1 //===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CriticalAntiDepBreaker class, which 10 // implements register anti-dependence breaking along a blocks 11 // critical path during post-RA scheduler. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CriticalAntiDepBreaker.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineOperand.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/RegisterClassInfo.h" 27 #include "llvm/CodeGen/ScheduleDAG.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetRegisterInfo.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <cassert> 36 #include <map> 37 #include <utility> 38 #include <vector> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "post-RA-sched" 43 44 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi, 45 const RegisterClassInfo &RCI) 46 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), 47 TII(MF.getSubtarget().getInstrInfo()), 48 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI), 49 Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0), 50 DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {} 51 52 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default; 53 54 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 55 const unsigned BBSize = BB->size(); 56 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { 57 // Clear out the register class data. 58 Classes[i] = nullptr; 59 60 // Initialize the indices to indicate that no registers are live. 61 KillIndices[i] = ~0u; 62 DefIndices[i] = BBSize; 63 } 64 65 // Clear "do not change" set. 66 KeepRegs.reset(); 67 68 bool IsReturnBlock = BB->isReturnBlock(); 69 70 // Examine the live-in regs of all successors. 71 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 72 SE = BB->succ_end(); SI != SE; ++SI) 73 for (const auto &LI : (*SI)->liveins()) { 74 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { 75 unsigned Reg = *AI; 76 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 77 KillIndices[Reg] = BBSize; 78 DefIndices[Reg] = ~0u; 79 } 80 } 81 82 // Mark live-out callee-saved registers. In a return block this is 83 // all callee-saved registers. In non-return this is any 84 // callee-saved register that is not saved in the prolog. 85 const MachineFrameInfo &MFI = MF.getFrameInfo(); 86 BitVector Pristine = MFI.getPristineRegs(MF); 87 for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I; 88 ++I) { 89 unsigned Reg = *I; 90 if (!IsReturnBlock && !Pristine.test(Reg)) 91 continue; 92 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { 93 unsigned Reg = *AI; 94 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 95 KillIndices[Reg] = BBSize; 96 DefIndices[Reg] = ~0u; 97 } 98 } 99 } 100 101 void CriticalAntiDepBreaker::FinishBlock() { 102 RegRefs.clear(); 103 KeepRegs.reset(); 104 } 105 106 void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, 107 unsigned InsertPosIndex) { 108 // Kill instructions can define registers but are really nops, and there might 109 // be a real definition earlier that needs to be paired with uses dominated by 110 // this kill. 111 112 // FIXME: It may be possible to remove the isKill() restriction once PR18663 113 // has been properly fixed. There can be value in processing kills as seen in 114 // the AggressiveAntiDepBreaker class. 115 if (MI.isDebugInstr() || MI.isKill()) 116 return; 117 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 118 119 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 120 if (KillIndices[Reg] != ~0u) { 121 // If Reg is currently live, then mark that it can't be renamed as 122 // we don't know the extent of its live-range anymore (now that it 123 // has been scheduled). 124 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 125 KillIndices[Reg] = Count; 126 } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { 127 // Any register which was defined within the previous scheduling region 128 // may have been rescheduled and its lifetime may overlap with registers 129 // in ways not reflected in our current liveness state. For each such 130 // register, adjust the liveness state to be conservatively correct. 