xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/ExpandMemCmp.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass tries to expand memcmp() calls into optimally-sized loads and
10 // compares for the target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/ExpandMemCmp.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
19 #include "llvm/Analysis/ProfileSummaryInfo.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Transforms/Utils/SizeOpts.h"
33 #include <optional>
34 
35 using namespace llvm;
36 using namespace llvm::PatternMatch;
37 
38 namespace llvm {
39 class TargetLowering;
40 }
41 
42 #define DEBUG_TYPE "expand-memcmp"
43 
44 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
45 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
46 STATISTIC(NumMemCmpGreaterThanMax,
47           "Number of memcmp calls with size greater than max size");
48 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
49 
50 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
51     "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
52     cl::desc("The number of loads per basic block for inline expansion of "
53              "memcmp that is only being compared against zero."));
54 
55 static cl::opt<unsigned> MaxLoadsPerMemcmp(
56     "max-loads-per-memcmp", cl::Hidden,
57     cl::desc("Set maximum number of loads used in expanded memcmp"));
58 
59 static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
60     "max-loads-per-memcmp-opt-size", cl::Hidden,
61     cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
62 
63 namespace {
64 
65 
66 // This class provides helper functions to expand a memcmp library call into an
67 // inline expansion.
68 class MemCmpExpansion {
69   struct ResultBlock {
70     BasicBlock *BB = nullptr;
71     PHINode *PhiSrc1 = nullptr;
72     PHINode *PhiSrc2 = nullptr;
73 
74     ResultBlock() = default;
75   };
76 
77   CallInst *const CI = nullptr;
78   ResultBlock ResBlock;
79   const uint64_t Size;
80   unsigned MaxLoadSize = 0;
81   uint64_t NumLoadsNonOneByte = 0;
82   const uint64_t NumLoadsPerBlockForZeroCmp;
83   std::vector<BasicBlock *> LoadCmpBlocks;
84   BasicBlock *EndBlock = nullptr;
85   PHINode *PhiRes = nullptr;
86   const bool IsUsedForZeroCmp;
87   const DataLayout &DL;
88   DomTreeUpdater *DTU = nullptr;
89   IRBuilder<> Builder;
90   // Represents the decomposition in blocks of the expansion. For example,
91   // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
92   // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {1, 32}.
93   struct LoadEntry {
94     LoadEntry(unsigned LoadSize, uint64_t Offset)
95         : LoadSize(LoadSize), Offset(Offset) {
96     }
97 
98     // The size of the load for this block, in bytes.
99     unsigned LoadSize;
100     // The offset of this load from the base pointer, in bytes.
101     uint64_t Offset;
102   };
103   using LoadEntryVector = SmallVector<LoadEntry, 8>;
104   LoadEntryVector LoadSequence;
105 
106   void createLoadCmpBlocks();
107   void createResultBlock();
108   void setupResultBlockPHINodes();
109   void setupEndBlockPHINodes();
110   Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
111   void emitLoadCompareBlock(unsigned BlockIndex);
112   void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
113                                          unsigned &LoadIndex);
114   void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
115   void emitMemCmpResultBlock();
116   Value *getMemCmpExpansionZeroCase();
117   Value *getMemCmpEqZeroOneBlock();
118   Value *getMemCmpOneBlock();
119   struct LoadPair {
120     Value *Lhs = nullptr;
121     Value *Rhs = nullptr;
122   };
123   LoadPair getLoadPair(Type *LoadSizeType, Type *BSwapSizeType,
124                        Type *CmpSizeType, unsigned OffsetBytes);
125 
126   static LoadEntryVector
127   computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
128                             unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
129   static LoadEntryVector
130   computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
131                                  unsigned MaxNumLoads,
132                                  unsigned &NumLoadsNonOneByte);
133 
134   static void optimiseLoadSequence(
135       LoadEntryVector &LoadSequence,
136       const TargetTransformInfo::MemCmpExpansionOptions &Options,
137       bool IsUsedForZeroCmp);
138 
139 public:
140   MemCmpExpansion(CallInst *CI, uint64_t Size,
141                   const TargetTransformInfo::MemCmpExpansionOptions &Options,
142                   const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
143                   DomTreeUpdater *DTU);
144 
145   unsigned getNumBlocks();
146   uint64_t getNumLoads() const { return LoadSequence.size(); }
147 
148   Value *getMemCmpExpansion();
149 };
150 
151 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
152     uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
153     const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
154   NumLoadsNonOneByte = 0;
155   LoadEntryVector LoadSequence;
156   uint64_t Offset = 0;
157   while (Size && !LoadSizes.empty()) {
158     const unsigned LoadSize = LoadSizes.front();
159     const uint64_t NumLoadsForThisSize = Size / LoadSize;
160     if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
161       // Do not expand if the total number of loads is larger than what the
162       // target allows. Note that it's important that we exit before completing
163       // the expansion to avoid using a ton of memory to store the expansion for
164       // large sizes.
