xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/ExpandMemCmp.cpp (revision ca53e5aedfebcc1b4091b68e01b2d5cae923f85e)
1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass tries to expand memcmp() calls into optimally-sized loads and
10 // compares for the target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
17 #include "llvm/Analysis/ProfileSummaryInfo.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Transforms/Utils/SizeOpts.h"
28 #include "llvm/Target/TargetMachine.h"
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "expandmemcmp"
33 
34 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
35 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
36 STATISTIC(NumMemCmpGreaterThanMax,
37           "Number of memcmp calls with size greater than max size");
38 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
39 
40 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
41     "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
42     cl::desc("The number of loads per basic block for inline expansion of "
43              "memcmp that is only being compared against zero."));
44 
45 static cl::opt<unsigned> MaxLoadsPerMemcmp(
46     "max-loads-per-memcmp", cl::Hidden,
47     cl::desc("Set maximum number of loads used in expanded memcmp"));
48 
49 static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
50     "max-loads-per-memcmp-opt-size", cl::Hidden,
51     cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
52 
53 namespace {
54 
55 
56 // This class provides helper functions to expand a memcmp library call into an
57 // inline expansion.
58 class MemCmpExpansion {
59   struct ResultBlock {
60     BasicBlock *BB = nullptr;
61     PHINode *PhiSrc1 = nullptr;
62     PHINode *PhiSrc2 = nullptr;
63 
64     ResultBlock() = default;
65   };
66 
67   CallInst *const CI;
68   ResultBlock ResBlock;
69   const uint64_t Size;
70   unsigned MaxLoadSize;
71   uint64_t NumLoadsNonOneByte;
72   const uint64_t NumLoadsPerBlockForZeroCmp;
73   std::vector<BasicBlock *> LoadCmpBlocks;
74   BasicBlock *EndBlock;
75   PHINode *PhiRes;
76   const bool IsUsedForZeroCmp;
77   const DataLayout &DL;
78   IRBuilder<> Builder;
79   // Represents the decomposition in blocks of the expansion. For example,
80   // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
81   // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {1, 32}.
82   struct LoadEntry {
83     LoadEntry(unsigned LoadSize, uint64_t Offset)
84         : LoadSize(LoadSize), Offset(Offset) {
85     }
86 
87     // The size of the load for this block, in bytes.
88     unsigned LoadSize;
89     // The offset of this load from the base pointer, in bytes.
90     uint64_t Offset;
91   };
92   using LoadEntryVector = SmallVector<LoadEntry, 8>;
93   LoadEntryVector LoadSequence;
94 
95   void createLoadCmpBlocks();
96   void createResultBlock();
97   void setupResultBlockPHINodes();
98   void setupEndBlockPHINodes();
99   Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
100   void emitLoadCompareBlock(unsigned BlockIndex);
101   void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
102                                          unsigned &LoadIndex);
103   void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
104   void emitMemCmpResultBlock();
105   Value *getMemCmpExpansionZeroCase();
106   Value *getMemCmpEqZeroOneBlock();
107   Value *getMemCmpOneBlock();
108   struct LoadPair {
109     Value *Lhs = nullptr;
110     Value *Rhs = nullptr;
111   };
112   LoadPair getLoadPair(Type *LoadSizeType, bool NeedsBSwap, Type *CmpSizeType,
113                        unsigned OffsetBytes);
114 
115   static LoadEntryVector
116   computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
117                             unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
118   static LoadEntryVector
119   computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
120                                  unsigned MaxNumLoads,
121                                  unsigned &NumLoadsNonOneByte);
122 
123 public:
124   MemCmpExpansion(CallInst *CI, uint64_t Size,
125                   const TargetTransformInfo::MemCmpExpansionOptions &Options,
126                   const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout);
127 
128   unsigned getNumBlocks();
129   uint64_t getNumLoads() const { return LoadSequence.size(); }
130 
131   Value *getMemCmpExpansion();
132 };
133 
134 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
135     uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
136     const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
137   NumLoadsNonOneByte = 0;
138   LoadEntryVector LoadSequence;
139   uint64_t Offset = 0;
140   while (Size && !LoadSizes.empty()) {
141     const unsigned LoadSize = LoadSizes.front();
142     const uint64_t NumLoadsForThisSize = Size / LoadSize;
143     if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
144       // Do not expand if the total number of loads is larger than what the
145       // target allows. Note that it's important that we exit before completing
146       // the expansion to avoid using a ton of memory to store the expansion for
147       // large sizes.
