1 //===-- EarlyIfConversion.cpp - If-conversion on SSA form machine code ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Early if-conversion is for out-of-order CPUs that don't have a lot of 10 // predicable instructions. The goal is to eliminate conditional branches that 11 // may mispredict. 12 // 13 // Instructions from both sides of the branch are executed specutatively, and a 14 // cmov instruction selects the result. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/PostOrderIterator.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SparseSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/MachineTraceMetrics.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "early-ifcvt" 45 46 // Absolute maximum number of instructions allowed per speculated block. 47 // This bypasses all other heuristics, so it should be set fairly high. 48 static cl::opt<unsigned> 49 BlockInstrLimit("early-ifcvt-limit", cl::init(30), cl::Hidden, 50 cl::desc("Maximum number of instructions per speculated block.")); 51 52 // Stress testing mode - disable heuristics. 53 static cl::opt<bool> Stress("stress-early-ifcvt", cl::Hidden, 54 cl::desc("Turn all knobs to 11")); 55 56 STATISTIC(NumDiamondsSeen, "Number of diamonds"); 57 STATISTIC(NumDiamondsConv, "Number of diamonds converted"); 58 STATISTIC(NumTrianglesSeen, "Number of triangles"); 59 STATISTIC(NumTrianglesConv, "Number of triangles converted"); 60 61 //===----------------------------------------------------------------------===// 62 // SSAIfConv 63 //===----------------------------------------------------------------------===// 64 // 65 // The SSAIfConv class performs if-conversion on SSA form machine code after 66 // determining if it is possible. The class contains no heuristics; external 67 // code should be used to determine when if-conversion is a good idea. 68 // 69 // SSAIfConv can convert both triangles and diamonds: 70 // 71 // Triangle: Head Diamond: Head 72 // | \ / \_ 73 // | \ / | 74 // | [TF]BB FBB TBB 75 // | / \ / 76 // | / \ / 77 // Tail Tail 78 // 79 // Instructions in the conditional blocks TBB and/or FBB are spliced into the 80 // Head block, and phis in the Tail block are converted to select instructions. 81 // 82 namespace { 83 class SSAIfConv { 84 const TargetInstrInfo *TII; 85 const TargetRegisterInfo *TRI; 86 MachineRegisterInfo *MRI; 87 88 public: 89 /// The block containing the conditional branch. 90 MachineBasicBlock *Head; 91 92 /// The block containing phis after the if-then-else. 93 MachineBasicBlock *Tail; 94 95 /// The 'true' conditional block as determined by analyzeBranch. 96 MachineBasicBlock *TBB; 97 98 /// The 'false' conditional block as determined by analyzeBranch. 99 MachineBasicBlock *FBB; 100 101 /// isTriangle - When there is no 'else' block, either TBB or FBB will be 102 /// equal to Tail. 103 bool isTriangle() const { return TBB == Tail || FBB == Tail; } 104 105 /// Returns the Tail predecessor for the True side. 106 MachineBasicBlock *getTPred() const { return TBB == Tail ? Head : TBB; } 107 108 /// Returns the Tail predecessor for the False side. 109 MachineBasicBlock *getFPred() const { return FBB == Tail ? Head : FBB; } 110 111 /// Information about each phi in the Tail block. 112 struct PHIInfo { 113 MachineInstr *PHI; 114 unsigned TReg, FReg; 115 // Latencies from Cond+Branch, TReg, and FReg to DstReg. 116 int CondCycles, TCycles, FCycles; 117 118 PHIInfo(MachineInstr *phi) 119 : PHI(phi), TReg(0), FReg(0), CondCycles(0), TCycles(0), FCycles(0) {} 120 }; 121 122 SmallVector<PHIInfo, 8> PHIs; 123 124 private: 125 /// The branch condition determined by analyzeBranch. 126 SmallVector<MachineOperand, 4> Cond; 127 128 /// Instructions in Head that define values used by the conditional blocks. 129 /// The hoisted instructions must be inserted after these instructions. 130 SmallPtrSet<MachineInstr*, 8> InsertAfter; 131 132 /// Register units clobbered by the conditional blocks. 133 BitVector ClobberedRegUnits; 134 135 // Scratch pad for findInsertionPoint. 136 SparseSet<unsigned> LiveRegUnits; 137 138 /// Insertion point in Head for speculatively executed instructions form TBB 139 /// and FBB. 140 MachineBasicBlock::iterator InsertionPoint; 141 142 /// Return true if all non-terminator instructions in MBB can be safely 143 /// speculated. 144 bool canSpeculateInstrs(MachineBasicBlock *MBB); 145 146 /// Return true if all non-terminator instructions in MBB can be safely 147 /// predicated. 148 bool canPredicateInstrs(MachineBasicBlock *MBB); 149 150 /// Scan through instruction dependencies and update InsertAfter array. 151 /// Return false if any dependency is incompatible with if conversion. 152 bool InstrDependenciesAllowIfConv(MachineInstr *I); 153 154 /// Predicate all instructions of the basic block with current condition 155 /// except for terminators. Reverse the condition if ReversePredicate is set. 156 void PredicateBlock(MachineBasicBlock *MBB, bool ReversePredicate); 157 158 /// Find a valid insertion point in Head. 159 bool findInsertionPoint(); 160 161 /// Replace PHI instructions in Tail with selects. 162 void replacePHIInstrs(); 163 164 /// Insert selects and rewrite PHI operands to use them. 165 void rewritePHIOperands(); 166 167 public: 168 /// runOnMachineFunction - Initialize per-function data structures. 