165       return {};
166     }
167     if (NumLoadsForThisSize > 0) {
168       for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
169         LoadSequence.push_back({LoadSize, Offset});
170         Offset += LoadSize;
171       }
172       if (LoadSize > 1)
173         ++NumLoadsNonOneByte;
174       Size = Size % LoadSize;
175     }
176     LoadSizes = LoadSizes.drop_front();
177   }
178   return LoadSequence;
179 }
180 
181 MemCmpExpansion::LoadEntryVector
182 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
183                                                 const unsigned MaxLoadSize,
184                                                 const unsigned MaxNumLoads,
185                                                 unsigned &NumLoadsNonOneByte) {
186   // These are already handled by the greedy approach.
187   if (Size < 2 || MaxLoadSize < 2)
188     return {};
189 
190   // We try to do as many non-overlapping loads as possible starting from the
191   // beginning.
192   const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
193   assert(NumNonOverlappingLoads && "there must be at least one load");
194   // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
195   // an overlapping load.
196   Size = Size - NumNonOverlappingLoads * MaxLoadSize;
197   // Bail if we do not need an overloapping store, this is already handled by
198   // the greedy approach.
199   if (Size == 0)
200     return {};
201   // Bail if the number of loads (non-overlapping + potential overlapping one)
202   // is larger than the max allowed.
203   if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
204     return {};
205 
206   // Add non-overlapping loads.
207   LoadEntryVector LoadSequence;
208   uint64_t Offset = 0;
209   for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
210     LoadSequence.push_back({MaxLoadSize, Offset});
211     Offset += MaxLoadSize;
212   }
213 
214   // Add the last overlapping load.
215   assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
216   LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
217   NumLoadsNonOneByte = 1;
218   return LoadSequence;
219 }
220 
221 void MemCmpExpansion::optimiseLoadSequence(
222     LoadEntryVector &LoadSequence,
223     const TargetTransformInfo::MemCmpExpansionOptions &Options,
224     bool IsUsedForZeroCmp) {
225   // This part of code attempts to optimize the LoadSequence by merging allowed
226   // subsequences into single loads of allowed sizes from
227   // `MemCmpExpansionOptions::AllowedTailExpansions`. If it is for zero
228   // comparison or if no allowed tail expansions are specified, we exit early.
229   if (IsUsedForZeroCmp || Options.AllowedTailExpansions.empty())
230     return;
231 
232   while (LoadSequence.size() >= 2) {
233     auto Last = LoadSequence[LoadSequence.size() - 1];
234     auto PreLast = LoadSequence[LoadSequence.size() - 2];
235 
236     // Exit the loop if the two sequences are not contiguous
237     if (PreLast.Offset + PreLast.LoadSize != Last.Offset)
238       break;
239 
240     auto LoadSize = Last.LoadSize + PreLast.LoadSize;
241     if (find(Options.AllowedTailExpansions, LoadSize) ==
242         Options.AllowedTailExpansions.end())
243       break;
244 
245     // Remove the last two sequences and replace with the combined sequence
246     LoadSequence.pop_back();
247     LoadSequence.pop_back();
248     LoadSequence.emplace_back(PreLast.Offset, LoadSize);
249   }
250 }
251 
252 // Initialize the basic block structure required for expansion of memcmp call
253 // with given maximum load size and memcmp size parameter.
254 // This structure includes:
255 // 1. A list of load compare blocks - LoadCmpBlocks.
256 // 2. An EndBlock, split from original instruction point, which is the block to
257 // return from.
258 // 3. ResultBlock, block to branch to for early exit when a
259 // LoadCmpBlock finds a difference.
260 MemCmpExpansion::MemCmpExpansion(
261     CallInst *const CI, uint64_t Size,
262     const TargetTransformInfo::MemCmpExpansionOptions &Options,
263     const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
264     DomTreeUpdater *DTU)
265     : CI(CI), Size(Size), NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock),
266       IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), DTU(DTU),
267       Builder(CI) {
268   assert(Size > 0 && "zero blocks");
269   // Scale the max size down if the target can load more bytes than we need.
270   llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
271   while (!LoadSizes.empty() && LoadSizes.front() > Size) {
272     LoadSizes = LoadSizes.drop_front();
273   }
274   assert(!LoadSizes.empty() && "cannot load Size bytes");
275   MaxLoadSize = LoadSizes.front();
276   // Compute the decomposition.
277   unsigned GreedyNumLoadsNonOneByte = 0;
278   LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads,
279                                            GreedyNumLoadsNonOneByte);
280   NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
281   assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
282   // If we allow overlapping loads and the load sequence is not already optimal,
283   // use overlapping loads.