148       return {};
149     }
150     if (NumLoadsForThisSize > 0) {
151       for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
152         LoadSequence.push_back({LoadSize, Offset});
153         Offset += LoadSize;
154       }
155       if (LoadSize > 1)
156         ++NumLoadsNonOneByte;
157       Size = Size % LoadSize;
158     }
159     LoadSizes = LoadSizes.drop_front();
160   }
161   return LoadSequence;
162 }
163 
164 MemCmpExpansion::LoadEntryVector
165 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
166                                                 const unsigned MaxLoadSize,
167                                                 const unsigned MaxNumLoads,
168                                                 unsigned &NumLoadsNonOneByte) {
169   // These are already handled by the greedy approach.
170   if (Size < 2 || MaxLoadSize < 2)
171     return {};
172 
173   // We try to do as many non-overlapping loads as possible starting from the
174   // beginning.
175   const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
176   assert(NumNonOverlappingLoads && "there must be at least one load");
177   // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
178   // an overlapping load.
179   Size = Size - NumNonOverlappingLoads * MaxLoadSize;
180   // Bail if we do not need an overloapping store, this is already handled by
181   // the greedy approach.
182   if (Size == 0)
183     return {};
184   // Bail if the number of loads (non-overlapping + potential overlapping one)
185   // is larger than the max allowed.
186   if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
187     return {};
188 
189   // Add non-overlapping loads.
190   LoadEntryVector LoadSequence;
191   uint64_t Offset = 0;
192   for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
193     LoadSequence.push_back({MaxLoadSize, Offset});
194     Offset += MaxLoadSize;
195   }
196 
197   // Add the last overlapping load.
198   assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
199   LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
200   NumLoadsNonOneByte = 1;
201   return LoadSequence;
202 }
203 
204 // Initialize the basic block structure required for expansion of memcmp call
205 // with given maximum load size and memcmp size parameter.
206 // This structure includes:
207 // 1. A list of load compare blocks - LoadCmpBlocks.
208 // 2. An EndBlock, split from original instruction point, which is the block to
209 // return from.
210 // 3. ResultBlock, block to branch to for early exit when a
211 // LoadCmpBlock finds a difference.
212 MemCmpExpansion::MemCmpExpansion(
213     CallInst *const CI, uint64_t Size,
214     const TargetTransformInfo::MemCmpExpansionOptions &Options,
215     const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout)
216     : CI(CI), Size(Size), MaxLoadSize(0), NumLoadsNonOneByte(0),
217       NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock),
218       IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), Builder(CI) {
219   assert(Size > 0 && "zero blocks");
220   // Scale the max size down if the target can load more bytes than we need.
221   llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
222   while (!LoadSizes.empty() && LoadSizes.front() > Size) {
223     LoadSizes = LoadSizes.drop_front();
224   }
225   assert(!LoadSizes.empty() && "cannot load Size bytes");
226   MaxLoadSize = LoadSizes.front();
227   // Compute the decomposition.
228   unsigned GreedyNumLoadsNonOneByte = 0;
229   LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads,
230                                            GreedyNumLoadsNonOneByte);
231   NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
232   assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
233   // If we allow overlapping loads and the load sequence is not already optimal,
234   // use overlapping loads.