169 void runOnMachineFunction(MachineFunction &MF) { 170 TII = MF.getSubtarget().getInstrInfo(); 171 TRI = MF.getSubtarget().getRegisterInfo(); 172 MRI = &MF.getRegInfo(); 173 LiveRegUnits.clear(); 174 LiveRegUnits.setUniverse(TRI->getNumRegUnits()); 175 ClobberedRegUnits.clear(); 176 ClobberedRegUnits.resize(TRI->getNumRegUnits()); 177 } 178 179 /// canConvertIf - If the sub-CFG headed by MBB can be if-converted, 180 /// initialize the internal state, and return true. 181 /// If predicate is set try to predicate the block otherwise try to 182 /// speculatively execute it. 183 bool canConvertIf(MachineBasicBlock *MBB, bool Predicate = false); 184 185 /// convertIf - If-convert the last block passed to canConvertIf(), assuming 186 /// it is possible. Add any erased blocks to RemovedBlocks. 187 void convertIf(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks, 188 bool Predicate = false); 189 }; 190 } // end anonymous namespace 191 192 193 /// canSpeculateInstrs - Returns true if all the instructions in MBB can safely 194 /// be speculated. The terminators are not considered. 195 /// 196 /// If instructions use any values that are defined in the head basic block, 197 /// the defining instructions are added to InsertAfter. 198 /// 199 /// Any clobbered regunits are added to ClobberedRegUnits. 200 /// 201 bool SSAIfConv::canSpeculateInstrs(MachineBasicBlock *MBB) { 202 // Reject any live-in physregs. It's probably CPSR/EFLAGS, and very hard to 203 // get right. 204 if (!MBB->livein_empty()) { 205 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has live-ins.\n"); 206 return false; 207 } 208 209 unsigned InstrCount = 0; 210 211 // Check all instructions, except the terminators. It is assumed that 212 // terminators never have side effects or define any used register values. 213 for (MachineInstr &MI : 214 llvm::make_range(MBB->begin(), MBB->getFirstTerminator())) { 215 if (MI.isDebugInstr()) 216 continue; 217 218 if (++InstrCount > BlockInstrLimit && !Stress) { 219 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has more than " 220 << BlockInstrLimit << " instructions.\n"); 221 return false; 222 } 223 224 // There shouldn't normally be any phis in a single-predecessor block. 225 if (MI.isPHI()) { 226 LLVM_DEBUG(dbgs() << "Can't hoist: " << MI); 227 return false; 228 } 229 230 // Don't speculate loads. Note that it may be possible and desirable to 231 // speculate GOT or constant pool loads that are guaranteed not to trap, 232 // but we don't support that for now. 233 if (MI.mayLoad()) { 234 LLVM_DEBUG(dbgs() << "Won't speculate load: " << MI); 235 return false; 236 } 237 238 // We never speculate stores, so an AA pointer isn't necessary. 239 bool DontMoveAcrossStore = true; 240 if (!MI.isSafeToMove(nullptr, DontMoveAcrossStore)) { 241 LLVM_DEBUG(dbgs() << "Can't speculate: " << MI); 242 return false; 243 } 244 245 // Check for any dependencies on Head instructions. 246 if (!InstrDependenciesAllowIfConv(&MI)) 247 return false; 248 } 249 return true; 250 } 251 252 /// Check that there is no dependencies preventing if conversion. 253 /// 254 /// If instruction uses any values that are defined in the head basic block, 255 /// the defining instructions are added to InsertAfter. 256 bool SSAIfConv::InstrDependenciesAllowIfConv(MachineInstr *I) { 257 for (const MachineOperand &MO : I->operands()) { 258 if (MO.isRegMask()) { 259 LLVM_DEBUG(dbgs() << "Won't speculate regmask: " << *I); 260 return false; 261 } 262 if (!MO.isReg()) 263 continue; 264 Register Reg = MO.getReg(); 265 266 // Remember clobbered regunits. 267 if (MO.isDef() && Register::isPhysicalRegister(Reg)) 268 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 269 ++Units) 270 ClobberedRegUnits.set(*Units); 271 272 if (!MO.readsReg() || !Register::isVirtualRegister(Reg)) 273 continue; 274 MachineInstr *DefMI = MRI->getVRegDef(Reg); 275 if (!DefMI || DefMI->getParent() != Head) 276 continue; 277 if (InsertAfter.insert(DefMI).second) 278 LLVM_DEBUG(dbgs() << printMBBReference(*I->getParent()) << " depends on " 279 << *DefMI); 280 if (DefMI->isTerminator()) { 281 LLVM_DEBUG(dbgs() << "Can't insert instructions below terminator.\n"); 282 return false; 283 } 284 } 285 return true; 286 } 287 288 /// canPredicateInstrs - Returns true if all the instructions in MBB can safely 289 /// be predicates. The terminators are not considered. 290 /// 291 /// If instructions use any values that are defined in the head basic block, 292 /// the defining instructions are added to InsertAfter. 293 /// 294 /// Any clobbered regunits are added to ClobberedRegUnits. 295 /// 296 bool SSAIfConv::canPredicateInstrs(MachineBasicBlock *MBB) { 297 // Reject any live-in physregs. It's probably CPSR/EFLAGS, and very hard to 298 // get right. 299 if (!MBB->livein_empty()) { 300 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has live-ins.\n"); 301 return false; 302 } 303 304 unsigned InstrCount = 0; 305 306 // Check all instructions, except the terminators. It is assumed that 307 // terminators never have side effects or define any used register values. 308 for (MachineBasicBlock::iterator I = MBB->begin(), 309 E = MBB->getFirstTerminator(); 310 I != E; ++I) { 311 if (I->isDebugInstr()) 312 continue; 313 314 if (++InstrCount > BlockInstrLimit && !Stress) { 315 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has more than " 316 << BlockInstrLimit << " instructions.\n"); 317 return false; 318 } 319 320 // There shouldn't normally be any phis in a single-predecessor block. 