xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/ExpandMemCmp.cpp (revision 59c8e88e72633afbc47a4ace0d2170d00d51f7dc)
1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass tries to expand memcmp() calls into optimally-sized loads and
10 // compares for the target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/DomTreeUpdater.h"
17 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
18 #include "llvm/Analysis/ProfileSummaryInfo.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Transforms/Utils/SizeOpts.h"
31 #include <optional>
32 
33 using namespace llvm;
34 
35 namespace llvm {
36 class TargetLowering;
37 }
38 
39 #define DEBUG_TYPE "expandmemcmp"
40 
41 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
42 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
43 STATISTIC(NumMemCmpGreaterThanMax,
44           "Number of memcmp calls with size greater than max size");
45 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
46 
47 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
48     "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
49     cl::desc("The number of loads per basic block for inline expansion of "
50              "memcmp that is only being compared against zero."));
51 
52 static cl::opt<unsigned> MaxLoadsPerMemcmp(
53     "max-loads-per-memcmp", cl::Hidden,
54     cl::desc("Set maximum number of loads used in expanded memcmp"));
55 
56 static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
57     "max-loads-per-memcmp-opt-size", cl::Hidden,
58     cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
59 
60 namespace {
61 
62 
63 // This class provides helper functions to expand a memcmp library call into an
64 // inline expansion.
65 class MemCmpExpansion {
66   struct ResultBlock {
67     BasicBlock *BB = nullptr;
68     PHINode *PhiSrc1 = nullptr;
69     PHINode *PhiSrc2 = nullptr;
70 
71     ResultBlock() = default;
72   };
73 
74   CallInst *const CI = nullptr;
75   ResultBlock ResBlock;
76   const uint64_t Size;
77   unsigned MaxLoadSize = 0;
78   uint64_t NumLoadsNonOneByte = 0;
79   const uint64_t NumLoadsPerBlockForZeroCmp;
80   std::vector<BasicBlock *> LoadCmpBlocks;
81   BasicBlock *EndBlock = nullptr;
82   PHINode *PhiRes = nullptr;
83   const bool IsUsedForZeroCmp;
84   const DataLayout &DL;
85   DomTreeUpdater *DTU = nullptr;
86   IRBuilder<> Builder;
87   // Represents the decomposition in blocks of the expansion. For example,
88   // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
89   // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {1, 32}.
90   struct LoadEntry {
91     LoadEntry(unsigned LoadSize, uint64_t Offset)
92         : LoadSize(LoadSize), Offset(Offset) {
93     }
94 
95     // The size of the load for this block, in bytes.
96     unsigned LoadSize;
97     // The offset of this load from the base pointer, in bytes.
98     uint64_t Offset;
99   };
100   using LoadEntryVector = SmallVector<LoadEntry, 8>;
101   LoadEntryVector LoadSequence;
102 
103   void createLoadCmpBlocks();
104   void createResultBlock();
105   void setupResultBlockPHINodes();
106   void setupEndBlockPHINodes();
107   Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
108   void emitLoadCompareBlock(unsigned BlockIndex);
109   void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
110                                          unsigned &LoadIndex);
111   void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
112   void emitMemCmpResultBlock();
113   Value *getMemCmpExpansionZeroCase();
114   Value *getMemCmpEqZeroOneBlock();
115   Value *getMemCmpOneBlock();
116   struct LoadPair {
117     Value *Lhs = nullptr;
118     Value *Rhs = nullptr;
119   };
120   LoadPair getLoadPair(Type *LoadSizeType, bool NeedsBSwap, Type *CmpSizeType,
121                        unsigned OffsetBytes);
122 
123   static LoadEntryVector
124   computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
125                             unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
126   static LoadEntryVector
127   computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
128                                  unsigned MaxNumLoads,
129                                  unsigned &NumLoadsNonOneByte);
130 
131 public:
132   MemCmpExpansion(CallInst *CI, uint64_t Size,
133                   const TargetTransformInfo::MemCmpExpansionOptions &Options,
134                   const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
135                   DomTreeUpdater *DTU);
136 
137   unsigned getNumBlocks();
138   uint64_t getNumLoads() const { return LoadSequence.size(); }
139 
140   Value *getMemCmpExpansion();
141 };
142 
143 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
144     uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
145     const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
146   NumLoadsNonOneByte = 0;
147   LoadEntryVector LoadSequence;
148   uint64_t Offset = 0;
149   while (Size && !LoadSizes.empty()) {
150     const unsigned LoadSize = LoadSizes.front();
151     const uint64_t NumLoadsForThisSize = Size / LoadSize;
152     if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
153       // Do not expand if the total number of loads is larger than what the
154       // target allows. Note that it's important that we exit before completing
155       // the expansion to avoid using a ton of memory to store the expansion for
156       // large sizes.