131 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 132 133 // Move the def index to the end of the previous region, to reflect 134 // that the def could theoretically have been scheduled at the end. 135 DefIndices[Reg] = InsertPosIndex; 136 } 137 } 138 139 PrescanInstruction(MI); 140 ScanInstruction(MI, Count); 141 } 142 143 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 144 /// critical path. 145 static const SDep *CriticalPathStep(const SUnit *SU) { 146 const SDep *Next = nullptr; 147 unsigned NextDepth = 0; 148 // Find the predecessor edge with the greatest depth. 149 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 150 P != PE; ++P) { 151 const SUnit *PredSU = P->getSUnit(); 152 unsigned PredLatency = P->getLatency(); 153 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 154 // In the case of a latency tie, prefer an anti-dependency edge over 155 // other types of edges. 156 if (NextDepth < PredTotalLatency || 157 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { 158 NextDepth = PredTotalLatency; 159 Next = &*P; 160 } 161 } 162 return Next; 163 } 164 165 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) { 166 // It's not safe to change register allocation for source operands of 167 // instructions that have special allocation requirements. Also assume all 168 // registers used in a call must not be changed (ABI). 169 // FIXME: The issue with predicated instruction is more complex. We are being 170 // conservative here because the kill markers cannot be trusted after 171 // if-conversion: 172 // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14] 173 // ... 174 // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395] 175 // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12] 176 // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8) 177 // 178 // The first R6 kill is not really a kill since it's killed by a predicated 179 // instruction which may not be executed. The second R6 def may or may not 180 // re-define R6 so it's not safe to change it since the last R6 use cannot be 181 // changed. 182 bool Special = 183 MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI); 184 185 // Scan the register operands for this instruction and update 186 // Classes and RegRefs. 187 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 188 MachineOperand &MO = MI.getOperand(i); 189 if (!MO.isReg()) continue; 190 unsigned Reg = MO.getReg(); 191 if (Reg == 0) continue; 192 const TargetRegisterClass *NewRC = nullptr; 193 194 if (i < MI.getDesc().getNumOperands()) 195 NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 196 197 // For now, only allow the register to be changed if its register 198 // class is consistent across all uses. 199 if (!Classes[Reg] && NewRC) 200 Classes[Reg] = NewRC; 201 else if (!NewRC || Classes[Reg] != NewRC) 202 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 203 204 // Now check for aliases. 205 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 206 // If an alias of the reg is used during the live range, give up. 207 // Note that this allows us to skip checking if AntiDepReg 208 // overlaps with any of the aliases, among other things. 209 unsigned AliasReg = *AI; 210 if (Classes[AliasReg]) { 211 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 212 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 213 } 214 } 215 216 // If we're still willing to consider this register, note the reference. 217 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) 218 RegRefs.insert(std::make_pair(Reg, &MO)); 219 220 // If this reg is tied and live (Classes[Reg] is set to -1), we can't change 221 // it or any of its sub or super regs. We need to use KeepRegs to mark the 222 // reg because not all uses of the same reg within an instruction are 223 // necessarily tagged as tied. 224 // Example: an x86 "xor %eax, %eax" will have one source operand tied to the 225 // def register but not the second (see PR20020 for details). 226 // FIXME: can this check be relaxed to account for undef uses 227 // of a register? In the above 'xor' example, the uses of %eax are undef, so 228 // earlier instructions could still replace %eax even though the 'xor' 229 // itself can't be changed. 