321 if (I->isPHI()) { 322 LLVM_DEBUG(dbgs() << "Can't predicate: " << *I); 323 return false; 324 } 325 326 // Check that instruction is predicable and that it is not already 327 // predicated. 328 if (!TII->isPredicable(*I) || TII->isPredicated(*I)) { 329 return false; 330 } 331 332 // Check for any dependencies on Head instructions. 333 if (!InstrDependenciesAllowIfConv(&(*I))) 334 return false; 335 } 336 return true; 337 } 338 339 // Apply predicate to all instructions in the machine block. 340 void SSAIfConv::PredicateBlock(MachineBasicBlock *MBB, bool ReversePredicate) { 341 auto Condition = Cond; 342 if (ReversePredicate) 343 TII->reverseBranchCondition(Condition); 344 // Terminators don't need to be predicated as they will be removed. 345 for (MachineBasicBlock::iterator I = MBB->begin(), 346 E = MBB->getFirstTerminator(); 347 I != E; ++I) { 348 if (I->isDebugInstr()) 349 continue; 350 TII->PredicateInstruction(*I, Condition); 351 } 352 } 353 354 /// Find an insertion point in Head for the speculated instructions. The 355 /// insertion point must be: 356 /// 357 /// 1. Before any terminators. 358 /// 2. After any instructions in InsertAfter. 359 /// 3. Not have any clobbered regunits live. 360 /// 361 /// This function sets InsertionPoint and returns true when successful, it 362 /// returns false if no valid insertion point could be found. 363 /// 364 bool SSAIfConv::findInsertionPoint() { 365 // Keep track of live regunits before the current position. 366 // Only track RegUnits that are also in ClobberedRegUnits. 367 LiveRegUnits.clear(); 368 SmallVector<MCRegister, 8> Reads; 369 MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator(); 370 MachineBasicBlock::iterator I = Head->end(); 371 MachineBasicBlock::iterator B = Head->begin(); 372 while (I != B) { 373 --I; 374 // Some of the conditional code depends in I. 375 if (InsertAfter.count(&*I)) { 376 LLVM_DEBUG(dbgs() << "Can't insert code after " << *I); 377 return false; 378 } 379 380 // Update live regunits. 381 for (const MachineOperand &MO : I->operands()) { 382 // We're ignoring regmask operands. That is conservatively correct. 383 if (!MO.isReg()) 384 continue; 385 Register Reg = MO.getReg(); 386 if (!Register::isPhysicalRegister(Reg)) 387 continue; 388 // I clobbers Reg, so it isn't live before I. 389 if (MO.isDef()) 390 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 391 ++Units) 392 LiveRegUnits.erase(*Units); 393 // Unless I reads Reg. 394 if (MO.readsReg()) 395 Reads.push_back(Reg.asMCReg()); 396 } 397 // Anything read by I is live before I. 398 while (!Reads.empty()) 399 for (MCRegUnitIterator Units(Reads.pop_back_val(), TRI); Units.isValid(); 400 ++Units) 401 if (ClobberedRegUnits.test(*Units)) 402 LiveRegUnits.insert(*Units); 403 404 // We can't insert before a terminator. 405 if (I != FirstTerm && I->isTerminator()) 406 continue; 407 408 // Some of the clobbered registers are live before I, not a valid insertion 409 // point. 410 if (!LiveRegUnits.empty()) { 411 LLVM_DEBUG({ 412 dbgs() << "Would clobber"; 413 for (unsigned LRU : LiveRegUnits) 414 dbgs() << ' ' << printRegUnit(LRU, TRI); 415 dbgs() << " live before " << *I; 416 }); 417 continue; 418 } 419 420 // This is a valid insertion point. 421 InsertionPoint = I; 422 LLVM_DEBUG(dbgs() << "Can insert before " << *I); 423 return true; 424 } 425 LLVM_DEBUG(dbgs() << "No legal insertion point found.\n"); 426 return false; 427 } 428 429 430 431 /// canConvertIf - analyze the sub-cfg rooted in MBB, and return true if it is 432 /// a potential candidate for if-conversion. Fill out the internal state. 433 /// 434 bool SSAIfConv::canConvertIf(MachineBasicBlock *MBB, bool Predicate) { 435 Head = MBB; 436 TBB = FBB = Tail = nullptr; 437 438 if (Head->succ_size() != 2) 439 return false; 440 MachineBasicBlock *Succ0 = Head->succ_begin()[0]; 441 MachineBasicBlock *Succ1 = Head->succ_begin()[1]; 442 443 // Canonicalize so Succ0 has MBB as its single predecessor. 444 if (Succ0->pred_size() != 1) 445 std::swap(Succ0, Succ1); 446 447 if (Succ0->pred_size() != 1 || Succ0->succ_size() != 1) 448 return false; 449 450 Tail = Succ0->succ_begin()[0]; 451 452 // This is not a triangle. 453 if (Tail != Succ1) { 454 // Check for a diamond. We won't deal with any critical edges. 455 if (Succ1->pred_size() != 1 || Succ1->succ_size() != 1 || 456 Succ1->succ_begin()[0] != Tail) 457 return false; 458 LLVM_DEBUG(dbgs() << "\nDiamond: " << printMBBReference(*Head) << " -> " 459 << printMBBReference(*Succ0) << "/" 460 << printMBBReference(*Succ1) << " -> " 461 << printMBBReference(*Tail) << '\n'); 462 463 // Live-in physregs are tricky to get right when speculating code. 464 if (!Tail->livein_empty()) { 465 LLVM_DEBUG(dbgs() << "Tail has live-ins.\n"); 466 return false; 467 } 468 } else { 469 LLVM_DEBUG(dbgs() << "\nTriangle: " << printMBBReference(*Head) << " -> " 470 << printMBBReference(*Succ0) << " -> " 471 << printMBBReference(*Tail) << '\n'); 472 } 473 474 // This is a triangle or a diamond. 475 // Skip if we cannot predicate and there are no phis skip as there must be 476 // side effects that can only be handled with predication. 477 if (!Predicate && (Tail->empty() || !Tail->front().isPHI())) { 478 LLVM_DEBUG(dbgs() << "No phis in tail.\n"); 479 return false; 480 } 481 482 // The branch we're looking to eliminate must be analyzable. 483 Cond.clear(); 484 if (TII->analyzeBranch(*Head, TBB, FBB, Cond)) { 485 LLVM_DEBUG(dbgs() << "Branch not analyzable.