function *F = dyn_cast<Function>(CalleeV)) 135 Info.Callee = MachineOperand::CreateGA(F, 0); 136 else 137 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 138 139 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}}; 140 if (!Info.OrigRet.Ty->isVoidTy()) 141 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 142 143 Info.CB = &CB; 144 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 145 Info.CallConv = CallConv; 146 Info.SwiftErrorVReg = SwiftErrorVReg; 147 Info.IsMustTailCall = CB.isMustTailCall(); 148 Info.IsTailCall = CanBeTailCalled; 149 Info.IsVarArg = IsVarArg; 150 return lowerCall(MIRBuilder, Info); 151 } 152 153 template <typename FuncInfoTy> 154 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 155 const DataLayout &DL, 156 const FuncInfoTy &FuncInfo) const { 157 auto &Flags = Arg.Flags[0]; 158 const AttributeList &Attrs = FuncInfo.getAttributes(); 159 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 160 161 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 162 if (PtrTy) { 163 Flags.setPointer(); 164 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 165 } 166 167 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 168 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 169 assert(OpIdx >= AttributeList::FirstArgIndex); 170 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; 171 172 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); 173 if (!ElementTy) 174 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); 175 if (!ElementTy) 176 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); 177 assert(ElementTy && "Must have byval, inalloca or preallocated type"); 178 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 179 180 // For ByVal, alignment should be passed from FE. BE will guess if 181 // this info is not there but there are cases it cannot get right. 182 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) 183 MemAlign = *ParamAlign; 184 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) 185 MemAlign = *ParamAlign; 186 else 187 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 188 } else if (OpIdx >= AttributeList::FirstArgIndex) { 189 if (auto ParamAlign = 190 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 191 MemAlign = *ParamAlign; 192 } 193 Flags.setMemAlign(MemAlign); 194 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 195 196 // Don't try to use the returned attribute if the argument is marked as 197 // swiftself, since it won't be passed in x0. 198 if (Flags.isSwiftSelf()) 199 Flags.setReturned(false); 200 } 201 202 template void 203 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 204 const DataLayout &DL, 205 const Function &FuncInfo) const; 206 207 template void 208 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 209 const DataLayout &DL, 210 const CallBase &FuncInfo) const; 211 212 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 213 SmallVectorImpl<ArgInfo> &SplitArgs, 214 const DataLayout &DL, 215 CallingConv::ID CallConv, 216 SmallVectorImpl<uint64_t> *Offsets) const { 217 LLVMContext &Ctx = OrigArg.Ty->getContext(); 218 219 SmallVector<EVT, 4> SplitVTs; 220 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 221 222 if (SplitVTs.size() == 0) 223 return; 224 225 if (SplitVTs.size() == 1) { 226 // No splitting to do, but we want to replace the original type (e.g. [1 x 227 // double] -> double). 228 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 229 OrigArg.OrigArgIndex, OrigArg.Flags[0], 230 OrigArg.IsFixed, OrigArg.OrigValue); 231 return; 232 } 233 234 // Create one ArgInfo for each virtual register in the original ArgInfo. 235 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 236 237 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 238 OrigArg.Ty, CallConv, false, DL); 239 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 240 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 241 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 242 OrigArg.Flags[0], OrigArg.IsFixed); 243 if (NeedsRegBlock) 244 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 245 } 246 247 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 248 } 249 250 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 251 static MachineInstrBuilder 252 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 253 ArrayRef<Register> SrcRegs) { 254 MachineRegisterInfo &MRI = *B.getMRI(); 255 LLT LLTy = MRI.getType(DstRegs[0]); 256 LLT PartLLT = MRI.getType(SrcRegs[0]); 257 258 // Deal with v3s16 split into v2s16 259 LLT LCMTy = getLCMType(LLTy, PartLLT); 260 if (LCMTy == LLTy) { 261 // Common case where no padding is needed. 