1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass tries to expand memcmp() calls into optimally-sized loads and 10 // compares for the target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/DomTreeUpdater.h" 17 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 18 #include "llvm/Analysis/ProfileSummaryInfo.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/TargetPassConfig.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/InitializePasses.h" 27 #include "llvm/Target/TargetMachine.h" 28 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 #include "llvm/Transforms/Utils/SizeOpts.h" 31 #include <optional> 32 33 using namespace llvm; 34 35 namespace llvm { 36 class TargetLowering; 37 } 38 39 #define DEBUG_TYPE "expandmemcmp" 40 41 STATISTIC(NumMemCmpCalls, "Number of memcmp calls"); 42 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size"); 43 STATISTIC(NumMemCmpGreaterThanMax, 44 "Number of memcmp calls with size greater than max size"); 45 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls"); 46 47 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock( 48 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1), 49 cl::desc("The number of loads per basic block for inline expansion of " 50 "memcmp that is only being compared against zero.")); 51 52 static cl::opt<unsigned> MaxLoadsPerMemcmp( 53 "max-loads-per-memcmp", cl::Hidden, 54 cl::desc("Set maximum number of loads used in expanded memcmp")); 55 56 static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize( 57 "max-loads-per-memcmp-opt-size", cl::Hidden, 58 cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz")); 59 60 namespace { 61 62 63 // This class provides helper functions to expand a memcmp library call into an 64 // inline expansion. 65 class MemCmpExpansion { 66 struct ResultBlock { 67 BasicBlock *BB = nullptr; 68 PHINode *PhiSrc1 = nullptr; 69 PHINode *PhiSrc2 = nullptr; 70 71 ResultBlock() = default; 72 }; 73 74 CallInst *const CI; 75 ResultBlock ResBlock; 76 const uint64_t Size; 77 unsigned MaxLoadSize = 0; 78 uint64_t NumLoadsNonOneByte = 0; 79 const uint64_t NumLoadsPerBlockForZeroCmp; 80 std::vector<BasicBlock *> LoadCmpBlocks; 81 BasicBlock *EndBlock; 82 PHINode *PhiRes; 83 const bool IsUsedForZeroCmp; 84 const DataLayout &DL; 85 DomTreeUpdater *DTU; 86 IRBuilder<> Builder; 87 // Represents the decomposition in blocks of the expansion. For example, 88 // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and 89 // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {1, 32}. 90 struct LoadEntry { 91 LoadEntry(unsigned LoadSize, uint64_t Offset) 92 : LoadSize(LoadSize), Offset(Offset) { 93 } 94 95 // The size of the load for this block, in bytes. 96 unsigned LoadSize; 97 // The offset of this load from the base pointer, in bytes. 98 uint64_t Offset; 99 }; 100 using LoadEntryVector = SmallVector<LoadEntry, 8>; 101 LoadEntryVector LoadSequence; 102 103 void createLoadCmpBlocks(); 104 void createResultBlock(); 105 void setupResultBlockPHINodes(); 106 void setupEndBlockPHINodes(); 107 Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex); 108 void emitLoadCompareBlock(unsigned BlockIndex); 109 void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex, 110 unsigned &LoadIndex); 111 void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes); 112 void emitMemCmpResultBlock(); 113 Value *getMemCmpExpansionZeroCase(); 114 Value *getMemCmpEqZeroOneBlock(); 115 Value *getMemCmpOneBlock(); 116 struct LoadPair { 117 Value *Lhs = nullptr; 118 Value *Rhs = nullptr; 119 }; 120 LoadPair getLoadPair(Type *LoadSizeType, bool NeedsBSwap, Type *CmpSizeType, 121 unsigned OffsetBytes); 122 123 static LoadEntryVector 124 computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes, 125 unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte); 126 static LoadEntryVector 127 computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize, 128 unsigned MaxNumLoads, 129 unsigned &NumLoadsNonOneByte); 130 131 public: 132 MemCmpExpansion(CallInst *CI, uint64_t Size, 133 const TargetTransformInfo::MemCmpExpansionOptions &Options, 134 const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout, 135 DomTreeUpdater *DTU); 136 137 unsigned getNumBlocks(); 138 uint64_t getNumLoads() const { return LoadSequence.size(); } 139 140 Value *getMemCmpExpansion(); 141 }; 