\n"); 486 return false; 487 } 488 489 // This is weird, probably some sort of degenerate CFG. 490 if (!TBB) { 491 LLVM_DEBUG(dbgs() << "analyzeBranch didn't find conditional branch.\n"); 492 return false; 493 } 494 495 // Make sure the analyzed branch is conditional; one of the successors 496 // could be a landing pad. (Empty landing pads can be generated on Windows.) 497 if (Cond.empty()) { 498 LLVM_DEBUG(dbgs() << "analyzeBranch found an unconditional branch.\n"); 499 return false; 500 } 501 502 // analyzeBranch doesn't set FBB on a fall-through branch. 503 // Make sure it is always set. 504 FBB = TBB == Succ0 ? Succ1 : Succ0; 505 506 // Any phis in the tail block must be convertible to selects. 507 PHIs.clear(); 508 MachineBasicBlock *TPred = getTPred(); 509 MachineBasicBlock *FPred = getFPred(); 510 for (MachineBasicBlock::iterator I = Tail->begin(), E = Tail->end(); 511 I != E && I->isPHI(); ++I) { 512 PHIs.push_back(&*I); 513 PHIInfo &PI = PHIs.back(); 514 // Find PHI operands corresponding to TPred and FPred. 515 for (unsigned i = 1; i != PI.PHI->getNumOperands(); i += 2) { 516 if (PI.PHI->getOperand(i+1).getMBB() == TPred) 517 PI.TReg = PI.PHI->getOperand(i).getReg(); 518 if (PI.PHI->getOperand(i+1).getMBB() == FPred) 519 PI.FReg = PI.PHI->getOperand(i).getReg(); 520 } 521 assert(Register::isVirtualRegister(PI.TReg) && "Bad PHI"); 522 assert(Register::isVirtualRegister(PI.FReg) && "Bad PHI"); 523 524 // Get target information. 525 if (!TII->canInsertSelect(*Head, Cond, PI.PHI->getOperand(0).getReg(), 526 PI.TReg, PI.FReg, PI.CondCycles, PI.TCycles, 527 PI.FCycles)) { 528 LLVM_DEBUG(dbgs() << "Can't convert: " << *PI.PHI); 529 return false; 530 } 531 } 532 533 // Check that the conditional instructions can be speculated. 534 InsertAfter.clear(); 535 ClobberedRegUnits.reset(); 536 if (Predicate) { 537 if (TBB != Tail && !canPredicateInstrs(TBB)) 538 return false; 539 if (FBB != Tail && !canPredicateInstrs(FBB)) 540 return false; 541 } else { 542 if (TBB != Tail && !canSpeculateInstrs(TBB)) 543 return false; 544 if (FBB != Tail && !canSpeculateInstrs(FBB)) 545 return false; 546 } 547 548 // Try to find a valid insertion point for the speculated instructions in the 549 // head basic block. 550 if (!findInsertionPoint()) 551 return false; 552 553 if (isTriangle()) 554 ++NumTrianglesSeen; 555 else 556 ++NumDiamondsSeen; 557 return true; 558 } 559 560 /// \return true iff the two registers are known to have the same value. 561 static bool hasSameValue(const MachineRegisterInfo &MRI, 562 const TargetInstrInfo *TII, Register TReg, 563 Register FReg) { 564 if (TReg == FReg) 565 return true; 566 567 if (!TReg.isVirtual() || !FReg.isVirtual()) 568 return false; 569 570 const MachineInstr *TDef = MRI.getUniqueVRegDef(TReg); 571 const MachineInstr *FDef = MRI.getUniqueVRegDef(FReg); 572 if (!TDef || !FDef) 573 return false; 574 575 // If there are side-effects, all bets are off. 576 if (TDef->hasUnmodeledSideEffects()) 577 return false; 578 579 // If the instruction could modify memory, or there may be some intervening 580 // store between the two, we can't consider them to be equal. 581 if (TDef->mayLoadOrStore() && !TDef->isDereferenceableInvariantLoad(nullptr)) 582 return false; 583 584 // We also can't guarantee that they are the same if, for example, the 585 // instructions are both a copy from a physical reg, because some other 586 // instruction may have modified the value in that reg between the two 587 // defining insts. 588 if (any_of(TDef->uses(), [](const MachineOperand &MO) { 589 return MO.isReg() && MO.getReg().isPhysical(); 590 })) 591 return false; 592 593 // Check whether the two defining instructions produce the same value(s). 594 if (!TII->produceSameValue(*TDef, *FDef, &MRI)) 595 return false; 596 597 // Further, check that the two defs come from corresponding operands. 598 int TIdx = TDef->findRegisterDefOperandIdx(TReg); 599 int FIdx = FDef->findRegisterDefOperandIdx(FReg); 600 if (TIdx == -1 || FIdx == -1) 601 return false; 602 603 return TIdx == FIdx; 604 } 605 606 /// replacePHIInstrs - Completely replace PHI instructions with selects. 607 /// This is possible when the only Tail predecessors are the if-converted 608 /// blocks. 609 void SSAIfConv::replacePHIInstrs() { 610 assert(Tail->pred_size() == 2 && "Cannot replace PHIs"); 611 MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator(); 612 assert(FirstTerm != Head->end() && "No terminators"); 613 DebugLoc HeadDL = FirstTerm->getDebugLoc(); 614 615 // Convert all PHIs to select instructions inserted before FirstTerm. 616 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 617 PHIInfo &PI = PHIs[i]; 618 LLVM_DEBUG(dbgs() << "If-converting " << *PI.PHI); 619 Register DstReg = PI.PHI->getOperand(0).getReg(); 620 if (hasSameValue(*MRI, TII, PI.TReg, PI.FReg)) { 621 // We do not need the select instruction if both incoming values are 622 // equal, but we do need a COPY. 623 BuildMI(*Head, FirstTerm, HeadDL, TII->get(TargetOpcode::COPY), DstReg) 624 .addReg(PI.TReg); 625 } else { 626 TII->insertSelect(*Head, FirstTerm, HeadDL, DstReg, Cond, PI.TReg, 627 PI.FReg); 628 } 629 LLVM_DEBUG(dbgs() << " --> " << *std::prev(FirstTerm)); 630 PI.PHI->eraseFromParent(); 631 PI.PHI = nullptr; 632 } 633 } 634 635 /// rewritePHIOperands - When there are additional Tail predecessors, insert 636 /// select instructions in Head and rewrite PHI operands to use the selects. 