262 assert(DstRegs.size() == 1); 263 return B.buildConcatVectors(DstRegs[0], SrcRegs); 264 } 265 266 // We need to create an unmerge to the result registers, which may require 267 // widening the original value. 268 Register UnmergeSrcReg; 269 if (LCMTy != PartLLT) { 270 // e.g. A <3 x s16> value was split to <2 x s16> 271 // %register_value0:_(<2 x s16>) 272 // %register_value1:_(<2 x s16>) 273 // %undef:_(<2 x s16>) = G_IMPLICIT_DEF 274 // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef 275 // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat 276 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 277 Register Undef = B.buildUndef(PartLLT).getReg(0); 278 279 // Build vector of undefs. 280 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 281 282 // Replace the first sources with the real registers. 283 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 284 UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0); 285 } else { 286 // We don't need to widen anything if we're extracting a scalar which was 287 // promoted to a vector e.g. s8 -> v4s8 -> s8 288 assert(SrcRegs.size() == 1); 289 UnmergeSrcReg = SrcRegs[0]; 290 } 291 292 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 293 294 SmallVector<Register, 8> PadDstRegs(NumDst); 295 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 296 297 // Create the excess dead defs for the unmerge. 298 for (int I = DstRegs.size(); I != NumDst; ++I) 299 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 300 301 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 302 } 303 304 /// Create a sequence of instructions to combine pieces split into register 305 /// typed values to the original IR value. \p OrigRegs contains the destination 306 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 307 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 308 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 309 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 310 const ISD::ArgFlagsTy Flags) { 311 MachineRegisterInfo &MRI = *B.getMRI(); 312 313 if (PartLLT == LLTy) { 314 // We should have avoided introducing a new virtual register, and just 315 // directly assigned here. 316 assert(OrigRegs[0] == Regs[0]); 317 return; 318 } 319 320 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 321 Regs.size() == 1) { 322 B.buildBitcast(OrigRegs[0], Regs[0]); 323 return; 324 } 325 326 // A vector PartLLT needs extending to LLTy's element size. 327 // E.g. <2 x s64> = G_SEXT <2 x s32>. 328 if (PartLLT.isVector() == LLTy.isVector() && 329 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 330 (!PartLLT.isVector() || 331 PartLLT.getNumElements() == LLTy.getNumElements()) && 332 OrigRegs.size() == 1 && Regs.size() == 1) { 333 Register SrcReg = Regs[0]; 334 335 LLT LocTy = MRI.getType(SrcReg); 336 337 if (Flags.isSExt()) { 338 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 339 .getReg(0); 340 } else if (Flags.isZExt()) { 341 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 342 .getReg(0); 343 } 344 345 // Sometimes pointers are passed zero extended. 346 LLT OrigTy = MRI.getType(OrigRegs[0]); 347 if (OrigTy.isPointer()) { 348 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 349 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 350 return; 351 } 352 353 B.buildTrunc(OrigRegs[0], SrcReg); 354 return; 355 } 356 357 if (!LLTy.isVector() && !PartLLT.isVector()) { 358 assert(OrigRegs.size() == 1); 359 LLT OrigTy = MRI.getType(OrigRegs[0]); 360 361 unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size(); 362 if (SrcSize == OrigTy.getSizeInBits()) 363 B.buildMerge(OrigRegs[0], Regs); 364 else { 365 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 366 B.buildTrunc(OrigRegs[0], Widened); 367 } 368 369 return; 370 } 371 372 if (PartLLT.isVector()) { 373 assert(OrigRegs.size() == 1); 374 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 375 376 // If PartLLT is a mismatched vector in both number of elements and element 377 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 378 // have the same elt type, i.e. v4s32. 379 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && 380 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 381 Regs.size() == 1) { 382 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 383 .changeElementCount(PartLLT.getElementCount() * 2); 384 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 385 PartLLT = NewTy; 386 } 387 388 if (LLTy.getScalarType() == PartLLT.getElementType()) { 389 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 390 } else { 391 unsigned I = 0; 392 LLT GCDTy = getGCDType(LLTy, PartLLT); 393 394 // We are both splitting a vector, and bitcasting its element types. Cast 395 // the source pieces into the appropriate number of pieces with the result 396 // element type. 397 for (Register SrcReg : CastRegs) 398 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 399 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 400 } 401 402 return; 403 } 404 405 assert(LLTy.isVector() && !PartLLT.isVector()); 406 407 LLT DstEltTy = LLTy.getElementType(); 408 409 // Pointer information was discarded. We'll need to coerce some register types 410 // to avoid violating type constraints. 