10b57cec5SDimitry Andric //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric ///
90b57cec5SDimitry Andric /// \file
100b57cec5SDimitry Andric /// This file implements some simple delegations needed for call lowering.
110b57cec5SDimitry Andric ///
120b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
130b57cec5SDimitry Andric
1481ad6265SDimitry Andric #include "llvm/CodeGen/GlobalISel/CallLowering.h"
150b57cec5SDimitry Andric #include "llvm/CodeGen/Analysis.h"
16349cc55cSDimitry Andric #include "llvm/CodeGen/CallingConvLower.h"
170b57cec5SDimitry Andric #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
1881ad6265SDimitry Andric #include "llvm/CodeGen/GlobalISel/Utils.h"
1981ad6265SDimitry Andric #include "llvm/CodeGen/MachineFrameInfo.h"
200b57cec5SDimitry Andric #include "llvm/CodeGen/MachineOperand.h"
210b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
220b57cec5SDimitry Andric #include "llvm/CodeGen/TargetLowering.h"
230b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h"
24*0fca6ea1SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
258bcb0991SDimitry Andric #include "llvm/IR/LLVMContext.h"
260b57cec5SDimitry Andric #include "llvm/IR/Module.h"
275ffd83dbSDimitry Andric #include "llvm/Target/TargetMachine.h"
280b57cec5SDimitry Andric
290b57cec5SDimitry Andric #define DEBUG_TYPE "call-lowering"
300b57cec5SDimitry Andric
310b57cec5SDimitry Andric using namespace llvm;
320b57cec5SDimitry Andric
anchor()330b57cec5SDimitry Andric void CallLowering::anchor() {}
340b57cec5SDimitry Andric
35e8d8bef9SDimitry Andric /// Helper function which updates \p Flags when \p AttrFn returns true.
36e8d8bef9SDimitry Andric static void
addFlagsUsingAttrFn(ISD::ArgFlagsTy & Flags,const std::function<bool (Attribute::AttrKind)> & AttrFn)37e8d8bef9SDimitry Andric addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
38e8d8bef9SDimitry Andric const std::function<bool(Attribute::AttrKind)> &AttrFn) {
39*0fca6ea1SDimitry Andric // TODO: There are missing flags. Add them here.
40e8d8bef9SDimitry Andric if (AttrFn(Attribute::SExt))
41e8d8bef9SDimitry Andric Flags.setSExt();
42e8d8bef9SDimitry Andric if (AttrFn(Attribute::ZExt))
43e8d8bef9SDimitry Andric Flags.setZExt();
44e8d8bef9SDimitry Andric if (AttrFn(Attribute::InReg))
45e8d8bef9SDimitry Andric Flags.setInReg();
46e8d8bef9SDimitry Andric if (AttrFn(Attribute::StructRet))
47e8d8bef9SDimitry Andric Flags.setSRet();
48e8d8bef9SDimitry Andric if (AttrFn(Attribute::Nest))
49e8d8bef9SDimitry Andric Flags.setNest();
50e8d8bef9SDimitry Andric if (AttrFn(Attribute::ByVal))
51e8d8bef9SDimitry Andric Flags.setByVal();
52*0fca6ea1SDimitry Andric if (AttrFn(Attribute::ByRef))
53*0fca6ea1SDimitry Andric Flags.setByRef();
54e8d8bef9SDimitry Andric if (AttrFn(Attribute::Preallocated))
55e8d8bef9SDimitry Andric Flags.setPreallocated();
56e8d8bef9SDimitry Andric if (AttrFn(Attribute::InAlloca))
57e8d8bef9SDimitry Andric Flags.setInAlloca();
58e8d8bef9SDimitry Andric if (AttrFn(Attribute::Returned))
59e8d8bef9SDimitry Andric Flags.setReturned();
60e8d8bef9SDimitry Andric if (AttrFn(Attribute::SwiftSelf))
61e8d8bef9SDimitry Andric Flags.setSwiftSelf();
62fe6060f1SDimitry Andric if (AttrFn(Attribute::SwiftAsync))
63fe6060f1SDimitry Andric Flags.setSwiftAsync();
64e8d8bef9SDimitry Andric if (AttrFn(Attribute::SwiftError))
65e8d8bef9SDimitry Andric Flags.setSwiftError();
66e8d8bef9SDimitry Andric }
67e8d8bef9SDimitry Andric
getAttributesForArgIdx(const CallBase & Call,unsigned ArgIdx) const68e8d8bef9SDimitry Andric ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
69e8d8bef9SDimitry Andric unsigned ArgIdx) const {
70e8d8bef9SDimitry Andric ISD::ArgFlagsTy Flags;
71e8d8bef9SDimitry Andric addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
72e8d8bef9SDimitry Andric return Call.paramHasAttr(ArgIdx, Attr);
73e8d8bef9SDimitry Andric });
74e8d8bef9SDimitry Andric return Flags;
75e8d8bef9SDimitry Andric }
76e8d8bef9SDimitry Andric
77bdd1243dSDimitry Andric ISD::ArgFlagsTy
getAttributesForReturn(const CallBase & Call) const78bdd1243dSDimitry Andric CallLowering::getAttributesForReturn(const CallBase &Call) const {
79bdd1243dSDimitry Andric ISD::ArgFlagsTy Flags;
80bdd1243dSDimitry Andric addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) {
81bdd1243dSDimitry Andric return Call.hasRetAttr(Attr);
82bdd1243dSDimitry Andric });
83bdd1243dSDimitry Andric return Flags;
84bdd1243dSDimitry Andric }
85bdd1243dSDimitry Andric
addArgFlagsFromAttributes(ISD::ArgFlagsTy & Flags,const AttributeList & Attrs,unsigned OpIdx) const86e8d8bef9SDimitry Andric void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
87e8d8bef9SDimitry Andric const AttributeList &Attrs,
88e8d8bef9SDimitry Andric unsigned OpIdx) const {
89e8d8bef9SDimitry Andric addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
90349cc55cSDimitry Andric return Attrs.hasAttributeAtIndex(OpIdx, Attr);
91e8d8bef9SDimitry Andric });
92e8d8bef9SDimitry Andric }
93e8d8bef9SDimitry Andric
lowerCall(MachineIRBuilder & MIRBuilder,const CallBase & CB,ArrayRef<Register> ResRegs,ArrayRef<ArrayRef<Register>> ArgRegs,Register SwiftErrorVReg,std::optional<PtrAuthInfo> PAI,Register ConvergenceCtrlToken,std::function<unsigned ()> GetCalleeReg) const945ffd83dbSDimitry Andric bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
950b57cec5SDimitry Andric ArrayRef<Register> ResRegs,
960b57cec5SDimitry Andric ArrayRef<ArrayRef<Register>> ArgRegs,
970b57cec5SDimitry Andric Register SwiftErrorVReg,
98*0fca6ea1SDimitry Andric std::optional<PtrAuthInfo> PAI,
99*0fca6ea1SDimitry Andric Register ConvergenceCtrlToken,
1000b57cec5SDimitry Andric std::function<unsigned()> GetCalleeReg) const {
1018bcb0991SDimitry Andric CallLoweringInfo Info;
1025ffd83dbSDimitry Andric const DataLayout &DL = MIRBuilder.getDataLayout();
103e8d8bef9SDimitry Andric MachineFunction &MF = MIRBuilder.getMF();
10404eeddc0SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo();
105e8d8bef9SDimitry Andric bool CanBeTailCalled = CB.isTailCall() &&
106e8d8bef9SDimitry Andric isInTailCallPosition(CB, MF.getTarget()) &&
107e8d8bef9SDimitry Andric (MF.getFunction()
108e8d8bef9SDimitry Andric .getFnAttribute("disable-tail-calls")
109e8d8bef9SDimitry Andric .getValueAsString() != "true");
110e8d8bef9SDimitry Andric
111e8d8bef9SDimitry Andric CallingConv::ID CallConv = CB.getCallingConv();
112e8d8bef9SDimitry Andric Type *RetTy = CB.getType();
113e8d8bef9SDimitry Andric bool IsVarArg = CB.getFunctionType()->isVarArg();
114e8d8bef9SDimitry Andric
115e8d8bef9SDimitry Andric SmallVector<BaseArgInfo, 4> SplitArgs;
116e8d8bef9SDimitry Andric getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
117e8d8bef9SDimitry Andric Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
118e8d8bef9SDimitry Andric
1195f757f3fSDimitry Andric Info.IsConvergent = CB.isConvergent();
1205f757f3fSDimitry Andric
121e8d8bef9SDimitry Andric if (!Info.CanLowerReturn) {
122e8d8bef9SDimitry Andric // Callee requires sret demotion.
123e8d8bef9SDimitry Andric insertSRetOutgoingArgument(MIRBuilder, CB, Info);
124e8d8bef9SDimitry Andric
125e8d8bef9SDimitry Andric // The sret demotion isn't compatible with tail-calls, since the sret
126e8d8bef9SDimitry Andric // argument points into the caller's stack frame.
127e8d8bef9SDimitry Andric CanBeTailCalled = false;
128e8d8bef9SDimitry Andric }
1290b57cec5SDimitry Andric
1300b57cec5SDimitry Andric // First step is to marshall all the function's parameters into the correct
1310b57cec5SDimitry Andric // physregs and memory locations. Gather the sequence of argument types that
1320b57cec5SDimitry Andric // we'll pass to the assigner function.
1330b57cec5SDimitry Andric unsigned i = 0;
1345ffd83dbSDimitry Andric unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
135fcaf7f86SDimitry Andric for (const auto &Arg : CB.args()) {
136fe6060f1SDimitry Andric ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
1370b57cec5SDimitry Andric i < NumFixedArgs};
1385ffd83dbSDimitry Andric setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
139e8d8bef9SDimitry Andric
140e8d8bef9SDimitry Andric // If we have an explicit sret argument that is an Instruction, (i.e., it
141e8d8bef9SDimitry Andric // might point to function-local memory), we can't meaningfully tail-call.
142e8d8bef9SDimitry Andric if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
143e8d8bef9SDimitry Andric CanBeTailCalled = false;
144e8d8bef9SDimitry Andric
1458bcb0991SDimitry Andric Info.OrigArgs.push_back(OrigArg);
1460b57cec5SDimitry Andric ++i;
1470b57cec5SDimitry Andric }
1480b57cec5SDimitry Andric
1495ffd83dbSDimitry Andric // Try looking through a bitcast from one function type to another.
1505ffd83dbSDimitry Andric // Commonly happens with calls to objc_msgSend().
1515ffd83dbSDimitry Andric const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
152*0fca6ea1SDimitry Andric
153*0fca6ea1SDimitry Andric // If IRTranslator chose to drop the ptrauth info, we can turn this into
154*0fca6ea1SDimitry Andric // a direct call.
155*0fca6ea1SDimitry Andric if (!PAI && CB.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
156*0fca6ea1SDimitry Andric CalleeV = cast<ConstantPtrAuth>(CalleeV)->getPointer();
157*0fca6ea1SDimitry Andric assert(isa<Function>(CalleeV));
158*0fca6ea1SDimitry Andric }
159*0fca6ea1SDimitry Andric
160*0fca6ea1SDimitry Andric if (const Function *F = dyn_cast<Function>(CalleeV)) {
161*0fca6ea1SDimitry Andric if (F->hasFnAttribute(Attribute::NonLazyBind)) {
162*0fca6ea1SDimitry Andric LLT Ty = getLLTForType(*F->getType(), DL);
163*0fca6ea1SDimitry Andric Register Reg = MIRBuilder.buildGlobalValue(Ty, F).getReg(0);
164*0fca6ea1SDimitry Andric Info.Callee = MachineOperand::CreateReg(Reg, false);
165*0fca6ea1SDimitry Andric } else {
1668bcb0991SDimitry Andric Info.Callee = MachineOperand::CreateGA(F, 0);
167*0fca6ea1SDimitry Andric }
168*0fca6ea1SDimitry Andric } else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) {
1695f757f3fSDimitry Andric // IR IFuncs and Aliases can't be forward declared (only defined), so the
1705f757f3fSDimitry Andric // callee must be in the same TU and therefore we can direct-call it without
1715f757f3fSDimitry Andric // worrying about it being out of range.