157       return {};
158     }
159     if (NumLoadsForThisSize > 0) {
160       for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
161         LoadSequence.push_back({LoadSize, Offset});
162         Offset += LoadSize;
163       }
164       if (LoadSize > 1)
165         ++NumLoadsNonOneByte;
166       Size = Size % LoadSize;
167     }
168     LoadSizes = LoadSizes.drop_front();
169   }
170   return LoadSequence;
171 }
172 
173 MemCmpExpansion::LoadEntryVector
174 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
175                                                 const unsigned MaxLoadSize,
176                                                 const unsigned MaxNumLoads,
177                                                 unsigned &NumLoadsNonOneByte) {
178   // These are already handled by the greedy approach.
179   if (Size < 2 || MaxLoadSize < 2)
180     return {};
181 
182   // We try to do as many non-overlapping loads as possible starting from the
183   // beginning.
184   const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
185   assert(NumNonOverlappingLoads && "there must be at least one load");
186   // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
187   // an overlapping load.
188   Size = Size - NumNonOverlappingLoads * MaxLoadSize;
189   // Bail if we do not need an overloapping store, this is already handled by
190   // the greedy approach.
191   if (Size == 0)
192     return {};
193   // Bail if the number of loads (non-overlapping + potential overlapping one)
194   // is larger than the max allowed.
195   if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
196     return {};
197 
198   // Add non-overlapping loads.
199   LoadEntryVector LoadSequence;
200   uint64_t Offset = 0;
201   for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
202     LoadSequence.push_back({MaxLoadSize, Offset});
203     Offset += MaxLoadSize;
204   }
205 
206   // Add the last overlapping load.
207   assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
208   LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
209   NumLoadsNonOneByte = 1;
210   return LoadSequence;
211 }
212 
213 // Initialize the basic block structure required for expansion of memcmp call
214 // with given maximum load size and memcmp size parameter.
215 // This structure includes:
216 // 1. A list of load compare blocks - LoadCmpBlocks.
217 // 2. An EndBlock, split from original instruction point, which is the block to
218 // return from.
219 // 3. ResultBlock, block to branch to for early exit when a
220 // LoadCmpBlock finds a difference.
221 MemCmpExpansion::MemCmpExpansion(
222     CallInst *const CI, uint64_t Size,
223     const TargetTransformInfo::MemCmpExpansionOptions &Options,
224     const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
225     DomTreeUpdater *DTU)
226     : CI(CI), Size(Size), NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock),
227       IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), DTU(DTU),
228       Builder(CI) {
229   assert(Size > 0 && "zero blocks");
230   // Scale the max size down if the target can load more bytes than we need.
231   llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
232   while (!LoadSizes.empty() && LoadSizes.front() > Size) {
233     LoadSizes = LoadSizes.drop_front();
234   }
235   assert(!LoadSizes.empty() && "cannot load Size bytes");
236   MaxLoadSize = LoadSizes.front();
237   // Compute the decomposition.
238   unsigned GreedyNumLoadsNonOneByte = 0;
239   LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads,
240                                            GreedyNumLoadsNonOneByte);
241   NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
242   assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
243   // If we allow overlapping loads and the load sequence is not already optimal,
244   // use overlapping loads.
