1 //===-- EarlyIfConversion.cpp - If-conversion on SSA form machine code ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Early if-conversion is for out-of-order CPUs that don't have a lot of 10 // predicable instructions. The goal is to eliminate conditional branches that 11 // may mispredict. 12 // 13 // Instructions from both sides of the branch are executed specutatively, and a 14 // cmov instruction selects the result. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/PostOrderIterator.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SparseSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 24 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/MachineTraceMetrics.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "early-ifcvt" 44 45 // Absolute maximum number of instructions allowed per speculated block. 46 // This bypasses all other heuristics, so it should be set fairly high. 47 static cl::opt<unsigned> 48 BlockInstrLimit("early-ifcvt-limit", cl::init(30), cl::Hidden, 49 cl::desc("Maximum number of instructions per speculated block.")); 50 51 // Stress testing mode - disable heuristics. 52 static cl::opt<bool> Stress("stress-early-ifcvt", cl::Hidden, 53 cl::desc("Turn all knobs to 11")); 54 55 STATISTIC(NumDiamondsSeen, "Number of diamonds"); 56 STATISTIC(NumDiamondsConv, "Number of diamonds converted"); 57 STATISTIC(NumTrianglesSeen, "Number of triangles"); 58 STATISTIC(NumTrianglesConv, "Number of triangles converted"); 59 60 //===----------------------------------------------------------------------===// 61 // SSAIfConv 62 //===----------------------------------------------------------------------===// 63 // 64 // The SSAIfConv class performs if-conversion on SSA form machine code after 65 // determining if it is possible. The class contains no heuristics; external 66 // code should be used to determine when if-conversion is a good idea. 67 // 68 // SSAIfConv can convert both triangles and diamonds: 69 // 70 // Triangle: Head Diamond: Head 71 // | \ / \_ 72 // | \ / | 73 // | [TF]BB FBB TBB 74 // | / \ / 75 // | / \ / 76 // Tail Tail 77 // 78 // Instructions in the conditional blocks TBB and/or FBB are spliced into the 79 // Head block, and phis in the Tail block are converted to select instructions. 80 // 81 namespace { 82 class SSAIfConv { 83 const TargetInstrInfo *TII; 84 const TargetRegisterInfo *TRI; 85 MachineRegisterInfo *MRI; 86 87 public: 88 /// The block containing the conditional branch. 89 MachineBasicBlock *Head; 90 91 /// The block containing phis after the if-then-else. 92 MachineBasicBlock *Tail; 93 94 /// The 'true' conditional block as determined by analyzeBranch. 95 MachineBasicBlock *TBB; 96 97 /// The 'false' conditional block as determined by analyzeBranch. 98 MachineBasicBlock *FBB; 99 100 /// isTriangle - When there is no 'else' block, either TBB or FBB will be 101 /// equal to Tail. 102 bool isTriangle() const { return TBB == Tail || FBB == Tail; } 103 104 /// Returns the Tail predecessor for the True side. 105 MachineBasicBlock *getTPred() const { return TBB == Tail ? Head : TBB; } 106 107 /// Returns the Tail predecessor for the False side. 108 MachineBasicBlock *getFPred() const { return FBB == Tail ? Head : FBB; } 109 110 /// Information about each phi in the Tail block. 111 struct PHIInfo { 112 MachineInstr *PHI; 113 unsigned TReg = 0, FReg = 0; 114 // Latencies from Cond+Branch, TReg, and FReg to DstReg. 115 int CondCycles = 0, TCycles = 0, FCycles = 0; 116 117 PHIInfo(MachineInstr *phi) : PHI(phi) {} 118 }; 119 120 SmallVector<PHIInfo, 8> PHIs; 121 122 /// The branch condition determined by analyzeBranch. 123 SmallVector<MachineOperand, 4> Cond; 124 125 private: 126 /// Instructions in Head that define values used by the conditional blocks. 127 /// The hoisted instructions must be inserted after these instructions. 128 SmallPtrSet<MachineInstr*, 8> InsertAfter; 129 130 /// Register units clobbered by the conditional blocks. 131 BitVector ClobberedRegUnits; 132 133 // Scratch pad for findInsertionPoint. 134 SparseSet<unsigned> LiveRegUnits; 135 136 /// Insertion point in Head for speculatively executed instructions form TBB 137 /// and FBB. 138 MachineBasicBlock::iterator InsertionPoint; 139 140 /// Return true if all non-terminator instructions in MBB can be safely 141 /// speculated. 142 bool canSpeculateInstrs(MachineBasicBlock *MBB); 143 144 /// Return true if all non-terminator instructions in MBB can be safely 145 /// predicated. 146 bool canPredicateInstrs(MachineBasicBlock *MBB); 147 148 /// Scan through instruction dependencies and update InsertAfter array. 149 /// Return false if any dependency is incompatible with if conversion. 150 bool InstrDependenciesAllowIfConv(MachineInstr *I); 151 152 /// Predicate all instructions of the basic block with current condition 153 /// except for terminators. Reverse the condition if ReversePredicate is set. 154 void PredicateBlock(MachineBasicBlock *MBB, bool ReversePredicate); 155 156 /// Find a valid insertion point in Head. 157 bool findInsertionPoint(); 158 159 /// Replace PHI instructions in Tail with selects. 160 void replacePHIInstrs(); 161 162 /// Insert selects and rewrite PHI operands to use them. 163 void rewritePHIOperands(); 164 165 public: 166 /// runOnMachineFunction - Initialize per-function data structures. 