1725f757f3fSDimitry Andric Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0);
1735f757f3fSDimitry Andric } else
1748bcb0991SDimitry Andric Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
1750b57cec5SDimitry Andric
17604eeddc0SDimitry Andric Register ReturnHintAlignReg;
17704eeddc0SDimitry Andric Align ReturnHintAlign;
17804eeddc0SDimitry Andric
179bdd1243dSDimitry Andric Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)};
18004eeddc0SDimitry Andric
18104eeddc0SDimitry Andric if (!Info.OrigRet.Ty->isVoidTy()) {
1825ffd83dbSDimitry Andric setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
1830b57cec5SDimitry Andric
18404eeddc0SDimitry Andric if (MaybeAlign Alignment = CB.getRetAlign()) {
18504eeddc0SDimitry Andric if (*Alignment > Align(1)) {
18604eeddc0SDimitry Andric ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
18704eeddc0SDimitry Andric Info.OrigRet.Regs[0] = ReturnHintAlignReg;
18804eeddc0SDimitry Andric ReturnHintAlign = *Alignment;
18904eeddc0SDimitry Andric }
19004eeddc0SDimitry Andric }
19104eeddc0SDimitry Andric }
19204eeddc0SDimitry Andric
193bdd1243dSDimitry Andric auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi);
194bdd1243dSDimitry Andric if (Bundle && CB.isIndirectCall()) {
195bdd1243dSDimitry Andric Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
196bdd1243dSDimitry Andric assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
197bdd1243dSDimitry Andric }
198bdd1243dSDimitry Andric
199349cc55cSDimitry Andric Info.CB = &CB;
2005ffd83dbSDimitry Andric Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
201e8d8bef9SDimitry Andric Info.CallConv = CallConv;
2028bcb0991SDimitry Andric Info.SwiftErrorVReg = SwiftErrorVReg;
203*0fca6ea1SDimitry Andric Info.PAI = PAI;
204*0fca6ea1SDimitry Andric Info.ConvergenceCtrlToken = ConvergenceCtrlToken;
2055ffd83dbSDimitry Andric Info.IsMustTailCall = CB.isMustTailCall();
206e8d8bef9SDimitry Andric Info.IsTailCall = CanBeTailCalled;
207e8d8bef9SDimitry Andric Info.IsVarArg = IsVarArg;
20804eeddc0SDimitry Andric if (!lowerCall(MIRBuilder, Info))
20904eeddc0SDimitry Andric return false;
21004eeddc0SDimitry Andric
211*0fca6ea1SDimitry Andric if (ReturnHintAlignReg && !Info.LoweredTailCall) {
21204eeddc0SDimitry Andric MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
21304eeddc0SDimitry Andric ReturnHintAlign);
21404eeddc0SDimitry Andric }
21504eeddc0SDimitry Andric
21604eeddc0SDimitry Andric return true;
2170b57cec5SDimitry Andric }
2180b57cec5SDimitry Andric
2190b57cec5SDimitry Andric template <typename FuncInfoTy>
setArgFlags(CallLowering::ArgInfo & Arg,unsigned OpIdx,const DataLayout & DL,const FuncInfoTy & FuncInfo) const2200b57cec5SDimitry Andric void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
2210b57cec5SDimitry Andric const DataLayout &DL,
2220b57cec5SDimitry Andric const FuncInfoTy &FuncInfo) const {
2238bcb0991SDimitry Andric auto &Flags = Arg.Flags[0];
2240b57cec5SDimitry Andric const AttributeList &Attrs = FuncInfo.getAttributes();
225e8d8bef9SDimitry Andric addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
2260b57cec5SDimitry Andric
227fe6060f1SDimitry Andric PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
228fe6060f1SDimitry Andric if (PtrTy) {
229fe6060f1SDimitry Andric Flags.setPointer();
230fe6060f1SDimitry Andric Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
231fe6060f1SDimitry Andric }
232fe6060f1SDimitry Andric
233fe6060f1SDimitry Andric Align MemAlign = DL.getABITypeAlign(Arg.Ty);
234*0fca6ea1SDimitry Andric if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
235*0fca6ea1SDimitry Andric Flags.isByRef()) {
236fe6060f1SDimitry Andric assert(OpIdx >= AttributeList::FirstArgIndex);
237349cc55cSDimitry Andric unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
2380b57cec5SDimitry Andric
239349cc55cSDimitry Andric Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
240349cc55cSDimitry Andric if (!ElementTy)
241*0fca6ea1SDimitry Andric ElementTy = FuncInfo.getParamByRefType(ParamIdx);
242*0fca6ea1SDimitry Andric if (!ElementTy)
243349cc55cSDimitry Andric ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
244349cc55cSDimitry Andric if (!ElementTy)
245349cc55cSDimitry Andric ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
246*0fca6ea1SDimitry Andric
247349cc55cSDimitry Andric assert(ElementTy && "Must have byval, inalloca or preallocated type");
248*0fca6ea1SDimitry Andric
249*0fca6ea1SDimitry Andric uint64_t MemSize = DL.getTypeAllocSize(ElementTy);
250*0fca6ea1SDimitry Andric if (Flags.isByRef())
251*0fca6ea1SDimitry Andric Flags.setByRefSize(MemSize);
252*0fca6ea1SDimitry Andric else
253*0fca6ea1SDimitry Andric Flags.setByValSize(MemSize);
2540b57cec5SDimitry Andric
2550b57cec5SDimitry Andric // For ByVal, alignment should be passed from FE. BE will guess if
2560b57cec5SDimitry Andric // this info is not there but there are cases it cannot get right.
257349cc55cSDimitry Andric if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
258fe6060f1SDimitry Andric MemAlign = *ParamAlign;
259349cc55cSDimitry Andric else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
260fe6060f1SDimitry Andric MemAlign = *ParamAlign;
2610b57cec5SDimitry Andric else
262fe6060f1SDimitry Andric MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
263fe6060f1SDimitry Andric } else if (OpIdx >= AttributeList::FirstArgIndex) {
264fe6060f1SDimitry Andric if (auto ParamAlign =
265fe6060f1SDimitry Andric FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
266fe6060f1SDimitry Andric MemAlign = *ParamAlign;
2670b57cec5SDimitry Andric }
268fe6060f1SDimitry Andric Flags.setMemAlign(MemAlign);
2695ffd83dbSDimitry Andric Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
270fe6060f1SDimitry Andric
271fe6060f1SDimitry Andric // Don't try to use the returned attribute if the argument is marked as
272fe6060f1SDimitry Andric // swiftself, since it won't be passed in x0.
273fe6060f1SDimitry Andric if (Flags.isSwiftSelf())
274fe6060f1SDimitry Andric Flags.setReturned(false);
2750b57cec5SDimitry Andric }
2760b57cec5SDimitry Andric
2770b57cec5SDimitry Andric template void
2780b57cec5SDimitry Andric CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
2790b57cec5SDimitry Andric const DataLayout &DL,
2800b57cec5SDimitry Andric const Function &FuncInfo) const;
2810b57cec5SDimitry Andric
2820b57cec5SDimitry Andric template void
2835ffd83dbSDimitry Andric CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
2840b57cec5SDimitry Andric const DataLayout &DL,
2855ffd83dbSDimitry Andric const CallBase &FuncInfo) const;
2860b57cec5SDimitry Andric
splitToValueTypes(const ArgInfo & OrigArg,SmallVectorImpl<ArgInfo> & SplitArgs,const DataLayout & DL,CallingConv::ID CallConv,SmallVectorImpl<uint64_t> * Offsets) const287fe6060f1SDimitry Andric void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
288fe6060f1SDimitry Andric SmallVectorImpl<ArgInfo> &SplitArgs,
289fe6060f1SDimitry Andric const DataLayout &DL,
290fe6060f1SDimitry Andric CallingConv::ID CallConv,
291fe6060f1SDimitry Andric SmallVectorImpl<uint64_t> *Offsets) const {
292fe6060f1SDimitry Andric LLVMContext &Ctx = OrigArg.Ty->getContext();
2930b57cec5SDimitry Andric
294fe6060f1SDimitry Andric SmallVector<EVT, 4> SplitVTs;
295fe6060f1SDimitry Andric ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
2960b57cec5SDimitry Andric
297fe6060f1SDimitry Andric if (SplitVTs.size() == 0)
298fe6060f1SDimitry Andric return;
2990b57cec5SDimitry Andric
300fe6060f1SDimitry Andric if (SplitVTs.size() == 1) {
301fe6060f1SDimitry Andric // No splitting to do, but we want to replace the original type (e.g. [1 x
302fe6060f1SDimitry Andric // double] -> double).
303fe6060f1SDimitry Andric SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
304fe6060f1SDimitry Andric OrigArg.OrigArgIndex, OrigArg.Flags[0],
305fe6060f1SDimitry Andric OrigArg.IsFixed, OrigArg.OrigValue);
306fe6060f1SDimitry Andric return;
3070b57cec5SDimitry Andric }
3080b57cec5SDimitry Andric
309fe6060f1SDimitry Andric // Create one ArgInfo for each virtual register in the original ArgInfo.
310fe6060f1SDimitry Andric assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
311fe6060f1SDimitry Andric
312fe6060f1SDimitry Andric bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
313fe6060f1SDimitry Andric OrigArg.Ty, CallConv, false, DL);
314fe6060f1SDimitry Andric for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
315fe6060f1SDimitry Andric Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
316fe6060f1SDimitry Andric SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
317fe6060f1SDimitry Andric OrigArg.Flags[0], OrigArg.IsFixed);
318fe6060f1SDimitry Andric if (NeedsRegBlock)
319fe6060f1SDimitry Andric SplitArgs.back().Flags[0].setInConsecutiveRegs();
3200b57cec5SDimitry Andric }
3210b57cec5SDimitry Andric
322fe6060f1SDimitry Andric SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
3230b57cec5SDimitry Andric }
3240b57cec5SDimitry Andric
325fe6060f1SDimitry Andric /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
326fe6060f1SDimitry Andric static MachineInstrBuilder
mergeVectorRegsToResultRegs(MachineIRBuilder & B,ArrayRef<Register> DstRegs,ArrayRef<Register> SrcRegs)327fe6060f1SDimitry Andric mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
328fe6060f1SDimitry Andric ArrayRef<Register> SrcRegs) {
329fe6060f1SDimitry Andric MachineRegisterInfo &MRI = *B.getMRI();
330fe6060f1SDimitry Andric LLT LLTy = MRI.getType(DstRegs[0]);
331fe6060f1SDimitry Andric LLT PartLLT = MRI.getType(SrcRegs[0]);
332fe6060f1SDimitry Andric
333fe6060f1SDimitry Andric // Deal with v3s16 split into v2s16
3340eae32dcSDimitry Andric LLT LCMTy = getCoverTy(LLTy, PartLLT);
335fe6060f1SDimitry Andric if (LCMTy == LLTy) {
336fe6060f1SDimitry Andric // Common case where no padding is needed.
337fe6060f1SDimitry Andric assert(DstRegs.size() == 1);
338fe6060f1SDimitry Andric return B.buildConcatVectors(DstRegs[0], SrcRegs);
339fe6060f1SDimitry Andric }
340fe6060f1SDimitry Andric
341fe6060f1SDimitry Andric // We need to create an unmerge to the result registers, which may require
342fe6060f1SDimitry Andric // widening the original value.
343fe6060f1SDimitry Andric Register UnmergeSrcReg;
344fe6060f1SDimitry Andric if (LCMTy != PartLLT) {
3450eae32dcSDimitry Andric assert(DstRegs.size() == 1);
346bdd1243dSDimitry Andric return B.buildDeleteTrailingVectorElements(
347bdd1243dSDimitry Andric DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs));
348fe6060f1SDimitry Andric } else {
349fe6060f1SDimitry Andric // We don't need to widen anything if we're extracting a scalar which was
350fe6060f1SDimitry Andric // promoted to a vector e.g. s8 -> v4s8 -> s8
351fe6060f1SDimitry Andric assert(SrcRegs.size() == 1);
352fe6060f1SDimitry Andric UnmergeSrcReg = SrcRegs[0];
353fe6060f1SDimitry Andric }
354fe6060f1SDimitry Andric
355fe6060f1SDimitry Andric int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
356fe6060f1SDimitry Andric
357fe6060f1SDimitry Andric SmallVector<Register, 8> PadDstRegs(NumDst);
358fe6060f1SDimitry Andric std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
359fe6060f1SDimitry Andric
360fe6060f1SDimitry Andric // Create the excess dead defs for the unmerge.