284   if (Options.AllowOverlappingLoads &&
285       (LoadSequence.empty() || LoadSequence.size() > 2)) {
286     unsigned OverlappingNumLoadsNonOneByte = 0;
287     auto OverlappingLoads = computeOverlappingLoadSequence(
288         Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte);
289     if (!OverlappingLoads.empty() &&
290         (LoadSequence.empty() ||
291          OverlappingLoads.size() < LoadSequence.size())) {
292       LoadSequence = OverlappingLoads;
293       NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
294     }
295   }
296   assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
297   optimiseLoadSequence(LoadSequence, Options, IsUsedForZeroCmp);
298 }
299 
300 unsigned MemCmpExpansion::getNumBlocks() {
301   if (IsUsedForZeroCmp)
302     return getNumLoads() / NumLoadsPerBlockForZeroCmp +
303            (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
304   return getNumLoads();
305 }
306 
307 void MemCmpExpansion::createLoadCmpBlocks() {
308   for (unsigned i = 0; i < getNumBlocks(); i++) {
309     BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
310                                         EndBlock->getParent(), EndBlock);
311     LoadCmpBlocks.push_back(BB);
312   }
313 }
314 
315 void MemCmpExpansion::createResultBlock() {
316   ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
317                                    EndBlock->getParent(), EndBlock);
318 }
319 
320 MemCmpExpansion::LoadPair MemCmpExpansion::getLoadPair(Type *LoadSizeType,
321                                                        Type *BSwapSizeType,
322                                                        Type *CmpSizeType,
323                                                        unsigned OffsetBytes) {
324   // Get the memory source at offset `OffsetBytes`.
325   Value *LhsSource = CI->getArgOperand(0);
326   Value *RhsSource = CI->getArgOperand(1);
327   Align LhsAlign = LhsSource->getPointerAlignment(DL);
328   Align RhsAlign = RhsSource->getPointerAlignment(DL);
329   if (OffsetBytes > 0) {
330     auto *ByteType = Type::getInt8Ty(CI->getContext());
331     LhsSource = Builder.CreateConstGEP1_64(ByteType, LhsSource, OffsetBytes);
332     RhsSource = Builder.CreateConstGEP1_64(ByteType, RhsSource, OffsetBytes);
333     LhsAlign = commonAlignment(LhsAlign, OffsetBytes);
334     RhsAlign = commonAlignment(RhsAlign, OffsetBytes);
335   }
336 
337   // Create a constant or a load from the source.
338   Value *Lhs = nullptr;
339   if (auto *C = dyn_cast<Constant>(LhsSource))
340     Lhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
341   if (!Lhs)
342     Lhs = Builder.CreateAlignedLoad(LoadSizeType, LhsSource, LhsAlign);
343 
344   Value *Rhs = nullptr;
345   if (auto *C = dyn_cast<Constant>(RhsSource))
346     Rhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
347   if (!Rhs)
348     Rhs = Builder.CreateAlignedLoad(LoadSizeType, RhsSource, RhsAlign);
349 
350   // Zero extend if Byte Swap intrinsic has different type
351   if (BSwapSizeType && LoadSizeType != BSwapSizeType) {
352     Lhs = Builder.CreateZExt(Lhs, BSwapSizeType);
353     Rhs = Builder.CreateZExt(Rhs, BSwapSizeType);
354   }
355 
356   // Swap bytes if required.
357   if (BSwapSizeType) {
358     Function *Bswap = Intrinsic::getDeclaration(
359         CI->getModule(), Intrinsic::bswap, BSwapSizeType);
360     Lhs = Builder.CreateCall(Bswap, Lhs);
361     Rhs = Builder.CreateCall(Bswap, Rhs);
362   }
363 
364   // Zero extend if required.
365   if (CmpSizeType != nullptr && CmpSizeType != Lhs->getType()) {
366     Lhs = Builder.CreateZExt(Lhs, CmpSizeType);
367     Rhs = Builder.CreateZExt(Rhs, CmpSizeType);
368   }
369   return {Lhs, Rhs};
370 }
371 
372 // This function creates the IR instructions for loading and comparing 1 byte.
373 // It loads 1 byte from each source of the memcmp parameters with the given
374 // GEPIndex. It then subtracts the two loaded values and adds this result to the
375 // final phi node for selecting the memcmp result.
376 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
377                                                unsigned OffsetBytes) {
378   BasicBlock *BB = LoadCmpBlocks[BlockIndex];
379   Builder.SetInsertPoint(BB);
380   const LoadPair Loads =
381       getLoadPair(Type::getInt8Ty(CI->getContext()), nullptr,
382                   Type::getInt32Ty(CI->getContext()), OffsetBytes);
383   Value *Diff = Builder.CreateSub(Loads.Lhs, Loads.Rhs);
384 
385   PhiRes->addIncoming(Diff, BB);
386 
387   if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
388     // Early exit branch if difference found to EndBlock. Otherwise, continue to
389     // next LoadCmpBlock,
390     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
391                                     ConstantInt::get(Diff->getType(), 0));
392     BranchInst *CmpBr =
393         BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
394     Builder.Insert(CmpBr);
395     if (DTU)
396       DTU->applyUpdates(
397           {{DominatorTree::Insert, BB, EndBlock},
398            {DominatorTree::Insert, BB, LoadCmpBlocks[BlockIndex + 1]}});
399   } else {
400     // The last block has an unconditional branch to EndBlock.
401     BranchInst *CmpBr = BranchInst::Create(EndBlock);
402     Builder.Insert(CmpBr);
403     if (DTU)
404       DTU->applyUpdates({{DominatorTree::Insert, BB, EndBlock}});
405   }
406 }
407 
408 /// Generate an equality comparison for one or more pairs of loaded values.