167 void runOnMachineFunction(MachineFunction &MF) { 168 TII = MF.getSubtarget().getInstrInfo(); 169 TRI = MF.getSubtarget().getRegisterInfo(); 170 MRI = &MF.getRegInfo(); 171 LiveRegUnits.clear(); 172 LiveRegUnits.setUniverse(TRI->getNumRegUnits()); 173 ClobberedRegUnits.clear(); 174 ClobberedRegUnits.resize(TRI->getNumRegUnits()); 175 } 176 177 /// canConvertIf - If the sub-CFG headed by MBB can be if-converted, 178 /// initialize the internal state, and return true. 179 /// If predicate is set try to predicate the block otherwise try to 180 /// speculatively execute it. 181 bool canConvertIf(MachineBasicBlock *MBB, bool Predicate = false); 182 183 /// convertIf - If-convert the last block passed to canConvertIf(), assuming 184 /// it is possible. Add any erased blocks to RemovedBlocks. 185 void convertIf(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks, 186 bool Predicate = false); 187 }; 188 } // end anonymous namespace 189 190 191 /// canSpeculateInstrs - Returns true if all the instructions in MBB can safely 192 /// be speculated. The terminators are not considered. 193 /// 194 /// If instructions use any values that are defined in the head basic block, 195 /// the defining instructions are added to InsertAfter. 196 /// 197 /// Any clobbered regunits are added to ClobberedRegUnits. 198 /// 199 bool SSAIfConv::canSpeculateInstrs(MachineBasicBlock *MBB) { 200 // Reject any live-in physregs. It's probably CPSR/EFLAGS, and very hard to 201 // get right. 202 if (!MBB->livein_empty()) { 203 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has live-ins.\n"); 204 return false; 205 } 206 207 unsigned InstrCount = 0; 208 209 // Check all instructions, except the terminators. It is assumed that 210 // terminators never have side effects or define any used register values. 211 for (MachineInstr &MI : 212 llvm::make_range(MBB->begin(), MBB->getFirstTerminator())) { 213 if (MI.isDebugInstr()) 214 continue; 215 216 if (++InstrCount > BlockInstrLimit && !Stress) { 217 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has more than " 218 << BlockInstrLimit << " instructions.\n"); 219 return false; 220 } 221 222 // There shouldn't normally be any phis in a single-predecessor block. 223 if (MI.isPHI()) { 224 LLVM_DEBUG(dbgs() << "Can't hoist: " << MI); 225 return false; 226 } 227 228 // Don't speculate loads. Note that it may be possible and desirable to 229 // speculate GOT or constant pool loads that are guaranteed not to trap, 230 // but we don't support that for now. 231 if (MI.mayLoad()) { 232 LLVM_DEBUG(dbgs() << "Won't speculate load: " << MI); 233 return false; 234 } 235 236 // We never speculate stores, so an AA pointer isn't necessary. 237 bool DontMoveAcrossStore = true; 238 if (!MI.isSafeToMove(nullptr, DontMoveAcrossStore)) { 239 LLVM_DEBUG(dbgs() << "Can't speculate: " << MI); 240 return false; 241 } 242 243 // Check for any dependencies on Head instructions. 244 if (!InstrDependenciesAllowIfConv(&MI)) 245 return false; 246 } 247 return true; 248 } 249 250 /// Check that there is no dependencies preventing if conversion. 251 /// 252 /// If instruction uses any values that are defined in the head basic block, 253 /// the defining instructions are added to InsertAfter. 254 bool SSAIfConv::InstrDependenciesAllowIfConv(MachineInstr *I) { 255 for (const MachineOperand &MO : I->operands()) { 256 if (MO.isRegMask()) { 257 LLVM_DEBUG(dbgs() << "Won't speculate regmask: " << *I); 258 return false; 259 } 260 if (!MO.isReg()) 261 continue; 262 Register Reg = MO.getReg(); 263 264 // Remember clobbered regunits. 265 if (MO.isDef() && Reg.isPhysical()) 266 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 267 ClobberedRegUnits.set(Unit); 268 269 if (!MO.readsReg() || !Reg.isVirtual()) 270 continue; 271 MachineInstr *DefMI = MRI->getVRegDef(Reg); 272 if (!DefMI || DefMI->getParent() != Head) 273 continue; 274 if (InsertAfter.insert(DefMI).second) 275 LLVM_DEBUG(dbgs() << printMBBReference(*I->getParent()) << " depends on " 276 << *DefMI); 277 if (DefMI->isTerminator()) { 278 LLVM_DEBUG(dbgs() << "Can't insert instructions below terminator.\n"); 279 return false; 280 } 281 } 282 return true; 283 } 284 285 /// canPredicateInstrs - Returns true if all the instructions in MBB can safely 286 /// be predicates. The terminators are not considered. 287 /// 288 /// If instructions use any values that are defined in the head basic block, 289 /// the defining instructions are added to InsertAfter. 290 /// 291 /// Any clobbered regunits are added to ClobberedRegUnits. 292 /// 293 bool SSAIfConv::canPredicateInstrs(MachineBasicBlock *MBB) { 294 // Reject any live-in physregs. It's probably CPSR/EFLAGS, and very hard to 295 // get right. 296 if (!MBB->livein_empty()) { 297 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has live-ins.\n"); 298 return false; 299 } 300 301 unsigned InstrCount = 0; 302 303 // Check all instructions, except the terminators. It is assumed that 304 // terminators never have side effects or define any used register values. 305 for (MachineBasicBlock::iterator I = MBB->begin(), 306 E = MBB->getFirstTerminator(); 307 I != E; ++I) { 308 if (I->isDebugInstr()) 309 continue; 310 311 if (++InstrCount > BlockInstrLimit && !Stress) { 312 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has more than " 313 << BlockInstrLimit << " instructions.\n"); 314 return false; 315 } 316 317 // There shouldn't normally be any phis in a single-predecessor block. 318 if (I->isPHI()) { 319 LLVM_DEBUG(dbgs() << "Can't predicate: " << *I); 320 return false; 321 } 322 323 // Check that instruction is predicable 324 if (!TII->isPredicable(*I)) { 325 LLVM_DEBUG(dbgs() << "Isn't predicable: " << *I); 326 return false; 327 } 328 329 // Check that instruction is not already predicated. 330 if (TII->isPredicated(*I) && !TII->canPredicatePredicatedInstr(*I)) { 331 LLVM_DEBUG(dbgs() << "Is already predicated: " << *I); 332 return false; 333 } 334 335 // Check for any dependencies on Head instructions. 