230 if (MI.isRegTiedToUseOperand(i) && 231 Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) { 232 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 233 SubRegs.isValid(); ++SubRegs) { 234 KeepRegs.set(*SubRegs); 235 } 236 for (MCSuperRegIterator SuperRegs(Reg, TRI); 237 SuperRegs.isValid(); ++SuperRegs) { 238 KeepRegs.set(*SuperRegs); 239 } 240 } 241 242 if (MO.isUse() && Special) { 243 if (!KeepRegs.test(Reg)) { 244 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 245 SubRegs.isValid(); ++SubRegs) 246 KeepRegs.set(*SubRegs); 247 } 248 } 249 } 250 } 251 252 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) { 253 // Update liveness. 254 // Proceeding upwards, registers that are defed but not used in this 255 // instruction are now dead. 256 assert(!MI.isKill() && "Attempting to scan a kill instruction"); 257 258 if (!TII->isPredicated(MI)) { 259 // Predicated defs are modeled as read + write, i.e. similar to two 260 // address updates. 261 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 262 MachineOperand &MO = MI.getOperand(i); 263 264 if (MO.isRegMask()) 265 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) 266 if (MO.clobbersPhysReg(i)) { 267 DefIndices[i] = Count; 268 KillIndices[i] = ~0u; 269 KeepRegs.reset(i); 270 Classes[i] = nullptr; 271 RegRefs.erase(i); 272 } 273 274 if (!MO.isReg()) continue; 275 unsigned Reg = MO.getReg(); 276 if (Reg == 0) continue; 277 if (!MO.isDef()) continue; 278 279 // Ignore two-addr defs. 280 if (MI.isRegTiedToUseOperand(i)) 281 continue; 282 283 // If we've already marked this reg as unchangeable, don't remove 284 // it or any of its subregs from KeepRegs. 285 bool Keep = KeepRegs.test(Reg); 286 287 // For the reg itself and all subregs: update the def to current; 288 // reset the kill state, any restrictions, and references. 289 for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) { 290 unsigned SubregReg = *SRI; 291 DefIndices[SubregReg] = Count; 292 KillIndices[SubregReg] = ~0u; 293 Classes[SubregReg] = nullptr; 294 RegRefs.erase(SubregReg); 295 if (!Keep) 296 KeepRegs.reset(SubregReg); 297 } 298 // Conservatively mark super-registers as unusable. 299 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) 300 Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1); 301 } 302 } 303 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 304 MachineOperand &MO = MI.getOperand(i); 305 if (!MO.isReg()) continue; 306 unsigned Reg = MO.getReg(); 307 if (Reg == 0) continue; 308 if (!MO.isUse()) continue; 309 310 const TargetRegisterClass *NewRC = nullptr; 311 if (i < MI.getDesc().getNumOperands()) 312 NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 313 314 // For now, only allow the register to be changed if its register 315 // class is consistent across all uses. 316 if (!Classes[Reg] && NewRC) 317 Classes[Reg] = NewRC; 318 else if (!NewRC || Classes[Reg] != NewRC) 319 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 320 321 RegRefs.insert(std::make_pair(Reg, &MO)); 322 323 // It wasn't previously live but now it is, this is a kill. 324 // Repeat for all aliases. 325 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 326 unsigned AliasReg = *AI; 327 if (KillIndices[AliasReg] == ~0u) { 328 KillIndices[AliasReg] = Count; 329 DefIndices[AliasReg] = ~0u; 330 } 331 } 332 } 333 } 334 335 // Check all machine operands that reference the antidependent register and must 336 // be replaced by NewReg. Return true if any of their parent instructions may 337 // clobber the new register. 338 // 339 // Note: AntiDepReg may be referenced by a two-address instruction such that 340 // it's use operand is tied to a def operand. We guard against the case in which 341 // the two-address instruction also defines NewReg, as may happen with 342 // pre/postincrement loads. In this case, both the use and def operands are in 343 // RegRefs because the def is inserted by PrescanInstruction and not erased 344 // during ScanInstruction. So checking for an instruction with definitions of 345 // both NewReg and AntiDepReg covers it. 346 bool 347 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, 348 RegRefIter RegRefEnd, 349 unsigned NewReg) { 350 for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { 351 MachineOperand *RefOper = I->second; 352 353 // Don't allow the instruction defining AntiDepReg to earlyclobber its 354 // operands, in case they may be assigned to NewReg. In this case antidep 355 // breaking must fail, but it's too rare to bother optimizing. 