235   if (Options.AllowOverlappingLoads &&
236       (LoadSequence.empty() || LoadSequence.size() > 2)) {
237     unsigned OverlappingNumLoadsNonOneByte = 0;
238     auto OverlappingLoads = computeOverlappingLoadSequence(
239         Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte);
240     if (!OverlappingLoads.empty() &&
241         (LoadSequence.empty() ||
242          OverlappingLoads.size() < LoadSequence.size())) {
243       LoadSequence = OverlappingLoads;
244       NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
245     }
246   }
247   assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
248 }
249 
250 unsigned MemCmpExpansion::getNumBlocks() {
251   if (IsUsedForZeroCmp)
252     return getNumLoads() / NumLoadsPerBlockForZeroCmp +
253            (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
254   return getNumLoads();
255 }
256 
257 void MemCmpExpansion::createLoadCmpBlocks() {
258   for (unsigned i = 0; i < getNumBlocks(); i++) {
259     BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
260                                         EndBlock->getParent(), EndBlock);
261     LoadCmpBlocks.push_back(BB);
262   }
263 }
264 
265 void MemCmpExpansion::createResultBlock() {
266   ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
267                                    EndBlock->getParent(), EndBlock);
268 }
269 
270 MemCmpExpansion::LoadPair MemCmpExpansion::getLoadPair(Type *LoadSizeType,
271                                                        bool NeedsBSwap,
272                                                        Type *CmpSizeType,
273                                                        unsigned OffsetBytes) {
274   // Get the memory source at offset `OffsetBytes`.
275   Value *LhsSource = CI->getArgOperand(0);
276   Value *RhsSource = CI->getArgOperand(1);
277   Align LhsAlign = LhsSource->getPointerAlignment(DL);
278   Align RhsAlign = RhsSource->getPointerAlignment(DL);
279   if (OffsetBytes > 0) {
280     auto *ByteType = Type::getInt8Ty(CI->getContext());
281     LhsSource = Builder.CreateConstGEP1_64(
282         ByteType, Builder.CreateBitCast(LhsSource, ByteType->getPointerTo()),
283         OffsetBytes);
284     RhsSource = Builder.CreateConstGEP1_64(
285         ByteType, Builder.CreateBitCast(RhsSource, ByteType->getPointerTo()),
286         OffsetBytes);
287     LhsAlign = commonAlignment(LhsAlign, OffsetBytes);
288     RhsAlign = commonAlignment(RhsAlign, OffsetBytes);
289   }
290   LhsSource = Builder.CreateBitCast(LhsSource, LoadSizeType->getPointerTo());
291   RhsSource = Builder.CreateBitCast(RhsSource, LoadSizeType->getPointerTo());
292 
293   // Create a constant or a load from the source.
294   Value *Lhs = nullptr;
295   if (auto *C = dyn_cast<Constant>(LhsSource))
296     Lhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
297   if (!Lhs)
298     Lhs = Builder.CreateAlignedLoad(LoadSizeType, LhsSource, LhsAlign);
299 
300   Value *Rhs = nullptr;
301   if (auto *C = dyn_cast<Constant>(RhsSource))
302     Rhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
303   if (!Rhs)
304     Rhs = Builder.CreateAlignedLoad(LoadSizeType, RhsSource, RhsAlign);
305 
306   // Swap bytes if required.
307   if (NeedsBSwap) {
308     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
309                                                 Intrinsic::bswap, LoadSizeType);
310     Lhs = Builder.CreateCall(Bswap, Lhs);
311     Rhs = Builder.CreateCall(Bswap, Rhs);
312   }
313 
314   // Zero extend if required.
315   if (CmpSizeType != nullptr && CmpSizeType != LoadSizeType) {
316     Lhs = Builder.CreateZExt(Lhs, CmpSizeType);
317     Rhs = Builder.CreateZExt(Rhs, CmpSizeType);
318   }
319   return {Lhs, Rhs};
320 }
321 
322 // This function creates the IR instructions for loading and comparing 1 byte.
323 // It loads 1 byte from each source of the memcmp parameters with the given
324 // GEPIndex. It then subtracts the two loaded values and adds this result to the
325 // final phi node for selecting the memcmp result.