637 /// Keep the PHI instructions in Tail to handle the other predecessors. 638 void SSAIfConv::rewritePHIOperands() { 639 MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator(); 640 assert(FirstTerm != Head->end() && "No terminators"); 641 DebugLoc HeadDL = FirstTerm->getDebugLoc(); 642 643 // Convert all PHIs to select instructions inserted before FirstTerm. 644 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 645 PHIInfo &PI = PHIs[i]; 646 unsigned DstReg = 0; 647 648 LLVM_DEBUG(dbgs() << "If-converting " << *PI.PHI); 649 if (hasSameValue(*MRI, TII, PI.TReg, PI.FReg)) { 650 // We do not need the select instruction if both incoming values are 651 // equal. 652 DstReg = PI.TReg; 653 } else { 654 Register PHIDst = PI.PHI->getOperand(0).getReg(); 655 DstReg = MRI->createVirtualRegister(MRI->getRegClass(PHIDst)); 656 TII->insertSelect(*Head, FirstTerm, HeadDL, 657 DstReg, Cond, PI.TReg, PI.FReg); 658 LLVM_DEBUG(dbgs() << " --> " << *std::prev(FirstTerm)); 659 } 660 661 // Rewrite PHI operands TPred -> (DstReg, Head), remove FPred. 662 for (unsigned i = PI.PHI->getNumOperands(); i != 1; i -= 2) { 663 MachineBasicBlock *MBB = PI.PHI->getOperand(i-1).getMBB(); 664 if (MBB == getTPred()) { 665 PI.PHI->getOperand(i-1).setMBB(Head); 666 PI.PHI->getOperand(i-2).setReg(DstReg); 667 } else if (MBB == getFPred()) { 668 PI.PHI->RemoveOperand(i-1); 669 PI.PHI->RemoveOperand(i-2); 670 } 671 } 672 LLVM_DEBUG(dbgs() << " --> " << *PI.PHI); 673 } 674 } 675 676 /// convertIf - Execute the if conversion after canConvertIf has determined the 677 /// feasibility. 678 /// 679 /// Any basic blocks erased will be added to RemovedBlocks. 680 /// 681 void SSAIfConv::convertIf(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks, 682 bool Predicate) { 683 assert(Head && Tail && TBB && FBB && "Call canConvertIf first."); 684 685 // Update statistics. 686 if (isTriangle()) 687 ++NumTrianglesConv; 688 else 689 ++NumDiamondsConv; 690 691 // Move all instructions into Head, except for the terminators. 692 if (TBB != Tail) { 693 if (Predicate) 694 PredicateBlock(TBB, /*ReversePredicate=*/false); 695 Head->splice(InsertionPoint, TBB, TBB->begin(), TBB->getFirstTerminator()); 696 } 697 if (FBB != Tail) { 698 if (Predicate) 699 PredicateBlock(FBB, /*ReversePredicate=*/true); 700 Head->splice(InsertionPoint, FBB, FBB->begin(), FBB->getFirstTerminator()); 701 } 702 // Are there extra Tail predecessors? 703 bool ExtraPreds = Tail->pred_size() != 2; 704 if (ExtraPreds) 705 rewritePHIOperands(); 706 else 707 replacePHIInstrs(); 708 709 // Fix up the CFG, temporarily leave Head without any successors. 710 Head->removeSuccessor(TBB); 711 Head->removeSuccessor(FBB, true); 712 if (TBB != Tail) 713 TBB->removeSuccessor(Tail, true); 714 if (FBB != Tail) 715 FBB->removeSuccessor(Tail, true); 716 717 // Fix up Head's terminators. 718 // It should become a single branch or a fallthrough. 719 DebugLoc HeadDL = Head->getFirstTerminator()->getDebugLoc(); 720 TII->removeBranch(*Head); 721 722 // Erase the now empty conditional blocks. It is likely that Head can fall 723 // through to Tail, and we can join the two blocks. 724 if (TBB != Tail) { 725 RemovedBlocks.push_back(TBB); 726 TBB->eraseFromParent(); 727 } 728 if (FBB != Tail) { 729 RemovedBlocks.push_back(FBB); 730 FBB->eraseFromParent(); 731 } 732 733 assert(Head->succ_empty() && "Additional head successors?"); 734 if (!ExtraPreds && Head->isLayoutSuccessor(Tail)) { 735 // Splice Tail onto the end of Head. 736 LLVM_DEBUG(dbgs() << "Joining tail " << printMBBReference(*Tail) 737 << " into head " << printMBBReference(*Head) << '\n'); 738 Head->splice(Head->end(), Tail, 739 Tail->begin(), Tail->end()); 740 Head->transferSuccessorsAndUpdatePHIs(Tail); 741 RemovedBlocks.push_back(Tail); 742 Tail->eraseFromParent(); 743 } else { 744 // We need a branch to Tail, let code placement work it out later. 745 LLVM_DEBUG(dbgs() << "Converting to unconditional branch.\n"); 746 SmallVector<MachineOperand, 0> EmptyCond; 747 TII->insertBranch(*Head, Tail, nullptr, EmptyCond, HeadDL); 748 Head->addSuccessor(Tail); 749 } 750 LLVM_DEBUG(dbgs() << *Head); 751 } 752 753 //===----------------------------------------------------------------------===// 754 // EarlyIfConverter Pass 755 //===----------------------------------------------------------------------===// 756 757 namespace { 758 class EarlyIfConverter : public MachineFunctionPass { 759 const TargetInstrInfo *TII; 760 const TargetRegisterInfo *TRI; 761 MCSchedModel SchedModel; 762 MachineRegisterInfo *MRI; 763 MachineDominatorTree *DomTree; 764 MachineLoopInfo *Loops; 765 MachineTraceMetrics *Traces; 766 MachineTraceMetrics::Ensemble *MinInstr; 767 SSAIfConv IfConv; 768 769 public: 770 static char ID; 771 EarlyIfConverter() : MachineFunctionPass(ID) {} 772 void getAnalysisUsage(AnalysisUsage &AU) const override; 773 bool runOnMachineFunction(MachineFunction &MF) override; 774 StringRef getPassName() const override { return "Early If-Conversion"; } 775 776 private: 777 bool tryConvertIf(MachineBasicBlock*); 778 void invalidateTraces(); 779 bool shouldConvertIf(); 780 }; 781 } // end anonymous namespace 782 783 char EarlyIfConverter::ID = 0; 784 char &llvm::EarlyIfConverterID = EarlyIfConverter::ID; 785 786 INITIALIZE_PASS_BEGIN(EarlyIfConverter, DEBUG_TYPE, 787 "Early If Converter", false, false) 788 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 789 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 790 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics) 791 INITIALIZE_PASS_END(EarlyIfConverter, DEBUG_TYPE, 792 "Early If Converter", false, false) 793 794 void EarlyIfConverter::getAnalysisUsage(AnalysisUsage &AU) const { 795 AU.addRequired<MachineBranchProbabilityInfo>(); 796 AU.addRequired<MachineDominatorTree>(); 797 AU.addPreserved<MachineDominatorTree>(); 798 AU.addRequired<MachineLoopInfo>(); 799 AU.addPreserved<MachineLoopInfo>(); 800 AU.addRequired<MachineTraceMetrics>(); 801 AU.addPreserved<MachineTraceMetrics>(); 802 MachineFunctionPass::getAnalysisUsage(AU); 803 } 804 805 namespace { 806 /// Update the dominator tree after if-conversion erased some blocks. 