356 if (RefOper->isDef() && RefOper->isEarlyClobber()) 357 return true; 358 359 // Handle cases in which this instruction defines NewReg. 360 MachineInstr *MI = RefOper->getParent(); 361 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 362 const MachineOperand &CheckOper = MI->getOperand(i); 363 364 if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg)) 365 return true; 366 367 if (!CheckOper.isReg() || !CheckOper.isDef() || 368 CheckOper.getReg() != NewReg) 369 continue; 370 371 // Don't allow the instruction to define NewReg and AntiDepReg. 372 // When AntiDepReg is renamed it will be an illegal op. 373 if (RefOper->isDef()) 374 return true; 375 376 // Don't allow an instruction using AntiDepReg to be earlyclobbered by 377 // NewReg. 378 if (CheckOper.isEarlyClobber()) 379 return true; 380 381 // Don't allow inline asm to define NewReg at all. Who knows what it's 382 // doing with it. 383 if (MI->isInlineAsm()) 384 return true; 385 } 386 } 387 return false; 388 } 389 390 unsigned CriticalAntiDepBreaker:: 391 findSuitableFreeRegister(RegRefIter RegRefBegin, 392 RegRefIter RegRefEnd, 393 unsigned AntiDepReg, 394 unsigned LastNewReg, 395 const TargetRegisterClass *RC, 396 SmallVectorImpl<unsigned> &Forbid) { 397 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC); 398 for (unsigned i = 0; i != Order.size(); ++i) { 399 unsigned NewReg = Order[i]; 400 // Don't replace a register with itself. 401 if (NewReg == AntiDepReg) continue; 402 // Don't replace a register with one that was recently used to repair 403 // an anti-dependence with this AntiDepReg, because that would 404 // re-introduce that anti-dependence. 405 if (NewReg == LastNewReg) continue; 406 // If any instructions that define AntiDepReg also define the NewReg, it's 407 // not suitable. For example, Instruction with multiple definitions can 408 // result in this condition. 409 if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; 410 // If NewReg is dead and NewReg's most recent def is not before 411 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. 412 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) 413 && "Kill and Def maps aren't consistent for AntiDepReg!"); 414 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) 415 && "Kill and Def maps aren't consistent for NewReg!"); 416 if (KillIndices[NewReg] != ~0u || 417 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || 418 KillIndices[AntiDepReg] > DefIndices[NewReg]) 419 continue; 420 // If NewReg overlaps any of the forbidden registers, we can't use it. 421 bool Forbidden = false; 422 for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(), 423 ite = Forbid.end(); it != ite; ++it) 424 if (TRI->regsOverlap(NewReg, *it)) { 425 Forbidden = true; 426 break; 427 } 428 if (Forbidden) continue; 429 return NewReg; 430 } 431 432 // No registers are free and available! 433 return 0; 434 } 435 436 unsigned CriticalAntiDepBreaker:: 437 BreakAntiDependencies(const std::vector<SUnit> &SUnits, 438 MachineBasicBlock::iterator Begin, 439 MachineBasicBlock::iterator End, 440 unsigned InsertPosIndex, 441 DbgValueVector &DbgValues) { 442 // The code below assumes that there is at least one instruction, 443 // so just duck out immediately if the block is empty. 444 if (SUnits.empty()) return 0; 445 446 // Keep a map of the MachineInstr*'s back to the SUnit representing them. 447 // This is used for updating debug information. 448 // 449 // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap 450 DenseMap<MachineInstr *, const SUnit *> MISUnitMap; 451 452 // Find the node at the bottom of the critical path. 453 const SUnit *Max = nullptr; 454 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 455 const SUnit *SU = &SUnits[i]; 456 MISUnitMap[SU->getInstr()] = SU; 457 if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) 458 Max = SU; 459 } 460 461 #ifndef NDEBUG 462 { 463 LLVM_DEBUG(dbgs() << "Critical path has total latency " 464 << (Max->getDepth() + Max->Latency) << "\n"); 465 LLVM_DEBUG(dbgs() << "Available regs:"); 466 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 467 if (KillIndices[Reg] == ~0u) 468 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); 469 } 470 LLVM_DEBUG(dbgs() << '\n'); 471 } 472 #endif 473 474 // Track progress along the critical path through the SUnit graph as we walk 475 // the instructions. 