326 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
327                                                unsigned OffsetBytes) {
328   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
329   const LoadPair Loads =
330       getLoadPair(Type::getInt8Ty(CI->getContext()), /*NeedsBSwap=*/false,
331                   Type::getInt32Ty(CI->getContext()), OffsetBytes);
332   Value *Diff = Builder.CreateSub(Loads.Lhs, Loads.Rhs);
333 
334   PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]);
335 
336   if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
337     // Early exit branch if difference found to EndBlock. Otherwise, continue to
338     // next LoadCmpBlock,
339     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
340                                     ConstantInt::get(Diff->getType(), 0));
341     BranchInst *CmpBr =
342         BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
343     Builder.Insert(CmpBr);
344   } else {
345     // The last block has an unconditional branch to EndBlock.
346     BranchInst *CmpBr = BranchInst::Create(EndBlock);
347     Builder.Insert(CmpBr);
348   }
349 }
350 
351 /// Generate an equality comparison for one or more pairs of loaded values.
352 /// This is used in the case where the memcmp() call is compared equal or not
353 /// equal to zero.
354 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
355                                             unsigned &LoadIndex) {
356   assert(LoadIndex < getNumLoads() &&
357          "getCompareLoadPairs() called with no remaining loads");
358   std::vector<Value *> XorList, OrList;
359   Value *Diff = nullptr;
360 
361   const unsigned NumLoads =
362       std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
363 
364   // For a single-block expansion, start inserting before the memcmp call.
365   if (LoadCmpBlocks.empty())
366     Builder.SetInsertPoint(CI);
367   else
368     Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
369 
370   Value *Cmp = nullptr;
371   // If we have multiple loads per block, we need to generate a composite
372   // comparison using xor+or. The type for the combinations is the largest load
373   // type.
374   IntegerType *const MaxLoadType =
375       NumLoads == 1 ? nullptr
376                     : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
377   for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
378     const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
379     const LoadPair Loads = getLoadPair(
380         IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8),
381         /*NeedsBSwap=*/false, MaxLoadType, CurLoadEntry.Offset);
382 
383     if (NumLoads != 1) {
384       // If we have multiple loads per block, we need to generate a composite
385       // comparison using xor+or.
386       Diff = Builder.CreateXor(Loads.Lhs, Loads.Rhs);
387       Diff = Builder.CreateZExt(Diff, MaxLoadType);
388       XorList.push_back(Diff);
389     } else {
390       // If there's only one load per block, we just compare the loaded values.
391       Cmp = Builder.CreateICmpNE(Loads.Lhs, Loads.Rhs);
392     }
393   }
394 
395   auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
396     std::vector<Value *> OutList;
397     for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
398       Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
399       OutList.push_back(Or);
400     }
401     if (InList.size() % 2 != 0)
402       OutList.push_back(InList.back());
403     return OutList;
404   };
405 
406   if (!Cmp) {
407     // Pairwise OR the XOR results.
408     OrList = pairWiseOr(XorList);
409 
410     // Pairwise OR the OR results until one result left.
411     while (OrList.size() != 1) {
412       OrList = pairWiseOr(OrList);
413     }
414 
415     assert(Diff && "Failed to find comparison diff");
416     Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
417   }
418 
419   return Cmp;
420 }
421 
422 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
423                                                         unsigned &LoadIndex) {
424   Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
425 
426   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
427                            ? EndBlock
428                            : LoadCmpBlocks[BlockIndex + 1];
429   // Early exit branch if difference found to ResultBlock. Otherwise,
430   // continue to next LoadCmpBlock or EndBlock.
431   BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
432   Builder.Insert(CmpBr);
433 
434   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
435   // since early exit to ResultBlock was not taken (no difference was found in
436   // any of the bytes).
437   if (BlockIndex == LoadCmpBlocks.size() - 1) {
438     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
439     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
440   }
441 }
442 
443 // This function creates the IR intructions for loading and comparing using the
444 // given LoadSize. It loads the number of bytes specified by LoadSize from each
445 // source of the memcmp parameters. It then does a subtract to see if there was
446 // a difference in the loaded values. If a difference is found, it branches
447 // with an early exit to the ResultBlock for calculating which source was
448 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
449 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
450 // a special case through emitLoadCompareByteBlock. The special handling can
451 // simply subtract the loaded values and add it to the result phi node.
452 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
453   // There is one load per block in this case, BlockIndex == LoadIndex.