361fe6060f1SDimitry Andric for (int I = DstRegs.size(); I != NumDst; ++I)
362fe6060f1SDimitry Andric PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
363fe6060f1SDimitry Andric
3640eae32dcSDimitry Andric if (PadDstRegs.size() == 1)
3650eae32dcSDimitry Andric return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
366fe6060f1SDimitry Andric return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
367fe6060f1SDimitry Andric }
368fe6060f1SDimitry Andric
369fe6060f1SDimitry Andric /// Create a sequence of instructions to combine pieces split into register
370fe6060f1SDimitry Andric /// typed values to the original IR value. \p OrigRegs contains the destination
371fe6060f1SDimitry Andric /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
372fe6060f1SDimitry Andric /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
buildCopyFromRegs(MachineIRBuilder & B,ArrayRef<Register> OrigRegs,ArrayRef<Register> Regs,LLT LLTy,LLT PartLLT,const ISD::ArgFlagsTy Flags)373fe6060f1SDimitry Andric static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
374fe6060f1SDimitry Andric ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
375fe6060f1SDimitry Andric const ISD::ArgFlagsTy Flags) {
376fe6060f1SDimitry Andric MachineRegisterInfo &MRI = *B.getMRI();
377fe6060f1SDimitry Andric
378fe6060f1SDimitry Andric if (PartLLT == LLTy) {
379fe6060f1SDimitry Andric // We should have avoided introducing a new virtual register, and just
380fe6060f1SDimitry Andric // directly assigned here.
381fe6060f1SDimitry Andric assert(OrigRegs[0] == Regs[0]);
382fe6060f1SDimitry Andric return;
383fe6060f1SDimitry Andric }
384fe6060f1SDimitry Andric
385fe6060f1SDimitry Andric if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
386fe6060f1SDimitry Andric Regs.size() == 1) {
387fe6060f1SDimitry Andric B.buildBitcast(OrigRegs[0], Regs[0]);
388fe6060f1SDimitry Andric return;
389fe6060f1SDimitry Andric }
390fe6060f1SDimitry Andric
391fe6060f1SDimitry Andric // A vector PartLLT needs extending to LLTy's element size.
392fe6060f1SDimitry Andric // E.g. <2 x s64> = G_SEXT <2 x s32>.
393fe6060f1SDimitry Andric if (PartLLT.isVector() == LLTy.isVector() &&
394fe6060f1SDimitry Andric PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
395fe6060f1SDimitry Andric (!PartLLT.isVector() ||
3965f757f3fSDimitry Andric PartLLT.getElementCount() == LLTy.getElementCount()) &&
397fe6060f1SDimitry Andric OrigRegs.size() == 1 && Regs.size() == 1) {
398fe6060f1SDimitry Andric Register SrcReg = Regs[0];
399fe6060f1SDimitry Andric
400fe6060f1SDimitry Andric LLT LocTy = MRI.getType(SrcReg);
401fe6060f1SDimitry Andric
402fe6060f1SDimitry Andric if (Flags.isSExt()) {
403fe6060f1SDimitry Andric SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
404fe6060f1SDimitry Andric .getReg(0);
405fe6060f1SDimitry Andric } else if (Flags.isZExt()) {
406fe6060f1SDimitry Andric SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
407fe6060f1SDimitry Andric .getReg(0);
408fe6060f1SDimitry Andric }
409fe6060f1SDimitry Andric
410fe6060f1SDimitry Andric // Sometimes pointers are passed zero extended.
411fe6060f1SDimitry Andric LLT OrigTy = MRI.getType(OrigRegs[0]);
412fe6060f1SDimitry Andric if (OrigTy.isPointer()) {
413fe6060f1SDimitry Andric LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
414fe6060f1SDimitry Andric B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
415fe6060f1SDimitry Andric return;
416fe6060f1SDimitry Andric }
417fe6060f1SDimitry Andric
418fe6060f1SDimitry Andric B.buildTrunc(OrigRegs[0], SrcReg);
419fe6060f1SDimitry Andric return;
420fe6060f1SDimitry Andric }
421fe6060f1SDimitry Andric
422fe6060f1SDimitry Andric if (!LLTy.isVector() && !PartLLT.isVector()) {
423fe6060f1SDimitry Andric assert(OrigRegs.size() == 1);
424fe6060f1SDimitry Andric LLT OrigTy = MRI.getType(OrigRegs[0]);
425fe6060f1SDimitry Andric
426bdd1243dSDimitry Andric unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size();
427fe6060f1SDimitry Andric if (SrcSize == OrigTy.getSizeInBits())
428bdd1243dSDimitry Andric B.buildMergeValues(OrigRegs[0], Regs);
429fe6060f1SDimitry Andric else {
430bdd1243dSDimitry Andric auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs);
431fe6060f1SDimitry Andric B.buildTrunc(OrigRegs[0], Widened);
432fe6060f1SDimitry Andric }
433fe6060f1SDimitry Andric
434fe6060f1SDimitry Andric return;
435fe6060f1SDimitry Andric }
436fe6060f1SDimitry Andric
437fe6060f1SDimitry Andric if (PartLLT.isVector()) {
438fe6060f1SDimitry Andric assert(OrigRegs.size() == 1);
439fe6060f1SDimitry Andric SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
440fe6060f1SDimitry Andric
441fe6060f1SDimitry Andric // If PartLLT is a mismatched vector in both number of elements and element
442fe6060f1SDimitry Andric // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
443fe6060f1SDimitry Andric // have the same elt type, i.e. v4s32.
4445f757f3fSDimitry Andric // TODO: Extend this coersion to element multiples other than just 2.
445*0fca6ea1SDimitry Andric if (TypeSize::isKnownGT(PartLLT.getSizeInBits(), LLTy.getSizeInBits()) &&
446fe6060f1SDimitry Andric PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
447fe6060f1SDimitry Andric Regs.size() == 1) {
448fe6060f1SDimitry Andric LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
449fe6060f1SDimitry Andric .changeElementCount(PartLLT.getElementCount() * 2);
450fe6060f1SDimitry Andric CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
451fe6060f1SDimitry Andric PartLLT = NewTy;
452fe6060f1SDimitry Andric }
453fe6060f1SDimitry Andric
454fe6060f1SDimitry Andric if (LLTy.getScalarType() == PartLLT.getElementType()) {
455fe6060f1SDimitry Andric mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
456fe6060f1SDimitry Andric } else {
457fe6060f1SDimitry Andric unsigned I = 0;
458fe6060f1SDimitry Andric LLT GCDTy = getGCDType(LLTy, PartLLT);
459fe6060f1SDimitry Andric
460fe6060f1SDimitry Andric // We are both splitting a vector, and bitcasting its element types. Cast
461fe6060f1SDimitry Andric // the source pieces into the appropriate number of pieces with the result
462fe6060f1SDimitry Andric // element type.
463fe6060f1SDimitry Andric for (Register SrcReg : CastRegs)
464fe6060f1SDimitry Andric CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
465fe6060f1SDimitry Andric mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
466fe6060f1SDimitry Andric }
467fe6060f1SDimitry Andric
468fe6060f1SDimitry Andric return;
469fe6060f1SDimitry Andric }
470fe6060f1SDimitry Andric
471fe6060f1SDimitry Andric assert(LLTy.isVector() && !PartLLT.isVector());
472fe6060f1SDimitry Andric
473fe6060f1SDimitry Andric LLT DstEltTy = LLTy.getElementType();
474fe6060f1SDimitry Andric
475fe6060f1SDimitry Andric // Pointer information was discarded. We'll need to coerce some register types
476fe6060f1SDimitry Andric // to avoid violating type constraints.
477fe6060f1SDimitry Andric LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
478fe6060f1SDimitry Andric
479fe6060f1SDimitry Andric assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
480fe6060f1SDimitry Andric
481fe6060f1SDimitry Andric if (DstEltTy == PartLLT) {
482fe6060f1SDimitry Andric // Vector was trivially scalarized.
483fe6060f1SDimitry Andric
484fe6060f1SDimitry Andric if (RealDstEltTy.isPointer()) {
485fe6060f1SDimitry Andric for (Register Reg : Regs)
486fe6060f1SDimitry Andric MRI.setType(Reg, RealDstEltTy);
487fe6060f1SDimitry Andric }
488fe6060f1SDimitry Andric
489fe6060f1SDimitry Andric B.buildBuildVector(OrigRegs[0], Regs);
490fe6060f1SDimitry Andric } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
491fe6060f1SDimitry Andric // Deal with vector with 64-bit elements decomposed to 32-bit
492fe6060f1SDimitry Andric // registers. Need to create intermediate 64-bit elements.
493fe6060f1SDimitry Andric SmallVector<Register, 8> EltMerges;
494*0fca6ea1SDimitry Andric int PartsPerElt =
495*0fca6ea1SDimitry Andric divideCeil(DstEltTy.getSizeInBits(), PartLLT.getSizeInBits());
496*0fca6ea1SDimitry Andric LLT ExtendedPartTy = LLT::scalar(PartLLT.getSizeInBits() * PartsPerElt);
497fe6060f1SDimitry Andric
498fe6060f1SDimitry Andric for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
499bdd1243dSDimitry Andric auto Merge =
500*0fca6ea1SDimitry Andric B.buildMergeLikeInstr(ExtendedPartTy, Regs.take_front(PartsPerElt));
501*0fca6ea1SDimitry Andric if (ExtendedPartTy.getSizeInBits() > RealDstEltTy.getSizeInBits())
502*0fca6ea1SDimitry Andric Merge = B.buildTrunc(RealDstEltTy, Merge);
503fe6060f1SDimitry Andric // Fix the type in case this is really a vector of pointers.
504fe6060f1SDimitry Andric MRI.setType(Merge.getReg(0), RealDstEltTy);
505fe6060f1SDimitry Andric EltMerges.push_back(Merge.getReg(0));
506fe6060f1SDimitry Andric Regs = Regs.drop_front(PartsPerElt);
507fe6060f1SDimitry Andric }
508fe6060f1SDimitry Andric
509fe6060f1SDimitry Andric B.buildBuildVector(OrigRegs[0], EltMerges);
510fe6060f1SDimitry Andric } else {
511fe6060f1SDimitry Andric // Vector was split, and elements promoted to a wider type.
512fe6060f1SDimitry Andric // FIXME: Should handle floating point promotions.
5137a6dacacSDimitry Andric unsigned NumElts = LLTy.getNumElements();
5147a6dacacSDimitry Andric LLT BVType = LLT::fixed_vector(NumElts, PartLLT);
5157a6dacacSDimitry Andric
5167a6dacacSDimitry Andric Register BuildVec;
5177a6dacacSDimitry Andric if (NumElts == Regs.size())
5187a6dacacSDimitry Andric BuildVec = B.buildBuildVector(BVType, Regs).getReg(0);
5197a6dacacSDimitry Andric else {
5207a6dacacSDimitry Andric // Vector elements are packed in the inputs.
5217a6dacacSDimitry Andric // e.g. we have a <4 x s16> but 2 x s32 in regs.
5227a6dacacSDimitry Andric assert(NumElts > Regs.size());
5237a6dacacSDimitry Andric LLT SrcEltTy = MRI.getType(Regs[0]);
5247a6dacacSDimitry Andric
5257a6dacacSDimitry Andric LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType();
5267a6dacacSDimitry Andric
5277a6dacacSDimitry Andric // Input registers contain packed elements.
5287a6dacacSDimitry Andric // Determine how many elements per reg.
5297a6dacacSDimitry Andric assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0);
5307a6dacacSDimitry Andric unsigned EltPerReg =
5317a6dacacSDimitry Andric (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits());
5327a6dacacSDimitry Andric
5337a6dacacSDimitry Andric SmallVector<Register, 0> BVRegs;
5347a6dacacSDimitry Andric BVRegs.reserve(Regs.size() * EltPerReg);
5357a6dacacSDimitry Andric for (Register R : Regs) {
5367a6dacacSDimitry Andric auto Unmerge = B.buildUnmerge(OriginalEltTy, R);
5377a6dacacSDimitry Andric for (unsigned K = 0; K < EltPerReg; ++K)
5387a6dacacSDimitry Andric BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0));
5397a6dacacSDimitry Andric }
5407a6dacacSDimitry Andric
5417a6dacacSDimitry Andric // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces
5427a6dacacSDimitry Andric // for a <3 x s16> vector. We should have less than EltPerReg extra items.