807 void updateDomTree(MachineDominatorTree *DomTree, const SSAIfConv &IfConv, 808 ArrayRef<MachineBasicBlock *> Removed) { 809 // convertIf can remove TBB, FBB, and Tail can be merged into Head. 810 // TBB and FBB should not dominate any blocks. 811 // Tail children should be transferred to Head. 812 MachineDomTreeNode *HeadNode = DomTree->getNode(IfConv.Head); 813 for (auto B : Removed) { 814 MachineDomTreeNode *Node = DomTree->getNode(B); 815 assert(Node != HeadNode && "Cannot erase the head node"); 816 while (Node->getNumChildren()) { 817 assert(Node->getBlock() == IfConv.Tail && "Unexpected children"); 818 DomTree->changeImmediateDominator(Node->back(), HeadNode); 819 } 820 DomTree->eraseNode(B); 821 } 822 } 823 824 /// Update LoopInfo after if-conversion. 825 void updateLoops(MachineLoopInfo *Loops, 826 ArrayRef<MachineBasicBlock *> Removed) { 827 if (!Loops) 828 return; 829 // If-conversion doesn't change loop structure, and it doesn't mess with back 830 // edges, so updating LoopInfo is simply removing the dead blocks. 831 for (auto B : Removed) 832 Loops->removeBlock(B); 833 } 834 } // namespace 835 836 /// Invalidate MachineTraceMetrics before if-conversion. 837 void EarlyIfConverter::invalidateTraces() { 838 Traces->verifyAnalysis(); 839 Traces->invalidate(IfConv.Head); 840 Traces->invalidate(IfConv.Tail); 841 Traces->invalidate(IfConv.TBB); 842 Traces->invalidate(IfConv.FBB); 843 Traces->verifyAnalysis(); 844 } 845 846 // Adjust cycles with downward saturation. 847 static unsigned adjCycles(unsigned Cyc, int Delta) { 848 if (Delta < 0 && Cyc + Delta > Cyc) 849 return 0; 850 return Cyc + Delta; 851 } 852 853 namespace { 854 /// Helper class to simplify emission of cycle counts into optimization remarks. 855 struct Cycles { 856 const char *Key; 857 unsigned Value; 858 }; 859 template <typename Remark> Remark &operator<<(Remark &R, Cycles C) { 860 return R << ore::NV(C.Key, C.Value) << (C.Value == 1 ? " cycle" : " cycles"); 861 } 862 } // anonymous namespace 863 864 /// Apply cost model and heuristics to the if-conversion in IfConv. 865 /// Return true if the conversion is a good idea. 866 /// 867 bool EarlyIfConverter::shouldConvertIf() { 868 // Stress testing mode disables all cost considerations. 869 if (Stress) 870 return true; 871 872 if (!MinInstr) 873 MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount); 874 875 MachineTraceMetrics::Trace TBBTrace = MinInstr->getTrace(IfConv.getTPred()); 876 MachineTraceMetrics::Trace FBBTrace = MinInstr->getTrace(IfConv.getFPred()); 877 LLVM_DEBUG(dbgs() << "TBB: " << TBBTrace << "FBB: " << FBBTrace); 878 unsigned MinCrit = std::min(TBBTrace.getCriticalPath(), 879 FBBTrace.getCriticalPath()); 880 881 // Set a somewhat arbitrary limit on the critical path extension we accept. 882 unsigned CritLimit = SchedModel.MispredictPenalty/2; 883 884 MachineBasicBlock &MBB = *IfConv.Head; 885 MachineOptimizationRemarkEmitter MORE(*MBB.getParent(), nullptr); 886 887 // If-conversion only makes sense when there is unexploited ILP. Compute the 888 // maximum-ILP resource length of the trace after if-conversion. Compare it 889 // to the shortest critical path. 890 SmallVector<const MachineBasicBlock*, 1> ExtraBlocks; 891 if (IfConv.TBB != IfConv.Tail) 892 ExtraBlocks.push_back(IfConv.TBB); 893 unsigned ResLength = FBBTrace.getResourceLength(ExtraBlocks); 894 LLVM_DEBUG(dbgs() << "Resource length " << ResLength 895 << ", minimal critical path " << MinCrit << '\n'); 896 if (ResLength > MinCrit + CritLimit) { 897 LLVM_DEBUG(dbgs() << "Not enough available ILP.\n"); 898 MORE.emit([&]() { 899 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "IfConversion", 900 MBB.findDebugLoc(MBB.back()), &MBB); 901 R << "did not if-convert branch: the resulting critical path (" 902 << Cycles{"ResLength", ResLength} 903 << ") would extend the shorter leg's critical path (" 904 << Cycles{"MinCrit", MinCrit} << ") by more than the threshold of " 905 << Cycles{"CritLimit", CritLimit} 906 << ", which cannot be hidden by available ILP."; 907 return R; 908 }); 909 return false; 910 } 911 912 // Assume that the depth of the first head terminator will also be the depth 913 // of the select instruction inserted, as determined by the flag dependency. 914 // TBB / FBB data dependencies may delay the select even more. 915 MachineTraceMetrics::Trace HeadTrace = MinInstr->getTrace(IfConv.Head); 916 unsigned BranchDepth = 917 HeadTrace.getInstrCycles(*IfConv.Head->getFirstTerminator()).Depth; 918 LLVM_DEBUG(dbgs() << "Branch depth: " << BranchDepth << '\n'); 919 920 // Look at all the tail phis, and compute the critical path extension caused 921 // by inserting select instructions. 