336 if (!InstrDependenciesAllowIfConv(&(*I))) 337 return false; 338 } 339 return true; 340 } 341 342 // Apply predicate to all instructions in the machine block. 343 void SSAIfConv::PredicateBlock(MachineBasicBlock *MBB, bool ReversePredicate) { 344 auto Condition = Cond; 345 if (ReversePredicate) { 346 bool CanRevCond = !TII->reverseBranchCondition(Condition); 347 assert(CanRevCond && "Reversed predicate is not supported"); 348 (void)CanRevCond; 349 } 350 // Terminators don't need to be predicated as they will be removed. 351 for (MachineBasicBlock::iterator I = MBB->begin(), 352 E = MBB->getFirstTerminator(); 353 I != E; ++I) { 354 if (I->isDebugInstr()) 355 continue; 356 TII->PredicateInstruction(*I, Condition); 357 } 358 } 359 360 /// Find an insertion point in Head for the speculated instructions. The 361 /// insertion point must be: 362 /// 363 /// 1. Before any terminators. 364 /// 2. After any instructions in InsertAfter. 365 /// 3. Not have any clobbered regunits live. 366 /// 367 /// This function sets InsertionPoint and returns true when successful, it 368 /// returns false if no valid insertion point could be found. 369 /// 370 bool SSAIfConv::findInsertionPoint() { 371 // Keep track of live regunits before the current position. 372 // Only track RegUnits that are also in ClobberedRegUnits. 373 LiveRegUnits.clear(); 374 SmallVector<MCRegister, 8> Reads; 375 MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator(); 376 MachineBasicBlock::iterator I = Head->end(); 377 MachineBasicBlock::iterator B = Head->begin(); 378 while (I != B) { 379 --I; 380 // Some of the conditional code depends in I. 381 if (InsertAfter.count(&*I)) { 382 LLVM_DEBUG(dbgs() << "Can't insert code after " << *I); 383 return false; 384 } 385 386 // Update live regunits. 387 for (const MachineOperand &MO : I->operands()) { 388 // We're ignoring regmask operands. That is conservatively correct. 389 if (!MO.isReg()) 390 continue; 391 Register Reg = MO.getReg(); 392 if (!Reg.isPhysical()) 393 continue; 394 // I clobbers Reg, so it isn't live before I. 395 if (MO.isDef()) 396 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 397 LiveRegUnits.erase(Unit); 398 // Unless I reads Reg. 399 if (MO.readsReg()) 400 Reads.push_back(Reg.asMCReg()); 401 } 402 // Anything read by I is live before I. 403 while (!Reads.empty()) 404 for (MCRegUnit Unit : TRI->regunits(Reads.pop_back_val())) 405 if (ClobberedRegUnits.test(Unit)) 406 LiveRegUnits.insert(Unit); 407 408 // We can't insert before a terminator. 409 if (I != FirstTerm && I->isTerminator()) 410 continue; 411 412 // Some of the clobbered registers are live before I, not a valid insertion 413 // point. 414 if (!LiveRegUnits.empty()) { 415 LLVM_DEBUG({ 416 dbgs() << "Would clobber"; 417 for (unsigned LRU : LiveRegUnits) 418 dbgs() << ' ' << printRegUnit(LRU, TRI); 419 dbgs() << " live before " << *I; 420 }); 421 continue; 422 } 423 424 // This is a valid insertion point. 425 InsertionPoint = I; 426 LLVM_DEBUG(dbgs() << "Can insert before " << *I); 427 return true; 428 } 429 LLVM_DEBUG(dbgs() << "No legal insertion point found.\n"); 430 return false; 431 } 432 433 434 435 /// canConvertIf - analyze the sub-cfg rooted in MBB, and return true if it is 436 /// a potential candidate for if-conversion. Fill out the internal state. 437 /// 438 bool SSAIfConv::canConvertIf(MachineBasicBlock *MBB, bool Predicate) { 439 Head = MBB; 440 TBB = FBB = Tail = nullptr; 441 442 if (Head->succ_size() != 2) 443 return false; 444 MachineBasicBlock *Succ0 = Head->succ_begin()[0]; 445 MachineBasicBlock *Succ1 = Head->succ_begin()[1]; 446 447 // Canonicalize so Succ0 has MBB as its single predecessor. 448 if (Succ0->pred_size() != 1) 449 std::swap(Succ0, Succ1); 450 451 if (Succ0->pred_size() != 1 || Succ0->succ_size() != 1) 452 return false; 453 454 Tail = Succ0->succ_begin()[0]; 455 456 // This is not a triangle. 457 if (Tail != Succ1) { 458 // Check for a diamond. We won't deal with any critical edges. 459 if (Succ1->pred_size() != 1 || Succ1->succ_size() != 1 || 460 Succ1->succ_begin()[0] != Tail) 461 return false; 462 LLVM_DEBUG(dbgs() << "\nDiamond: " << printMBBReference(*Head) << " -> " 463 << printMBBReference(*Succ0) << "/" 464 << printMBBReference(*Succ1) << " -> " 465 << printMBBReference(*Tail) << '\n'); 466 467 // Live-in physregs are tricky to get right when speculating code. 468 if (!Tail->livein_empty()) { 469 LLVM_DEBUG(dbgs() << "Tail has live-ins.\n"); 470 return false; 471 } 472 } else { 473 LLVM_DEBUG(dbgs() << "\nTriangle: " << printMBBReference(*Head) << " -> " 474 << printMBBReference(*Succ0) << " -> " 475 << printMBBReference(*Tail) << '\n'); 476 } 477 478 // This is a triangle or a diamond. 479 // Skip if we cannot predicate and there are no phis skip as there must be 480 // side effects that can only be handled with predication. 481 if (!Predicate && (Tail->empty() || !Tail->front().isPHI())) { 482 LLVM_DEBUG(dbgs() << "No phis in tail.\n"); 483 return false; 484 } 485 486 // The branch we're looking to eliminate must be analyzable. 487 Cond.clear(); 488 if (TII->analyzeBranch(*Head, TBB, FBB, Cond)) { 489 LLVM_DEBUG(dbgs() << "Branch not analyzable.\n"); 490 return false; 491 } 492 493 // This is weird, probably some sort of degenerate CFG. 494 if (!TBB) { 495 LLVM_DEBUG(dbgs() << "analyzeBranch didn't find conditional branch.\n"); 496 return false; 497 } 498 499 // Make sure the analyzed branch is conditional; one of the successors 500 // could be a landing pad. (Empty landing pads can be generated on Windows.) 