245   if (Options.AllowOverlappingLoads &&
246       (LoadSequence.empty() || LoadSequence.size() > 2)) {
247     unsigned OverlappingNumLoadsNonOneByte = 0;
248     auto OverlappingLoads = computeOverlappingLoadSequence(
249         Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte);
250     if (!OverlappingLoads.empty() &&
251         (LoadSequence.empty() ||
252          OverlappingLoads.size() < LoadSequence.size())) {
253       LoadSequence = OverlappingLoads;
254       NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
255     }
256   }
257   assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
258 }
259 
260 unsigned MemCmpExpansion::getNumBlocks() {
261   if (IsUsedForZeroCmp)
262     return getNumLoads() / NumLoadsPerBlockForZeroCmp +
263            (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
264   return getNumLoads();
265 }
266 
267 void MemCmpExpansion::createLoadCmpBlocks() {
268   for (unsigned i = 0; i < getNumBlocks(); i++) {
269     BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
270                                         EndBlock->getParent(), EndBlock);
271     LoadCmpBlocks.push_back(BB);
272   }
273 }
274 
275 void MemCmpExpansion::createResultBlock() {
276   ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
277                                    EndBlock->getParent(), EndBlock);
278 }
279 
280 MemCmpExpansion::LoadPair MemCmpExpansion::getLoadPair(Type *LoadSizeType,
281                                                        bool NeedsBSwap,
282                                                        Type *CmpSizeType,
283                                                        unsigned OffsetBytes) {
284   // Get the memory source at offset `OffsetBytes`.
285   Value *LhsSource = CI->getArgOperand(0);
286   Value *RhsSource = CI->getArgOperand(1);
287   Align LhsAlign = LhsSource->getPointerAlignment(DL);
288   Align RhsAlign = RhsSource->getPointerAlignment(DL);
289   if (OffsetBytes > 0) {
290     auto *ByteType = Type::getInt8Ty(CI->getContext());
291     LhsSource = Builder.CreateConstGEP1_64(ByteType, LhsSource, OffsetBytes);
292     RhsSource = Builder.CreateConstGEP1_64(ByteType, RhsSource, OffsetBytes);
293     LhsAlign = commonAlignment(LhsAlign, OffsetBytes);
294     RhsAlign = commonAlignment(RhsAlign, OffsetBytes);
295   }
296 
297   // Create a constant or a load from the source.
298   Value *Lhs = nullptr;
299   if (auto *C = dyn_cast<Constant>(LhsSource))
300     Lhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
301   if (!Lhs)
302     Lhs = Builder.CreateAlignedLoad(LoadSizeType, LhsSource, LhsAlign);
303 
304   Value *Rhs = nullptr;
305   if (auto *C = dyn_cast<Constant>(RhsSource))
306     Rhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
307   if (!Rhs)
308     Rhs = Builder.CreateAlignedLoad(LoadSizeType, RhsSource, RhsAlign);
309 
310   // Swap bytes if required.
311   if (NeedsBSwap) {
312     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
313                                                 Intrinsic::bswap, LoadSizeType);
314     Lhs = Builder.CreateCall(Bswap, Lhs);
315     Rhs = Builder.CreateCall(Bswap, Rhs);
316   }
317 
318   // Zero extend if required.
319   if (CmpSizeType != nullptr && CmpSizeType != LoadSizeType) {
320     Lhs = Builder.CreateZExt(Lhs, CmpSizeType);
321     Rhs = Builder.CreateZExt(Rhs, CmpSizeType);
322   }
323   return {Lhs, Rhs};
324 }
325 
326 // This function creates the IR instructions for loading and comparing 1 byte.
327 // It loads 1 byte from each source of the memcmp parameters with the given
328 // GEPIndex. It then subtracts the two loaded values and adds this result to the
329 // final phi node for selecting the memcmp result.
330 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
331                                                unsigned OffsetBytes) {
332   BasicBlock *BB = LoadCmpBlocks[BlockIndex];
333   Builder.SetInsertPoint(BB);
334   const LoadPair Loads =
335       getLoadPair(Type::getInt8Ty(CI->getContext()), /*NeedsBSwap=*/false,
336                   Type::getInt32Ty(CI->getContext()), OffsetBytes);
337   Value *Diff = Builder.CreateSub(Loads.Lhs, Loads.Rhs);
338 
339   PhiRes->addIncoming(Diff, BB);
340 
341   if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
342     // Early exit branch if difference found to EndBlock. Otherwise, continue to
343     // next LoadCmpBlock,
344     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
345                                     ConstantInt::get(Diff->getType(), 0));
346     BranchInst *CmpBr =
347         BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
348     Builder.Insert(CmpBr);
349     if (DTU)
350       DTU->applyUpdates(
351           {{DominatorTree::Insert, BB, EndBlock},
352            {DominatorTree::Insert, BB, LoadCmpBlocks[BlockIndex + 1]}});
353   } else {
354     // The last block has an unconditional branch to EndBlock.