454   const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
455 
456   if (CurLoadEntry.LoadSize == 1) {
457     MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
458     return;
459   }
460 
461   Type *LoadSizeType =
462       IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
463   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
464   assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
465 
466   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
467 
468   const LoadPair Loads =
469       getLoadPair(LoadSizeType, /*NeedsBSwap=*/DL.isLittleEndian(), MaxLoadType,
470                   CurLoadEntry.Offset);
471 
472   // Add the loaded values to the phi nodes for calculating memcmp result only
473   // if result is not used in a zero equality.
474   if (!IsUsedForZeroCmp) {
475     ResBlock.PhiSrc1->addIncoming(Loads.Lhs, LoadCmpBlocks[BlockIndex]);
476     ResBlock.PhiSrc2->addIncoming(Loads.Rhs, LoadCmpBlocks[BlockIndex]);
477   }
478 
479   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Loads.Lhs, Loads.Rhs);
480   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
481                            ? EndBlock
482                            : LoadCmpBlocks[BlockIndex + 1];
483   // Early exit branch if difference found to ResultBlock. Otherwise, continue
484   // to next LoadCmpBlock or EndBlock.
485   BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
486   Builder.Insert(CmpBr);
487 
488   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
489   // since early exit to ResultBlock was not taken (no difference was found in
490   // any of the bytes).
491   if (BlockIndex == LoadCmpBlocks.size() - 1) {
492     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
493     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
494   }
495 }
496 
497 // This function populates the ResultBlock with a sequence to calculate the
498 // memcmp result. It compares the two loaded source values and returns -1 if
499 // src1 < src2 and 1 if src1 > src2.
500 void MemCmpExpansion::emitMemCmpResultBlock() {
501   // Special case: if memcmp result is used in a zero equality, result does not
502   // need to be calculated and can simply return 1.
503   if (IsUsedForZeroCmp) {
504     BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
505     Builder.SetInsertPoint(ResBlock.BB, InsertPt);
506     Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
507     PhiRes->addIncoming(Res, ResBlock.BB);
508     BranchInst *NewBr = BranchInst::Create(EndBlock);
509     Builder.Insert(NewBr);
510     return;
511   }
512   BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
513   Builder.SetInsertPoint(ResBlock.BB, InsertPt);
514 
515   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
516                                   ResBlock.PhiSrc2);
517 
518   Value *Res =
519       Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
520                            ConstantInt::get(Builder.getInt32Ty(), 1));
521 
522   BranchInst *NewBr = BranchInst::Create(EndBlock);
523   Builder.Insert(NewBr);
524   PhiRes->addIncoming(Res, ResBlock.BB);
525 }
526 
527 void MemCmpExpansion::setupResultBlockPHINodes() {
528   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
529   Builder.SetInsertPoint(ResBlock.BB);
530   // Note: this assumes one load per block.
531   ResBlock.PhiSrc1 =
532       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
533   ResBlock.PhiSrc2 =
534       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
535 }
536 
537 void MemCmpExpansion::setupEndBlockPHINodes() {
538   Builder.SetInsertPoint(&EndBlock->front());
539   PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
540 }
541 
542 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
543   unsigned LoadIndex = 0;
544   // This loop populates each of the LoadCmpBlocks with the IR sequence to
545   // handle multiple loads per block.
546   for (unsigned I = 0; I < getNumBlocks(); ++I) {
547     emitLoadCompareBlockMultipleLoads(I, LoadIndex);
548   }
549 
550   emitMemCmpResultBlock();
551   return PhiRes;
552 }
553 
554 /// A memcmp expansion that compares equality with 0 and only has one block of
555 /// load and compare can bypass the compare, branch, and phi IR that is required
556 /// in the general case.
557 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
558   unsigned LoadIndex = 0;
559   Value *Cmp = getCompareLoadPairs(0, LoadIndex);
560   assert(LoadIndex == getNumLoads() && "some entries were not consumed");
561   return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
562 }
563 
564 /// A memcmp expansion that only has one block of load and compare can bypass
565 /// the compare, branch, and phi IR that is required in the general case.