142 143 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence( 144 uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes, 145 const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) { 146 NumLoadsNonOneByte = 0; 147 LoadEntryVector LoadSequence; 148 uint64_t Offset = 0; 149 while (Size && !LoadSizes.empty()) { 150 const unsigned LoadSize = LoadSizes.front(); 151 const uint64_t NumLoadsForThisSize = Size / LoadSize; 152 if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) { 153 // Do not expand if the total number of loads is larger than what the 154 // target allows. Note that it's important that we exit before completing 155 // the expansion to avoid using a ton of memory to store the expansion for 156 // large sizes. 157 return {}; 158 } 159 if (NumLoadsForThisSize > 0) { 160 for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) { 161 LoadSequence.push_back({LoadSize, Offset}); 162 Offset += LoadSize; 163 } 164 if (LoadSize > 1) 165 ++NumLoadsNonOneByte; 166 Size = Size % LoadSize; 167 } 168 LoadSizes = LoadSizes.drop_front(); 169 } 170 return LoadSequence; 171 } 172 173 MemCmpExpansion::LoadEntryVector 174 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size, 175 const unsigned MaxLoadSize, 176 const unsigned MaxNumLoads, 177 unsigned &NumLoadsNonOneByte) { 178 // These are already handled by the greedy approach. 179 if (Size < 2 || MaxLoadSize < 2) 180 return {}; 181 182 // We try to do as many non-overlapping loads as possible starting from the 183 // beginning. 184 const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize; 185 assert(NumNonOverlappingLoads && "there must be at least one load"); 186 // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with 187 // an overlapping load. 188 Size = Size - NumNonOverlappingLoads * MaxLoadSize; 189 // Bail if we do not need an overloapping store, this is already handled by 190 // the greedy approach. 191 if (Size == 0) 192 return {}; 193 // Bail if the number of loads (non-overlapping + potential overlapping one) 194 // is larger than the max allowed. 195 if ((NumNonOverlappingLoads + 1) > MaxNumLoads) 196 return {}; 197 198 // Add non-overlapping loads. 199 LoadEntryVector LoadSequence; 200 uint64_t Offset = 0; 201 for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) { 202 LoadSequence.push_back({MaxLoadSize, Offset}); 203 Offset += MaxLoadSize; 204 } 205 206 // Add the last overlapping load. 207 assert(Size > 0 && Size < MaxLoadSize && "broken invariant"); 208 LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)}); 209 NumLoadsNonOneByte = 1; 210 return LoadSequence; 211 } 212 213 // Initialize the basic block structure required for expansion of memcmp call 214 // with given maximum load size and memcmp size parameter. 215 // This structure includes: 216 // 1. A list of load compare blocks - LoadCmpBlocks. 217 // 2. An EndBlock, split from original instruction point, which is the block to 218 // return from. 219 // 3. ResultBlock, block to branch to for early exit when a 220 // LoadCmpBlock finds a difference. 221 MemCmpExpansion::MemCmpExpansion( 222 CallInst *const CI, uint64_t Size, 223 const TargetTransformInfo::MemCmpExpansionOptions &Options, 224 const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout, 225 DomTreeUpdater *DTU) 226 : CI(CI), Size(Size), NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock), 227 IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), DTU(DTU), 228 Builder(CI) { 229 assert(Size > 0 && "zero blocks"); 230 // Scale the max size down if the target can load more bytes than we need. 231 llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes); 232 while (!LoadSizes.empty() && LoadSizes.front() > Size) { 233 LoadSizes = LoadSizes.drop_front(); 234 } 235 assert(!LoadSizes.empty() && "cannot load Size bytes"); 236 MaxLoadSize = LoadSizes.front(); 237 // Compute the decomposition. 238 unsigned GreedyNumLoadsNonOneByte = 0; 239 LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads, 240 GreedyNumLoadsNonOneByte); 241 NumLoadsNonOneByte = GreedyNumLoadsNonOneByte; 242 assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant"); 243 // If we allow overlapping loads and the load sequence is not already optimal, 244 // use overlapping loads. 