476 const SUnit *CriticalPathSU = Max; 477 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); 478 479 // Consider this pattern: 480 // A = ... 481 // ... = A 482 // A = ... 483 // ... = A 484 // A = ... 485 // ... = A 486 // A = ... 487 // ... = A 488 // There are three anti-dependencies here, and without special care, 489 // we'd break all of them using the same register: 490 // A = ... 491 // ... = A 492 // B = ... 493 // ... = B 494 // B = ... 495 // ... = B 496 // B = ... 497 // ... = B 498 // because at each anti-dependence, B is the first register that 499 // isn't A which is free. This re-introduces anti-dependencies 500 // at all but one of the original anti-dependencies that we were 501 // trying to break. To avoid this, keep track of the most recent 502 // register that each register was replaced with, avoid 503 // using it to repair an anti-dependence on the same register. 504 // This lets us produce this: 505 // A = ... 506 // ... = A 507 // B = ... 508 // ... = B 509 // C = ... 510 // ... = C 511 // B = ... 512 // ... = B 513 // This still has an anti-dependence on B, but at least it isn't on the 514 // original critical path. 515 // 516 // TODO: If we tracked more than one register here, we could potentially 517 // fix that remaining critical edge too. This is a little more involved, 518 // because unlike the most recent register, less recent registers should 519 // still be considered, though only if no other registers are available. 520 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0); 521 522 // Attempt to break anti-dependence edges on the critical path. Walk the 523 // instructions from the bottom up, tracking information about liveness 524 // as we go to help determine which registers are available. 525 unsigned Broken = 0; 526 unsigned Count = InsertPosIndex - 1; 527 for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { 528 MachineInstr &MI = *--I; 529 // Kill instructions can define registers but are really nops, and there 530 // might be a real definition earlier that needs to be paired with uses 531 // dominated by this kill. 532 533 // FIXME: It may be possible to remove the isKill() restriction once PR18663 534 // has been properly fixed. There can be value in processing kills as seen 535 // in the AggressiveAntiDepBreaker class. 536 if (MI.isDebugInstr() || MI.isKill()) 537 continue; 538 539 // Check if this instruction has a dependence on the critical path that 540 // is an anti-dependence that we may be able to break. If it is, set 541 // AntiDepReg to the non-zero register associated with the anti-dependence. 542 // 543 // We limit our attention to the critical path as a heuristic to avoid 544 // breaking anti-dependence edges that aren't going to significantly 545 // impact the overall schedule. There are a limited number of registers 546 // and we want to save them for the important edges. 547 // 548 // TODO: Instructions with multiple defs could have multiple 549 // anti-dependencies. The current code here only knows how to break one 550 // edge per instruction. Note that we'd have to be able to break all of 551 // the anti-dependencies in an instruction in order to be effective. 552 unsigned AntiDepReg = 0; 553 if (&MI == CriticalPathMI) { 554 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) { 555 const SUnit *NextSU = Edge->getSUnit(); 556 557 // Only consider anti-dependence edges. 558 if (Edge->getKind() == SDep::Anti) { 559 AntiDepReg = Edge->getReg(); 560 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 561 if (!MRI.isAllocatable(AntiDepReg)) 562 // Don't break anti-dependencies on non-allocatable registers. 563 AntiDepReg = 0; 564 else if (KeepRegs.test(AntiDepReg)) 565 // Don't break anti-dependencies if a use down below requires 566 // this exact register. 567 AntiDepReg = 0; 568 else { 569 // If the SUnit has other dependencies on the SUnit that it 570 // anti-depends on, don't bother breaking the anti-dependency 571 // since those edges would prevent such units from being 572 // scheduled past each other regardless. 