501 if (Cond.empty()) { 502 LLVM_DEBUG(dbgs() << "analyzeBranch found an unconditional branch.\n"); 503 return false; 504 } 505 506 // analyzeBranch doesn't set FBB on a fall-through branch. 507 // Make sure it is always set. 508 FBB = TBB == Succ0 ? Succ1 : Succ0; 509 510 // Any phis in the tail block must be convertible to selects. 511 PHIs.clear(); 512 MachineBasicBlock *TPred = getTPred(); 513 MachineBasicBlock *FPred = getFPred(); 514 for (MachineBasicBlock::iterator I = Tail->begin(), E = Tail->end(); 515 I != E && I->isPHI(); ++I) { 516 PHIs.push_back(&*I); 517 PHIInfo &PI = PHIs.back(); 518 // Find PHI operands corresponding to TPred and FPred. 519 for (unsigned i = 1; i != PI.PHI->getNumOperands(); i += 2) { 520 if (PI.PHI->getOperand(i+1).getMBB() == TPred) 521 PI.TReg = PI.PHI->getOperand(i).getReg(); 522 if (PI.PHI->getOperand(i+1).getMBB() == FPred) 523 PI.FReg = PI.PHI->getOperand(i).getReg(); 524 } 525 assert(Register::isVirtualRegister(PI.TReg) && "Bad PHI"); 526 assert(Register::isVirtualRegister(PI.FReg) && "Bad PHI"); 527 528 // Get target information. 529 if (!TII->canInsertSelect(*Head, Cond, PI.PHI->getOperand(0).getReg(), 530 PI.TReg, PI.FReg, PI.CondCycles, PI.TCycles, 531 PI.FCycles)) { 532 LLVM_DEBUG(dbgs() << "Can't convert: " << *PI.PHI); 533 return false; 534 } 535 } 536 537 // Check that the conditional instructions can be speculated. 538 InsertAfter.clear(); 539 ClobberedRegUnits.reset(); 540 if (Predicate) { 541 if (TBB != Tail && !canPredicateInstrs(TBB)) 542 return false; 543 if (FBB != Tail && !canPredicateInstrs(FBB)) 544 return false; 545 } else { 546 if (TBB != Tail && !canSpeculateInstrs(TBB)) 547 return false; 548 if (FBB != Tail && !canSpeculateInstrs(FBB)) 549 return false; 550 } 551 552 // Try to find a valid insertion point for the speculated instructions in the 553 // head basic block. 554 if (!findInsertionPoint()) 555 return false; 556 557 if (isTriangle()) 558 ++NumTrianglesSeen; 559 else 560 ++NumDiamondsSeen; 561 return true; 562 } 563 564 /// \return true iff the two registers are known to have the same value. 565 static bool hasSameValue(const MachineRegisterInfo &MRI, 566 const TargetInstrInfo *TII, Register TReg, 567 Register FReg) { 568 if (TReg == FReg) 569 return true; 570 571 if (!TReg.isVirtual() || !FReg.isVirtual()) 572 return false; 573 574 const MachineInstr *TDef = MRI.getUniqueVRegDef(TReg); 575 const MachineInstr *FDef = MRI.getUniqueVRegDef(FReg); 576 if (!TDef || !FDef) 577 return false; 578 579 // If there are side-effects, all bets are off. 580 if (TDef->hasUnmodeledSideEffects()) 581 return false; 582 583 // If the instruction could modify memory, or there may be some intervening 584 // store between the two, we can't consider them to be equal. 585 if (TDef->mayLoadOrStore() && !TDef->isDereferenceableInvariantLoad()) 586 return false; 587 588 // We also can't guarantee that they are the same if, for example, the 589 // instructions are both a copy from a physical reg, because some other 590 // instruction may have modified the value in that reg between the two 591 // defining insts. 592 if (any_of(TDef->uses(), [](const MachineOperand &MO) { 593 return MO.isReg() && MO.getReg().isPhysical(); 594 })) 595 return false; 596 597 // Check whether the two defining instructions produce the same value(s). 598 if (!TII->produceSameValue(*TDef, *FDef, &MRI)) 599 return false; 600 601 // Further, check that the two defs come from corresponding operands. 602 int TIdx = TDef->findRegisterDefOperandIdx(TReg, /*TRI=*/nullptr); 603 int FIdx = FDef->findRegisterDefOperandIdx(FReg, /*TRI=*/nullptr); 604 if (TIdx == -1 || FIdx == -1) 605 return false; 606 607 return TIdx == FIdx; 608 } 609 610 /// replacePHIInstrs - Completely replace PHI instructions with selects. 611 /// This is possible when the only Tail predecessors are the if-converted 612 /// blocks. 613 void SSAIfConv::replacePHIInstrs() { 614 assert(Tail->pred_size() == 2 && "Cannot replace PHIs"); 615 MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator(); 616 assert(FirstTerm != Head->end() && "No terminators"); 617 DebugLoc HeadDL = FirstTerm->getDebugLoc(); 618 619 // Convert all PHIs to select instructions inserted before FirstTerm. 620 for (PHIInfo &PI : PHIs) { 621 LLVM_DEBUG(dbgs() << "If-converting " << *PI.PHI); 622 Register DstReg = PI.PHI->getOperand(0).getReg(); 623 if (hasSameValue(*MRI, TII, PI.TReg, PI.FReg)) { 624 // We do not need the select instruction if both incoming values are 625 // equal, but we do need a COPY. 626 BuildMI(*Head, FirstTerm, HeadDL, TII->get(TargetOpcode::COPY), DstReg) 627 .addReg(PI.TReg); 628 } else { 629 TII->insertSelect(*Head, FirstTerm, HeadDL, DstReg, Cond, PI.TReg, 630 PI.FReg); 631 } 632 LLVM_DEBUG(dbgs() << " --> " << *std::prev(FirstTerm)); 633 PI.PHI->eraseFromParent(); 634 PI.PHI = nullptr; 635 } 636 } 637 638 /// rewritePHIOperands - When there are additional Tail predecessors, insert 639 /// select instructions in Head and rewrite PHI operands to use the selects. 640 /// Keep the PHI instructions in Tail to handle the other predecessors. 641 void SSAIfConv::rewritePHIOperands() { 642 MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator(); 643 assert(FirstTerm != Head->end() && "No terminators"); 644 DebugLoc HeadDL = FirstTerm->getDebugLoc(); 645 646 // Convert all PHIs to select instructions inserted before FirstTerm. 647 for (PHIInfo &PI : PHIs) { 648 unsigned DstReg = 0; 649 650 LLVM_DEBUG(dbgs() << "If-converting " << *PI.PHI); 651 if (hasSameValue(*MRI, TII, PI.TReg, PI.FReg)) { 652 // We do not need the select instruction if both incoming values are 653 // equal. 