409 /// This is used in the case where the memcmp() call is compared equal or not
410 /// equal to zero.
411 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
412                                             unsigned &LoadIndex) {
413   assert(LoadIndex < getNumLoads() &&
414          "getCompareLoadPairs() called with no remaining loads");
415   std::vector<Value *> XorList, OrList;
416   Value *Diff = nullptr;
417 
418   const unsigned NumLoads =
419       std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
420 
421   // For a single-block expansion, start inserting before the memcmp call.
422   if (LoadCmpBlocks.empty())
423     Builder.SetInsertPoint(CI);
424   else
425     Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
426 
427   Value *Cmp = nullptr;
428   // If we have multiple loads per block, we need to generate a composite
429   // comparison using xor+or. The type for the combinations is the largest load
430   // type.
431   IntegerType *const MaxLoadType =
432       NumLoads == 1 ? nullptr
433                     : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
434 
435   for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
436     const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
437     const LoadPair Loads = getLoadPair(
438         IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8), nullptr,
439         MaxLoadType, CurLoadEntry.Offset);
440 
441     if (NumLoads != 1) {
442       // If we have multiple loads per block, we need to generate a composite
443       // comparison using xor+or.
444       Diff = Builder.CreateXor(Loads.Lhs, Loads.Rhs);
445       Diff = Builder.CreateZExt(Diff, MaxLoadType);
446       XorList.push_back(Diff);
447     } else {
448       // If there's only one load per block, we just compare the loaded values.
449       Cmp = Builder.CreateICmpNE(Loads.Lhs, Loads.Rhs);
450     }
451   }
452 
453   auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
454     std::vector<Value *> OutList;
455     for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
456       Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
457       OutList.push_back(Or);
458     }
459     if (InList.size() % 2 != 0)
460       OutList.push_back(InList.back());
461     return OutList;
462   };
463 
464   if (!Cmp) {
465     // Pairwise OR the XOR results.
466     OrList = pairWiseOr(XorList);
467 
468     // Pairwise OR the OR results until one result left.
469     while (OrList.size() != 1) {
470       OrList = pairWiseOr(OrList);
471     }
472 
473     assert(Diff && "Failed to find comparison diff");
474     Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
475   }
476 
477   return Cmp;
478 }
479 
480 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
481                                                         unsigned &LoadIndex) {
482   Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
483 
484   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
485                            ? EndBlock
486                            : LoadCmpBlocks[BlockIndex + 1];
487   // Early exit branch if difference found to ResultBlock. Otherwise,
488   // continue to next LoadCmpBlock or EndBlock.
489   BasicBlock *BB = Builder.GetInsertBlock();
490   BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
491   Builder.Insert(CmpBr);
492   if (DTU)
493     DTU->applyUpdates({{DominatorTree::Insert, BB, ResBlock.BB},
494                        {DominatorTree::Insert, BB, NextBB}});
495 
496   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
497   // since early exit to ResultBlock was not taken (no difference was found in
498   // any of the bytes).
499   if (BlockIndex == LoadCmpBlocks.size() - 1) {
500     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
501     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
502   }
503 }
504 
505 // This function creates the IR intructions for loading and comparing using the
506 // given LoadSize. It loads the number of bytes specified by LoadSize from each
507 // source of the memcmp parameters. It then does a subtract to see if there was
508 // a difference in the loaded values. If a difference is found, it branches
509 // with an early exit to the ResultBlock for calculating which source was
510 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
511 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
512 // a special case through emitLoadCompareByteBlock. The special handling can
513 // simply subtract the loaded values and add it to the result phi node.
514 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
515   // There is one load per block in this case, BlockIndex == LoadIndex.
516   const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
517 
518   if (CurLoadEntry.LoadSize == 1) {
519     MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
520     return;
521   }
522 
523   Type *LoadSizeType =
524       IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
525   Type *BSwapSizeType =
526       DL.isLittleEndian()
527           ? IntegerType::get(CI->getContext(),
528                              PowerOf2Ceil(CurLoadEntry.LoadSize * 8))
529           : nullptr;
530   Type *MaxLoadType = IntegerType::get(
531       CI->getContext(),
532       std::max(MaxLoadSize, (unsigned)PowerOf2Ceil(CurLoadEntry.LoadSize)) * 8);
533   assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
534 
535   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
536 
537   const LoadPair Loads = getLoadPair(LoadSizeType, BSwapSizeType, MaxLoadType,
538                                      CurLoadEntry.Offset);
539 
540   // Add the loaded values to the phi nodes for calculating memcmp result only
541   // if result is not used in a zero equality.
542   if (!IsUsedForZeroCmp) {
543     ResBlock.PhiSrc1->addIncoming(Loads.Lhs, LoadCmpBlocks[BlockIndex]);
544     ResBlock.PhiSrc2->addIncoming(Loads.Rhs, LoadCmpBlocks[BlockIndex]);
545   }
546 
547   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Loads.Lhs, Loads.Rhs);
548   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
549                            ? EndBlock
550                            : LoadCmpBlocks[BlockIndex + 1];
551   // Early exit branch if difference found to ResultBlock. Otherwise, continue
552   // to next LoadCmpBlock or EndBlock.