566 Value *MemCmpExpansion::getMemCmpOneBlock() {
567   Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
568   bool NeedsBSwap = DL.isLittleEndian() && Size != 1;
569 
570   // The i8 and i16 cases don't need compares. We zext the loaded values and
571   // subtract them to get the suitable negative, zero, or positive i32 result.
572   if (Size < 4) {
573     const LoadPair Loads =
574         getLoadPair(LoadSizeType, NeedsBSwap, Builder.getInt32Ty(),
575                     /*Offset*/ 0);
576     return Builder.CreateSub(Loads.Lhs, Loads.Rhs);
577   }
578 
579   const LoadPair Loads = getLoadPair(LoadSizeType, NeedsBSwap, LoadSizeType,
580                                      /*Offset*/ 0);
581   // The result of memcmp is negative, zero, or positive, so produce that by
582   // subtracting 2 extended compare bits: sub (ugt, ult).
583   // If a target prefers to use selects to get -1/0/1, they should be able
584   // to transform this later. The inverse transform (going from selects to math)
585   // may not be possible in the DAG because the selects got converted into
586   // branches before we got there.
587   Value *CmpUGT = Builder.CreateICmpUGT(Loads.Lhs, Loads.Rhs);
588   Value *CmpULT = Builder.CreateICmpULT(Loads.Lhs, Loads.Rhs);
589   Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
590   Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
591   return Builder.CreateSub(ZextUGT, ZextULT);
592 }
593 
594 // This function expands the memcmp call into an inline expansion and returns
595 // the memcmp result.
596 Value *MemCmpExpansion::getMemCmpExpansion() {
597   // Create the basic block framework for a multi-block expansion.
598   if (getNumBlocks() != 1) {
599     BasicBlock *StartBlock = CI->getParent();
600     EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
601     setupEndBlockPHINodes();
602     createResultBlock();
603 
604     // If return value of memcmp is not used in a zero equality, we need to
605     // calculate which source was larger. The calculation requires the
606     // two loaded source values of each load compare block.
607     // These will be saved in the phi nodes created by setupResultBlockPHINodes.
608     if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
609 
610     // Create the number of required load compare basic blocks.
611     createLoadCmpBlocks();
612 
613     // Update the terminator added by splitBasicBlock to branch to the first
614     // LoadCmpBlock.
615     StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
616   }
617 
618   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
619 
620   if (IsUsedForZeroCmp)
621     return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
622                                : getMemCmpExpansionZeroCase();
623 
624   if (getNumBlocks() == 1)
625     return getMemCmpOneBlock();
626 
627   for (unsigned I = 0; I < getNumBlocks(); ++I) {
628     emitLoadCompareBlock(I);
629   }
630 
631   emitMemCmpResultBlock();
632   return PhiRes;
633 }
634 
635 // This function checks to see if an expansion of memcmp can be generated.
636 // It checks for constant compare size that is less than the max inline size.
637 // If an expansion cannot occur, returns false to leave as a library call.
638 // Otherwise, the library call is replaced with a new IR instruction sequence.