573 // 574 // Also, if there are dependencies on other SUnits with the 575 // same register as the anti-dependency, don't attempt to 576 // break it. 577 for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(), 578 PE = CriticalPathSU->Preds.end(); P != PE; ++P) 579 if (P->getSUnit() == NextSU ? 580 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : 581 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { 582 AntiDepReg = 0; 583 break; 584 } 585 } 586 } 587 CriticalPathSU = NextSU; 588 CriticalPathMI = CriticalPathSU->getInstr(); 589 } else { 590 // We've reached the end of the critical path. 591 CriticalPathSU = nullptr; 592 CriticalPathMI = nullptr; 593 } 594 } 595 596 PrescanInstruction(MI); 597 598 SmallVector<unsigned, 2> ForbidRegs; 599 600 // If MI's defs have a special allocation requirement, don't allow 601 // any def registers to be changed. Also assume all registers 602 // defined in a call must not be changed (ABI). 603 if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI)) 604 // If this instruction's defs have special allocation requirement, don't 605 // break this anti-dependency. 606 AntiDepReg = 0; 607 else if (AntiDepReg) { 608 // If this instruction has a use of AntiDepReg, breaking it 609 // is invalid. If the instruction defines other registers, 610 // save a list of them so that we don't pick a new register 611 // that overlaps any of them. 612 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 613 MachineOperand &MO = MI.getOperand(i); 614 if (!MO.isReg()) continue; 615 unsigned Reg = MO.getReg(); 616 if (Reg == 0) continue; 617 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) { 618 AntiDepReg = 0; 619 break; 620 } 621 if (MO.isDef() && Reg != AntiDepReg) 622 ForbidRegs.push_back(Reg); 623 } 624 } 625 626 // Determine AntiDepReg's register class, if it is live and is 627 // consistently used within a single class. 628 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] 629 : nullptr; 630 assert((AntiDepReg == 0 || RC != nullptr) && 631 "Register should be live if it's causing an anti-dependence!"); 632 if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) 633 AntiDepReg = 0; 634 635 // Look for a suitable register to use to break the anti-dependence. 636 // 637 // TODO: Instead of picking the first free register, consider which might 638 // be the best. 639 if (AntiDepReg != 0) { 640 std::pair<std::multimap<unsigned, MachineOperand *>::iterator, 641 std::multimap<unsigned, MachineOperand *>::iterator> 642 Range = RegRefs.equal_range(AntiDepReg); 643 if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second, 644 AntiDepReg, 645 LastNewReg[AntiDepReg], 646 RC, ForbidRegs)) { 647 LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on " 648 << printReg(AntiDepReg, TRI) << " with " 649 << RegRefs.count(AntiDepReg) << " references" 650 << " using " << printReg(NewReg, TRI) << "!\n"); 651 652 // Update the references to the old register to refer to the new 653 // register. 654 for (std::multimap<unsigned, MachineOperand *>::iterator 655 Q = Range.first, QE = Range.second; Q != QE; ++Q) { 656 Q->second->setReg(NewReg); 657 // If the SU for the instruction being updated has debug information 658 // related to the anti-dependency register, make sure to update that 659 // as well. 660 const SUnit *SU = MISUnitMap[Q->second->getParent()]; 661 if (!SU) continue; 662 UpdateDbgValues(DbgValues, Q->second->getParent(), 663 AntiDepReg, NewReg); 664 } 665 666 // We just went back in time and modified history; the 667 // liveness information for the anti-dependence reg is now 668 // inconsistent. Set the state as if it were dead. 669 Classes[NewReg] = Classes[AntiDepReg]; 670 DefIndices[NewReg] = DefIndices[AntiDepReg]; 671 KillIndices[NewReg] = KillIndices[AntiDepReg]; 672 assert(((KillIndices[NewReg] == ~0u) != 673 (DefIndices[NewReg] == ~0u)) && 674 "Kill and Def maps aren't consistent for NewReg!"); 675 676 Classes[AntiDepReg] = nullptr; 677 DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; 678 KillIndices[AntiDepReg] = ~0u; 679 assert(((KillIndices[AntiDepReg] == ~0u) != 680 (DefIndices[AntiDepReg] == ~0u)) && 681 "Kill and Def maps aren't consistent for AntiDepReg!"); 682 683 RegRefs.erase(AntiDepReg); 684 LastNewReg[AntiDepReg] = NewReg; 685 ++Broken; 686 } 687 } 688 689 ScanInstruction(MI, Count); 690 } 691 692 return Broken; 693 } 694