411 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 412 413 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 414 415 if (DstEltTy == PartLLT) { 416 // Vector was trivially scalarized. 417 418 if (RealDstEltTy.isPointer()) { 419 for (Register Reg : Regs) 420 MRI.setType(Reg, RealDstEltTy); 421 } 422 423 B.buildBuildVector(OrigRegs[0], Regs); 424 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 425 // Deal with vector with 64-bit elements decomposed to 32-bit 426 // registers. Need to create intermediate 64-bit elements. 427 SmallVector<Register, 8> EltMerges; 428 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 429 430 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 431 432 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 433 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 434 // Fix the type in case this is really a vector of pointers. 435 MRI.setType(Merge.getReg(0), RealDstEltTy); 436 EltMerges.push_back(Merge.getReg(0)); 437 Regs = Regs.drop_front(PartsPerElt); 438 } 439 440 B.buildBuildVector(OrigRegs[0], EltMerges); 441 } else { 442 // Vector was split, and elements promoted to a wider type. 443 // FIXME: Should handle floating point promotions. 444 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT); 445 auto BV = B.buildBuildVector(BVType, Regs); 446 B.buildTrunc(OrigRegs[0], BV); 447 } 448 } 449 450 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 451 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 452 /// contain the type of scalar value extension if necessary. 453 /// 454 /// This is used for outgoing values (vregs to physregs) 455 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 456 Register SrcReg, LLT SrcTy, LLT PartTy, 457 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 458 // We could just insert a regular copy, but this is unreachable at the moment. 459 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 460 461 const unsigned PartSize = PartTy.getSizeInBits(); 462 463 if (PartTy.isVector() == SrcTy.isVector() && 464 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 465 assert(DstRegs.size() == 1); 466 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 467 return; 468 } 469 470 if (SrcTy.isVector() && !PartTy.isVector() && 471 PartSize > SrcTy.getElementType().getSizeInBits()) { 472 // Vector was scalarized, and the elements extended. 473 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 474 for (int i = 0, e = DstRegs.size(); i != e; ++i) 475 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 476 return; 477 } 478 479 LLT GCDTy = getGCDType(SrcTy, PartTy); 480 if (GCDTy == PartTy) { 481 // If this already evenly divisible, we can create a simple unmerge. 482 B.buildUnmerge(DstRegs, SrcReg); 483 return; 484 } 485 486 MachineRegisterInfo &MRI = *B.getMRI(); 487 LLT DstTy = MRI.getType(DstRegs[0]); 488 LLT LCMTy = getLCMType(SrcTy, PartTy); 489 490 const unsigned DstSize = DstTy.getSizeInBits(); 491 const unsigned SrcSize = SrcTy.getSizeInBits(); 492 unsigned CoveringSize = LCMTy.getSizeInBits(); 493 494 Register UnmergeSrc = SrcReg; 495 496 if (CoveringSize != SrcSize) { 497 // For scalars, it's common to be able to use a simple extension. 498 if (SrcTy.isScalar() && DstTy.isScalar()) { 499 CoveringSize = alignTo(SrcSize, DstSize); 500 LLT CoverTy = LLT::scalar(CoveringSize); 501 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 502 } else { 503 // Widen to the common type. 504 // FIXME: This should respect the extend type 505 Register Undef = B.buildUndef(SrcTy).getReg(0); 506 SmallVector<Register, 8> MergeParts(1, SrcReg); 507 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 508 MergeParts.push_back(Undef); 509 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 510 } 511 } 512 513 // Unmerge to the original registers and pad with dead defs. 514 SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end()); 515 for (unsigned Size = DstSize * DstRegs.size(); Size != CoveringSize; 516 Size += DstSize) { 517 UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy)); 518 } 519 520 