5437a6dacacSDimitry Andric if (BVRegs.size() > NumElts) {
5447a6dacacSDimitry Andric assert((BVRegs.size() - NumElts) < EltPerReg);
5457a6dacacSDimitry Andric BVRegs.truncate(NumElts);
5467a6dacacSDimitry Andric }
5477a6dacacSDimitry Andric BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0);
5487a6dacacSDimitry Andric }
5497a6dacacSDimitry Andric B.buildTrunc(OrigRegs[0], BuildVec);
550fe6060f1SDimitry Andric }
551fe6060f1SDimitry Andric }
552fe6060f1SDimitry Andric
553fe6060f1SDimitry Andric /// Create a sequence of instructions to expand the value in \p SrcReg (of type
554fe6060f1SDimitry Andric /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
555fe6060f1SDimitry Andric /// contain the type of scalar value extension if necessary.
556fe6060f1SDimitry Andric ///
557fe6060f1SDimitry Andric /// This is used for outgoing values (vregs to physregs)
buildCopyToRegs(MachineIRBuilder & B,ArrayRef<Register> DstRegs,Register SrcReg,LLT SrcTy,LLT PartTy,unsigned ExtendOp=TargetOpcode::G_ANYEXT)558fe6060f1SDimitry Andric static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
559fe6060f1SDimitry Andric Register SrcReg, LLT SrcTy, LLT PartTy,
560fe6060f1SDimitry Andric unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
561fe6060f1SDimitry Andric // We could just insert a regular copy, but this is unreachable at the moment.
562fe6060f1SDimitry Andric assert(SrcTy != PartTy && "identical part types shouldn't reach here");
563fe6060f1SDimitry Andric
564*0fca6ea1SDimitry Andric const TypeSize PartSize = PartTy.getSizeInBits();
565fe6060f1SDimitry Andric
566fe6060f1SDimitry Andric if (PartTy.isVector() == SrcTy.isVector() &&
567fe6060f1SDimitry Andric PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
568fe6060f1SDimitry Andric assert(DstRegs.size() == 1);
569fe6060f1SDimitry Andric B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
570fe6060f1SDimitry Andric return;
571fe6060f1SDimitry Andric }
572fe6060f1SDimitry Andric
573fe6060f1SDimitry Andric if (SrcTy.isVector() && !PartTy.isVector() &&
574*0fca6ea1SDimitry Andric TypeSize::isKnownGT(PartSize, SrcTy.getElementType().getSizeInBits())) {
575fe6060f1SDimitry Andric // Vector was scalarized, and the elements extended.
576fe6060f1SDimitry Andric auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
577fe6060f1SDimitry Andric for (int i = 0, e = DstRegs.size(); i != e; ++i)
578fe6060f1SDimitry Andric B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
579fe6060f1SDimitry Andric return;
580fe6060f1SDimitry Andric }
581fe6060f1SDimitry Andric
582bdd1243dSDimitry Andric if (SrcTy.isVector() && PartTy.isVector() &&
583*0fca6ea1SDimitry Andric PartTy.getSizeInBits() == SrcTy.getSizeInBits() &&
584*0fca6ea1SDimitry Andric ElementCount::isKnownLT(SrcTy.getElementCount(),
585*0fca6ea1SDimitry Andric PartTy.getElementCount())) {
586*0fca6ea1SDimitry Andric // A coercion like: v2f32 -> v4f32 or nxv2f32 -> nxv4f32
587bdd1243dSDimitry Andric Register DstReg = DstRegs.front();
588bdd1243dSDimitry Andric B.buildPadVectorWithUndefElements(DstReg, SrcReg);
589bdd1243dSDimitry Andric return;
590bdd1243dSDimitry Andric }
591bdd1243dSDimitry Andric
592fe6060f1SDimitry Andric LLT GCDTy = getGCDType(SrcTy, PartTy);
593fe6060f1SDimitry Andric if (GCDTy == PartTy) {
594fe6060f1SDimitry Andric // If this already evenly divisible, we can create a simple unmerge.
595fe6060f1SDimitry Andric B.buildUnmerge(DstRegs, SrcReg);
596fe6060f1SDimitry Andric return;
597fe6060f1SDimitry Andric }
598fe6060f1SDimitry Andric
599*0fca6ea1SDimitry Andric if (SrcTy.isVector() && !PartTy.isVector() &&
600*0fca6ea1SDimitry Andric SrcTy.getScalarSizeInBits() > PartTy.getSizeInBits()) {
601*0fca6ea1SDimitry Andric LLT ExtTy =
602*0fca6ea1SDimitry Andric LLT::vector(SrcTy.getElementCount(),
603*0fca6ea1SDimitry Andric LLT::scalar(PartTy.getScalarSizeInBits() * DstRegs.size() /
604*0fca6ea1SDimitry Andric SrcTy.getNumElements()));
605*0fca6ea1SDimitry Andric auto Ext = B.buildAnyExt(ExtTy, SrcReg);
606*0fca6ea1SDimitry Andric B.buildUnmerge(DstRegs, Ext);
607*0fca6ea1SDimitry Andric return;
608*0fca6ea1SDimitry Andric }
609*0fca6ea1SDimitry Andric
610fe6060f1SDimitry Andric MachineRegisterInfo &MRI = *B.getMRI();
611fe6060f1SDimitry Andric LLT DstTy = MRI.getType(DstRegs[0]);
6120eae32dcSDimitry Andric LLT LCMTy = getCoverTy(SrcTy, PartTy);
613fe6060f1SDimitry Andric
614753f127fSDimitry Andric if (PartTy.isVector() && LCMTy == PartTy) {
615753f127fSDimitry Andric assert(DstRegs.size() == 1);
616753f127fSDimitry Andric B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
617753f127fSDimitry Andric return;
618753f127fSDimitry Andric }
619753f127fSDimitry Andric
620fe6060f1SDimitry Andric const unsigned DstSize = DstTy.getSizeInBits();
621fe6060f1SDimitry Andric const unsigned SrcSize = SrcTy.getSizeInBits();
622fe6060f1SDimitry Andric unsigned CoveringSize = LCMTy.getSizeInBits();
623fe6060f1SDimitry Andric
624fe6060f1SDimitry Andric Register UnmergeSrc = SrcReg;
625fe6060f1SDimitry Andric
6260eae32dcSDimitry Andric if (!LCMTy.isVector() && CoveringSize != SrcSize) {
627fe6060f1SDimitry Andric // For scalars, it's common to be able to use a simple extension.
628fe6060f1SDimitry Andric if (SrcTy.isScalar() && DstTy.isScalar()) {
629fe6060f1SDimitry Andric CoveringSize = alignTo(SrcSize, DstSize);
630fe6060f1SDimitry Andric LLT CoverTy = LLT::scalar(CoveringSize);
631fe6060f1SDimitry Andric UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
632fe6060f1SDimitry Andric } else {
633fe6060f1SDimitry Andric // Widen to the common type.
634fe6060f1SDimitry Andric // FIXME: This should respect the extend type
635fe6060f1SDimitry Andric Register Undef = B.buildUndef(SrcTy).getReg(0);
636fe6060f1SDimitry Andric SmallVector<Register, 8> MergeParts(1, SrcReg);
637fe6060f1SDimitry Andric for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
638fe6060f1SDimitry Andric MergeParts.push_back(Undef);
639bdd1243dSDimitry Andric UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
640fe6060f1SDimitry Andric }
641fe6060f1SDimitry Andric }
642fe6060f1SDimitry Andric
6430eae32dcSDimitry Andric if (LCMTy.isVector() && CoveringSize != SrcSize)
6440eae32dcSDimitry Andric UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
645fe6060f1SDimitry Andric
6460eae32dcSDimitry Andric B.buildUnmerge(DstRegs, UnmergeSrc);
647fe6060f1SDimitry Andric }
648fe6060f1SDimitry Andric
determineAndHandleAssignments(ValueHandler & Handler,ValueAssigner & Assigner,SmallVectorImpl<ArgInfo> & Args,MachineIRBuilder & MIRBuilder,CallingConv::ID CallConv,bool IsVarArg,ArrayRef<Register> ThisReturnRegs) const649fe6060f1SDimitry Andric bool CallLowering::determineAndHandleAssignments(
650fe6060f1SDimitry Andric ValueHandler &Handler, ValueAssigner &Assigner,
651fe6060f1SDimitry Andric SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
65204eeddc0SDimitry Andric CallingConv::ID CallConv, bool IsVarArg,
65304eeddc0SDimitry Andric ArrayRef<Register> ThisReturnRegs) const {
6540b57cec5SDimitry Andric MachineFunction &MF = MIRBuilder.getMF();
6550b57cec5SDimitry Andric const Function &F = MF.getFunction();
6560b57cec5SDimitry Andric SmallVector<CCValAssign, 16> ArgLocs;
657fe6060f1SDimitry Andric
658fe6060f1SDimitry Andric CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
659fe6060f1SDimitry Andric if (!determineAssignments(Assigner, Args, CCInfo))
660fe6060f1SDimitry Andric return false;
661fe6060f1SDimitry Andric
662fe6060f1SDimitry Andric return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
66304eeddc0SDimitry Andric ThisReturnRegs);
6640b57cec5SDimitry Andric }
6650b57cec5SDimitry Andric
extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags)666fe6060f1SDimitry Andric static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
667fe6060f1SDimitry Andric if (Flags.isSExt())
668fe6060f1SDimitry Andric return TargetOpcode::G_SEXT;
669fe6060f1SDimitry Andric if (Flags.isZExt())
670fe6060f1SDimitry Andric return TargetOpcode::G_ZEXT;
671fe6060f1SDimitry Andric return TargetOpcode::G_ANYEXT;
672fe6060f1SDimitry Andric }
673fe6060f1SDimitry Andric
determineAssignments(ValueAssigner & Assigner,SmallVectorImpl<ArgInfo> & Args,CCState & CCInfo) const674fe6060f1SDimitry Andric bool CallLowering::determineAssignments(ValueAssigner &Assigner,
6758bcb0991SDimitry Andric SmallVectorImpl<ArgInfo> &Args,
676fe6060f1SDimitry Andric CCState &CCInfo) const {
677fe6060f1SDimitry Andric LLVMContext &Ctx = CCInfo.getContext();
678fe6060f1SDimitry Andric const CallingConv::ID CallConv = CCInfo.getCallingConv();
6790b57cec5SDimitry Andric
6800b57cec5SDimitry Andric unsigned NumArgs = Args.size();
6810b57cec5SDimitry Andric for (unsigned i = 0; i != NumArgs; ++i) {
6825ffd83dbSDimitry Andric EVT CurVT = EVT::getEVT(Args[i].Ty);
683e8d8bef9SDimitry Andric
684fe6060f1SDimitry Andric MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
6858bcb0991SDimitry Andric
6868bcb0991SDimitry Andric // If we need to split the type over multiple regs, check it's a scenario
6878bcb0991SDimitry Andric // we currently support.
688fe6060f1SDimitry Andric unsigned NumParts =
689fe6060f1SDimitry Andric TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
690e8d8bef9SDimitry Andric
691e8d8bef9SDimitry Andric if (NumParts == 1) {
692e8d8bef9SDimitry Andric // Try to use the register type if we couldn't assign the VT.
693fe6060f1SDimitry Andric if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
694e8d8bef9SDimitry Andric Args[i].Flags[0], CCInfo))
695e8d8bef9SDimitry Andric return false;
696e8d8bef9SDimitry Andric continue;
697e8d8bef9SDimitry Andric }
698e8d8bef9SDimitry Andric
6998bcb0991SDimitry Andric // For incoming arguments (physregs to vregs), we could have values in
7008bcb0991SDimitry Andric // physregs (or memlocs) which we want to extract and copy to vregs.
7018bcb0991SDimitry Andric // During this, we might have to deal with the LLT being split across
7028bcb0991SDimitry Andric // multiple regs, so we have to record this information for later.
7038bcb0991SDimitry Andric //
7048bcb0991SDimitry Andric // If we have outgoing args, then we have the opposite case. We have a
7058bcb0991SDimitry Andric // vreg with an LLT which we want to assign to a physical location, and
7068bcb0991SDimitry Andric // we might have to record that the value has to be split later.
707fe6060f1SDimitry Andric
7088bcb0991SDimitry Andric // We're handling an incoming arg which is split over multiple regs.