922 MachineTraceMetrics::Trace TailTrace = MinInstr->getTrace(IfConv.Tail); 923 struct CriticalPathInfo { 924 unsigned Extra; // Count of extra cycles that the component adds. 925 unsigned Depth; // Absolute depth of the component in cycles. 926 }; 927 CriticalPathInfo Cond{}; 928 CriticalPathInfo TBlock{}; 929 CriticalPathInfo FBlock{}; 930 bool ShouldConvert = true; 931 for (unsigned i = 0, e = IfConv.PHIs.size(); i != e; ++i) { 932 SSAIfConv::PHIInfo &PI = IfConv.PHIs[i]; 933 unsigned Slack = TailTrace.getInstrSlack(*PI.PHI); 934 unsigned MaxDepth = Slack + TailTrace.getInstrCycles(*PI.PHI).Depth; 935 LLVM_DEBUG(dbgs() << "Slack " << Slack << ":\t" << *PI.PHI); 936 937 // The condition is pulled into the critical path. 938 unsigned CondDepth = adjCycles(BranchDepth, PI.CondCycles); 939 if (CondDepth > MaxDepth) { 940 unsigned Extra = CondDepth - MaxDepth; 941 LLVM_DEBUG(dbgs() << "Condition adds " << Extra << " cycles.\n"); 942 if (Extra > Cond.Extra) 943 Cond = {Extra, CondDepth}; 944 if (Extra > CritLimit) { 945 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n'); 946 ShouldConvert = false; 947 } 948 } 949 950 // The TBB value is pulled into the critical path. 951 unsigned TDepth = adjCycles(TBBTrace.getPHIDepth(*PI.PHI), PI.TCycles); 952 if (TDepth > MaxDepth) { 953 unsigned Extra = TDepth - MaxDepth; 954 LLVM_DEBUG(dbgs() << "TBB data adds " << Extra << " cycles.\n"); 955 if (Extra > TBlock.Extra) 956 TBlock = {Extra, TDepth}; 957 if (Extra > CritLimit) { 958 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n'); 959 ShouldConvert = false; 960 } 961 } 962 963 // The FBB value is pulled into the critical path. 964 unsigned FDepth = adjCycles(FBBTrace.getPHIDepth(*PI.PHI), PI.FCycles); 965 if (FDepth > MaxDepth) { 966 unsigned Extra = FDepth - MaxDepth; 967 LLVM_DEBUG(dbgs() << "FBB data adds " << Extra << " cycles.\n"); 968 if (Extra > FBlock.Extra) 969 FBlock = {Extra, FDepth}; 970 if (Extra > CritLimit) { 971 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n'); 972 ShouldConvert = false; 973 } 974 } 975 } 976 977 // Organize by "short" and "long" legs, since the diagnostics get confusing 978 // when referring to the "true" and "false" sides of the branch, given that 979 // those don't always correlate with what the user wrote in source-terms. 980 const CriticalPathInfo Short = TBlock.Extra > FBlock.Extra ? FBlock : TBlock; 981 const CriticalPathInfo Long = TBlock.Extra > FBlock.Extra ? TBlock : FBlock; 982 983 if (ShouldConvert) { 984 MORE.emit([&]() { 985 MachineOptimizationRemark R(DEBUG_TYPE, "IfConversion", 986 MBB.back().getDebugLoc(), &MBB); 987 R << "performing if-conversion on branch: the condition adds " 988 << Cycles{"CondCycles", Cond.Extra} << " to the critical path"; 989 if (Short.Extra > 0) 990 R << ", and the short leg adds another " 991 << Cycles{"ShortCycles", Short.Extra}; 992 if (Long.Extra > 0) 993 R << ", and the long leg adds another " 994 << Cycles{"LongCycles", Long.Extra}; 995 R << ", each staying under the threshold of " 996 << Cycles{"CritLimit", CritLimit} << "."; 997 return R; 998 }); 999 } else { 1000 MORE.emit([&]() { 1001 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "IfConversion", 1002 MBB.back().getDebugLoc(), &MBB); 1003 R << "did not if-convert branch: the condition would add " 1004 << Cycles{"CondCycles", Cond.Extra} << " to the critical path"; 1005 if (Cond.Extra > CritLimit) 1006 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit}; 1007 if (Short.Extra > 0) { 1008 R << ", and the short leg would add another " 1009 << Cycles{"ShortCycles", Short.Extra}; 1010 if (Short.Extra > CritLimit) 1011 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit}; 1012 } 1013 if (Long.Extra > 0) { 1014 R << ", and the long leg would add another " 1015 << Cycles{"LongCycles", Long.Extra}; 1016 if (Long.Extra > CritLimit) 1017 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit}; 1018 } 1019 R << "."; 1020 return R; 1021 }); 1022 } 1023 1024 return ShouldConvert; 1025 } 1026 1027 /// Attempt repeated if-conversion on MBB, return true if successful. 1028 /// 1029 bool EarlyIfConverter::tryConvertIf(MachineBasicBlock *MBB) { 1030 bool Changed = false; 1031 while (IfConv.canConvertIf(MBB) && shouldConvertIf()) { 1032 // If-convert MBB and update analyses. 1033 invalidateTraces(); 1034 SmallVector<MachineBasicBlock*, 4> RemovedBlocks; 1035 IfConv.convertIf(RemovedBlocks); 1036 Changed = true; 1037 updateDomTree(DomTree, IfConv, RemovedBlocks); 1038 updateLoops(Loops, RemovedBlocks); 1039 } 1040 return Changed; 1041 } 1042 1043 bool EarlyIfConverter::runOnMachineFunction(MachineFunction &MF) { 1044 LLVM_DEBUG(dbgs() << "********** EARLY IF-CONVERSION **********\n" 1045 << "********** Function: " << MF.getName() << '\n'); 1046 if (skipFunction(MF.getFunction())) 1047 return false; 1048 1049 // Only run if conversion if the target wants it. 1050 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1051 if (!STI.enableEarlyIfConversion()) 1052 return false; 1053 1054 TII = STI.getInstrInfo(); 1055 TRI = STI.getRegisterInfo(); 1056 SchedModel = STI.getSchedModel(); 1057 MRI = &MF.getRegInfo(); 1058 DomTree = &getAnalysis<MachineDominatorTree>(); 1059 Loops = getAnalysisIfAvailable<MachineLoopInfo>(); 1060 Traces = &getAnalysis<MachineTraceMetrics>(); 1061 MinInstr = nullptr; 1062 1063 bool Changed = false; 1064 IfConv.runOnMachineFunction(MF); 1065 1066 // Visit blocks in dominator tree post-order. The post-order enables nested 1067 // if-conversion in a single pass. The tryConvertIf() function may erase 1068 // blocks, but only blocks dominated by the head block. This makes it safe to 1069 // update the dominator tree while the post-order iterator is still active. 