245 if (Options.AllowOverlappingLoads && 246 (LoadSequence.empty() || LoadSequence.size() > 2)) { 247 unsigned OverlappingNumLoadsNonOneByte = 0; 248 auto OverlappingLoads = computeOverlappingLoadSequence( 249 Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte); 250 if (!OverlappingLoads.empty() && 251 (LoadSequence.empty() || 252 OverlappingLoads.size() < LoadSequence.size())) { 253 LoadSequence = OverlappingLoads; 254 NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte; 255 } 256 } 257 assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant"); 258 } 259 260 unsigned MemCmpExpansion::getNumBlocks() { 261 if (IsUsedForZeroCmp) 262 return getNumLoads() / NumLoadsPerBlockForZeroCmp + 263 (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0); 264 return getNumLoads(); 265 } 266 267 void MemCmpExpansion::createLoadCmpBlocks() { 268 for (unsigned i = 0; i < getNumBlocks(); i++) { 269 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb", 270 EndBlock->getParent(), EndBlock); 271 LoadCmpBlocks.push_back(BB); 272 } 273 } 274 275 void MemCmpExpansion::createResultBlock() { 276 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block", 277 EndBlock->getParent(), EndBlock); 278 } 279 280 MemCmpExpansion::LoadPair MemCmpExpansion::getLoadPair(Type *LoadSizeType, 281 bool NeedsBSwap, 282 Type *CmpSizeType, 283 unsigned OffsetBytes) { 284 // Get the memory source at offset `OffsetBytes`. 285 Value *LhsSource = CI->getArgOperand(0); 286 Value *RhsSource = CI->getArgOperand(1); 287 Align LhsAlign = LhsSource->getPointerAlignment(DL); 288 Align RhsAlign = RhsSource->getPointerAlignment(DL); 289 if (OffsetBytes > 0) { 290 auto *ByteType = Type::getInt8Ty(CI->getContext()); 291 LhsSource = Builder.CreateConstGEP1_64( 292 ByteType, Builder.CreateBitCast(LhsSource, ByteType->getPointerTo()), 293 OffsetBytes); 294 RhsSource = Builder.CreateConstGEP1_64( 295 ByteType, Builder.CreateBitCast(RhsSource, ByteType->getPointerTo()), 296 OffsetBytes); 297 LhsAlign = commonAlignment(LhsAlign, OffsetBytes); 298 RhsAlign = commonAlignment(RhsAlign, OffsetBytes); 299 } 300 LhsSource = Builder.CreateBitCast(LhsSource, LoadSizeType->getPointerTo()); 301 RhsSource = Builder.CreateBitCast(RhsSource, LoadSizeType->getPointerTo()); 302 303 // Create a constant or a load from the source. 304 Value *Lhs = nullptr; 305 if (auto *C = dyn_cast<Constant>(LhsSource)) 306 Lhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL); 307 if (!Lhs) 308 Lhs = Builder.CreateAlignedLoad(LoadSizeType, LhsSource, LhsAlign); 309 310 Value *Rhs = nullptr; 311 if (auto *C = dyn_cast<Constant>(RhsSource)) 312 Rhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL); 313 if (!Rhs) 314 Rhs = Builder.CreateAlignedLoad(LoadSizeType, RhsSource, RhsAlign); 315 316 // Swap bytes if required. 317 if (NeedsBSwap) { 318 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(), 319 Intrinsic::bswap, LoadSizeType); 320 Lhs = Builder.CreateCall(Bswap, Lhs); 321 Rhs = Builder.CreateCall(Bswap, Rhs); 322 } 323 324 // Zero extend if required. 325 if (CmpSizeType != nullptr && CmpSizeType != LoadSizeType) { 326 Lhs = Builder.CreateZExt(Lhs, CmpSizeType); 327 Rhs = Builder.CreateZExt(Rhs, CmpSizeType); 328 } 329 return {Lhs, Rhs}; 330 } 331 332 // This function creates the IR instructions for loading and comparing 1 byte. 333 // It loads 1 byte from each source of the memcmp parameters with the given 334 // GEPIndex. It then subtracts the two loaded values and adds this result to the 335 // final phi node for selecting the memcmp result. 336 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex, 337 unsigned OffsetBytes) { 338 BasicBlock *BB = LoadCmpBlocks[BlockIndex]; 339 Builder.SetInsertPoint(BB); 340 const LoadPair Loads = 341 getLoadPair(Type::getInt8Ty(CI->getContext()), /*NeedsBSwap=*/false, 342 Type::getInt32Ty(CI->getContext()), OffsetBytes); 343 Value *Diff = Builder.CreateSub(Loads.Lhs, Loads.Rhs); 344 345 PhiRes->addIncoming(Diff, BB); 346 347 if (BlockIndex < (LoadCmpBlocks.size() - 1)) { 348 // Early exit branch if difference found to EndBlock. Otherwise, continue to 349 // next LoadCmpBlock, 350 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff, 351 ConstantInt::get(Diff->getType(), 0)); 352 BranchInst *CmpBr = 353 BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp); 354 Builder.Insert(CmpBr); 355 if (DTU) 356 DTU->applyUpdates( 357 {{DominatorTree::Insert, BB, EndBlock}, 358 {DominatorTree::Insert, BB, LoadCmpBlocks[BlockIndex + 1]}}); 359 } else { 360 // The last block has an unconditional branch to EndBlock. 