654 DstReg = PI.TReg; 655 } else { 656 Register PHIDst = PI.PHI->getOperand(0).getReg(); 657 DstReg = MRI->createVirtualRegister(MRI->getRegClass(PHIDst)); 658 TII->insertSelect(*Head, FirstTerm, HeadDL, 659 DstReg, Cond, PI.TReg, PI.FReg); 660 LLVM_DEBUG(dbgs() << " --> " << *std::prev(FirstTerm)); 661 } 662 663 // Rewrite PHI operands TPred -> (DstReg, Head), remove FPred. 664 for (unsigned i = PI.PHI->getNumOperands(); i != 1; i -= 2) { 665 MachineBasicBlock *MBB = PI.PHI->getOperand(i-1).getMBB(); 666 if (MBB == getTPred()) { 667 PI.PHI->getOperand(i-1).setMBB(Head); 668 PI.PHI->getOperand(i-2).setReg(DstReg); 669 } else if (MBB == getFPred()) { 670 PI.PHI->removeOperand(i-1); 671 PI.PHI->removeOperand(i-2); 672 } 673 } 674 LLVM_DEBUG(dbgs() << " --> " << *PI.PHI); 675 } 676 } 677 678 /// convertIf - Execute the if conversion after canConvertIf has determined the 679 /// feasibility. 680 /// 681 /// Any basic blocks erased will be added to RemovedBlocks. 682 /// 683 void SSAIfConv::convertIf(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks, 684 bool Predicate) { 685 assert(Head && Tail && TBB && FBB && "Call canConvertIf first."); 686 687 // Update statistics. 688 if (isTriangle()) 689 ++NumTrianglesConv; 690 else 691 ++NumDiamondsConv; 692 693 // Move all instructions into Head, except for the terminators. 694 if (TBB != Tail) { 695 if (Predicate) 696 PredicateBlock(TBB, /*ReversePredicate=*/false); 697 Head->splice(InsertionPoint, TBB, TBB->begin(), TBB->getFirstTerminator()); 698 } 699 if (FBB != Tail) { 700 if (Predicate) 701 PredicateBlock(FBB, /*ReversePredicate=*/true); 702 Head->splice(InsertionPoint, FBB, FBB->begin(), FBB->getFirstTerminator()); 703 } 704 // Are there extra Tail predecessors? 705 bool ExtraPreds = Tail->pred_size() != 2; 706 if (ExtraPreds) 707 rewritePHIOperands(); 708 else 709 replacePHIInstrs(); 710 711 // Fix up the CFG, temporarily leave Head without any successors. 712 Head->removeSuccessor(TBB); 713 Head->removeSuccessor(FBB, true); 714 if (TBB != Tail) 715 TBB->removeSuccessor(Tail, true); 716 if (FBB != Tail) 717 FBB->removeSuccessor(Tail, true); 718 719 // Fix up Head's terminators. 720 // It should become a single branch or a fallthrough. 721 DebugLoc HeadDL = Head->getFirstTerminator()->getDebugLoc(); 722 TII->removeBranch(*Head); 723 724 // Erase the now empty conditional blocks. It is likely that Head can fall 725 // through to Tail, and we can join the two blocks. 726 if (TBB != Tail) { 727 RemovedBlocks.push_back(TBB); 728 TBB->eraseFromParent(); 729 } 730 if (FBB != Tail) { 731 RemovedBlocks.push_back(FBB); 732 FBB->eraseFromParent(); 733 } 734 735 assert(Head->succ_empty() && "Additional head successors?"); 736 if (!ExtraPreds && Head->isLayoutSuccessor(Tail)) { 737 // Splice Tail onto the end of Head. 738 LLVM_DEBUG(dbgs() << "Joining tail " << printMBBReference(*Tail) 739 << " into head " << printMBBReference(*Head) << '\n'); 740 Head->splice(Head->end(), Tail, 741 Tail->begin(), Tail->end()); 742 Head->transferSuccessorsAndUpdatePHIs(Tail); 743 RemovedBlocks.push_back(Tail); 744 Tail->eraseFromParent(); 745 } else { 746 // We need a branch to Tail, let code placement work it out later. 747 LLVM_DEBUG(dbgs() << "Converting to unconditional branch.\n"); 748 SmallVector<MachineOperand, 0> EmptyCond; 749 TII->insertBranch(*Head, Tail, nullptr, EmptyCond, HeadDL); 750 Head->addSuccessor(Tail); 751 } 752 LLVM_DEBUG(dbgs() << *Head); 753 } 754 755 //===----------------------------------------------------------------------===// 756 // EarlyIfConverter Pass 757 //===----------------------------------------------------------------------===// 758 759 namespace { 760 class EarlyIfConverter : public MachineFunctionPass { 761 const TargetInstrInfo *TII = nullptr; 762 const TargetRegisterInfo *TRI = nullptr; 763 MCSchedModel SchedModel; 764 MachineRegisterInfo *MRI = nullptr; 765 MachineDominatorTree *DomTree = nullptr; 766 MachineLoopInfo *Loops = nullptr; 767 MachineTraceMetrics *Traces = nullptr; 768 MachineTraceMetrics::Ensemble *MinInstr = nullptr; 769 SSAIfConv IfConv; 770 771 public: 772 static char ID; 773 EarlyIfConverter() : MachineFunctionPass(ID) {} 774 void getAnalysisUsage(AnalysisUsage &AU) const override; 775 bool runOnMachineFunction(MachineFunction &MF) override; 776 StringRef getPassName() const override { return "Early If-Conversion"; } 777 778 private: 779 bool tryConvertIf(MachineBasicBlock*); 780 void invalidateTraces(); 781 bool shouldConvertIf(); 782 }; 783 } // end anonymous namespace 784 785 char EarlyIfConverter::ID = 0; 786 char &llvm::EarlyIfConverterID = EarlyIfConverter::ID; 787 788 INITIALIZE_PASS_BEGIN(EarlyIfConverter, DEBUG_TYPE, 789 "Early If Converter", false, false) 790 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) 791 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 792 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics) 793 INITIALIZE_PASS_END(EarlyIfConverter, DEBUG_TYPE, 794 "Early If Converter", false, false) 795 796 void EarlyIfConverter::getAnalysisUsage(AnalysisUsage &AU) const { 797 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 798 AU.addRequired<MachineDominatorTreeWrapperPass>(); 799 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 800 AU.addRequired<MachineLoopInfoWrapperPass>(); 801 AU.addPreserved<MachineLoopInfoWrapperPass>(); 802 AU.addRequired<MachineTraceMetrics>(); 803 AU.addPreserved<MachineTraceMetrics>(); 804 MachineFunctionPass::getAnalysisUsage(AU); 805 } 806 807 namespace { 808 /// Update the dominator tree after if-conversion erased some blocks. 