1070 for (auto DomNode : post_order(DomTree)) 1071 if (tryConvertIf(DomNode->getBlock())) 1072 Changed = true; 1073 1074 return Changed; 1075 } 1076 1077 //===----------------------------------------------------------------------===// 1078 // EarlyIfPredicator Pass 1079 //===----------------------------------------------------------------------===// 1080 1081 namespace { 1082 class EarlyIfPredicator : public MachineFunctionPass { 1083 const TargetInstrInfo *TII; 1084 const TargetRegisterInfo *TRI; 1085 TargetSchedModel SchedModel; 1086 MachineRegisterInfo *MRI; 1087 MachineDominatorTree *DomTree; 1088 MachineBranchProbabilityInfo *MBPI; 1089 MachineLoopInfo *Loops; 1090 SSAIfConv IfConv; 1091 1092 public: 1093 static char ID; 1094 EarlyIfPredicator() : MachineFunctionPass(ID) {} 1095 void getAnalysisUsage(AnalysisUsage &AU) const override; 1096 bool runOnMachineFunction(MachineFunction &MF) override; 1097 StringRef getPassName() const override { return "Early If-predicator"; } 1098 1099 protected: 1100 bool tryConvertIf(MachineBasicBlock *); 1101 bool shouldConvertIf(); 1102 }; 1103 } // end anonymous namespace 1104 1105 #undef DEBUG_TYPE 1106 #define DEBUG_TYPE "early-if-predicator" 1107 1108 char EarlyIfPredicator::ID = 0; 1109 char &llvm::EarlyIfPredicatorID = EarlyIfPredicator::ID; 1110 1111 INITIALIZE_PASS_BEGIN(EarlyIfPredicator, DEBUG_TYPE, "Early If Predicator", 1112 false, false) 1113 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 1114 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1115 INITIALIZE_PASS_END(EarlyIfPredicator, DEBUG_TYPE, "Early If Predicator", false, 1116 false) 1117 1118 void EarlyIfPredicator::getAnalysisUsage(AnalysisUsage &AU) const { 1119 AU.addRequired<MachineBranchProbabilityInfo>(); 1120 AU.addRequired<MachineDominatorTree>(); 1121 AU.addPreserved<MachineDominatorTree>(); 1122 AU.addRequired<MachineLoopInfo>(); 1123 AU.addPreserved<MachineLoopInfo>(); 1124 MachineFunctionPass::getAnalysisUsage(AU); 1125 } 1126 1127 /// Apply the target heuristic to decide if the transformation is profitable. 1128 bool EarlyIfPredicator::shouldConvertIf() { 1129 auto TrueProbability = MBPI->getEdgeProbability(IfConv.Head, IfConv.TBB); 1130 if (IfConv.isTriangle()) { 1131 MachineBasicBlock &IfBlock = 1132 (IfConv.TBB == IfConv.Tail) ? *IfConv.FBB : *IfConv.TBB; 1133 1134 unsigned ExtraPredCost = 0; 1135 unsigned Cycles = 0; 1136 for (MachineInstr &I : IfBlock) { 1137 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 1138 if (NumCycles > 1) 1139 Cycles += NumCycles - 1; 1140 ExtraPredCost += TII->getPredicationCost(I); 1141 } 1142 1143 return TII->isProfitableToIfCvt(IfBlock, Cycles, ExtraPredCost, 1144 TrueProbability); 1145 } 1146 unsigned TExtra = 0; 1147 unsigned FExtra = 0; 1148 unsigned TCycle = 0; 1149 unsigned FCycle = 0; 1150 for (MachineInstr &I : *IfConv.TBB) { 1151 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 1152 if (NumCycles > 1) 1153 TCycle += NumCycles - 1; 1154 TExtra += TII->getPredicationCost(I); 1155 } 1156 for (MachineInstr &I : *IfConv.FBB) { 1157 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 1158 if (NumCycles > 1) 1159 FCycle += NumCycles - 1; 1160 FExtra += TII->getPredicationCost(I); 1161 } 1162 return TII->isProfitableToIfCvt(*IfConv.TBB, TCycle, TExtra, *IfConv.FBB, 1163 FCycle, FExtra, TrueProbability); 1164 } 1165 1166 /// Attempt repeated if-conversion on MBB, return true if successful. 1167 /// 1168 bool EarlyIfPredicator::tryConvertIf(MachineBasicBlock *MBB) { 1169 bool Changed = false; 1170 while (IfConv.canConvertIf(MBB, /*Predicate*/ true) && shouldConvertIf()) { 1171 // If-convert MBB and update analyses. 1172 SmallVector<MachineBasicBlock *, 4> RemovedBlocks; 1173 IfConv.convertIf(RemovedBlocks, /*Predicate*/ true); 1174 Changed = true; 1175 updateDomTree(DomTree, IfConv, RemovedBlocks); 1176 updateLoops(Loops, RemovedBlocks); 1177 } 1178 return Changed; 1179 } 1180 1181 bool EarlyIfPredicator::runOnMachineFunction(MachineFunction &MF) { 1182 LLVM_DEBUG(dbgs() << "********** EARLY IF-PREDICATOR **********\n" 1183 << "********** Function: " << MF.getName() << '\n'); 1184 if (skipFunction(MF.getFunction())) 1185 return false; 1186 1187 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1188 TII = STI.getInstrInfo(); 1189 TRI = STI.getRegisterInfo(); 1190 MRI = &MF.getRegInfo(); 1191 SchedModel.init(&STI); 1192 DomTree = &getAnalysis<MachineDominatorTree>(); 1193 Loops = getAnalysisIfAvailable<MachineLoopInfo>(); 1194 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1195 1196 bool Changed = false; 1197 IfConv.runOnMachineFunction(MF); 1198 1199 // Visit blocks in dominator tree post-order. The post-order enables nested 1200 // if-conversion in a single pass. The tryConvertIf() function may erase 1201 // blocks, but only blocks dominated by the head block. This makes it safe to 1202 // update the dominator tree while the post-order iterator is still active. 1203 for (auto DomNode : post_order(DomTree)) 1204 if (tryConvertIf(DomNode->getBlock())) 1205 Changed = true; 1206 1207 return Changed; 1208 } 1209