361 BranchInst *CmpBr = BranchInst::Create(EndBlock); 362 Builder.Insert(CmpBr); 363 if (DTU) 364 DTU->applyUpdates({{DominatorTree::Insert, BB, EndBlock}}); 365 } 366 } 367 368 /// Generate an equality comparison for one or more pairs of loaded values. 369 /// This is used in the case where the memcmp() call is compared equal or not 370 /// equal to zero. 371 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex, 372 unsigned &LoadIndex) { 373 assert(LoadIndex < getNumLoads() && 374 "getCompareLoadPairs() called with no remaining loads"); 375 std::vector<Value *> XorList, OrList; 376 Value *Diff = nullptr; 377 378 const unsigned NumLoads = 379 std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp); 380 381 // For a single-block expansion, start inserting before the memcmp call. 382 if (LoadCmpBlocks.empty()) 383 Builder.SetInsertPoint(CI); 384 else 385 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]); 386 387 Value *Cmp = nullptr; 388 // If we have multiple loads per block, we need to generate a composite 389 // comparison using xor+or. The type for the combinations is the largest load 390 // type. 391 IntegerType *const MaxLoadType = 392 NumLoads == 1 ? nullptr 393 : IntegerType::get(CI->getContext(), MaxLoadSize * 8); 394 for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) { 395 const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex]; 396 const LoadPair Loads = getLoadPair( 397 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8), 398 /*NeedsBSwap=*/false, MaxLoadType, CurLoadEntry.Offset); 399 400 if (NumLoads != 1) { 401 // If we have multiple loads per block, we need to generate a composite 402 // comparison using xor+or. 403 Diff = Builder.CreateXor(Loads.Lhs, Loads.Rhs); 404 Diff = Builder.CreateZExt(Diff, MaxLoadType); 405 XorList.push_back(Diff); 406 } else { 407 // If there's only one load per block, we just compare the loaded values. 408 Cmp = Builder.CreateICmpNE(Loads.Lhs, Loads.Rhs); 409 } 410 } 411 412 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> { 413 std::vector<Value *> OutList; 414 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) { 415 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]); 416 OutList.push_back(Or); 417 } 418 if (InList.size() % 2 != 0) 419 OutList.push_back(InList.back()); 420 return OutList; 421 }; 422 423 if (!Cmp) { 424 // Pairwise OR the XOR results. 425 OrList = pairWiseOr(XorList); 426 427 // Pairwise OR the OR results until one result left. 428 while (OrList.size() != 1) { 429 OrList = pairWiseOr(OrList); 430 } 431 432 assert(Diff && "Failed to find comparison diff"); 433 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0)); 434 } 435 436 return Cmp; 437 } 438 439 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex, 440 unsigned &LoadIndex) { 441 Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex); 442 443 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1)) 444 ? EndBlock 445 : LoadCmpBlocks[BlockIndex + 1]; 446 // Early exit branch if difference found to ResultBlock. Otherwise, 447 // continue to next LoadCmpBlock or EndBlock. 448 BasicBlock *BB = Builder.GetInsertBlock(); 449 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp); 450 Builder.Insert(CmpBr); 451 if (DTU) 452 DTU->applyUpdates({{DominatorTree::Insert, BB, ResBlock.BB}, 453 {DominatorTree::Insert, BB, NextBB}}); 454 455 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 456 // since early exit to ResultBlock was not taken (no difference was found in 457 // any of the bytes). 458 if (BlockIndex == LoadCmpBlocks.size() - 1) { 459 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 460 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]); 461 } 462 } 463 464 // This function creates the IR intructions for loading and comparing using the 465 // given LoadSize. It loads the number of bytes specified by LoadSize from each 466 // source of the memcmp parameters. It then does a subtract to see if there was 467 // a difference in the loaded values. If a difference is found, it branches 468 // with an early exit to the ResultBlock for calculating which source was 469 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or 470 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with 471 // a special case through emitLoadCompareByteBlock. The special handling can 472 // simply subtract the loaded values and add it to the result phi node. 473 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) { 474 // There is one load per block in this case, BlockIndex == LoadIndex. 