553   BasicBlock *BB = Builder.GetInsertBlock();
554   BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
555   Builder.Insert(CmpBr);
556   if (DTU)
557     DTU->applyUpdates({{DominatorTree::Insert, BB, NextBB},
558                        {DominatorTree::Insert, BB, ResBlock.BB}});
559 
560   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
561   // since early exit to ResultBlock was not taken (no difference was found in
562   // any of the bytes).
563   if (BlockIndex == LoadCmpBlocks.size() - 1) {
564     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
565     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
566   }
567 }
568 
569 // This function populates the ResultBlock with a sequence to calculate the
570 // memcmp result. It compares the two loaded source values and returns -1 if
571 // src1 < src2 and 1 if src1 > src2.
572 void MemCmpExpansion::emitMemCmpResultBlock() {
573   // Special case: if memcmp result is used in a zero equality, result does not
574   // need to be calculated and can simply return 1.
575   if (IsUsedForZeroCmp) {
576     BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
577     Builder.SetInsertPoint(ResBlock.BB, InsertPt);
578     Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
579     PhiRes->addIncoming(Res, ResBlock.BB);
580     BranchInst *NewBr = BranchInst::Create(EndBlock);
581     Builder.Insert(NewBr);
582     if (DTU)
583       DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
584     return;
585   }
586   BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
587   Builder.SetInsertPoint(ResBlock.BB, InsertPt);
588 
589   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
590                                   ResBlock.PhiSrc2);
591 
592   Value *Res =
593       Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
594                            ConstantInt::get(Builder.getInt32Ty(), 1));
595 
596   PhiRes->addIncoming(Res, ResBlock.BB);
597   BranchInst *NewBr = BranchInst::Create(EndBlock);
598   Builder.Insert(NewBr);
599   if (DTU)
600     DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
601 }
602 
603 void MemCmpExpansion::setupResultBlockPHINodes() {
604   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
605   Builder.SetInsertPoint(ResBlock.BB);
606   // Note: this assumes one load per block.
607   ResBlock.PhiSrc1 =
608       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
609   ResBlock.PhiSrc2 =
610       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
611 }
612 
613 void MemCmpExpansion::setupEndBlockPHINodes() {
614   Builder.SetInsertPoint(EndBlock, EndBlock->begin());
615   PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
616 }
617 
618 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
619   unsigned LoadIndex = 0;
620   // This loop populates each of the LoadCmpBlocks with the IR sequence to
621   // handle multiple loads per block.
622   for (unsigned I = 0; I < getNumBlocks(); ++I) {
623     emitLoadCompareBlockMultipleLoads(I, LoadIndex);
624   }
625 
626   emitMemCmpResultBlock();
627   return PhiRes;
628 }
629 
630 /// A memcmp expansion that compares equality with 0 and only has one block of
631 /// load and compare can bypass the compare, branch, and phi IR that is required
632 /// in the general case.
633 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
634   unsigned LoadIndex = 0;
635   Value *Cmp = getCompareLoadPairs(0, LoadIndex);
636   assert(LoadIndex == getNumLoads() && "some entries were not consumed");
637   return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
638 }
639 
640 /// A memcmp expansion that only has one block of load and compare can bypass
641 /// the compare, branch, and phi IR that is required in the general case.
642 /// This function also analyses users of memcmp, and if there is only one user
643 /// from which we can conclude that only 2 out of 3 memcmp outcomes really
644 /// matter, then it generates more efficient code with only one comparison.
645 Value *MemCmpExpansion::getMemCmpOneBlock() {
646   bool NeedsBSwap = DL.isLittleEndian() && Size != 1;
647   Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
648   Type *BSwapSizeType =
649       NeedsBSwap ? IntegerType::get(CI->getContext(), PowerOf2Ceil(Size * 8))
650                  : nullptr;
651   Type *MaxLoadType =
652       IntegerType::get(CI->getContext(),
653                        std::max(MaxLoadSize, (unsigned)PowerOf2Ceil(Size)) * 8);
654 
655   // The i8 and i16 cases don't need compares. We zext the loaded values and
656   // subtract them to get the suitable negative, zero, or positive i32 result.