355     BranchInst *CmpBr = BranchInst::Create(EndBlock);
356     Builder.Insert(CmpBr);
357     if (DTU)
358       DTU->applyUpdates({{DominatorTree::Insert, BB, EndBlock}});
359   }
360 }
361 
362 /// Generate an equality comparison for one or more pairs of loaded values.
363 /// This is used in the case where the memcmp() call is compared equal or not
364 /// equal to zero.
365 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
366                                             unsigned &LoadIndex) {
367   assert(LoadIndex < getNumLoads() &&
368          "getCompareLoadPairs() called with no remaining loads");
369   std::vector<Value *> XorList, OrList;
370   Value *Diff = nullptr;
371 
372   const unsigned NumLoads =
373       std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
374 
375   // For a single-block expansion, start inserting before the memcmp call.
376   if (LoadCmpBlocks.empty())
377     Builder.SetInsertPoint(CI);
378   else
379     Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
380 
381   Value *Cmp = nullptr;
382   // If we have multiple loads per block, we need to generate a composite
383   // comparison using xor+or. The type for the combinations is the largest load
384   // type.
385   IntegerType *const MaxLoadType =
386       NumLoads == 1 ? nullptr
387                     : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
388   for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
389     const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
390     const LoadPair Loads = getLoadPair(
391         IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8),
392         /*NeedsBSwap=*/false, MaxLoadType, CurLoadEntry.Offset);
393 
394     if (NumLoads != 1) {
395       // If we have multiple loads per block, we need to generate a composite
396       // comparison using xor+or.
397       Diff = Builder.CreateXor(Loads.Lhs, Loads.Rhs);
398       Diff = Builder.CreateZExt(Diff, MaxLoadType);
399       XorList.push_back(Diff);
400     } else {
401       // If there's only one load per block, we just compare the loaded values.
402       Cmp = Builder.CreateICmpNE(Loads.Lhs, Loads.Rhs);
403     }
404   }
405 
406   auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
407     std::vector<Value *> OutList;
408     for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
409       Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
410       OutList.push_back(Or);
411     }
412     if (InList.size() % 2 != 0)
413       OutList.push_back(InList.back());
414     return OutList;
415   };
416 
417   if (!Cmp) {
418     // Pairwise OR the XOR results.
419     OrList = pairWiseOr(XorList);
420 
421     // Pairwise OR the OR results until one result left.
422     while (OrList.size() != 1) {
423       OrList = pairWiseOr(OrList);
424     }
425 
426     assert(Diff && "Failed to find comparison diff");
427     Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
428   }
429 
430   return Cmp;
431 }
432 
433 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
434                                                         unsigned &LoadIndex) {
435   Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
436 
437   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
438                            ? EndBlock
439                            : LoadCmpBlocks[BlockIndex + 1];
440   // Early exit branch if difference found to ResultBlock. Otherwise,
441   // continue to next LoadCmpBlock or EndBlock.
442   BasicBlock *BB = Builder.GetInsertBlock();
443   BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
444   Builder.Insert(CmpBr);
445   if (DTU)
446     DTU->applyUpdates({{DominatorTree::Insert, BB, ResBlock.BB},
447                        {DominatorTree::Insert, BB, NextBB}});
448 
449   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
450   // since early exit to ResultBlock was not taken (no difference was found in
451   // any of the bytes).
452   if (BlockIndex == LoadCmpBlocks.size() - 1) {
453     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
454     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
455   }
456 }
457 
458 // This function creates the IR intructions for loading and comparing using the
459 // given LoadSize. It loads the number of bytes specified by LoadSize from each
460 // source of the memcmp parameters. It then does a subtract to see if there was
461 // a difference in the loaded values. If a difference is found, it branches
462 // with an early exit to the ResultBlock for calculating which source was
463 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
464 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
465 // a special case through emitLoadCompareByteBlock. The special handling can
466 // simply subtract the loaded values and add it to the result phi node.
467 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
468   // There is one load per block in this case, BlockIndex == LoadIndex.
469   const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
470 
471   if (CurLoadEntry.LoadSize == 1) {
472     MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
473     return;
474   }
475 
476   Type *LoadSizeType =
477       IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
478   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
479   assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
480 
481   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
482 
483   const LoadPair Loads =
484       getLoadPair(LoadSizeType, /*NeedsBSwap=*/DL.isLittleEndian(), MaxLoadType,
485                   CurLoadEntry.Offset);
486 
487   // Add the loaded values to the phi nodes for calculating memcmp result only
488   // if result is not used in a zero equality.