B.buildUnmerge(UnmergeResults, UnmergeSrc); 521 } 522 523 bool CallLowering::determineAndHandleAssignments( 524 ValueHandler &Handler, ValueAssigner &Assigner, 525 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 526 CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const { 527 MachineFunction &MF = MIRBuilder.getMF(); 528 const Function &F = MF.getFunction(); 529 SmallVector<CCValAssign, 16> ArgLocs; 530 531 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 532 if (!determineAssignments(Assigner, Args, CCInfo)) 533 return false; 534 535 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 536 ThisReturnReg); 537 } 538 539 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 540 if (Flags.isSExt()) 541 return TargetOpcode::G_SEXT; 542 if (Flags.isZExt()) 543 return TargetOpcode::G_ZEXT; 544 return TargetOpcode::G_ANYEXT; 545 } 546 547 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 548 SmallVectorImpl<ArgInfo> &Args, 549 CCState &CCInfo) const { 550 LLVMContext &Ctx = CCInfo.getContext(); 551 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 552 553 unsigned NumArgs = Args.size(); 554 for (unsigned i = 0; i != NumArgs; ++i) { 555 EVT CurVT = EVT::getEVT(Args[i].Ty); 556 557 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 558 559 // If we need to split the type over multiple regs, check it's a scenario 560 // we currently support. 561 unsigned NumParts = 562 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 563 564 if (NumParts == 1) { 565 // Try to use the register type if we couldn't assign the VT. 566 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 567 Args[i].Flags[0], CCInfo)) 568 return false; 569 continue; 570 } 571 572 // For incoming arguments (physregs to vregs), we could have values in 573 // physregs (or memlocs) which we want to extract and copy to vregs. 574 // During this, we might have to deal with the LLT being split across 575 // multiple regs, so we have to record this information for later. 576 // 577 // If we have outgoing args, then we have the opposite case. We have a 578 // vreg with an LLT which we want to assign to a physical location, and 579 // we might have to record that the value has to be split later. 580 581 // We're handling an incoming arg which is split over multiple regs. 582 // E.g. passing an s128 on AArch64. 583 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 584 Args[i].Flags.clear(); 585 586 for (unsigned Part = 0; Part < NumParts; ++Part) { 587 ISD::ArgFlagsTy Flags = OrigFlags; 588 if (Part == 0) { 589 Flags.setSplit(); 590 } else { 591 Flags.setOrigAlign(Align(1)); 592 if (Part == NumParts - 1) 593 Flags.setSplitEnd(); 594 } 595 596 Args[i].Flags.push_back(Flags); 597 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 598 Args[i].Flags[Part], CCInfo)) { 599 // Still couldn't assign this smaller part type for some reason. 600 return false; 601 } 602 } 603 } 604 605 return true; 606 } 607 608 bool CallLowering::handleAssignments(ValueHandler &Handler, 609 SmallVectorImpl<ArgInfo> &Args, 610 CCState &CCInfo, 611 SmallVectorImpl<CCValAssign> &ArgLocs, 612 MachineIRBuilder &MIRBuilder, 613 Register ThisReturnReg) const { 614 MachineFunction &MF = MIRBuilder.getMF(); 615 MachineRegisterInfo &MRI = MF.getRegInfo(); 616 const Function &F = MF.getFunction(); 617 const DataLayout &DL = F.getParent()->getDataLayout(); 618 619 const unsigned NumArgs = Args.size(); 620 621 // Stores thunks for outgoing register assignments. This is used so we delay 622 // generating register copies until mem loc assignments are done. We do this 623 // so that if the target is using the delayed stack protector feature, we can 624 // find the split point of the block accurately. E.g. if we have: 625 // G_STORE %val, %memloc 626 // $x0 = COPY %foo 627 // $x1 = COPY %bar 628 // CALL func 629 // ... then the split point for the block will correctly be at, and including, 630 // the copy to $x0. If instead the G_STORE instruction immediately precedes 631 // the CALL, then we'd prematurely choose the CALL as the split point, thus 632 // generating a split block with a CALL that uses undefined physregs. 