657   if (Size == 1 || Size == 2) {
658     const LoadPair Loads = getLoadPair(LoadSizeType, BSwapSizeType,
659                                        Builder.getInt32Ty(), /*Offset*/ 0);
660     return Builder.CreateSub(Loads.Lhs, Loads.Rhs);
661   }
662 
663   const LoadPair Loads = getLoadPair(LoadSizeType, BSwapSizeType, MaxLoadType,
664                                      /*Offset*/ 0);
665 
666   // If a user of memcmp cares only about two outcomes, for example:
667   //    bool result = memcmp(a, b, NBYTES) > 0;
668   // We can generate more optimal code with a smaller number of operations
669   if (CI->hasOneUser()) {
670     auto *UI = cast<Instruction>(*CI->user_begin());
671     ICmpInst::Predicate Pred = ICmpInst::Predicate::BAD_ICMP_PREDICATE;
672     uint64_t Shift;
673     bool NeedsZExt = false;
674     // This is a special case because instead of checking if the result is less
675     // than zero:
676     //    bool result = memcmp(a, b, NBYTES) < 0;
677     // Compiler is clever enough to generate the following code:
678     //    bool result = memcmp(a, b, NBYTES) >> 31;
679     if (match(UI, m_LShr(m_Value(), m_ConstantInt(Shift))) &&
680         Shift == (CI->getType()->getIntegerBitWidth() - 1)) {
681       Pred = ICmpInst::ICMP_SLT;
682       NeedsZExt = true;
683     } else {
684       // In case of a successful match this call will set `Pred` variable
685       match(UI, m_ICmp(Pred, m_Specific(CI), m_Zero()));
686     }
687     // Generate new code and remove the original memcmp call and the user
688     if (ICmpInst::isSigned(Pred)) {
689       Value *Cmp = Builder.CreateICmp(CmpInst::getUnsignedPredicate(Pred),
690                                       Loads.Lhs, Loads.Rhs);
691       auto *Result = NeedsZExt ? Builder.CreateZExt(Cmp, UI->getType()) : Cmp;
692       UI->replaceAllUsesWith(Result);
693       UI->eraseFromParent();
694       CI->eraseFromParent();
695       return nullptr;
696     }
697   }
698 
699   // The result of memcmp is negative, zero, or positive, so produce that by
700   // subtracting 2 extended compare bits: sub (ugt, ult).
701   // If a target prefers to use selects to get -1/0/1, they should be able
702   // to transform this later. The inverse transform (going from selects to math)
703   // may not be possible in the DAG because the selects got converted into
704   // branches before we got there.
705   Value *CmpUGT = Builder.CreateICmpUGT(Loads.Lhs, Loads.Rhs);
706   Value *CmpULT = Builder.CreateICmpULT(Loads.Lhs, Loads.Rhs);
707   Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
708   Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
709   return Builder.CreateSub(ZextUGT, ZextULT);
710 }
711 
712 // This function expands the memcmp call into an inline expansion and returns
713 // the memcmp result. Returns nullptr if the memcmp is already replaced.
714 Value *MemCmpExpansion::getMemCmpExpansion() {
715   // Create the basic block framework for a multi-block expansion.
716   if (getNumBlocks() != 1) {
717     BasicBlock *StartBlock = CI->getParent();
718     EndBlock = SplitBlock(StartBlock, CI, DTU, /*LI=*/nullptr,
719                           /*MSSAU=*/nullptr, "endblock");
720     setupEndBlockPHINodes();
721     createResultBlock();
722 
723     // If return value of memcmp is not used in a zero equality, we need to
724     // calculate which source was larger. The calculation requires the
725     // two loaded source values of each load compare block.
726     // These will be saved in the phi nodes created by setupResultBlockPHINodes.
727     if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
728 
729     // Create the number of required load compare basic blocks.
730     createLoadCmpBlocks();
731 
732     // Update the terminator added by SplitBlock to branch to the first
733     // LoadCmpBlock.
734     StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
735     if (DTU)
736       DTU->applyUpdates({{DominatorTree::Insert, StartBlock, LoadCmpBlocks[0]},
737                          {DominatorTree::Delete, StartBlock, EndBlock}});
738   }
739 
740   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
741 
742   if (IsUsedForZeroCmp)
743     return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
744                                : getMemCmpExpansionZeroCase();
745 
746   if (getNumBlocks() == 1)
747     return getMemCmpOneBlock();
748 
749   for (unsigned I = 0; I < getNumBlocks(); ++I) {
750     emitLoadCompareBlock(I);
751   }
752 
753   emitMemCmpResultBlock();
754   return PhiRes;
755 }
756 
757 // This function checks to see if an expansion of memcmp can be generated.
758 // It checks for constant compare size that is less than the max inline size.
759 // If an expansion cannot occur, returns false to leave as a library call.
760 // Otherwise, the library call is replaced with a new IR instruction sequence.