639 /// We want to transform:
640 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
641 /// To:
642 /// loadbb:
643 ///  %0 = bitcast i32* %buffer2 to i8*
644 ///  %1 = bitcast i32* %buffer1 to i8*
645 ///  %2 = bitcast i8* %1 to i64*
646 ///  %3 = bitcast i8* %0 to i64*
647 ///  %4 = load i64, i64* %2
648 ///  %5 = load i64, i64* %3
649 ///  %6 = call i64 @llvm.bswap.i64(i64 %4)
650 ///  %7 = call i64 @llvm.bswap.i64(i64 %5)
651 ///  %8 = sub i64 %6, %7
652 ///  %9 = icmp ne i64 %8, 0
653 ///  br i1 %9, label %res_block, label %loadbb1
654 /// res_block:                                        ; preds = %loadbb2,
655 /// %loadbb1, %loadbb
656 ///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
657 ///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
658 ///  %10 = icmp ult i64 %phi.src1, %phi.src2
659 ///  %11 = select i1 %10, i32 -1, i32 1
660 ///  br label %endblock
661 /// loadbb1:                                          ; preds = %loadbb
662 ///  %12 = bitcast i32* %buffer2 to i8*
663 ///  %13 = bitcast i32* %buffer1 to i8*
664 ///  %14 = bitcast i8* %13 to i32*
665 ///  %15 = bitcast i8* %12 to i32*
666 ///  %16 = getelementptr i32, i32* %14, i32 2
667 ///  %17 = getelementptr i32, i32* %15, i32 2
668 ///  %18 = load i32, i32* %16
669 ///  %19 = load i32, i32* %17
670 ///  %20 = call i32 @llvm.bswap.i32(i32 %18)
671 ///  %21 = call i32 @llvm.bswap.i32(i32 %19)
672 ///  %22 = zext i32 %20 to i64
673 ///  %23 = zext i32 %21 to i64
674 ///  %24 = sub i64 %22, %23
675 ///  %25 = icmp ne i64 %24, 0
676 ///  br i1 %25, label %res_block, label %loadbb2
677 /// loadbb2:                                          ; preds = %loadbb1
678 ///  %26 = bitcast i32* %buffer2 to i8*
679 ///  %27 = bitcast i32* %buffer1 to i8*
680 ///  %28 = bitcast i8* %27 to i16*
681 ///  %29 = bitcast i8* %26 to i16*
682 ///  %30 = getelementptr i16, i16* %28, i16 6
683 ///  %31 = getelementptr i16, i16* %29, i16 6
684 ///  %32 = load i16, i16* %30
685 ///  %33 = load i16, i16* %31
686 ///  %34 = call i16 @llvm.bswap.i16(i16 %32)
687 ///  %35 = call i16 @llvm.bswap.i16(i16 %33)
688 ///  %36 = zext i16 %34 to i64
689 ///  %37 = zext i16 %35 to i64
690 ///  %38 = sub i64 %36, %37
691 ///  %39 = icmp ne i64 %38, 0
692 ///  br i1 %39, label %res_block, label %loadbb3
693 /// loadbb3:                                          ; preds = %loadbb2
694 ///  %40 = bitcast i32* %buffer2 to i8*
695 ///  %41 = bitcast i32* %buffer1 to i8*
696 ///  %42 = getelementptr i8, i8* %41, i8 14
697 ///  %43 = getelementptr i8, i8* %40, i8 14
698 ///  %44 = load i8, i8* %42
699 ///  %45 = load i8, i8* %43
700 ///  %46 = zext i8 %44 to i32
701 ///  %47 = zext i8 %45 to i32
702 ///  %48 = sub i32 %46, %47
703 ///  br label %endblock
704 /// endblock:                                         ; preds = %res_block,
705 /// %loadbb3
706 ///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
707 ///  ret i32 %phi.res
708 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
709                          const TargetLowering *TLI, const DataLayout *DL,
710                          ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
711   NumMemCmpCalls++;
712 
713   // Early exit from expansion if -Oz.
714   if (CI->getFunction()->hasMinSize())
715     return false;
716 
717   // Early exit from expansion if size is not a constant.
718   ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
719   if (!SizeCast) {
720     NumMemCmpNotConstant++;
721     return false;
722   }
723   const uint64_t SizeVal = SizeCast->getZExtValue();
724 
725   if (SizeVal == 0) {
726     return false;
727   }
728   // TTI call to check if target would like to expand memcmp. Also, get the
729   // available load sizes.
730   const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
731   bool OptForSize = CI->getFunction()->hasOptSize() ||
732                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
733   auto Options = TTI->enableMemCmpExpansion(OptForSize,
734                                             IsUsedForZeroCmp);
735   if (!Options) return false;
736 
737   if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences())
738     Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock;
739 
740   if (OptForSize &&
741       MaxLoadsPerMemcmpOptSize.getNumOccurrences())
742     Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize;
743 
744   if (!OptForSize && MaxLoadsPerMemcmp.getNumOccurrences())
745     Options.MaxNumLoads = MaxLoadsPerMemcmp;
746 
747   MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL);
748 
749   // Don't expand if this will require more loads than desired by the target.