633 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments; 634 635 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 636 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 637 CCValAssign &VA = ArgLocs[j]; 638 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 639 640 if (VA.needsCustom()) { 641 std::function<void()> Thunk; 642 unsigned NumArgRegs = Handler.assignCustomValue( 643 Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk); 644 if (Thunk) 645 DelayedOutgoingRegAssignments.emplace_back(Thunk); 646 if (!NumArgRegs) 647 return false; 648 j += NumArgRegs; 649 continue; 650 } 651 652 const MVT ValVT = VA.getValVT(); 653 const MVT LocVT = VA.getLocVT(); 654 655 const LLT LocTy(LocVT); 656 const LLT ValTy(ValVT); 657 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 658 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 659 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 660 661 // Expected to be multiple regs for a single incoming arg. 662 // There should be Regs.size() ArgLocs per argument. 663 // This should be the same as getNumRegistersForCallingConv 664 const unsigned NumParts = Args[i].Flags.size(); 665 666 // Now split the registers into the assigned types. 667 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 668 669 if (NumParts != 1 || NewLLT != OrigTy) { 670 // If we can't directly assign the register, we need one or more 671 // intermediate values. 672 Args[i].Regs.resize(NumParts); 673 674 // For each split register, create and assign a vreg that will store 675 // the incoming component of the larger value. These will later be 676 // merged to form the final vreg. 677 for (unsigned Part = 0; Part < NumParts; ++Part) 678 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 679 } 680 681 assert((j + (NumParts - 1)) < ArgLocs.size() && 682 "Too many regs for number of args"); 683 684 // Coerce into outgoing value types before register assignment. 685 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 686 assert(Args[i].OrigRegs.size() == 1); 687 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 688 ValTy, extendOpFromFlags(Args[i].Flags[0])); 689 } 690 691 for (unsigned Part = 0; Part < NumParts; ++Part) { 692 Register ArgReg = Args[i].Regs[Part]; 693 // There should be Regs.size() ArgLocs per argument. 694 VA = ArgLocs[j + Part]; 695 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 696 697 if (VA.isMemLoc() && !Flags.isByVal()) { 698 // Individual pieces may have been spilled to the stack and others 699 // passed in registers. 700 701 // TODO: The memory size may be larger than the value we need to 702 // store. We may need to adjust the offset for big endian targets. 703 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 704 705 MachinePointerInfo MPO; 706 Register StackAddr = Handler.getStackAddress( 707 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 708 709 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 710 continue; 711 } 712 713 if (VA.isMemLoc() && Flags.isByVal()) { 714 assert(Args[i].Regs.size() == 1 && 715 "didn't expect split byval pointer"); 716 717 if (Handler.isIncomingArgumentHandler()) { 718 // We just need to copy the frame index value to the pointer. 719 MachinePointerInfo MPO; 720 Register StackAddr = Handler.getStackAddress( 721 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 722 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 723 } else { 724 // For outgoing byval arguments, insert the implicit copy byval 725 // implies, such that writes in the callee do not modify the caller's 726 // value. 727 uint64_t MemSize = Flags.getByValSize(); 728 int64_t Offset = VA.getLocMemOffset(); 729 730 MachinePointerInfo DstMPO; 731 Register StackAddr = 732 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 733 734 MachinePointerInfo SrcMPO(Args[i].OrigValue); 735 if (!Args[i].OrigValue) { 736 // We still need to accurately track the stack address space if we 737 // don't know the underlying value. 738 const LLT PtrTy = MRI.getType(StackAddr); 739 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 740 } 741 742 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 743 inferAlignFromPtrInfo(MF, DstMPO)); 744 745 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 746 inferAlignFromPtrInfo(MF, SrcMPO)); 747 748 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 749 DstMPO, DstAlign, SrcMPO, SrcAlign, 750 MemSize, VA); 751 } 752 continue; 753 } 754 755 assert(!VA.needsCustom() && "custom loc should have been handled already"); 756 757 if (i == 0 && ThisReturnReg.isValid() && 758 Handler.isIncomingArgumentHandler() && 759 isTypeIsValidForThisReturn(ValVT)) { 760 Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA); 761 continue; 762 } 763 764 if (Handler.isIncomingArgumentHandler()) 765 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 766 else { 767 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { 768 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 769 }); 770 } 771 } 772 773 // Now that all pieces have been assigned, re-pack the register typed values 774 // into the original value typed registers. 