761 /// We want to transform:
762 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
763 /// To:
764 /// loadbb:
765 ///  %0 = bitcast i32* %buffer2 to i8*
766 ///  %1 = bitcast i32* %buffer1 to i8*
767 ///  %2 = bitcast i8* %1 to i64*
768 ///  %3 = bitcast i8* %0 to i64*
769 ///  %4 = load i64, i64* %2
770 ///  %5 = load i64, i64* %3
771 ///  %6 = call i64 @llvm.bswap.i64(i64 %4)
772 ///  %7 = call i64 @llvm.bswap.i64(i64 %5)
773 ///  %8 = sub i64 %6, %7
774 ///  %9 = icmp ne i64 %8, 0
775 ///  br i1 %9, label %res_block, label %loadbb1
776 /// res_block:                                        ; preds = %loadbb2,
777 /// %loadbb1, %loadbb
778 ///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
779 ///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
780 ///  %10 = icmp ult i64 %phi.src1, %phi.src2
781 ///  %11 = select i1 %10, i32 -1, i32 1
782 ///  br label %endblock
783 /// loadbb1:                                          ; preds = %loadbb
784 ///  %12 = bitcast i32* %buffer2 to i8*
785 ///  %13 = bitcast i32* %buffer1 to i8*
786 ///  %14 = bitcast i8* %13 to i32*
787 ///  %15 = bitcast i8* %12 to i32*
788 ///  %16 = getelementptr i32, i32* %14, i32 2
789 ///  %17 = getelementptr i32, i32* %15, i32 2
790 ///  %18 = load i32, i32* %16
791 ///  %19 = load i32, i32* %17
792 ///  %20 = call i32 @llvm.bswap.i32(i32 %18)
793 ///  %21 = call i32 @llvm.bswap.i32(i32 %19)
794 ///  %22 = zext i32 %20 to i64
795 ///  %23 = zext i32 %21 to i64
796 ///  %24 = sub i64 %22, %23
797 ///  %25 = icmp ne i64 %24, 0
798 ///  br i1 %25, label %res_block, label %loadbb2
799 /// loadbb2:                                          ; preds = %loadbb1
800 ///  %26 = bitcast i32* %buffer2 to i8*
801 ///  %27 = bitcast i32* %buffer1 to i8*
802 ///  %28 = bitcast i8* %27 to i16*
803 ///  %29 = bitcast i8* %26 to i16*
804 ///  %30 = getelementptr i16, i16* %28, i16 6
805 ///  %31 = getelementptr i16, i16* %29, i16 6
806 ///  %32 = load i16, i16* %30
807 ///  %33 = load i16, i16* %31
808 ///  %34 = call i16 @llvm.bswap.i16(i16 %32)
809 ///  %35 = call i16 @llvm.bswap.i16(i16 %33)
810 ///  %36 = zext i16 %34 to i64
811 ///  %37 = zext i16 %35 to i64
812 ///  %38 = sub i64 %36, %37
813 ///  %39 = icmp ne i64 %38, 0
814 ///  br i1 %39, label %res_block, label %loadbb3
815 /// loadbb3:                                          ; preds = %loadbb2
816 ///  %40 = bitcast i32* %buffer2 to i8*
817 ///  %41 = bitcast i32* %buffer1 to i8*
818 ///  %42 = getelementptr i8, i8* %41, i8 14
819 ///  %43 = getelementptr i8, i8* %40, i8 14
820 ///  %44 = load i8, i8* %42
821 ///  %45 = load i8, i8* %43
822 ///  %46 = zext i8 %44 to i32
823 ///  %47 = zext i8 %45 to i32
824 ///  %48 = sub i32 %46, %47
825 ///  br label %endblock
826 /// endblock:                                         ; preds = %res_block,
827 /// %loadbb3
828 ///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
829 ///  ret i32 %phi.res
830 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
831                          const TargetLowering *TLI, const DataLayout *DL,
832                          ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI,
833                          DomTreeUpdater *DTU, const bool IsBCmp) {
834   NumMemCmpCalls++;
835 
836   // Early exit from expansion if -Oz.
837   if (CI->getFunction()->hasMinSize())
838     return false;
839 
840   // Early exit from expansion if size is not a constant.
841   ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
842   if (!SizeCast) {
843     NumMemCmpNotConstant++;
844     return false;
845   }
846   const uint64_t SizeVal = SizeCast->getZExtValue();
847 
848   if (SizeVal == 0) {
849     return false;
850   }
851   // TTI call to check if target would like to expand memcmp. Also, get the
852   // available load sizes.
853   const bool IsUsedForZeroCmp =
854       IsBCmp || isOnlyUsedInZeroEqualityComparison(CI);
855   bool OptForSize = CI->getFunction()->hasOptSize() ||
856                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
857   auto Options = TTI->enableMemCmpExpansion(OptForSize,
858                                             IsUsedForZeroCmp);
859   if (!Options) return false;
860 
861   if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences())
862     Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock;
863 
864   if (OptForSize &&
865       MaxLoadsPerMemcmpOptSize.getNumOccurrences())
866     Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize;
867 
868   if (!OptForSize && MaxLoadsPerMemcmp.getNumOccurrences())
869     Options.MaxNumLoads = MaxLoadsPerMemcmp;
870 
871   MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL, DTU);
872 
873   // Don't expand if this will require more loads than desired by the target.
874   if (Expansion.getNumLoads() == 0) {
875     NumMemCmpGreaterThanMax++;
876     return false;
877   }
878 
879   NumMemCmpInlined++;
880 
881   if (Value *Res = Expansion.getMemCmpExpansion()) {
882     // Replace call with result of expansion and erase call.
883     CI->replaceAllUsesWith(Res);
884     CI->eraseFromParent();
885   }
886 
887   return true;
888 }
889 
890 // Returns true if a change was made.