809 void updateDomTree(MachineDominatorTree *DomTree, const SSAIfConv &IfConv, 810 ArrayRef<MachineBasicBlock *> Removed) { 811 // convertIf can remove TBB, FBB, and Tail can be merged into Head. 812 // TBB and FBB should not dominate any blocks. 813 // Tail children should be transferred to Head. 814 MachineDomTreeNode *HeadNode = DomTree->getNode(IfConv.Head); 815 for (auto *B : Removed) { 816 MachineDomTreeNode *Node = DomTree->getNode(B); 817 assert(Node != HeadNode && "Cannot erase the head node"); 818 while (Node->getNumChildren()) { 819 assert(Node->getBlock() == IfConv.Tail && "Unexpected children"); 820 DomTree->changeImmediateDominator(Node->back(), HeadNode); 821 } 822 DomTree->eraseNode(B); 823 } 824 } 825 826 /// Update LoopInfo after if-conversion. 827 void updateLoops(MachineLoopInfo *Loops, 828 ArrayRef<MachineBasicBlock *> Removed) { 829 // If-conversion doesn't change loop structure, and it doesn't mess with back 830 // edges, so updating LoopInfo is simply removing the dead blocks. 831 for (auto *B : Removed) 832 Loops->removeBlock(B); 833 } 834 } // namespace 835 836 /// Invalidate MachineTraceMetrics before if-conversion. 837 void EarlyIfConverter::invalidateTraces() { 838 Traces->verifyAnalysis(); 839 Traces->invalidate(IfConv.Head); 840 Traces->invalidate(IfConv.Tail); 841 Traces->invalidate(IfConv.TBB); 842 Traces->invalidate(IfConv.FBB); 843 Traces->verifyAnalysis(); 844 } 845 846 // Adjust cycles with downward saturation. 847 static unsigned adjCycles(unsigned Cyc, int Delta) { 848 if (Delta < 0 && Cyc + Delta > Cyc) 849 return 0; 850 return Cyc + Delta; 851 } 852 853 namespace { 854 /// Helper class to simplify emission of cycle counts into optimization remarks. 855 struct Cycles { 856 const char *Key; 857 unsigned Value; 858 }; 859 template <typename Remark> Remark &operator<<(Remark &R, Cycles C) { 860 return R << ore::NV(C.Key, C.Value) << (C.Value == 1 ? " cycle" : " cycles"); 861 } 862 } // anonymous namespace 863 864 /// Apply cost model and heuristics to the if-conversion in IfConv. 865 /// Return true if the conversion is a good idea. 866 /// 867 bool EarlyIfConverter::shouldConvertIf() { 868 // Stress testing mode disables all cost considerations. 869 if (Stress) 870 return true; 871 872 // Do not try to if-convert if the condition has a high chance of being 873 // predictable. 874 MachineLoop *CurrentLoop = Loops->getLoopFor(IfConv.Head); 875 // If the condition is in a loop, consider it predictable if the condition 876 // itself or all its operands are loop-invariant. E.g. this considers a load 877 // from a loop-invariant address predictable; we were unable to prove that it 878 // doesn't alias any of the memory-writes in the loop, but it is likely to 879 // read to same value multiple times. 880 if (CurrentLoop && any_of(IfConv.Cond, [&](MachineOperand &MO) { 881 if (!MO.isReg() || !MO.isUse()) 882 return false; 883 Register Reg = MO.getReg(); 884 if (Register::isPhysicalRegister(Reg)) 885 return false; 886 887 MachineInstr *Def = MRI->getVRegDef(Reg); 888 return CurrentLoop->isLoopInvariant(*Def) || 889 all_of(Def->operands(), [&](MachineOperand &Op) { 890 if (Op.isImm()) 891 return true; 892 if (!MO.isReg() || !MO.isUse()) 893 return false; 894 Register Reg = MO.getReg(); 895 if (Register::isPhysicalRegister(Reg)) 896 return false; 897 898 MachineInstr *Def = MRI->getVRegDef(Reg); 899 return CurrentLoop->isLoopInvariant(*Def); 900 }); 901 })) 902 return false; 903 904 if (!MinInstr) 905 MinInstr = Traces->getEnsemble(MachineTraceStrategy::TS_MinInstrCount); 906 907 MachineTraceMetrics::Trace TBBTrace = MinInstr->getTrace(IfConv.getTPred()); 908 MachineTraceMetrics::Trace FBBTrace = MinInstr->getTrace(IfConv.getFPred()); 909 LLVM_DEBUG(dbgs() << "TBB: " << TBBTrace << "FBB: " << FBBTrace); 910 unsigned MinCrit = std::min(TBBTrace.getCriticalPath(), 911 FBBTrace.getCriticalPath()); 912 913 // Set a somewhat arbitrary limit on the critical path extension we accept. 914 unsigned CritLimit = SchedModel.MispredictPenalty/2; 915 916 MachineBasicBlock &MBB = *IfConv.Head; 917 MachineOptimizationRemarkEmitter MORE(*MBB.getParent(), nullptr); 918 919 // If-conversion only makes sense when there is unexploited ILP. Compute the 920 // maximum-ILP resource length of the trace after if-conversion. Compare it 921 // to the shortest critical path. 922 SmallVector<const MachineBasicBlock*, 1> ExtraBlocks; 923 if (IfConv.TBB != IfConv.Tail) 924 ExtraBlocks.push_back(IfConv.TBB); 925 unsigned ResLength = FBBTrace.getResourceLength(ExtraBlocks); 926 LLVM_DEBUG(dbgs() << "Resource length " << ResLength 927 << ", minimal critical path " << MinCrit << '\n'); 928 if (ResLength > MinCrit + CritLimit) { 929 LLVM_DEBUG(dbgs() << "Not enough available ILP.\n"); 930 MORE.emit([&]() { 931 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "IfConversion", 932 MBB.findDebugLoc(MBB.back()), &MBB); 933 R << "did not if-convert branch: the resulting critical path (" 934 << Cycles{"ResLength", ResLength} 935 << ") would extend the shorter leg's critical path (" 936 << Cycles{"MinCrit", MinCrit} << ") by more than the threshold of " 937 << Cycles{"CritLimit", CritLimit} 938 << ", which cannot be hidden by available ILP."; 939 return R; 940 }); 941 return false; 942 } 943 944 // Assume that the depth of the first head terminator will also be the depth 945 // of the select instruction inserted, as determined by the flag dependency. 