489   if (!IsUsedForZeroCmp) {
490     ResBlock.PhiSrc1->addIncoming(Loads.Lhs, LoadCmpBlocks[BlockIndex]);
491     ResBlock.PhiSrc2->addIncoming(Loads.Rhs, LoadCmpBlocks[BlockIndex]);
492   }
493 
494   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Loads.Lhs, Loads.Rhs);
495   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
496                            ? EndBlock
497                            : LoadCmpBlocks[BlockIndex + 1];
498   // Early exit branch if difference found to ResultBlock. Otherwise, continue
499   // to next LoadCmpBlock or EndBlock.
500   BasicBlock *BB = Builder.GetInsertBlock();
501   BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
502   Builder.Insert(CmpBr);
503   if (DTU)
504     DTU->applyUpdates({{DominatorTree::Insert, BB, NextBB},
505                        {DominatorTree::Insert, BB, ResBlock.BB}});
506 
507   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
508   // since early exit to ResultBlock was not taken (no difference was found in
509   // any of the bytes).
510   if (BlockIndex == LoadCmpBlocks.size() - 1) {
511     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
512     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
513   }
514 }
515 
516 // This function populates the ResultBlock with a sequence to calculate the
517 // memcmp result. It compares the two loaded source values and returns -1 if
518 // src1 < src2 and 1 if src1 > src2.
519 void MemCmpExpansion::emitMemCmpResultBlock() {
520   // Special case: if memcmp result is used in a zero equality, result does not
521   // need to be calculated and can simply return 1.
522   if (IsUsedForZeroCmp) {
523     BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
524     Builder.SetInsertPoint(ResBlock.BB, InsertPt);
525     Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
526     PhiRes->addIncoming(Res, ResBlock.BB);
527     BranchInst *NewBr = BranchInst::Create(EndBlock);
528     Builder.Insert(NewBr);
529     if (DTU)
530       DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
531     return;
532   }
533   BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
534   Builder.SetInsertPoint(ResBlock.BB, InsertPt);
535 
536   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
537                                   ResBlock.PhiSrc2);
538 
539   Value *Res =
540       Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
541                            ConstantInt::get(Builder.getInt32Ty(), 1));
542 
543   PhiRes->addIncoming(Res, ResBlock.BB);
544   BranchInst *NewBr = BranchInst::Create(EndBlock);
545   Builder.Insert(NewBr);
546   if (DTU)
547     DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
548 }
549 
550 void MemCmpExpansion::setupResultBlockPHINodes() {
551   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
552   Builder.SetInsertPoint(ResBlock.BB);
553   // Note: this assumes one load per block.
554   ResBlock.PhiSrc1 =
555       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
556   ResBlock.PhiSrc2 =
557       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
558 }
559 
560 void MemCmpExpansion::setupEndBlockPHINodes() {
561   Builder.SetInsertPoint(&EndBlock->front());
562   PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
563 }
564 
565 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
566   unsigned LoadIndex = 0;
567   // This loop populates each of the LoadCmpBlocks with the IR sequence to
568   // handle multiple loads per block.
569   for (unsigned I = 0; I < getNumBlocks(); ++I) {
570     emitLoadCompareBlockMultipleLoads(I, LoadIndex);
571   }
572 
573   emitMemCmpResultBlock();
574   return PhiRes;
575 }
576 
577 /// A memcmp expansion that compares equality with 0 and only has one block of
578 /// load and compare can bypass the compare, branch, and phi IR that is required
579 /// in the general case.
580 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
581   unsigned LoadIndex = 0;
582   Value *Cmp = getCompareLoadPairs(0, LoadIndex);
583   assert(LoadIndex == getNumLoads() && "some entries were not consumed");
584   return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
585 }
586 
587 /// A memcmp expansion that only has one block of load and compare can bypass
588 /// the compare, branch, and phi IR that is required in the general case.
589 Value *MemCmpExpansion::getMemCmpOneBlock() {
590   Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
591   bool NeedsBSwap = DL.isLittleEndian() && Size != 1;
592 
593   // The i8 and i16 cases don't need compares. We zext the loaded values and
594   // subtract them to get the suitable negative, zero, or positive i32 result.