475 const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex]; 476 477 if (CurLoadEntry.LoadSize == 1) { 478 MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset); 479 return; 480 } 481 482 Type *LoadSizeType = 483 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8); 484 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 485 assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type"); 486 487 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]); 488 489 const LoadPair Loads = 490 getLoadPair(LoadSizeType, /*NeedsBSwap=*/DL.isLittleEndian(), MaxLoadType, 491 CurLoadEntry.Offset); 492 493 // Add the loaded values to the phi nodes for calculating memcmp result only 494 // if result is not used in a zero equality. 495 if (!IsUsedForZeroCmp) { 496 ResBlock.PhiSrc1->addIncoming(Loads.Lhs, LoadCmpBlocks[BlockIndex]); 497 ResBlock.PhiSrc2->addIncoming(Loads.Rhs, LoadCmpBlocks[BlockIndex]); 498 } 499 500 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Loads.Lhs, Loads.Rhs); 501 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1)) 502 ? EndBlock 503 : LoadCmpBlocks[BlockIndex + 1]; 504 // Early exit branch if difference found to ResultBlock. Otherwise, continue 505 // to next LoadCmpBlock or EndBlock. 506 BasicBlock *BB = Builder.GetInsertBlock(); 507 BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp); 508 Builder.Insert(CmpBr); 509 if (DTU) 510 DTU->applyUpdates({{DominatorTree::Insert, BB, NextBB}, 511 {DominatorTree::Insert, BB, ResBlock.BB}}); 512 513 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 514 // since early exit to ResultBlock was not taken (no difference was found in 515 // any of the bytes). 516 if (BlockIndex == LoadCmpBlocks.size() - 1) { 517 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 518 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]); 519 } 520 } 521 522 // This function populates the ResultBlock with a sequence to calculate the 523 // memcmp result. It compares the two loaded source values and returns -1 if 524 // src1 < src2 and 1 if src1 > src2. 525 void MemCmpExpansion::emitMemCmpResultBlock() { 526 // Special case: if memcmp result is used in a zero equality, result does not 527 // need to be calculated and can simply return 1. 528 if (IsUsedForZeroCmp) { 529 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 530 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 531 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1); 532 PhiRes->addIncoming(Res, ResBlock.BB); 533 BranchInst *NewBr = BranchInst::Create(EndBlock); 534 Builder.Insert(NewBr); 535 if (DTU) 536 DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}}); 537 return; 538 } 539 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 540 Builder.SetInsertPoint(ResBlock.BB, InsertPt); 541 542 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1, 543 ResBlock.PhiSrc2); 544 545 Value *Res = 546 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1), 547 ConstantInt::get(Builder.getInt32Ty(), 1)); 548 549 PhiRes->addIncoming(Res, ResBlock.BB); 550 BranchInst *NewBr = BranchInst::Create(EndBlock); 551 Builder.Insert(NewBr); 552 if (DTU) 553 DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}}); 554 } 555 556 void MemCmpExpansion::setupResultBlockPHINodes() { 557 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 558 Builder.SetInsertPoint(ResBlock.BB); 559 // Note: this assumes one load per block. 560 ResBlock.PhiSrc1 = 561 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1"); 562 ResBlock.PhiSrc2 = 563 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2"); 564 } 565 566 void MemCmpExpansion::setupEndBlockPHINodes() { 567 Builder.SetInsertPoint(&EndBlock->front()); 568 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res"); 569 } 570 571 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() { 572 unsigned LoadIndex = 0; 573 // This loop populates each of the LoadCmpBlocks with the IR sequence to 574 // handle multiple loads per block. 