7098bcb0991SDimitry Andric // E.g. passing an s128 on AArch64.
7108bcb0991SDimitry Andric ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
7118bcb0991SDimitry Andric Args[i].Flags.clear();
712fe6060f1SDimitry Andric
7138bcb0991SDimitry Andric for (unsigned Part = 0; Part < NumParts; ++Part) {
7148bcb0991SDimitry Andric ISD::ArgFlagsTy Flags = OrigFlags;
7158bcb0991SDimitry Andric if (Part == 0) {
7168bcb0991SDimitry Andric Flags.setSplit();
7178bcb0991SDimitry Andric } else {
7185ffd83dbSDimitry Andric Flags.setOrigAlign(Align(1));
7198bcb0991SDimitry Andric if (Part == NumParts - 1)
7208bcb0991SDimitry Andric Flags.setSplitEnd();
7218bcb0991SDimitry Andric }
722fe6060f1SDimitry Andric
7238bcb0991SDimitry Andric Args[i].Flags.push_back(Flags);
724fe6060f1SDimitry Andric if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
725e8d8bef9SDimitry Andric Args[i].Flags[Part], CCInfo)) {
7268bcb0991SDimitry Andric // Still couldn't assign this smaller part type for some reason.
7278bcb0991SDimitry Andric return false;
7288bcb0991SDimitry Andric }
7298bcb0991SDimitry Andric }
7308bcb0991SDimitry Andric }
7310b57cec5SDimitry Andric
732fe6060f1SDimitry Andric return true;
733fe6060f1SDimitry Andric }
734fe6060f1SDimitry Andric
handleAssignments(ValueHandler & Handler,SmallVectorImpl<ArgInfo> & Args,CCState & CCInfo,SmallVectorImpl<CCValAssign> & ArgLocs,MachineIRBuilder & MIRBuilder,ArrayRef<Register> ThisReturnRegs) const735fe6060f1SDimitry Andric bool CallLowering::handleAssignments(ValueHandler &Handler,
736fe6060f1SDimitry Andric SmallVectorImpl<ArgInfo> &Args,
737fe6060f1SDimitry Andric CCState &CCInfo,
738fe6060f1SDimitry Andric SmallVectorImpl<CCValAssign> &ArgLocs,
739fe6060f1SDimitry Andric MachineIRBuilder &MIRBuilder,
74004eeddc0SDimitry Andric ArrayRef<Register> ThisReturnRegs) const {
741fe6060f1SDimitry Andric MachineFunction &MF = MIRBuilder.getMF();
742fe6060f1SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo();
743fe6060f1SDimitry Andric const Function &F = MF.getFunction();
744*0fca6ea1SDimitry Andric const DataLayout &DL = F.getDataLayout();
745fe6060f1SDimitry Andric
746fe6060f1SDimitry Andric const unsigned NumArgs = Args.size();
747fe6060f1SDimitry Andric
748349cc55cSDimitry Andric // Stores thunks for outgoing register assignments. This is used so we delay
749349cc55cSDimitry Andric // generating register copies until mem loc assignments are done. We do this
750349cc55cSDimitry Andric // so that if the target is using the delayed stack protector feature, we can
751349cc55cSDimitry Andric // find the split point of the block accurately. E.g. if we have:
752349cc55cSDimitry Andric // G_STORE %val, %memloc
753349cc55cSDimitry Andric // $x0 = COPY %foo
754349cc55cSDimitry Andric // $x1 = COPY %bar
755349cc55cSDimitry Andric // CALL func
756349cc55cSDimitry Andric // ... then the split point for the block will correctly be at, and including,
757349cc55cSDimitry Andric // the copy to $x0. If instead the G_STORE instruction immediately precedes
758349cc55cSDimitry Andric // the CALL, then we'd prematurely choose the CALL as the split point, thus
759349cc55cSDimitry Andric // generating a split block with a CALL that uses undefined physregs.
760349cc55cSDimitry Andric SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
761349cc55cSDimitry Andric
762fe6060f1SDimitry Andric for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
7630b57cec5SDimitry Andric assert(j < ArgLocs.size() && "Skipped too many arg locs");
7640b57cec5SDimitry Andric CCValAssign &VA = ArgLocs[j];
7650b57cec5SDimitry Andric assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
7660b57cec5SDimitry Andric
7670b57cec5SDimitry Andric if (VA.needsCustom()) {
768349cc55cSDimitry Andric std::function<void()> Thunk;
769349cc55cSDimitry Andric unsigned NumArgRegs = Handler.assignCustomValue(
770bdd1243dSDimitry Andric Args[i], ArrayRef(ArgLocs).slice(j), &Thunk);
771349cc55cSDimitry Andric if (Thunk)
772349cc55cSDimitry Andric DelayedOutgoingRegAssignments.emplace_back(Thunk);
7735ffd83dbSDimitry Andric if (!NumArgRegs)
7745ffd83dbSDimitry Andric return false;
7757a6dacacSDimitry Andric j += (NumArgRegs - 1);
7760b57cec5SDimitry Andric continue;
7770b57cec5SDimitry Andric }
7780b57cec5SDimitry Andric
779*0fca6ea1SDimitry Andric auto AllocaAddressSpace = MF.getDataLayout().getAllocaAddrSpace();
780*0fca6ea1SDimitry Andric
781fe6060f1SDimitry Andric const MVT ValVT = VA.getValVT();
782fe6060f1SDimitry Andric const MVT LocVT = VA.getLocVT();
7830b57cec5SDimitry Andric
784fe6060f1SDimitry Andric const LLT LocTy(LocVT);
785fe6060f1SDimitry Andric const LLT ValTy(ValVT);
786fe6060f1SDimitry Andric const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
787fe6060f1SDimitry Andric const EVT OrigVT = EVT::getEVT(Args[i].Ty);
7885ffd83dbSDimitry Andric const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
789*0fca6ea1SDimitry Andric const LLT PointerTy = LLT::pointer(
790*0fca6ea1SDimitry Andric AllocaAddressSpace, DL.getPointerSizeInBits(AllocaAddressSpace));
7915ffd83dbSDimitry Andric
7928bcb0991SDimitry Andric // Expected to be multiple regs for a single incoming arg.
793e8d8bef9SDimitry Andric // There should be Regs.size() ArgLocs per argument.
794fe6060f1SDimitry Andric // This should be the same as getNumRegistersForCallingConv
795fe6060f1SDimitry Andric const unsigned NumParts = Args[i].Flags.size();
7968bcb0991SDimitry Andric
797fe6060f1SDimitry Andric // Now split the registers into the assigned types.
798fe6060f1SDimitry Andric Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
799fe6060f1SDimitry Andric
800fe6060f1SDimitry Andric if (NumParts != 1 || NewLLT != OrigTy) {
801fe6060f1SDimitry Andric // If we can't directly assign the register, we need one or more
802fe6060f1SDimitry Andric // intermediate values.
803fe6060f1SDimitry Andric Args[i].Regs.resize(NumParts);
804fe6060f1SDimitry Andric
805*0fca6ea1SDimitry Andric // When we have indirect parameter passing we are receiving a pointer,
806*0fca6ea1SDimitry Andric // that points to the actual value, so we need one "temporary" pointer.
807*0fca6ea1SDimitry Andric if (VA.getLocInfo() == CCValAssign::Indirect) {
808*0fca6ea1SDimitry Andric if (Handler.isIncomingArgumentHandler())
809*0fca6ea1SDimitry Andric Args[i].Regs[0] = MRI.createGenericVirtualRegister(PointerTy);
810*0fca6ea1SDimitry Andric } else {
811fe6060f1SDimitry Andric // For each split register, create and assign a vreg that will store
812fe6060f1SDimitry Andric // the incoming component of the larger value. These will later be
813fe6060f1SDimitry Andric // merged to form the final vreg.
814fe6060f1SDimitry Andric for (unsigned Part = 0; Part < NumParts; ++Part)
815fe6060f1SDimitry Andric Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
816fe6060f1SDimitry Andric }
817*0fca6ea1SDimitry Andric }
818fe6060f1SDimitry Andric
819fe6060f1SDimitry Andric assert((j + (NumParts - 1)) < ArgLocs.size() &&
8208bcb0991SDimitry Andric "Too many regs for number of args");
821fe6060f1SDimitry Andric
822fe6060f1SDimitry Andric // Coerce into outgoing value types before register assignment.
823*0fca6ea1SDimitry Andric if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy &&
824*0fca6ea1SDimitry Andric VA.getLocInfo() != CCValAssign::Indirect) {
825fe6060f1SDimitry Andric assert(Args[i].OrigRegs.size() == 1);
826fe6060f1SDimitry Andric buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
827fe6060f1SDimitry Andric ValTy, extendOpFromFlags(Args[i].Flags[0]));
828fe6060f1SDimitry Andric }
829fe6060f1SDimitry Andric
830*0fca6ea1SDimitry Andric bool IndirectParameterPassingHandled = false;
83181ad6265SDimitry Andric bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
832fe6060f1SDimitry Andric for (unsigned Part = 0; Part < NumParts; ++Part) {
833*0fca6ea1SDimitry Andric assert((VA.getLocInfo() != CCValAssign::Indirect || Part == 0) &&
834*0fca6ea1SDimitry Andric "Only the first parameter should be processed when "
835*0fca6ea1SDimitry Andric "handling indirect passing!");
836fe6060f1SDimitry Andric Register ArgReg = Args[i].Regs[Part];
8378bcb0991SDimitry Andric // There should be Regs.size() ArgLocs per argument.
83881ad6265SDimitry Andric unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
83981ad6265SDimitry Andric CCValAssign &VA = ArgLocs[j + Idx];
840fe6060f1SDimitry Andric const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
841e8d8bef9SDimitry Andric
842*0fca6ea1SDimitry Andric // We found an indirect parameter passing, and we have an
843*0fca6ea1SDimitry Andric // OutgoingValueHandler as our handler (so we are at the call site or the
844*0fca6ea1SDimitry Andric // return value). In this case, start the construction of the following
845*0fca6ea1SDimitry Andric // GMIR, that is responsible for the preparation of indirect parameter
846*0fca6ea1SDimitry Andric // passing:
847*0fca6ea1SDimitry Andric //
848*0fca6ea1SDimitry Andric // %1(indirectly passed type) = The value to pass
849*0fca6ea1SDimitry Andric // %3(pointer) = G_FRAME_INDEX %stack.0
850*0fca6ea1SDimitry Andric // G_STORE %1, %3 :: (store (s128), align 8)
851*0fca6ea1SDimitry Andric //
852*0fca6ea1SDimitry Andric // After this GMIR, the remaining part of the loop body will decide how
853*0fca6ea1SDimitry Andric // to get the value to the caller and we break out of the loop.
854*0fca6ea1SDimitry Andric if (VA.getLocInfo() == CCValAssign::Indirect &&
855*0fca6ea1SDimitry Andric !Handler.isIncomingArgumentHandler()) {
856*0fca6ea1SDimitry Andric Align AlignmentForStored = DL.getPrefTypeAlign(Args[i].Ty);
857*0fca6ea1SDimitry Andric MachineFrameInfo &MFI = MF.getFrameInfo();
858*0fca6ea1SDimitry Andric // Get some space on the stack for the value, so later we can pass it
859*0fca6ea1SDimitry Andric // as a reference.
860*0fca6ea1SDimitry Andric int FrameIdx = MFI.CreateStackObject(OrigTy.getScalarSizeInBits(),
861*0fca6ea1SDimitry Andric AlignmentForStored, false);
862*0fca6ea1SDimitry Andric Register PointerToStackReg =
863*0fca6ea1SDimitry Andric MIRBuilder.buildFrameIndex(PointerTy, FrameIdx).getReg(0);
864*0fca6ea1SDimitry Andric MachinePointerInfo StackPointerMPO =
865*0fca6ea1SDimitry Andric MachinePointerInfo::getFixedStack(MF, FrameIdx);
866*0fca6ea1SDimitry Andric // Store the value in the previously created stack space.