595   if (Size < 4) {
596     const LoadPair Loads =
597         getLoadPair(LoadSizeType, NeedsBSwap, Builder.getInt32Ty(),
598                     /*Offset*/ 0);
599     return Builder.CreateSub(Loads.Lhs, Loads.Rhs);
600   }
601 
602   const LoadPair Loads = getLoadPair(LoadSizeType, NeedsBSwap, LoadSizeType,
603                                      /*Offset*/ 0);
604   // The result of memcmp is negative, zero, or positive, so produce that by
605   // subtracting 2 extended compare bits: sub (ugt, ult).
606   // If a target prefers to use selects to get -1/0/1, they should be able
607   // to transform this later. The inverse transform (going from selects to math)
608   // may not be possible in the DAG because the selects got converted into
609   // branches before we got there.
610   Value *CmpUGT = Builder.CreateICmpUGT(Loads.Lhs, Loads.Rhs);
611   Value *CmpULT = Builder.CreateICmpULT(Loads.Lhs, Loads.Rhs);
612   Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
613   Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
614   return Builder.CreateSub(ZextUGT, ZextULT);
615 }
616 
617 // This function expands the memcmp call into an inline expansion and returns
618 // the memcmp result.
619 Value *MemCmpExpansion::getMemCmpExpansion() {
620   // Create the basic block framework for a multi-block expansion.
621   if (getNumBlocks() != 1) {
622     BasicBlock *StartBlock = CI->getParent();
623     EndBlock = SplitBlock(StartBlock, CI, DTU, /*LI=*/nullptr,
624                           /*MSSAU=*/nullptr, "endblock");
625     setupEndBlockPHINodes();
626     createResultBlock();
627 
628     // If return value of memcmp is not used in a zero equality, we need to
629     // calculate which source was larger. The calculation requires the
630     // two loaded source values of each load compare block.
631     // These will be saved in the phi nodes created by setupResultBlockPHINodes.
632     if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
633 
634     // Create the number of required load compare basic blocks.
635     createLoadCmpBlocks();
636 
637     // Update the terminator added by SplitBlock to branch to the first
638     // LoadCmpBlock.
639     StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
640     if (DTU)
641       DTU->applyUpdates({{DominatorTree::Insert, StartBlock, LoadCmpBlocks[0]},
642                          {DominatorTree::Delete, StartBlock, EndBlock}});
643   }
644 
645   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
646 
647   if (IsUsedForZeroCmp)
648     return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
649                                : getMemCmpExpansionZeroCase();
650 
651   if (getNumBlocks() == 1)
652     return getMemCmpOneBlock();
653 
654   for (unsigned I = 0; I < getNumBlocks(); ++I) {
655     emitLoadCompareBlock(I);
656   }
657 
658   emitMemCmpResultBlock();
659   return PhiRes;
660 }
661 
662 // This function checks to see if an expansion of memcmp can be generated.
663 // It checks for constant compare size that is less than the max inline size.
664 // If an expansion cannot occur, returns false to leave as a library call.
665 // Otherwise, the library call is replaced with a new IR instruction sequence.
666 /// We want to transform:
667 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
668 /// To:
669 /// loadbb:
670 ///  %0 = bitcast i32* %buffer2 to i8*
671 ///  %1 = bitcast i32* %buffer1 to i8*
672 ///  %2 = bitcast i8* %1 to i64*
673 ///  %3 = bitcast i8* %0 to i64*
674 ///  %4 = load i64, i64* %2
675 ///  %5 = load i64, i64* %3
676 ///  %6 = call i64 @llvm.bswap.i64(i64 %4)
677 ///  %7 = call i64 @llvm.bswap.i64(i64 %5)
678 ///  %8 = sub i64 %6, %7
679 ///  %9 = icmp ne i64 %8, 0
680 ///  br i1 %9, label %res_block, label %loadbb1
681 /// res_block:                                        ; preds = %loadbb2,
682 /// %loadbb1, %loadbb
683 ///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
684 ///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
685 ///  %10 = icmp ult i64 %phi.src1, %phi.src2
686 ///  %11 = select i1 %10, i32 -1, i32 1
687 ///  br label %endblock