750   if (Expansion.getNumLoads() == 0) {
751     NumMemCmpGreaterThanMax++;
752     return false;
753   }
754 
755   NumMemCmpInlined++;
756 
757   Value *Res = Expansion.getMemCmpExpansion();
758 
759   // Replace call with result of expansion and erase call.
760   CI->replaceAllUsesWith(Res);
761   CI->eraseFromParent();
762 
763   return true;
764 }
765 
766 
767 
768 class ExpandMemCmpPass : public FunctionPass {
769 public:
770   static char ID;
771 
772   ExpandMemCmpPass() : FunctionPass(ID) {
773     initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
774   }
775 
776   bool runOnFunction(Function &F) override {
777     if (skipFunction(F)) return false;
778 
779     auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
780     if (!TPC) {
781       return false;
782     }
783     const TargetLowering* TL =
784         TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
785 
786     const TargetLibraryInfo *TLI =
787         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
788     const TargetTransformInfo *TTI =
789         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
790     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
791     auto *BFI = (PSI && PSI->hasProfileSummary()) ?
792            &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
793            nullptr;
794     auto PA = runImpl(F, TLI, TTI, TL, PSI, BFI);
795     return !PA.areAllPreserved();
796   }
797 
798 private:
799   void getAnalysisUsage(AnalysisUsage &AU) const override {
800     AU.addRequired<TargetLibraryInfoWrapperPass>();
801     AU.addRequired<TargetTransformInfoWrapperPass>();
802     AU.addRequired<ProfileSummaryInfoWrapperPass>();
803     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
804     FunctionPass::getAnalysisUsage(AU);
805   }
806 
807   PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
808                             const TargetTransformInfo *TTI,
809                             const TargetLowering* TL,
810                             ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI);
811   // Returns true if a change was made.
812   bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
813                   const TargetTransformInfo *TTI, const TargetLowering* TL,
814                   const DataLayout& DL, ProfileSummaryInfo *PSI,
815                   BlockFrequencyInfo *BFI);
816 };
817 
818 bool ExpandMemCmpPass::runOnBlock(
819     BasicBlock &BB, const TargetLibraryInfo *TLI,
820     const TargetTransformInfo *TTI, const TargetLowering* TL,
821     const DataLayout& DL, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
822   for (Instruction& I : BB) {
823     CallInst *CI = dyn_cast<CallInst>(&I);
824     if (!CI) {
825       continue;
826     }
827     LibFunc Func;
828     if (TLI->getLibFunc(*CI, Func) &&
829         (Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
830         expandMemCmp(CI, TTI, TL, &DL, PSI, BFI)) {
831       return true;
832     }
833   }
834   return false;
835 }
836 
837 
838 PreservedAnalyses ExpandMemCmpPass::runImpl(
839     Function &F, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI,
840     const TargetLowering* TL, ProfileSummaryInfo *PSI,
841     BlockFrequencyInfo *BFI) {
842   const DataLayout& DL = F.getParent()->getDataLayout();
843   bool MadeChanges = false;
844   for (auto BBIt = F.begin(); BBIt != F.end();) {
845     if (runOnBlock(*BBIt, TLI, TTI, TL, DL, PSI, BFI)) {
846       MadeChanges = true;
847       // If changes were made, restart the function from the beginning, since
848       // the structure of the function was changed.
849       BBIt = F.begin();
850     } else {
851       ++BBIt;
852     }
853   }
854   if (MadeChanges)
855     for (BasicBlock &BB : F)
856       SimplifyInstructionsInBlock(&BB);
857   return MadeChanges ? PreservedAnalyses::none() : PreservedAnalyses::all();
858 }
859 
860 } // namespace
861 
862 char ExpandMemCmpPass::ID = 0;
863 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
864                       "Expand memcmp() to load/stores", false, false)
865 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
866 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
867 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
868 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
869 INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
870                     "Expand memcmp() to load/stores", false, false)
871 
872 FunctionPass *llvm::createExpandMemCmpPass() {
873   return new ExpandMemCmpPass();
874 }
875