891 static bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
892                        const TargetTransformInfo *TTI, const TargetLowering *TL,
893                        const DataLayout &DL, ProfileSummaryInfo *PSI,
894                        BlockFrequencyInfo *BFI, DomTreeUpdater *DTU);
895 
896 static PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
897                                  const TargetTransformInfo *TTI,
898                                  const TargetLowering *TL,
899                                  ProfileSummaryInfo *PSI,
900                                  BlockFrequencyInfo *BFI, DominatorTree *DT);
901 
902 class ExpandMemCmpLegacyPass : public FunctionPass {
903 public:
904   static char ID;
905 
906   ExpandMemCmpLegacyPass() : FunctionPass(ID) {
907     initializeExpandMemCmpLegacyPassPass(*PassRegistry::getPassRegistry());
908   }
909 
910   bool runOnFunction(Function &F) override {
911     if (skipFunction(F)) return false;
912 
913     auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
914     if (!TPC) {
915       return false;
916     }
917     const TargetLowering* TL =
918         TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
919 
920     const TargetLibraryInfo *TLI =
921         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
922     const TargetTransformInfo *TTI =
923         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
924     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
925     auto *BFI = (PSI && PSI->hasProfileSummary()) ?
926            &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
927            nullptr;
928     DominatorTree *DT = nullptr;
929     if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
930       DT = &DTWP->getDomTree();
931     auto PA = runImpl(F, TLI, TTI, TL, PSI, BFI, DT);
932     return !PA.areAllPreserved();
933   }
934 
935 private:
936   void getAnalysisUsage(AnalysisUsage &AU) const override {
937     AU.addRequired<TargetLibraryInfoWrapperPass>();
938     AU.addRequired<TargetTransformInfoWrapperPass>();
939     AU.addRequired<ProfileSummaryInfoWrapperPass>();
940     AU.addPreserved<DominatorTreeWrapperPass>();
941     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
942     FunctionPass::getAnalysisUsage(AU);
943   }
944 };
945 
946 bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
947                 const TargetTransformInfo *TTI, const TargetLowering *TL,
948                 const DataLayout &DL, ProfileSummaryInfo *PSI,
949                 BlockFrequencyInfo *BFI, DomTreeUpdater *DTU) {
950   for (Instruction &I : BB) {
951     CallInst *CI = dyn_cast<CallInst>(&I);
952     if (!CI) {
953       continue;
954     }
955     LibFunc Func;
956     if (TLI->getLibFunc(*CI, Func) &&
957         (Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
958         expandMemCmp(CI, TTI, TL, &DL, PSI, BFI, DTU, Func == LibFunc_bcmp)) {
959       return true;
960     }
961   }
962   return false;
963 }
964 
965 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
966                           const TargetTransformInfo *TTI,
967                           const TargetLowering *TL, ProfileSummaryInfo *PSI,
968                           BlockFrequencyInfo *BFI, DominatorTree *DT) {
969   std::optional<DomTreeUpdater> DTU;
970   if (DT)
971     DTU.emplace(DT, DomTreeUpdater::UpdateStrategy::Lazy);
972 
973   const DataLayout& DL = F.getDataLayout();
974   bool MadeChanges = false;
975   for (auto BBIt = F.begin(); BBIt != F.end();) {
976     if (runOnBlock(*BBIt, TLI, TTI, TL, DL, PSI, BFI, DTU ? &*DTU : nullptr)) {
977       MadeChanges = true;
978       // If changes were made, restart the function from the beginning, since
979       // the structure of the function was changed.
980       BBIt = F.begin();
981     } else {
982       ++BBIt;
983     }
984   }
985   if (MadeChanges)
986     for (BasicBlock &BB : F)
987       SimplifyInstructionsInBlock(&BB);
988   if (!MadeChanges)
989     return PreservedAnalyses::all();
990   PreservedAnalyses PA;
991   PA.preserve<DominatorTreeAnalysis>();
992   return PA;
993 }
994 
995 } // namespace
996 
997 PreservedAnalyses ExpandMemCmpPass::run(Function &F,
998                                         FunctionAnalysisManager &FAM) {
999   const auto *TL = TM->getSubtargetImpl(F)->getTargetLowering();
1000   const auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1001   const auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
1002   auto *PSI = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F)
1003                   .getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1004   BlockFrequencyInfo *BFI = (PSI && PSI->hasProfileSummary())
1005                                 ? &FAM.getResult<BlockFrequencyAnalysis>(F)
1006                                 : nullptr;
1007   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
1008 
1009   return runImpl(F, &TLI, &TTI, TL, PSI, BFI, DT);
1010 }
1011 
1012 char ExpandMemCmpLegacyPass::ID = 0;
1013 INITIALIZE_PASS_BEGIN(ExpandMemCmpLegacyPass, DEBUG_TYPE,
1014                       "Expand memcmp() to load/stores", false, false)
1015 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1016 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1017 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
1018 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1019 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1020 INITIALIZE_PASS_END(ExpandMemCmpLegacyPass, DEBUG_TYPE,
1021                     "Expand memcmp() to load/stores", false, false)
1022 
1023 FunctionPass *llvm::createExpandMemCmpLegacyPass() {
1024   return new ExpandMemCmpLegacyPass();
1025 }
1026