688 /// loadbb1:                                          ; preds = %loadbb
689 ///  %12 = bitcast i32* %buffer2 to i8*
690 ///  %13 = bitcast i32* %buffer1 to i8*
691 ///  %14 = bitcast i8* %13 to i32*
692 ///  %15 = bitcast i8* %12 to i32*
693 ///  %16 = getelementptr i32, i32* %14, i32 2
694 ///  %17 = getelementptr i32, i32* %15, i32 2
695 ///  %18 = load i32, i32* %16
696 ///  %19 = load i32, i32* %17
697 ///  %20 = call i32 @llvm.bswap.i32(i32 %18)
698 ///  %21 = call i32 @llvm.bswap.i32(i32 %19)
699 ///  %22 = zext i32 %20 to i64
700 ///  %23 = zext i32 %21 to i64
701 ///  %24 = sub i64 %22, %23
702 ///  %25 = icmp ne i64 %24, 0
703 ///  br i1 %25, label %res_block, label %loadbb2
704 /// loadbb2:                                          ; preds = %loadbb1
705 ///  %26 = bitcast i32* %buffer2 to i8*
706 ///  %27 = bitcast i32* %buffer1 to i8*
707 ///  %28 = bitcast i8* %27 to i16*
708 ///  %29 = bitcast i8* %26 to i16*
709 ///  %30 = getelementptr i16, i16* %28, i16 6
710 ///  %31 = getelementptr i16, i16* %29, i16 6
711 ///  %32 = load i16, i16* %30
712 ///  %33 = load i16, i16* %31
713 ///  %34 = call i16 @llvm.bswap.i16(i16 %32)
714 ///  %35 = call i16 @llvm.bswap.i16(i16 %33)
715 ///  %36 = zext i16 %34 to i64
716 ///  %37 = zext i16 %35 to i64
717 ///  %38 = sub i64 %36, %37
718 ///  %39 = icmp ne i64 %38, 0
719 ///  br i1 %39, label %res_block, label %loadbb3
720 /// loadbb3:                                          ; preds = %loadbb2
721 ///  %40 = bitcast i32* %buffer2 to i8*
722 ///  %41 = bitcast i32* %buffer1 to i8*
723 ///  %42 = getelementptr i8, i8* %41, i8 14
724 ///  %43 = getelementptr i8, i8* %40, i8 14
725 ///  %44 = load i8, i8* %42
726 ///  %45 = load i8, i8* %43
727 ///  %46 = zext i8 %44 to i32
728 ///  %47 = zext i8 %45 to i32
729 ///  %48 = sub i32 %46, %47
730 ///  br label %endblock
731 /// endblock:                                         ; preds = %res_block,
732 /// %loadbb3
733 ///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
734 ///  ret i32 %phi.res
735 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
736                          const TargetLowering *TLI, const DataLayout *DL,
737                          ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI,
738                          DomTreeUpdater *DTU, const bool IsBCmp) {
739   NumMemCmpCalls++;
740 
741   // Early exit from expansion if -Oz.
742   if (CI->getFunction()->hasMinSize())
743     return false;
744 
745   // Early exit from expansion if size is not a constant.
746   ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
747   if (!SizeCast) {
748     NumMemCmpNotConstant++;
749     return false;
750   }
751   const uint64_t SizeVal = SizeCast->getZExtValue();
752 
753   if (SizeVal == 0) {
754     return false;
755   }
756   // TTI call to check if target would like to expand memcmp. Also, get the
757   // available load sizes.
758   const bool IsUsedForZeroCmp =
759       IsBCmp || isOnlyUsedInZeroEqualityComparison(CI);
760   bool OptForSize = CI->getFunction()->hasOptSize() ||
761                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
762   auto Options = TTI->enableMemCmpExpansion(OptForSize,
763                                             IsUsedForZeroCmp);
764   if (!Options) return false;
765 
766   if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences())
767     Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock;
768 
769   if (OptForSize &&
770       MaxLoadsPerMemcmpOptSize.getNumOccurrences())
771     Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize;
772 
773   if (!OptForSize && MaxLoadsPerMemcmp.getNumOccurrences())
774     Options.MaxNumLoads = MaxLoadsPerMemcmp;
775 
776   MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL, DTU);
777 
778   // Don't expand if this will require more loads than desired by the target.
779   if (Expansion.getNumLoads() == 0) {
780     NumMemCmpGreaterThanMax++;
781     return false;
782   }
783 
784   NumMemCmpInlined++;
785 
786   Value *Res = Expansion.getMemCmpExpansion();
787 
788   // Replace call with result of expansion and erase call.