575 for (unsigned I = 0; I < getNumBlocks(); ++I) { 576 emitLoadCompareBlockMultipleLoads(I, LoadIndex); 577 } 578 579 emitMemCmpResultBlock(); 580 return PhiRes; 581 } 582 583 /// A memcmp expansion that compares equality with 0 and only has one block of 584 /// load and compare can bypass the compare, branch, and phi IR that is required 585 /// in the general case. 586 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() { 587 unsigned LoadIndex = 0; 588 Value *Cmp = getCompareLoadPairs(0, LoadIndex); 589 assert(LoadIndex == getNumLoads() && "some entries were not consumed"); 590 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext())); 591 } 592 593 /// A memcmp expansion that only has one block of load and compare can bypass 594 /// the compare, branch, and phi IR that is required in the general case. 595 Value *MemCmpExpansion::getMemCmpOneBlock() { 596 Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8); 597 bool NeedsBSwap = DL.isLittleEndian() && Size != 1; 598 599 // The i8 and i16 cases don't need compares. We zext the loaded values and 600 // subtract them to get the suitable negative, zero, or positive i32 result. 601 if (Size < 4) { 602 const LoadPair Loads = 603 getLoadPair(LoadSizeType, NeedsBSwap, Builder.getInt32Ty(), 604 /*Offset*/ 0); 605 return Builder.CreateSub(Loads.Lhs, Loads.Rhs); 606 } 607 608 const LoadPair Loads = getLoadPair(LoadSizeType, NeedsBSwap, LoadSizeType, 609 /*Offset*/ 0); 610 // The result of memcmp is negative, zero, or positive, so produce that by 611 // subtracting 2 extended compare bits: sub (ugt, ult). 612 // If a target prefers to use selects to get -1/0/1, they should be able 613 // to transform this later. The inverse transform (going from selects to math) 614 // may not be possible in the DAG because the selects got converted into 615 // branches before we got there. 616 Value *CmpUGT = Builder.CreateICmpUGT(Loads.Lhs, Loads.Rhs); 617 Value *CmpULT = Builder.CreateICmpULT(Loads.Lhs, Loads.Rhs); 618 Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty()); 619 Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty()); 620 return Builder.CreateSub(ZextUGT, ZextULT); 621 } 622 623 // This function expands the memcmp call into an inline expansion and returns 624 // the memcmp result. 625 Value *MemCmpExpansion::getMemCmpExpansion() { 626 // Create the basic block framework for a multi-block expansion. 627 if (getNumBlocks() != 1) { 628 BasicBlock *StartBlock = CI->getParent(); 629 EndBlock = SplitBlock(StartBlock, CI, DTU, /*LI=*/nullptr, 630 /*MSSAU=*/nullptr, "endblock"); 631 setupEndBlockPHINodes(); 632 createResultBlock(); 633 634 // If return value of memcmp is not used in a zero equality, we need to 635 // calculate which source was larger. The calculation requires the 636 // two loaded source values of each load compare block. 637 // These will be saved in the phi nodes created by setupResultBlockPHINodes. 638 if (!IsUsedForZeroCmp) setupResultBlockPHINodes(); 639 640 // Create the number of required load compare basic blocks. 641 createLoadCmpBlocks(); 642 643 // Update the terminator added by SplitBlock to branch to the first 644 // LoadCmpBlock. 645 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]); 646 if (DTU) 647 DTU->applyUpdates({{DominatorTree::Insert, StartBlock, LoadCmpBlocks[0]}, 648 {DominatorTree::Delete, StartBlock, EndBlock}}); 649 } 650 651 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 652 653 if (IsUsedForZeroCmp) 654 return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock() 655 : getMemCmpExpansionZeroCase(); 656 657 if (getNumBlocks() == 1) 658 return getMemCmpOneBlock(); 659 660 for (unsigned I = 0; I < getNumBlocks(); ++I) { 661 emitLoadCompareBlock(I); 662 } 663 664 emitMemCmpResultBlock(); 665 return PhiRes; 666 } 667 668 // This function checks to see if an expansion of memcmp can be generated. 669 // It checks for constant compare size that is less than the max inline size. 670 // If an expansion cannot occur, returns false to leave as a library call. 671 // Otherwise, the library call is replaced with a new IR instruction sequence. 