867*0fca6ea1SDimitry Andric MIRBuilder.buildStore(Args[i].OrigRegs[Part], PointerToStackReg,
868*0fca6ea1SDimitry Andric StackPointerMPO,
869*0fca6ea1SDimitry Andric inferAlignFromPtrInfo(MF, StackPointerMPO));
870*0fca6ea1SDimitry Andric
871*0fca6ea1SDimitry Andric ArgReg = PointerToStackReg;
872*0fca6ea1SDimitry Andric IndirectParameterPassingHandled = true;
873*0fca6ea1SDimitry Andric }
874*0fca6ea1SDimitry Andric
875fe6060f1SDimitry Andric if (VA.isMemLoc() && !Flags.isByVal()) {
876fe6060f1SDimitry Andric // Individual pieces may have been spilled to the stack and others
877fe6060f1SDimitry Andric // passed in registers.
878fe6060f1SDimitry Andric
879fe6060f1SDimitry Andric // TODO: The memory size may be larger than the value we need to
880fe6060f1SDimitry Andric // store. We may need to adjust the offset for big endian targets.
881fe6060f1SDimitry Andric LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
882fe6060f1SDimitry Andric
883e8d8bef9SDimitry Andric MachinePointerInfo MPO;
884*0fca6ea1SDimitry Andric Register StackAddr =
885*0fca6ea1SDimitry Andric Handler.getStackAddress(VA.getLocInfo() == CCValAssign::Indirect
886*0fca6ea1SDimitry Andric ? PointerTy.getSizeInBytes()
887*0fca6ea1SDimitry Andric : MemTy.getSizeInBytes(),
888*0fca6ea1SDimitry Andric VA.getLocMemOffset(), MPO, Flags);
889fe6060f1SDimitry Andric
890*0fca6ea1SDimitry Andric // Finish the handling of indirect passing from the passers
891*0fca6ea1SDimitry Andric // (OutgoingParameterHandler) side.
892*0fca6ea1SDimitry Andric // This branch is needed, so the pointer to the value is loaded onto the
893*0fca6ea1SDimitry Andric // stack.
894*0fca6ea1SDimitry Andric if (VA.getLocInfo() == CCValAssign::Indirect)
895*0fca6ea1SDimitry Andric Handler.assignValueToAddress(ArgReg, StackAddr, PointerTy, MPO, VA);
896*0fca6ea1SDimitry Andric else
897*0fca6ea1SDimitry Andric Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO,
898*0fca6ea1SDimitry Andric VA);
899*0fca6ea1SDimitry Andric } else if (VA.isMemLoc() && Flags.isByVal()) {
900*0fca6ea1SDimitry Andric assert(Args[i].Regs.size() == 1 && "didn't expect split byval pointer");
901e8d8bef9SDimitry Andric
902e8d8bef9SDimitry Andric if (Handler.isIncomingArgumentHandler()) {
903fe6060f1SDimitry Andric // We just need to copy the frame index value to the pointer.
904fe6060f1SDimitry Andric MachinePointerInfo MPO;
905fe6060f1SDimitry Andric Register StackAddr = Handler.getStackAddress(
906fe6060f1SDimitry Andric Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
907fe6060f1SDimitry Andric MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
908fe6060f1SDimitry Andric } else {
909fe6060f1SDimitry Andric // For outgoing byval arguments, insert the implicit copy byval
910fe6060f1SDimitry Andric // implies, such that writes in the callee do not modify the caller's
911fe6060f1SDimitry Andric // value.
912fe6060f1SDimitry Andric uint64_t MemSize = Flags.getByValSize();
913fe6060f1SDimitry Andric int64_t Offset = VA.getLocMemOffset();
9148833aad7SDimitry Andric
915fe6060f1SDimitry Andric MachinePointerInfo DstMPO;
916fe6060f1SDimitry Andric Register StackAddr =
917fe6060f1SDimitry Andric Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
918fe6060f1SDimitry Andric
919fe6060f1SDimitry Andric MachinePointerInfo SrcMPO(Args[i].OrigValue);
920fe6060f1SDimitry Andric if (!Args[i].OrigValue) {
921fe6060f1SDimitry Andric // We still need to accurately track the stack address space if we
922fe6060f1SDimitry Andric // don't know the underlying value.
923fe6060f1SDimitry Andric const LLT PtrTy = MRI.getType(StackAddr);
924fe6060f1SDimitry Andric SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
9250b57cec5SDimitry Andric }
926e8d8bef9SDimitry Andric
927fe6060f1SDimitry Andric Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
928fe6060f1SDimitry Andric inferAlignFromPtrInfo(MF, DstMPO));
929fe6060f1SDimitry Andric
930fe6060f1SDimitry Andric Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
931fe6060f1SDimitry Andric inferAlignFromPtrInfo(MF, SrcMPO));
932fe6060f1SDimitry Andric
933fe6060f1SDimitry Andric Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
934fe6060f1SDimitry Andric DstMPO, DstAlign, SrcMPO, SrcAlign,
935fe6060f1SDimitry Andric MemSize, VA);
936fe6060f1SDimitry Andric }
937*0fca6ea1SDimitry Andric } else if (i == 0 && !ThisReturnRegs.empty() &&
938fe6060f1SDimitry Andric Handler.isIncomingArgumentHandler() &&
939fe6060f1SDimitry Andric isTypeIsValidForThisReturn(ValVT)) {
94004eeddc0SDimitry Andric Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
941*0fca6ea1SDimitry Andric } else if (Handler.isIncomingArgumentHandler()) {
942fe6060f1SDimitry Andric Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
943*0fca6ea1SDimitry Andric } else {
944349cc55cSDimitry Andric DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
945349cc55cSDimitry Andric Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
946349cc55cSDimitry Andric });
947349cc55cSDimitry Andric }
948*0fca6ea1SDimitry Andric
949*0fca6ea1SDimitry Andric // Finish the handling of indirect parameter passing when receiving
950*0fca6ea1SDimitry Andric // the value (we are in the called function or the caller when receiving
951*0fca6ea1SDimitry Andric // the return value).
952*0fca6ea1SDimitry Andric if (VA.getLocInfo() == CCValAssign::Indirect &&
953*0fca6ea1SDimitry Andric Handler.isIncomingArgumentHandler()) {
954*0fca6ea1SDimitry Andric Align Alignment = DL.getABITypeAlign(Args[i].Ty);
955*0fca6ea1SDimitry Andric MachinePointerInfo MPO = MachinePointerInfo::getUnknownStack(MF);
956*0fca6ea1SDimitry Andric
957*0fca6ea1SDimitry Andric // Since we are doing indirect parameter passing, we know that the value
958*0fca6ea1SDimitry Andric // in the temporary register is not the value passed to the function,
959*0fca6ea1SDimitry Andric // but rather a pointer to that value. Let's load that value into the
960*0fca6ea1SDimitry Andric // virtual register where the parameter should go.
961*0fca6ea1SDimitry Andric MIRBuilder.buildLoad(Args[i].OrigRegs[0], Args[i].Regs[0], MPO,
962*0fca6ea1SDimitry Andric Alignment);
963*0fca6ea1SDimitry Andric
964*0fca6ea1SDimitry Andric IndirectParameterPassingHandled = true;
965*0fca6ea1SDimitry Andric }
966*0fca6ea1SDimitry Andric
967*0fca6ea1SDimitry Andric if (IndirectParameterPassingHandled)
968*0fca6ea1SDimitry Andric break;
969fe6060f1SDimitry Andric }
970fe6060f1SDimitry Andric
971fe6060f1SDimitry Andric // Now that all pieces have been assigned, re-pack the register typed values
972*0fca6ea1SDimitry Andric // into the original value typed registers. This is only necessary, when
973*0fca6ea1SDimitry Andric // the value was passed in multiple registers, not indirectly.
974*0fca6ea1SDimitry Andric if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT &&
975*0fca6ea1SDimitry Andric !IndirectParameterPassingHandled) {
976fe6060f1SDimitry Andric // Merge the split registers into the expected larger result vregs of
977fe6060f1SDimitry Andric // the original call.
978fe6060f1SDimitry Andric buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
979fe6060f1SDimitry Andric LocTy, Args[i].Flags[0]);
980fe6060f1SDimitry Andric }
981fe6060f1SDimitry Andric
982fe6060f1SDimitry Andric j += NumParts - 1;
983e8d8bef9SDimitry Andric }
984349cc55cSDimitry Andric for (auto &Fn : DelayedOutgoingRegAssignments)
985349cc55cSDimitry Andric Fn();
986e8d8bef9SDimitry Andric
987e8d8bef9SDimitry Andric return true;
988e8d8bef9SDimitry Andric }
989e8d8bef9SDimitry Andric
insertSRetLoads(MachineIRBuilder & MIRBuilder,Type * RetTy,ArrayRef<Register> VRegs,Register DemoteReg,int FI) const990e8d8bef9SDimitry Andric void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
991e8d8bef9SDimitry Andric ArrayRef<Register> VRegs, Register DemoteReg,
992e8d8bef9SDimitry Andric int FI) const {
993e8d8bef9SDimitry Andric MachineFunction &MF = MIRBuilder.getMF();
994e8d8bef9SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo();
995e8d8bef9SDimitry Andric const DataLayout &DL = MF.getDataLayout();
996e8d8bef9SDimitry Andric
997e8d8bef9SDimitry Andric SmallVector<EVT, 4> SplitVTs;
998e8d8bef9SDimitry Andric SmallVector<uint64_t, 4> Offsets;
999e8d8bef9SDimitry Andric ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
1000e8d8bef9SDimitry Andric
1001e8d8bef9SDimitry Andric assert(VRegs.size() == SplitVTs.size());
1002e8d8bef9SDimitry Andric
1003e8d8bef9SDimitry Andric unsigned NumValues = SplitVTs.size();
1004e8d8bef9SDimitry Andric Align BaseAlign = DL.getPrefTypeAlign(RetTy);
10055f757f3fSDimitry Andric Type *RetPtrTy =
10065f757f3fSDimitry Andric PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace());
100706c3fb27SDimitry Andric LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL);
1008e8d8bef9SDimitry Andric
1009e8d8bef9SDimitry Andric MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
1010e8d8bef9SDimitry Andric
1011e8d8bef9SDimitry Andric for (unsigned I = 0; I < NumValues; ++I) {
1012e8d8bef9SDimitry Andric Register Addr;
1013e8d8bef9SDimitry Andric MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
1014e8d8bef9SDimitry Andric auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1015fe6060f1SDimitry Andric MRI.getType(VRegs[I]),
1016e8d8bef9SDimitry Andric commonAlignment(BaseAlign, Offsets[I]));
1017e8d8bef9SDimitry Andric MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
1018e8d8bef9SDimitry Andric }
1019e8d8bef9SDimitry Andric }
1020e8d8bef9SDimitry Andric
insertSRetStores(MachineIRBuilder & MIRBuilder,Type * RetTy,ArrayRef<Register> VRegs,Register DemoteReg) const1021e8d8bef9SDimitry Andric void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
1022e8d8bef9SDimitry Andric ArrayRef<Register> VRegs,
1023e8d8bef9SDimitry Andric Register DemoteReg) const {
1024e8d8bef9SDimitry Andric MachineFunction &MF = MIRBuilder.getMF();
1025e8d8bef9SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo();
1026e8d8bef9SDimitry Andric const DataLayout &DL = MF.getDataLayout();
1027e8d8bef9SDimitry Andric
1028e8d8bef9SDimitry Andric SmallVector<EVT, 4> SplitVTs;
1029e8d8bef9SDimitry Andric SmallVector<uint64_t, 4> Offsets;
1030e8d8bef9SDimitry Andric ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
1031e8d8bef9SDimitry Andric
1032e8d8bef9SDimitry Andric assert(VRegs.size() == SplitVTs.size());
1033e8d8bef9SDimitry Andric
1034e8d8bef9SDimitry Andric unsigned NumValues = SplitVTs.size();
1035e8d8bef9SDimitry Andric Align BaseAlign = DL.getPrefTypeAlign(RetTy);
1036e8d8bef9SDimitry Andric unsigned AS = DL.getAllocaAddrSpace();
103706c3fb27SDimitry Andric LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL);
1038e8d8bef9SDimitry Andric
1039e8d8bef9SDimitry Andric MachinePointerInfo PtrInfo(AS);
1040e8d8bef9SDimitry Andric
1041e8d8bef9SDimitry Andric for (unsigned I = 0; I < NumValues; ++I) {
1042e8d8bef9SDimitry Andric Register Addr;
1043e8d8bef9SDimitry Andric MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
1044e8d8bef9SDimitry Andric auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
1045fe6060f1SDimitry Andric MRI.getType(VRegs[I]),
1046e8d8bef9SDimitry Andric commonAlignment(BaseAlign, Offsets[I]));
1047e8d8bef9SDimitry Andric MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
1048e8d8bef9SDimitry Andric }
1049e8d8bef9SDimitry Andric }
1050e8d8bef9SDimitry Andric
insertSRetIncomingArgument(const Function & F,SmallVectorImpl<ArgInfo> & SplitArgs,Register & DemoteReg,MachineRegisterInfo & MRI,const DataLayout & DL) const1051e8d8bef9SDimitry Andric void CallLowering::insertSRetIncomingArgument(
1052e8d8bef9SDimitry Andric const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
1053e8d8bef9SDimitry Andric MachineRegisterInfo &MRI, const DataLayout &DL) const {
1054e8d8bef9SDimitry Andric unsigned AS = DL.getAllocaAddrSpace();
1055e8d8bef9SDimitry Andric DemoteReg = MRI.createGenericVirtualRegister(
1056e8d8bef9SDimitry Andric LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
1057e8d8bef9SDimitry Andric
1058e8d8bef9SDimitry Andric Type *PtrTy = PointerType::get(F.getReturnType(), AS);
1059e8d8bef9SDimitry Andric
1060e8d8bef9SDimitry Andric SmallVector<EVT, 1> ValueVTs;
1061e8d8bef9SDimitry Andric ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
1062e8d8bef9SDimitry Andric
1063e8d8bef9SDimitry Andric // NOTE: Assume that a pointer won't get split into more than one VT.