775 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 776 // Merge the split registers into the expected larger result vregs of 777 // the original call. 778 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 779 LocTy, Args[i].Flags[0]); 780 } 781 782 j += NumParts - 1; 783 } 784 for (auto &Fn : DelayedOutgoingRegAssignments) 785 Fn(); 786 787 return true; 788 } 789 790 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 791 ArrayRef<Register> VRegs, Register DemoteReg, 792 int FI) const { 793 MachineFunction &MF = MIRBuilder.getMF(); 794 MachineRegisterInfo &MRI = MF.getRegInfo(); 795 const DataLayout &DL = MF.getDataLayout(); 796 797 SmallVector<EVT, 4> SplitVTs; 798 SmallVector<uint64_t, 4> Offsets; 799 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 800 801 assert(VRegs.size() == SplitVTs.size()); 802 803 unsigned NumValues = SplitVTs.size(); 804 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 805 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 806 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 807 808 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 809 810 for (unsigned I = 0; I < NumValues; ++I) { 811 Register Addr; 812 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 813 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 814 MRI.getType(VRegs[I]), 815 commonAlignment(BaseAlign, Offsets[I])); 816 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 817 } 818 } 819 820 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 821 ArrayRef<Register> VRegs, 822 Register DemoteReg) const { 823 MachineFunction &MF = MIRBuilder.getMF(); 824 MachineRegisterInfo &MRI = MF.getRegInfo(); 825 const DataLayout &DL = MF.getDataLayout(); 826 827 SmallVector<EVT, 4> SplitVTs; 828 SmallVector<uint64_t, 4> Offsets; 829 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 830 831 assert(VRegs.size() == SplitVTs.size()); 832 833 unsigned NumValues = SplitVTs.size(); 834 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 835 unsigned AS = DL.getAllocaAddrSpace(); 836 LLT OffsetLLTy = 837 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 838 839 MachinePointerInfo PtrInfo(AS); 840 841 for (unsigned I = 0; I < NumValues; ++I) { 842 Register Addr; 843 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 844 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 845 MRI.getType(VRegs[I]), 846 commonAlignment(BaseAlign, Offsets[I])); 847 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 848 } 849 } 850 851 void CallLowering::insertSRetIncomingArgument( 852 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 853 MachineRegisterInfo &MRI, const DataLayout &DL) const { 854 unsigned AS = DL.getAllocaAddrSpace(); 855 DemoteReg = MRI.createGenericVirtualRegister( 856 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 857 858 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 859 860 SmallVector<EVT, 1> ValueVTs; 861 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 862 863 // NOTE: Assume that a pointer won't get split into more than one VT. 864 assert(ValueVTs.size() == 1); 865 866 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 867 ArgInfo::NoArgIndex); 868 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 869 DemoteArg.Flags[0].setSRet(); 870 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 871 } 872 873 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 874 const CallBase &CB, 875 CallLoweringInfo &Info) const { 876 const DataLayout &DL = MIRBuilder.getDataLayout(); 877 Type *RetTy = CB.getType(); 878 unsigned AS = DL.getAllocaAddrSpace(); 879 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 880 881 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 882 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 883 884 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 885 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 886 ArgInfo::NoArgIndex); 887 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 888 DemoteArg.Flags[0].setSRet(); 889 890 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 891 Info.DemoteStackIndex = FI; 892 Info.DemoteRegister = DemoteReg; 893 } 894 895 bool CallLowering::checkReturn(CCState &CCInfo, 896 SmallVectorImpl<BaseArgInfo> &Outs, 897 CCAssignFn *Fn) const { 898 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 899 MVT VT = MVT::getVT(Outs[I].Ty); 900 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 901 return false; 902 } 903 return true; 904 } 905 906 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 907 AttributeList Attrs, 908 SmallVectorImpl<BaseArgInfo> &Outs, 909 const DataLayout &DL) const { 910 LLVMContext &Context = RetTy->getContext(); 