672 /// We want to transform: 673 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15) 674 /// To: 675 /// loadbb: 676 /// %0 = bitcast i32* %buffer2 to i8* 677 /// %1 = bitcast i32* %buffer1 to i8* 678 /// %2 = bitcast i8* %1 to i64* 679 /// %3 = bitcast i8* %0 to i64* 680 /// %4 = load i64, i64* %2 681 /// %5 = load i64, i64* %3 682 /// %6 = call i64 @llvm.bswap.i64(i64 %4) 683 /// %7 = call i64 @llvm.bswap.i64(i64 %5) 684 /// %8 = sub i64 %6, %7 685 /// %9 = icmp ne i64 %8, 0 686 /// br i1 %9, label %res_block, label %loadbb1 687 /// res_block: ; preds = %loadbb2, 688 /// %loadbb1, %loadbb 689 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ] 690 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ] 691 /// %10 = icmp ult i64 %phi.src1, %phi.src2 692 /// %11 = select i1 %10, i32 -1, i32 1 693 /// br label %endblock 694 /// loadbb1: ; preds = %loadbb 695 /// %12 = bitcast i32* %buffer2 to i8* 696 /// %13 = bitcast i32* %buffer1 to i8* 697 /// %14 = bitcast i8* %13 to i32* 698 /// %15 = bitcast i8* %12 to i32* 699 /// %16 = getelementptr i32, i32* %14, i32 2 700 /// %17 = getelementptr i32, i32* %15, i32 2 701 /// %18 = load i32, i32* %16 702 /// %19 = load i32, i32* %17 703 /// %20 = call i32 @llvm.bswap.i32(i32 %18) 704 /// %21 = call i32 @llvm.bswap.i32(i32 %19) 705 /// %22 = zext i32 %20 to i64 706 /// %23 = zext i32 %21 to i64 707 /// %24 = sub i64 %22, %23 708 /// %25 = icmp ne i64 %24, 0 709 /// br i1 %25, label %res_block, label %loadbb2 710 /// loadbb2: ; preds = %loadbb1 711 /// %26 = bitcast i32* %buffer2 to i8* 712 /// %27 = bitcast i32* %buffer1 to i8* 713 /// %28 = bitcast i8* %27 to i16* 714 /// %29 = bitcast i8* %26 to i16* 715 /// %30 = getelementptr i16, i16* %28, i16 6 716 /// %31 = getelementptr i16, i16* %29, i16 6 717 /// %32 = load i16, i16* %30 718 /// %33 = load i16, i16* %31 719 /// %34 = call i16 @llvm.bswap.i16(i16 %32) 720 /// %35 = call i16 @llvm.bswap.i16(i16 %33) 721 /// %36 = zext i16 %34 to i64 722 /// %37 = zext i16 %35 to i64 723 /// %38 = sub i64 %36, %37 724 /// %39 = icmp ne i64 %38, 0 725 /// br i1 %39, label %res_block, label %loadbb3 726 /// loadbb3: ; preds = %loadbb2 727 /// %40 = bitcast i32* %buffer2 to i8* 728 /// %41 = bitcast i32* %buffer1 to i8* 729 /// %42 = getelementptr i8, i8* %41, i8 14 730 /// %43 = getelementptr i8, i8* %40, i8 14 731 /// %44 = load i8, i8* %42 732 /// %45 = load i8, i8* %43 733 /// %46 = zext i8 %44 to i32 734 /// %47 = zext i8 %45 to i32 735 /// %48 = sub i32 %46, %47 736 /// br label %endblock 737 /// endblock: ; preds = %res_block, 738 /// %loadbb3 739 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ] 740 /// ret i32 %phi.res 741 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI, 742 const TargetLowering *TLI, const DataLayout *DL, 743 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, 744 DomTreeUpdater *DTU, const bool IsBCmp) { 745 NumMemCmpCalls++; 746 747 // Early exit from expansion if -Oz. 748 if (CI->getFunction()->hasMinSize()) 749 return false; 750 751 // Early exit from expansion if size is not a constant. 752 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 753 if (!SizeCast) { 754 NumMemCmpNotConstant++; 755 return false; 756 } 757 const uint64_t SizeVal = SizeCast->getZExtValue(); 758 759 if (SizeVal == 0) { 760 return false; 761 } 762 // TTI call to check if target would like to expand memcmp. Also, get the 763 // available load sizes. 764 const bool IsUsedForZeroCmp = 765 IsBCmp || isOnlyUsedInZeroEqualityComparison(CI); 766 bool OptForSize = CI->getFunction()->hasOptSize() || 767 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 768 auto Options = TTI->enableMemCmpExpansion(OptForSize, 769 IsUsedForZeroCmp); 770 if (!Options) return false; 771 772 if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences()) 773 Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock; 774 775 if (OptForSize && 776 MaxLoadsPerMemcmpOptSize.getNumOccurrences()) 777 Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize; 778 779 if (!OptForSize && MaxLoadsPerMemcmp.getNumOccurrences()) 780 Options.MaxNumLoads = MaxLoadsPerMemcmp; 781 782 MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL, DTU); 783 784 // Don't expand if this will require more loads than desired by the target. 