789   CI->replaceAllUsesWith(Res);
790   CI->eraseFromParent();
791 
792   return true;
793 }
794 
795 class ExpandMemCmpPass : public FunctionPass {
796 public:
797   static char ID;
798 
799   ExpandMemCmpPass() : FunctionPass(ID) {
800     initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
801   }
802 
803   bool runOnFunction(Function &F) override {
804     if (skipFunction(F)) return false;
805 
806     auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
807     if (!TPC) {
808       return false;
809     }
810     const TargetLowering* TL =
811         TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
812 
813     const TargetLibraryInfo *TLI =
814         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
815     const TargetTransformInfo *TTI =
816         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
817     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
818     auto *BFI = (PSI && PSI->hasProfileSummary()) ?
819            &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
820            nullptr;
821     DominatorTree *DT = nullptr;
822     if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
823       DT = &DTWP->getDomTree();
824     auto PA = runImpl(F, TLI, TTI, TL, PSI, BFI, DT);
825     return !PA.areAllPreserved();
826   }
827 
828 private:
829   void getAnalysisUsage(AnalysisUsage &AU) const override {
830     AU.addRequired<TargetLibraryInfoWrapperPass>();
831     AU.addRequired<TargetTransformInfoWrapperPass>();
832     AU.addRequired<ProfileSummaryInfoWrapperPass>();
833     AU.addPreserved<DominatorTreeWrapperPass>();
834     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
835     FunctionPass::getAnalysisUsage(AU);
836   }
837 
838   PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
839                             const TargetTransformInfo *TTI,
840                             const TargetLowering *TL, ProfileSummaryInfo *PSI,
841                             BlockFrequencyInfo *BFI, DominatorTree *DT);
842   // Returns true if a change was made.
843   bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
844                   const TargetTransformInfo *TTI, const TargetLowering *TL,
845                   const DataLayout &DL, ProfileSummaryInfo *PSI,
846                   BlockFrequencyInfo *BFI, DomTreeUpdater *DTU);
847 };
848 
849 bool ExpandMemCmpPass::runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
850                                   const TargetTransformInfo *TTI,
851                                   const TargetLowering *TL,
852                                   const DataLayout &DL, ProfileSummaryInfo *PSI,
853                                   BlockFrequencyInfo *BFI,
854                                   DomTreeUpdater *DTU) {
855   for (Instruction& I : BB) {
856     CallInst *CI = dyn_cast<CallInst>(&I);
857     if (!CI) {
858       continue;
859     }
860     LibFunc Func;
861     if (TLI->getLibFunc(*CI, Func) &&
862         (Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
863         expandMemCmp(CI, TTI, TL, &DL, PSI, BFI, DTU, Func == LibFunc_bcmp)) {
864       return true;
865     }
866   }
867   return false;
868 }
869 
870 PreservedAnalyses
871 ExpandMemCmpPass::runImpl(Function &F, const TargetLibraryInfo *TLI,
872                           const TargetTransformInfo *TTI,
873                           const TargetLowering *TL, ProfileSummaryInfo *PSI,
874                           BlockFrequencyInfo *BFI, DominatorTree *DT) {
875   std::optional<DomTreeUpdater> DTU;
876   if (DT)
877     DTU.emplace(DT, DomTreeUpdater::UpdateStrategy::Lazy);
878 
879   const DataLayout& DL = F.getParent()->getDataLayout();
880   bool MadeChanges = false;
881   for (auto BBIt = F.begin(); BBIt != F.end();) {
882     if (runOnBlock(*BBIt, TLI, TTI, TL, DL, PSI, BFI, DTU ? &*DTU : nullptr)) {
883       MadeChanges = true;
884       // If changes were made, restart the function from the beginning, since
885       // the structure of the function was changed.
886       BBIt = F.begin();
887     } else {
888       ++BBIt;
889     }
890   }
891   if (MadeChanges)
892     for (BasicBlock &BB : F)
893       SimplifyInstructionsInBlock(&BB);
894   if (!MadeChanges)
895     return PreservedAnalyses::all();
896   PreservedAnalyses PA;
897   PA.preserve<DominatorTreeAnalysis>();
898   return PA;
899 }
900 
901 } // namespace
902 
903 char ExpandMemCmpPass::ID = 0;
904 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
905                       "Expand memcmp() to load/stores", false, false)
906 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
907 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
908 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
909 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
910 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
911 INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
912                     "Expand memcmp() to load/stores", false, false)
913 
914 FunctionPass *llvm::createExpandMemCmpPass() {
915   return new ExpandMemCmpPass();
916 }
917