946 // TBB / FBB data dependencies may delay the select even more. 947 MachineTraceMetrics::Trace HeadTrace = MinInstr->getTrace(IfConv.Head); 948 unsigned BranchDepth = 949 HeadTrace.getInstrCycles(*IfConv.Head->getFirstTerminator()).Depth; 950 LLVM_DEBUG(dbgs() << "Branch depth: " << BranchDepth << '\n'); 951 952 // Look at all the tail phis, and compute the critical path extension caused 953 // by inserting select instructions. 954 MachineTraceMetrics::Trace TailTrace = MinInstr->getTrace(IfConv.Tail); 955 struct CriticalPathInfo { 956 unsigned Extra; // Count of extra cycles that the component adds. 957 unsigned Depth; // Absolute depth of the component in cycles. 958 }; 959 CriticalPathInfo Cond{}; 960 CriticalPathInfo TBlock{}; 961 CriticalPathInfo FBlock{}; 962 bool ShouldConvert = true; 963 for (SSAIfConv::PHIInfo &PI : IfConv.PHIs) { 964 unsigned Slack = TailTrace.getInstrSlack(*PI.PHI); 965 unsigned MaxDepth = Slack + TailTrace.getInstrCycles(*PI.PHI).Depth; 966 LLVM_DEBUG(dbgs() << "Slack " << Slack << ":\t" << *PI.PHI); 967 968 // The condition is pulled into the critical path. 969 unsigned CondDepth = adjCycles(BranchDepth, PI.CondCycles); 970 if (CondDepth > MaxDepth) { 971 unsigned Extra = CondDepth - MaxDepth; 972 LLVM_DEBUG(dbgs() << "Condition adds " << Extra << " cycles.\n"); 973 if (Extra > Cond.Extra) 974 Cond = {Extra, CondDepth}; 975 if (Extra > CritLimit) { 976 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n'); 977 ShouldConvert = false; 978 } 979 } 980 981 // The TBB value is pulled into the critical path. 982 unsigned TDepth = adjCycles(TBBTrace.getPHIDepth(*PI.PHI), PI.TCycles); 983 if (TDepth > MaxDepth) { 984 unsigned Extra = TDepth - MaxDepth; 985 LLVM_DEBUG(dbgs() << "TBB data adds " << Extra << " cycles.\n"); 986 if (Extra > TBlock.Extra) 987 TBlock = {Extra, TDepth}; 988 if (Extra > CritLimit) { 989 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n'); 990 ShouldConvert = false; 991 } 992 } 993 994 // The FBB value is pulled into the critical path. 995 unsigned FDepth = adjCycles(FBBTrace.getPHIDepth(*PI.PHI), PI.FCycles); 996 if (FDepth > MaxDepth) { 997 unsigned Extra = FDepth - MaxDepth; 998 LLVM_DEBUG(dbgs() << "FBB data adds " << Extra << " cycles.\n"); 999 if (Extra > FBlock.Extra) 1000 FBlock = {Extra, FDepth}; 1001 if (Extra > CritLimit) { 1002 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n'); 1003 ShouldConvert = false; 1004 } 1005 } 1006 } 1007 1008 // Organize by "short" and "long" legs, since the diagnostics get confusing 1009 // when referring to the "true" and "false" sides of the branch, given that 1010 // those don't always correlate with what the user wrote in source-terms. 1011 const CriticalPathInfo Short = TBlock.Extra > FBlock.Extra ? FBlock : TBlock; 1012 const CriticalPathInfo Long = TBlock.Extra > FBlock.Extra ? TBlock : FBlock; 1013 1014 if (ShouldConvert) { 1015 MORE.emit([&]() { 1016 MachineOptimizationRemark R(DEBUG_TYPE, "IfConversion", 1017 MBB.back().getDebugLoc(), &MBB); 1018 R << "performing if-conversion on branch: the condition adds " 1019 << Cycles{"CondCycles", Cond.Extra} << " to the critical path"; 1020 if (Short.Extra > 0) 1021 R << ", and the short leg adds another " 1022 << Cycles{"ShortCycles", Short.Extra}; 1023 if (Long.Extra > 0) 1024 R << ", and the long leg adds another " 1025 << Cycles{"LongCycles", Long.Extra}; 1026 R << ", each staying under the threshold of " 1027 << Cycles{"CritLimit", CritLimit} << "."; 1028 return R; 1029 }); 1030 } else { 1031 MORE.emit([&]() { 1032 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "IfConversion", 1033 MBB.back().getDebugLoc(), &MBB); 1034 R << "did not if-convert branch: the condition would add " 1035 << Cycles{"CondCycles", Cond.Extra} << " to the critical path"; 1036 if (Cond.Extra > CritLimit) 1037 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit}; 1038 if (Short.Extra > 0) { 1039 R << ", and the short leg would add another " 1040 << Cycles{"ShortCycles", Short.Extra}; 1041 if (Short.Extra > CritLimit) 1042 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit}; 1043 } 1044 if (Long.Extra > 0) { 1045 R << ", and the long leg would add another " 1046 << Cycles{"LongCycles", Long.Extra}; 1047 if (Long.Extra > CritLimit) 1048 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit}; 1049 } 1050 R << "."; 1051 return R; 1052 }); 1053 } 1054 1055 return ShouldConvert; 1056 } 1057 1058 /// Attempt repeated if-conversion on MBB, return true if successful. 1059 /// 1060 bool EarlyIfConverter::tryConvertIf(MachineBasicBlock *MBB) { 1061 bool Changed = false; 1062 while (IfConv.canConvertIf(MBB) && shouldConvertIf()) { 1063 // If-convert MBB and update analyses. 1064 invalidateTraces(); 1065 SmallVector<MachineBasicBlock*, 4> RemovedBlocks; 1066 IfConv.convertIf(RemovedBlocks); 1067 Changed = true; 1068 updateDomTree(DomTree, IfConv, RemovedBlocks); 1069 updateLoops(Loops, RemovedBlocks); 1070 } 1071 return Changed; 1072 } 1073 1074 bool EarlyIfConverter::runOnMachineFunction(MachineFunction &MF) { 1075 LLVM_DEBUG(dbgs() << "********** EARLY IF-CONVERSION **********\n" 1076 << "********** Function: " << MF.getName() << '\n'); 1077 if (skipFunction(MF.getFunction())) 1078 return false; 1079 1080 // Only run if conversion if the target wants it. 1081 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1082 if (!STI.enableEarlyIfConversion()) 1083 return false; 1084 1085 TII = STI.getInstrInfo(); 1086 TRI = STI.getRegisterInfo(); 1087 SchedModel = STI.getSchedModel(); 1088 MRI = &MF.getRegInfo(); 1089 DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 1090 Loops = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 1091 Traces = &getAnalysis<MachineTraceMetrics>(); 1092 MinInstr = nullptr; 1093 1094 bool Changed = false; 1095 IfConv.runOnMachineFunction(MF); 1096 1097 // Visit blocks in dominator tree post-order. The post-order enables nested 1098 // if-conversion in a single pass. The tryConvertIf() function may erase 1099 // blocks, but only blocks dominated by the head block. This makes it safe to 1100 // update the dominator tree while the post-order iterator is still active. 