785 if (Expansion.getNumLoads() == 0) { 786 NumMemCmpGreaterThanMax++; 787 return false; 788 } 789 790 NumMemCmpInlined++; 791 792 Value *Res = Expansion.getMemCmpExpansion(); 793 794 // Replace call with result of expansion and erase call. 795 CI->replaceAllUsesWith(Res); 796 CI->eraseFromParent(); 797 798 return true; 799 } 800 801 class ExpandMemCmpPass : public FunctionPass { 802 public: 803 static char ID; 804 805 ExpandMemCmpPass() : FunctionPass(ID) { 806 initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry()); 807 } 808 809 bool runOnFunction(Function &F) override { 810 if (skipFunction(F)) return false; 811 812 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 813 if (!TPC) { 814 return false; 815 } 816 const TargetLowering* TL = 817 TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering(); 818 819 const TargetLibraryInfo *TLI = 820 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 821 const TargetTransformInfo *TTI = 822 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 823 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 824 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 825 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 826 nullptr; 827 DominatorTree *DT = nullptr; 828 if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>()) 829 DT = &DTWP->getDomTree(); 830 auto PA = runImpl(F, TLI, TTI, TL, PSI, BFI, DT); 831 return !PA.areAllPreserved(); 832 } 833 834 private: 835 void getAnalysisUsage(AnalysisUsage &AU) const override { 836 AU.addRequired<TargetLibraryInfoWrapperPass>(); 837 AU.addRequired<TargetTransformInfoWrapperPass>(); 838 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 839 AU.addPreserved<DominatorTreeWrapperPass>(); 840 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 841 FunctionPass::getAnalysisUsage(AU); 842 } 843 844 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI, 845 const TargetTransformInfo *TTI, 846 const TargetLowering *TL, ProfileSummaryInfo *PSI, 847 BlockFrequencyInfo *BFI, DominatorTree *DT); 848 // Returns true if a change was made. 849 bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI, 850 const TargetTransformInfo *TTI, const TargetLowering *TL, 851 const DataLayout &DL, ProfileSummaryInfo *PSI, 852 BlockFrequencyInfo *BFI, DomTreeUpdater *DTU); 853 }; 854 855 bool ExpandMemCmpPass::runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI, 856 const TargetTransformInfo *TTI, 857 const TargetLowering *TL, 858 const DataLayout &DL, ProfileSummaryInfo *PSI, 859 BlockFrequencyInfo *BFI, 860 DomTreeUpdater *DTU) { 861 for (Instruction& I : BB) { 862 CallInst *CI = dyn_cast<CallInst>(&I); 863 if (!CI) { 864 continue; 865 } 866 LibFunc Func; 867 if (TLI->getLibFunc(*CI, Func) && 868 (Func == LibFunc_memcmp || Func == LibFunc_bcmp) && 869 expandMemCmp(CI, TTI, TL, &DL, PSI, BFI, DTU, Func == LibFunc_bcmp)) { 870 return true; 871 } 872 } 873 return false; 874 } 875 876 PreservedAnalyses 877 ExpandMemCmpPass::runImpl(Function &F, const TargetLibraryInfo *TLI, 878 const TargetTransformInfo *TTI, 879 const TargetLowering *TL, ProfileSummaryInfo *PSI, 880 BlockFrequencyInfo *BFI, DominatorTree *DT) { 881 std::optional<DomTreeUpdater> DTU; 882 if (DT) 883 DTU.emplace(DT, DomTreeUpdater::UpdateStrategy::Lazy); 884 885 const DataLayout& DL = F.getParent()->getDataLayout(); 886 bool MadeChanges = false; 887 for (auto BBIt = F.begin(); BBIt != F.end();) { 888 if (runOnBlock(*BBIt, TLI, TTI, TL, DL, PSI, BFI, DTU ? &*DTU : nullptr)) { 889 MadeChanges = true; 890 // If changes were made, restart the function from the beginning, since 891 // the structure of the function was changed. 892 BBIt = F.begin(); 893 } else { 894 ++BBIt; 895 } 896 } 897 if (MadeChanges) 898 for (BasicBlock &BB : F) 899 SimplifyInstructionsInBlock(&BB); 900 if (!MadeChanges) 901 return PreservedAnalyses::all(); 902 PreservedAnalyses PA; 903 PA.preserve<DominatorTreeAnalysis>(); 904 return PA; 905 } 906 907 } // namespace 908 909 char ExpandMemCmpPass::ID = 0; 910 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp", 911 "Expand memcmp() to load/stores", false, false) 912 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 913 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 914 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 915 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 916 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 917 INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp", 918 "Expand memcmp() to load/stores", false, false) 919 920 FunctionPass *llvm::createExpandMemCmpPass() { 921 return new ExpandMemCmpPass(); 922 } 923