1064e8d8bef9SDimitry Andric assert(ValueVTs.size() == 1);
1065e8d8bef9SDimitry Andric
1066fe6060f1SDimitry Andric ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
1067fe6060f1SDimitry Andric ArgInfo::NoArgIndex);
1068e8d8bef9SDimitry Andric setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
1069e8d8bef9SDimitry Andric DemoteArg.Flags[0].setSRet();
1070e8d8bef9SDimitry Andric SplitArgs.insert(SplitArgs.begin(), DemoteArg);
1071e8d8bef9SDimitry Andric }
1072e8d8bef9SDimitry Andric
insertSRetOutgoingArgument(MachineIRBuilder & MIRBuilder,const CallBase & CB,CallLoweringInfo & Info) const1073e8d8bef9SDimitry Andric void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
1074e8d8bef9SDimitry Andric const CallBase &CB,
1075e8d8bef9SDimitry Andric CallLoweringInfo &Info) const {
1076e8d8bef9SDimitry Andric const DataLayout &DL = MIRBuilder.getDataLayout();
1077e8d8bef9SDimitry Andric Type *RetTy = CB.getType();
1078e8d8bef9SDimitry Andric unsigned AS = DL.getAllocaAddrSpace();
1079e8d8bef9SDimitry Andric LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1080e8d8bef9SDimitry Andric
1081e8d8bef9SDimitry Andric int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
1082e8d8bef9SDimitry Andric DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
1083e8d8bef9SDimitry Andric
1084e8d8bef9SDimitry Andric Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
1085fe6060f1SDimitry Andric ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
1086fe6060f1SDimitry Andric ArgInfo::NoArgIndex);
1087e8d8bef9SDimitry Andric setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
1088e8d8bef9SDimitry Andric DemoteArg.Flags[0].setSRet();
1089e8d8bef9SDimitry Andric
1090e8d8bef9SDimitry Andric Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
1091e8d8bef9SDimitry Andric Info.DemoteStackIndex = FI;
1092e8d8bef9SDimitry Andric Info.DemoteRegister = DemoteReg;
1093e8d8bef9SDimitry Andric }
1094e8d8bef9SDimitry Andric
checkReturn(CCState & CCInfo,SmallVectorImpl<BaseArgInfo> & Outs,CCAssignFn * Fn) const1095e8d8bef9SDimitry Andric bool CallLowering::checkReturn(CCState &CCInfo,
1096e8d8bef9SDimitry Andric SmallVectorImpl<BaseArgInfo> &Outs,
1097e8d8bef9SDimitry Andric CCAssignFn *Fn) const {
1098e8d8bef9SDimitry Andric for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
1099e8d8bef9SDimitry Andric MVT VT = MVT::getVT(Outs[I].Ty);
1100e8d8bef9SDimitry Andric if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
1101e8d8bef9SDimitry Andric return false;
1102e8d8bef9SDimitry Andric }
11030b57cec5SDimitry Andric return true;
11040b57cec5SDimitry Andric }
11050b57cec5SDimitry Andric
getReturnInfo(CallingConv::ID CallConv,Type * RetTy,AttributeList Attrs,SmallVectorImpl<BaseArgInfo> & Outs,const DataLayout & DL) const1106e8d8bef9SDimitry Andric void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
1107e8d8bef9SDimitry Andric AttributeList Attrs,
1108e8d8bef9SDimitry Andric SmallVectorImpl<BaseArgInfo> &Outs,
1109e8d8bef9SDimitry Andric const DataLayout &DL) const {
1110e8d8bef9SDimitry Andric LLVMContext &Context = RetTy->getContext();
1111e8d8bef9SDimitry Andric ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1112e8d8bef9SDimitry Andric
1113e8d8bef9SDimitry Andric SmallVector<EVT, 4> SplitVTs;
1114e8d8bef9SDimitry Andric ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
1115e8d8bef9SDimitry Andric addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
1116e8d8bef9SDimitry Andric
1117e8d8bef9SDimitry Andric for (EVT VT : SplitVTs) {
1118e8d8bef9SDimitry Andric unsigned NumParts =
1119e8d8bef9SDimitry Andric TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
1120e8d8bef9SDimitry Andric MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
1121e8d8bef9SDimitry Andric Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
1122e8d8bef9SDimitry Andric
1123e8d8bef9SDimitry Andric for (unsigned I = 0; I < NumParts; ++I) {
1124e8d8bef9SDimitry Andric Outs.emplace_back(PartTy, Flags);
1125e8d8bef9SDimitry Andric }
1126e8d8bef9SDimitry Andric }
1127e8d8bef9SDimitry Andric }
1128e8d8bef9SDimitry Andric
checkReturnTypeForCallConv(MachineFunction & MF) const1129e8d8bef9SDimitry Andric bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
1130e8d8bef9SDimitry Andric const auto &F = MF.getFunction();
1131e8d8bef9SDimitry Andric Type *ReturnType = F.getReturnType();
1132e8d8bef9SDimitry Andric CallingConv::ID CallConv = F.getCallingConv();
1133e8d8bef9SDimitry Andric
1134e8d8bef9SDimitry Andric SmallVector<BaseArgInfo, 4> SplitArgs;
1135e8d8bef9SDimitry Andric getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
1136e8d8bef9SDimitry Andric MF.getDataLayout());
1137e8d8bef9SDimitry Andric return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
1138e8d8bef9SDimitry Andric }
1139e8d8bef9SDimitry Andric
parametersInCSRMatch(const MachineRegisterInfo & MRI,const uint32_t * CallerPreservedMask,const SmallVectorImpl<CCValAssign> & OutLocs,const SmallVectorImpl<ArgInfo> & OutArgs) const1140e8d8bef9SDimitry Andric bool CallLowering::parametersInCSRMatch(
1141e8d8bef9SDimitry Andric const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
1142e8d8bef9SDimitry Andric const SmallVectorImpl<CCValAssign> &OutLocs,
1143e8d8bef9SDimitry Andric const SmallVectorImpl<ArgInfo> &OutArgs) const {
1144e8d8bef9SDimitry Andric for (unsigned i = 0; i < OutLocs.size(); ++i) {
1145fcaf7f86SDimitry Andric const auto &ArgLoc = OutLocs[i];
1146e8d8bef9SDimitry Andric // If it's not a register, it's fine.
1147e8d8bef9SDimitry Andric if (!ArgLoc.isRegLoc())
1148e8d8bef9SDimitry Andric continue;
1149e8d8bef9SDimitry Andric
1150e8d8bef9SDimitry Andric MCRegister PhysReg = ArgLoc.getLocReg();
1151e8d8bef9SDimitry Andric
1152e8d8bef9SDimitry Andric // Only look at callee-saved registers.
1153e8d8bef9SDimitry Andric if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
1154e8d8bef9SDimitry Andric continue;
1155e8d8bef9SDimitry Andric
1156e8d8bef9SDimitry Andric LLVM_DEBUG(
1157e8d8bef9SDimitry Andric dbgs()
1158e8d8bef9SDimitry Andric << "... Call has an argument passed in a callee-saved register.\n");
1159e8d8bef9SDimitry Andric
1160e8d8bef9SDimitry Andric // Check if it was copied from.
1161e8d8bef9SDimitry Andric const ArgInfo &OutInfo = OutArgs[i];
1162e8d8bef9SDimitry Andric
1163e8d8bef9SDimitry Andric if (OutInfo.Regs.size() > 1) {
1164e8d8bef9SDimitry Andric LLVM_DEBUG(
1165e8d8bef9SDimitry Andric dbgs() << "... Cannot handle arguments in multiple registers.\n");
1166e8d8bef9SDimitry Andric return false;
1167e8d8bef9SDimitry Andric }
1168e8d8bef9SDimitry Andric
1169e8d8bef9SDimitry Andric // Check if we copy the register, walking through copies from virtual
1170e8d8bef9SDimitry Andric // registers. Note that getDefIgnoringCopies does not ignore copies from
1171e8d8bef9SDimitry Andric // physical registers.
1172e8d8bef9SDimitry Andric MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
1173e8d8bef9SDimitry Andric if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
1174e8d8bef9SDimitry Andric LLVM_DEBUG(
1175e8d8bef9SDimitry Andric dbgs()
1176e8d8bef9SDimitry Andric << "... Parameter was not copied into a VReg, cannot tail call.\n");
1177e8d8bef9SDimitry Andric return false;
1178e8d8bef9SDimitry Andric }
1179e8d8bef9SDimitry Andric
1180e8d8bef9SDimitry Andric // Got a copy. Verify that it's the same as the register we want.
1181e8d8bef9SDimitry Andric Register CopyRHS = RegDef->getOperand(1).getReg();
1182e8d8bef9SDimitry Andric if (CopyRHS != PhysReg) {
1183e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
1184e8d8bef9SDimitry Andric "VReg, cannot tail call.\n");
1185e8d8bef9SDimitry Andric return false;
1186e8d8bef9SDimitry Andric }
1187e8d8bef9SDimitry Andric }
1188e8d8bef9SDimitry Andric
1189e8d8bef9SDimitry Andric return true;
1190e8d8bef9SDimitry Andric }
1191e8d8bef9SDimitry Andric
resultsCompatible(CallLoweringInfo & Info,MachineFunction & MF,SmallVectorImpl<ArgInfo> & InArgs,ValueAssigner & CalleeAssigner,ValueAssigner & CallerAssigner) const11928bcb0991SDimitry Andric bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
11938bcb0991SDimitry Andric MachineFunction &MF,
11948bcb0991SDimitry Andric SmallVectorImpl<ArgInfo> &InArgs,
1195fe6060f1SDimitry Andric ValueAssigner &CalleeAssigner,
1196fe6060f1SDimitry Andric ValueAssigner &CallerAssigner) const {
11978bcb0991SDimitry Andric const Function &F = MF.getFunction();
11988bcb0991SDimitry Andric CallingConv::ID CalleeCC = Info.CallConv;
11998bcb0991SDimitry Andric CallingConv::ID CallerCC = F.getCallingConv();
12008bcb0991SDimitry Andric
12018bcb0991SDimitry Andric if (CallerCC == CalleeCC)
12028bcb0991SDimitry Andric return true;
12038bcb0991SDimitry Andric
12048bcb0991SDimitry Andric SmallVector<CCValAssign, 16> ArgLocs1;
1205fe6060f1SDimitry Andric CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1206fe6060f1SDimitry Andric if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
12078bcb0991SDimitry Andric return false;
12088bcb0991SDimitry Andric
12098bcb0991SDimitry Andric SmallVector<CCValAssign, 16> ArgLocs2;
1210fe6060f1SDimitry Andric CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1211fe6060f1SDimitry Andric if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
12128bcb0991SDimitry Andric return false;
12138bcb0991SDimitry Andric
12148bcb0991SDimitry Andric // We need the argument locations to match up exactly. If there's more in
12158bcb0991SDimitry Andric // one than the other, then we are done.