911 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 912 913 SmallVector<EVT, 4> SplitVTs; 914 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 915 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 916 917 for (EVT VT : SplitVTs) { 918 unsigned NumParts = 919 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 920 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 921 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 922 923 for (unsigned I = 0; I < NumParts; ++I) { 924 Outs.emplace_back(PartTy, Flags); 925 } 926 } 927 } 928 929 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 930 const auto &F = MF.getFunction(); 931 Type *ReturnType = F.getReturnType(); 932 CallingConv::ID CallConv = F.getCallingConv(); 933 934 SmallVector<BaseArgInfo, 4> SplitArgs; 935 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 936 MF.getDataLayout()); 937 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 938 } 939 940 bool CallLowering::parametersInCSRMatch( 941 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 942 const SmallVectorImpl<CCValAssign> &OutLocs, 943 const SmallVectorImpl<ArgInfo> &OutArgs) const { 944 for (unsigned i = 0; i < OutLocs.size(); ++i) { 945 auto &ArgLoc = OutLocs[i]; 946 // If it's not a register, it's fine. 947 if (!ArgLoc.isRegLoc()) 948 continue; 949 950 MCRegister PhysReg = ArgLoc.getLocReg(); 951 952 // Only look at callee-saved registers. 953 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 954 continue; 955 956 LLVM_DEBUG( 957 dbgs() 958 << "... Call has an argument passed in a callee-saved register.\n"); 959 960 // Check if it was copied from. 961 const ArgInfo &OutInfo = OutArgs[i]; 962 963 if (OutInfo.Regs.size() > 1) { 964 LLVM_DEBUG( 965 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 966 return false; 967 } 968 969 // Check if we copy the register, walking through copies from virtual 970 // registers. Note that getDefIgnoringCopies does not ignore copies from 971 // physical registers. 972 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 973 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 974 LLVM_DEBUG( 975 dbgs() 976 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 977 return false; 978 } 979 980 // Got a copy. Verify that it's the same as the register we want. 981 Register CopyRHS = RegDef->getOperand(1).getReg(); 982 if (CopyRHS != PhysReg) { 983 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 984 "VReg, cannot tail call.\n"); 985 return false; 986 } 987 } 988 989 return true; 990 } 991 992 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 993 MachineFunction &MF, 994 SmallVectorImpl<ArgInfo> &InArgs, 995 ValueAssigner &CalleeAssigner, 996 ValueAssigner &CallerAssigner) const { 997 const Function &F = MF.getFunction(); 998 CallingConv::ID CalleeCC = Info.CallConv; 999 CallingConv::ID CallerCC = F.getCallingConv(); 1000 1001 if (CallerCC == CalleeCC) 1002 return true; 1003 1004 SmallVector<CCValAssign, 16> ArgLocs1; 1005 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 1006 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 1007 return false; 1008 1009 SmallVector<CCValAssign, 16> ArgLocs2; 1010 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 1011 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 1012 return false; 1013 1014 // We need the argument locations to match up exactly. If there's more in 1015 // one than the other, then we are done. 1016 if (ArgLocs1.size() != ArgLocs2.size()) 1017 return false; 1018 1019 // Make sure that each location is passed in exactly the same way. 1020 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1021 const CCValAssign &Loc1 = ArgLocs1[i]; 1022 const CCValAssign &Loc2 = ArgLocs2[i]; 1023 1024 // We need both of them to be the same. So if one is a register and one 1025 // isn't, we're done. 1026 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1027 return false; 1028 1029 if (Loc1.isRegLoc()) { 1030 // If they don't have the same register location, we're done. 1031 if (Loc1.getLocReg() != Loc2.getLocReg()) 1032 return false; 1033 1034 // They matched, so we can move to the next ArgLoc. 1035 continue; 1036 } 1037 1038 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1039 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1040 return false; 1041 } 1042 1043 return true; 1044 } 1045 1046 LLT CallLowering::ValueHandler::getStackValueStoreType( 1047 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1048 const MVT ValVT = VA.getValVT(); 1049 if (ValVT != MVT::iPTR) { 1050 LLT ValTy(ValVT); 1051 1052 // We lost the pointeriness going through CCValAssign, so try to restore it 1053 // based on the flags. 