1101 for (auto *DomNode : post_order(DomTree)) 1102 if (tryConvertIf(DomNode->getBlock())) 1103 Changed = true; 1104 1105 return Changed; 1106 } 1107 1108 //===----------------------------------------------------------------------===// 1109 // EarlyIfPredicator Pass 1110 //===----------------------------------------------------------------------===// 1111 1112 namespace { 1113 class EarlyIfPredicator : public MachineFunctionPass { 1114 const TargetInstrInfo *TII = nullptr; 1115 const TargetRegisterInfo *TRI = nullptr; 1116 TargetSchedModel SchedModel; 1117 MachineRegisterInfo *MRI = nullptr; 1118 MachineDominatorTree *DomTree = nullptr; 1119 MachineBranchProbabilityInfo *MBPI = nullptr; 1120 MachineLoopInfo *Loops = nullptr; 1121 SSAIfConv IfConv; 1122 1123 public: 1124 static char ID; 1125 EarlyIfPredicator() : MachineFunctionPass(ID) {} 1126 void getAnalysisUsage(AnalysisUsage &AU) const override; 1127 bool runOnMachineFunction(MachineFunction &MF) override; 1128 StringRef getPassName() const override { return "Early If-predicator"; } 1129 1130 protected: 1131 bool tryConvertIf(MachineBasicBlock *); 1132 bool shouldConvertIf(); 1133 }; 1134 } // end anonymous namespace 1135 1136 #undef DEBUG_TYPE 1137 #define DEBUG_TYPE "early-if-predicator" 1138 1139 char EarlyIfPredicator::ID = 0; 1140 char &llvm::EarlyIfPredicatorID = EarlyIfPredicator::ID; 1141 1142 INITIALIZE_PASS_BEGIN(EarlyIfPredicator, DEBUG_TYPE, "Early If Predicator", 1143 false, false) 1144 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 1145 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) 1146 INITIALIZE_PASS_END(EarlyIfPredicator, DEBUG_TYPE, "Early If Predicator", false, 1147 false) 1148 1149 void EarlyIfPredicator::getAnalysisUsage(AnalysisUsage &AU) const { 1150 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 1151 AU.addRequired<MachineDominatorTreeWrapperPass>(); 1152 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 1153 AU.addRequired<MachineLoopInfoWrapperPass>(); 1154 AU.addPreserved<MachineLoopInfoWrapperPass>(); 1155 MachineFunctionPass::getAnalysisUsage(AU); 1156 } 1157 1158 /// Apply the target heuristic to decide if the transformation is profitable. 1159 bool EarlyIfPredicator::shouldConvertIf() { 1160 auto TrueProbability = MBPI->getEdgeProbability(IfConv.Head, IfConv.TBB); 1161 if (IfConv.isTriangle()) { 1162 MachineBasicBlock &IfBlock = 1163 (IfConv.TBB == IfConv.Tail) ? *IfConv.FBB : *IfConv.TBB; 1164 1165 unsigned ExtraPredCost = 0; 1166 unsigned Cycles = 0; 1167 for (MachineInstr &I : IfBlock) { 1168 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 1169 if (NumCycles > 1) 1170 Cycles += NumCycles - 1; 1171 ExtraPredCost += TII->getPredicationCost(I); 1172 } 1173 1174 return TII->isProfitableToIfCvt(IfBlock, Cycles, ExtraPredCost, 1175 TrueProbability); 1176 } 1177 unsigned TExtra = 0; 1178 unsigned FExtra = 0; 1179 unsigned TCycle = 0; 1180 unsigned FCycle = 0; 1181 for (MachineInstr &I : *IfConv.TBB) { 1182 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 1183 if (NumCycles > 1) 1184 TCycle += NumCycles - 1; 1185 TExtra += TII->getPredicationCost(I); 1186 } 1187 for (MachineInstr &I : *IfConv.FBB) { 1188 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 1189 if (NumCycles > 1) 1190 FCycle += NumCycles - 1; 1191 FExtra += TII->getPredicationCost(I); 1192 } 1193 return TII->isProfitableToIfCvt(*IfConv.TBB, TCycle, TExtra, *IfConv.FBB, 1194 FCycle, FExtra, TrueProbability); 1195 } 1196 1197 /// Attempt repeated if-conversion on MBB, return true if successful. 1198 /// 1199 bool EarlyIfPredicator::tryConvertIf(MachineBasicBlock *MBB) { 1200 bool Changed = false; 1201 while (IfConv.canConvertIf(MBB, /*Predicate*/ true) && shouldConvertIf()) { 1202 // If-convert MBB and update analyses. 1203 SmallVector<MachineBasicBlock *, 4> RemovedBlocks; 1204 IfConv.convertIf(RemovedBlocks, /*Predicate*/ true); 1205 Changed = true; 1206 updateDomTree(DomTree, IfConv, RemovedBlocks); 1207 updateLoops(Loops, RemovedBlocks); 1208 } 1209 return Changed; 1210 } 1211 1212 bool EarlyIfPredicator::runOnMachineFunction(MachineFunction &MF) { 1213 LLVM_DEBUG(dbgs() << "********** EARLY IF-PREDICATOR **********\n" 1214 << "********** Function: " << MF.getName() << '\n'); 1215 if (skipFunction(MF.getFunction())) 1216 return false; 1217 1218 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1219 TII = STI.getInstrInfo(); 1220 TRI = STI.getRegisterInfo(); 1221 MRI = &MF.getRegInfo(); 1222 SchedModel.init(&STI); 1223 DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 1224 Loops = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 1225 MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); 1226 1227 bool Changed = false; 1228 IfConv.runOnMachineFunction(MF); 1229 1230 // Visit blocks in dominator tree post-order. The post-order enables nested 1231 // if-conversion in a single pass. The tryConvertIf() function may erase 1232 // blocks, but only blocks dominated by the head block. This makes it safe to 1233 // update the dominator tree while the post-order iterator is still active. 1234 for (auto *DomNode : post_order(DomTree)) 1235 if (tryConvertIf(DomNode->getBlock())) 1236 Changed = true; 1237 1238 return Changed; 1239 } 1240