12168bcb0991SDimitry Andric if (ArgLocs1.size() != ArgLocs2.size())
12178bcb0991SDimitry Andric return false;
12188bcb0991SDimitry Andric
12198bcb0991SDimitry Andric // Make sure that each location is passed in exactly the same way.
12208bcb0991SDimitry Andric for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
12218bcb0991SDimitry Andric const CCValAssign &Loc1 = ArgLocs1[i];
12228bcb0991SDimitry Andric const CCValAssign &Loc2 = ArgLocs2[i];
12238bcb0991SDimitry Andric
12248bcb0991SDimitry Andric // We need both of them to be the same. So if one is a register and one
12258bcb0991SDimitry Andric // isn't, we're done.
12268bcb0991SDimitry Andric if (Loc1.isRegLoc() != Loc2.isRegLoc())
12278bcb0991SDimitry Andric return false;
12288bcb0991SDimitry Andric
12298bcb0991SDimitry Andric if (Loc1.isRegLoc()) {
12308bcb0991SDimitry Andric // If they don't have the same register location, we're done.
12318bcb0991SDimitry Andric if (Loc1.getLocReg() != Loc2.getLocReg())
12328bcb0991SDimitry Andric return false;
12338bcb0991SDimitry Andric
12348bcb0991SDimitry Andric // They matched, so we can move to the next ArgLoc.
12358bcb0991SDimitry Andric continue;
12368bcb0991SDimitry Andric }
12378bcb0991SDimitry Andric
12388bcb0991SDimitry Andric // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
12398bcb0991SDimitry Andric if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
12408bcb0991SDimitry Andric return false;
12418bcb0991SDimitry Andric }
12428bcb0991SDimitry Andric
12438bcb0991SDimitry Andric return true;
12448bcb0991SDimitry Andric }
12458bcb0991SDimitry Andric
getStackValueStoreType(const DataLayout & DL,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const1246fe6060f1SDimitry Andric LLT CallLowering::ValueHandler::getStackValueStoreType(
1247fe6060f1SDimitry Andric const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1248fe6060f1SDimitry Andric const MVT ValVT = VA.getValVT();
1249fe6060f1SDimitry Andric if (ValVT != MVT::iPTR) {
1250fe6060f1SDimitry Andric LLT ValTy(ValVT);
1251fe6060f1SDimitry Andric
1252fe6060f1SDimitry Andric // We lost the pointeriness going through CCValAssign, so try to restore it
1253fe6060f1SDimitry Andric // based on the flags.
1254fe6060f1SDimitry Andric if (Flags.isPointer()) {
1255fe6060f1SDimitry Andric LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1256fe6060f1SDimitry Andric ValTy.getScalarSizeInBits());
1257fe6060f1SDimitry Andric if (ValVT.isVector())
1258fe6060f1SDimitry Andric return LLT::vector(ValTy.getElementCount(), PtrTy);
1259fe6060f1SDimitry Andric return PtrTy;
1260fe6060f1SDimitry Andric }
1261fe6060f1SDimitry Andric
1262fe6060f1SDimitry Andric return ValTy;
1263fe6060f1SDimitry Andric }
1264fe6060f1SDimitry Andric
1265fe6060f1SDimitry Andric unsigned AddrSpace = Flags.getPointerAddrSpace();
1266fe6060f1SDimitry Andric return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1267fe6060f1SDimitry Andric }
1268fe6060f1SDimitry Andric
copyArgumentMemory(const ArgInfo & Arg,Register DstPtr,Register SrcPtr,const MachinePointerInfo & DstPtrInfo,Align DstAlign,const MachinePointerInfo & SrcPtrInfo,Align SrcAlign,uint64_t MemSize,CCValAssign & VA) const1269fe6060f1SDimitry Andric void CallLowering::ValueHandler::copyArgumentMemory(
1270fe6060f1SDimitry Andric const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1271fe6060f1SDimitry Andric const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1272fe6060f1SDimitry Andric const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1273fe6060f1SDimitry Andric CCValAssign &VA) const {
1274fe6060f1SDimitry Andric MachineFunction &MF = MIRBuilder.getMF();
1275fe6060f1SDimitry Andric MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1276fe6060f1SDimitry Andric SrcPtrInfo,
1277fe6060f1SDimitry Andric MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1278fe6060f1SDimitry Andric SrcAlign);
1279fe6060f1SDimitry Andric
1280fe6060f1SDimitry Andric MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1281fe6060f1SDimitry Andric DstPtrInfo,
1282fe6060f1SDimitry Andric MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1283fe6060f1SDimitry Andric MemSize, DstAlign);
1284fe6060f1SDimitry Andric
1285fe6060f1SDimitry Andric const LLT PtrTy = MRI.getType(DstPtr);
1286fe6060f1SDimitry Andric const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1287fe6060f1SDimitry Andric
1288fe6060f1SDimitry Andric auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1289fe6060f1SDimitry Andric MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1290fe6060f1SDimitry Andric }
1291fe6060f1SDimitry Andric
extendRegister(Register ValReg,const CCValAssign & VA,unsigned MaxSizeBits)12920b57cec5SDimitry Andric Register CallLowering::ValueHandler::extendRegister(Register ValReg,
12935f757f3fSDimitry Andric const CCValAssign &VA,
12945ffd83dbSDimitry Andric unsigned MaxSizeBits) {
12950b57cec5SDimitry Andric LLT LocTy{VA.getLocVT()};
1296fe6060f1SDimitry Andric LLT ValTy{VA.getValVT()};
1297fe6060f1SDimitry Andric
12985ffd83dbSDimitry Andric if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
12990b57cec5SDimitry Andric return ValReg;
13005ffd83dbSDimitry Andric
13015ffd83dbSDimitry Andric if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
13025ffd83dbSDimitry Andric if (MaxSizeBits <= ValTy.getSizeInBits())
13035ffd83dbSDimitry Andric return ValReg;
13045ffd83dbSDimitry Andric LocTy = LLT::scalar(MaxSizeBits);
13055ffd83dbSDimitry Andric }
13065ffd83dbSDimitry Andric
1307fe6060f1SDimitry Andric const LLT ValRegTy = MRI.getType(ValReg);
1308fe6060f1SDimitry Andric if (ValRegTy.isPointer()) {
1309fe6060f1SDimitry Andric // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1310fe6060f1SDimitry Andric // we have to cast to do the extension.
1311fe6060f1SDimitry Andric LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1312fe6060f1SDimitry Andric ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1313fe6060f1SDimitry Andric }
1314fe6060f1SDimitry Andric
13150b57cec5SDimitry Andric switch (VA.getLocInfo()) {
1316*0fca6ea1SDimitry Andric default:
1317*0fca6ea1SDimitry Andric break;
13180b57cec5SDimitry Andric case CCValAssign::Full:
13190b57cec5SDimitry Andric case CCValAssign::BCvt:
13200b57cec5SDimitry Andric // FIXME: bitconverting between vector types may or may not be a
13210b57cec5SDimitry Andric // nop in big-endian situations.
13220b57cec5SDimitry Andric return ValReg;
13230b57cec5SDimitry Andric case CCValAssign::AExt: {
13240b57cec5SDimitry Andric auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
13255ffd83dbSDimitry Andric return MIB.getReg(0);
13260b57cec5SDimitry Andric }
13270b57cec5SDimitry Andric case CCValAssign::SExt: {
13280b57cec5SDimitry Andric Register NewReg = MRI.createGenericVirtualRegister(LocTy);
13290b57cec5SDimitry Andric MIRBuilder.buildSExt(NewReg, ValReg);
13300b57cec5SDimitry Andric return NewReg;
13310b57cec5SDimitry Andric }
13320b57cec5SDimitry Andric case CCValAssign::ZExt: {
13330b57cec5SDimitry Andric Register NewReg = MRI.createGenericVirtualRegister(LocTy);
13340b57cec5SDimitry Andric MIRBuilder.buildZExt(NewReg, ValReg);
13350b57cec5SDimitry Andric return NewReg;
13360b57cec5SDimitry Andric }
13370b57cec5SDimitry Andric }
13380b57cec5SDimitry Andric llvm_unreachable("unable to extend register");
13390b57cec5SDimitry Andric }
13400b57cec5SDimitry Andric
anchor()1341fe6060f1SDimitry Andric void CallLowering::ValueAssigner::anchor() {}
1342fe6060f1SDimitry Andric
buildExtensionHint(const CCValAssign & VA,Register SrcReg,LLT NarrowTy)13435f757f3fSDimitry Andric Register CallLowering::IncomingValueHandler::buildExtensionHint(
13445f757f3fSDimitry Andric const CCValAssign &VA, Register SrcReg, LLT NarrowTy) {
1345fe6060f1SDimitry Andric switch (VA.getLocInfo()) {
1346fe6060f1SDimitry Andric case CCValAssign::LocInfo::ZExt: {
1347fe6060f1SDimitry Andric return MIRBuilder
1348fe6060f1SDimitry Andric .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1349fe6060f1SDimitry Andric NarrowTy.getScalarSizeInBits())
1350fe6060f1SDimitry Andric .getReg(0);
1351fe6060f1SDimitry Andric }
1352fe6060f1SDimitry Andric case CCValAssign::LocInfo::SExt: {
1353fe6060f1SDimitry Andric return MIRBuilder
1354fe6060f1SDimitry Andric .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1355fe6060f1SDimitry Andric NarrowTy.getScalarSizeInBits())
1356fe6060f1SDimitry Andric .getReg(0);
1357fe6060f1SDimitry Andric break;
1358fe6060f1SDimitry Andric }
1359fe6060f1SDimitry Andric default:
1360fe6060f1SDimitry Andric return SrcReg;
1361fe6060f1SDimitry Andric }
1362fe6060f1SDimitry Andric }
1363fe6060f1SDimitry Andric
1364fe6060f1SDimitry Andric /// Check if we can use a basic COPY instruction between the two types.
1365fe6060f1SDimitry Andric ///
1366fe6060f1SDimitry Andric /// We're currently building on top of the infrastructure using MVT, which loses
1367fe6060f1SDimitry Andric /// pointer information in the CCValAssign. We accept copies from physical
1368fe6060f1SDimitry Andric /// registers that have been reported as integers if it's to an equivalent sized
1369fe6060f1SDimitry Andric /// pointer LLT.
isCopyCompatibleType(LLT SrcTy,LLT DstTy)1370fe6060f1SDimitry Andric static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1371fe6060f1SDimitry Andric if (SrcTy == DstTy)
1372fe6060f1SDimitry Andric return true;
1373fe6060f1SDimitry Andric
1374fe6060f1SDimitry Andric if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1375fe6060f1SDimitry Andric return false;
1376fe6060f1SDimitry Andric
1377fe6060f1SDimitry Andric SrcTy = SrcTy.getScalarType();
1378fe6060f1SDimitry Andric DstTy = DstTy.getScalarType();
1379fe6060f1SDimitry Andric
1380fe6060f1SDimitry Andric return (SrcTy.isPointer() && DstTy.isScalar()) ||
1381bdd1243dSDimitry Andric (DstTy.isPointer() && SrcTy.isScalar());
1382fe6060f1SDimitry Andric }
1383fe6060f1SDimitry Andric
assignValueToReg(Register ValVReg,Register PhysReg,const CCValAssign & VA)13845f757f3fSDimitry Andric void CallLowering::IncomingValueHandler::assignValueToReg(
13855f757f3fSDimitry Andric Register ValVReg, Register PhysReg, const CCValAssign &VA) {
1386fe6060f1SDimitry Andric const MVT LocVT = VA.getLocVT();
1387fe6060f1SDimitry Andric const LLT LocTy(LocVT);
1388fe6060f1SDimitry Andric const LLT RegTy = MRI.getType(ValVReg);
1389fe6060f1SDimitry Andric
1390fe6060f1SDimitry Andric if (isCopyCompatibleType(RegTy, LocTy)) {
1391fe6060f1SDimitry Andric MIRBuilder.buildCopy(ValVReg, PhysReg);
1392fe6060f1SDimitry Andric return;
1393fe6060f1SDimitry Andric }
1394fe6060f1SDimitry Andric
1395fe6060f1SDimitry Andric auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1396fe6060f1SDimitry Andric auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1397fe6060f1SDimitry Andric MIRBuilder.buildTrunc(ValVReg, Hint);
1398fe6060f1SDimitry Andric }
1399