1054 if (Flags.isPointer()) { 1055 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1056 ValTy.getScalarSizeInBits()); 1057 if (ValVT.isVector()) 1058 return LLT::vector(ValTy.getElementCount(), PtrTy); 1059 return PtrTy; 1060 } 1061 1062 return ValTy; 1063 } 1064 1065 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1066 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1067 } 1068 1069 void CallLowering::ValueHandler::copyArgumentMemory( 1070 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1071 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1072 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1073 CCValAssign &VA) const { 1074 MachineFunction &MF = MIRBuilder.getMF(); 1075 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1076 SrcPtrInfo, 1077 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1078 SrcAlign); 1079 1080 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1081 DstPtrInfo, 1082 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1083 MemSize, DstAlign); 1084 1085 const LLT PtrTy = MRI.getType(DstPtr); 1086 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1087 1088 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1089 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1090 } 1091 1092 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1093 CCValAssign &VA, 1094 unsigned MaxSizeBits) { 1095 LLT LocTy{VA.getLocVT()}; 1096 LLT ValTy{VA.getValVT()}; 1097 1098 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1099 return ValReg; 1100 1101 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1102 if (MaxSizeBits <= ValTy.getSizeInBits()) 1103 return ValReg; 1104 LocTy = LLT::scalar(MaxSizeBits); 1105 } 1106 1107 const LLT ValRegTy = MRI.getType(ValReg); 1108 if (ValRegTy.isPointer()) { 1109 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1110 // we have to cast to do the extension. 1111 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1112 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1113 } 1114 1115 switch (VA.getLocInfo()) { 1116 default: break; 1117 case CCValAssign::Full: 1118 case CCValAssign::BCvt: 1119 // FIXME: bitconverting between vector types may or may not be a 1120 // nop in big-endian situations. 1121 return ValReg; 1122 case CCValAssign::AExt: { 1123 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1124 return MIB.getReg(0); 1125 } 1126 case CCValAssign::SExt: { 1127 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1128 MIRBuilder.buildSExt(NewReg, ValReg); 1129 return NewReg; 1130 } 1131 case CCValAssign::ZExt: { 1132 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1133 MIRBuilder.buildZExt(NewReg, ValReg); 1134 return NewReg; 1135 } 1136 } 1137 llvm_unreachable("unable to extend register"); 1138 } 1139 1140 void CallLowering::ValueAssigner::anchor() {} 1141 1142 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1143 Register SrcReg, 1144 LLT NarrowTy) { 1145 switch (VA.getLocInfo()) { 1146 case CCValAssign::LocInfo::ZExt: { 1147 return MIRBuilder 1148 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1149 NarrowTy.getScalarSizeInBits()) 1150 .getReg(0); 1151 } 1152 case CCValAssign::LocInfo::SExt: { 1153 return MIRBuilder 1154 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1155 NarrowTy.getScalarSizeInBits()) 1156 .getReg(0); 1157 break; 1158 } 1159 default: 1160 return SrcReg; 1161 } 1162 } 1163 1164 /// Check if we can use a basic COPY instruction between the two types. 1165 /// 1166 /// We're currently building on top of the infrastructure using MVT, which loses 1167 /// pointer information in the CCValAssign. We accept copies from physical 1168 /// registers that have been reported as integers if it's to an equivalent sized 1169 /// pointer LLT. 1170 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1171 if (SrcTy == DstTy) 1172 return true; 1173 1174 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1175 return false; 1176 1177 SrcTy = SrcTy.getScalarType(); 1178 DstTy = DstTy.getScalarType(); 1179 1180 return (SrcTy.isPointer() && DstTy.isScalar()) || 1181 (DstTy.isScalar() && SrcTy.isPointer()); 1182 } 1183 1184 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1185 Register PhysReg, 1186 CCValAssign VA) { 1187 const MVT LocVT = VA.getLocVT(); 1188 const LLT LocTy(LocVT); 1189 const LLT RegTy = MRI.getType(ValVReg); 1190 1191 if (isCopyCompatibleType(RegTy, LocTy)) { 1192 MIRBuilder.buildCopy(ValVReg, PhysReg); 1193 return; 1194 } 1195 1196 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1197 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1198 MIRBuilder.buildTrunc(ValVReg, Hint); 1199 } 1200